
Intersection Theory and the Poincaré–Hopf Theorem
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1 Introduction

The Poincaré–Hopf theorem is a beautiful theorem about vector fields on smooth oriented manifolds
which relates the zeros of the vector field to the Euler characteristic of the manifold. Our purpose is to
present this theorem as clearly as possible to someone with a background in general topology and linear
algebra.

2 Manifolds and Tangent Spaces

First, we must define some basic terms.

Definition 2.1. A function f : U → Rm, where U is open in Rn, is called smooth if it has continuous
partial derivatives of all orders. A function f defined on an arbitrary subset X of Rn is called smooth
if for all x ∈ X there is a neighborhood U of x and a smooth map F : U → Rm such that F equal f on
U ∩X.

The term ”local” will be used frequently, and it is usually referring to open sets around a point.
That is, if a space X locally has a property at x, then there is an open neighborhood of x which has
that property. So, the above definition can be written more simply as ”f is smooth if it can be locally
extended to a smooth map on open sets.”

Now, just as in general topology we have a homeomorphism and in linear algebra we have an isomor-
phism, here we define a concept with which we can view two sets as essentially equivalent.

Definition 2.2. A smooth map X → Y , where X ⊂ Rn and Y ⊂ Rm is called a diffeomorphism if f
is bijective and f−1 : Y → X is also smooth.

Notice that a diffeomorphism is a homeomorphism where the continuity condition is replaced with
smoothness. Now we are ready to define smooth manifolds.

Definition 2.3. A set X ⊂ RN is a k-dimensional smooth manifold if it is locally diffeomorphic to
Rk. That is, for all x ∈ X, there exists a diffeomorphism (called a parametrization) ϕ : U → V , where
U is open in Rk and V is an open neighborhood of x in X. For convenience, we may assume ϕ(0) = x.
The inverse ϕ−1 : V → U is called a coordinate system on V .

Every manifold that we are working with is smooth, so we will often refer to them simply as ”mani-
folds.” Numerous examples of manifolds should readily come to mind, including the space Rk itself, along
with the familiar Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21+ · · ·+x2n+1 = 1}. Using only the definition, it is not
very easy to prove that a given space is a manifold because you need to find a parametrization around
every point on the manifold. Luckily, there are often easier ways of showing something is a manifold.

Theorem 2.4. If X and Y are manifolds, so is X × Y , and dimX × Y = dimX + dimY .

Proof. Let (x, y) ∈ X × Y . Then there exist parametrizations ϕ : U → X and ψ : W → Y where U
and W are open sets in Rm and Rn, respectively, such that ϕ(0) = x and ψ(0) = y. Then the map
ϕ×ψ : U ×W → X ×Y given by (ϕ×ψ)(u,w) = (ϕ(u), ψ(w)) is a parametrization from an open subset
of Rm+n to X × Y around (x, y), and the result follows. ■

If X and Z are both manifolds in RN and Z ⊂ X, then Z is called a submanifold of X. In order
to do any sort of useful analysis on manifolds, we need to introduce a concept of derivatives of maps
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from one manifold to another. First, recall the usual definition of a derivative. If f : U ⊂ Rn → Rm is
smooth, x ∈ U and h ∈ Rn, then we have

Dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

The derivative is a linear map represented by the Jacobian matrix

Dfx =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)

 .
The derivative has a number of useful properties. The first is the Chain Rule, which says that if f : U → V
and g : V → Rℓ are smooth, then for all x ∈ U ,

D(g ◦ f)x = Dgf(x) ◦Dfx.

Also, if L is a linear map, then DLx = L for all x in the domain of L. Finally, the derivative of a function
is its best linear approximation. Let X be a smooth manifold and ϕ : U → X a local parametrization
around x, where U is open in Rk. We can assume for convenience that ϕ(0) = x. Then the best linear
approximation to ϕ at 0 is the map

f(u) = ϕ(0) +Dϕ0(u).

This leads us naturally to the definition of a tangent space.

Definition 2.5. The tangent space Tx(X) of X at x is the image of the map Dϕ0 : Rk → RN . It is
a vector subspace of RN such that x+ Tx(X) is the best linear approximation to X through x.

To show that the tangent space is well-defined, we have to show that it does not depend on the
choice of parametrization. So, suppose ϕ : U → X and ψ : V → X are both parametrizations around
x ∈ X, with ϕ(0) = ψ(0) = x. Let W = ϕ(U) ∩ ψ(V ), which is a nonempty open subset of X. Define
U ′ = ϕ−1(W ) and V ′ = ψ−1(W ). This is done so that ϕ(U ′) = ψ(V ′). Define h = ψ−1 ◦ ϕ : U ′ → V ′.
Then, by the Chain Rule, Dϕ0 = Dψ0 ◦Dh0. This implies that the image of Dψ0 contains the image of
Dϕ0. By symmetry, the image of Dϕ0 contains the image of Dψ0 as well, so their images are the same.
Therefore, the tangent space is well-defined.

Proposition 2.6. dimTx(X) = dimX.

Proof. If ϕ : U → V is a local parametrization about x ∈ X, then ϕ−1 : V → U can be locally extended
to a smooth map Φ′ : W → Rk, where W is open in RN . Then Φ′ ◦ ϕ is the identity map on U . By
the Chain Rule, DΦ′

x ◦Dϕ0 is the identity map on Rk, so Dϕ0 is an isomorphism from Rk to Tx(X).
Therefore, dimTx(X) = k = dimX. ■

Now, we’ll extend the notion of derivative to smooth functions between manifolds, which in general
are not defined on open subsets of RN . It has the characteristics one would expect from a derivative
map. Namely, if f : X → Y is smooth, then Dfx is a linear map from Tx(X) to Tf(x)(Y ), which is the
best linear approximation to f at x. It also satisfies the Chain Rule. This new derivative is defined as
follows:

Definition 2.7. Let f : X → Y be a smooth map of manifolds, with f(x) = y. Suppose ϕ : U → X
parametrizes X about x and ψ : V → Y parametrizes Y about y, where U ⊂ Rk and V ⊂ Rl, and say
ϕ(0) = x, ψ(0) = y. Define h : U → V by h = ψ−1 ◦ f ◦ ϕ : U → V . Then the derivative of f at x is
defined to be Dfx = Dψ0 ◦Dh0 ◦Dϕ−1

0 .

X Y

U V

f

h=ψ−1◦f◦ϕ

ϕ ψ

Figure 5

Theorem 2.8. If f : X → Y and g : Y → Z are smooth maps of manifolds, then

D(g ◦ f)x = Dgf(x) ◦Dfx.
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3 The Derivative and Local Behavior of Maps

The purpose of looking at derivatives is to describe the local behavior of a function near a point. We
can often determine everything about the local behavior of a map just from its derivative.

Let f : X → Y be a smooth map of manifolds. Let x ∈ X and y = f(x) ∈ Y . Then, if Dfx is an
isomorphism, f is a local diffeomorphism at x. This is known as the Inverse Function Theorem. We
will not use it in proving the Poincaré–Hopf Theorem, though, so we will leave it unproved. Of greater
interest are the related Local Immersion Theorem and Local Submersion Theorem.

First, we must introduce some terminology. If Dfx is injective, then f is called an immersion at x.
If f is an immersion everywhere, then it is simply called an immersion. On the other hand, if Dfx is
surjective, then f is called a submersion at x.

Theorem 3.1. If f : X → Y is an immersion at x and y = f(x), then there exist local coordinates
around x and y such that

f(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

In other words, f is locally equivalent to the canonical immersion near x.

Our sole purpose for immersions is to give us a criterion for when the image of a smooth map
f : X → Y is a submanifold of Y . Unfortunately, being an immersion is not quite enough, we need a
few more conditions. A map f : X → Y is called proper if the preimage of any compact subset of Y is
a compact subset of X. Now, we define an embedding as a proper, injective, immersion. It turns out
this is just the condition we need in order for the image of X to be a submanifold of Y .

Theorem 3.2. An embedding f : X → Y maps X diffeomorphically onto a submanifold of Y .

Proof. h ■

Theorem 3.3. If f : X → Y is a submersion at x and y = f(x), then there exist local coordinates
around x and y such that

f(x1, . . . , xk) = (x1, . . . , xℓ).

In other words, f is locally equivalent to the canonical submersion near x.

4 Manifolds with Boundary

Some topological spaces, like the closed disk D = {x ∈ R2 | |x| ≤ 1}, are almost manifolds but not quite,
because there is no parametrization for points on the boundary of the disk. For this reason, we define
manifolds with boundary.

Definition 4.1. Let Hk be the k-dimensional ”upper half space” given by Hk = {(x1, . . . , xk) ∈
Rk | xk ≥ 0}. A set X ⊂ RN is a k-dimensional manifold with boundary if it is locally diffeo-
morphic to Hk.

The boundary of a manifold with boundary X, denoted ∂X, is the set of points in x whose final
coordinate is 0 under some local coordinate system. In fact, if the final coordinate of x is 0 under one
local coordinate system, then the same must be true for any other local coordinate system. This implies
that ∂X is a manifold of dimension k − 1.

5 Transversality

The Poincaré–Hopf theorem makes use of oriented intersection theory. The intersection of two manifolds
can, in general, be very pathological, so we will usually impose a useful condition on their intersection,
which we call transversality.

Definition 5.1. Let X and Z be submanifolds of a manifold Y . We say X and Z are transverse, or
intersect transversely, if

Ty(X) + Ty(Z) = Ty(Y )

for all y ∈ X ∩ Z. This relation is denoted X −⋔ Y .
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Since Ty(X) and Ty(Z) are both vector subspaces of Ty(Y ), their sum is the set

Ty(X) + Ty(Z) = {x+ z | x ∈ Ty(X), z ∈ Ty(Z)}.

Notice that if X and Z do not intersect at all, then they intersect transversely.

Example 5.2. Let Y = R2, X be the x-axis, and Z be the graph of the function x3. These only intersect
at (0, 0), and their tangent spaces at that point are the real axis. Therefore, X and Z are not transverse
in this case.

Figure 1

Example 5.3. Let Y be the sphere S2, and let X and Z be great circles as pictured in Figure 2. Then
X −⋔ Z.

Figure 2

6 Orientation

Definition 6.1. Let V be a finite-dimensional real vector space. If β1 and β2 are bases of V , then there
exists a unique linear isomorphism A : V → V such that Aβ1 = β2. We say β1 and β2 are equivalently
oriented if detA > 0. An orientation of V is an assignment of +1 to one equivalence class and −1 to
the other. Thus every basis is either positively or negatively oriented.

Definition 6.2. Let X be a smooth manifold with boundary. An orientation of X is a smooth choice of
orientation for all the tangent spaces Tx(X).

Proposition 6.3. A connected, oriented manifold with boundary admits exactly two orientations.

Definition 6.4. If X and Y are oriented and one of them is boundaryless, then X×Y acquires a product
orientation as follows. At each point (x, y) ∈ X × Y ,

T(x,y)(X × Y ) = Tx(X)× Ty(Y ).

Let α = {v1, . . . , vk} and β = {w1, . . . , wℓ} be ordered bases for Tx(X) and for Ty(Y ), respectively,
and denote by (α× 0, 0× β) the ordered basis {(v1, 0), . . . , (vk, 0), (0, w1), . . . , (0, wℓ)} of Tx(X)× Ty(Y ).
Define the orientation on Tx(X)× Ty(Y ) by setting

sign(α× 0, 0× β) = sign(α)sign(β).

Definition 6.5. We orient Tx(∂X) by declaring the sign of any ordered basis β = {v1, . . . , vk−1) to be
the sign of the ordered basis {nx, β} = {nx, v1, . . . , vk−1} for Tx(X), where nx is the outward unit normal
at x.
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Example 6.6. As an oriented manifold, ∂(I ×X) = X1 ∪ (−X0) = X1 −X0.

Proposition 6.7. The sum of the orientation numbers at the boundary points of any compact oriented
one-dimensional manifold with boundary is zero.

Proposition 6.8. Suppose that V = V1 ⊕ V2 is a direct sum. Then orientations on any two of these
automatically induce a direct sum orientation on the third, as follows. Choose ordered bases β1 and β2
for V1 and V2, respectively, and let β = (β1, β2) be the combined ordered basis for V . Now simply demand
that sign(β) = sign(β1) · sign(β2).

Definition 6.9. Let f : X → Y be a smooth map with f −⋔ Z and ∂f −⋔ Z, where X, Y , and Z are
all oriented and the last two are boundaryless. We define a preimage orientation on the manifold-with-
boundary S = f−1(Z). If f(x) = z ∈ Z, then Tx(S) is the preimage of Tz(Z) under the derivative map
Dfx : Tx(X) → Tz(Y ). Let Nx(S;X) be the orthogonal complement to Tx(S) in Tx(X). Then

Nx(S;X)⊕ Tx(S) = Tx(X),

so that we only need to choose an orientation on Nx(S;X) to obtain a direct sum orientation on Tx(S).
Because

DfxTx(X) + Tz(Z) = Tz(Y ),

and Tx(S) is the entire preimage of Tz(Z), we get a direct sum

DfxNx(S;X)⊕ Tz(Z) = Tz(Y ).

Thus the orientations on Z and Y induce a direct image orientation on DfxNx(S;X). But Tx(S)
contains the entire kernel of the linear map Dfx, so Dfx must map Nx(S;X) isomorphically onto its
image. Therefore the induced orientation on DfxNx(S;X) defines an orientation on Nx(S;X) via the
isomorphism Dfx.

Proposition 6.10. ∂[f−1(Z)] = (−1)codimZ(∂f)−1(Z)

7 Oriented Intersection Number

Definition 7.1. If X, Y , and Z are boundaryless oriented manifolds, X is compact, Z is a closed
submanifold of Y , and dimX + dimZ = dimY , then we say f : X → Y and Z are appropriate for
intersection theory.

Definition 7.2. If f : X → Y is transversal to Z, then f−1(Z) is a finite number of points, each with
an orientation number ±1 provided by the preimage orientation. Define the intersection number I(f, Z)
to be the sum of these orientation numbers.

If x ∈ f−1(Z), then the contribution of x to I(f, Z) is +1 if the direct sum orientation on DfxTx(X)⊕
Tz(Z) is the same as the given orientation on Tz(Y ) and −1 otherwise.

Proposition 7.3. If X = ∂W , where W is compact, and f : X → Y extends to W , then I(f, Z) = 0.

Proposition 7.4. Homotopic maps always have the same intersection numbers.

Definition 7.5. Let Y be a connected manifold of the same dimension as X. The degree of a smooth
function f : X → Y is the intersection number of f with any point y, deg(f) = I(f, {y}).

Proposition 7.6. If f : X → Y is a smooth map of compact oriented manifolds of the same dimension,
with X = ∂W for some compact W , and f can be extended to all of W , then deg(f) = 0.

Definition 7.7. If X is also a submanifold of Y , then we define I(X,Z) to be the intersection number
of the inclusion map of X with Z.

Definition 7.8. Let f : X → Y and g : Z → Y be smooth, with X and Z being compact. Then f −⋔ g
if DfxTx(X) +DgzTz(Z) = Ty(Y ) whenever f(x) = y = g(z). Define the local intersection number at
(x, z) to be +1 if the direct sum orientation of DfxTx(X) ⊕ DgzTz(Z) equals the given orientation on
Ty(Y ) and −1 otherwise. The intersection number I(f, g) is defined as the sum of the local contributions
from all pairs (x, z) at which f(x) = g(z).
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Lemma 7.9. Let U and W be subspaces of the vector space V . then U ⊕ W = V if and only if
U ×W ⊕∆ = V × V . Assume, also, that U and W are oriented, and give V the direct sum orientation.
Now assign Delta the orientation carried from V by the natural isomorphism V → ∆. Then the product
orientation on V × V agrees with the direct sum orientation from U ×W ⊕∆ if and only if W is even
dimensional.

Proposition 7.10. f −⋔ g if and only if f × g −⋔ ∆, and then I(f, g) = (−1)dimZI(f × g,∆).

Proposition 7.11. If f0 and g0 are respectively homotopic to fq and gq, then I(f0, g0) = I(f1, g1).

Corollary 7.12. If Z is a submanifold of Y and i : Z → Y is the inclusion map, then I(f, i) = I(f, Z)
for any map f : X → Y .

Corollary 7.13. If dimX = dimY and Y is connected, then I(f, {y}) is the same for every y ∈ Y .
Thus deg(f) is well defined.

Proposition 7.14. I(f, g) = (−1)(dimX)(dimZ)I(g, f)

Corollary 7.15. If X and Y are both compact submanifolds of Y , then I(X,Z) = (−1)(dimX)(dimZ)I(Z,X)

Definition 7.16. If Y is a compact, oriented manifold, the Euler Characteristic χ(Y ) is defined to be
the self-intersection number of the diagonal ∆ in Y × Y :

χ(Y ) = I(∆,∆)

Proposition 7.17. The Euler characteristic of an odd-dimensional, compact, oriented manifold is zero.

8 Lefschetz Fixed-Point Theory

Definition 8.1. The global Lefschetz number of f is defined to be L(f) = I(∆, graph(f).

Theorem 8.2. Let f : X → X be a smooth map on a compact orientable manifold. If L(f) ̸= 0, then f
has a fixed point.

Proposition 8.3. L(f) is a homotopy invariant.

Proposition 8.4. If f is homotopic to the identity, then L(f) equals the Euler characteristic of X. In
particular, if X admits a smooth map f : X → X that is homotopic to the identity and has no fixed
points, then χ(X) = 0.

Definition 8.5. A Lefschetz map is one where graph(f)−⋔ ∆.

Proposition 8.6. Every map f : X → X is homotopic to a Lefschetz map.

Definition 8.7. A point x ∈ X is a Lefschetz fixed point of f if 1 is not an eigenvalue of Dfx. Then f
is a Lefschetz map if and only if all of its fixed points are Lefschetz.

Definition 8.8. The local Lefschetz number Lx(f) at a Lefschetz fixed point is +1 if the isomorphism
Dfx − I preserves orientation on Tx(X) and −1 otherwise. That is, the sign of Lx(f) equals the sign of
the determinant of Dfx − I.

Proposition 8.9. The Euler characteristic of S2 is 2.

Corollary 8.10. Every map of S2 that is homotopic to the identity must possess a fixed point. In
particular, the antipodal map x→ −x is not homotopic to the identity.

Proposition 8.11. The surface of genus k admits a Lefschetz map homotopic to the identity, with one
source, one sink, and 2k saddles. Consequently, its Euler characteristic is 2− 2k.

Proposition 8.12. Let U be a neighborhood of the fixed point x that contains no other fixed points of
f . Then there exists a homotoy ft of f such that f1 has only Lefschetz fixed points in U , and each ft
equals f outside some compact subset of U .
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Definition 8.13. Suppose x is an isolated fixed point of f in Rk. If B is a small closed ball centered at
x that contains no other fixed point, then the assignment

z → f(z)− z

|f(z)− z|

defines a smooth map F : ∂B → Sk−1. We call the degree of this map the local Lefschetz number of f at
x, denoted Lx(f).

Proposition 8.14. At Lefschetz fixed points, the two definitions of Lx(f) agree.

Proposition 8.15. Let f : X → X be any smooth map on a compact manifold, with only finitely many
fixed points. Then the global Lefschetz number (which is a homotopy invariant) equals the sum of the
local Lefschetz numbers

L(f) =
∑

f(x)=x

Lx(f).

9 Vector Fields and the Poincaré–Hopf Theorem

Definition 9.1. A vector field on a manifold X in RN is a smooth map −→v : X → RN such that
−→v (x) ∈ Tx(X) for every x.

If X is a smooth k-dimensional manifold, then the tangent bundle of X, denoted T (X), is a smooth
2k-dimensional manifold given by

T (X) = {(x, v) | x ∈ X, v ∈ Tx(X)}.

Since X and Tx(X) are both subsets of RN , T (X) is a subset of R2N . It contains a copy of X given by
X0 = {(x, 0) ⊂ T (X) | x ∈ X}.

Let X and Y be manifolds. A smooth map f : X → Y induces a smooth ”derivative” map Df :
T (X) → T (Y ) given by Df(x, v) = (f(x), Dfx(v)). Now, if g : S → M and f : M → N are smooth
maps of manifolds, then by the chain rule for derivatives on manifolds, we have

Df ◦Dg(x, v) = Df(g(x), Dgx(v)) = (f ◦g(x), Dfg(x)◦Dgx(v)) = (f ◦g(x), D(f ◦g)x(v)) = D(f ◦g)(x, v).

Let π : T (X) → X be the projection π(x, v) = x.

10 Exercise 6

Let X be a compact, oriented manifold. For a smooth vector field −→v on X there is a smooth map
σ : X → T (X) such that σ(x) = (x,−→v (x))k. We want to show that σ is an embedding, so that its image
is a submanifold of T (X) diffeomorphic to X. That is, we have to show that σ is a proper, injective
immersion. We get proper for free because X is compact, and the equation π ◦ σ = IdX implies that σ
is injective. So, the only interesting part is to show that σ is an immersion.

Fix (x, v) ∈ T (X). Let ϕ : U → X be a parametrization of X at x, and let θ : U ×Rk → T (X) be a
parametrization of T (X) at (x, v) given by θ(a, b) = (ϕ(a), Dϕa(b)). Then define h = θ−1 ◦ σ ◦ ϕ : U →
U ×Rk. We have

h(a) = θ−1(σ(ϕ(a))) = θ−1(ϕ(a), b) = (a,Dϕ−1
a (b)),

for some b ∈ Tϕ(a)(X). It follows that Dh0 is injective, so

Dσx = Dθ0 ◦Dh0 ◦Dϕ−1
0

is also injective. Therefore, σ is an immersion, hence an embedding.
Let Xσ be the image of X under σ. The tangent space of Xσ at a point (x,−→v (x)) is the best linear

approximation to Xσ at that point: {(a,D−→v x(a)) | a ∈ Tx(X)}.
A zero x of −→v (x) is called nondegenerate if D−→v x : Tx(X) → Tx(X) is an isomorphism. Zeroes of −→v

correspond to points in the intersection of Xσ with X0. The transversality condition at such points is

T(x,0)(X0) + T(x,0)(Xσ) = T(x,0)(T (X)).
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But because T(x,0)(T (X)) = Tx(X)⊕ Tx(X), we can rewrite this condition as

Tx(X)× {0}+ {(a,D−→v x(a)) | a ∈ Tx(X)} = Tx(X)⊕ Tx(X).

This condition holds if and only if the kernel of D−→v x is trivial. Thus, x is a nondegenerate zero of −→v if
and only if Xσ

−⋔ X0 at (x, 0).
As an example, consider a vector field on the manifold R. The tangent space of R at any point x is

just all of R, so a smooth vector field on R is just a smooth map −→v : R → R. We can graph this map
in the R2 plane. Consider the following two vector fields:

y

x

Figure 3

y

x
Figure 4

The zero of the first vector field is nondegenerate because D−→v 0 can be represented by the 1×1 matrix
[1], which is invertible. The zero of the second vector field is degenerate because D−→v 0 can be represented
by [0], which is not invertible. Notice the correspondence of nondegeneracy with transversality, as
mentioned above.

So, a nondegenerate zero on a 1-dimensional manifold can either be a source or a sink, but it cannot
be a source on one side and a sink on the other.

However, notice that we can perturb the vector field in Figure 4 just a little bit to split the degenerate
zero into two nondegenerate zeroes:

y

x
Figure 4

Now, suppose x is a nondegenerate zero of −→v .
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