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Abstract. The goal of this paper is to discuss a series of qualitative results for
the solutions to a differential equation modeling nucleons, as it was introduced

by Tony Skyrme in a series of seminal papers [2, 3, 4]. These results are part

of the outcomes of an article written by John McLeod and William Troy [1]
on the subject.

1. Introduction

When describing physical behavior in fields, physicists use mathematical con-
cepts to predict behavior. As such, these are typically called field theories. An
important type of field theory is the sigma model, which explains the behavior of
an idealized point particle confined to a manifold whose properties and interac-
tions with the particle correspond to physical characteristics of the system. Within
field theory manifolds, irregularities known as topological solitions correspond to
physical features.

This paper focuses on the Skyrme model, which describes such a soliton, known
as a skyrmion, and for which the relevant equivariant differential equation is given
by

(1)

(
1 +

2α2 sin2 F

r2

)
(Ftt − Frr)−

2

r
Fr

+
sin(2F )

r2

(
1 + α2

(
F 2
t − F 2

r +
sin2 F

r2

))
= 0,

where α is a constant having the dimension of length and F = F (t, r) is an azimuthal
angle. By taking α = 2 and considering static (i.e., time independent; F = F (r))
configurations one obtains the ordinary differential equation

(2)

(
1

4
r2 + 2 sin2 F

)
F ′′ +

1

2
rF ′ + sin(2F )(F ′)2

− 1

4
sin(2F )− sin2 F

r2
sin(2F ) = 0,

which is the main object of study in McLeod-Troy paper. In the context of the
Skyrme model, this equation is paired with the boundary conditions

F (0) = 0 and F (∞) = nπ,

where n ≥ 1 is an integer often called by physicists the topological charge of the
soliton.

1
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At this moment, it is important to recall that differential equations fall into one
of the following four categories: linear, semilinear, quasilinear, and fully nonlinear
(in ascending order of intricacy). Both (1) and (2) are quasilinear equations, as the
coefficients of the highest order derivatives depend on the unknown function itself.
The main point we want to make is that, despite this challenging nature, McLeod
and Troy are able to obtain both qualitative and quantitative results for classical
solutions1 to (2) using only relatively primitive, calculus-based math techniques.

In this paper, we cover three of these results which address the size and the end
behavior of these solutions. They are as follows:

Theorem 1.1. Any classical solution to (2) is bounded; i.e., there exists M > 0
such that

|F (r)| ≤M, (∀) r > 0.

Theorem 1.2. If F : (0,∞) → R is a classical solution to (2) then there exist k
and l ∈ Z such that

(3) lim
r→∞

F (r) = kπ or

(
k +

1

2

)
π

and

(4) lim
r→0

F (r) = lπ or

(
l +

1

2

)
π.

Theorem 1.3. If F : (0,∞)→ R is a classical solution to (2) and

• limr→∞ F (r) = kπ, then F is monotone on an interval of the type (b,∞)
and

F − kπ ∼ 1

r2
as r →∞;

• limr→∞ F (r) = (k + 1/2)π, then F oscillates about (k + 1/2)π and

F −
(
k +

1

2

)
π = O(r−1/2) as r →∞;

• limr→0 F (r) = lπ, then F is monotone on an interval of the type (0, a) and

F − lπ ∼ r as r → 0;

• limr→0 F (r) = (l + 1/2)π, then F oscillates about (l + 1/2)π and

F −
(
l +

1

2

)
π = O(r1/2) as r → 0.

Notation 1.4. Above, we write A ∼ B if there exists an absolute constant C > 0
such that

C−1A ≤ B ≤ CA.
The classical notations f = O(g) and f = o(g) (with g ≥ 0) when x→ x0 stand for

lim sup
x→x0

|f(x)|
g(x)

<∞

1A classical solution to (2) is a C2 function F : (0,∞) → R which verifies the equation
pointwise.
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and

lim
x→x0

|f(x)|
g(x)

= 0,

respectively.

Remark 1.5. It is important to note, in the context of Theorems 1.2 and 1.3, that
once F is is a classical solution to (2), then so is ±F+kπ, where k ∈ Z is arbitrary.

In the next three sections, we proceed by proving one by one each of the above
results.

2. Proof of Theorem 1.1

In arguing for this result, we show that F is bounded both in a neigh-
borhood of 0 and in a neighborhood of ∞. This is done with the help of the
functional

(5) Q(r) :=

(
1

4
r2 + 2 sin2 F

)
(F ′)2 − 1

2
sin2 F − sin4 F

r2
,

for which a direct computation yields

Q′(r) = 2F ′
[(

1

4
r2 + 2 sin2 F

)
F ′′ − sin2 F

r2
sin(2F )− 1

4
sin(2F )

+
1

2
rF ′ + sin(2F )(F ′)2

]
− 1

2
r(F ′)2 +

2 sin4 F

r3
.

If F is a classical solution to (2), then

(6) Q′ = −1

2
r(F ′)2 +

2 sin4 F

r3
≤ 2

r3
,

which can be rearranged to read (
Q+

1

r2

)′
≤ 0.

On the other hand, we infer from (5) that

Q+
1

r2
≥ −1

2
sin2 F +

1− sin4 F

r2
≥ −1

2
.

Thus, it follows that

r 7→ Q+
1

r2

is both monotonically decreasing and bounded from below, which implies

lim
r→∞

(
Q+

1

r2

)
= c ∈ R

and subsequently

(7) lim
r→∞

Q = c

and

(8) lim
r→∞

[(
1

4
r2 + 2 sin2 F

)
(F ′)2 − 1

2
sin2 F

]
= c.
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Next, we argue by contradiction that c ≤ 0. If c > 0, then (8) implies that
for some A > 0 we have(

1

4
r2 + 2 sin2 F

)
(F ′)2 − 1

2
sin2 F ≥ c

2
, (∀) r > A.

By eventually imposing A2 ≥ 8, we deduce that

1

2
r2(F ′)2 ≥

(
1

4
r2 + 2 sin2 F

)
(F ′)2 ≥ c

2
, (∀) r > A

and, hence,

(F ′)2 ≥ c

r2
, (∀) r > A.

By using this estimate in the context of (6), we derive that

Q′ = −1

2
r(F ′)2 +

2 sin4 F

r3
≤ −c

2r
+

2

r3
, (∀) r > A.

Readjusting the value of A one more time such that cA2 ≥ 8, we infer

Q′ ≤ −c
4r
, (∀) r > A,

which yields that

r 7→ Q+
c

4
ln r

is monotonically decreasing on the interval (A,∞). This implies the existence of

lim
r→∞

(
Q+

c

4
ln r
)
∈ R ∪ {−∞}.

However, by using (7) and c > 0, one obtains

lim
r→∞

(
Q+

c

4
ln r
)

=∞,

thus obtaining the sought out contradiction.
Following this, we deduce with the help of (5) that

1

4
r2(F ′)2 ≤ Q+

1

2
+

1

r2

and, by also factoring in (7), this implies

(9) F ′ = O(r−1) as r →∞.
In fact, we can prove by contradiction that F ′ = o(r−1) as r → ∞. The
alternative is that there exists δ > 0 and a strictly increasing sequence (rn)n≥1 →∞
such that

(10) |F ′(rn)| ≥ δ

rn
, (∀)n ≥ 1.

On the other hand, if we rely on (2), we can infer that

1

4
r2|F ′′| ≤ 1

2
r|F ′|+ (F ′)2 +

1

4
+

1

r2
,

which coupled with (9) yields

F ′′ = O(r−2) as r →∞.
Hence, we can assume, without loss of generality, that there exists K > 0 such that

|F ′′(r)| ≤ K

r2
, (∀) r > r1.
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With the help of this estimate, we derive that

|F ′(r)−F ′(rn)| ≤
∫ r

rn

|F ′′(s)| ds ≤
∫ r

rn

K

s2
ds = K

(
1

rn
− 1

r

)
, (∀) r ≥ rn, n ≥ 1.

If we factor in now (10) and we also rely on the triangle inequality, then we obtain
that

|F ′(r)| ≥ δ

2rn
, (∀) rn ≤ r ≤

(
1 +

δ

2K

)
rn, n ≥ 1.

Using this fact in the context of (6), we further deduce that(
Q+

δ

4
ln r +

1

r2

)′
= Q′ +

δ

4r
− 2

r3
≤ 0, (∀) rn ≤ r ≤

(
1 +

δ

2K

)
rn, n ≥ 1,

which implies

Q(rn) +
δ

4
ln rn +

1

r2n
≥ Q

((
1 +

δ

2K

)
rn

)
+
δ

4
ln

((
1 +

δ

2K

)
rn

)
+

1(
1 + δ

2K

)2
r2n
, (∀)n ≥ 1.

By rearranging some of the terms, it follows that

Q(rn) +
1

r2n
−Q

((
1 +

δ

2K

)
rn

)
− 1(

1 + δ
2K

)2
r2n
≥ δ

4
ln

(
1 +

δ

2K

)
, (∀)n ≥ 1.

Finally, if we let n→∞ and take advantage of (7), we conclude that

δ

4
ln

(
1 +

δ

2K

)
≤ 0,

which is obviously a contradiction.
Now, we have all the prerequisites to show that F is bounded in a neigh-

borhood of ∞. Since F ′ = o(r−1) as r →∞, we infer based on (5) that

lim
r→∞

(
Q+

1

2
sin2 F

)
= 0,

which jointly with (7) yields

lim
r→∞

sin2 F = − c
2
.

If we rely one more time on F ′ = o(r−1) as r →∞, we derive that

lim
r→∞

F ∈ R

and the claim is proven.
Next, we turn our attention to the behavior of F close to 0 and we start by

arguing that

(11) r2Q+
r2

2
≥ lim
r→0

r2Q = a ∈ R.

By combining (5) and (6), we easily obtain that

(12) Q′ +
2Q

r
=

4 sin2 F

r
((F ′)2 − 1

4
) ≥ −1

r
,
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which can be rearranged to read as(
r2Q+

r2

2

)′
= r2

(
Q′ +

2Q

r
+

1

r

)
≥ 0.

Thus, r 7→ r2Q+ r2

2 is monotonically increasing and this implies

r2Q+
r2

2
≥ lim
r→0

(
r2Q+

r2

2

)
= lim
r→0

r2Q ∈ R ∪ {−∞}.

On the other hand, we deduce from (5) that

Q ≥ −1

2
− 1

r2
,

which leads to

lim inf
r→0

r2Q ≥ −1,

hence, reaching the desired conclusion.
Following this, let us derive a couple of estimates related to the size of

rF ′ and its derivative for r close to 0. First, we infer from (5) and (11) that

(13) (rF ′)2 =
r2Q+ 1

2r
2 sin2 F + sin4 F

1
4r

2 + 2 sin2 F
≤ r2Q

2 sin2 F
+

5

2
sin2 F ≤ a+ 1

2 sin2 F
+

5

2

holds true if r is sufficiently small and sinF 6= 0. Second, we obtain also with the
help of (5) and (11) that

(rF ′)2 ≥
a+ sin4 F − 1

2r
2 cos2 F

1
4r

2 + 2 sin2 F
≥
a+ sin4 F − 1

2r
2

2 sin2 F
,

is valid for all r > 0 with sinF 6= 0. In particular, these two inequalities imply that
if one has

(14) 0 < γ ≤ min{sin2 F, |a+ sin4 F |},

and 0 < r < γ1/2 is sufficiently small, then

(15)
1

4
≤ (rF ′)2 ≤ a+ 1

2γ
+

5

2
.

Finally, let us denote H(r) = rF ′(r) and argue by relying on (2) that

H ′ = F ′ + rF ′′ =
sin2 F sin(2F )

r( 1
4r

2 + 2 sin2 F )
+
r sin(2F )

(
1
4 − (F ′)2

)
1
4r

2 + 2 sin2 F
+

(−1
4 r

2 + 2 sin2 F
)
F ′

1
4r

2 + 2 sin2 F
,

which leads to

|H ′| ≤ C
(

1

r
+ 1 + (F ′)2 + |F ′|

)
≤ 3C

(
1

r
+ (F ′)2

)
= 3C

(
1

r
+
H2

r2

)
if 0 < r < 1 and C > 0 is a suitable chosen absolute constant. Based on more
involved integral estimates (e.g., Gronwall-type inequalities), one is able to control
the size of

|H(r)−H(r̃)|
in terms of the size of | ln r− ln r̃|. This means that for all ε > 0 there exists ω > 0
such that

|r̃F ′(r̃)− rF ′(r)| < ε, (∀) 0 < r̃, r < 1,

∣∣∣∣ r̃r − 1

∣∣∣∣ < ω.
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Now, we have all the prerequisites to show that F is bounded in a neigh-
borhood of 0. As in the case for r large, this is done by proving that

lim
r→0

sinF ∈ R.

We argue by contradiction and, hence, deduce the existence of γ > 0 and of a
strictly decreasing sequence (rn)n≥1 → 0 such that both 0 < rn < γ1/2 and (14)
for r = rn hold true for all n ≥ 1. This implies that (15) is valid for all n ≥ 1 and,
jointly with (2), it yields

|rF ′(r)| ≥ 1

3
, (∀) 0 < r < 1,

∣∣∣∣ rrn − 1

∣∣∣∣ < ω0, n ≥ 1,

for some fixed ω0 independent of n. By using (12), it follows that

(r2Q)′ = 4r sin2 F

(
(F ′)2 − 1

4

)
≥ 4r sin2 F

(
1

3r2
− 1

4

)
holds true under the same conditions for r as above. Thus, if we take n sufficiently
large, we can guarantee that

(r2Q)′ ≥ C̃

rn
, (∀) 0 < r < 1,

∣∣∣∣ rrn − 1

∣∣∣∣ < ω0,

for yet another C̃ > 0 absolute constant. By integrating this estimate over the
interval [rn, rn(1 + ω0)], we obtain

r2n(1 + ω0)2Q(rn(1 + ω0))− r2nQ(rn) ≥ C̃ω0 > 0,

which obviously leads to a contradiction when paired with (11). With this, the
proof of the boundedness for F in a neighborhood of 0 is finished and the whole
argument for Theorem 1.1 is concluded.

3. Proof of Theorem 1.2

For this argument, we follow up on our findings from the previous section and
we focus first on the end behavior of F when r →∞. We recall that

lim
r→∞

F := F∞ ∈ R and lim
r→∞

rF ′ = 0.

If we use these facts and we take r →∞ in (2), we derive that

lim
r→∞

(
1

4
r2 + 2 sin2 F

)
F ′′ = sin(2F∞).

Thus, for proving (3), which is equivalent to sin(2F∞) = 0, it is enough to argue
that

lim inf
r→∞

r2|F ′′| = 0

and we do this by contradiction. The alternative is that

lim inf
r→∞

r2|F ′′| > 0

and, hence, there exist A1 and C1 > 0 such that

r2|F ′′(r)| > C1, (∀) r > A1.

By integration, it follows that

|F ′(r)| =
∣∣∣∣∫ ∞
r

F ′′(s) ds

∣∣∣∣ =

∫ ∞
r

|F ′′(s)| ds ≥ C1

r
, (∀) r > A1,
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which contradicts the fact that F ′ = o(r−1) as r →∞.
Next, we investigate the behavior of F when r → 0 and we remember from

the analysis for Theorem 1.1 that

lim
r→0

F := F0 ∈ R and lim
r→0

r2Q = a.

If sinF0 = 0, we are done. Otherwise, we can use (13) to infer that

F ′ = O(r−1) as r → 0.

Jointly with (5) and (11), this fact implies that

lim
r→0

r2(F ′)2 =
a+ sin4 F0

2 sin2 F0

.

We argue by contradiction that a+ sin4 F0 = 0 and, hence,

(16) F ′ = o(r−1) as r → 0.

The alternative is that there exist A2 and C2 > 0 such that

r|F ′(r)| > C2, (∀) 0 < r < A2,

which leads by integration to

|F (A2)− F0| =

∣∣∣∣∣
∫ A2

0

F ′(s) ds

∣∣∣∣∣ =

∫ A2

0

|F ′(s)| ds =∞.

This is obviously false. Now, we multiply (2) by r2, take r → 0, and use (16) to
deduce

lim
r→0

r2F ′′ =
1

2
sin(2F0).

We claim that this implies sin(2F0) = 0, which yields (4), thus finishing the proof
for the whole theorem. This is settled by contradiction, which would yield

lim
r→0

r2F ′′ 6= 0.

Through an argument similar to previous ones, one deduces by integration that

(17) |F ′(2r)− F ′(r)| ≥ C3

r

if r is sufficiently small and C3 > 0 is an absolute constant. However, this violates
(16) and we are done.

4. Proof of Theorem 1.3

In section we will start using the 1.4 O (·) notation defined in the introduction.
Each case of theorem 1.3 uses this notation extensively in their respective subsec-
tions.

As for the subsection themselves, in general they follow a simple format. First
they start off by reformulating (2) using the substitutions introduced in section 3.
In cases 1, 2, and 4 this is then used to bound the integral of this formulation up
to the limit. In turn, another substitution involving a function G is introduced.
Finally, by estimating the order of G, insight into solution behavior near the limit
is gained. Case 3 differs in that neither type of substitution is used, rather it opts
to directly bound terms and infer behavior from there.
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4.1. Case 1: limr→∞ F (r) = kπ
First we want to change the form of (2) to make it easier to work with. To

do this, we multiply (2) by 4 to get:

r2F ′′ + 2rF ′ − sin(2F ) + 8 sin2(F )F ′′ + 4 sin(2F )(F ′)2 − 4
sin2(F )

r2
sin(2F ) = 0

The last two terms in the equation above have orders of O
(
sin(2F )(F ′)2

)
,

O
(

sin2(F )
r2 sin(2F )

)
, being just scalings of those functions. However, we are able to

say something more substantive about the order of the third term.
Comparing (7) and (8), we see that both r2F ′′ and rF ′ approach a constant in

the limit as r →∞, and so F ′′ = O
(
F ′

r

)
in the limit. Using this order relation, it

follows that the fourth term has order of O
(
F ′ sin2(F )

r

)
so (2) can be written as

r2F ′′ + 2rF ′ − sin(2F ) +O

(
F ′ sin2(F )

r

)
+O

(
sin(2F )(F ′)2

)
+O

(
sin2(F )

r2
sin(2F )

)
= 0

Recall that in the previous section, we showed rF ′ → 0, meaning that F ′ is
ultimately smaller than r. As a result, when we factor out a 1

r from the last three
terms, only the final term does not decay to zero. This gives us:

(18) r2F ′′ + 2rF ′ − sin(2F ) +
1

r2
O(sin2(F ) sin(2F )) = 0

Utilizing a change of variables x = ln r, recall from the previous section that
rF ′ = dF

dx . The above equation can then be written as

(19)
d2F

dx2
+
dF

dx
− sin(2F ) +O

(
e−2x

)
= 0

Our equation is almost in a usable form. To get it in the final form we intend
to take advantage of, we must take a small detour. The idea now is to bound the
integrands of slightly manipulated (19) equations and then use order approxi-
mations to make conclusions about the order functions.

The first such integrand is achieved by multiplying with dF
dx and then integrating

from some point a to ∞:

∫ ∞
a

dF

dx

[
d2F

dx2
+
dF

dx
− sin(2F ) +O

(
e−2x

)]
dx

=
1

2

(
dF

dx

)2∣∣∣∞
a

+

∫ ∞
a

(
dF

dx

)2

dx+
cos(2F )

2

∣∣∣∞
a

+

∫ ∞
a

(F ′)O

(
1

r2

)
dr = 0

The first and third terms are finite. As for the fourth term, we know that
o(F ′) = (r−1), so then:
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∫ ∞
a

(F ′)O

(
1

r2

)
dr <

∫ ∞
a

O

(
1

r

)
dr <∞

When a > 0. Since the first, third, and fourth terms are finite and sum with

the second term to 0, this means that the second term,
∫∞
a

(
dF
dx

)2
dx, must also be

finite.
For the second integrand: if we multiply (18) by sin(2F ) and integrate we get

0 =

∫ ∞
a

sin(2F )

[
d2F

dx2
+
dF

dx
− sin(2F ) +O

(
e−2x

)]
dx

<

∫ ∞
a

sin2(2F )dx+
dF

dx

∣∣∣∞
a

+ F
∣∣∣∞
a

+ p
√
π

For some number p. So it should be clear from above that
∫∞
a

sin2(2F )dx is
finite since the terms other than it are also finite (see above).

Setting F − F (∞) = e−
x
2G, then

lim
t→∞

sin2 (2F (t)− 2F (∞))

4 (F (t)− F (∞))
2 = 1

Meaning that
∫∞
a

sin2(2F )dx finite is equivalent to saying that
∫∞
a

(F (t)− F (∞))
2
dx

is finite since they are of the same order. Now we use G to rewrite (19):

dF

dx
= −1

2
e−

x
2G+ e−

x
2
dG

dx

d2F

dx2
=

1

4
e−

x
2G− e− x

2
dG

dx
+ e−

x
2
d2G

dx2

So then (19) can be written as:

d2G

dx2
− 1

4
G = O(e−3x/2) +

sin(2F )

e−x/2

Subtracting 2G cos(F (∞)) from each side yields

d2G

dx2
− 1

4
G− 2G cos(F (∞)) = O(e−3x/2) + sin(2F )− 2G cos(F (∞))

= O(e−3x/2) +G

(
sin(2F )

F − F (∞)
− 2 cos(2F )

)
= O(e−3x/2) +G

(
sin(2F )

F − F (∞)
+ 2 sin2(F )− 1

)
= O(e−3x/2) +G

(
O(1)−O(1) +O(sin2(F ))

)
(20)

This is the relevant equation we intend to use for cases 1 and 2. For case 1,
F (∞) = kπ, which tells us that cos(2F (∞)) = 1, allowing us to write:

(21)
d2G

dx2
− 9

4
G = O(e−3x/2) +O

(
G(F − F (∞))2

)
Looking at (2), if F is close to kπ then whenever F ′ = 0 we have
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(
1

4
r2 + 2 sin2(F ))F ′′ =

1

4
sin(2F ) +

sin2(F )

r2
sin(2F )

Meaning F ′′ and sin(2F ) = F − kπ share the same sign. So if F is approaching
kπ then it is monotone. For example, F approaching kπ from below implies F ′ ≥ 0.
If ever F ′ = 0 and F 6= kπ are both true, then F ′′ < 0 so F ′ will then become
negative and F will stop approaching kπ. Now that it has been established that F
has a monotone approach to kπ, we will use this fact to determine that G has a
limit and what that limit is.

Monotonicity tells us without loss of generality we can assume that F − kπ > 0,
meaning that G > 0. As a result,

d2G

dx2
+O(e−3x/2) =

9

4
G+O

(
G(F − F (∞))2

)
.(22)

Using
G > 0

means that
d2G

dx2
+O(e−3x/2) > 0,

so as a result, dG
dx + O(e−3x/2) must be increasing and must have a limit L as

x→∞. Now for proof by contradiction that L = 0:
If L < 0 then, from (22), G < 0 so we arrive at a contradiction.
If L > 0, then since e−3x/2, G(F − F (∞))2 → 0, we have

d2G

dx2
∼ 9

4
G

Multiplying each side by dG
dx and integrate then we get(

dG

dx

)2

∼ 9

4
G2

or
1

G

(
dG

dx

)
∼ 3

2
.

Which upon integration yields

lnG ∼ 3

2
x,

contradicting that G = o(e
x
2 ). Hence L must equal 0. For large enough x, the

fact that dG
dx +O(e−3x/2) increasing implies

dG

dx
≤ O(e−

3x
2 )

Which means that G is bounded. Using the fact that G is bounded allows us
to express G as an improper integral, which can be verified by (21). The
ultimate goal is to use this integral to estimate the order G and then feed the
estimated order back into the integral in order to get a more accurate picture
of the behavior of G.

Our bounding of G tells us, by referring to its definition, that

F − F (∞) = O(e−
x
2 )
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Meaning that (21) becomes:

d2G

dx2
− 9

4
G = O(e−3x/2) +O

(
Ge−x

)
Then G can be solved for as:

G = Ae−
3x
2 − 2

3
e

3x
2

∫ ∞
x

e−
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt

−2

3
e−

3x
2

∫ x

x0

e
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt

(23)

Which can be verified by taking the double derivative of (23) as such:

dG

dx
= −3

2
Ae−

3x
2 − e 3x

2

∫ ∞
x

e−
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt

+
2

3

(
O(e−

3x
2 ) +O(Ge−x)

)
+ e−

3x
2

∫ x

x0

e
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt

−2

3

(
(O(e−

3x
2 ) +O(Ge−x)

)
d2G

dx2
=

9

4
Ae−

3x
2 − 3

2
e

3x
2

∫ ∞
x

e−
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt

−3

2
e−

3x
2

∫ x

x0

e
3t
2

(
O(e−

3t
2 ) +O(Ge−t)

)
dt+O(e−

3x
2 ) +O(Ge−x)

And adding d2G
dx2 to − 9

4G cancels out every term except O(e−
3x
2 ) + O(Ge−x),

which is exactly the right side of (21).
Back to (23): since integration does not change the order of an exponential

function, the largest term in G is of order O(e−x). So we can say G = O(e−x) and
plug this into (23). Again we only have exponentials in the integrand, so this sorts
out the same way, leaving us with

G(x) ∼ Be− 3x
2

Where B is some constant. Then

F − kπ ∼ Be−2x

Which is what we were to show.

4.2. Case 2: limr→∞ F (r) = (k + 1/2)π
In this case, cos(2F (∞)) = −1, so (20) becomes

(24)
d2G

dx2
+

7

4
G = O(e−3x/2) +O

(
G(F − F (∞))2

)
Now we intend to rewrite G in a form that agrees with (24) and that allows

us to bound it.
G can be written as
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G = A cos(

√
7

2
x) +B sin(

√
7

2
x)

+
2√
7

∫ x

x0

sin(
1

2

√
7(x− t))×

(
O(e−

3t
2 ) +O((F − F (∞))2G)

)
dt

(25)

A fact that can be verified with (24) by calculating d2G
dx2 as such:

dG

dx
= −
√

7

2
A sin(

√
7

2
x) +

√
7

2
B cos(

√
7

2
x)

− 2√
7

sin(
1

2

√
7(x− x0))×

(
O(e−

3x0
2 ) +O((F − F (∞))2G)

)
d2G

dx2
= −7

4
A cos(

√
7

2
x)− 7

4
B sin(

√
7

2
x)

− cos(

√
7

2
(x− x0))×

(
O(e−

3x0
2 ) +O((F − F (∞))2G)

)
So then in accordance with the left hand side of (24):

d2G

dx2
+

7

4
G =

√
7

2

∫ x

x0

sin(
1

2

√
7(x− t))×

(
O(e−

3t
2 ) +O((F − F (∞))2G)

)
dt

− cos(

√
7

2
(x− x0))×

(
O(e−

3x0
2 ) +O((F − F (∞))2G)

)
= −

∫ x

x0

cos(
1

2

√
7(x− t))× d

dt

(
O(e−

3t
2 ) +O((F − F (∞))2G)

)
dt

= O(e−3x/2) +O
(
G(F − F (∞))2

)
Where the last equality is due to cosine being bounded. So it is then clear that

(25) satisfies (24).
In order to bound G, we can choose x0 such that∫ ∞

x0

(F − F (∞))2 <

√
7

4

Where for x > x0 we can define

M(x) = sup
x0≤t≤x

|G(t)|

So then using (25) we can say

M ≤ A+B +
2√
7
|
∫ x

x0

O(e−
3t
2 )dt|+ 1

2
|
∫ x

x0

sin(
1

2

√
7(x− t))O(G)dt|

≤ A+B + C +
1

2
|G−

∫ x

x0

cos(x− t)dG
dx

dt| ≤ A+B + C +
1

2
M

So at last we have the bound of M as

M ≤ 2A+ 2B + 2C,

where C is the constant associated with the O(e−
3x
2 ) term. So then G is bounded.
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The conclusions for case 2 follow thusly: F − (kπ + 1
2 ) = Ge−

x
2 , so given

the oscillatory terms in G, we see that the solution oscillates about kπ + 1
2 . Also,

G bounded means F − (kπ + 1
2 ) = O(e−

x
2 ).

4.3. Case 4: limr→0 F (r) = (l + 1/2)π
This case has a similar structure to case 2. First, in order to get a more

usable function, we rewrite (2) as

r2F ′′ +
1
2r

3F ′

1
4r

2 + 2 sin2(F )
+

sin(2F )
1
4r

2 + 2 sin2(F )
(r2F ′

2 − 1

4
r2 − sin2(F )) = 0

Change of variables r = ex i.e. ln r = x. Recall from section 3 that rF ′ =
dF
dx → 0 as r → 0 ⇐⇒ x→ −∞. This gives us the facts:

r2F ′′ =
d2F

dx2
− dF

dx
1

4
r2 + 2 sin2(F ) ∼ 2

r3F ′ ∼ 0

so we can rewrite (2) as:

d2F

dx2
− dF

dx
+O(r2)− sin2(F ) sin(2F )

1
4r

2 + 2 sin2(F )
+

r2F ′ sin(2F )
1
4r

2 + 2 sin2(F )

=
d2F

dx2
− dF

dx
+O(e2x)− 1

2
sin(2F ) +

1

2
r2F ′

2
sin(2F ) = 0

(26)

In order to rewrite our equation, we will do what we did before and show the
improper integrals are finite and then introduce a function G whose behavior
is tied to this fact.

If we multiply (26) by dF
dx and integrate from x to −∞ then

∫ x0

−∞

(
dF

dx

)2

dx =

∫ x0

−∞

dF

dx

(
d2F

dx2
+O(e2x)− 1

2
sin(2F ) +

1

2
r2F ′

2
sin(2F )

)
dx

≤
(
dF

dx

)2∣∣∣x0

−∞
+O(1)F

∣∣∣x0

−∞
− 1

2
F
∣∣∣x0

−∞
+

1

2
(a+ 1)F

∣∣∣x0

−∞
+O(1)F

∣∣∣x0

−∞
≤ ∞

Where the last 2 terms are a result of limit taken in section 2. We will then use
the finiteness of this integral for when multiplying (26) by sin(2F ) and integrating
over the same domain:

∫ x0

−∞
sin2(2F ) =

∫ x0

−∞
r2F ′

2
sin2(2F ) +O(e2x) sin(2F ) + 2 sin(2F )

(
d2F

dx2
− dF

dx

)
dx

≤ (a+ 1)
∣∣∣x0

−∞
+O(1) +O(1) cos(2F )

∣∣∣x0

−∞
− 2F

∣∣∣x0

−∞
+ 2

dF

dx

∣∣∣x0

−∞
≤ ∞

Defining

F − F (0) = ex/2G
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Allows us to rewrite (26):

ex/2
(
d2G

dx2
− 1

4
G

)
+O(e2x)− 1

2
sin(2F ) +

1

2
sin(2F )

(
dF

dx

)2

= 0

Divide by ex/2:

d2G

dx2
− 1

4
G+O(e

3
2x) =

1

2

sin(2F )

ex/2
− 1

2

sin(2F )

ex/2

(
dF

dx

)2

Subtract G cos(2F (0)):

d2G

dx2
+

3

4
G+O(e

3
2x) =

1

2

sin(2F )

ex/2
− 1

2

sin(2F )

ex/2

(
dF

dx

)2

−G cos(2F (0))

= O(G(F − F (0))2)− 1

2

sin(2F )− sin(2F (0))

ex/2

(
dF

dx

)2

= O(G(F − F (0))2) +O

(
F − F (0)

ex/2

)(
dF

dx

)2

Yielding the form:

(27)
d2G

dx2
+

3

4
G = O(e

3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
)

This is the final expression of (2) relevant to this case. As for the next step, we
shall rewrite G and verify it using (27).

Similar to case 2 we can write G in the following way:

G = A cos(

√
3

2
x) +B sin(

√
3

2
x) +

2√
3

∫ x

x0

sin(

√
3

2
(x− t))×(

O(e
3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
))

dt

Then d2G
dx2 is

d2G

dx2
= −3

4
A cos(

√
3

2
x)− 3

4
B sin(

√
3

2
x)− cos(

√
3

2
(x− x0))×(

O(e
3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
))

Applying this to (27) for verification:
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d2G

dx2
+

3

4
G =

√
3

2

∫ x

x0

sin(

√
3

2
(x− t))×

(
O(e

3
2x)

+O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
)
dt− cos(

√
3

2
(x− x0))×(

O(e
3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
))

=

∫ x

x0

cos(

√
3

2
(x− x0))×

d

dt

(
O(e

3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
))

dt =

O(1)

(
O(e

3
2x) +O(G(F − F (0))2) +O

(
G

(
dF

dx

)2
))

So now that we have established that G works we will use its form to create a
bound.

We choose x0 so that ∫ x0

−∞
(F − F (0))2 <

√
3

4

And define

M(x) = sup
x≤t≤x0

|G(t)|

Giving us

M ≤ A+B +O(e
3
2x) +

1

2
O(G) +O

(
G

(
dF

dx

)2
)

≤ A+B + C +
1

2
M + σM

Meaning M is bounded as such:

M ≤ 1

( 1
2 − σ)

(A+B + C)

Where we can quantify a σ as small as we want since dF
dx → 0 as r → 0. So then

specifying a σ < 1
2 tells us that M , and by consequence G, must be bounded.

Case 4 conclusions follow: form of G tells us that F oscillates about its limit
(l + 1

2 )π and F − (l + 1
2 )π = O(ex/2) = O(r1/2).

4.4. Case 3: limr→0 F (r) = lπ
The general strategy of this section is to bound rF ′ above and below so

that we can make a statement about its order. The first step to doing this is
simplifying the problem: We can assume l = 0 since our argument can be applied
to any l.

Next we will show that F is monotone near 0: So F → 0, meaning we
can specify a sequence {rn} such that rn → 0 as n → ∞ and where F (rn) > 0,
F ′(rn) > 0. We know we can specify rn’s such that the latter condition is true
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because if F (rn) > 0 then F is approaching 0 from above so sin(2F ) > 0. If F ′

were ever to be zero then (2) tells us

(
1

4
r2 + 2 sin2(F ))F ′′ =

1

4
sin(2F ) +

sin2(F )

r2
sin(2F ) > 0

meaning that F ′′ > 0. So when r is close enough to 0, F becomes mono-
tone increasing from above. (Similarly if we try approaching from below F will
be monotone decreasing, so F monotone either way).

We are intent to show that rF ′

F → 1 as r → 0+. This shall be done via con-
tradiction. First assume there exists an r such that rF ′ > F . Then if we look at
(2):

(
1

4
r2 + 2 sin2(F ))F ′′ = −1

2
rF ′ +

1

4
sin(2F ) +

sin2(F )− (rF ′)2

r2
sin(2F ) <

1

2
(F − rF ′) +

sin2(F )− F 2

r2
sin(2F ) < 0

So then F ′′ < 0. By consequence:(
rF ′

F

)′
=
rFF ′′ + F ′(F − rF ′)

r2
≤ rFF ′′

r2
≤ (F ′)2

rF ′

F
< 0

So then rF ′

F increases as r → 0+. Since rF ′ > F is true too, we have

(28) limr→0+
rF ′

F
= c > 1

Hence

limr→0+F
′ >

F

r
so by integration:

limr0→0+F >

∫ r0

0

F

r
.

This means that F
r → 0. Looking at (2):

F ′′ =
1

( 1
4r

2 + 2 sin2(F ))

(
−1

2
rF ′ − sin(2F )(F ′)2 +

1

4
sin(2F ) +

sin2(F )

r2
sin(2F )

)
∼ −F

′

r
,

and as a consequence we can say

F ′′ < −mF ′

r
∼ −mF

r2

for some m > 0. Integrating the final relation close to F = lπ means F is
monotone and so the integral can be bounded i.e. for some M :∫ r0

0

−M
r2

= −∞ >

∫ r0

0

F ′′ = F ′(r0)− F ′(0)

But then F ′ → ∞ as F → lπ, contradicting (28). Thus only rF ′ ≤ F is
possible. Now that we have bounded rF ′ above we will show it is bound below
using contradiction again:
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Suppose rF ′ < 1
2 sin(2F ). Then (2) can be turned into the inequality:

−F ′′ < sin(2F )(F ′
2 − sin2(F )

r2
) < sin(2F )

(
1

4

sin2(2F )− 4 sin2(F )

r2

)
= sin(2F )

(
(cos(F )− 1)(sin2(F ))

r2

)
< 0

So F ′′ > 0. Then

(
sin(2F )

rF ′

)′
=

2F ′ cos(2F )

rF ′
− sin(2F )(F ′ + rF ′′)

(rF ′)2

<
2 cos(2F )F ′ − 2F ′ − 2rF ′′

rF ′
<
−2F ′′

F ′
< 0

Meaning that sin(2F )
rF ′ is increasing as r → 0+, which is a contradiction. Hence,

the assumption that rF ′ < 1
2 sin(2F ) was incorrect. So then we know

1

2
sin(2F ) < rF ′ < F

Considering the Taylor expansion of sin(2F ), we can write rF ′ = F +O(F 3).
To confirm the conclusions for case 3: assume the form F = ar + O(r3)

(for some a > 0). We can easily check that it satisfies the equation

dF

dr
= a+O(r2),

meaning that close to r = 0, F ∼ ar.
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