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Abstract. We improve on the result in [1] by generalizing the method of recovering equi-
lateral triangles to recovering general isosceles triangles with angle θ ∈ (0, π). While this
result is a specific case of [4], the method we use has hope for a computable dimensional
constant s0 independent of θ.

1 Introduction

Existence of geometric configurations in subsets of Euclidean space is a problem which has been
studied in detail. The first problem of this type was studied by Falconer. He asked how large
does the hausdorff dimension s of a compact set E ⊂ Rd for d ≥ 2 need to be to ensure the
distance set of E, ∆(E) = {|x − y| : x, y ∈ E} ⊂ R has positive lebesgue measure? He intially
showed s > d

2 is necessary and in [6], he proved a set of haudorff dimension ≥ d+1
2 contains a

distance set of positive lebesgue measure. This exponent was improved in [7] to sets of hausdorff
dimension ≥ d

2 + 1
3 and it started a slough of questions about how large a subset of d-dimensional

euclidean space needs to be for a set of geometric objects formed by the subset to have certain
size.

This led to the next question, which was how large did sets need to be to contain geometric
configurations? For k-chains with specified gaps, [14] proved that if the dimension is greater
than d+1

2 , such a chaim must exist. This was further generalized to trees in [15]. In the case of
triangles, we have [13] which states that in d = 2, a set of hausdorff dimension ≥ 8

5 generates a
set of triangles which have positive 3-dimensional lebesgue measure.

A more difficult problem is what are the restrictions needed for a set to contain a similar
copy of a particular geometric configuration? In the case of distances, this is how large a set
needs to be to contain a particular distance, which is much more difficult than asking about the
distance set as a whole. For general simplices of k vertices, the problem has been answered for
subsets of Rd with positive lebesgue measure in [5], which gives the following result.

Theorem 1.1. Let E ⊂ Rd be of positive upper Lebesgue density in the sense that

lim sup
R→∞

Ld(E ∩ [−R,R]d)

(2R)d
> 0,

where Ld represents d-dimensional Lebesgue measure. Let Eδ denote the δ-neighborhood of E.
Let V = {0, v1, v2, ..., vk−1} ⊂ Rd be where k ≥ 2 is a positive integer. Then there exists
l0 > 0 s.t. for any l > l0 and any δ > 0 there exists {x1, ..., xk} ⊂ Eδ congruent to lV =
{0, lv1, ..., lvk−1}.

This result nearly settles the issue of simplexes in sets of positive upper lebesgue density,
though it is still open if the δ-neighborhood of E can be adjusted or removed entirely in special
cases, such as the case of non-degenerate triangles. Degenerate triangles are a different story as
Bourgain shows in [8] the δ-neighborhood is absolutely necessary.
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As positive upper lebesgue density is almost completely answered, the next question is what
happens in sets of measure 0. More specifically, what happens for compact sets of hausdorff di-
mension s0 < d, as that is the next natural way of defining size for sets of measure 0. In dimension
1, there is already an example by Keleti in [11] which gives a subset of [0, 1] of hausdorff dimen-
sion 1 which does not contain any arithmetic progression of length 3 (an equilateral/isosceles
triangle in dimension 1). But in [12], they show additional structure assumptions gives a dimen-
sional constant s0 < 1 such that a subset of [0, 1] with hausdorff dimension > s0 contains some
arithmetic progression of length 3 assuming the additional structural assupmtions.

In dimension 2, a similar problem occurs. Independent examples by [9] and [10] show a
subset of R2 with hausdorff dimension 2 does not need to contain the vertices of an equilateral
triangle. But once again, Theorem 1.6 in [2] gives additional structural assumptions which allow
for recovery of equilateral triangles in subsets of Rd, d ≥ 2. More specifically, they require a
measure supported on E with decay conditions on its Fourier transform.

The Fourier decay conditions were removed in [1] in the specific case of equilateral triangles.
In this paper, we adjust improve the method and seek to extend this to all non-degenerate
isosceles triangles with angle θ ∈ (0, π).

It is worth noting that [4], a more recent paper, managed to generalize this result to k-
simplices in Rk at the cost of losing computability of the dimensional constant. Their result is
stated below.

Theorem 1.2. Let V be a k-simplex in Rk and d(V ) be the diameter of V . Let r(V ) be the
minimum distance between any vertex and the affine space spanned by the k−1 remaning vertices.
If δ(V ) = r(V )

d(V ) , which is positive iff V is non-degenerate, then for δ > 0, there exists s0(k, δ) < k

s.t. if E ⊂ Rk is compact and has hausdorff dimension ≥ s0, then E contains the vertices of V ′

similar to V with δ(V ′) ≥ δ.

In the case of the k-simplex containing the vertices of an isosceles triangle, our result is
recovered. But the s0 in the above result is not explicitly computable. Our result has some hope
for computability of the dimensional constant.

1.1 Main results

The main result of this paper generalizes that of [1].

Theorem 1.3. Let E be a compact subset of Rd, d ≥ 4 and µ a probability Frostman measure
on E with µ(B(x, r)) ≤ cµr

s for all x ∈ Rd, r > 0. There exists s0 = s0(cµ, d) < d, s.t. s > s0,
then ∀θ ∈ (0, π), E contains the vertices of an isoceles triangle with angle θ.

The proof is similar to that of [1], done in 3 similar steps. Throughout the paper, ≈ and .
will be used to denote equality or inequality up to a constant depending on d, cµ, θ.

2 Construction of the measure

First notice it is enough to consider a fixed θ ∈ (0, π) and through the proof show this choice of
θ does not affect the dimensional constant s0. Consider the surface

Σθ = {(x, y) ∈ R2d : |x| = |y| = 1, x · y = cos(θ)}.

Let σ denote the surface measure of Σθ. Let φ ∈ C∞0 be a bump function supported in
the unit ball with

∫
φ = 1. Denote φδ = δ−dφ( ·δ ) which is just dilating the function without

changing the integral. Define µδ = µ ∗ φδ, which we will use next.
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Define a new measure ν on the surface

Eθ = {(x, y, z) ∈ E × E × E : |z − x| = |z − y| = |x− y|√
2− 2 cos(θ)

},

by the limit
dν = lim

δ→0
µδ(z)µδ(z + tx)µδ(z + ty)td−1dzdσ(x, y)dt.

We define Eθ in this more ugly manner to ensure that it is nonempty. With this definition,
we trivially have singletons (x, x, x) ∈ Eθ for x ∈ E, but will need to do more work to show
nontrivial triangles are also contained in Eθ.

Intuitively, our measure is taking shrinking δ-neighborhoods around the points z, z+tx, z+ty
and using existence of the limit to show existence of the triple (z, z+tx, z+ty) ∈ Eθ and conclude
existence of an isosceles triangle. One should also note that t ∈ [0, 1].

But this construction hinges on existence of this limit dν, which we prove next for sufficiently
large hausdorff dimension.

Theorem 2.1. Let s > 2
3d + 1, then there exists a sequence δj → 0 s.t. the limit dν exists

weakly.

To prove this, it suffices to show∫ ∫
µδ(z)µδ(z + tx)µδ(z + ty)dzdσ(x, y) . C(t).

Where C(t) is some function depending on t but independent of δ. If td−1C(t) is integrable over
t ∈ [0, 1], then by the Banach-Alaoglu theorem we are done.

Now we apply Fourier inversion to get∫ ∫
µδ(z)µδ(z + tx)µδ(z + ty)dzdσ(x, y)

=

∫
...

∫
µ̂δ(ξ)µ̂δ(η)µ̂δ(ζ)e2πi((z,z,z)+(tx,ty,0))·(ξ,η,ζ)dzdσ(x, y)dξdηdζ

=

∫ ∫ ∫
µ̂δ(ξ)µ̂δ(η)µ̂δ(ζ)(e2πi(z,z,z)·(ξ,η,ζ)dz)σ̂(−tξ,−tη)dξdηdζ

But as a distribution, ∫
e2πi(z,z,z)·(ξ,η,ζ)dz = δ(ξ + η + ζ),

so we can collapse ζ into −ξ − η and get∫ ∫
µ̂δ(ξ)µ̂δ(η)µ̂δ(−ξ − η)σ̂(−tξ,−tη)dξdη,

which after expanding the convolutions gives us∫ ∫
µ̂(ξ)µ̂(η)µ̂(−ξ − η)φ̂(δξ)φ̂(δη)φ̂(−δξ − δη)σ̂(−tξ,−tη)dξdη. (2.1) {?}

Estimating this takes a little more effort. The φ̂ can be estimated out as they are bounded
by 1, but the other terms are a little more tricky. After estimating out small values of |ξ|, |η|,
We will decompose the integral based on values for |ξ| and |η|. Diadically decomposing one

variable at a time, an estimate will be given for the range where |ξ||η| ∈ [1, 2] and a symmetric

estimate gives |ξ||η| ∈ [12 , 1]. This estimate will require a few lemmas. We will then reduce the

cases where one of |ξ|, |η| is disproportionately larger than the other to the cases where they are
proportional. This resolves all pairs (|ξ|, |η|) and thus estimate the entire integral.
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Lemma 2.2. With the given notation above, we have

|σ̂(ξ, η)| ≤ C−
1
2

θ,d |ξ + gθη|−
1
2 · |ξ ∧ η|−

d−2
2 .

Where Cθ,d = | csc(θ)|d−2 and |ξ ∧ η|−
d−2
2 = |ξ|

d−2
2 |η|

d−2
2 sin(θξ,η)

− d−2
2 , with θξ,η being the angle

between ξ and η.

This lemma will be proven by a stationary phase argument. The next lemma will be what
we need to conclude the bound.

Lemma 2.3. ∫
|ξ|≈2j

|ξ + gθη|−1 sin(θξ,η)
−(d−2) . 2j(d−1). (2.2) {?}

Now assuming these two lemmas, we will show the integral is bounded. We need to estimate∫ ∫
|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||σ̂(−tξ,−tη)|dξdη. (2.3) {?}

Diadically decompose |η| and |ξ| into intervals of [2j , 2j+1) and take the two cases j < 0 and
j ≥ 0 separately. For j < 0, notice that along with φ̂, we can also estimate out µ̂ as well because
the fourier transform is uniformly bounded by the L1 norm and µ being a probability measure
means the L1 norm is just 1. So this reduces to estimating∫ ∫

|ξ|,|η|<1
|σ̂(−tξ,−tη)|dξdηdt.

But we can also notice that |σ̂(−tξ,−tη)| is real analytic and thus bounded on |ξ|, |η| < 1, which
finishes bounding the neighborhood of the origin. Noticing that td−1 is integrable over [0, 1], we
are done with that case.

For the j ≥ 0 case, more work needs to be done. Instead of estimating out the |µ̂| terms, we
will use the Frostman property of µ to get∫

|ξ|∈[2j ,2j+1)
|µ̂(ξ)|2 . 2j(d−s).

This follows from µ(B(x, r)) ≤ cµrs.
With the two lemmas and the above estimate, we can now look at the integral over |ξ|, |η| ≥ 1.

We can further split this integral into two cases, when |ξ| and |η| are approximately equal and
when one is disproportionately larger than the other. For both cases, we can assume that
|ξ| ≥ |η| as the other case can be handled symmetrically.

Assuming |η| ∈ [2j , 2j+1), 1 ≤ |ξ||η| ≤ 2, then applying Lemma 2.2 gives us

∫ 2j+1

2j

∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||σ̂(tξ, tη)|dξdη

. t−d+
3
2 2−j(d−2)

∫ ∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||ξ + gθη|−
1
2 sin(θξ,η)

− d−2
2 dξdη.

Focusing on just the integral in ξ, we get∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||ξ + gθη|−
1
2 sin(θξ,η)

− d−2
2 dξ.
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But we don’t want all of the terms since we need cauchy schwartz to apply Lemma 2.3. So
remove |µ̂(ξ)||µ̂(η)| and just consider∫

|ξ|∈[|η|,2|η|]
|µ̂(ξ + η)||ξ + gθη|−

1
2 sin(θξ,η)

− d−2
2 dξ.

Applying cauchy schwartz we get∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ + η)||ξ + gθη|−
1
2 sin(θξ,η)

− d−2
2 dξ

≤ (

∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ + η)|2dξ)
1
2 (

∫
|ξ|∈[|η|,2|η|]

|ξ + gθη|−1 sin(θξ,η)
−d−2dξ)

1
2

. (2j)
d−s+ε

2 (

∫
|ξ|∈[|η|,2|η|]

|ξ + gθη|−1 sin(θξ,η)
−d−2dξ)

1
2 .

Where the last line is by the estimate using the frostman property of the measure, with the
arbitrary ε > 0 coming from the fact that we are dealing with µ̂(ξ + η) instead of µ̂(ξ). Now
applying Lemma 2.3 gives us

(2j)
d−s+ε

2 (

∫
|ξ|∈[|η|,2|η|]

|ξ + gθη|−1 sin(θξ,η)
−d−2dξ)

1
2

. (2j)
d−s+ε

2 (2j)
d−1
2 = 2j(

2d−s−1+ε
2

).

This finishes the estimate for the integral in just ξ. Our range of ξ was [|η|, 2|η|], but we
only really used that the upper and lower bounds for ξ were on the order of 2j . So integrating
|ξ| ∈ [2j , 2j+1] would give the same upper bound up to constants. But notice the integrand is
approximately symmetric in ξ and η, so we get a symmetric estimate∫

|η|∈[2j ,2j+1]
|µ̂(ξ + η)||ξ + gθη|−

1
2 sin(θξ,η)

− d−2
2 dη . 2j(

2d−s−1+ε
2

).

This lets us apply Schur’s test. Let the operator Tj be denoted by

Tjf(η) =

∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ + η)||ξ + gθη|−
1
2 sin(θξ,η)

− d−2
2 f(ξ)dξ.

Then Tj is a bounded operator from L2 to L2 on each annuli |η| ∈ [2j , 2j+1] with norm .

2j(
2d−s−1+ε

2
). In other words, we can write

t−d+
3
2 2−j(d−2)

∫ ∫
|ξ|∈[|η|,2|η|]

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||ξ + gθη|−
1
2 sin(θξ,η)

− d−2
2 dξdη

= t−d+
3
2 2−j(d−2)

∫
T |µ̂|(η)|µ̂(η)|dη ≤ t−d+

3
2 2−j(d−2)||µ̂||L2 ||T |µ̂|||L2

. t−d+
3
2 2−j(d−2)+j(

2d−s−1+ε
2

)||µ̂||2L2 .

Where the second step follows from cauchy schwartz and the L2 norms are taken over annuli.
The last step follows from schur’s test. But notice again we have the estimate ||µ̂||2L2 . 2j(d−s),
which gives us

t−d+
3
2 2−j(d−2)+j(

2d−s−1+ε
2

)+j(d−s) = t−d+
3
2 2−j

3s−2d−3−ε
2 .
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Now that we have the estimate for each annuli, we can sum them up and get the entire
integral is . t−d+

3
2 with the condition that s > 2

3d + 1 + ε for any ε > 0 which just reduces to
s > 2

3d+ 1. Adding on the fact that we have a td−1 to account for, the integral in all variables
is bounded by ∫ 1

0
td−1t−d+

3
2dt =

∫ 1

0
t
1
2 <∞.

Which gives us the overall integral is bounded.
But this is only the case of the integral when |ξ||η| ∈ [1, 2] or [12 , 1] by symmetry. We still need

to cover the cases where one variable is disproportionately larger than the other.
It turns out that these cases can reduce to the cases where |ξ|η| ∈ [12 , 2]. Assume for now that

|ξ
|η| > 2 and cover the < 1

2 case by symmetry. But notice this means |ξ|
|η+ξ| ∈ [12 , 2], which we will

exploit.
Now consider the original integrand which we were considering. We wanted to estimate

|µ̂(ξ)||µ̂(η)|µ̂(ξ + η)||σ̂(−tξ,−tη)| . |µ̂(ξ)||µ̂(η)|µ̂(ξ + η)|C−
1
2

θ,d |ξ + gθη|−
1
2 · |ξ ∧ η|−

d−2
2 .

But one interesting thing to note is that |ξ ∧ η|−
d−2
2 = |ξ ∧ (η + ξ)|−

d−2
2 . So changing η

with η + ξ does not affect the wedge product part of the estimate. On the other hand, we have
|ξ + gθη|−

1
2 and we want to replace it with |ξ + gθ(η + ξ)|−

1
2 . Notice that |ξ + gθη| ∈ [12 |ξ|,

3
2 |ξ|]

by |ξ||η| > 2 and rotations preserving norm. On the other hand, |ξ + gθ(η + ξ)| ∈ (0, 52 |ξ|) by the

same reasoning. So |ξ + gθη|−
1
2 ≤ 5|ξ + gθ(η + ξ)|−

1
2 . So we really can replace η with η + ξ and

it will not affect the estimates.
More specifically, we have∫ 2j+1

2j

∫
2|η|<|ξ|

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||σ̂(−tξ,−tη)|dηdξ

.
∫ ∫

2|η|<|ξ|
|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||ξ + gθη|−

1
2 · |ξ ∧ η|−

d−2
2 dηdξ

.
∫ ∫

2|η|<|ξ|
|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||ξ + gθ(η + ξ)|−

1
2 · |ξ ∧ (η + ξ)|−

d−2
2 dηdξ

.
∫ ∫

|ζ|∈[ 1
2
|ξ|,2|ξ|]

|µ̂(ξ)||µ̂(ζ − ξ)||µ̂(ζ)||ξ + gθζ|−
1
2 · |ξ ∧ ζ|−

d−2
2 dζdξ.

In the final step we let ζ = η + ξ and note the inequality by the fact that the integrand is
nonnegative and we are increasing the region of integration. This gives us an integral which can
be split into ζ ∈ [12 |ξ|, |ξ|) and ζ ∈ [|ξ|, 2|ξ|] and estimated accordingly by the methods previously
used.

So combining the two cases gives the boundedness of the original integral which completes
the construction of the measure.

3 Positivity of the integral

After we have shown the measure to be well defined and give what we want, we need to show
our initial set E contains an isosceles triangle of angle θ by applying the measure ν. This is
done through an integration argument.

Before getting into the argument, we need to set up a bit of machinery.
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Definition 3.1. Fix integers n ≥ 2, p ≥ 3, and m = ndp+1
2 e. If B1, ..., Bp are n × (m − n)

matrices, we say the collection {B1, ..., Bp} is non-degenerate if

rank

 Bi2 −Bi1...
Bim

n
−Bi1

 = m− n

for any choice of indices i1, ..., im
n
∈ {1, ..., p}.

With this definition, we have Proposition 5.1 from [2] which says

Theorem 3.2. Let

Λ(f) =

∫
Rn

∫
Rm

k∏
j=1

f(z +Bjx)dzdx.

Where {B1, ..., Bk} are non-degenerate. Then for every λ,M > 0, there exists a constant
c(λ,M) > 0 s.t. if f : [0, 1]n → R, f ∈ [0,M ],

∫
f ≥ λ, then Λ(f) ≥ c(λ,M).

In essence, this theorem is a way to get positivity for an integral of a product of functions
which have inputs transformed by non-degenerate matrices, which would applies to what we
have.

One notable observation is that∫ ∫ ∫
µδ(z)µδ(z + tx)µδ(z + ty)td−1dzdσ(x, y)dt =

∫ ∫ ∫
µδ(z)µδ(z + x)µδ(z + gθx)dzdxdgθ.

Where dgθ is the measure on the set of θ-rotation (which is a compact set). Also notice that
||µδ||∞ . δs−d and

∫
µδ = 1, which are conditions for the above theorem.

Applying the theorem with n = 2m = 2d, k = 3, B1 = 0, B2 = id, and B3 = gθ, we get∫ ∫
µδ(z)µδ(z + x)µδ(z + gθx)dzdx & c(δs−d).

Using compactness of the set of θ-rotations, we can integrate in dgθ and get the overall
integral (denoted by Iδ) is still bounded above by c(δs−d) mutliplied by a constant depending
on the size of the set of θ-rotations.

Another observation is that∫
dν = lim

δ→0

∫ ∫ ∫
µ̂(ξ)µ̂(η)µ̂(−ξ − η)φ̂(δξ)φ̂(δη)φ̂(−δξ − δη)σ̂(−tξ,−tη)td−1dξdηdt

=

∫ ∫ ∫
µ̂(ξ)µ̂(η)µ̂(−ξ − η)σ̂(−tξ,−tη)td−1dξdηdt.

So we have the estimate

|Iδ −
∫
dν| .

∫ ∫ ∫
|ξ|,|η|>δ−1

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)|σ̂(−tξ,−tη)|td−1dξdηdt

. δ
3s−2d−3

2 .

The last inequality follows from the exact same method of estimating for δ = 1 done earlier

in this paper. So to get positivity of
∫
dν, we need to have δ

3s−2d−3
2 < c(δs−d). Now we can

choose an appropriate value for δ.

Letting δ = e
1
s−d , we get δ

3s−2d−3
2 = e

3s−2d−3
2(s−d) → 0 as s → d and c(δs−d) = c(e) > 0 which

is independent of s. So for s sufficiently close to d, the result follows. We can find some s0 to
denote this threshold, which will be discussed later.
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3.1 Non-degeneracy of the measure ν

While we have shown
∫
dν > 0, we need to show that our set Σθ contains something nontrivial.

This requires a dominated convergence argument and some additional work. This argument is
also the same as that presented in [1]

Define the function

Fδ(t) =

∫ ∫
µδ(z)µδ(z + tx)µδ(z + ty)td−1dzdσ(x, y)

=

∫ ∫
µ̂(ξ)µ̂(η)µ̂(−ξ − η)φ̂(δξ)φ̂(δη)φ̂(−δξ − δη)σ̂(−tξ,−tη)td−1dξdη.

From the work in defining the measure properly, we have the estimate that

|Fδ(t)| ≤
∫ ∫

|µ̂(ξ)||µ̂(η)||µ̂(ξ + η)||σ̂(tξ, tη)|td−1dξdη . t
1
2 .

As we are integrating t ∈ [0, 1] and the upper bound is independent of δ, we can apply
dominated convergence theorem to get

lim
δ→0

Fδ(t) =

∫ ∫
µ̂(ξ)µ̂(η)µ̂(−ξ − η)σ̂(−tξ,−tη)td−1dξdη

is a function in L1([0, 1]) and that

∫ 1

0
lim
δ→0

Fδ(t)dt = lim
δ→0

∫ 1

0
Fδ(t)dt.

However, we showed earlier that this integral is positive. Namely that

0 <

∫ 1

0
lim
δ→0

Fδ(t)dt = lim
δ→0

∫ 1

0
Fδ(t)dt <∞.

But limδ→0 Fδ(t) ∈ L1([0, 1]) implies that there exists t0 > 0 s.t.

0 <

∫ 1

t0

lim
δ→0

Fδ(t)dt = lim
δ→0

∫ 1

t0

Fδ(t)dt <∞.

Expanding things out and using our sequence δj → 0, we get that

lim
δj→0

(

∫ 1

t0

Fδ(t)dt) = lim
δj→0

(

∫ 1

t0

∫ ∫
µδj (x)µδj (x+ ty)µδj (x+ tz)td−1dxdσ(y, z)dt).

is a well defined measure for t ∈ [t0, 1]. The set that this restricted measure is defined on is

{(x, y, z) ∈ E × E × E : |x− y| = |x− z| = |y − z|√
2− 2 cos(θ)

> t0}.

And positivity of this measure means the set it is defined on must be nonempty. So we have E
containing some nontrivial isosceles triangle of angle θ ∈ (0, π) which is arbitrary.



Isosceles triangles in fractal subsets of Rd for d ≥ 4 9

4 Proof of lemmas

4.1 Proof of Lemma 2.2

The proof of Lemma 2.2 requires a stationary phase argument. More specifically, if K repre-
sents the determinant of the hessian of the phase function evaulated at the critical point, then
|σ̂(ξ, η)| . K−

1
2 . So we just need to compute K, which means computing the determinant of

the hessian and the critical point.
For notational reasons, let us denote u = (u1, u

′) ∈ Rd−1 and I to be the identity matrix.
Let f(u) =

√
1− |u|2 and compute

Df(u) = −u
f

D2f(u) = −δi,j
f
− u⊗2

f3
.

Now define the following vectors u0 = (0, 0), v0 = (sin(θ), 0), x0 = (u0, f(u0)), and y0 =
(v0, f(v0)). Using a partition of unity and rotation invariance of σ, we can restrict ourselves to
just a neighborhood of (x0, y0). Computations will be done up to O(|u, v|3), as indicated by ≈2.

Let (x, y) be an isosceles triangle about (x0, y0) which is contained in Σθ. This means that
|x| = |y| = 1, which gives us

x(u) ≈2 (u+ u0, 1− 1

2
|u|2)

y(u) ≈2 (v + v0, cos(θ)− tan(θ)v1 −
1

2
sec(θ)|v|2 − 1

2
tan2(θ) sec(θ)v21)

= (v + v0, cos(θ)− tan(θ)v1 −
sec3(θ)

2
v21 −

sec2(θ)

2
|v′|2)

Using the further restriction that x · y = cos(θ), we can conclude

sec3(θ)

2
v21 + (tan(θ)− u1)v1 = u′ · v′ + sin(θ)u1 −

cos(θ)

2
|u|2 − sec(θ)

2
|v′|2.

Now letting t = a1s+ a2s
2, we get s ≈2

t
a1
− a2

a31
t2. We now use the implicit function theorem

in one variable to solve for v1 in terms of the remaining variables.

v1 ≈2 cot(θ)u′ · v′ + cos(θ)u1 −
sin(θ)

2
u21 −

csc(θ) cos2(θ)

2
|u′|2 − csc(θ)

2
|v′|2.

With v1 written in terms of the remaining variables u1, u
′, v′, we get the following chart for

a neighborhood of (x0, y0),

(x, y) ≈2 (u, 1− 1

2
|u|2, sin(θ) + cot(θ)u′ · v′ + cos(θ)u1 −

sin(θ)

2
u21 −

csc(θ) cos2(θ)

2
|u′|2

− csc(θ)

2
|v′|2, v′, cos(θ)− u′ · v′ − sin(θ)u1 −

cos(θ)

2
u21 +

cos(θ)

2
|u′|2).

Where the parameters (u1, u
′, v′) ∈ R2d−3. Under this parametrization, we can define a

smooth function ψ near the origin which satisfies

dσ = ψ(u1, u
′, v′)du1du

′dv′.
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integraing and applying a fourier transform to both sides, we get

σ̂(ξ, η) =

∫
e−2πi(x,y)·(ξ,η)ψdudu′dv′.

Here, (x, y) is defined by the parametrization done previously. So the phase is Φ = xξ + yη and
we need to compute ∇u,v′Φ and ∇2

u,v′Φ.
For the computation of ∇u,v′Φ, we get

∂u1 = ξ1 + cos(θ)η1 − sin(θ)ηd − (ξd + sin(θ)η1 + cos(θ)ηd)u1

∂u′ = ξ′ + (cos(θ)ηd − ξd − csc(θ) cos2(θ)η1)u
′ + (cot(θ)η1 − ηd)v′

∂v′ = (cot(θ)η1 − ηd)u′ − csc(θ)η1v
′ + η′.

Here we use the notation ξ = (ξ1, ξ
′, ξd) ∈ Rd. Notice that a critical point must have

ξ1 + cos(θ)η1 = sin(θ)ηd

ξ′ = η′ = 0

These conditions allow us to compute and evaluate the second derivative ∇2
u,v′Φ. Let Id−2

denote the (d− 2)× (d− 2) identity matrix. Then ∇2
u,v′Φ can be computed as

∂u1u1 = −(ξd + sin(θ)η1 + cos(θ)ηd)

∂u1u′ = ∂u1v′ = 0

∂u′u1 = 0

∂u′u′ = (cos(θ)ηd − ξd − cot(θ) cos(θ)η1)Id−2

∂u′v′ = (cot(θ)η1 − ηd)Id−2

∂v′u1 = 0

∂v′u′ = (cot(θ)η1 − ηd)Id−2

∂v′v′ = − csc(θ)η1Id−2.

We can simplify a few terms using restrictions for the critical point

∂u′u′ = (cot(θ)ξ1 − ξd)Id−2

∂u′v′ = − csc(θ)ξ1Id−2.

Now we make an observation. If a pair of points (a, b) forms an isosceles triangle of angle θ
with the origin, then we can write∫

f(x, y)dσ(x, y) =

∫
O(d)

f(ga, gb)dg.

Where O(d) is the orthogonal group and dg is the Haar measure on O(d), independent of choice
of a, b. This allows for us to consider 0 ∈ Rd to be the critical point due to rotation invariance.
This is also why all the computations can be done up to O(|u, v|3) since all higher order terms
in the hessian will disappear after evaluating at 0.

Now we compute the determinant of the hessian at the critical point 0.

|det∇2Φu,v′(0)| = |ξd + sin(θ)η1 + cos(θ)ηd| · | csc(θ)|d−2 · |η1ξd − ξ1ηd|d−2

= |ξd + sin(θ)η1 + cos(θ)ηd| · | csc(θ)|d−2 · |ξ ∧ η|d−2.
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This is almost what we want. One more step has to be done, using the properties of the
critical point to show

|ξd + sin(θ)η1 + cos(θ)ηd| = |
[
ξ1 + cos(θ)η1 − sin(θ)ηd
ξd + sin(θ)η1 + cos(θ)ηd

]
| = |ξ + gθη|.

This gives us the final conclusion

| det∇2Φu,v′(0)| = | csc(θ)|d−2 · |ξ + gθη| · |ξ ∧ η|d−2.

Which is exactly what we want.

4.2 Proof of Lemma 2.3

Notice that in the application of the lemma, we are always assuming |ξ|
|η| ∈ [12 , 2]. For θξ,η

denoting the angle between ξ and η, we only need to estimate the cases where θξ,η ≤ θ
2 or

|ξ + gθη| 6≈ |ξ| ≈ 2j since ∫
|ξ|≈2j

|ξ + gθη|−1 sin(θξ,η)
−(d−2) . 2j

is a relatively simply bounded otherwise.
If θξ,η ≤ θ

2 , then notice that θξ,gθη ≥
θ
2 . This means that

|ξ + gθη| ≈θ |ξ| ≈ 2j .

Use polar coordinates to get∫
|ξ|≈2j ,θξ,η≤ θ2

|ξ + gθη|−1 sin(θξ,η)
−(d−2)

≈ 2−j
∫
r≈2j

rd−1
∫
Sd−1

sin(θξ,η)
−d+2dωd−1

≈ 2j(d−1)
∫
Sd−1

sin(θξ,η)
2−ddωd−1

To complete the computation, notice that dωd−1 = sind−2(α)dαdωd−2 which means we can
use orthogonality of sin to only keep θξ,η = α in the integrand as all other fixed values will
integrate to 0. So we get

2j(d−1)
∫
Sd−1

sin(θξ,η)
2−ddωd−1 = 2j(d−1)

∫ 2π

0
1dα = 2π · 2j(d−1).

This is approximately 2j(d−1) so we are done in this case.
The second case is where |ξ + gθη| 6≈ |ξ|. It follows that θξ,η ≥ θ

2 as |ξ||η| ∈ [12 , 2]. So with
ζ = ξ + gθη, we have ∫

|ξ+gθη|6≈|ξ|≈2j
|ξ + gθη|−1 sin(θξ,η)

2−ddξ

.θ

∫
|ζ|.2j

|ζ|−1dζ

. 2j(d−1).

This proves the other case and completes the proof of the lemma.
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5 Some remarks about the constant s0.

While this result is less general than [4], perhaps one of the significant differences is the constant
can be traced and perhaps computed. Notice that we need to choose s0 so that

e
3s−2d−3
2(s−d) ≤ c(e).

A potential function c is actually computed explicitly in [2], but the bounds on the function
require constants from [3] which are less clearly defined and obtained through iteration. We will
go into more detail below.

To begin, let us go through some theorems. We obviously have Proposition 5.1 from [2] which
introduces this c(e) constant. The c(e) constant actually comes from several sources. It is found
by a decomposition done on the function f . This shows up in Proposition 5.2 of [2].

Theorem 5.1. Let f be as defined in Proposition 5.1. Suppose f = g + b where

||g||∞, ||b||∞ ≤M

||g||1, ||b||1 = δ.

Then
Λ(f) ≥ Λ(g)− (2k − 1)(Mδ)r||b̂||∞.

Where r is the unique positive integer s.t. n(r − 1) < nk −m ≤ nr.

This theorem now reduces finding c(e) to computing estimates for the decompositon.
Now this reduces to estimating Λ(g) and ||b̂||∞, one of which is much easier than the other.

The easier one is Λ(g) and is estimated by the following lemma (Lemma 5.6) from [2].

Lemma 5.2. Let K ∈ N, M > 0, δ ∈ (0, 1), and

σ ∈ (0,
δk

4kMk−1 ].

Then there exists some constant δkc(ε,K)
4 = c(K, δ,M) > 0 such that any non-negative (σ,K)-

almost periodic function g bounded by M and obeying
∫
g ≥ δ has

Λ(g) ≥ c(K, δ,M).

Here, the definition of (σ,K)-almost periodic is not that important other than the fact that
the bound for ||b̂||∞ will come from the fact that f = g+b is a decomposition into a (σ,K)-almost
periodic g and a remainder term b which will be estimated by the decomposition.

For the purposes of the constant, we need to understand what δkc(ε,K)
4 is. [2] take ε = δk

4kMk−1

and manage to give an explicit lower bound for c(ε,K) using Lemma B.1 and Corollary B.2 of
[2].

Lemma 5.3. For ε ∈ (0, 1) and K ≥ 1, there exists c′(ε,K) such that

|{t ∈ [0, 1] : ||tvl|| ≤ εforalll ∈ [1,K]}| ≥ c′(ε,K) =
εK

2K+1
.

Corollary 5.4. Given ε ∈ (0, 1) and integers k,K,m, n ∈ N, m > n. there exists a positive
constant depending on all these quantities, for which the set

Cε = {y ∈ Rm−n : ||Atjvl · y|| ≤ εforallj ∈ [1, k], l ∈ [1,K]}

defined in Lemma 5.6 obeys the size estimate

|Cε| ≥ c = c(ε,K) = c′(
ε

m− n
,K)k(m−n) =

εKk(m−n)

2(K+1)k(m−n)(m− n)Kk(m−n)
.
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So at this point, the constants seem to be getting somewhat complicated. But they are still
able to be computed. The main problem comes when trying to estimate ||b̂||∞. [2] use a result
adapted from [3] (Lemma 5.11 in [2]) to provide the decomposition and estimate for this term.

Lemma 5.5. Let F : R+ × R+ → R+ be an arbitrary function. Let δ ∈ (0, 1] and f ≥ 0 be a
function bounded by M with

∫
f ≥ δ. Let σ be as in Lemma 5.6. Then there exists a K with

K ∈ (0, C(F, δ)] and a decomposition f = g+ b where g ≥ 0 is a bounded (σ,K)-almost periodic
function with

∫
g ≥ δ and b obeys the bounds

||b̂||∞ ≤ F (δ,K).

The bound for Λ(f) then follows from the fact that since F (δ,K) is an arbitrary function, we
can choose it to be a smaller multiple of the lower bound for Λ(g), using that M is a constant
as appropriate. An explicit function which works could be

F (δ,K) =
1

2(2k − 1)(Mδ)r
δkεKk(m−n)

2(K+1)k(m−n)4(m− n)Kk(m−n)
=

1

(2k − 1)(Mδ)r
c(K, δ,M)

2
.

At this point we have been able to explicitly compute everything. The root of all of our pain
and reason why this bound is so hard to actually compute is the upper bound C(F, δ) for K.

The origin of this upper bound comes from [3]. The theorem where this bound comes from
is an incrementation result (Proposition 2.11 in [3]),

Theorem 5.6. Let F : R+ × R+ → R+ be an arbitrary function. Let δ ∈ (0, 1] and f ≥ 0 be

a function bounded on Z/NZ with expectation ≥ δ. Let σ = δ3

100 . Then there exists a K with
K ∈ (0, C(F, δ)] and a decomposition f = g+ b where g ≥ 0 is a bounded (σ,K)-almost periodic
function with

∫
g ≥ δ and b obeys the bounds

||b̂||∞ ≤ F (δ,K).

This result is over Z/NZ, but the domain is not important. The proof is more important
which requires iteration of the function F . I will give a sketch of the proof below.

We have a function E(f,B) which takes expectation of f with respect to some σ-algebra
B. Decomposing the σ-algebra B into Bεi,χi atoms which depend on an εi > 0 and a linear
phase function χi, we can find a K = K(n, σ, ε1, ..., εn) which gives us E(f,B) is a (σ2 ,K)-almost
periodic function. If we have the desired estimate in the theorem, we stop and this is the upper
bound for K. Otherwise we add additional atoms to the generators of the σ-algebra to get a
new σ-algebra B′ which is B with more Bεm,χm added. Fortunately, each addition uses the same

ε = F (δ,K)
C and character χ so the growth of K is not too random.

With each addition, we are actually increasing the quantity E(f,B), which we have an upper
bound for. So the process must eventually terminate, but only after O(σ−2) steps. Not only this,

but the number of additional atoms added in each step is Cσ2

F (δ,K′)2 where K ′ is the K associated

with the last step. So not only do we have a K which is a product of many terms, but the number
of terms is increasing as we allow our function F (δ,K) to be smaller and requires iteration of
our function F to calculate the precise amount.

If we are able to get past this step (which could be possible, but highly unlikely), we would
also need to find the relation between K = K(n, σ, ε1, ..., εn). The result for multiple character
pretty easily reduces to a product of Ki = K(σ, εi)’s since a product of (σi,Ki)-almost periodic
functions gives a (

∑
i σi,

∏
iKi)-almost periodic function. So if σi = σ

n and Ki is as defined, we
just need to compute each Ki and K =

∏
iKi. But we run into another wall since the upper

bound for Ki depends on the degree of a weierstrass approximating polynomial for the indicator
function, which I do not know how to compute. This discussion is taken from Lemma 2.8 and
Corollary 2.9 in [3].
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Another constant to estimate for an exact dimensional constant would be the constant C
which appears in Lemma 2.10 of [3]. This constant C appears in the proof of Proposition 2.11
and is part of the iteration mechanism, but could potentially be estimated out by a better choice
of F (δ,K).

The iteration mechanism also can not be simplified by taking F (δ,K) = h(δ) independent of
K. This is because we need

c(K, δ,M)− (2k − 1)(Mδ)rF (δ,K) ≥ C ′c(K, δ,M).

Where C ′ > 0 is some constant. But notice that if F does not depend on K, we can simplify the
iteration mechanism by noticing Cσ2

F (δ,K′)2 = Cσ2

F (δ,1)2
and so we can take the number of characters

to be approximately C
F (δ,1)2

. This means C(F, δ) can be approximated by a
C

F (δ,1)2 for some real

number a > 0. So we have

c(C(F, δ), δ,M) ≈ b(a
C

F (δ,1)2 ).

Where b ∈ (0, 1). However, this choice of F now gives us a negative value for the difference if F
is small since the negative second term is decaying linearly in F while the positive first term is
decaying faster than exponentially in F . So F really needs to decay in K for the argument to
work, making computation of the constant that much harder.
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Erdős–Falconer type problems and the Mattila integral”. Rev. Mat. Iberoam. 31 (2015),
no. 3, 799–810 https://doi.org/10.4171/rmi/854

Bennett Iosevich [14] Michael Bennett. Alexander Iosevich. Krystal Taylor. ”Finite chains inside thin subsets of
Rd.” Anal. PDE 9 (3) 597 - 614, (2016). https://doi.org/10.2140/apde.2016.9.597

Iosevich Taylor [15] A. Iosevich and K. Taylor, ”Finite trees inside thin subsets of Rd”.
https://arxiv.org/abs/1903.02662 (2019).


	Introduction
	Main results

	Construction of the measure
	Positivity of the integral
	Non-degeneracy of the measure 

	Proof of lemmas
	Proof of Lemma 2.2
	Proof of Lemma 2.3

	Some remarks about the constant s0.

