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Abstract

The leaky abelian sandpile model with multiple starting points is a

growth model in which n grains of sand are started at either a finite number

of starting points or a configuration of starting points dependent on n in

Z2. These grains of sand spread out along the vertices of Z2 according to

a toppling rule. A site at a vertex topples if the number of grains of sand

at said vertex are above a specified threshold. In such a toppling, the site

sends some sand to each of its neighbors and leaks a portion, 1− 1
d
, of the

toppled sand. A site may topple multiple times before it falls below the

threshold and stops toppling.

I explored the limit shape in the symmetric case with more than 1

source point. In this case, each topple sends an equal amount of sand to

each neighbor. Supposing we have k source points where k is finite, I show

that the limit shape is the union of k limit shapes, each originating at one

of those source points. This means that as d → 1, we have a union of

circles, and as d → ∞, we have a union of diamonds. I also explored a

starting arrangement of a square centered at the origin with logn length

sides. However, I was unable to prove any significant conclusions about the

limit shape in this case.
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1. Introduction

The Abelian Sandpile Model (ASM), originally introduced by Per Bak,

Chao Tang, and Kurt Wiensenfeld in 1987 [BTW87], is a cellular automaton

defined on Z2. The input is a sandpile configuration s : Z2 → N, which

represents the number of grains of sand or chips present at a vertex or site

x ∈ Z2. The sandpile s evolves using the following rule: If a site x ∈ Z2 has at

least 4 chips, then it “topples” and gives a chip to each of its nearest neighbors.

That is it gives one chip to its northern neighbor, one to its southern neighbor,

one to its eastern neighbor, and one to its western neighbor. The sandpile

evolves until there are no more sites that can be toppled. The “Abelian”

part of the model name is in reference to a result by Deepak Dhar in 1990

[Dha90], namely that the final stable configuration does not depend on the

order in which sites topple. For a visual of a final configuration, look at Figure

1 below.

Figure 1. n = 105
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The ASM has been linked to the router-router model in [HLM+08], which

also provides a survey of both models. Other surveys of the mathematical

literature associated with the ASM include the following papers: “Laplacian

growth, sandpiles and scaling limits” by Lionel Levine and Yuval Peres [LP17],

“WHAT IS a sandpile?” by Lionel Levine and James Propp [LP10], and “A

sandpile model for proportionate growth” by Deepak Dhar and Tridib Sadhu

[DS13]. The case of the ASM with a starting configuration of n chips at

the origin has been studied extensively. In this case, simulations show the

emergence of a fractal structure in the limit shape, and hint at both a convex

shape and flat edges. All of these features are present in Figure 1, which

is a simulation with 105 chips at the origin. However, there are no proofs

to defend such claims at this point in time. The fractal structure and local

patterns have been studied in [LPS16] and [PS20]. Thanks to the work of Hayk

Aleksanyan and Henrik Shahgholian in [AS19], we know that the boundary of

the limit shape is a Lipschitz graph. However, the most relevant prior result

to this paper is that the boundaries for the limit shape for one source point

established in [LP09] are not the union of the boundaries for the limit shape

with multiple source points established in [LP10]. Thus, it is likely that the

main result of this paper arises due to leakiness, which is defined later in this

paper.

The main result of this paper is that in the case of k source points where k

is finite, the Leaky Abelian Sandpile Model’s (Leaky-ASM) limit shape is the

union of k limit shapes each generated from one of those source points. The

Leaky-ASM is a one-parameter deformation of the ASM, in which dissipation

is present. Sandpile Models with dissipation were first introduced in [MKK90],

and the limit shape generated with 1 source point at the origin for the Leaky-

ASM was first computed by Ian Alevy and Sevak Mkrtchyan in [AM21]. The

equality of the limit shape and the union of limit shapes will be shown by double

inclusion. However, to establish one of the inclusions, I will be providing an

explicit connection between the visited sites generated by the leaky-ASM with

multiple source points and death probabilities for the killed random walk with

multiple starting points. I will then obtain the limit shape by relating the

asymptotic death probabilities of the associated killed random walks and get

the necessary inclusion through convergence of the two shapes.

The Leaky-ASM differs from the standard ASM in three notable ways.

Firstly, sandpiles are now allowed to take on non-negative real numbers in-

stead of being merely restricted to the natural numbers. So, s : Z2 → R≥0.
Secondly, each topple may send a different number of chips in each direction.

Let c↓, c↑, c→, c← ∈ R≥0. Then, when a toppling happens at a given site x,

this model sends c↓ south, c↑ north, c→ east, and c← west from x to its nearest

neighbors. Thirdly, each time there is a toppling, the site that toppled “leaks”
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chips. Let d ∈ R > 1 and c = c↓ + c↑ + c→ + c←. A site now topples if it

has greater than cd chips and loses those chips, but only distributes c chips.

Thus cd − c = c(d − 1) chips leak per toppling. Chips that leak disappear

from the sandpile, and d− 1 is known as the leakiness parameter. An explicit

formulation of this model follows. Let Sn(x) be the evolution of the sandpile

after n-steps. Suppose that we pick the site (a, b) as the n + 1st step of the

evolution of the model and (a, b) has at least cd chips. Then the pile at (a, b)

topples, and the new sandpile is given by:

Sn+1(a, b) = Sn(a, b)− cd

Sn+1(a+ 1, b) = Sn(a+ 1, b) + c→

Sn+1(a− 1, b) = Sn(a− 1, b) + c←

Sn+1(a, b+ 1) = Sn(a, b+ 1) + c↑

Sn+1(a, b− 1) = Sn(a, b− 1) + c↓

All other sites are unchanged after the n+ 1st step of evolution of the model.

The case in which c↓ = c↑ = c→ = c← = 1 and d > 1 is known as the uniform

leaky-ASM. Note that the set of points visited by the leaky-ASM is the limit

shape of the leaky-ASM, as the height of a site can be 0 only if it is unvisited

or it is in the interior of the shape of the model. [AM21] tells us that as d → 1,

the limit shape goes to a circle, and as d → ∞, the limit shape goes to a

diamond. This can be easily seen by looking at Figures 2 and 3.

Figure 2.

n = 1050, d = 1.05

Figure 3.

n = 10400, d = 100
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A more explicit formulation of the main theorem of the paper follows:

Theorem 1.1. Let Vd,n,(a1,b1),...,(ak,bk) be the set of points visited by the

Leaky-ASM when there are k source points located at (a1, b1), ..., (ak, bk) and

n chips distributed uniformly among those k source points with a leakiness

parameter of d-1. Also, let d > 1 and take n → ∞. Then :

Vd,n,(a1,b1),...,(ak,bk) =
k⋃

j=1

Vd,n
k
,(aj ,bj)

Visually, this can be seen by comparing Figure 4 with 5 or comparing

Figure 6 with 7:

Figure 4.

n = 10100

d = 1.25

Source point:(0, 0)

Figure 5.

n = 2 ∗ 10200
d = 1.25

Source points:(0, 0), (100, 100)

Remark 1.2. The proof of one of the inclusions is significantly easier

than the other due to the Abelian nature of the leaky ASM. That is, the proof

of

Vd,n,(a1,b1),...,(ak,bk) ⊇
k⋃

j=1

Vd,n
k
,(aj ,bj)

is much simpler than the other inclusion
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Figure 6.

n = 10200

d = 20

Source points:(0, 0)

Figure 7.

n = 2 ∗ 10200
d = 20

Source points:(0, 0), (100, 100)

Proof. Evolve the model from the source points by toppling each site with

no consideration for the interactions of the sandpiles generated by the source

points. This is the same as
k⋃

j=1

Vd,n
k
,(aj ,bj)

and since Leaky-ASM is Abelian, and the sites with extra height due to in-

teractions can only expand Vd,n,(a1,b1),...,(ak,bk), we have the desired inclusion,

namely:

Vd,n,(a1,b1),...,(ak,bk) ⊇
k⋃

j=1

Vd,n
k
,(aj ,bj)

□

1.1. Outline. This paper is organized as follows: I introduce the Killed

Random Walk (KRW) with k > 1 starting points in section 2, and relate

the death probabilities of the KRW with k starting points to coefficients in a

Laurent expansion. In section 3, I relate the Leaky-ASM with k source points

and the KRW with k starting points by connecting the values of the odometer

function of the Leaky-ASM with k source points to the death probabilities of

the KRWwith k starting points. In section 4, I bound the death probabilities of

the KRW with k starting points by the death probabilities associated with the

union of the limit shapes, and then use this relation to prove the main theorem
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of the paper. In section 5, I introduce the an extension with log n∗ log n square

starting configuration for the leaky-ASM and show the simulation results of

that start.

2. The Killed Random Walk with k > 1 Starting Points

In this section, I introduce the Killed Random Walk with k > 1 starting

points and relate the death probabilities of the KRW to coefficients in a Laurent

expansion. Let (Xj)
n
j=1 be a set of independent identically distributed random

variables with the following distribution:

P{Xj = (−1, 0)} =
c←
cd

P{Xj = (1, 0)} =
c→
cd

P{Xj = (0,−1)} =
c↓
cd

P{Xj = (0, 1)} =
c↑
cd

P{Xj = (0, 0)} = 1− c

cd
= 1− 1

d

where c, d, c↓, c↑, c→, c← are defined as in section 1. I will adopt the following

notation for transition probabilities:

px→y = P (Xj = y − x)

I will also be adopting the interpretation that the walk is killed when the walker

does not move, which is when Xj = (0, 0). Let

Kn :=
n∏

i=1

1Xi ̸=(0,0)

be the indicator function as to whether or not the walker has been killed by

step n or not. So, if Kn = 1, then the walker is still alive after having taken

the nth step. Formally, the Killed Random Walk started at x ∈ Z2 is defined

as the sequence Sn,x of random variables defined by:

Sn,x = x+
n∑

j=1

XjKj

To extend this random walk from 1 starting point to k starting points, I intro-

duce a another random variable, X0, which is independent of all other random

variables introduced so far, and has a uniform distribution over the k starting

points. To be slightly more formal, for all starting points xi, we have:

P{X0 = xi} =
1

k
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Thus, we can now define the Killed Random Walk started at k starting points

as the sequence Sn of random variables defined by:

Sn = X0 +
n∑

j=1

XjKj

For this Killed Random Walk, let Pd(x) represent the probability that the

walker dies at x. Note that this leads to the following equality:

Pd(x) = P (Smin
i

Ki=0 = x)

Lemma 2.1. Let Sk denote the set of k starting points. Let d > 1 and

define the Laurent polynomial :

P (z, w) =
cdk − k(c↑z + c↓z

−1 + c→w + c←w−1)

c(d− 1)
∑

xs∈Sk

z−asw−bs

The the death probabilities of the KRW are the coefficients of the monomials

in the Laurent expansion of P−1(z, w), that is

[P−1(z, w)](i,j) = Pd(i, j)

where the left-hand side is the coefficient of the ziwj monomial in the Laurent

series expansion of P−1 in the region

(2.1)
(c↑|z|+ c↓|z−1|+ c→|w|+ c←|w−1|)

c(d− 1)
< 1

Proof. First, expand P−1 as a Laurent series to obtain:

P−1(z, w) =

c(d− 1)
∑

xs∈Sk

z−asw−bs

cdk − k(c↑z + c↓z−1 + c→w + c←w−1)

=

c(d− 1)
∑

xs∈Sk

z−asw−bs

cdk

1

1− (c↑z + c↓z−1 + c→w + c←w−1)/cd

=
d− 1

dk

∑
xs∈Sk

z−asw−bs
∞∑

m=0

(cd)−m(c↑z + c↓z
−1 + c→w + c←w−1)m

which converges in the region defined in Equation 2.1. Note that a walker

that dies at (i, j) ∈ Z2 must arrive at (i, j) and then die at the next step.

Let Γm(i, j) be the set of paths from the origin (0, 0) to (i, j) that takes m

steps. Suppose that for a path γ ∈ Γm(i, j) it takes nc↑ steps upward, nc↓

steps downward, nc→ steps rightward, and nc← steps leftward. Let the weight

of a path, denoted w(γ) be equivalent to the product of weights along the path,

so w(γ) = c
nc↑
↑ c

nc↓
↓ c

nc←← c
nc→→ . It is possible to move our starting point from the
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origin to (as, bs), the Z2 coordinates of a starting point xs, by going from the

origin to (i− as, j − bs). Note that

(c↑z + c↓z
−1 + c→w + c←w−1)m =

∑
(i,j)∈Z2

∑
γm∈Γm(i,j)

w(γm)ziwj

so we have

P−1(z, w) =
d− 1

dk

∑
xs∈Sk

z−asw−bs
∞∑

m=0

(cd)−m
∑

(i,j)∈Z2

∑
γm∈Γm(i,j)

w(γm)ziwj

=
∑

(i,j)∈Z2

Å ∑
xs∈Sk

1

k

∞∑
m=0

d− 1

d
(cd)−m

∑
γm∈Γm(i−as,j−bs)

w(γm)

ã
ziwj

Note that
d− 1

d
(cd)−m

∑
γm∈Γm(i−as,j−bs)

w(γm)

is the probability that the walkers dies at (i−as, j−bs) on their (m+1)st step

starting from (0, 0). Summing over all m, dividing by k, and summing over all

starting points xs, the coefficient of ziwj has been shown to be the probability

that the walker dies at (i, j) as desired. □

3. Connection Between the Killed Random Walk and Leaky

Sandpiles

In this section, I justify the necessary tangent of section 2 by connecting

the KRW back to the region visited by the Leaky-ASM. I will focus on the case

where n chips are uniformly distributed among k source points. This initial

configuration is equivalent to the following sum of mass points:

k∑
j=1

n

k
δxj (x)

I will study the evolution of such a Leaky-ASM using the odometer function,

which was originally introduced in [Dha06], and is defined as follows:

u(x) := total mass emitted from x

Note that u(x) includes both “leaked” chips and chips sent to its nearest neigh-

bors. Let T be the operator that does the following:

Tu(x) =

Å∑
y∼x

cy→x

cd
u(y)

ã
− u(x)

= total mass received by x− total mass emitted by x
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where y ∼ x denotes that y is a neighbor of x, and cy→x denotes the number

of chips sent from y to x. Thus,
cy→x

cd is the portion of chips emitted from y

that make it to x.

Remark 3.1. Note that T can be rewritten as a function of a weighted

Laplacian, as shown below :

T =
1

d
∆− d− 1

d
I

where ∆ is the weighted Laplacian as defined below :

∆u(x) =
∑
y∼x

ey→xu(y)− u(x)

where ey→x is the weight of the edge between y and x with
∑

x:y∼x
ey→x = 1. That

is ey→x =
cy→x

c .

Note that under this rewrite, when we consider the ASM, we get that

T = ∆ where ∆ is the standard Laplacian since all edge weights are 1
4 in the

ASM.

Let f(x) denote the final configuration, and run the Leaky-ASM starting

with k evenly distributed source points x1, ..., xk with n
k chips each. Then the

odometer function satisfies the following equation:

(3.1) Tu(x) = f(x)−
k∑

j=1

n

k
δxj (x)

Note that
cy→x

cd = py→x, so there is a probabilistic interpretation for the oper-

ator T, which is given below:

Lemma 3.2. Applying the operator T to the death probabilities Pd leads

to the following result :

(3.2) TPd(x) = −d− 1

kd

Å k∑
j=1

δxj (x)

ã
Proof. Let Sm be the position of the walker after m steps. Let Pm

d (x) be

the probability that the walker dies after m steps at site x. As the walker can

only either move or die,

Pd(x) =
∞∑

m=0

Pm
d (x)

Suppose that x is not one of the k source points. Then the walker will need

to take at least 2 steps to die at x, as the walker will need to first get to x,

which will take at least one step, and then die there, which will take another
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step. Thus,

Pd(x) =
∞∑

m=2

P (Sm−1 = x,Km−1 = 1)
d− 1

d

=
∞∑

m=2

∑
y∼x

P (Sm−2 = y,Km−2 = 1)P (Sm−1 = x|Sm−2 = y,Km−2 = 1)
d− 1

d

=
∞∑

m=2

∑
y∼x

P (Sm−2 = y,Km−2 = 1)py→x
d− 1

d

=
∞∑

m=2

∑
y∼x

Pm−2
d (y)py→x

=
∑
y∼x

py→x

∞∑
m=2

Pm−2
d (y)

=
∑
y∼x

py→xPd(y)

= TPd(x) + Pd(x)

Thus, TPd(x)=0 for all x that is not a source point. To cover the remaining

cases, suppose that x is a source point. The sole difference in this case is that

the walker may just spawn and die at the site x with probability d−1
kd . Thus,

we have the following result

Pd(x) =
d− 1

kd
+
∞∑

m=2

P (Sm−1 = x,Km−1 = 1)
d− 1

d

=
d− 1

kd
+ TPd(x) + Pd(x)

so TPd(x) = −d−1
kd for all source points. Stacking these points by using indica-

tor functions to check whether or not x is a source point, we have the equation

described in Equation 3.2. □
As the odometer and death probabilities satisfy similar equations, we can

relate the 2, as shown below:

Lemma 3.3. For any x ∈ Z2 we have:

If Pd(x) ≥
cd

n
then u(x) ≥ cd(3.3)

If Pd(x) <
c(d− 1)

n
then u(x) = 0(3.4)
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Proof. Combining Equation 3.2 and Equation 3.1 and applying the lin-

earity of T results in

T (
d− 1

dn
u(x)− Pd(x)) =

d− 1

dn
f(x)

As f(x) is a stabilized configuration, 0 ≤ f(x) < cd since no sites are allowed

to topple. This implies

(3.5) 0 ≤ T (
d− 1

dn
u(x)− Pd(x)) <

c(d− 1)

n

The proof of Lemma 3.2 shows that T is invertible and has the following inverse:

(3.6) (T−1f)(x) = − d

d− 1

∑
y∈Z2

Pd(x− y)f(x)

Note that the constant function 1 is an eigenvector of T and has a eigenvalue

of −d−1
d . As such, 1 is an eigenvector of T−1 with a eigenvalue of − d

d−1 .

Applying T−1 to Equation 3.5, and using these eigenvalue results along with

the fact that T−1 has only negative coefficients, the following emerges:

0 ≥ d− 1

dn
u(x)− Pd(x) > −cd

n

This reduces to:

dn

d− 1
Pd(x) ≥ u(x) >

dn

d− 1
(Pd(x)−

cd

n
)

So, if Pd(x) ≥ cd
n , u(x) > 0, which results in u(x) ≥ cd, as the minimum

amount of emission per topple is cd, and if u(x) > 0, the site x has toppled.

Similarly, if dn
d−1Pd(x) < cd or Pd(x) <

c(d−1)
n then u(x) < cd implies u(x) = 0,

as a site cannot topple and emit less than cd. □

Proposition 3.4. For any x ∈ Z2 the following holds :

If Pd(x) ≥
cd

n
then x ∈ Vd,n,(a1,b1),...,(ak,bk)(3.7)

If Pd(x) <
c(d− 1)

n
then x ̸∈ Vd,n,(a1,b1),...,(ak,bk)(3.8)

Proof. This follows immediately from Lemma 3.3 □

4. Limit Shape of the Leaky-ASM with k source points

In this section, I relate the death probabilities associated with the union

of k Leaky-ASMs with 1 source point and the death probabilities associated

with the Leaky-ASM with k source points. I will then use this relation to

successfully prove the main theorem of this paper. Let d > 1, and c↑ = c← =

c↓ = c→ = 1. Thanks to Lemma 2.1, we can compute the coefficients in the
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Laurent expansion of P−1(z, w) to find our death probabilities. A useful thing

to note is the following:

Proposition 4.1. Let Q−1(z, w) be the Laurent expansion for the Laurent

polynomial
cd−(c↑z+c↓z

−1+c→w+c←w−1)
c(d−1) . Let Sk denote the set of source points.

Then,

(4.1) P−1(z, w) =
1

k

Å ∑
xs∈Sk

z−asw−bs
ã
Q−1(z, w)

Proof.

P−1(z, w) =

Å ∑
xs∈Sk

z−asw−bs
ã

c(d− 1)

cdk − k(c↑z + c↓z−1 + c→w + c←w−1)

=
1

k

Å ∑
xs∈Sk

z−asw−bs
ã
Q−1(z, w).

□
Note thatQ(z, w) has been shown to be the Laurent polynomial associated

with 1 source point at the origin in [AM21]. We also know that the monomials

in the sum are adjustments to the Laurent expansions to move the source point

from the origin to a source point located at xs ∈ Sk since this procedure is

the same procedure that was used in the proof of Lemma 2.1. As such, the

Laurent expansion is the sum of the Laurent expansions associated with 1

source point adjusted for location of origin and then divided by k. Note that

for the union, instead of the sum, max
xs∈Sk

z−asw−bsQ−1(z, w) is the appropriate

Laurent expansion to find corresponding death probabilities. This is due to

the fact that for a point x to be in the limit shape of the union, it only needs

to clear the death probability threshold from one source point. Thus, for a

given x = (i, j) ∈ Z2, the following emerges:

Proposition 4.2. Let f(x) be the coefficients of P−1(z, w) for ziwj . Also

let fs(x) be the coefficients of z−asw−bsQ−1(z, w) for ziwj . Then the following

inequality holds :

(4.2) k ∗ f(x) ≥ max
s

fs(x) ≥ f(x)

Proof. The inequality follows immediately from the fact that f(x) =

1
k

k∑
s=1

fs(x), which is an immediate consequence of Proposition 4.1 since adding

Laurent expansions together just involves combining like terms, and all that is

happening here is comparing coefficients of said like terms. □

The following lemma is a necessary step for the proof of the main theorem
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Lemma 4.3. For sufficiently large n, given a point x ∈ Z2 such that

d

Å k⋃
j=1

Vd,n
k
,(aj ,bj), x

ã
≥
…

log(
n

k
)

where (aj , bj) are the coordinates of the jth source point and d(·,·) is the distance
function in Z2, then x ̸∈ Vd,n,(a1,b1),...,(ak,bk)

Proof. Thanks to the paper of Alevy and Mkrtchyan [AM21], we know

that the radius of the limit shape from one source point is on the order of

log(m) − 1
2 log log(m) where m is the initial number of chips at the source

point and the associated coefficient is bounded by values dependent on d. So

the distance between x and the nearest source point is greater than or equal to

log(nk ) +
»
log(nk )−

1
2 log log(

n
k ). Consider the limit shape of the union where

each source point gets n chips instead of n
k chips. The radius of this shape is

similarly, on the order of log(n) − 1
2 log log(n) with the same bounds on the

coefficient. Subtracting this second radius from the first, we find:

log(
n

k
) +

…
log(

n

k
)− 1

2
log log(

n

k
)− (log(n)− 1

2
log log(n))

=

…
log(

n

k
)− log(k) +

1

2
log log(k) > 0

where the inequality follows from the fact that n is large. So, x is out-

side the radius of the limit shape for n chips started at any source point

xs. Thus, thanks to Alevy and Mkrtchyan’s paper [AM21], we also get that

fs(x) <
c(d−1)

n for sufficiently large n where fs(x) is the death probability for

the KRW started at xs. Obviously, this inequality holds for all source points

xs. Thus, by Proposition 4.2, we have that f(x) ≤ c(d−1)
n , and so by Proposi-

ton 3.4, x ̸∈ Vd,n,(a1,b1),...,(ak,bk). □

We are finally in position to finish the proof of the main theorem

Proof of Theorem 1.1. Remark 1.2 covers inclusion in one direction, so all

that remains is to show inclusion in the other direction. Note that as n → ∞,
log(n

k
)+
√

log(n
k
)− 1

2
log log(n

k
)

log(n
k
)− 1

2
log log(n

k
)

= 1. Thus, by Lemma 4.3, the set of points not in

k⋃
j=1

Vd,n
k
,(aj ,bj) converges to the set of points not in Vd,n,(a1,b1),...,(ak,bk) as n → ∞.

As the sets of excluded points converge, the set of included points must also

converge, and so, inclusion in the other direction arises and we are done. □

5. Extension: log-box starts

In this section I will motivate and showcase the simulations for the start-

ing configuration of having all points in the square with side-lengths of log(n)
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centered at the origin as source points. The earlier work of this paper defines

the limit shape for finite source points, so an obvious extension is to start

considering sets of source points that are not necessarily finite. However, to

enable this situation to not purely be the starting configuration for some leak-

iness parameter, the starting configuration needs to grow at a rate such that

lim
n→∞

number of source points
n = 0. Since the limit shape generated by one source

point has a radius on the order of log n and 8-fold symmetry, a configuration

that may be interesting to explore is a square with side-lengths of log(n). Such

a configuration will satisfy the 2 conditions listed, have 8-fold symmetry along

the same axes as the limit shape generated by one source point centered at

the origin, and also have a starting configuration that has radius on the same

order of the limit shape generated by one source point. It also creates issues

with the argument using the killed random walk, as the death probabilities all

go to 0 for every point x ∈ Z2. Since there cannot exist a Laurent polynomial

whose inverse is 0, the critical Lemma 2.1 fails. Thus, the proof above does

not hold for such a configuration and may generate a different limit shape.

Heuristically, as

lim
n→∞

log( n
log2(n)

)− 1
2 log log(

n
log2(n)

)

log(n)− 1
2 log log(n)

= 0

the limit shape should be the union of the limit shapes generated from singular

source points in the square. However, when we look at the simulations shown

by Figures 9 to 15, this claim seems significantly more dubious.

Visually speaking, it is interesting to note that Figures 1 and 8 look very

similar. However, given the lack of understanding of the limit shape of the

ASM, more commentary on this particular result is not possible at this time by

me. What is significantly more unexpected is what happened to the simulation

results as leakiness increased. Figures 9 and 10 appear as expected based

on the heuristic result. That is, they look approximately like a union of a

bunch of circles. However, thanks to the work of Alevy and Mkrtchyan in

[AM21], we know that as leakiness increases, the limit shape from one source

point approaches a diamond. While the corners of the diamonds probably do

explain the straight edges we see in Figures 11 to 15, the diamonds do not

cleanly explain the curves that we see on those same figures. When looking

beyond just the limit shapes, the simulations also showcase some interesting

internal phenomenon. Namely, the central square that appears in Figures 12

to 15, as there is nothing in the finite case simulations to suggest that such a

structure should arise. It is of note that the relative values of the box depend

on both n and d as can be seen by comparing figures 12, 13, and 14. The

set of straight lines with increasing length as they approach the edge present
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in Figures 11 to 15 are also an unexpected feature in the visualization, but

similarly, I do not have an explanation for their existence at this time.

Figure 8.

n = 105, d = 1

Figure 9.

n = 10100, d = 1.25

Figure 10.

n = 1050, d = 1.05

Figure 11.

n = 10200, d = 20
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Figure 12.

n = 10200, d = 100

Figure 13.

n = 10400, d = 100

Figure 14.

n = 10200, d = 50

Figure 15.

n = 10500, d = 500

Acknowledgements

I would like to thank Sevak Mkrtchyan for suggesting this topic, pro-

viding useful discussions, and providing advice that enabled me to write this

paper.



18 LLOYD PAGE

References

[AS19] H. Aleksanyan and H. Shahgholian, Discrete balayage and boundary
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