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1 Introduction

In this paper, we explore free group actions using the techniques of group coho-
mology. In particular, we are interested in free actions of finite abelian groups on
products of spheres. We start by providing some basic examples which motivate
our general course of study.

Proposition 1. Let G = (Z/p)r. If G acts freely on S1
, then r = 1.

Proof. Assume G acts freely on S1. Then we have a covering p : S1 ! S1/G. It
follows from covering space theory that G ⇠= ⇡1(S1/G)/p⇤(⇡1(S1)). But since
G is a finite group, we know that S1/G ⇠= S1. Thus, we have

G ⇠= ⇡1(S
1)/p⇤(⇡1(S

1)) ⇠= Z/|G|
The result follows.

More generally, if G acts freely on Sn, then it is known that we must have
r = 1. This fact has led to the following conjecture:

Conjecture 1. Let G = (Z/p)r. If G acts freely on

Qk
i=1 S

ni
, then r  k.

This conjecture remains unproven, but many partial results are known. For
example, in this paper, we will prove it in the case of an elementary p-group act-
ing freely and homologically trivially on a product of equidimensional spheres,
i.e. ni = nj for all i, j. We will then explore some additional work on the
conjecture in other cases. The primary tool for studying these actions will be
group cohomology, specifically Tate cohomology.

2 Algebraic Foundations

Let G be a group. We wish to construct the notion of a G-module. In order to
do this, we impose a natural ring structure on G: Let ZG be the free Z-module
generated by the elements of G, i.e. the abelian group consisting of elementsP

g2G a(g)g where a(g) 2 Z and a(g) = 0 for almost all g, with multiplication
induced by multiplication in G. We call ZG the group ring of G.

The naturality of the construction G 7! ZG is characterized by the following
adjunction:
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Theorem 1. Let U : Rng ! Grp be the functor which maps each ring (with

unity) to its group of units. Then the functor Z(�) : Grp ! Rng, G 7! ZG,

which maps each group to its group ring, is a left adjoint of U .

Proof. Let G be a group and R a ring with unity. Let f : G ! U(R) be a group
homomorphism. Define f 0 : ZG ! R by extending f linearly, i.e.

f 0

 
X

i

cix

!
=
X

i

cif(x)

for ci 2 Z (only finitely many nonzero) and x 2 G. Multiplication in ZG is
given by the operation in G, so f 0 preserves multiplication by assumption. Thus,
f 0 is a ring homomorphism. Thus, we can extend each group homomorphism
f : G ! U(R) to a ring homomorphism f 0 : ZG ! R. It is clear that we
can also restrict ring homomorphisms f : Z(G) ! R to group homomorphisms
f 00 : G ! U(R), and that these processes are inverses, i.e. f 0 � f 00 = idZG and
f 00 � f 0 = idG. Thus, we have a bijection

Hom(ZG,R) ⇠= Hom(G,U(R))

Naturality follows from the fact that Z(f(G)) = f 0(Z(G)) and U(f(R)) =
f 00(U(R)). This establishes the desired adjunction.

We refer to modules over ZG, for any group G, as G-modules. In particular,
a (left) G-module is an abelian group M with a (left) G-action on M , i.e. a
ring homomorphism ZG ! EndM . For example, we may consider Z a trivial
Gmodule, namely with the trivial action of ZG on Z.

Throughout this paper, we will use G as a subscript to refer to the group
ring ZG, e.g. HomG(A,B) will refer to the group of ZG-module homomorphisms
from A to B. We will also refer to a complex of G-modules as a G-complex.
With these foundations in place, we are ready to define the cohomology of a
group.

Definition 1. Let G be a group and A a G-module. Let

Hn(G,M) = ExtnG(Z,M) = Rn(HomG(�,M))

Hn(G,M) = TornG(Z,M) = Ln(�⌦G M)

where Z denotes the trivial G-module. We call Hn(G,M) the nth cohomol-

ogy of G with coe�cients in M , and Hn(G,M) the nth homology of G with

coe�cients in M .

Explictly, the construction of the cohomology groups proceeds as follows:
Form a projective resolution P of Z over ZG

P : · · · ! P1 ! P0 ! Z ! 0
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i.e. an exact sequence in which Pk is projective as a G-module for all k.
Now, form the cochain complex

HomG(P,M) : 0 ! HomG(P0,M) ! HomG(P1,M) ! . . .

where we dualize P and remove the Z term. The nth homology of this
complex is the ExtnG(Z,M), i.e. the nth cohomology of G with coe�cients in
M . Note that any two projective resolutions of a module are chain homotopic,
and chain homotopies induce isomorphisms in homology and cohomology, hence
this construction is well-defined.

Similarly, we can compute the homology groups by forming the chain com-
plex

P ⌦G M : · · · ! P1 ⌦G M ! P0 ⌦G M ! 0

and taking its nth homology.
However, this construction is still too abstract to use to compute the ho-

mology and cohomology groups in specific cases. We provide an example of one
computational method called the bar resolution, which gives a concrete proce-
dure for constructing projective resolutions over ZG. For each n 2 N, let Fn be
the free G-module generated by the (n+1)-tuples (g0, g1, . . . , gn) of elements of
G. Define a left G-action on Fn by

g 7! ((g0, g1, . . . , gn) ! (gg0, gg1, . . . , ggn))

and a boundary operator @n : Fn ! Fn�1 given by

@n(g0, g1, . . . , gn) =
nX

k=0

(�1)k(g0, . . . , ĝk, . . . , gn)

Finally, define the augmentation ✏ : F0 ! Z by ✏ = 1. With these definitions,

. . .
@3�! F2

@2�! F1
@1�! F0

✏�! Z

forms a projective resolution (in fact, a free resolution) of Z over ZG. This
gives us a useful algebraic procedure for computing the cohomology of a group
directly from the algebraic definition given above.

3 Classifying Spaces

We now give a topological interpretation of group cohomology, which provides
an alternative method for computing the cohomology of a group in terms of
cell complexes. First, we introduce the notion of a topological group and fiber
bundle.

Definition 2. A topological group is a set G which is both a group and a topolog-

ical space, such that the group multiplication (a, b) 7! ab and inversion a 7! a�1

are both continuous functions.
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Definition 3. Let E and B be topological spaces, B connected, and p : E ! B
be a continuous surjection. Choose a point b 2 B and let F = p�1(b). If for

any point b0 2 B there is a neighborhood Ub0 ⇢ B of b0 and a homeomorphism

� : Ub0 ⇥ F ! p�1(Ub0), such that the following diagram commutes

Ub0 ⇥ F p�1(Ub0)

Ub0

�

⇡ p

commutes, where ⇡ : Ub0 ⇥ F ! Ub0 is the natural projection, then

F ! E
p�! B

is called a fiber bundle, with base space B, total space, E, and fiber F .

Note that, under these conditions, p�1(x) ⇠= F for all x 2 B, so F is inde-
pendent of the choice of base point, up to homeomorphisms. We now introduce
the notion of a principle bundle, which combines the notions of a topological
group and a fiber bundle.

Definition 4. Let G be a topological group and G ! E
p�! B be a fiber bundle.

Assume the following conditions hold:

1. G acts freely on the total space E via  : E ⇥G ! E in such a way that

the following diagram commutes

E ⇥G E

B ⇥ 1 B

 

p⇥1 p

id

2. The action on the fibers p�1(b) ⇥ G ! p�1(b) induced by psi is free and

transitive.

3. We have the same commutative diagram as above, namely

Ub ⇥G p�1(Ub)

Ub

�

⇡ p

with the added condition that �(xg) =  (�(x), g) = �(x)g, for all g 2 G
and x 2 Ub ⇥G.

Then we call G ! E
p�! B a principle G-bundle.

4



Note that the added condition on the homeomorpshism � : Ub⇥G ! p�1(Ub)
e↵ectively asserts that � commutes with group actions. When this condition
holds of a continuous map, we call it an equivarient map.

A particularly interesting and important case of principle bundles in eqivari-
ent topology is the classifying space BG of a group G. These spaces are defined
in terms of pullback squares of fiber bundles. If F ! E

p�! B is a fiber bundle
and f : X ! B is any continuous function, we can form the pullback square

f⇤(E) E

X B

p

f

Then the map f⇤(E) ! X induces a fiber bundle over X in terms of f and

E
p�! B. According to the following theorem due to Milnor, principles G-bundles

can be classified up to pullback squares as follows:

Theorem 2. Let G be a group. Then there is a space BG and a principle G-

bundle G ! EG ! BG, such that EG is weakly contractible, and if G ! E !
X is any other principle G-bundle, then there is a unique map f : X ! BG, up

to homotopy, such that f⇤(EG) = E.

In this case, BG is called the classifying space of G and EG the universal

G-bundle. Now, note that for the fiber bundle G ! EG ! BG, we have a long
exact sequence of homotopy groups

· · · ! ⇡n(G) ! ⇡n(EG) ! ⇡n(BG) ! ⇡n�1(G) ! · · · ! ⇡0(EG) ! 0

Since EG is weakly contractible, we have ⇡n(EG) = 0 for all n, so the long
exact sequence reduces to

· · · ! 0 ! ⇡n(BG) ! ⇡n�1(G) ! 0 ! · · · ! 0 ! ⇡1(BG) ! ⇡0(G) ! 0

It follows that ⇡n+1(BG) ⇠= ⇡n(G) for all n. We know that ⇡0(G) = G. If
G is discrete, then we can also conclude that ⇡n(G) = 0 for n > 0. In this case,
we get ⇡n(BG) = G for n = 1 and 0 otherwise. Thus, if G is discrete, then BG
is exactly the Eilenberg-Maclane space K(G, 1).

From the above, we can conclude the following for a general classifying space
and universal G-bundle:

1. EG is also a universal cover of BG

2. ⇡1(BG) = G

It follows now from the theory of covering spaces that G acts on EG via
Deck transformations, which in turn induces an action of G on the singular
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chains C⇤(EG). This action makes each C⇤(EG) into a G-module. We thus get
a chain complex

· · · ! C2(EG) ! C1(EG) ! C0(EG) ! Z

But since EG is weakly contractible, this complex is exact. Furthermore,
since the action by G is free, this sequence forms a free (hence projective)
resolution of Z over ZG. It follows that we can use these singular chains to
compute group cohomology as

Hn(G,M) = Hn(HomG(C⇤(EG),M))

However, we also know from singular cohomology that the right hand side is
exactly the cohomology of BG with coe�cients in M . Hence, we arrive at the
following isomorphism

H⇤(G,M) ⇠= H⇤(BG,M)

Similarly, we can show that

H⇤(G,M) ⇠= H⇤(BG,M)

These isomorphisms reveal a natural connection between the algebraic de-
scription of group cohomology and the topology of classifying spaces.

4 Motivating Examples

We now provide some simple examples to motivate the group cohomological
approach to the conjecture stated in the introduction. Recalling the first the-
orem, we know that the only finite abelian groups which act freely on S1 are
cyclic. We will now see that this action has implications for the structure of the
cohomology groups.

First, note that any cellular decomposition of S1 has cells only in dimension
0 and 1. Hence, we get a cellular chain complex

0 ! C1 ! C0 ! 0

To make this exact, we stick on the homology groups in dimension 0 and 1,
namely

0 ! H1(S
1) ! C1 ! C0 ! H0(S

1) ! 0

We know that H1(S1) = H0(S1) = Z, hence this forms a finite length free
resolution of Z. Now, we show how we can use a specific free group action to
construct such resolutions explicitly over ZG.

let G = Z/n. Let t denote the generator of G. The group ring ZG of G
is then easily seen to be Z[t]/(tn � 1). Now describe an action of G on S1 as
follows: Subdivide S1 into n vertices with n edges. Then there is an action of
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G on S1 which freely permutes these vertices and edges. Namely, the vertices
and edges can then be represented by {tkv}n�1

k=0 and {tke}n�1
k=0 , respectively.

One cycle around the circle can then be represented by the sum of the
edges

Pn�1
k=0 t

ke. This element therefore generates the first homology group,
H1(S1) ⇠= Z. Since tn = 1, it is clear that G acts trivially on H1(S1). We
therefore have a short exact sequence

0 ! Z
⌘�! ZG t�1��! ZG ✏�! Z ! 0

where ✏(g) = 1 for all g 2 G and ⌘(1) = N =
Pn�1

k=0 t
k, which is exactly the

short exact sequence of cellular chains written above for the cellular decompo-
sition of S1 induced by the action of G. N is called the norm element. Since
✏⌘(x) = Nx for any x 2 ZG, we can splice these short exact sequences together
to get a projective resolution of Z over ZG

. . .
t�1��! ZG N�! ZG t�1��! ZG ✏�! Z ! 0

Applying the functor Hom(�,Z), we obtain the cochain complex

0 ! Z 0�! Z n�! Z 0�! . . .

hence we obtain

Hi(G,Z) ⇠=

8
><

>:

Z, i = 0

Z/n, i even

0, i odd

Similarly, applying the functor �⌦ Z, we obtain the chain complex

. . .
0�! Z n�! Z 0�! Z ! 0

from which we compute

Hi(G,Z) ⇠=

8
><

>:

Z, i = 0

Z/n, i odd

0, i even

Finally, note that if n is prime and we compute the homology or cohomol-
ogy with coe�cients in Z/n, then all boundary maps in the chain and cochain
complexes are isomorphisms and we get

H(G,Z/n) ⇠= Z/n

Thus, using the canonical free action of G on S1, we get the result that
both the homology and cohomology of G (with Z coe�cients) are 2-periodic.
This construction generalizes, and we actually have the following result from
Cohomology of Groups by Kenneth Brown (proposition 10.2), which relies on
spectral sequence calculations and an application of the Lefschetz fixed point
theorem.
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Theorem 3. Let G be a finite group and X a finite-dimensional free G-complex

such that H⇤(X) ⇠= H⇤(S2n�1) for some n 2 N. Then G has periodic cohomology

of period 2k.

We can, however, see how this construction would proceed for the case
X = S2n�1 if we know that G acts trivially on H2n�1(X) (which requires an
application on the Lefschets fixed point theorem). If we take this for granted,
the construction proceeds very much as it did in the case of S1.

Say G acts freely on S2n�1 and trivially on H2n�1(X). From basic topology,
we can construct a complex of cellular chains

0 ! C2n�1 ! · · · ! C1 ! C0 ! 0

Each Ck is free by definition. This is exact whenever homology is trivial,
which in the case of S2n�1, is only the case in dimensions 0 and 2n � 1. We
therefore can make this exact simply by adding the 0th and (2n�1)st homology
onto the ends

0 ! H2n�1(X) ! C2n�1 ! · · · ! C1 ! C0 ! H0(X) ! 0

We know that H2n�1(X) = H0(X) = Z and we also know that the cellular
chains in dimension k are free on the k cells, which in the case of the group
action correspond to the elements of G. Thus, we can rewrite this as

0 ! Z ! ZG ! · · · ! ZG ! Z ! 0

Since the action of G on H2n�1(X) and H0(X) are both trivial, the Z on
the left and right of the sequence are both trivial G-modules, hence the maps
ZG ! Z and Z ! ZG in the above sequence can be composed to combine the
sequence iteratively into a long exact sequence

. . .ZG ! ZG ! Z ! 0

Since ZG is free, this forms a free (hence projective) resolution of Z over ZG.
Furthermore, this resolution is periodic with period 2k, in the sense that the
sequence of boundary maps repeats every 2k times. This periodicitiy is clearly
preserved under the functors Hom(�,M) and �⌦M . It therefore follows that
any finite group which acts freely on any odd dimensional sphere must have
periodic cohomology.

This covers the case of odd-dimensional spheres. The case of even-dimensional
spheres is much easier: Any map S2n ! S2n without fixed points is homotopic
to the antipodal map x 7! �x, hence is of degree �1. Since each g 2 G induces
such a map under a free action, and degree is multiplicative, it follows that G
can contain at most one non-trivial element. Hence, the only non-trivial group
which acts on even-dimensional spheres is Z/2 (which certainly has periodic
cohomology, as computed above).

We thus can state in general that any finite group which acts freely on a
sphere has periodic cohomology. This gives us a powerful tool for testing which
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groups can act freely on spheres. For example, consider G = Z/p ⇥ Z/p for p
prime. We can use the Kunneth formula to compute the cohomology of G with
Z/p coe�cients:

Hk(Z/p⇥ Z/p,Z/p) ⇠=
M

i+j=k

Hi(Z/p,Z/p)⌦Hj(Z/p,Z/p) ⇠= (Z/p)k+1

Thus, the cohomology is not periodic, so it follows from the above that
Z/p⇥ Z/p cannot act freely on any sphere. We can use arguments of this sort
to show that any finite abelian group which is not cyclic cannot act freely on
any sphere, as stated in the introduction.

Throughout the rest of the paper, we will introduce new notions which allow
us to expand these techniques to answer similar questions about products of
spheres.

5 Tate Cohomology

The homology and cohomology groups constructed above give rise to sequences
{Hi(G,M)}i2N and {Hi(G,M)}i2N. We introduce a similar construction which
combines these two into one sequence, indexed over Z. This is known as the
Tate cohomology. It is especially useful in studying the cohomology of finite
groups. With that said, we will henceforth assume G is a finite group.

In order to define the Tate cohomology, we extend the notion of a projective
resolution to allow for sequences which extend out in both directions. These are
called complete resolutions.

Definition 5. A complete resolution of Z over ZG is a long exact sequence

· · · ! F1 ! F0 ! F�1 ! . . .

where each Fi is a projective G-module, together with a map ✏ : F0 ! Z,
called the augmentation, such that

· · · ! F2 ! F1 ! F0
✏�! Z

is a projective resolution of Z over ZG in the usual sense.

This definition e↵ectively says that a complete resolution is a long exact
sequence of projective G-modules which becomes a projective resolution of Z
over ZG in su�ciently high degree. Similar to the case of projective resolutions,
it can be shown that complete resolutions are unique up to chain homotopies
which preserve augmentation.

We now introduce Tate cohomology in terms of complete resolutions.

Definition 6. Let G be a finite group and let F be a complete resolution of G
ove ZG. Let
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Ĥi(G,M) = Hi(HomG(F,M))

for i 2 Z. We call Ĥi(G,M) the Tate cohomology of G with coe�cients in

M .

It is clear that Ĥi(G,M) = Hi(G,M) for i > 0. For the negative terms,
suppose we have a projective resolution F of Z over ZG. We can form the
dual resolution F 0 = HomG(

P
F,Z) where

P
F is the suspension of F , i.e.

(
P

F )i = Fi�1. Letting ⌘ denote the dual of the augmentation ✏, this forms a
long exact sequence

0 ! Z
⌘�! F 0

0 ! F 0
1 ! . . .

where each F 0
i is projective and finitely generated. (Long exact sequences of

this form are called backwards projective resolutions.) Thus, if we let F�i = F 0
i�1,

then

. . . F1 F0 F�1 . . .

Z

✏ ⌘

forms a complete resolution of Z over ZG. Moreover, we have

HomG

⇣
HomG

⇣X
F,Z

⌘
,M
⌘
⇠=
X

F ⌦G M

Thus, we have that Ĥi(G,M) = Hi�1(G,M) for i < �1. It is in this
sense that Tate cohomology combines homology and cohomology groups into
one sequence. We have left to describe the Ĥ0 and Ĥ�1 terms.

Recall that we have

H0(G,M) ⇠= MG = M/(m� gm), m 2 M, g 2 G

H0(G,M) ⇠= MG = {m 2 nM | gm = m, g 2 G}

Now, let N =
P

g2G g. We call N the norm element of G. Define a map
↵ : M ! M by m 7! Nm (recall that M is a G-module). Then ↵ factors
through the projection and injection maps M ⇣ MG and MG ,! M as follows

M M

MG MG

↵

↵0

This map ↵0 : MG ! MG gives us a short exact exact sequence
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0 ! Ĥ�1(G,M) ! H0(G,M)
↵0
�! H0(G,M) ! Ĥ0(G,M) ! 0

from which we conclude that

Ĥ�1(G,M) = ker↵0

Ĥ0(G,M) = coker↵0

This allows us to prove the following fact which we will use in the subsequent
developments:

Proposition 2. Let 0 ! A ! B ! C ! 0 be a short exact sequence of

G-modules. Then there is a long exact sequence

· · · ! Ĥi(G,A) ! Ĥi(G,B) ! Ĥi(G,C) ! Ĥi+1(G,A) ! . . .

Proof. Note that for i < �1, this is exactly the usual long exact sequence for
homology. Similarly, for i > 0, this is exactly the usual long exact sequence
for cohomology. Therefore, it is enough to construct the map � : Ĥ�1(G,C) !
Ĥ0(G,A), since the other maps are induced by the maps in the short exact
sequence. To do this, we apply the snake lemma to the following diagram

. . . H1(G,C) H0(G,A) H0(G,B) H0(G,C) 0

0 H0(G,A) H0(G,B) H0(G,C) H1(G,A) . . .

�

↵0 ↵0 ↵0

�

The snake lemma furnishes a map ker↵0 ��! coker↵0, as desired.

Another important property of Tate cohomology which we will make use of
is a phenomenon known as dimension shifting. The case of this property which
we will use is characterized by the following proposition

Proposition 3. Let IG denote the kernel of the augmentation map ✏ : ZG ! Z.
Then for each G-module A and each i 2 Z, we have

Hi+1(G,A) ⇠= Ĥi(G,A⇤) and Ĥi�1(G,A) ⇠= Ĥi(G,A⇤)

where A⇤ = HomZ(IG, A) and A⇤ = IG ⌦Z A.
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6 Exponents

We will now use Tate cohomology to obtain results about the exponent of ho-
mology and cohomology groups, which we will then use to obtain the initial
conjecture in certain special cases. Let M be a Z-module with torsion. We let
expM denote the least positive n 2 Z such that nx = 0 for all x 2 M , and call
expM the exponent of M . We begin this section with a lemma:

Lemma 1. Assume we have a long exact sequence

· · · ! A
f�! B

g�! C ! . . .

such that A, B, and C have finite exponent. Then expB divides expA expC.

Proof. Let a = expA, b = expB, and c = expC. Take any y 2 B. Then by
definition, g(cy) = cg(y) = 0, hence cy 2 ker g, which implies that cy 2 im f .
Thus, there is some x 2 A such that f(x) = cy. But note that af(x) = f(ax) =
f(0) = 0. Hence, acy = 0. Since y was arbitrary, this shows that acy = 0 for all
y 2 B. It follows that b divides ac, as desired.

We are now able to prove the following important theorem due to William
Browder:

Theorem 4 (Browder). Let C be a free connected G-complex of finite length.

Then

1. |G| divides
Qn

i=1 expH
i+1(G,Hi(C))

2. |G| divides
Qn

i=1 expHi+1(G,Hi(C))

Proof. Consider a short exact sequence of G-modules

0 ! A0 ! B ! A1 ! 0

As shown above, this gives us a long exact sequence of Tate cohomology
groups given by

· · · ! Ĥi(G,A0) ! Ĥi(G,B) ! Ĥi(G,A1) ! Ĥi+1(G,A0) ! . . .

From this, we easily see that if Ĥ⇤(G,B) = 0, then Ĥi(G,A1) ⇠= Ĥi+1(G,A0),
for then the above reduces to a family of short exact sequences of the form

0 ! Ĥi(G,A1) ! Ĥi+1(G,A0) ! 0

Now, form a finite free resolution of Z over ZG

Cn ! · · · ! C1 ! C0
✏�! Z
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For each k, let Zk and @Ck denote the kernel and image of the boundary
map Ck ! Ck�1, respectively. Then for each k, we get a short exact sequence

0 ! Zk ! Ck ! @Ck ! 0

immediately from the definitions. Now, observe that Ĥ⇤(G,Ck) = 0 for
all k, since each Ck is a free G-module. Thus, it follows from the above that
Ĥi(G, @Ck) ⇠= Ĥi+1(G,Zk).

Using the definition of homology, we also get a short exact sequence

0 ! @Ck+1 ! Zk ! Hk(C) ! 0

for each k. Form the long exact sequence of Tate cohomology groups

· · · ! Ĥi(G, @Ck+1) ! Ĥi(G,Zk) ! Ĥi(G,Hk(C)) ! Ĥi+1(G, @Ck+1) ! . . .

Using the isomorphism Ĥi(G, @Ck) ⇠= Ĥi+1(G,Zk) from above, we can elim-
itate all the terms with coe�cients in Zk to get

· · · ! Ĥi(G, @Ck+1) ! Ĥi�1(G, @Ck) ! Ĥi(G,Hk(C)) ! Ĥi+1(G, @Ck+1) ! . . .

Using the lemma above, we conclude, for each i > 0 and k � 0, that
exp Ĥi(G, @Ck) divides exp Ĥi+1(G, @Ck) exp Ĥi+1(G,Hk(C)). Now, set i = k
and take the product of both sides over k = 1, . . . , n. From this, we conclude
that

nY

k=1

exp Ĥk(G, @Ck)

exp Ĥk+1(G, @Ck)
divides

nY

k=1

exp Ĥk+1(G,Hk(C))

The product on the left hand side telescopes and we get

nY

k=1

exp Ĥk(G, @Ck)

exp Ĥk+1(G, @Ck)
=

exp Ĥ1(G, @C1)

exp Ĥn+1(G, @Cn+1)
= exp Ĥ1(G, @C1)

The last equality holds because Cn+1 = 0, which implies Ĥn+1(G, @Cn+1 =
0, hence exp Ĥn+1(G, @Cn+1) = 1. Thus, we conclude that

exp Ĥ1(G, @C1) divides
nY

k=1

exp Ĥk+1(G,Hk(C))

Now, recall that the modules {Ck} were constructed as a projective resolu-
tion of Z, hence @C1 = ker ✏ : C0 ! Z, by construction. Thus, 0 ! @C1 !
C0

✏�! Z ! 0 is exact. Equivalently, @C1
⇠= IG. It follows from the dimension

shifting property of Tate cohomology that

Ĥ1(G, @C1) ⇠= Ĥ0(G,Z) = Z/|G|
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The first part of the theorem follows.
To prove the second part, we repeat the same argument using the dual

resolution

0 ! Z ✏�! C0 ! C1 ! · · · ! Cn

with Cn = HomG(Cn,Z). Each Cn is free, since each Cn is free. Now, like
above, letting Zk and �Ck denote the kernel and image of the coboundary map
Ck ! Ck+1, respectively, we get short exact sequences

0 ! Zk ! Ck ! �Ck ! 0

0 ! �Ck�1 ! Zk ! Hk(C)

which yields, for each k > 0, the long exact sequence

· · · ! Ĥi(G,Hk(C)) ! Ĥi+1(G, �Ck�1) ! Ĥi(G, �Ck) ! . . .

Now, by the same argument as above, we get

exp Ĥ�1(G, �C0) divides
nY

k=1

Ĥ�k�2(G,Hk(C))

From the short exact sequence 0 ! Z ✏�! C0 ! �C0 ! 0, we get

Ĥ�1(G, �C0) ⇠= Ĥ0(G,Z) ⇠= Z/|G|

from which the second part of the theorem follows.

The equidimensional case of the main conjecture now follows easily.

Corollary 1. Let G = (Z/p)k. If G acts freely on X =
Qn

i=1 S
m

and trivially

on H⇤(X), then k  n.

Proof. If G acts trivially on H⇤(X), then expHi+1(G,Hi(C)) = p for each i. It
follows from Browder’s theorem that |G| = pk|pn, which implies k  n.

This result requires in addition to the equidimensionality of the spheres that
G act trivially on the homology of the space. This condition is not too restrictive,
however; it is met for all subgroups of topological groups, for example. Adem
and Browder have worked on the case where G does not act trivially on the
homology, but this is out of the scope of this paper.
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