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Abstract. Tensors, or multi-linear forms, are important objects in a
variety of areas from analytics, to combinatorics, to computational com-
plexity theory. Notions of tensor rank aim to quantify the “complexity”
of these forms, and are thus also important. While there is one single
definition of rank that completely captures the complexity of matri-
ces (and thus linear transformations), there is no definitive analog for
tensors. Rather, many notions of tensor rank have been defined over
the years, each with their own set of uses. In this paper we survey
the popular notions of tensor rank. We give a brief history of their
introduction, motivating their existence, and discuss some of their ap-
plications in computer science. We also give proof sketches of recent
results by Lovett, and Cohen and Moshkovitz, which prove asymptotic
equivalence between three key notions of tensor rank over finite fields
with at least three elements.

1. Introduction

We first come across the notion of rank in a course on linear algebra. If A
is an m×n matrix over a field F, the rank of A is the dimension of the space
spanned by its rows (or columns). To help generalize this definition, it will
be useful to reinterpret the matrix A as a bilinear form T : Fm×Fn → F by
the natural correspondence

(x, y) ∈ Fm×Fn 7→ T (x, y) =
∑
i,j

Ai,jx
iyj .

As a notational convention, here and elsewhere in this paper we will use
superscripts to index coordinates of a vector, and subscripts to index over
different vectors. For example, if x1, x2, . . . are vectors, x75 would be the
seventh coordinate of the fifth vector. Getting back to ranks, using this
correspondence, we can formulate an alternative definition of rank where
the rank of T is the minimal natural number r such that T can be written
as a sum of r bilinear forms of “lowest” complexity, or rank 1 matrices.
The natural objects of lowest complexity are the linear 1-forms, i.e., the
dot product with a fixed vector. Products of 1-forms T1(x)T2(y) are then
bilinear forms. Since every bilinear form can be written as a finite sum of
forms of this type, we set them to be our rank 1 bilinear forms (matrices).
Putting everything together, our alternative definition then says that the
rank of a matrix A is the minimum natural number r such that the bilinear
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form T corresponding to A can be written as the sum of r bilinear forms
each of the type T1(x)T2(y) where T1 and T2 are 1-forms. This alternative
definition agrees with the usual linear algebra definition of rank (see for
instance [Hal58, Sections 32 and 51]).

In this paper we focus on generalizing the notion of rank to higher-
dimensional analogs of matrices. What are these higher-dimensional ma-
trices? The higher-dimensional analogs we will look at are the d-tensors,
which are defined as follows.

Definition 1.1 (Tensor). Let F be a field. A d-tensor T on Fn1 × · · · ×Fnd

is a multilinear map T : Fn1 × · · · × Fnd → F.

Note that a d-tensor T : Fn1 × · · · × Fnd → F can naturally be identified
with a d-dimensional array M such that

T (x1, . . . xd) =
∑

i1∈[n1],...,id∈[nd]

Mi1,...,idx
i1
1 · · ·x

id
d .

So, following the convention for matrices, we will often denote the space of
d-tensors on Fn1 × · · · × Fnd by Fn1×···×nd .1

The definition of rank given above generalizes well to arbitrary d-tensors.
Setting the rank 1 d-tensors to products of d linear 1-forms (or, since linear
1-forms are the same as 1-tensors, d 1-tensors) leads to the notion of rank
that that is traditionally associated with tensors. We call it traditional rank,
or TR for short.

Definition 1.2 (Traditional Rank). A d-tensor T has traditional rank 1 if
we can write

T (x1, . . . , xd) = T1(x1)T2(x2) · · ·Td(xd),
where each Tj is a 1-tensor.

The traditional rank of an arbitrary d-tensor T , TR(T ), is the minimum
number r such that we can write

T (x) =
r∑
i=1

Ti(x)

where each Ti is a d-tensor with traditional rank 1.

While this definition does generalize matrix rank it turns out that there
are also other, non-equivalent generalizations of matrix rank to arbitrary
tensors that characterize the combinatorial, analytic, and geometric proper-
ties of tensors. Each of these notions is useful in its own way. Finding tight
relationships between these notions remains an open research question.

One disadvantage of the traditional notion of tensor rank is that it is pro-
hibitively hard to compute in general. Since H̊astad’s work in 1989 [H̊as89]
it has been known that computing traditional tensor rank over finite fields
is NP-complete, and over Q is NP-hard. Later on, Hillar and Lim [HL13]

1Here and elsewhere in the paper we will use [n] to denote the set {1, 2, . . . , n}.
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showed that H̊astad’s proof could be modified to show that traditional rank
is NP-hard over R and C as well. Traditional rank also turns out to be
NP-hard to approximate with arbitrarily small error bounds [Swe18]. The
non-traditional notions we will discuss are less “stringent” than traditional
rank, so it is possible that they are easier to compute. Showing (exact or
approximate) hardness results for those notions, however, is still an open
problem.

In this paper we introduce the landscape of notions of tensor rank, moti-
vating their existence (Section 2). We then give examples of applications of
these notions in computational complexity theory (Section 3). In Section 4
we give a rundown of the trivial relationships between the notions that come
from their definitions. We then give sketches of results by Lovett [Lov19]
(Section 5) and Cohen and Moshkovitz [CM21] (Section 6) which, put to-
gether, prove asymptotic equivalence between three key notions of rank over
finite fields with three or more elements.

2. Tensor Rank Through the Ages

The oldest non-traditional notion of tensor rank is the so-called analytic
rank.

Definition 2.1 (Analytic Rank). Let F be a finite field. The bias of a
d-tensor T ∈ Fn1×···×nd is given by

bias(T ) = E(x1,...,xd)∈Fn1 ×···×Fnd χ(T (x1, . . . , xd)),

where χ is a nontrivial additive character which, in the case that F = Fp,
can be taken to be χ(x) = e2πix/p.

The analytic rank of T , denoted by AR(T ), is then given by

AR(T ) = − log|F| bias(T ).

This measure of the complexity of a tensor was first introduced by Gowers
and Wolf in the context of higher-order Fourier analysis [GW11]. In Sec-
tion 5 we will see the connection between the analytic rank and the other
combinatorial and geometric notions described below.

Going back to the traditional definition of tensor rank, there is no reason
why one cannot use other kinds of tensors as rank 1 tensors, as long as the
new notion agrees with the old in the case of matrices (in order to be a
true generalization). Doing so, it turns out, is useful for a whole host of
applications. The first such “alternative” notion was introduced in 2016 in
the context of the so-called “capset problem.”

A capset in F3 is a subset of F3 with no non-trivial three-term arith-
metic progressions. That is, a capset is a set A ⊆ F3 that does not contain
{x, x+r, x+2r} for any x, r ∈ F3 with r 6= 0. The capset problem asks what
the maximum size of a capset in F3 can be. In the spring of 2016, Croot, Lev,
and Pach [CLP17] proved a breakthrough result for a similar problem, but
in the additive group Z/4Z. They showed that if A ⊆ (Z/4Z)n contains no
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non-trivial three-term arithmetic progressions, then |A| ≤ 3.60172n. Soon
after, Ellenberg and Gijswijt [EG17] generalized the Croot-Lev-Pach argu-
ment to show that any progression-free set A ⊆ (Z/pZ)n, where p is a prime,
satisfies |A| ≤ (J(p)p)n where J(p) is an explicit constant less than 1. This
exponentially improved the known bound for the capset problem, bringing
it down from O(3n/n1+c) (where c is some absolute constant) to O(2.756n).
Tao [Tao16] reformulated the Ellenberg-Gijswijt argument in terms of ten-
sors, introducing what is now known as the slice rank of a tensor.

Definition 2.2 (Slice Rank). A d-tensor T has slice rank 1 if we can write

T (x1, . . . , xd) = T1(xi)T2(xj : j 6= i),

where i ∈ [d], T1 is a 1-tensor, and T2 is a (d− 1)-tensor.
The slice rank of an arbitrary d-tensor T , SR(T ), is the minimum number

r such that we can write

T (x) =
r∑
i=1

Ti(x)

where each Ti is a d-tensor with slice rank 1.

Notice that in essence this definition just modifies Definition 1.2 so that
our rank 1 tensors go from being products of d 1-tensors to being the product
of two tensors: one of order 1 and one of order d−1. Also notice that in the
case of matrices (which are 2-tensors), Definitions 2.2 and 1.2 are exactly
the same and agree with the usual definition of matrix rank.

Slice rank, as we defined above, defines its rank 1 tensors by “slicing” off
one coordinate and multiplying a 1-tensor applied to that coordinate with a
(d− 1)-tensor applied to the remaining coordinates. A natural extension to
this is to, instead of slicing off one coordinate, allow arbitrary partitions of
the coordinates into two parts. This was done in 2017 (preprint; published
in 2020) by Naslund [Nas20], who called this new notion of rank partition
rank. We formally define partition rank as follows.

Definition 2.3 (Partition Rank). A d-tensor T has partition rank 1 if we
can write

T (x1, . . . , xd) = T1(xi : i ∈ S)T2(xj : j /∈ S),

where S ⊂ [d] with 1 ≤ |S| < d, T1 is a |S|-tensor, and T2 is a (d−|S|)-tensor.
The partition rank of an arbitrary d-tensor T , PR(T ), is the minimum

number r such that we can write

T (x) =

r∑
i=1

Ti(x)

where each Ti is a d-tensor with partition rank 1.

Using this new notion of rank, Naslund showed that any set A ⊆ Fnq with

size bigger than
( n+(k−1)q
(k−1)(q−1)

)
must contain distinct vectors x1, x2, . . . , xk+1
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such that the vectors x1 − xk+1, x2 − xk+1, . . . , xk − xk+1 are mutually or-
thogonal (he called a collection of such x1, . . . , xk+1 a k-right corner).

Our last, most recent notion of rank is motivated by an age-old, fun-
damental question in computer science: asymptotically how many scalar
additions and multiplications are necessary to multiply two n×n matrices?
Tensors are naturally connected to this problem because the operation of
matrix multiplication itself can be thought of as a tensor.

Recall that matrices M (2-tensors) can simultaneously be thought of as
bilinear forms T : Fm×Fn → F that map (x, y) 7→ xTMy and linear maps
T ′ : Fm → Fn that map x 7→Mx. Similarly, we can also think of d-tensors

T (x1, . . . xd) =
∑

i1∈[n1],...,id∈[nd]

Ti1,...,idx
i1
1 · · ·x

id
d

as (d− 1)-linear maps T ′ : Fn1 × · · · × Fnd−1 → Fnd given by

[T ′(x1, . . . , xd−1)]k =
∑

i1∈[n1],...,id−1∈[nd−1]

T ′i1,...,id−1,k
xi11 · · ·x

id−1

d−1 .

By the usual formula for matrix multiplication, if M and N are n × n
matrices over F, then MN is an n× n matrix with

(MN)ij =
n∑
`=1

Mi`N`j .

Identifying the space of n × n matrices with Fn2
, the operation of matrix

multiplication takes two elements of Fn2
to another element of Fn2

where
each entry is a bilinear form applied to M and N . Thus matrix multiplica-
tion is a 3-tensor over the space of n×n matrices. As we discuss in Section 3
the rank of this tensor is intimately related to the computational complexity
of matrix multiplication.

Motivated by this application (as well as a few others), Kopparty, Moshkovitz,
and Zuiddam [KMZ20] recently introduced the notion of geometric rank.
Unlike the other types of ranks discussed, this notion of rank does not aim
to capture the combinatorial or analytic properties of the tensor. Rather, it
looks at the geometric properties of the tensor, defining rank as the codimen-
sion of an algebraic variety. Kopparty, Moshkovitz, and Zuiddam used this
new notion of rank to prove tight bounds about the subrank of the matrix
multiplication tensor (the subrank is a quantity related to the rank that is
useful in the computational complexity analysis for matrix multiplication).

The geometric rank of a tensor is formally defined as follows.

Definition 2.4 (Geometric Rank). Let T ∈ Fn1×···×nd be a d-tensor with
d ≥ 2. The geometric rank of T is

GR(T ) = codim{(x1, . . . , xd−1) ∈ Fn1 × · · · × Fnd−1

: ∀z ∈ Fnd : T (x1, . . . , xd−1, z) = 0}.
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Here we use the usual definition of the codimension of an algebraic variety.
If V ⊆ Fn is an algebraic variety (that is possibly reducible), the dimension
of V , dim(V ), is defined to be the length of a maximal chain of irreducible
subvarieties of V . The codimension, codim(V ), is then defined to be n −
dim(V ). For more detailed explanations of these concepts we recommend
looking at [Har13].

Geometric rank—as Kopparty, Moshkovitz, and Zuiddam mention with-
out proof—coincides with the linear algebra definition of matrix rank when
d = 2. We give a quick proof of that here.

Proposition 2.5. Let M ∈ Fm×n be a matrix (a 2-tensor), and let r be the
rank of M as per the linear algebra definition. Then r = GR(M).

Proof. By definition of geometric rank,

GR(M) = codim{x ∈ Fm : ∀y ∈ Fn xTMy = 0}
= codim{x ∈ Fm : xTM = 0T }
= m− dim{x ∈ Fm : xTM = 0T },

where 0 is the zero vector in Fm. Notice that dim{x ∈ Fm : xTM ≡ 0T } is
just the nullity of M , and so by the rank nullity theorem we are done. �

There is a slight caveat to Definition 2.4, which is that it implicitly as-
sumes F to be algebraically closed. This, however, is not a problem because
in a general field we can extend this definition via the embedding of the field
into its algebraic closure.

3. Applications in Computer Science

Uttering the words “tensor rank” to a computer scientist will, with high
probability, elicit a response that contains the phrase “matrix multiplica-
tion.” And for good reason; notions of tensor rank happen to be intimately
related to the complexity and efficient computation of matrix multiplication.

Multiplying two matrices is a fundamental computation with applications
in nearly every field computers are used in. It is thus not surprising that
the following question is of great interest.

Question 3.1 (Arithmetic Complexity of Matrix Multiplication). Given
two n × n matrices A and B over a field F, what is the minimum number
of addition and scalar multiplication operations needed to compute the n×n
product matrix AB where

(1) (AB)ij =

n∑
`=1

Ai`B`j?

Can one find an algorithm that actually computes the product with that num-
ber of operations?
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The number of operations in Question 3.1 is known as the arithmetic
complexity of n × n matrix multiplication. Let us call this number A(n).
An exact determination of A(n) seems to be outside the range of methods
available at the present time, so much of the work around this has been
focused on getting asymptotic bounds on arithmetic complexity. It is then
useful to define the following quantity.

Definition 3.2 (Exponent of Matrix Multiplication). The exponent of ma-
trix multiplication, ω, is defined as

ω = inf{τ ∈ R : A(n) = O(nτ )}.

Equivalently,

ω = inf{τ : ∃ an algorithm to compute n× n MM with O(nτ ) operations}.

It is easy to see that ω ∈ [2, 3]. The upper bound comes from the fact that
the näıve algorithm of computing each entry of the product using Equation 1
is O(n3). The lower bound holds because any algorithm for matrix multi-
plication would have to make at least n2 computations since the output is
an n×n matrix. A long-standing conjecture in algebraic complexity theory
is that ω is in fact equal to 2.

As mentioned in Section 2, the operation of matrix multiplication is itself
a 3-tensor. It is convention to denote the tensor to multiply a k×m matrix
and an m × n matrix with 〈k,m, n〉. Since we are only focusing on square
matrices, we will focus on the tensors 〈n, n, n〉, which we will often shorten
to 〈n〉. Seeing as rank is supposed to encode the complexity of a tensor, it
is not surprising that it is closely connected to A(n). The following result
is known to hold.

Theorem 3.3. Over any field, we have

ω = inf{τ ∈ R : TR(〈n〉) = O(nτ )}.

Proof. See [BCS97, Proposition 15.1] �

An important application of Theorem 3.3 is in showing that the exponent
of matrix multiplication does not change under another important, related
measure of complexity called the multiplicative complexity of matrix multi-
plication. The multiplicative complexity of matrix multiplication is defined
as the minimum number of scalar multiplication operations required for n×n
matrix multiplication (the algorithm is of course also allowed additions). Let
us call this quantityM(n). It has been shown thatM relates to traditional
tensor rank in the following way (see, for instance, [BCS97, Section 14.1]).

1

2
TR(〈n〉) ≤M(n) ≤ TR(〈n〉).

From this inequality it follows that TR(〈n〉) = O(nτ ) impliesM(n) = O(nτ )
and M(n) = O(nτ ) implies TR(〈n〉) = O(nτ ). Combining this with Theo-
rem 3.3 gives us ω = inf{τ ∈ R :M(n) = O(nτ )}.
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The connection in Theorem 3.3 also implies that upper and lower bounds
on TR directly translate to upper and lower bounds on the exponent of
matrix multiplication. The following result makes this explicit.

Theorem 3.4 ([Blä13]). If TR(〈k,m, n〉) ≤ r, then ω ≤ logkmn r.

In his seminal work, Strassen [Str69] showed that square matrices of size 2
can be multiplied with seven multiplication operations (as opposed to eight
using the näıve method) at the cost of a few more addition operations. It
follows from his work that TR(〈2〉) ≤ 7. Plugging this into Theorem 3.4 tells
us that ω ≤ 3 log8 7 = log2 7 = 2.801... ≤ 2.81. Hopcroft and Kerr [HK71]
and Winograd [Win71] later (independently) showed that 2×2 multiplication
is not possible with just six multiplications, which implies that TR(〈2〉) is
in fact equal to 7. Thus log2 7 is the sharpest bound one can get from
Theorem 3.4 using 〈2〉. It turns out that TR(〈70〉) ≤ 143.640 [Pan80],
which gives a slightly better bound of 2.80. Whether other tensors can lead
to sharper bounds remains an open question.

Strassen [Str86], using more traditional-rank-related techniques, was able
to prove that ω < 2.48. Coppersmith and Winograd [CW87], using a
construction of arithmetic-progression-free sets, showed that ω ≤ 2.375....
Starting in 2010, by analyzing higher-order variants of the Coppersmith-
Winograd construction, Stothers [Sto10], then Vassilevska Willians [Wil12],
and then Le Gall [LG14] made incremental improvements. This led to the
current best upper bound of ω < 2.372....

The connections between matrix multiplication and tensor rank do not
end here. As mentioned in the previous paragraph, Coppersmith and Wino-
grad’s proof involved a construction of arithmetic-progression-free sets. This
suggests that the complexity of matrix multiplication might be related to
the capset problem and Tao’s slice rank. And indeed, that did turn out to
be the case. In 2003, Cohn and Umans [CU03] described a framework for
proving upper bounds on ω that involves reducing matrix multiplication to
group algebra multiplication. In 2012, Alon, Shpilka, and Umans [ASU12]
proved relations between various then-open conjectures in combinatorics and
bounds on ω. The resolution of the capset problem in 2016 settled some of
the conjectures involved in the 2012 work. That led to the 2017 work of
Blasiak et al. [BC+17], which used the resolution of the capset problem to
rule out obtaining an ω = 2 using a subclass of Cohn-Umans-style construc-
tions. In doing so, they extended the capset result, making extensive use of
the notion of slice ranks.

Finally, the introduction of the geometric rank was in part motivated by
the complexity of matrix multiplication. In particular, Kopparty, Moshkovitz,
and Zuiddam [KMZ20] used the notion of geometric rank to prove a tight
upper bound on the so-called border subrank of the matrix multiplication
tensor, which matched a known lower bound. While the exact definitions of
subrank are beyond the scope of this survey, we recommend reading [KMZ20]
for further details.
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4. Some Trivial Relationships

Before getting to the deeper connections between the different notions of
rank, we state some consequences obvious from the definitions. Any rank 1
form used in Definition 2.2,

T1(x1)T2(xj : j 6= i),

is in particular a rank 1 form of the form in Definition 2.3,

(2) T1(xi : i ∈ S)T2(xj : j /∈ S).

A tensor of the form in (2) is in turn of the form of the rank 1 form in
Definition 1.2,

T1(x1) · · ·Td(xd).

This implies the following result.

Proposition 4.1. For any tensor T ,

PR(T ) ≤ SR(T ) ≤ TR(T ).

5. Relating Analytic Rank to the Others

We now discuss some deeper relationships which will show a cycle of
relationships between AR, SR, and TR. We start with an elegant result due
to Lovett relating the analytic and partition rank. For ease of notation we
will look at tensors T : V d → F where V = Fn for some n. It is easy to see
that this proof can be generalized to arbitrary T ∈ Fn1×···×nd .

Theorem 5.1 ([Lov19]). Let T : V d → F be a d-tensor. Then AR(T ) ≤
PR(T ).

To prove this theorem we will need a lemma as well as another theorem
about the arithmetic rank. Both of these are due to Lovett.

Lemma 5.2 ([Lov19]). For each I ⊆ [d] let RI : V |I| → F be an |I|-tensor.
Let

R(x) =
∑
I⊆[d]

RI(xj : j ∈ I).

Then |bias(R)| ≤ bias(R[d]).

Proof. First, let W0, . . . ,Wn be arbitrary functions from Fm to F. Let A
and B be functions from Fn×Fm to F defined by

A(x, y) =
n∑
i=1

xiWi(y), and

B(x, y) = A(x, y) +W0(y).
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From the definition of bias we get

bias(B) = Ex,y χ(B(x, y))

= Ex,y χ(A(x, y) +W0(y))

= Ex,y[χ(A(x, y)) · χ(W0(y))]

= Ey[χ(W0(y)) · Ex χ(
n∑
i=1

xiWi(y))]

= Ey[1W1(y)=···=Wn(y)=0χ(W0(y))],

where the last equality holds because the expectation over x is 0 whenever
any of the Wj with 1 ≤ j ≤ n are non-zero. Taking absolute values and
using the triangle inequality gives us

(3) |bias(B)| ≤ Ey[1W1(y)=···=Wn(y)=0] = bias(A).

With this smaller result, we prove the lemma by applying it repeatedly.
Fixing i ∈ [d], we can break up the summation in the definition of R as
follows.

R(x) =
∑

I⊆[d];i∈I

RI(xj : j ∈ I) +
∑

I⊆[d];i/∈I

RI(xj : j ∈ I).

Notice that each RI(xj : j ∈ I) where i ∈ I is a tensor depending on xi, and

thus can be written as xjiWj(xk : k 6= i). Thus the first sum is of the form∑
j x

j
iWj(y), which matches the form of A above. The second sum does not

depend on xi, and so is of the form of B. Thus, applying Equation 3 gives
us

|bias(R)| ≤ bias

 ∑
I⊆[d];i∈I

RI(xj : j ∈ I)

 .

We use this inequality iteratively. First, applying it for i = d we have

|bias(R)| ≤ bias

 ∑
I⊆[d];d∈I

RI(xj : j ∈ I)

 .

Using
∑

I⊆[d];d∈I RI(xj : xj ∈ I) instead of the tensor R in our inequality

with i = d− 1 gives us∣∣∣∣∣∣bias

 ∑
I⊆[d];d∈I

RI(xj : j ∈ I)

∣∣∣∣∣∣ ≤ bias

 ∑
I⊆[d−1];d−1∈I;d∈I

RI(xk : k ∈ I)

 .

Continuing this process and applying the inequality for d − 2, . . . , 1, and
then chaining the inequalities gives us

|bias(R)| ≤ bias(R[d])

as desired. �

Using this lemma, Lovett proves that the analytic rank is sub-additive.
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Theorem 5.3 ([Lov19]). Let T, S : V d → F be d-tensors. Then

AR(T + S) ≤ AR(T ) + AR(S).

Proof Sketch. For this proof, Lovett defines functions TI and SI such that
for any x, y, T (x, y) =

∑
I⊆[d] TI(xI , y[d]−I) (similarly for S) where xI =

(xi : i ∈ I) (similarly for y). Using this decomposition and performing some
algebra leads to

bias(T )bias(S) ≤

∣∣∣∣∣∣bias

(T + S)(x) +
∑
I([d]

SI(xI , b[d]−I)

∣∣∣∣∣∣ ,
where b is a fixed choice for y.

Applying Lemma 5.2 to the functions R[d] = (T + S)(x) and RI =
SI(xI , b[d]−I) shows that the right hand side of the inequality is less than or
equal to bias(R[d]), which in our case equals bias(T+S). Putting everything
together we get

bias(T + S) ≥ bias(T )bias(S),

and so by the definition of analytic rank,

AR(T + S) ≤ AR(T )AR(S).

�

Using these two results, we can now prove Theorem 5.1.

Proof of Theorem 5.1. Given Theorem 5.3, it suffices to prove Theorem 5.1
for tensors of partition rank 1. So suppose T : V d → F has partition rank
1. Then we can find a partition A tB = [d] with |A| , |B| ≥ 1 such that

T (x) = T1(xi : i ∈ A)T2(xj : j ∈ B).

For convenience, let us denote (xi : i ∈ A) by xA and (xj : j ∈ B) by xB.
Since the partition rank of T is 1, we need to show that AR(T ) ≤ 1. To do

so, it suffices to show (by definition of analytic rank) that bias(T ) ≥ |F|−1.
For any a, b ∈ F define the function

Fa,b(x) = (T1(xA) + a)(T2(xB) + b).

Expanding it out we can write

Fa,b(x) = T1(xA)T2(xB) + T1(xA)b+ T2(xB)a+ ab

= T (x) + T1(xA)b+ T2(xB)a+ ab.

Letting RA(x) = T1(xA)b, RB(x) = T2(xB)a, R∅ = ab, and R[d] = T , we
can apply Lemma 5.2 to get

|bias(Fa,b)| ≤ bias(T ).
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On the other hand, if a and b are chosen uniformly, we can take the expec-
tation of the bias over a and b to get

Ea,b bias(Fa,b) = Ea,b∈F ;x∈V d [χ((T1(xA) + a)(T2(xB) + b))]

= Ea,b∈F[χ(ab)]

= Prb∈F[b = 0]

= |F|−1 .
This proves our theorem. �

Combining Theorem 5.1 with Proposition 4.1 gives us the following corol-
lary.

Corollary 5.4. Let T : V d → F be a d-tensor. Then AR(T ) ≤ SR(T ).

6. Closing the Loop for 3-tensors: Cohen and Moshkovitz’s
Argument

Cohen and Moshkovitz [CM21] proved the following two theorems which,
for 3-tensors over finite fields with at least 3 elements, showed asymptotic
equivalence between AR, GR, and SR when combined with Lovett’s result.

Theorem 6.1 ([CM21]). For any 3-tensor T over a perfect field F,

SR(T ) ≤ 3GR(T )

Theorem 6.2 ([CM21]). For any 3-tensor T over any finite field F,

AR(T ) ≥ (1− log|F| 2)GR(T ).

Our goal will be to give an intuitive sketch of their argument. Techniques
from algebraic geometry will be essential, so we give some background.

6.3. Background from Algebraic Geometry. From now on, let K be a
field. Recall that a variety cut out by a (finite) number of polynomials over
Kn is the subspace of Kn where all the polynomials vanish. The ideal I(V )
of a variety V is defined as follows.

Definition 6.4 (Ideal of a Variety). Let V ⊂ Kn be a variety. The ideal of
V is

I(V ) = {f ∈ K[x] : f(p) = 0 for each p ∈ V }.
Now we define the tangent space TpV to a variety V at p.

Definition 6.5 (Tangent Space). Let V ⊂ Kn be a variety. The tangent
space TpV to a variety V at p is

TpV =

{
v ∈ Kn :

∂g

∂v
(p) = 0, for each g ∈ I(V )

}
.

One can check that any variety can be written uniquely as the union of
irreducible varieties. An irreducible variety is one which cannot be written
as the union of strictly contained subvarieties. Then the dimension of a
variety V can be defined as follows.
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Definition 6.6 (Dimension of a Variety). The dimension of a variety V ⊂
Kn, written dimV , is the maximal length of a chain of irreducible varieties
such that

∅ 6= V1 ( V2 ( · · · ( Vk ( V.

The codimension of a variety V ⊂ Kn is

codimV = n− dimV.

6.7. Proof Sketch of Theorem 6.1. For the full argument see [CM21].
We will give a broader overview of the proof with the aim of conveying the
intuition behind it.

The proof of Theorem 6.1 hinges on the following previously proved
rephrasing of geometric rank.

Lemma 6.8. For a 3-tensor over any field K,

GR(T ) = min
r
{r + codim{x : rank T (x, ·, ·) = r}}.

Proof. See [KMZ20, Theorem 3.1]. �

Let r achieve the minimum in Lemma 6.8. Defining

Xr = {x ∈ Fn1 : rankT (x, ·, ·) ≤ r},

one can use Lemma 6.8 to show that GR(T ) = r + codimXr. A 3-tensor
T with encoding array (Ti,j,k) can be reinterpreted as a linear space L ⊂
Fn1×n2 spanned by {M1, . . . ,Mn3}, where Mk = (Ti,j,k)i,j . One also has an
association going the other way. Given a matrix space L, choose a basis
M1, . . . ,Mk, and let T be the tensor with encoding array (M1, . . . ,Mk).
Thus the notions of rank for tensors can be transferred to matrix spaces.

Now let

Lr = L ∩Mr,

where Mr is the space of n1 × n2 matrices of rank at most r. Note that
Mr, being the space cut out by the (r + 1) × (r + 1) minors, is itself a

variety. It turns out that the variety Xr is isomorphic to Lr × Fn1−d. Thus
codimXr = codimLLr.

2 We have reduced the problem to analyzing these
“slices” of the matrix space L. Above, F is the algebraic closure of F, which
will be easier to work over in the arguments to follow. We let SR(T ) be as
in Definition 2.2, except the coefficients are allowed to come from F. Clearly
SR(T ) ≤ SR(T ). One also has 2SR(T ) ≤ 3SR(T ) which is proved in [CM21].

We would be done if we had the following.

Lemma 6.9. Let L ⊂ Km×n be a matrix space over any algebraically closed
field K. For any r ∈ N,

SR(L) ≤ 2r + codimLLr.

2Here codimLX is the codimension of a variety X in a linear space L, i.e. codimLX =
dimL− dimX.
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To see this, observe that

SR(T ) = SR(L) ≤ 2r + codimLLr

= 2r + codimXr

= 2GR(T )− codimXr

≤ 2GR(T ).

Applying 2SR(T ) ≤ 3SR(T ) gives SR(T ) ≤ 3GR(T ).

Proof sketch of Lemma 6.9. We proceed by induction. The base case is
SR(L) ≤ dimL, which is not difficult to show. Now consider the induc-
tive step. Let V be an irreducible component of Lr with dimV = dimLr,
and A ∈ V \ Mr−1. If V \ Mr−1 = ∅ then we have V ⊆ Lr−1, and the
result follows from induction. So we assume V \Mr−1 6= ∅. The trick now
is to decompose the matrix space L into subspaces P = L ∩ TAMr and
P⊥. This particular decomposition is useful because one can run an explicit
calculation to find that

SR(TAMr) ≤ 2r.

We need the following simple properties of slice rank and tangent spaces to
conclude the result from that calculation.

Lemma 6.10.

(1) SR(L) ≤ dimL.
(2) SR(L′) ≤ SR(L) if L′ ⊂ L.
(3) SR(L+ L′) ≤ SR(L) + SR(L′).
(4) Tp(V ∩W ) ⊂ TpV ∩ TpW .
(5) If V is irreducible and p ∈ V then dimV ≤ dimTpV .

Using Lemma 6.10 and the main estimate SR(TAMr) ≤ 2r,

SR(P ) = SR(L ∩ TAMr) ≤ SR(TAMr) ≤ 2r.

We also have

dimLr ≤ dimTAV

≤ dimTALr

≤ dim(TAL ∩ TAMr)

≤ dim(L ∩ TAMr) = dimP.

Thus we have codimLP ≤ codimLLr. Using Lemma 6.10 we get

SR(P⊥) ≤ codimLP ≤ codimLLr.

Hence

SR(L) = SR(P + P⊥)

≤ SR(P ) + SR(P⊥)

≤ 2r + codimLLr.

�
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6.11. Proof Sketch of Theorem 6.2. The key ingredient of the proof is
the following generalization of the Schwarz-Zippel lemma. Define V (F) =

V ∩ Fn for a variety V ⊂ Fn defined over F.

Lemma 6.12. For any variety V ⊂ Fn defined over any finite field F cut
out by polynomials of degree at most d,

|V (F)|
|F |n

≤
(

d

|F |

)codimV

.

We use Lemma 6.12 to prove Theorem 6.2. Consider T ∈ Fn1×n2×n3 ,

where we interpret T as its defining array. Set V = ker(T ) ⊂ FN with
N = n1 + n2, where here we use the bilinear map formulation of T . By
Lemma 6.12,

|V (F)|
|F |n

≤
(

d

|F |

)codimV

,

since T is bilinear. Thus

AR(T ) = − log|F |
|V (F)|
|F |N

≥ codimV · (1− log|F | 2)(Using Lemma 6.12)

= GR(T )(1− log|F | 2).

The first equality above is true since

bias(T ) = E(x1,x2)∈Fn1 ×Fn2
[Ex3∈Fn3 χ(T (x1, x2, x3))]

= Pr
(x1,x2)∈Fn1 ×Fn2

[T (x1, x2, ·) ≡ 0](4)

=
|V (F)|
|F |N

.

Equation 4 holds because the bias of a linear form is 0 unless the linear form
is identically 0, in which case its bias is 1. �
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