
Honors Thesis

Peter MacNeil∗

January 2024

∗Advised by Alex Iosevich

1

1 Introduction

In a world with an abundance of data, it has become apparent that only a
fraction of it is useful. Much of the data we collect represents processes that
have some flavor of inherent randomness. In industries where time series
data is of utmost importance, such as the financial sector, meteorology, or
in informing legislators who write economic policy, this abundance of data
does not necessarily drive better forecasts. Too often it instead clutters
the picture for data analysts looking to make informed conclusions. The
time spent analyzing useless data would be much better spent investigating
data we know we can draw conclusions from, and with increased and more
effective data mining constantly being employed, the mass of this useless
data is increasing exponentially. It is more important than ever to figure
out how to separate the signal from the noise. We first must define what
we mean by ”useless” data. It must be made clear that by this phrasing
we do not necessarily mean bad data, in that there were errors made in its
collection. Rather, we mean data that we cannot draw significant conclusions
from, with the definition of significance varying depending on what our goals
are. Within the context of time-series forecasting, we define a useless time
series as one that we can not consistently predict. Let us investigate a simple
example. Suppose that we are playing a repeated game of heads and tails
with a friend. We receive 1 dollar from our friend for every head, and we
must pay your friend a dollar for every tail. It is easy to imagine that we can
represent our winnings at each flip as time series data:

Figure 1: Coin Flips

The issue arises now when we try to forecast our future winnings. Any

2

forecasting technique would find some underlying pattern in our random
data, and continue this pattern into the future, or give the best possible
forecast which predicts our profits stabilizing indefinitely onwards. Still,
both of these forecasts will fall short in any case any degree of accuracy is
required.

Figure 2: Trying to Forecast Coin Flips from past data (impossible)

This is even more obvious if we change our scheme to represent our profits
over time from this game.

Figure 3: A Random Walk that happens to represent our profits over time

3

Figure 4: Forecast in Orange for our Random Walk

We can see that issues arise in forecasting when an underlying process is
random. This is a trivial observation, but has more depth then one might
think. This is because most things are not 100 percent random, or 100 percent
deterministic, but somewhere in between. One may imagine a businesses
total profit over time represented by a linear trend with random noise added
to it. When asked to forecast this, our engine (roughly) succeeds at finding
a trend, but struggles with the noise. Overall though, it is more successful
with a task like this than the coin flip examples.

Figure 5: Linear Trend plus Random walk

4

Figure 6: Forecast in Orange for our Linear trend plus Random walk

So how can we quantify how random something appears to be? We can’t.
But we can try. The following values, which we call Q1, Q2 and Q3, are
currently employed in industry to approximate such a measure.

Q1 =

√
1
N

∑N
i=1(f(i)− µ)2

µ
(1)

Q2 =

√
1
N

∑N
i=1 |(f(i)− f(i− 1)| − µ∆)2

µ∆

(2)

Where µ∆ is defined as

µ∆ =

∑N−1
i=1 |f(i)− f(i− 1)|

N − 1
(3)

and when S is the length of a season of interest (often the length of one year
of time steps),

Q3 =

√
1
N

∑N
i=S |(f(i)− f(i− S)| − µ∆)2

µ∆

(4)

Where µ∆ is defined as

µ∆ =

∑N
i=S |f(i)− f(i− S)|

N − S
(5)

These quantities are standard deviations of the time series, and differ-
enced time series over their respective mean values. It is a natural quantity
to come up with, as obviously those time series that differ from their average
behavior often will be harder to predict.

5

2 Fractals and Neural Networks

Neural Networks are universal function approximaters. Given enough train-
ing data, a Neural Network can approximate all Borel Measurable functions
arbitrarily close [1]. Special difficulties arise in time series forecasting, as we
are predicting data beyond any point the model has trained. We model our
value at time t as a function of the values coming before it.

Vt = f(Vt−1, Vt−2, ...Vt−n), n <= t (6)

When forecasting using neural network architecture we must fix an n so
we can have a fixed dimensionality of our training data. There are many
measurable functions whose values match our time series at t, t− 1, .., t0 but
have different values at t+ 1, t+ 2, ... Those time series that are predictable
are those that are close to one that our forecasting model is more biased
towards.

A good analogy can be borrowed from real analysis. A function f1 :R →
R can be analytic at every point x ∈ R, with its respective power series
expansion centered at any point having a radius of convergence equal to ∞.
Another function f2 :R →R is equal to f1 at all x ∈R such that x <= t
for some t > 0. If we were to construct a forecasting engine around the idea
of a Taylor expansion by first demanding it to calculate the best constant
approximation for the function at 0, then the best quadratic expansion for
the function at 0, then the best cubic and so on, then when we forecast f1
past t, our forecasting engine will get us arbitrarily close to the true values of
f1, and while our engine will learn arbitrarily well the values of f2 for x <= t,
it will never approach f2 past t. Our forecasting engine in this case is biased
towards outputting analytic functions, and these are the functions that we
can forecast indefinitely with it.

So what functions are neural networks biased to predict? Which ones are
they not? A good starting place is investigating the functions that a feed
forward neural network struggles to approximate. Let us introduce ourselves
to a Cantor lattice:

6

Figure 7: C × C

Where C is the Cantor set, defined recursively by removing first the middle
third of the unit interval, then the middle third of the remaining 2 intervals,
then the middle third of the remaining 4, ad infinitum.

Figure 8: C0, C1, C2, C3, C4, C5...

Similar sets to C can be constructed using a recursive approach that
involves removing sections of intervals, which we will still refer to as Cantor
sets, thus we can construct more exotic Cantor Lattices as well. We denote
these sets as Ck

m,n, meaning at every step k, we divide the remaining intervals
into n equal partitions, and then remove the same m partitions.

Theorem 1 The Cantor set is uncountable.

7

PROOF: The Cantor set is those numbers with 0 and 2 in their base 3
expansions. The theorem follows from a diagonalization argument.

Definition 1 A Cantor lattice is a finite Cartesian product of Cantor-type
sets: Ck

m1,n1
× Ck

m2,n2
× ...Ck

md,nd
, k ∈ N+ {∞}

Theorem 2 A Cantor lattice Cd = Πd−1
i=0 Cmi,2d where mi at the first iteration

denotes the 2 intervals that start with .0 or .2i ∈ [0, 1] in base 2d has a
bijection with [0,1]

PROOF: For any c = (c0, c1, ...cd−1) ∈ Cd,
∑d−1

i=0 ci denotes a unique point
∈ [0, 1]. Since every point in [0,1] has a base 2d representation, the image is
full.

This bijection is very easy for a neural network to learn taking Cd− >
[0, 1], but its inverse is very interesting. It is easy for us to work out on paper
the c ∈ Cd corresponding to a point x ∈ R, but can a FFNN?

We construct a python function that can generate 4 steps of cantor latices
made up of d cantor types sets as in theorem 2, for d ∈ 2, 3, 4, 5 (total of
24 points in every cantor set that is then used to create the lattice. Our
neural network will take as input

∑d−1
i=0 ci for some c ∈ Cd and output the d

dimensional vector c. Our network will have 2 hidden layers of 100 and 50
neurons, and run 10 epochs of the full training set. After training we can
see a clear pattern of increased MSE (Mean-Squared Error) with increased
lattice dimension.

Figure 9: MSE for each dimension d

Our Neural Network struggles learning fractal behavior embedded in
higher dimensions, despite the underlying function being the same.

3 Discrete S-Energy

In this section we will introduce the reader to the idea of Discrete S-Energy
developed in [2], and show how it is related to our cantor lattice experimen-
tation. This will motivate its use in time series forecasting.

8

Let Pn ∈ [0, 1]d, d >= 2 be a finite point set of size n. For s ∈ [0, d] we
define the Discrete s-Energy Is of Pn as follows:

Definition 2 Discrete S-Energy

Is(Pn) = n−2
∑

p ̸=q:p,q∈Pn

|p− q|−s (7)

Definition 3 Discrete Hausdorff Dimension of point set P

dimH(P) = sup{s ∈ [0, d] : supnIs(Pn)} < ∞ (8)

Where
P = {Pn} (9)

Theorem 3 Let d ∈ Z Let Ck
m1,n1

,, Ck
md,nd

be discrete Cantor sets. Set
Ak = Πd

i=1C
k
mi,ni

then

dimH(A) =
d∑

i=1

ln(mi)

ln(ni)
(10)

From this theorem, we can see that the Hausdorff dimensionality of our
Cantor data sets in Section 2 is increasing, which implies that for a fixed
s = 1, We are seeing more error for smaller Discrete 1-Energy. This makes
sense as we often say Discrete 1-Energy is a measure of ”how 1 dimensional”
a data set is.

This is motivation for a fractal perspective in estimating time series pre-
dictability.

Going back to our random walks, lets introduce a parameter p ∈ [0, 1]
so that every step of the way, with probability p, we take one step forward
(plus one difference) and with probability 1-p, we leave our next move up to
50/50 chance, either still taking one step forwards, or one step back. Let us
see how these graphs vary in p:

9

Figure 10: p=1

Figure 11: p=.5

10

Figure 12: p=.25

Figure 13: p=0

We can see that whatever determinism the time series has is lessened with
decreasing p. We will see how this relates to forecastibility ;). Now when
we apply a Discrete 1-Energy calculation, we can see that Discrete 1-Energy
seems to be negatively correlated with random behavior:

11

Figure 14: 1-Energy Calculations for Psuedo-Random Walks

4 Experimental Design

Our goal is to be able to take a time series, and calculate an indicator from
the data that tells us whether or not it is worth it to forecast our data. This
is a lofty goal, but a first step towards it is the following experiment.

4.1 Experiment 1

We construct 51 Psuedo-Random Walks of 100 steps with p parameters
equally spaced in [0,1]. We then use a Feed Forward Neural Network Ar-
chitecture with input dimension 20, one hidden layer of 10 neurons equipped
with ReLu activations, and one output, to train on the first 80 steps of our
time seris with lookback = 20, to then predict the last 20 steps of our time
series. We will then calculate the errors (RMSE/SD), Discrete 1-Energy of
the training set, and the Minimum over the industry standard values over
the training set, and conduct an OLS regression statistical analysis to assess
the signifigance of correlations between our 2 values and error.

12

Figure 15: Example Psuedo-Random Walk and its respective forecast

After running statistical analysis, we can see how the two measurements
compare.

Figure 16: OLS Regression results, Discrete 1-Energy values on RMSE/SD

13

Figure 17: OLS Regression results, Minimum of industry values on
RMSE/SD

We can see that while both values are extremely significantly correlated
with error, Discrete 1-Energy is slightly more significantly (|t| = 5.876 vs
|t| = 5.387). While this difference isn’t huge, it is promising that Discrete
1-Energy may have implications in forecastibility of a time series.

4.2 Experiment 2: Real World Data

We have been given 998 time series detailing sales of various products from a
large retail store in CSV file format. Each time series is the sales data from
specific product, sold at a specific location. The products are not unique,
as many are sold at multiple locations. We are also given the state and a
location id of the store from which each of these time series is from, as well
as the department that sells it. The time series all stretch from the 5th week
of 2015 to the 3rd week of 2017, with a data point for every week detailing
the volume of sales. The important part of all this is that each time series
is relatively similar. All the time series are from the same store, represents
a select set of products, from a select set of locations, and are over the same
time span. This gives us a good set of data for us to investigate.

14

Figure 18: Preview of our dataset in Pandas dataframe

To clean our data, We load the data into a Pandas dataframe in Python.
We then drop the columns corresponding to the time series number (Un-
named column), the product id, location id, state, and department of sale.

In order to conduct a sound experiment, we must unfortunately get rid of
some of our time series. Many of the time series end in a string of 0’s, indi-
cating a pause or discontinuation of sales of a product at a specific location.

Figure 19: Bad Data

These time series are pointless to forecast. We cannot just cut off the
time series at the point of discontinuation for use in our experiment as we
would like to only compare time series of the same length. For these reasons
we need to drop them from our data set.

Additionally, there are many time series in our dataset that start with a
long string of zero sales.

15

Figure 20: Bad Data

Similarly, it wouldn’t be great to include these in our experiment, as our
forecasting engine would receive less training data that is of interest to us.
We must also drop these.

We do this by dropping the rows of our dataframe that start or end with
a zero. After this process we are left with 144 usable time series.

We are now able to begin the bulk of our experimentation. The general
outline of this experiment is as follows. Firstly, we will take each of our time
series and utilize a forecasting engine to predict the tail end of it. Secondly,
we will compare the values predicted by our forecasting engine with the
true value of the time series at that time. Third, we will calculate our
industry standard measurements and that of Discrete 1-Energy. Lastly we
will investigate any correlations between our measurements and the error we
observe from each time series

Every time series will be split into a training and test set. The training
set will represent 80 percent of the available data points of each time series.
This ends up being the sales from the first 124 weeks of our time period, with
the remaining 31 making up the data that we will test our forecasts with.

Our forecasting model is an LSTM (Long Short Term Memory) Neu-
ral Network model. LSTMs are part of a class of RNNs (Recurrent neural
networks), with not only directed edges forward to other neurons, but also
directed edges between neurons within the same hidden layer, and even going
backwards. The reason for this choice is because (a) It is still a relatively
simple model, so it isn’t a blackbox in our understanding, and (b) It can
handle long term dependencies. LSTMs possess a memory cell, that lets the

16

model use previous observations to influence its output. This makes it advan-
tageous for time series forecasting, especially within contexts where values
at previous time steps may affect the present, such as ours.

The architecture of the model is a look back and therefore input dimension
of 16, 2 hidden layers with 50 neurons each, and one output representing our
sales at the next time step.

Along with the previous industry standards introduced, Q1, Q2, and Q3:

Q1 =

√
1
N

∑N
i=1(f(i)− µ)2

µ
(11)

Q2 =

√
1
N

∑N
i=1 |(f(i)− f(i− 1)| − µ∆)2

µ∆

(12)

Where µ∆ is defined as

µ∆ =

∑N−1
i=1 |f(i)− f(i− 1)|

N − 1
(13)

and when S is 52, representing the 52 weeks in a year

Q3 =

√
1
N

∑N
i=S |(f(i)− f(i− S)| − µ∆)2

µ∆

(14)

Where µ∆ is defined as

µ∆ =

∑N
i=S |f(i)− f(i− S)|

N − S
(15)

We will also test alternative versions:

altQ2 = |

√
1
N

∑N
i=1 (f(i)− f(i− 1)− µ∆)2

µ∆

| (16)

Where µ∆ is defined as

µ∆ =

∑N−1
i=1 (f(i)− f(i− 1))

N − 1
(17)

and when S is 52, representing the 52 weeks in a year

altQ3 = |

√
1
N

∑N
i=S (f(i)− f(i− S)− µ∆)2

µ∆

| (18)

17

Where µ∆ is defined as

µ∆ =

∑N
i=S (f(i)− f(i− S))

N − S
(19)

After training the LSTM model and producing a forecast for each of the
144 timeseries, we are able to run our statistical analysis.

Figure 21: OLS Regression, Discrete 1-Energy on RMSE/SD

We can see that the coefficient on Discrete 1-Energy has switched direc-
tions, which is unexpected. Even stranger is that it has remained significant
at the 95% level (|t| = 2.261).

Figure 22: OLS Regression, Min Q1, Q2, Q3, altQ2, altQ3 on RMSE/SD

We can see that the performance of the industry standards has remained
very significant (|t| = 13.705). This experiment suggests the industry stan-
dards may be better suited for assessing the predictibility of these types of

18

time series. But why is Discrete 1-Energy behaving so significantly different
than in our first experiment? Lets look at some forecasts.

Figure 23: Good Forecast, Low 1-Energy

Figure 24: Bad Forecast, High 1-Energy

As we can see, the lower 1-Energy time series is much more oscillatory,
which is as expected as we can think of 1-Energy as a measure of ”How one-
dimensional is this data set”, as the Discrete 1-Energy sum diverges for a
line set . The higher 1-Energy times series is much more constant, with a
few relatively large spikes. The oscillatory nature of Figure 22, coupled with
the ease of forecastibility suggests a strong seasonality within the time series.
It is possible that the Seasonality of a time series is able to over power the
predictive power of 1-Energy.

19

4.3 Experiment 3: Discrete 1-Energy without Season-
ality

Since we believe that seasonality may be overpowering 1-Energy, we should
calculate 1-Energy with seasonalities removed. To do this, we apply a 52 week
difference operator to the training set that we calculate our predictibility
metrics from, and then calculate 1-Energy from this differenced time series.
We then forecast exactly how we did in Experiment 2.

Figure 25: OLS 1-Energy with seasonality removed on RMSE/SD

Figure 26: OLS Min all industry on RMSE/SD

We can see that removing yearly seasonality from the Discrete 1-Energy
Calculation lowered the significance of our coefficient a bit. The coefficient
remains to have the opposite sign of what is expected, and remains significant
at the 95% level.

20

4.4 Experiment 4: Shorter Time Series

To see if we are asking too much of our forecasting model, we adapt it for
shorter time series. To do this we change our data cleaning approach that
was discussed in experiment 2. Before applying the restrictions on leading
and trailing 0s, -indicating an abnormality in the sales of our time series,
we first shorten the 998 time series to just the last 10 weeks. We then drop
those series that have a leading or trailing 0 in this 10 week time span. After
this process we are left with 299 usable time series. We then apply the same
processes as in experiment 2. The LSTM model has to be changed slightly
to fit these smaller time series. We shorten the look-back to 3 weeks, so
our input dimension is 3. The two hidden layers have 10 and 3 neurons
respectively, and then we have the same singular output. We also adjust the
batch size to be 2, to handle the shorter time series. We also reduce the
amount of training epochs to be 10.

Figure 27: OLS Discrete 1-Energy on RMSE/SD, Short Time Series

21

Figure 28: OLS Min all industry on RMSE/SD, Short Time Series

This experiment yields very interesting results. 1-Energy is now behaving
as expected, with significance at the 95% level. Even stranger is the sign of
the coefficient on Min all industry has switched away from what is expected,
and has remained significant at the 95% level.

4.5 Experiment 5: Aggregation

Due to the fact that our data is very sparse, it might be advantageous to
aggregate it to supply our forecasting model with better training data. To
do this we go back to our data cleaning stage. Instead of dropping the
columns that correspond to the time series number (Unnamed column), the
product id, location id, state, and department of sale, we drop all but the
product id. We then sum our time series with matching product id, and
are left with 84 time series. There is no need to drop any now since there
are none that start or end with 0 sales. We then forecast as we have done
before, except reduce our batch size to 8, since the aggregation will smooth
gradients.

22

Figure 29: OLS Discrete 1-Energy on RMSE/SD, Aggregated Time Series

Figure 30: OLS Min all industry on RMSE/SD, Aggregated Time Series

As we can see from the regressions, we did not find a significant rela-
tionship between 1-Energy and error in this experiment. The minimum over
the industry standards remains positively correlated with error at the 95%
significance level.

5 Discussion and Conclusion

The findings from our experiments are very interesting. While we can not
draw any specific conclusions from the results which may have been more
desirable, we can say that Discrete 1-Energy seems to play some sort of role in
the forecastibility of time series. This is evident in the multiple experiments

23

that found above 95% significance levels on the coefficient of Discrete 1-
Energy. What is strange is the switching sign on this coefficient, as well as
the coefficient on the Industry Standard. This implies that there may be
something fundamentally different between the full length time series and
the shortened one of 10 weeks.

A source of possible issues in our experimentation may be the data itself.
The sales data, even when aggregating is very sparse, and seemingly very
random. Similar experimentation may have to be done on richer data sets
to draw more meaningful conclusions.

It also has to be said that our LSTM forecasting models are not per-
fectly calibrated for this application. Adjusting hyperparemeters is a tricky
business, and we may have extremely different findings with appropriate
adjustments to these values. It will also be fruitful to perform similar ex-
perimentation with other forecasting models, including FFNN, RNN, and
facebook prophet neural network architechtures, along with more traditional
statistical forecasting methodologies.

It seems like there is room for future work in designing a family of syn-
thetic functions/time series for which increased Discrete 1-Energy is corre-
lated with higher error, unlike the synthetic data that we investigated earlier
in this paper. Additionally, doing the same for the minimum industry stan-
dards -finding a family of synthetic data for which the min over the industry
standard measures is negatively correlated with error might give us fore-
sight into what contexts the use of these standards is useful and when it is
not. This might make it clearer when an alternative perspective, such as the
fractal perspective with Discrete 1-Energy may be more useful in assessing
forecastability.

At this point the industry standards behave more as expected, but these
experiments show that they do not capture the full picture of forecastibility,
if that is even possible, and that a fractal perspective may be useful for
forecasters to possess.

6 Code Appendix

All of the code is written in Python within the context of a .ipynb file, so
sometimes output statements will lack a print statement.

24

6.1 Discrete S-Energy

Awesome implementation with help from Svet

import numpy as np

import numpy.ma as ma

def DiscreteSEnergy(P, s):

n = np.shape(P)[0]

[Rows, Columns] = np.indices((n,n))

VecDiff = np.abs(P[Rows,:] - P[Columns,:])

MagDiff = np.power(np.sum(np.power(VecDiff,2), axis=2),1/2)

#here we use L2 norm (Euclidean distance in Rd) to find vector magnitude

Diff= np.triu(MagDiff)

#remove duplicate differences by considering only those differences above

the main diagonal

MaskedDiff = ma.masked_where(Diff==0, Diff, copy=True)

#mask all zero differences so we are not dividing by zero

SumMat = np.ma.power(MaskedDiff, -s)

sum = np.sum(np.sum(SumMat))

discSEnergy = np.power(float(n), -2)*sum

return discSEnergy

6.2 Psuedo-Random Walks

import random

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

#Psuedorandom Walks to test discrete 1 energy on

def PsuedoRandomWalks(Parray):

allPRW = np.arange(101)

for p in(Parray):

PRW = [0]

for i in range(100):

q = random.random()

25

if (q < p):

PRW.append(PRW[i] + 1)

else:

r = random.random()

if(r<.5):

PRW.append(PRW[i]+1)

else:

PRW.append(PRW[i]-1)

allPRW = np.vstack((allPRW, PRW))

return allPRW

PsuedoRandomWalk = PsuedoRandomWalks([.75, .5, .25, 0])

for i in range(PsuedoRandomWalk.shape[0]):

p= 1-(.25*i)

Plotting

plt.figure(figsize=(12, 6))

plt.title(f"Psuedo-Random Walk for p = {p}")

plt.plot(PsuedoRandomWalk[i])

import numpy.ma as ma

def DiscreteSEnergy(P, s):

n = np.shape(P)[0]

[Rows, Columns] = np.indices((n,n))

VecDiff = np.abs(P[Rows,:] - P[Columns,:])

MagDiff = np.power(np.sum(np.power(VecDiff,2), axis=2),1/2)

#here we use L2 norm (Euclidean distance in Rd)

to find vector magnitude

Diff= np.triu(MagDiff) #remove duplicate differences by

considering only those differences above the main diagonal

MaskedDiff = ma.masked_where(Diff==0, Diff, copy=True) #mask all zero

differences so we are not dividing by zero

SumMat = np.ma.power(MaskedDiff, -s)

26

sum = np.sum(np.sum(SumMat))

discSEnergy = np.power(float(n), -2)*sum

return discSEnergy

Turn 1 dim y value data to 2 dim x,y data

def prepforsenergy(timeSeries):

Convert timeSeries to NumPy array if it’s not

if type(timeSeries) != np.ndarray:

timeSeries = np.array(timeSeries)

xVal = np.arange(len(timeSeries))

Normalize xVal to map to [0, 1]

xVal_normalized = xVal / max(xVal)

Normalize timeSeries to map to [0, 1]

timeSeries_normalized = (timeSeries - min(timeSeries)) / (max(timeSeries) - min(timeSeries))

Create a 2D array

twoDimTimeSeries = np.column_stack((xVal_normalized, timeSeries_normalized))

return twoDimTimeSeries

OneEnergies = []

for i in range(PsuedoRandomWalk.shape[0]):

p= 1-(.25*i)

TwoDimPRW = prepforsenergy(PsuedoRandomWalk[i])

OneEnergies.append(f"For p = {p} Discrete 1 Energy is {DiscreteSEnergy(TwoDimPRW,1)}")

OneEnergies

6.3 Experiment 1: Synthetic Data

import pandas as pd

import numpy as np

27

from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

def forecast_next_values(timeSeries, k, p):

"""

This function trains a feedforward neural network on a sequence of numbers to forecast the next ’k’ values in the series.

Args:

numbers (list): List of numbers forming a time series.

k (int): The number of future values to predict.

Returns:

forecasted_values (list): The forecasted future ’k’ values.

"""

numbers = timeSeries[:80]

timeSeriestest = np.array(timeSeries[81:])

Set the random seeds for reproducibility

np.random.seed(0)

tf.random.set_seed(0)

Prepare the data for the feedforward network input

X, y = [], []

for i in range(len(numbers) - k):

X.append(numbers[i:i+k])

y.append(numbers[i+k])

Convert the data to numpy arrays

X = np.array(X)

y = np.array(y)

Create the feedforward model

model = Sequential()

28

model.add(Dense(10, input_dim=k, activation=’relu’)) # Hidden layer with 10 neurons and ReLU activation

model.add(Dense(1)) # Output layer

Compile the model with MSE as the loss function and Adam optimizer

model.compile(loss=’mean_squared_error’, optimizer=’adam’)

Train the model

model.fit(X, y, epochs=50, batch_size=20, verbose=0)

Use the model to forecast the next k values

last_k_values = numbers[-k:] # Get the last ’k’ observed values

forecasted_values = []

for _ in range(k):

input_data = np.reshape(last_k_values, (1, k)) # Reshape the data to fit the model’s input shape

next_value = model.predict(input_data) # Use the model to forecast the next value

numbers.append(next_value[0, 0]) # Append the forecasted value to the list of forecasted values

last_k_values = np.append(last_k_values[1:], next_value[0, 0]) # Update the last ’k’ observed values

Calculate RMSE on normalized data

rmse = np.sqrt(mean_squared_error(timeSeriestest, numbers[80:]))

sd = np.std(timeSeries)

error = rmse/sd

calculate metrics

metricArray = obtainMetrics(timeSeries[:80], error)

#Plotting

plt.figure(figsize=(12, 6))

plt.title(f"Time Series and Forecast for p = {p} (RMSE/SD: {error:.2f} Discrete 1-Energy: {metricArray[-1]:.2f} Min all industry: {metricArray[-2]:.2f})")

plt.xlabel("Time")

plt.ylabel("Value")

Plotting the original series

plt.plot(timeSeries, label=’Original Series’)

Plotting the forecasted part

forecast_index = np.arange(81, len(timeSeries))

plt.plot(forecast_index, numbers[80:], label=’Forecast’)

29

plt.legend()

plt.show()

return metricArray

6.4 Experiment 2: Real World Data 1

6.4.1 Data Cleaning

df = pd.read_csv("cleansalesdata.csv")

columns_to_drop = [’Unnamed: 0’, ’product_id’, ’location_id’, ’state’, ’department’]

df.drop(columns=columns_to_drop, axis=1, inplace=True)

df

def drop_rows_with_zero_first_last(df):

Drop rows where the first or last entry is 0

df = df[(df.iloc[:, 0] != 0) & (df.iloc[:, -1] != 0)]

return df

df = drop_rows_with_zero_first_last(df)

6.4.2 Predictability Metrics

def obtainMetrics(timeSeries, error):

s_Energy = DiscreteSEnergy(prepforsenergy(timeSeries), 1)

industryMetric = minQ1Q2Q3(timeSeries)

industryAlt = minQ1Q2Q3alt(timeSeries)

totalIndustry = minAllQ(timeSeries)

compressionMetric = compressionStringLength(timeSeries)

Error = error

30

return[Error,compressionMetric, industryMetric, industryAlt, totalIndustry, s_Energy]

import numpy as np

import pandas as pd

import ast

import matplotlib as mpl

import matplotlib.pyplot as plt

import lzma

import numpy.ma as ma

def prepforuse(timeSeriesStr):

timeSeries = ast.literal_eval(timeSeriesStr)

return timeSeries

Turn 1 dim y value data to 2 dim x,y data

def prepforsenergy(timeSeries):

Convert timeSeries to NumPy array if it’s not

if type(timeSeries) != np.ndarray:

timeSeries = np.array(timeSeries)

xVal = np.arange(len(timeSeries))

Normalize xVal to map to [0, 1]

xVal_normalized = xVal / max(xVal)

Normalize timeSeries to map to [0, 1]

timeSeries_normalized = (timeSeries - min(timeSeries)) / (max(timeSeries) - min(timeSeries))

Create a 2D array

twoDimTimeSeries = np.column_stack((xVal_normalized, timeSeries_normalized))

return twoDimTimeSeries

#Parameters

31

#P: nxd ndarray of n d-dimensional datapoints

#s: real nonegative float s

#Returns:

#discSEnergy: Float containing the discrete-s energy of P

#s parameter

def DiscreteSEnergy(P, s):

n = np.shape(P)[0]

[Rows, Columns] = np.indices((n,n))

VecDiff = np.abs(P[Rows,:] - P[Columns,:])

MagDiff = np.power(np.sum(np.power(VecDiff,2), axis=2),1/2) #here we use L2 norm (Euclidean distance in Rd) to find vector magnitude

Diff= np.triu(MagDiff) #remove duplicate differences by considering only those differences above the main diagonal

MaskedDiff = ma.masked_where(Diff==0, Diff, copy=True) #mask all zero differences so we are not dividing by zero

SumMat = np.ma.power(MaskedDiff, -s)

sum = np.sum(np.sum(SumMat))

discSEnergy = np.power(float(n), -2)*sum

return discSEnergy

def diffDiscreteSEnergy(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(52,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-52])

return DiscreteSEnergy(prepforsenergy(deltaf), 1)

def Q1(timeSeries):

timeSeries=np.array(timeSeries)

mean=np.mean(timeSeries)

mse=np.sum(np.square(timeSeries-mean))/len(timeSeries)

return mse**(0.5)/mean

32

def Q2(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(1,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-1])

deltaf = np.array(deltaf)

delmean=np.mean(abs(deltaf))

#delmean = (outputf[-1]-outputf[0])/(len(outputf)-1)

mse= np.sum(np.square(abs(deltaf-delmean))/len(deltaf))

if delmean == 0:

return mse**(0.5)/(delmean+0.000001)

return mse**(0.5)/delmean

def Q3(timeSeries):

timeSeries = np.array(timeSeries)

deltaf52=[]

for i in range(52, len(timeSeries)):

deltaf52.append(timeSeries[i]-timeSeries[i-52])

deltaf52 = np.array(deltaf52)

delmean52 = np.mean(abs(deltaf52))

mse = np.sum(np.square(abs(deltaf52- delmean52)))/len(deltaf52)

Q3 = mse**(.5)/delmean52

return Q3

33

def Q2alt(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(1,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-1])

delmean=np.mean(deltaf)

#delmean = (outputf[-1]-outputf[0])/(len(outputf)-1)

mse= np.sum(np.square((deltaf-delmean))/len(deltaf))

if delmean == 0:

return mse**(0.5)/(delmean+0.000001)

return mse**(0.5)/delmean

def Q3alt(timeSeries):

timeSeries = np.array(timeSeries)

deltaf52=[]

for i in range(52, len(timeSeries)):

deltaf52.append(timeSeries[i]-timeSeries[i-52])

delmean52 = np.mean((deltaf52))

mse = np.sum(np.square((deltaf52- delmean52)))/len(deltaf52)

Q3 = mse**(.5)/delmean52

return Q3

def minQ1Q2Q3(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2(timeSeries)), abs(Q3(timeSeries)))

34

def minQ1Q2Q3alt(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2alt(timeSeries)), abs(Q3alt(timeSeries)))

def minAllQ(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2alt(timeSeries)), abs(Q3alt(timeSeries)), abs(Q2(timeSeries)), abs(Q3(timeSeries)))

import struct

def compressionStringLength(timeSeries):

Convert floats to integers

sequence_int = [int(round(x)) for x in timeSeries]

#convert bytes

sequence_bytes = b’’.join(struct.pack(’i’, num) for num in sequence_int)

Compress the sequence

compressed_data = lzma.compress(sequence_bytes)

#with py7zr.SevenZipFile(sequence, ’w’) as archive:

#archive.writeall("target/")

compressed_length = len(compressed_data)

return compressed_length

6.4.3 LSTM

import numpy as np

import pandas as pd

import ast

import matplotlib as mpl

import matplotlib.pyplot as plt

import lzma

import numpy.ma as ma

def prepforuse(timeSeriesStr):

timeSeries = ast.literal_eval(timeSeriesStr)

return timeSeries

35

Turn 1 dim y value data to 2 dim x,y data

def prepforsenergy(timeSeries):

Convert timeSeries to NumPy array if it’s not

if type(timeSeries) != np.ndarray:

timeSeries = np.array(timeSeries)

xVal = np.arange(len(timeSeries))

Normalize xVal to map to [0, 1]

xVal_normalized = xVal / max(xVal)

Normalize timeSeries to map to [0, 1]

timeSeries_normalized = (timeSeries - min(timeSeries)) / (max(timeSeries) - min(timeSeries))

Create a 2D array

twoDimTimeSeries = np.column_stack((xVal_normalized, timeSeries_normalized))

return twoDimTimeSeries

#Parameters

#P: nxd ndarray of n d-dimensional datapoints

#s: real nonegative float s

#Returns:

#discSEnergy: Float containing the discrete-s energy of P

#s parameter

def DiscreteSEnergy(P, s):

n = np.shape(P)[0]

[Rows, Columns] = np.indices((n,n))

VecDiff = np.abs(P[Rows,:] - P[Columns,:])

MagDiff = np.power(np.sum(np.power(VecDiff,2), axis=2),1/2) #here we use L2 norm (Euclidean distance in Rd) to find vector magnitude

Diff= np.triu(MagDiff) #remove duplicate differences by considering only those differences above the main diagonal

MaskedDiff = ma.masked_where(Diff==0, Diff, copy=True) #mask all zero differences so we are not dividing by zero

SumMat = np.ma.power(MaskedDiff, -s)

36

sum = np.sum(np.sum(SumMat))

discSEnergy = np.power(float(n), -2)*sum

return discSEnergy

def Q1(timeSeries):

timeSeries=np.array(timeSeries)

mean=np.mean(timeSeries)

mse=np.sum(np.square(timeSeries-mean))/len(timeSeries)

return mse**(0.5)/mean

def Q2(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(1,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-1])

deltaf = np.array(deltaf)

delmean=np.mean(abs(deltaf))

#delmean = (outputf[-1]-outputf[0])/(len(outputf)-1)

mse= np.sum(np.square(abs(deltaf-delmean))/len(deltaf))

if delmean == 0:

return mse**(0.5)/(delmean+0.000001)

return mse**(0.5)/delmean

def Q3(timeSeries):

timeSeries = np.array(timeSeries)

deltaf52=[]

37

for i in range(52, len(timeSeries)):

deltaf52.append(timeSeries[i]-timeSeries[i-52])

deltaf52 = np.array(deltaf52)

delmean52 = np.mean(abs(deltaf52))

mse = np.sum(np.square(abs(deltaf52- delmean52)))/len(deltaf52)

Q3 = mse**(.5)/delmean52

return Q3

def Q2alt(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(1,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-1])

delmean=np.mean(deltaf)

#delmean = (outputf[-1]-outputf[0])/(len(outputf)-1)

mse= np.sum(np.square((deltaf-delmean))/len(deltaf))

if delmean == 0:

return mse**(0.5)/(delmean+0.000001)

return mse**(0.5)/delmean

def Q3alt(timeSeries):

timeSeries = np.array(timeSeries)

deltaf52=[]

for i in range(52, len(timeSeries)):

38

deltaf52.append(timeSeries[i]-timeSeries[i-52])

delmean52 = np.mean((deltaf52))

mse = np.sum(np.square((deltaf52- delmean52)))/len(deltaf52)

Q3 = mse**(.5)/delmean52

return Q3

def minQ1Q2Q3(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2(timeSeries)), abs(Q3(timeSeries)))

def minQ1Q2Q3alt(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2alt(timeSeries)), abs(Q3alt(timeSeries)))

def minAllQ(timeSeries):

return min(abs(Q1(timeSeries)), abs(Q2alt(timeSeries)), abs(Q3alt(timeSeries)), abs(Q2(timeSeries)), abs(Q3(timeSeries)))

import struct

def compressionStringLength(timeSeries):

Convert floats to integers

sequence_int = [int(round(x)) for x in timeSeries]

#convert bytes

sequence_bytes = b’’.join(struct.pack(’i’, num) for num in sequence_int)

Compress the sequence

compressed_data = lzma.compress(sequence_bytes)

#with py7zr.SevenZipFile(sequence, ’w’) as archive:

#archive.writeall("target/")

compressed_length = len(compressed_data)

return compressed_length

39

6.5 Statistical Analysis

import seaborn as sns

import statsmodels.api as sm

def statAnalysis(datatoGraph):

Convert the NumPy array to a DataFrame

df_to_graph = pd.DataFrame(datatoGraph, columns = [’RMSE/SD’,’Compression Metric’, ’Min Q1, Q2, Q3’, ’Min Q1, Alt Q2, Alt Q3’, ’Min all Industry’, ’Discrete 1-Energy’])

print(df_to_graph)

#Create a pair plot

sns.pairplot(df_to_graph)

#All linear regressions

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Discrete 1-Energy’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min Q1, Q2, Q3’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

40

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min Q1, Alt Q2, Alt Q3’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min all Industry’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

return

41

7 Experiment 3: No Seasonality in 1-Energy

calculation

7.1 Predictability Metrics

def obtainMetrics2(timeSeries, error):

diff_s_Energy = diffDiscreteSEnergy(timeSeries)

industryMetric = minQ1Q2Q3(timeSeries)

industryAlt = minQ1Q2Q3alt(timeSeries)

totalIndustry = minAllQ(timeSeries)

compressionMetric = compressionStringLength(timeSeries)

Error = error

return[Error,compressionMetric, industryMetric, industryAlt, totalIndustry, diff_s_Energy]

def diffDiscreteSEnergy(timeSeries):

timeSeries=np.array(timeSeries)

deltaf=[]

for i in range(52,len(timeSeries)):

deltaf.append(timeSeries[i]-timeSeries[i-52])

return DiscreteSEnergy(prepforsenergy(deltaf), 1)

7.2 Statistical Analysis

import seaborn as sns

import statsmodels.api as sm

def statAnalysis2(datatoGraph):

Convert the NumPy array to a DataFrame

df_to_graph = pd.DataFrame(datatoGraph, columns = [’RMSE/SD’,’Compression Metric’, ’Min Q1, Q2, Q3’, ’Min Q1, Alt Q2, Alt Q3’, ’Min all Industry’, ’Discrete 1-Energy without Seasonality’])

print(df_to_graph)

42

#Create a pair plot

sns.pairplot(df_to_graph)

#All linear regressions

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Discrete 1-Energy without Seasonality’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min Q1, Q2, Q3’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min Q1, Alt Q2, Alt Q3’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

43

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

Y = df_to_graph[’RMSE/SD’]

X = df_to_graph[’Min all Industry’]

X = sm.add_constant(X)

model = sm.OLS(Y,X).fit()

predictions = model.predict(X)

print_model = model.summary()

print(print_model)

return

8 Experiment 4: Shorter time series

8.1 Data Cleaning

import pandas as pd

df = pd.read_csv("cleansalesdata.csv")

columns_to_drop = [’Unnamed: 0’, ’product_id’, ’location_id’, ’state’, ’department’]

df.drop(columns=columns_to_drop, axis=1, inplace=True)

columns_to_drop2 = (df.columns[0:-10].values)

df.drop(columns=columns_to_drop2, axis=1, inplace=True)

44

def drop_rows_with_zero_first_last(df):

Drop rows where the first or last entry is 0

df = df[(df.iloc[:, 0] != 0) & (df.iloc[:, -1] != 0)]

return df

df = drop_rows_with_zero_first_last(df)

df

8.2 LSTM

import pandas as pd

import numpy as np

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

Assuming ’df’ is your DataFrame where each row is a time series

look_back = 3

def create_dataset(series, look_back):

X, y = [], []

for i in range(len(series) - look_back):

a = series[i:(i + look_back), 0]

X.append(a)

y.append(series[i + look_back, 0])

return np.array(X), np.array(y)

#look_back = 12 # Number of previous time steps to consider

forecasts = [] # To store forecasts for each time series

45

def forecastSeries(df):

datatoGraph = []

for index, row in df.iterrows():

Process each time series

series = row[~pd.isna(row)].values.reshape(-1, 1)

scaler = MinMaxScaler(feature_range=(0, 1))

series_scaled = scaler.fit_transform(series)

timeSeriesforStats = series.T[0]

##print(timeSeriesforStats)

trainIndex = int(.8*(timeSeriesforStats.size))

timeSeriesforStats = timeSeriesforStats[:trainIndex]

Create dataset

X, y = create_dataset(series_scaled, look_back)

X = np.reshape(X, (X.shape[0], X.shape[1], 1))

Split into training and testing sets (80-20 split)

split_idx = int(len(X) * 0.8)

X_train, X_test = X[:split_idx], X[split_idx:]

y_train, y_test = y[:split_idx], y[split_idx:]

Build and compile the LSTM model

model = Sequential()

model.add(LSTM(10, return_sequences=True, input_shape=(look_back, 1)))

model.add(LSTM(3))

model.add(Dense(1))

model.compile(optimizer=’adam’, loss=’mean_squared_error’)

Train the model

model.fit(X_train, y_train, epochs=10, batch_size=2)

Forecasting34

46

forecast = model.predict(X_test)

Inverse transform to original scale for both forecast and y_test

forecast_original_scale = scaler.inverse_transform(forecast)

y_test_original_scale = scaler.inverse_transform(y_test.reshape(-1, 1))

Calculate RMSE on normalized data

rmse = np.sqrt(mean_squared_error(y_test, forecast.flatten()))

sd = np.std(series_scaled)

error = rmse/sd

#Calculate our Experimental Measures

experimentalMeasures = obtainMetrics(timeSeriesforStats, error)

datatoGraph.append(experimentalMeasures)

Plotting

plt.figure(figsize=(12, 6))

plt.title(f"Time Series and Forecast for Row {index} (RMSE/SD: {error:.2f} Min Industry: {experimentalMeasures[4]:.2f} Discrete 1-Energy: {experimentalMeasures[5]:.2f} CKS Proxy: {experimentalMeasures[1]:.2f})")

plt.xlabel("Time")

plt.ylabel("Value")

Plotting the original series

plt.plot(series, label=’Original Series’)

Plotting the forecasted part

forecast_index = np.arange(len(series) - len(forecast_original_scale), len(series))

plt.plot(forecast_index, forecast_original_scale.flatten(), label=’Forecast’)

plt.legend()

plt.show()

return datatoGraph

datatoGraph = forecastSeries(df)

47

9 Experiment 5: Aggregation

9.1 Data Cleaning

import numpy as np

import pandas as pd

import ast

import matplotlib as mpl

import matplotlib.pyplot as plt

import lzma

import numpy.ma as ma

df = pd.read_csv("cleansalesdata.csv")

columns_to_drop = [’Unnamed: 0’, ’location_id’, ’state’, ’department’]

df.drop(columns=columns_to_drop, axis=1, inplace=True)

def drop_rows_with_zero_first_last(df):

Drop rows where the first or last entry is 0

df = df[(df.iloc[:, 1] != 0) & (df.iloc[:, -1] != 0)]

return df

df = drop_rows_with_zero_first_last(df)

Group by the product id and sum the values

df_grouped = df.groupby(’product_id’).sum().reset_index()

df_grouped

df_grouped.drop(columns= ’product_id’, axis=1, inplace=True)

df_grouped

9.2 LSTM

import pandas as pd

import numpy as np

48

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense

import matplotlib.pyplot as plt

from sklearn.metrics import mean_squared_error

Assuming ’df’ is your DataFrame where each row is a time series

look_back = 16

def create_dataset(series, look_back):

X, y = [], []

for i in range(len(series) - look_back):

a = series[i:(i + look_back), 0]

X.append(a)

y.append(series[i + look_back, 0])

return np.array(X), np.array(y)

#look_back = 12 # Number of previous time steps to consider

forecasts = [] # To store forecasts for each time series

def forecastSeries(df):

datatoGraph = []

for index, row in df.iterrows():

Process each time series

series = row[~pd.isna(row)].values.reshape(-1, 1)

scaler = MinMaxScaler(feature_range=(0, 1))

series_scaled = scaler.fit_transform(series)

timeSeriesforStats = series.T[0]

##print(timeSeriesforStats)

trainIndex = int(.8*(timeSeriesforStats.size))

timeSeriesforStats = timeSeriesforStats[:trainIndex]

49

Create dataset

X, y = create_dataset(series_scaled, look_back)

X = np.reshape(X, (X.shape[0], X.shape[1], 1))

Split into training and testing sets (80-20 split)

split_idx = int(len(X) * 0.8)

X_train, X_test = X[:split_idx], X[split_idx:]

y_train, y_test = y[:split_idx], y[split_idx:]

Build and compile the LSTM model

model = Sequential()

model.add(LSTM(50, return_sequences=True, input_shape=(look_back, 1)))

model.add(LSTM(50))

model.add(Dense(1))

model.compile(optimizer=’adam’, loss=’mean_squared_error’)

Train the model

model.fit(X_train, y_train, epochs=50, batch_size=8)

Forecasting34

forecast = model.predict(X_test)

Inverse transform to original scale for both forecast and y_test

forecast_original_scale = scaler.inverse_transform(forecast)

y_test_original_scale = scaler.inverse_transform(y_test.reshape(-1, 1))

Calculate RMSE on normalized data

rmse = np.sqrt(mean_squared_error(y_test, forecast.flatten()))

sd = np.std(series_scaled)

error = rmse/sd

#Calculate our Experimental Measures

experimentalMeasures = obtainMetrics(timeSeriesforStats, error)

50

datatoGraph.append(experimentalMeasures)

Plotting

plt.figure(figsize=(12, 6))

plt.title(f"Time Series and Forecast for Row {index} (RMSE/SD: {error:.2f} Min Industry: {experimentalMeasures[4]:.2f} Discrete 1-Energy: {experimentalMeasures[5]:.2f} CKS Proxy: {experimentalMeasures[1]:.2f})")

plt.xlabel("Time")

plt.ylabel("Value")

Plotting the original series

plt.plot(series, label=’Original Series’)

Plotting the forecasted part

forecast_index = np.arange(len(series) - len(forecast_original_scale), len(series))

plt.plot(forecast_index, forecast_original_scale.flatten(), label=’Forecast’)

plt.legend()

plt.show()

return datatoGraph

datatoGraph = forecastSeries(df_grouped)

10 Cantor Lattice Experiment

import tensorflow

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Activation

from tensorflow.keras import backend

import pandas as pd

import io

import os

import requests

import numpy as np

from sklearn import metrics

import math

from math import log

51

import numpy as np

from numpy.linalg import norm

import matplotlib

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.model_selection import train_test_split

import itertools

from itertools import product

import random

x=[]

kgap=4 # determines how many time the iteration will go, will generate 2^kgap numbers of points

def xinAi(k,coor,power,dimension): # for the case x in Ai, dimension is the dim of the cantor set, i=dimension, power starts from 1

for an in [0, 2**(dimension-1)]:

coor = coor + an*((2**dimension)**(-power))

if power < k:

xinAi(k, coor, power + 1, dimension)

else :

x.append(coor)

xinAi(kgap,0,1,2)

def IdentitySum(HighDimVar):

HighDimVar = np.array(HighDimVar)

sum = 0

for i in range(len(HighDimVar)):

sum = sum + HighDimVar[i]

return sum

oneDimlist=[]

HighDimList=[]

52

outputlist=[]

x=[]

CantorList=[]

def HighDimCantorSet(CantorDimension):

for i in range(2,CantorDimension+2):

xinAi(kgap,0,1,i)

xcopy=x.copy()

#print(x)

CantorList.append(xcopy)

x.clear()

HighDimCantorSet(4)

print(CantorList)

CantorList=[]

def HighDim(NumofCarProdut,function): #NumofCarProdut, it makes sense for training purpose for a value larger than 2

#CantorList.clear()

#CantorListCopy=CantorList.copy()

HighDimCantorSet(NumofCarProdut)

CarProdut=list(itertools.product(*CantorList))

#CantorList.clear()

for i in range(len(CarProdut)): # HighDimList list of high dim points on the cantor set x1,x2,x3,....xn in R^n

HighDimList.append(CarProdut[i])

#print(CarProdut)

53

for i in range(len(CarProdut)): # sum of each point’s coordinate and return a one dim list

#print(sum(CarProdut[i]))

oneDimlist.append(sum(CarProdut[i]))

for i in range(len(HighDimList)): # the function which input is each point in the HighDimlist, the function we will test is identity sum

outputlist.append(function(HighDimList[i]))

#print(HighDimList)

print(x)

oneDimlist=[]

HighDimList=[]

outputlist=[]

CantorList=[]

def increaseDiscreteDimDECOMP(finalDim):

for i in range(2,finalDim+1):

oneDimlist.clear()

HighDimList.clear()

outputlist.clear()

CantorList.clear()

HighDim(i,IdentitySum)

#print(HighDimList)

#print(CarProdut)

#Distencefunction

#HighDim(xaxis,i,IdentitySum)

54

#HighDim(xaxis,i,SqrtAllComp)

z1 = np.array(oneDimlist)

k1 = np.array(HighDimList)

#print(HighDimListCopy)

z1_train, z1_test, k1_train, k1_test = train_test_split(z1,k1, test_size=0.2, shuffle=True)

backend.clear_session()

modelh = Sequential()

modelh.add(Dense(100, input_dim=1, activation=’relu’)) # Hidden 1 dim increases in each loop no need for too many units 3000

modelh.add(Dense(50, activation=’relu’)) # Hidden 2

modelh.add(Dense(i)) # Output dimension

modelh.compile(loss=’mean_squared_error’, optimizer=’adam’)

modelh.fit(z1_train,k1_train,verbose=2,epochs=10, batch_size=10)

pred2 = modelh.predict(z1_test)

score2 = np.sqrt(metrics.mean_squared_error(pred2,k1_test))

print("**********", score2)

increaseDiscreteDimDECOMP(5)

11 Code for various figures

import numpy as np

import matplotlib.pyplot as plt

def random_walk(steps):

Initialize the position at 0

position = 0

Create an array to store the positions

positions = [position]

55

Simulate the random walk

for _ in range(steps):

Generate a random step of -1 or 1

step = np.random.choice([-1, 1])

Update the position

position = step

Append the new position to the list

positions.append(position)

return positions

Number of steps in the random walk

steps = 100

Simulate the random walk

positionsHeadsTails = random_walk(steps)

Plot the random walk

plt.plot(positionsHeadsTails)

plt.title("Heads and Tails Game (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Dollars Recieved")

plt.grid(True)

plt.show()

Calculate resultant random walk

def sumTimeSeries(positionsHeadsTails):

positionsRandomWalk = [positionsHeadsTails[0]]

for i in range(1,len(positionsHeadsTails)):

positionsRandomWalk.append(positionsRandomWalk[i-1] + positionsHeadsTails[i])

return(positionsRandomWalk)

positionsRandomWalk = sumTimeSeries(positionsHeadsTails)

Plot the random walk

plt.plot(positionsRandomWalk)

56

plt.title("Heads and Tails Random Walk (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Net Profit")

plt.grid(True)

plt.show()

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

def forecast_next_values(timeSeries, k):

"""

This function trains a feedforward neural network on a sequence of numbers to forecast the next ’k’ values in the series.

Args:

numbers (list): List of numbers forming a time series.

k (int): The number of future values to predict.

Returns:

forecasted_values (list): The forecasted future ’k’ values.

"""

numbers = timeSeries[:80]

Set the random seeds for reproducibility

np.random.seed(0)

tf.random.set_seed(0)

Prepare the data for the feedforward network input

X, y = [], []

for i in range(len(numbers) - k):

X.append(numbers[i:i+k])

y.append(numbers[i+k])

Convert the data to numpy arrays

X = np.array(X)

y = np.array(y)

57

Create the feedforward model

model = Sequential()

model.add(Dense(10, input_dim=k, activation=’relu’)) # Hidden layer with 10 neurons and ReLU activation

model.add(Dense(1)) # Output layer

Compile the model with MSE as the loss function and Adam optimizer

model.compile(loss=’mean_squared_error’, optimizer=’adam’)

Train the model

model.fit(X, y, epochs=100, batch_size=1, verbose=0)

Use the model to forecast the next k values

last_k_values = numbers[-k:] # Get the last ’k’ observed values

forecasted_values = []

for _ in range(k):

input_data = np.reshape(last_k_values, (1, k)) # Reshape the data to fit the model’s input shape

next_value = model.predict(input_data) # Use the model to forecast the next value

numbers.append(next_value[0, 0]) # Append the forecasted value to the list of forecasted values

last_k_values = np.append(last_k_values[1:], next_value[0, 0]) # Update the last ’k’ observed values

return numbers

forecastHeadsTails = forecast_next_values(positionsHeadsTails,20)

Plot the random walk

plt.plot(positionsHeadsTails)

plt.plot(forecastHeadsTails)

plt.title("Forecast for Heads and Tails Game (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Dollars Recieved")

plt.grid(True)

plt.show()

forecastRandomWalk = sumTimeSeries(forecastHeadsTails)

58

plt.plot(positionsRandomWalk)

plt.plot(forecastRandomWalk)

plt.title("Forecast for Heads and Tails Random Walk (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Net Profit")

plt.grid(True)

plt.show()

Make linear trend with random component from random walk

for i in range(len(positionsRandomWalk)):

positionsRandomWalk[i] = positionsRandomWalk[i] + i

plt.plot(positionsRandomWalk)

plt.title("Linear Trend Plus Random Walk (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Net Profit")

plt.grid(True)

plt.show()

forecastLinearTrendNoise = forecast_next_values(positionsRandomWalk,20)

plt.plot(positionsRandomWalk)

plt.plot(forecastLinearTrendNoise)

plt.title("Forecast for Linear Trend plus Random Walk (100 steps)")

plt.xlabel("Time t")

plt.ylabel("Position")

plt.grid(True)

plt.show()

import pandas as pd

import numpy as np

df = pd.read_csv("cleansalesdata.csv")

59

columns_to_drop = [’Unnamed: 0’, ’product_id’, ’location_id’, ’state’, ’department’]

df.drop(columns=columns_to_drop, axis=1, inplace=True)

df

def get_bad_timeseries1(df):

Get rows where firs entry is 0

dfbad = df[(df.iloc[:, 0] == 0)]

return dfbad

dfbad1 = get_bad_timeseries1(df)

dfbad1

def get_bad_timeseries2(df):

Drop rows where the last entry is 0

dfbad = df[(df.iloc[:, -1] == 0)]

return dfbad

dfbad2 = get_bad_timeseries2(df)

dfbad2

import matplotlib.pyplot as plt

Plotting

plt.figure(figsize=(12, 6))

plt.title("Bad time series Row 996")

plt.xlabel("Time")

plt.ylabel("Value")

Plotting the original series

plt.plot(dfbad1.iloc[-1], label=’Original Series’)

plt.legend()

plt.show()

Plotting

plt.figure(figsize=(12, 6))

plt.title("Bad time series Row 1")

plt.xlabel("Time")

60

plt.ylabel("Value")

Plotting the original series

plt.plot(dfbad2.iloc[1], label=’Original Series’)

plt.legend()

plt.show()

61

12 References

...
[1] Hornik, Kurt and Stinchcombe, Maxwell B. and White, Halbert, Mul-

tilayer Feedforward Networks are Universal Approximators, Neural Networks,
1989, Elsevier Science Ltd. 10.1016/0893-6080(89)90020-8

[2] Betti et al, Fractal dimension, approximation and data sets, 2022,
2209.12709, arXiv

62

