
ON THE RATE OF ESCAPE OR APPROACH TO THE ORIGIN OF A
RANDOM STRING

PHUC LAM

Abstract. In this paper, we extend upon a result by Mueller and Tribe regarding Funaki’s
model of a random string. Specifically, we examine the rate of escape of this model in
dimensions d ≥ 7. We also provide a bound for the rate of approach to the origin in
dimension d = 6.

1. Introduction and main results

Mueller and Tribe studied recurrence questions for the following model of a random string
in [10]:

∂ut(x)

∂t
=
∂2ut(x)

∂x2
+ Ẇ (x, t), (1.1)

where Ẇ = (Ẇ (x, t))t≥0,x∈R is a Rd-valued space-time white noise with independent compo-
nents and (ut(x))t≥0,x∈R is a continuous Rd-valued process. We also suppose that the noise is
adapted with respect to a filtered probability space (Ω,F , (Ft), P ), where F is complete and
(Ft) is right continuous, in thatW (f) is Ft-measurable whenever f is supported in [0, t]×R.

Denote Gt(x) = (4πt)−1/2 exp(−x2/4t) as the fundamental solution of the heat equation.
The stationary pinned string (Ut(x))t≥0,x∈R, which we will study in this paper, is a solution
to (1.1) driven by the white noise Ẇ (x, t) such that

• U0(x) =
∫∞
0

∫
(Gr(x − z) − Gr(z))W̃ (dzdr), where W̃ is a space-time white noise

independent of Ẇ ;
• Ut(x) is a continuous version of the process

∫
Gt(x−z)U0(z)dz+

∫ t
0

∫
Gr(x−z)W (dzdr).

Here, we write f . g if there is a constant C > 0 such that f(x) ≤ Cg(x) for all x, and
f ' g if there are constants C1, C2 > 0 such that C1f(x) ≤ g(x) ≤ C2f(x) for all x. We also
denote Bδ(z) as the box {y ∈ Rd : |yi − zi| < δ ∀i}

Before proceeding any further, we restate a few properties of the stationary pinned string,
all of which can be found in [10].

(1) Ut(x) =
(
U

(1)
t (x), . . . , U

(d)
t (x)

)
, where the U (i)(x) are i.i.d. and (U

(i)
0 (x))x∈R is a

two-sided Brownian motion with U0(0) = 0.
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(2) Each of the
(
U

(i)
t (x)

)
t≥0,x∈R

are centered Gaussian fields such that

E

[(
U

(i)
t (x)− U (i)

t (y)
)2]

= |x− y| ∀x, y ∈ R, t ≥ 0, (1.2)

and for x, y ∈ R, 0 ≤ s < t,

E

[(
U

(i)
t (x)− U (i)

s (y)
)2]

= (t− s)1/2F
(
|x− y|(t− s)−1/2

)
, (1.3)

where F : R→ R is smooth, bounded below by (2π)−1/2, and

lim
|x|→∞

F (x)/|x| = 1.

Moreover, there exists c1 > 0 such that

c1
(
|x− y|+ |t− s|1/2

)
≤ E

[(
U

(i)
t (x)− U (i)

s (y)
)2]
≤ 2

(
|x− y|+ |t− s|1/2

)
. (1.4)

(3) (Translation invariance) For any t0 ≥ 0, x0 ∈ R, the field

(Ut0+t(x0 ± x)− Ut0(x0))x∈R,t≥0
has the same law as the stationary pinned string.

(4) (Scaling) For L > 0, the field(
L−1UL4t(L

2x)
)
x∈R,t≥0

has the same law as the stationary pinned string.
(1.4) gives us a useful bound as follows.

Proposition 1.1.

P (Ut(x) ∈ Bδ(0)) .

(
δ

(t1/2 + |x|)1/2

)d

.

Proof.

P (Ut(x) ∈ Bδ(0)) = P
(
U

(i)
t (x) ∈ Bδ(0)

)d
=

 1√
2πVarU (i)

t (x)

∫ δ

−δ
exp

(
− z2

2VarU (i)
t (x)

)
dz

d

≤

(
2δ√

2πc1(t1/2 + |x|)

)d

.

�

We call (Ut(x))t≥0,x∈R

• point recurrent if, almost surely, ∀z ∈ Rd, there exist (random) sequences {xn}, {tn}
such that tn ↗∞ and Utn(xn) = z ∀n;
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• neighborhood recurrent if, almost surely, ∀z ∈ Rd and ε > 0, there exist (random)
sequences {xn}, {tn} such that tn ↗∞ and Utn(xn) ∈ Bε(z) ∀n;
• transient if, infx∈R |Ut(x)| goes to infinity.

In [10], Mueller and Tribe showed that
• for d ≤ 5, (Ut(x))t≥0,x∈R is point recurrent;
• for d = 6, (Ut(x))t≥0,x∈R is neighborhood recurrent but not point recurrent;
• for d ≥ 7, (Ut(x))t≥0,x∈R is transient.

This motivates the question of finding the rate of escape of this string when d ≥ 6. How
fast should a ball centered at z grow so that (neighborhood) recurrence happens for d ≥ 7?
Likewise, how fast should a ball centered at z shrink so that transience happens for d = 6?

In this paper, we wish to study the question of recurrence and transience when the growth
rate is of the form f(t) = tα, where α ∈ R. Since it suffices to consider the ball centered at
the origin, we establish our main results in the following theorems.

Theorem 1.2. Suppose (Ut(x))t≥0,x∈R is the stationary pinned string in Rd (d ≥ 7). Then
almost surely,

lim inf
t→∞

infx∈R |Ut(x)|
tα

=

{
+∞ (0 < α < 1/4)

0 (α ≥ 1/4).

This means neighborhood recurrence of Ut(x) happens when α ≥ 1/4, and transience happens
otherwise.

Theorem 1.3. Suppose (Ut(x))t≥0,x∈R is the stationary pinned string in R6. Then almost
surely,

lim inf
t→∞

infx∈R |Ut(x)|
t−α

= 0 ∀α > 0.

This means neighborhood recurrence of Ut(x) happens for all α > 0.

The remainder of this paper is organized as follows. In Section 2, we provide a rigorous
interpretation of equation (1.1). In Sections 3 and 4, we prove separate cases of Theorem
1.2. We then prove Theorem 1.3 in 5. Finally, we discuss previous results, open questions,
and conjectures in 6.

2. Understanding the stochastic heat equation

Recall the heat equation.
∂ut(x)

∂t
=
∂2ut(x)

∂x2
. (2.1)

We recognize that the stochastic heat equation (1.1) is obtained by adding the white noise
Ẇ (x, t) to the RHS of (2.1). However, we note that the white noise term is nowhere dif-
ferentiable. In fact, it is so rough that any candidate for the solution of (1.1) will not be
differentiable. We thus rewrite (1.1) in more rigorous forms.

Recall the usual inhomogenous heat equation and how to solve it when the driving term
is a smooth function instead of the white noise.

∂ut(x)

∂t
=
∂2ut(x)

∂x2
+ f(x, t).
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By the Duhamel principle,

ut(x) =

∫
R
Gt(x− y)u0(y)dy +

∫ t

0

∫
R
Gt−s(x− y)f(y, s)dyds,

where Gt(x) is the fundamental solution of the heat equation.
Heuristically, the solution of equation (1.1) should be obtained by

ut(x) =

∫
R
Gt(x− y)u0(y)dy +

∫ t

0

∫
R
Gt−s(x− y)W (dyds), (2.2)

where the term f(y, s)dyds is replaced by W (dyds). ut(x) is called the mild solution of
(1.1) if it satisfies (2.2).

A second approach is as follows. Consider φ : R× [0,∞)→ Rd, where φ(x, t) is a smooth
function and of compact support in x. Multiply both sides of (1.1) by φ(x, t) over [0, T ]×R
(where T > 0 is fixed),∫ T

0

∫
R

(
∂ut(x)

∂t
− ∂2ut(x)

∂x2

)
φ(x, t)dxdt =

∫ T

0

∫
R
φ(x, t)Ẇ (x, t)dxdt

=

∫ T

0

∫
R
φ(x, t)W (dxdt). (2.3)

Integrate by parts on the left-hand side,∫ T

0

∫
R

(
∂ut(x)

∂t
− ∂2ut(x)

∂x2

)
φ(x, t)dxdt

=

∫ T

0

∫
R
ut(x)

(
∂2φ(x, t)

∂x2
− ∂φ(x, t)

∂t

)
dxdt

+

∫
R
(uT (x)φ(x, T )− u0(x)φ(x, 0))dx. (2.4)

If we let φ(x, T ) = 0, then the term uT (x)φ(x, T ) vanishes. From (2.3) and (2.4),∫ T

0

∫
R
ut(x)

(
∂2φ(x, t)

∂x2
− ∂φ(x, t)

∂t

)
dxdt =

∫
R
u0(x)φ(x, 0)dx+

∫ T

0

∫
R
φ(x, t)W (dxdt).

(2.5)
We call ut(x) a weak solution of (1.1) if it is locally integrable, and that (2.5) is satisfied
for all T > 0 and smooth φ(x, t) of compact support such that φ(x, T ) = 0∀x.

Remark 2.1. The second approach is only possible for x ∈ R. If x ∈ Rn, where n ≥ 2, then
solutions are no longer real-valued functions, but are generalized functions. To handle these
cases, Schwartz distributions are needed.

Remark 2.2. In [9], it is proven for a certain class of SPDEs (to which (1.1) belongs) that
mild solutions and weak solutions are equivalent.
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3. Proof of Theorem 1.2 when α ≥ 1/4

Define Eε be the event that there exist sequences {xn}, {tn} with tn ↗ ∞ such that
Utn(xn) ∈ B

εt
1/4
n

(0), i.e. |Utn(xn)|/t1/4n < ε. Define

GN = σ{U0(x) : |x| > N}
∨ σ{W (φ) : φ(t, x) = 0 if 0 ≤ t ≤ N and |x| ≤ N},

and

G =
⋂
N≥1

GN ,

Since U0 and W are independent, using the same arguments to prove Kolmogorov’s 0-1 law
for the Brownian tail σ-field, we can show that G is trivial.

Lemma 3.1. Eε belongs to the tail σ-field G.

Proof. The proof of this lemma is similar to that of Lemma 5 in [10]. �

Proof of Theorem 1.2 when α ≥ 1/4. It suffices to show the result for α = 1/4. For any
ε > 0,

P (Eε) ≥ P
(

inf
x∈R
|Un(x)|/n1/4 < ε for infinitely many n ∈ Z+

)
.

By Fatou’s Lemma,

P (Eε) ≥ lim sup
n→∞

P

(
inf
x∈R
|Un(x)|/n1/4 < ε

)
.

By scaling,

P (Eε) ≥ lim sup
n→∞

P

(
inf
x∈R

∣∣U1(x/
√
n)
∣∣ < ε

)
= lim sup

n→∞
P

(
inf
x∈R
|U1(x)| < ε

)
= P

(
inf
x∈R
|U1(x)| < ε

)
≥ P (|U1(0)| < ε)

= P
(
|U (1)

1 (0)| < ε
)d

> 0,

the last inequality follows since U (1)
1 (0) is a non-degenerate centered Gaussian random vari-

able.
From Lemma 3.1, since Eε is a tail event in G, we have that

P (Eε) = 1,

which holds for every ε > 0, concluding our proof. �
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4. Proof of Theorem 1.2 when 0 < α < 1/4

We start with the following lemma.

Lemma 4.1. Define the sequence {tn}n≥1 as follows.{
t1 = 1

tn+1 = tn + t4αn (n ≥ 1).

Then tn = Ω
(
n1/(1−4α)), i.e. there exists a constant c = c(α) > 0 such that

tn ≥ cn1/(1−4α) (4.1)

for all n ≥ 1.

Proof. Denote r = 1/(1−4α) > 1. We show by induction that (4.1) holds for c = (1/2)drer ∈
(0, 1), where d·e is the ceiling function.

(4.1) trivially holds for n = 1. Suppose it holds for n = k ≥ 1, i.e. tk ≥ ckr. We see that(
1 +

1

k

)r
≤
(

1 +
1

k

)dre
= 1 +

dre∑
i=1

(
dre
i

)
1

ki
≤ 1 +

1

k

dre∑
i=0

(
dre
i

)
= 1 +

2dre

k
= 1 +

c−1/r

k
.

This implies

c(1 + k)r ≤ ckr + c1−1/rkr−1. (4.2)

By the induction hypothesis,

tk+1 = tk + t4αk ≥ ckr + (ckr)1−1/r . (4.3)

From (4.2) and (4.3), we see that

tk+1 ≥ c(1 + k)r,

which completes the proof of Lemma 4.1. �

Proof of Theorem 1.2 when 0 < α < 1/4. Our strategy closely follows that found in Theorem
3 of [10]. We find a grid of points and show that recurrence of this string along this grid is
impossible, then control the regions between these grid points.

Define the sequence {tn}n≥1 as in Lemma 4.1. On the lines t = tn+1, choose points kt2αn (k ∈
Z). Let Rn,k be the rectangles with vertices (tn, kt

2α
n ), (tn+1, t

2α
n ), (tn, (k+ 1)t2αn ), (tn+1, (k+

1)t2αn ). Define m(n, k) = b
(
n1/2 + |k|

)d/6−1.1c. We divide Rn,k into m(n, k)3 rectangles,
each of them a translate of [0, t4αn m(n, k)−2] × [0, t2αn m(n, k)−1]. For these rectangles, the
points with the largest (x, t) coordinates are (tn + it4αn m(n, k)−2, kt2α + jt2αn m(n, k)−1) =:
(t(n,k,i), x(n,k,j)) (1 ≤ i ≤ m(n, k)2; 1 ≤ j ≤ m(n, k)); these will be our grid points.
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4.1. Transience of Ut(x) at grid points. By Proposition 1.1,

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P
(∣∣∣Ut(n,k,i)(x(n,k,j))∣∣∣ ≤ B2δtα

(n,k,i)
(0)
)

.
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

 δt(n,k,i)
α(

t
1/2
(n,k,i)) + |x(n,k,j)|

)−1/2

d

. δd
∑
n≥1

∑
k≥0

m(n,k)2∑
i=1

m(n,k)∑
j=1

 t(n,k,i)
α(

t
1/2
(n,k,i)) + |x(n,k,j)|

)−1/2

d

, (4.4)

Now,
t(n,k,i)

2α

t
1/2
(n,k,i)) + |x(n,k,j)|

=
1

t
1/2−2α
(n,k,i)) + |x(n,k,j)|t(n,k,i)−2α

. (4.5)

We bound the terms in the denominator in (4.5) as follows. By Lemma 4.1,

t
1/2−2α
(n,k,i)) &

(
n1/(1−4α))1/2−2α = n1/2. (4.6)

Also,

|x(n,k,j)|t(n,k,i)−2α = t2αn
(
k + jm(n, k)−1

) (
tn + it4αn m(n, k)−2

)−2α
.

Since 1 ≤ i ≤ m(n, k)−2,

|x(n,k,j)|t(n,k,i)−2α ≥ t2αn
(
k + jm(n, k)−1

) (
tn + t4αn

)−2α
= (tn/tn+1)

2α (k + jm(n, k)−1
)
.

Since tn/tn+1 ≥ 1/2,

|x(n,k,j)|t(n,k,i)−2α & k + jm(n, k)−1 ≥ k.

(4.7)

From (4.5), (4.6), and (4.7),

t(n,k,i)
2α

t
1/2
(n,k,i)) + |x(n,k,j)|

.
1

n1/2 + k
. (4.8)

From (4.4) and (4.8),

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P
(∣∣∣Ut(n,k,i)(x(n,k,j))∣∣∣ ≤ B2δtα

(n,k,i)
(0)
)

. δd
∑
n≥1

∑
k≥0

m(n,k)2∑
i=1

m(n,k)∑
j=1

(
n1/2 + k

)−d/2
7



= δd
∑
n≥1

∑
k≥0

m(n, k)3
(
n1/2 + k

)−d/2
≤ δd

∑
n≥1

∑
k≥0

(
n1/2 + k

)d/2−3.3 (
n1/2 + k

)−d/2
= δd

∑
n≥1

∑
k≥0

(
n1/2 + k

)−3.3
<∞, (4.9)

the last inequality follows from the integral test∫ ∞
1

∫ ∞
0

dydx

(x1/2 + y)
3.3 <∞.

By the Borel-Cantelli lemma, the string Ut(x), evaluated at these grid points, will eventually
leave their corresponding boxes B2δtα

(n,k,i)
(0) for large (random) t.

4.2. Controlling the regions between grid points. From the display after (6.8) in [10],
we can find constants c1, c2 > 0 such that

P

(
sup

(t,x)∈[0,1]2
|Ut(x)| ≥ δ

)
≤ c1 exp

(
−c2δ2

)
. (4.10)

Denote R(n,k,i,j) as the translation of [0, t4αn m(n, k)−2]× [0, t2αn m(n, k)−1] with largest coordi-
nates (t(n,k,i), x(n,k,j)). Then by translation,

∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈R(n,k,i,j)

∣∣∣Ut(x)− Ut(n,k,i)(x(n,k,j))
∣∣∣ ≥ δtα(n,k,i)

)

=
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈[0,t4αn m(n,k)−2]×[0,t2αn m(n,k)−1]

|Ut(x)| ≥ δtα(n,k,i)

)
.

By the scaling of Ut(x), the preceding quadruple sum becomes

=
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

P

(
sup

(t,x)∈[0,1]2
|Ut(x)| ≥ δtα(n,k,i)m(n, k)1/2t−αn

)
.

By (4.10), we can bound the sum above by

.
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

exp
(
−c2δ2m(n, k)(t(n,k,i)/tn)2α

)
=
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

exp
(
−c2δ2m(n, k)

((
tn + it4αn m(n, k)−2

)
/tn
)2α)

≤
∑
n≥1

∑
k∈Z

m(n,k)2∑
i=1

m(n,k)∑
j=1

exp
(
−c2δ2m(n, k)

)
8



=
∑
n≥1

∑
k∈Z

m(n, k)3 exp
(
−c2δ2m(n, k)

)
.
∑
n≥1

∑
k≥0

m(n, k)3 exp
(
−c2δ2m(n, k)

)
'
∑
n≥1

∑
k≥0

(
n1/2 + k

)d/2−3.3
exp

(
−c2δ2

(
n1/2 + k

)d/6−1.1)
<∞,

the last inequality can be shown using the integral test for convergence of series.
By the Borel-Cantelli lemma, there exists a (random) N0 ∈ Z+ such that for all n ≥ N0,

k ∈ Z, i ≤ m(n, k)2, and j ≤ m(n, k), we have that

sup
(t,x)∈R(n,k,i,j)

∣∣∣Ut(x)− Ut(n,k,i)(x(n,k,j))
∣∣∣ < δtα(n,k,i). (4.11)

If Ut(x) evaluated at the grid point (t(n,k,i), x(n,k,j)) is outside of the box B2δtα
(n,k,i)

(0) and (4.11)
holds, then none of the values Ut(x), where (t, x) ∈ R(n,k,i,j), can be within δtα < δtα(n,k,i) of
0.

Combining Subsections 4.1 and 4.2, we see that the probability of recurrence is zero, thus
completing the proof. �

5. A result when d = 6

We start with the following lemmas.

Lemma 5.1. Let δ ∈ (0, 1) and α > 0. Then

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
. C

(t+ s)−6αt−6α

(s1/2 + |y|)3 (t1/2 + |x|)3
(5.1)

holds under one of the following conditions:
(1) t ≥ 1, |x|, |y| ≤ 2t1/2, and 0 ≤ s ≤ t;
(2) |y| ≤ 2s1/2,

where C = C(δ) > 0 is dependent only on δ.

The proof of this lemma is deferred to Appendix A.

Lemma 5.2. For any α ∈ Z+, there exists a constant C = C(α) > 0 such that((
1 + (N2 −N)−(6α+1)

)1/(6α+1) − 1
)−1
. NC .

Proof. Let K = 6α + 1 ∈ Z+, and let C = 2K + 2. Then for any ρ > 0,

(NC + ρ)K = NCK +
K∑
i=1

(
K

i

)
NC(K−i)ρi

≤ NCK +NC(K−1)(1 + ρ)K

≤ NCK +N (C−2)KN−2(1 + ρ)K .
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Choosing ρ = 41/K − 1 > 0, then for all N ≥ 2,

(NC + ρ)K ≤ NCK +N (C−2)K .

Thus,

ρ ≤ NC
(
1 +N−2K

)1/K −NC

≤
((

1 + (N2 −N)−K
)1/K − 1

)
NC ,

completing our proof of the lemma. �

Lemma 5.3. (An inclusion-exclusion type lower bound) Let {Ai}1≤i≤n be events and A =⋃n
i=1Ai. Then

P (A) ≥ (
∑n

i=1 P (Ai))
2∑n

i=1 P (Ai) + 2
∑

1≤i<j≤n P (Ai ∩ Aj)
. (5.2)

We omit the proof for this standard lemma.

Proof of Theorem 1.3. We mimic the same strategy as that in the proof of Theorem 3 of
[10]. It suffices to show for α ∈ Z+. Here, we fix δ ∈ (0, 1) (thus, constants that are only
dependent on δ and/or α are treated as absolute constants). Let R(δ) be the event that
there exist sequences {xn}, {tn} with tn ↗ ∞ such that Utn(xn) ∈ Bδt−αn

(0). As in Lemma
3.1, we can show that R(δ) is an event in the tail σ-field G, where G is defined in Section 3.

Denote k = 1/(6α + 1) ∈ (0, 1). For integers i, j, N , define

R(N)
i,j =

{
UN+ik(j) ∈ Bδ(N+ik)−α(0)

}
,

R(N, δ) =
⋃

i:N≤N+ik≤N2

⋃
0≤j≤(N+ik)1/2

R(N)
i,j .

Using Lemma 5.3, we show that there exists p0 > 0 such that P (R(N, δ)) ≥ p0 > 0 for all
sufficiently large N . Then, since

P (R(δ)) ≥ P (R(N, δ) infinitely often) ≥ p0 > 0,

we get P (R(δ)) = 1 by the zero-one law for any δ > 0, concluding our proof. To bound
P (R(N, δ)) below, we find bounds for the sum of P

(
R(N)
i,j

)
(which we will call the "first-

order term"), and the sum of P
(
R(N)
i,j ∩R

(N)
i′,j′

)
(which we will call the "covariance term").

5.1. Bounding the first-order term. Denote r = b(N2 − N)1/kc. Using the variance
estimate in (1.4), similar to the proof of Proposition 1.1, we get

P
(
R(N)
i,j

)
'
(
N + ik

)−6α ((
N + ik

)1/2
+ |j|

)−3
, (5.3)

where ' is defined in Section 1. Thus,∑
0≤i≤(N2−N)1/k

∑
0≤j≤(N+ik)1/2

P
(
R(N)
i,j

)
10



'
r∑
i=0

∑
0≤j≤(N+ik)1/2

(
N + ik

)−6α ((
N + ik

)1/2
+ |j|

)−3
'
∫ r

0

∫ (N+ik)1/2

0

(
N + xk

)−6α ((
N + xk

)1/2
+ |y|

)−3
dydx

'
∫ r

0

(
N + xk

)−6α−1
dx

Setting z = N + xk, then the above is equal to

=

∫ N2

N

(6α + 1)(z −N)6αz−6α−1dz

'
∫ N2

N

(1−N/z)6αz−1dz. (5.4)

Trivially, ∫ N2

N

(1−N/z)6αz−1dz ≤
∫ N2

N

z−1dz = logN. (5.5)

For N large enough,∫ N2

N

(1−N/z)6αz−1dz ≥
∫ N2

2N

(1−N/z)6αz−1dz ≥
∫ N2

2N

(1/2)6αz−1dz ' logN. (5.6)

From (5.4), (5.5), and (5.6),
r∑
i=0

∑
0≤j≤(N+ik)1/2

P
(
R(N)
i,j

)
' logN. (5.7)

5.2. Bounding the covariance term. The covariance term is as follows.
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=0

∑
0≤j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j′

)
1{(i,j) 6=(i′,j′)}

'
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i

∑
0≤j+j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
1{(i′,j′)6=(i,0)}.

Since −
(
N + i′k

)1/2 ≤ − (N + ik
)1/2 ≤ −j ≤ j′ ≤

(
N + ik

)1/2 − j ≤
(
N + i′k

)1/2, the
quadruple sum above is at most

≤
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i

∑
|j′|≤(N+i′k)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
1{(i′,j′)6=(i,0)}. (5.8)

Setting t = N + ik, s = i′k − ik, x = j, y = j′, we see that t ≥ 1, s ≥ 0, 0 ≤ x ≤ t1/2, and
|y| ≤ (t+ s)1/2. Consider the following cases.

(1) If s ≤ t, then x ≤ t1/2 < 2t1/2 and |y| ≤ (t+ s)1/2 < 2t1/2;
(2) If s > t, then |y| ≤ (t+ s)1/2 < 2s1/2.

11



In any case, the conditions in Lemma 5.1 hold. Thus,

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)
.

(N + i′k)−6α(N + ik)−6α

((i′k − ik)1/2 + |j′|)3 ((N + ik)1/2 + j)
3 . (5.9)

We split the quadruple sum in (5.8) into two parts: i′ > i, and i′ = i. In the first case, j′ = 0
is included in the summation, whereas it is not in the second case (since (i′, j′) 6= (i, 0)). For
the first case, using (5.9),

r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i+1

∑
|j′|≤(N+i′k)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j+j′

)

.
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=i+1

∑
0≤j′≤(N+i′k)1/2

(N + i′k)−6α(N + ik)−6α

((i′k − ik)1/2 + |j′|)3 ((N + ik)1/2 + j)
3

'
∫ r

0

∫ (N+xk)1/2

0

∫ r

x+1

∫ (N+x′k)1/2

0

(N + x′k)−6α(N + xk)−6α

((x′k − xk)1/2 + y′)
3

((N + xk)1/2 + y)
3dy

′dx′dydx

.
∫ r

0

∫ (N+xk)1/2

0

∫ r

x+1

(N + x′k)−6α(N + xk)−6α

(x′k − xk) ((N + xk)1/2 + y)
3dx

′dydx

'
∫ r

0

∫ r

x+1

(N + x′k)−(6α+1)(N + xk)−6α

x′k − xk
dx′dx

Setting z = N + xk, z′ = N + x′k, the above is equal to

=

∫ N2

N

∫ N2

((z−N)1/k+1)k+N+1

k−2
(

1− N

z

)6α(
1− N

z′

)6α
1

z(z′ − z)
dz′dz

.
∫ N2

N

∫ N2

((z−N)1/k+1)k+N+1

dz′dz

z(z′ − z)

=

∫ N2

N

z−1
(
log(N2 − z)− log(((z −N)1/k + 1)k − (z −N)

)
dz

≤
(
log(N2 −N)− log(((N2 −N)1/k + 1)k − (N2 −N)

) ∫ N2

N

z−1dz

= log
((

1 + (N2 −N)−(6α+1)
)1/(6α+1) − 1

)−1
logN

By Lemma 5.2, for some constant C > 0, the above is at most

≤ logNC logN . (logN)2. (5.10)

For the second case, using (5.9) again,
r∑
i=0

∑
0≤j≤(N+ik)1/2

∑
1≤|j′|≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i,j+j′

)
12



.
r∑
i=0

∑
0≤j≤(N+ik)1/2

∑
1≤|j′|≤(N+ik)1/2

(N + ik)−12α

j′3 ((N + ik)1/2 + j)
3

'
∫ r

0

∫ (N+xk)1/2

0

∫ (N+xk)1/2

1

(N + xk)−12α

y′3 ((N + xk)1/2 + y)
3

'
∫ r

0

(N + xk)−12α−1
(
1− (N + xk)−1

)
dx

<

∫ r

0

(N + xk)−12α−1dx

Setting z = N + xk, the above is equal to

=

∫ N2

N

k−1(z −N)6αz−12α−1dz � logN. (5.11)

From (5.8), (5.10), and (5.11),
r∑
i=0

∑
0≤j≤(N+ik)1/2

r∑
i′=0

∑
0≤j′≤(N+ik)1/2

P
(
R(N)
i,j ∩R

(N)
i′,j′

)
1{(i,j)6=(i′,j′)} . (logN)2. (5.12)

Using the bounds in (5.7) and (5.12) from the Subsections above, applying Lemma 5.3 for
R(N, δ) =

⋃r
i=0

⋃
0≤j≤(N+ik)1/2R

(N)
i,j , we get

P (R(N, δ)) &
1

(logN)−1 + 1
& 1,

i.e. there exists a p0 > 0 such that P (R(N, δ)) ≥ p0 for sufficiently large N . Our proof is
complete. �

6. Open questions

The rate of escape of Brownian motion has been well-studied (see [1], [6], [8], [11], and [13]).
Recall that f = Ω(g) if there exists C > 0 such that f(x) ≥ Cg(x) for sufficiently large x. A
shortcoming of our result is that for d ≥ 7, we do not take into account increasing functions
that are o(t1/4) and Ω

(
t1/4−ε

)
(for example, when the growth rate t1/4/ ln t). In many

of the finite-dimensional Brownian motions, an integral test is usually used to determine a
necessary and sufficient condition for recurrence. For example, for Brownian motion (B(t))t≥0
in Rd (d ≥ 3), we have the following result:

Theorem 6.1. (Dvoretzky-Erdős test) Let (B(t))t≥0 in Rd (d ≥ 3) and f : R+ → R+

increasing. Then∫ ∞
1

(
f(t)t−1/2

)d−2
t−1dt <∞ if and only if lim inf

t→∞

B(t)

f(t)
=∞ a.s.

Conversely, if the integral diverges, then lim inft→∞
B(t)

f(t)
= 0 a.s.
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In other words, recurrence happens if and only if the integral diverges. Though the
stationary pinned string is not Brownian, it is still Gaussian, allowing for possible analogies.
From Theorem 1.2 above, we suspect that a similar condition holds for the stationary pinned
string (Ut(x))t≥0,x∈R when d ≥ 7.

Conjecture 6.2. For d ≥ 7, there exists a constant C = C(d) > 0 such that the following
holds: given f : R+ → R+ increasing, then∫ ∞

1

(
f(t)t−1/4

)C
t−1dt <∞ if and only if lim inf

t→∞

infx∈R |Ut(x)|
f(t)

=∞ a.s.

Conversely, if the integral diverges, then lim inft→∞
infx∈R |Ut(x)|

f(t)
= 0 a.s.

The situation is even less well-understood in the critical dimension d = 6, where we only
managed to bound the shrinking rate of f(t) on one side. Interestingly, the difficulties for
d = 6 are encountered not only when we study the question of recurrence, but also in hitting
problems. Recall that a Rd-valued process (ut(·))t≥0 is said to hit the point z ∈ Rd if

P (ut(x) = z for some t > 0, x ∈ R) > 0.

We also say that dc is the critical dimension if hitting of B = {z} occurs for d < dc but not
for d > dc. For the nonlinear stochastic heat equation

∂ut(x)

∂t
=
∂2ut(x)

∂x2
+ σ(ut(x))Ẇ (t, x),

where the white noise in (1.1) is multiplied by a matrix-valued function with certain re-
strictions (see [2], [4]), the critical dimension is known to be dc = 6. Unlike in the case of
vector-valued Brownian sheet and other classes of Gaussian fields, where the sets of hitting
points are relatively well-understood (see [8], [3]), it is only known that for the nonlinear
stochastic heat equation, almost every point in R6 is not hit.

Inspired by the case of N -parameter d-dimensional Brownian sheet (see [8]), we suspect
that an exponential shrinking rate might suffice for transience of the stationary pinned string.
However, the tools from potential theory, which was developed in the mentioned paper, is
intractable in solving this problem. Again, the ultimate goal is to find an integral test to
determine the necessary and sufficient condition for recurrence.
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Appendix A. Proof of Lemma 5.1

We start with the following lemma.

Lemma A.1. When d = 6, for all s, t ∈ [1, 2], |x|, |y| ≤ 2, and δ1, δ2 ∈ (0, 1),

P (Ut(x) ∈ Bδ1(0), Us(y) ∈ Bδ2(0)) . δ61δ
6
2

(
|t− s|1/2 + |x− y|

)−3
. (A.1)
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Proof. We would like to show that for 1 ≤ i ≤ 6,

P
(
U

(i)
t (x) ∈ Bδ1(0), U (i)

s (y) ∈ Bδ2(0)
)
. δ1δ2

(
|t− s|1/2 + |x− y|

)−1/2
. (A.2)

Then (A.1) follows from the independence of coordinates U (i).
Consider the centered Gaussian vector (X, Y ) =

(
U

(i)
t (x), U

(i)
s (y)

)
. Without loss of gen-

erality, suppose t ≥ s. Since X is centered Gaussian, P (µ+X ∈ Bδ1(0)) is maximized when
µ = 0. Thus,

P (X ∈ Bδ1(0) | Y ) . δ1Var (X − E(X | Y ))−1/2 .

Hence,

P (X ∈ Bδ1(0), Y ∈ Bδ2(0)) . δ1δ2Var (X − E(X | Y ))−1/2 . (A.3)

Setting σ2
X = E(X2), σ2

Y = E(Y 2), and ρ2X,Y = E((X − Y )2), then

Var (X − E(X | Y )) =

(
ρ2X,Y − (σX − σY )2

) (
(σX + σY )2 − ρ2X,Y

)
4σ2

X

. (A.4)

From (1.3),
σ2
X = t1/2F

(
|x|t−1/2

)
≥ t1/2(2π)−1/2 ≥ (2π)−1/2,

and
σ2
X = t1/2F

(
|x|t−1/2

)
. t1/2|x|t−1/2 = |x| ≤ 2.

we see that σ2
X is bounded and bounded away from 0. From (1.4), ρ2X,Y ≥ c1(|t−s|1/2+|x−y|).

Setting F̃ : R2 → R such that F̃ (t, x) =
(
t1/2F (|x|t−1/2)

)1/2, then since F is differentiable,
using the Mean Value Theorem, we get that |σX−σY | = |F̃ (t, x)− F̃ (s, y)| . |t−s|+ |x−y|.
All these, together with (A.4), shows that there exists C, ε > 0 such that

Var (X − E(X | Y )) ≥ C
(
|t− s|1/2 + |x− y|

)
(A.5)

for t, s ∈ [1, 2], |x|, |y| ≤ 2, and |t− s|+ |x− y| ≤ ε.
Note that Var (X − E(X | Y ))

(
|t− s|1/2 + |x− y|

)−1 is a continuous function of s, t, x, y
in their specified region when |t − s| + |x − y| ≥ ε. We can then remove the constraint
|t−s|+|x−y| < ε and modify the constant C such that the bound in (A.5) holds. Combining
this with (A.3) gives us (A.2), finishing our proof. �

Proof of Lemma 5.1. Suppose the first condition in the lemma holds. Then by scaling,

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
= P

(
U1(x/t

1/2) ∈ Bδt−α−1/4(0), U1+s/t((x+ y)/t1/2) ∈ Bδ(t+s)−αt−1/4(0)
)

By Lemma A.1, the above is bounded by a constant multiple of

.
(
δt−α−1/4δ(t+ s)−αt−1/4

)6 (
(s/t)1/2 + |y|/t1/2

)−3
= δ12

t−6α(t+ s)−6α

(s1/2 + |y|)3 t3/2
15



Since |x| ≤ 2t1/2, the above is bounded by a constant multiple of

. δ12
t−6α(t+ s)−6α

(s1/2 + |y|)3 (t1/2 + |x|)3
,

concluding our proof when the first condition in the lemma holds. Suppose now that the
second condition in the lemma holds. From Section 1,

Ut+s(x+ y) =

∫
Gs(x+ y − z)Ut(z)dz +

∫ s

0

∫
Gs−r(x+ y − z)W (dzdr).

Thus,

Var (Ut+s(x+ y)− E(Ut+s(x+ y)|Ft)

= Var
(∫ s

0

∫
Gs−r(x+ y − z)W (dzdr)

)
= Cs1/2.

Hence, for |y| ≤ 2s1/2,

P
(
Ut+s(x+ y) ∈ Bδ(t+s)−α(0) | Ft

)
. δ6(t+ s)−6αs−3/2 . δ6(t+ s)−6α

(
s1/2 + |y|

)−3
.

Then

P
(
Ut(x) ∈ Bδt−α(0), Ut+s(x+ y) ∈ Bδ(t+s)−α(0)

)
. δ12

(t+ s)−6αt−6α

(s1/2 + |y|)3 (t1/2 + |x|)3
,

concluding our proof. �
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