The Centipede Game: Nash Equilibria versus
Machine Learning

Nathan Whybra
May 3, 2022

Abstract

The Centipede Game is a well known game involving two players. For some
finite number of turns the players alternate choosing between two options:
“take” or “pass.” The first player that chooses “take” ends the game, wins the
game, and also gets a reward. Otherwise, if each player chooses “pass” for
every turn in the game, then the game will end and both players get some
reward. The longer the game goes on, the higher the reward becomes for the
players if they decide to “take.” So the question is, what is the best turn for a
player to “take?” The standard game theoretic approach involving subgame
perfect Nash equilibria (SPNE’s) predicts that the “optimal” strategy for both
players is to immediately “take” in the first turn. The goal of this paper is to
create a machine learning model that both plays and learns The Centipede
Game, and then compare what the model predicts is the best turn to “take”
versus what the game theoretic results predict.

Background: Game Theory

In this section, we briefly discuss the relevant Game Theory necessary for
understanding this paper. More specifically, we will begin by defining what a
normal-form game is, provide an example of a normal-form game, and then ex-
plain the concept of Nash equilibria in normal-form games. Afterwards, we will
define what an extensive-form game is, introduce The Centipede Game, explain
what a subgame perfect Nash equilibrium (SPNE) is, and then discuss the Nash
equilibria and subgame perfect Nash equilibria of The Centipede Game.

Although there are many different versions and classes of games throughout
mathematics and Game Theory, some of the simplest games fall under the
category of normal-form games of perfect information, which leads us to our
first definition.

Definition. A normal-form game of perfect information is a tuple (N,
A, R) where:

N is a subset of natural numbers used for labeling players. For instance if
N = {1,2}, then the game has two players: Player 1 and Player 2. The
set N does not necessarily need to be composed of natural numbers since
it’s just a set of labels, but the convention is useful for doing mathematics
about games.

o A is a tuple of sets (Ay, As, ..., Ay,) with n representing the total number
of players in the game. Each A; is the set of action choices available to
Player 1 in the game. The action choices themselves can be anything really
as long as it makes sense in context. There are more nuances to this, but
these will be addressed later with examples.

e 1R is a reward function, R : A1 X Ay X ... X A, = R" that assigns rewards
to the players depending on what actions they took. The i'" coordinate of
the output vector in R" 1is the reward for Player i, which we will denote
as r; frequently. Intuitively, the larger a player’s reward is compared to
the other players’ rewards, the better that player performed in the game
compared to other players.

o We make the assumption that each player knows all possible action choices
and all possible rewards for every other player. This is the “perfect infor-
mation” part of the definition.

The Prisoners’ Dilemma

To better understand the above definition, we give an example. The Pris-
oner’s Dilemma is a famous game with the following story. T'wo prisoners are in
a prison cell, and each prisoner has incriminating information about the other.
The police make deals with the prisoners. If a prisoner cooperates with police
and tattles on the other prisoner, and the other prisoner does not cooperate
with the police (or defects), then the prisoner who cooperated gets a large
reward and the prisoner who defected gets a poor reward. If both prisoners co-
operate with police, then they both get a fair reward. If both prisoners defect,
then they both get poor rewards. The real numbers that are used to describe
the rewards are open to interpretation. For instance, maybe a small reward
corresponds to getting extra jail time and maybe a large reward corresponds
to being released from prison. Again, what matters here is the relative sizes of
the rewards to each other. Using our definition of a game, one example of a
Prisoners’ Dilemma game has:

e N = {1,2}. The players are Prisoner 1 and Prisoner 2.

o A= (A, As) with A} = Ay = {C, D}. Both players can either cooperate
(C) or defect (D).

¢ R(Cv C) - (373)7 R(Cv D) - (570)7 R(D,C) - (075)7 and R(D7D) -
(1,1). For clarity, R(C,D) = (5,0) means if Prisoner 1 cooperates and
Prisoner 2 defects then Prisoner 1 gets a reward of 5 and Prisoner 2 gets
a reward of 0.

For two player games, oftentimes it is useful to consider a game’s equivalent
reward matrix (sometimes called the pay-off matrix or game matrix). For this
Prisoners’ Dilemma, the reward matrix is shown in Figure 1 and is fairly self-
explanatory.

Prisoner 2

C D

@)

(3,3) (5,0)

Prisoner 1

O

(0,9) (1,1)

Figure 1: The reward matrix for the Prisoners’ Dilemma game considered above.
Prisoner 1’s rewards are in blue and Prisoner 2’s rewards are in red.

What is a Nash Equilibrium?

Suppose you wanted to find the “optimal” or “best” action that each player
could take in a game. Optimal can mean a lot of things, but one reasonable
notion of optimality stands out in Game Theory. This is the idea: suppose a
game has n players {1,2,...,n} where each player i makes action choice a;, and
each player i gets some reward r;. We call the tuple (ay,as, ...,a,) an action
profile for the game, and it represents the actions taken by each player in
the game. Keeping the action choices of all other players fixed, if each player
1 can’t get a better reward by changing their current action choice, then the
action profile is considered “optimal.” Stated more simply, if no player can
profitably deviate from their current action choice, then the action profile for
the game is considered “optimal.”

Intuitively, if the outcome of the game for each player is good enough so
that each player wouldn’t do anything differently given the chance, then the
players played the game well. This leads us to our next definition:

3

Definition. Suppose G = (N, A, R) is a normal-form game of perfect informa-
tion with n players and a* = (ayq, ..., a,) is an action profile for G where each
player i gets reward r;. For each player v and all other possible action choices
a; € A; available to player v, if we have:

T’;k 2 (R(ala ceey a’i—laa_i7 Ajt1y ey a'n))l

Then the action profile a* is called a Nash equilibrium of G.

Part of the “optimality” of a Nash equilibrium comes from our assump-
tion that each player is always going to choose the most rational action choice
when given the chance. This is because in our theory, we assume that “perfect
information” is available to each player. Basically, each player knows all the
possible action choices of the other players and all the possible rewards each
player can get from these action choices. Although this is almost never the case
for games in real life with inexperienced or new players, it actually sometimes is
the case for very experienced players. Players who are experienced with a game
have played the game many times and thus have memories of numerous tried
action choices and their corresponding outcomes. Therefore, a Nash equilib-
rium in a game can be thought of as a prediction of what very experienced and
logical players would do in a game in real life. This makes sense because, for
instance, how differently do you imagine professional soccer players play soccer
compared to how 5 year old children play soccer? Later in this paper when
we begin discussing The Centipede Game and our machine learning models
that learn different Centipede games, this fact will be mentioned again because
instead of having perfect information from the start like in the theory, the ma-
chine learning models are going to learn from experience just like people in real
life probably would.

In general, Nash equilibria are good for predicting what logical players with
experience might do in a game, but they are bad at predicting what illogical
and inexperienced players might do in a game. Some other aspects of Nash
equilibria in games are that they are almost never unique since most games
end up having more than one Nash equilibrium. Also just because a Nash
equilibrium is supposed to be an “optimal” action profile in a game, this doesn’t
necessarily mean the profile maximizes the rewards of each player. Before we
see an example of this last statement, we should quickly discuss a good way of
calculating Nash equilibria in normal-form games.

Calculating Nash Equilibria in Normal-Form Games

For a two player normal-form game, the following algorithm is helpful for com-
puting Nash equilibria.

e Begin by writing the game’s equivalent reward matrix (see Figure 1 for
an example).

e For each column in the matrix, underline the maximum rewards possible
for Player 1 (there can be more than one maximum if there are duplicates).

e Next for each row in the matrix, underline the maximum rewards possible
for Player 2 (again, there could be duplicates).

e At this point, the matrix entries that have both Player 1 and Player 2’s
rewards underlined are the Nash equilibria of the game.

Intuitively, going through each column of the matrix represents Player 1
deviating between their action choices given an action choice by Player 2, and
similarly going through each row of the matrix represents Player 2 deviating
between their action choices given an action choice by Player 1, so it’s fairly easy
to see how the action profiles produced by this algorithm are Nash equilibria
from the definition. There is also a natural way of extending this algorithm for
games with more than two players, but all the games we discuss in this paper
are two player games, so we choose to omit the general version of this algorithm
from the paper.

For an easy example, one can use the algorithm above to calculate the Nash
equilibria of the Prisoners’ Dilemma game from earlier. After doing so we see
that this version of the Prisoners’ Dilemma game has only one Nash equilibrium,
namely the action profile (C, C') where both prisoners cooperate with the police.
Notice that both prisoners get a reward of 3 in this Nash equilibrium, but some
other action profiles allow a prisoner to get a reward of 5. As stated earlier, even
though a Nash equilibrium is a kind of “optimal” play, no players here end up
getting a maximized reward. Why? Think about it this way: what incentive do
the prisoners really have to defect? If a prisoner defects in this game, they can
only get 0 or 1 as a reward. On the other hand if a prisoner cooperates in this
game, they can only get 3 or 5 as a reward. This means the possible rewards for
cooperating are always better than any of the possible rewards for defecting.
Therefore both prisoners don’t have any good reason to defect, and both decide
to cooperate which gives us our Nash equilibrium. Concluding this discussion,
we are finally ready to introduce the concept of extensive-form games.

Extensive-Form Games of Perfect Information

Although normal-form games are simple and intuitive, they lack a certain
structure that is helpful for thinking about more complicated games. Very
simply, an extensive-form game is a game with a tree diagram. The tree has
a root (the vertex where the game starts), player vertices or decision nodes
(vertices where players take actions), and leaf nodes (vertices where the game

5

ends and players collect their rewards). A major difference between extensive-
form games and normal-form games is that in extensive-form games we think
about games happening sequentially. That is, players take turns making action
choices. The full list of action choices a player takes during the game is called
a strategy. We summarize with a definition:

Definition. An extensive-form game of perfect information is a tuple
(N, T,V,A,S, R) where:

N is a subset of natural numbers representing the players in the game.
T is a rooted tree, called the Game Tree.

V' is a set of labeled vertices in the Game Tree. Some wvertices, called
decision nodes, are labeled with values from N to specify which players
are allowed to make a move at each vertex. The other vertices, called leaf
nodes, where players finish the game and collect their rewards.

With n players in the game, A is a tuple of sets (A, ..., A,) where each A;
is the set of action choices available to Playeri. Fach action is labeled with
a vertex, meaning that at different vertices players might have different
actions available to them.

With n players in the game, S is a tuple (S, ..., S,) where each S; is the
set of all possible strategies available to Playeri. For a player i, a strategy
1 a sequence of actions with each action coming from a vertex that player
t can play on. The strategies must move from the root of the Game Tree
towards the leaf nodes, and every strateqy for a player always includes the
same number of actions as the number of vertices that player can play
on, regardless of whether or not the vertices are visited in the
game.

R is a reward function, R : S1 X Sy X ... X S,, = R" that gives each player
a reward depending on what strategy they used. Again, the i coordinate
from the output vector in R, s the reward for player 1.

Due to perfect information, every player knows all the possible strategies
that any other player can take and all of the corresponding rewards.

To make things more vivid, Figure 2 below is one example of an extensive-
form game. We won’t really do much with it because The Centipede Game is
also an extensive-form game, but it will be good for familiarization.

(3,4) (6,2)

Figure 2: A simple example of an extensive-form game with two players. Player
1 moves from vertex 1 and Player 2 moves from vertex 2. In this game tree,
the node at the very top is the root node (meaning the game starts there) and
the nodes with the tuples of numbers attached to them are the leaf nodes with
the corresponding reward for each player.

The Centipede Game

Finally we get to The Centipede Game! The Centipede Game is an extensive-
form game with two players and has the following story. In the first turn of the
game, Player 1 and Player 2 are presented a sum of money. Player 1 can either
choose to take, and get more money than Player 2, or pass. If Player 1 takes
the money the game is over. If Player 1 passes, the sum of money is altered
and now Player 2 can decide to take or pass on it. If Player 2 takes, they get
more money than Player 1 and the game ends. If Player 2 passes, again the
sum of money is altered, and now the second turn of the game starts. This
process repeats until one of the players decides to take the money, or until the
game runs out of turns. If each player passes for every turn in the game, both
players leave with an equal amount of money (Note: We choose the rewards for
each player in this case to be smaller than the rewards given if the players were
to take during their last available opportunity. This is because if these rewards
were larger, it would be obvious that both player’s should work together to
get the highest possible reward). The longer the game goes on, the higher the
reward becomes if a player decides to take the money. A two turn Centipede
Game is shown below in Figure 3.

‘ (1,0) ¢ (0,1) ‘ (2,0) £ (0,2)

Figure 3: A two-turn Centipede Game. Here T' means “take” and P means
“pass.” If Player 1 makes it to turn 2 they can win big! Should they dare?

The interesting thing about The Centipede Game is that the players can
make their reward higher by choosing to pass, but (as we will see very soon)
the Game Theory says that the players should always take in the first turn!

Nash Equilibria in The Centipede Game

Consider the Centipede Game in Figure 3. We want to try and find its Nash
equilibria. To make this task easy, we can actually turn this Centipede game
into an equivalent normal-form game like in Figure 4 below, and then solve for
Nash equilibria the same way we did for normal-form games.

Player 2
TT TP PT PP

T (1,0) (1,0) (1,0) (1,0)
™ (1,0) (1,0) (1,0) (1,0)

Player 1

PT (0,1) (0,1) (2,0) (2,0)
PP (0,1) (0,1) (0,2) (1,1)

Figure 4: The equivalent normal-form game (reward matrix) for the Centipede
game from Figure 3. The Nash equilibria are highlighted in yellow.

An important distinction here is that in an extensive-form game players
make an action anytime the game gets to one of their vertices in the game tree,
meaning players can make more than one action choice in an extensive-form

game. However the way we defined action choices in normal-form games, players
only make one action choice per game. The correspondence between extensive-
form and normal-form games are that the set of all of possible strategies for a
player in an extensive-form game will be the set of all possible action choices
for that player in the equivalent normal-form game.

Now looking at Figure 4, as we hinted earlier, all of the Nash equilibria in
this game happen when the players decide to take in the first turn... but we’re
being a bit disingenuous here. By fiddling with the rewards of the game, we can
make Centipede games that have a Nash equilibrium where the players don’t
take in the first turn. To get an even better understanding of this game, we
use a refinement to the concept of Nash equilibrium which we describe in the
following section.

Subgame Perfect Nash Equilibria
We begin this section with a definition.

Definition. A subgame of an extensive-form game G 1is the extensive-form
game defined by starting G at some player vertex or decision node (could still
be the root node), and ignoring the parts of G that happened before that vertex.
The way this is defined, the game G itself is also a subgame.

For example, these are all of the subgames of the specific Centipede Game
we’ve been talking about:

P P P P
o ® o @ (1)
T T T T
[] (170) [] (O’]_) [] (270) [] (072)

Figure 5: The subgame starting at Player 1’s first vertex, ie. the full game.

P P P
@ @ @ - (L1)
T T T
« (0,1) + (2,0) « (0,2)

Figure 6: The subgame starting at Player 2’s first vertex.

9

oot a
T T
¢ (2,0) ¢ (0,2)

Figure 7: The subgame starting at Player 1’s second vertex.

O—2 @

T

¢ (0,2)
Figure 8: The subgame starting at Player 2’s second vertex.

This leads us to our next definition:

Definition. A subgame perfect Nash equilibrium or SPNE of ann player
extensive-form game G is a strategy profile s* = (s1,...,8,) such that s* is a
Nash equilibrium in every subgame of G. Here s* is a strategy profile for the
complete game G, but not for the proper subgames of G specifically. To resolve
this, we say that s* is a Nash equilibrium in a subgame H if there exists a Nash
equilibrium tn H that matches s* when H and G overlap.

The concept of a subgame perfect Nash equilibrium is a refinement to the
concept of a Nash equilibrium because firstly, any subgame perfect Nash equi-
librium of a game is also a Nash equilibrium of that game. Secondly, subgame
perfect Nash equilibria capture the idea of “perfect recall” where players “re-
member” their past action choices as they progress through the game, and use
their “memories” to play “better” as the game progresses. Another interpreta-
tion is that in a SPNE, players act like they would act in hindsight.

Calculating Subgame Perfect Nash Equilibria

There are two basic ways we can calculate the subgame perfect Nash equi-
libria of an extensive-form game G. One way is to make the equivalent normal-
form game for each subgame of GG, calculate the Nash equilibria of these sub-
games like we normally would, and then keep the strategy profiles for G' that

10

match up to the Nash equilibria of all the subgames. This method is intu-
itive but can be pretty time consuming, especially for larger games (imagine
a 1000+ turn Centipede Game). The faster, and usually better, way of cal-
culating SPNE’s is by using a method called backwards induction. To do
backwards induction, we begin by looking at the terminal nodes in a game tree
(the player vertices adjacent to leaf nodes). Then using our idea that players
want the largest reward available to them, we work our way backwards through
the game and keep track of the action choices players would choose given the
chance. It is easiest to explain backwards induction by doing an example, so
again consider the same Centipede Game we’ve been using so far.

P P P P
® @ ® @ - (LD)
T T T T
* (1,0) « (0,1) + (2,0) « (0,2)

Figure 9: The Centipede Game... again.

Here is the process:

e Looking at Figure 9, focus your attention to the very right where Player
2’s second vertex is. We start here because this vertex is terminal and has
the most leaf nodes. If Player 2 was here, they’d like to take the money
because if they take here they get a reward of 2 and if they pass they get
a reward of 1 which isn’t as good.

e Moving backwards towards the root node, our next stop is Player 1’s
second vertex. Since Player 1 is rational, they know that if they pass
then Player 2 will just take afterwards and Player 1 will get nothing. To
avoid that, Player 1 wants to take at this vertex to get the reward of 2.

e Moving backwards again, we are now at Player 2’s first vertex. Similarly
here, Player 2 knows that Player 1 is going to take if they decide to pass,
so to avoid getting nothing Player 2 wants to take and will accept the
reward of 1 here.

e Moving backwards one last time, we are finally at the root node of the
game, ie. Player 1’s first vertex. Again Player 1 knows that if they decide
to pass then Player 2 will just take. So like before, Player 1 wants to take
and will accept the reward of 1 here.

11

Putting everything together we recover only one SPNE strategy profile,
namely s* = (TT, TT). So the unique SPNE of this Centipede game is when
both players take the money whenever possible. In general, SPNE’s don’t
have to be unique and usually in a backwards induction there would be more
splitting paths and more actions to keep track of, but the Centipede Game
is relatively simple. This is the result we alluded to earlier in our discussion
before calculating the Nash equilibria of the game. As a sanity check, notice
that s* is one of the Nash equilibria we calculated earlier (as it should be). This
is a weird result, because it’s telling us that experienced and rational players
with hindsight will always just take the money immediately and not even try
to get the higher rewards later on. In our Centipede game example the rewards
are relatively small, but we could have made the later rewards much larger
compared to the reward available in the first turn, and still we would recover
the same SPNE. Here is a relevant theorem:

Theorem. In any Centipede game (the way we have defined it) with a finite
number of turns, there is a unique subgame perfect Nash equilibrium where each
player takes in every turn.

Proof. Repeat the same backwards induction procedure we just did for the two

turn version of the Centipede game.
O

This finally brings us to the goal of this paper: to test whether or not a
trained machine learning algorithm, more specifically a reinforcement learning
algorithm, plays The Centipede Game the way the SPNE predicts. We now
transition into the machine learning part of this paper.

12

Background: A Brief Description of Reinforce-
ment Learning

Although very vague, the following definition gives a general feel for what’s
involved in a reinforcement learning algorithm.

Definition. A reinforcement learning algorithm is a machine learning algo-
rithm with the following things in maind.

An agent, or player.

e An environment where the agent is expected to perform.

A set of states S representing different aspects of the environment.

A collection of action sets A(S) = {A(s)}ses which represent actions
avatlable to the agent when in a given state s of the environment. The set
A = J,cq A(s) represents all of the possible actions the agent could take.

o A reward signal, or reward function R : S x A — R that gives the agent
a reward for taking an action in a given state.

o A policy function m : S — A which tells the agent what action to take
when in a given state.

Sometimes the goal of a reinforcement learning algorithm is to find an op-
timal policy 7* which optimizes the cumulative reward earned by the agent.
Other times, the algorithm is designed to learn without optimizing the policy.
Generally speaking, any learning algorithm concerned with an agent learning
from interacting with an environment falls under the umbrella of reinforcement
learning.

To avoid making this paper unnecessarily long, we choose to specifically
describe the learning algorithm we used to learn Centipede games. Our algo-

rithm in fact will be very similar to the k-armed Bandit algorithm described in
Chapter 2 of [1].

Learning The Centipede Game

To learn different Centipede games, our algorithm will work based off of the
following representation.

e There will be two agents: Player 1 and Player 2.

e There will be just one state for each player: the initial state of the Cen-
tipede game before any player makes a move.

13

e If the specific Centipede game in question has n turns, then there will be
2" actions available to each player. Each action corresponds to a possible
strategy for a player from the extensive-form of the Centipede game. For
example in a two turn Centipede game, the set of possible actions for

each player would be {T'T, TP, PT, PP}. We will call the set of actions
available to both players A.

e The reward given to each player is calculated by playing a Centipede game
with the strategies (or actions in the reinforcement learning context) the
players decided to use, and observing the rewards given to each player.

There are a few things we haven’t specified yet: the policies for each player
and the method in which each player actually learns. In order to explain what
the policies are, we need to explain the learning aspect first.

Learning By Estimating Rewards

The way we have represented The Centipede Game, every time a player
takes an action they will get a reward. The thing is, depending on what action
the other player chooses, the reward given to the player is not guaranteed to
be the same every time the player chooses the same action. For this reason,
we’d like to maintain estimates of the rewards we expect a player to receive for
choosing specific actions. Once we have this, the player can make a decision
about what action to choose next based on what the current reward estimates
are. To achieve this, for each player ¢+ we make a matrix (); where the rows of
the matrix represent the possible states a Player ¢ could be in and where the
columns of the matrix represent the possible actions Player ¢ could take, and
then setting @;(s,a) to be our current estimate of the reward given to Player
1 for taking the action a in the state s. Since there is only one state in our
model, the) matrix (or @) table) for each player reduces to a single row vector
(Qi(s, a) = Qi(a)).

The next question is, how do we calculate the reward estimates Q;(a)? In
practice there are many ways to do this, but we pick a relatively simple way.
Before the players play the game at all, initially set @;(a) = 0 for every a € A.
After playing the game some number of times, suppose that Player ¢ chooses
to take action a. Let & be the total number of times that Player ¢ chose action
a so far (including this time), and let R} be the reward that Player ¢ received
after choosing a for the 5% time (with 1 < j < k). Also, let Q’(a) denote the
value of Q;(a) after the ;' time Player i chooses action a, then we update Q;(a)
by the following rule.

1

Qi (a) = Qi (a) + (R — Qi (a))

14

Why do this? We're trying to estimate the reward R given to Player i for
choosing action a. In other words, we'd like to know E [R; | a] (the expected
value of the reward given to Player i for choosing action a). A natural way to
approximate this would be to average all of the rewards Player ¢ has received
so far from choosing action a, ie. we would set:

Qr(a) =

S| =

k
2B
j=1

But notice:

B 1
Tk \k—14&aT T
j=1
= (k- DQ () + BY)
— QY (a) + (RY — Q4 ()

k

So the update rule described above is equivalent to just taking the average
of all the rewards Player ¢ received for choosing action a so far. The reason we
prefer the update rule over the traditional formula for the average is because it
takes less time computationally to use the update rule as opposed to computing
the entire sum every time Player ¢ chooses action a. Throughout reinforcement
learning, there are other kinds of update rules and many of them take a similar
form to the update rule that we are using. A benefit of using this update rule is
that by the strong law of large numbers, as k — oo, we have Q¥(a) — E[R; | al.
This is not always ideal for reasons we won’t get into, but for The Centipede
Game it should work out fine. We are now ready to talk about the policies of
each player.

15

e-Greedy Policies: Exploration versus Exploitation

We've already discussed how the players learn their expected reward for
choosing an action, but now we need to discuss how players decide what action
to take in the first place. Intuitively, one might think the players should just
choose the action a with the highest Q(a) value. In other words, players should
choose the action that they think will give them the highest reward. Let m; be
the policy of Player ¢, then this would correspond to:

m; = arg max Q;(a)
a€A

If there is more than one action a that maximizes @(a), just pick one of the
actions at random. Here we say that the players are exploiting their knowledge
since they are using their current information about their expected rewards to
make their decision about what action to choose next. The problem with this
however is that under these policies as stated, the players may start taking the
same few actions over and over again without ever trying anything else. This
is an issue because sometimes players can get fixated on actions that give them
okay rewards in the beginning of the game when in reality there might be other
actions that give much higher rewards on average. To encourage the players to
try other actions, or explore, we add an extra parameter to the polices above.
Namely, we introduce a parameter ¢ € (0,1) that represents the probability
that the players pick an action randomly, regardless of the () table values. In
practice, the value of € to use will vary depending on the situation. Making this
adjustment, the policies from earlier become:

arg max,. 4 Qi(a) with probability 1 — €
™=
' some random a € A with probability €

In this paper we choose the random actions uniformly from the set A, mean-
ing any a € A has equal probability of being chosen. A common challenge in
reinforcement learning is trying to balance the amount that agents exploit ver-
sus the amount that they explore. We are now ready to state our Centipede
game learning algorithm in its entirety.

16

The Algorithm

Q1(a) < 0 for every a € A
Q2(a) < 0 for every a € A

K(a) < 0 for every a € A
L(a) < 0 for every a € A

for N times do
a1 < action chosen by m
K(al) — K(al) +1

as <— action chosen by o
L(ag) < L(az) +1

r1 <— reward for Player 1 using a; in Centipede game
ry < reward for Player 2 using ay in Centipede game

Q1(a1) < Q1(a1) + m(ﬁ — Q1(a1))
Q2(az) < Qa(az) + @(7’2 — @Q2(a2))

end for

In the above algorithm, N is the number of times we want the model to
play the Centipede game, K (a) is the number of times Player 1 chose action a,
and 7T'(a) is the number of times Player 2 chose action a.

Results

We tested our reinforcement learning model on a 2 turn Centipede game, a 6
turn Centipede game, and a 20 turn Centipede game. For each Centipede game
tested, we trained the model in 9 different batches with each batch lasting for
1000 games. Also for each Centipede game tested, the first batch had ¢ = 0.9,
the second batch had e = 0.8, ..., and the ninth batch had ¢ = 0.1, where ¢ was
the explore probability for each player. The purpose of this was so that in the
first few batches (high values of €), players could focus more on exploring rather
than exploiting and become familiar with the kinds of rewards possible from
choosing each action. Then in the later batches (low values of €), players could
start focusing more on exploiting instead of exploring so that they could start
playing the way that they thought was best. After each batch, we calculated
the percentage of times each player decided to “take” in the first turn. The
following figures summarize the results.

17

Player 1: 2 Turn Centipede Game

0.8
=
=
@

i 0.6
z
i

= 04
15}
&}
3

0.2

0

1 2 3 4 5 B 7 2 g
Batch Number

Figure 10: The percentage of times Player 1 chose to take in the first turn as
a function of the Batch Number in the 2 turn Centipede game. By the end of
training, the model nearly always takes in the first turn.

Player 2: 2 Turn Centipede Game

0.8
E;
=
E
& 06
o
&
= 0.4
D
&)
&
0.2

—
P
Lad

4 5 G 7 8 9

Batch Number

Figure 11: The percentage of times Player 2 chose to take in the first turn as
a function of the Batch Number in the 2 turn Centipede game. By the end of
training, the model nearly always takes in the first turn.

18

Player 1: 6 Turn Centipede Game

0.8
E‘;
=
i
i 06
2z
i
= 0.4
&
&
iy
n2

4 5 B 7 8 g

—
]
Lad

Batch Number
Figure 12: The percentage of times Player 1 chose to take in the first turn as

a function of the Batch Number in the 6 turn Centipede game. By the end of
training, the model nearly always takes in the first turn.

Player 2: 6 Turn Centipede Game

08
E;
=
@
z
L

= 0.4
o
E"'
Y

0.2

0

1 2 3 4 5 B 7 8 g
Batch Number

Figure 13: The percentage of times Player 2 chose to take in the first turn as
a function of the Batch Number in the 6 turn Centipede game. By the end of
training, the model takes in the first turn around 80 percent of the time.

19

Player 1: 20 Turn Centipede Game

0.8
E
=
W
2z
[l
= 0.4
1]
a
&
02

L]

4 5 B 7 8

—
Pad
Lad

Batch Number

Figure 14: The percentage of times Player 1 chose to take in the first turn as a
function of the Batch Number in the 20 turn Centipede game. For high values
of € (low Batch Number) the model progressively takes in the first turn less and
less, but by the end of training, the model nearly always takes in the first turn.

Player 2: 20 Turn Centipede Game

08
E';
=
W

& 06
z
o

= 0.4
A 1]
0
Y

02

0

1 2 3 4 5 G 7 2 9
Batch Number

Figure 15: The percentage of times Player 2 chose to take in the first turn as
a function of the Batch Number in the 20 turn Centipede game. By the end of
training, the model nearly always takes in the first turn.

20

Concluding Remarks

Our models seem to agree with the Game Theory. For each Centipede game
tested, by the end of training, Player 1 chose to take in the first turn over 90%
of the time. The same was almost true for Player 2, however by the end of
training in the 6 turn game, Player 2 chose to take in the first turn just un-
der 80% of the time. We don’t think this difference is that significant though,
especially since Player 2 chose to take in the first turn over 90% of the time
in the 20 turn game... so this difference can most likely be corrected by more
training. More insight into this comparison might be made by trying this exper-
iment again but with a more complicated learning model. For instance it might
be interesting to model The Centipede Game using a Generative Adversarial
Network (GAN) because neural network’s are notoriously good at noticing hid-
den patterns in data, and GAN’s specifically have been shown to be excellent
models for games. However, our hypothesis is that these models would still
probably end up agreeing with the Game Theory. We think the reason is a
matter of experience. Although empirical studies [2] have shown that regular
people tend to play differently than the Game Theory predicts, most people
don’t play Centipede games thousands of times trying to learn every possible
thing that can happen to them in the game. Summarizing, inexperienced play-
ers probably won’t play like the Game Theory predicts. Since ultimately any
machine learning model would gain immense experience playing the Centipede
game, it is likely that other models would behave similarly to the model we
used in this paper.

Citations

1. Sutton, R. S. Bach, F. Barto, A. G. Reinforcement Learning: An Intro-
duction; MIT Press LTD: Massachusetts, 2018.

2. McKelvey, R. Palfrey, T. “An experimental study of the centipede game.”
Econometrica, 1992.

21

