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1 Introduction and Statement of Results

If two functions f, g have independent behavior over some domain D, one would expect that

/fg~ )-f-73,

where (D) is the measure of the domain and f,g are the averages of f and g, respectively. In
contrast, if f(x) is typically large when g(x) is large, then we would expect that

/fQZM(D)‘f‘Q-
D

Hence, this integral provides information about the similarity in the behavior of f and g. We call a
summation or integral of the product f(z)g(z*r) a correlation between f and g with respect to the
operation “x”. In number theory, there are many additive correlations of multiplicative functions
of the following type

Z f(n)f(n+r), where r is an integer.

n<x

The purpose of this paper is to explore the existence of multiplicative correlations of multiplicative
functions with a similar form

Z f(kn)f(In) for integers k, .

n<x

Or more generally, for multiplicative functions fi, ..., f,, and integers ki, ...kn,

ST k)
j=1

n<x

Our approach will be to first derive Dirichlet series whose coefficients are expressions of the form
H;.nzl fj(kjn). Then we will apply Perron’s formula to the resulting Dirichlet series, which allows
one to estimate the summation of the first IV coefficients of a Dirichlet series.

We begin by introducing some notation which will be used throughout this paper.

a1, a2

Definition 1.1. For n = p{'p§ ...p?j, define

a; if p=p;,
517(”) = {

0 else.

Observe that we then have n = Hp p%(M . We chose this notation because our theorems involve
multiple natural numbers and their prime factorizations, thus assigning a Greek letter to each would
likely make it difficult to keep track of what is going on. We will begin by proving the following
theorem



Theorem 2.1 Suppose that f is a multiplicative function and k € N. Then,
if(pép(k)ﬂ")

o f(kn) _ e o f(n)

> T = |17 = >

n=1 plk Z f(pr) n=1
prs

r=0

Applied to the divisor function d(n), for example, this yields the following corollary, which can
also be found in Titchmarsh [Ti, p. 9.

Corollary 2.2 Let k € N. Then,

> ) _ 2o T+ g1 7).
n=1

p
We also prove the following generalization of Theorem 2.1.

Theorem 2.3 Suppose fi, ..., fm are multiplicative functions and ky, ..., ky, € N. For K = H;”:l k;,

pép(kj)+r)

—

i HT:l [

i H;nzlj:i(kjn) _ H r=0 - féorj)m ) i H;n:;bfj(”)
n=1 plK Z j\P n=1
~ prs

We note that the product Hp‘ x here may be replaced by the product Hp over all primes, because
for any prime that does not divide K, the argument of the product evaluates to 1. Although
Theorem 2.1 follows directly from Theorem 2.3, we choose to first present the proof of Theorem
2.1 to demonstrate the proof method in the simplest case.

Applying Theorem 2.3 to a product of two divisor functions, we get the following extension of
Corollary 2.2.

Corollary 2.4 If k,l € N, then for ¢ > 1,

= d(kn)d(in) _ C(9) (= oy (L= 8 (R, + (1 + 8, (k) (1 + 6,(1))
X ‘<<2s>1;[<p Ham 1+p) )

Corollary 2.5 If k,l € N and are coprime, then for o > 1,

5 dlmin) _ : EZ‘; I (1 T 6,(k) (z . 1)) 11 (1 T 6,0) (g . 1)) |

n=1 plk pll

Corollary 2.6 If kq,...,k,, € N, then for K = H;"Zl kj and o > 1,

n=1 ne p|Kp+ (_1)m j= n=1

Z H],l ( j ) _ H p ,u(kj) Zﬂ(ns) .
=1



For odd m, this becomes

whereas for even m,

< 110 pw(kjn s i
ZHJ_I:S( ):<<(<28>) Hp5p+1 [Twtki ) -

n=1 p|lK j=1

Note that if even a single k; is not square free, then the left-hand expressions are all equal
to zero, as p(kjn) = 0 for every n. This is reflected on the right-hand side in the expressions
[17%, u(kj), which are non zero if and only if each k; is square free.

Since u(n)? = |u(n)|, we easily obtain the following corollary from expression (1.1).

Corollary 2.7 If kq,..., k., € N are square free, then for K = Hm kj and o > 1,

il_[}il (k)] ¢(s) ’

n® ((2s) Sop+ 1

n=1 pIK

There are many arithmetical formulas of the above type that could be derived from Theorem
2.3, but we content ourselves with these few cases.
Our next results apply Perron’s formula to some of the Dirichlet series above.

Theorem 3.1 If ki, ...,k € N are square free, then for K =[], k;

Z H lu(kin)| | = % H % x4+ 0 (CK:L‘7/12 10g(:n)> . (1.2)
Jj=1 plK

n<x

Where Ck is a constant dependent on K.

It has been proven [Br| that for a finite set T of primes and an infinite set P of primes, the
proportion of numbers which are square free, divisible by all of the primes in 7', and none of the
primes in P is

2Hp+1 p+1

Although we cannot speak to the case where P is infinite, Theorem 3.1 allows us to put an error
term on this proportion in the case where P is finite

Corollary 3.2 Suppose T and P are finite disjoint sets of primes. Then, the number of square
free numbers up to x which are divisible by every p € T but none of the ¢ € P is

6 1 q
=1L Il i o+ 0 (27 0ka™ 2 log(a).
pe qeP



This proportion is what we would expect, as of the numbers which are not divisible by p?, the
natural density of those still divisible by p is precisely
p—1 1
p2—1 p+1°

To corroborate this result, we wrote code to compute the number of square free primes up to
1000000, and computed the proportion of these which contained various primes.

Filters Count Expected Proportion Expected Proportion

None 607926 607927 1 1
2 405286 405284  0.666669957 0.666666666
3 455946 455945  0.750002467 0.75
5 506604 506605  0.833331688 0.833333333
7 531932 531936  0.874994654 0.875
2,3 303963 303963 0.5 0.5
2,5 337736 337737 0.555554459 0.555555555
2,7 354622 354624  0.583330866 0.583333333

Table 1: Counts of square free primes up to N = 1000000 with various primes filtered out

One may try and identify the smallest error term possible. Assuming the Riemann Hypothesis,
we could get an error bound of O(Cxz'/?*¢log(z)). We can also consider how similar logic may
apply to the k-free numbers (where n is k-free if Vp, n is not divisible by p¥). Of the numbers not
divisible by p*, the the natural density those numbers which are still divisible by is
k—1 _ 1
Po=——.

k o1
We saw that in the case of the square free numbers, this proportion carried forward to the set of
square free numbers. Therefore, we conjecture that of the numbers which are k-free, the natural
density of those divisible by p is the proportion P written above.

Theorem 3.3 If £ € N, then

> " d(kn) = xlog(x)Hp(1) + xHy(1) [ 2y -1+ ) Jp(k) log(p)
MKp+6

2%
(Bp—1) ) TOGT, (1)

where
H,(1) = [J(1 + 6p(k)(1 = p~ 1),
plk

Theorem 3.4 If k,1 € N, then

Zd(kn)d(ln Resy— 1{ (w ) Hy(w )i}—l—O(Ckx‘r’mlog(x))

n<x

= zlog(z

) + 2Py(log(z)) + O(Cryz® O log(x)),



where P, (u) denotes an n'* degree polynomial of u, and

_ - (1 = 0p(k)dp(1)p ™" + (1 + dp(k)) (1 + 6p(1))

p|kl

Corollary 3.5 If k,l € N are coprime, then

> d(kn)d(in) = Res,— 1{4( )4Hk,( )iﬂ}+0(0kx5/6log(1:))

= zlog(z (

)
k(1)
2
where Py (u) is a second degree polynomial of u dependent on p, ¢, and

Ha(1) =] (1 + 0y (k) (i;i)) I1 (1 +0p(l) (il 1)) '

plk pll

) + 2Py (log(x)) + O(Clyz® ®log(z)),

Suppose p, q are distinct primes. Then,

Hyy(1) = <1+5p(p) <§+1)> <1+5q(q) (ZJFD) = (p+fﬁ€1+1)

Therefore, by Corollary 3.5,

>~ dlpn)d(an) = wlog(a)’ s + 2Py (log(a) + O(Cp™ 0g(a).

Hence for large p, ¢, this sum is around 4 times the sum of d(n)?, which is asymptotic to = log(x)3.
Consider that for arbitrary n,

p(n) +2

d@m:(%mﬂ4

) d(n) < 2d(n).

Thus d(pn) = 2d(n) when p,n are coprime, and d(n) < d(pn) < 2d(n) when p|n. Then, for large
primes p, ¢ which do not divide many n, we would expect that in most cases d(pn)d(qn) = 4d(n)?.



2 Dirichlet Series of Multiplicative Correlations

Proof of Theorem 2.1: Because each n € N can be expressed as a unique product of primes,

i f(pr ™) o ST
H r=0 P ) i f(n) _ H r=0 P . H i f(pr) .
plk i f7') = plk i 1) p r=0 P

s prs s prs
For any p which does not divide k, d,(k) = 0, thus
f 6p(k +r)

Z o S(r") o ST e F(0)

H H Z pT‘S = H Z p’rS ) Z p’,"S
p r=0 plk 7=0 ptkr=0

As the n'* term in the right hand sum is the product of the r = &,(n) element of the left hand
sums for each prime. Because f is a multiplicative function,

H f(p5p(k)+5p(n)) (H p5p(k +5p(n)>
i p i _ i f(kn)
— ns — ns - ns

n=1
Proof of Corollary 2.2: By Theorem 2.1, we have that
2L d(pPe k)t i Sp(k) +r+1
“dkn) | = P > = P 2
SN =0
n=1 n=1

plk Zi

ok r+1
rs : : 7S
r=0 p r=0 p

We can compute that for an arbitrary constant c,

Zc—i—?‘_z _ c n pS :c(l—p*S)—i—p*S
—~ rs —~ prs 1— p—s (1 _ p—s)Z (1 _ p—s)2 :

Therefore, for an arbitrary prime p,

o0

> W%“ (Op(k) + D1 —p~*) +p°
P _ mn—5)2
r=0 o r+1 = (1 (_]_pf) —i-)ps = (1—|—5p(k;)(1_p—5))
Z (1 —p5)2



Plugging this back into the above expression, we get

o0

op(k) +7+1
> d(kn ZO pre
2 == | ¢eO=CoIl0+a®a-p).
n=1 plk Z r+ plk

= pTS

Observe that for p t k, we will have (1 4 J,(k)(1 —p~®)) = 1, thus this expression can also be
written as the product over all primes.

As a remark, Titchmarsh [Ti| has an alternate proof of this result where he first considers the
multiplicative function o4(n), defined by
-y

d|n
If @ > 0, then for a power of a prime p¥,
k
1— p(k—i-l)a
k
() = 0" = —
m=0 p
Therefore, for an arbitrary non negative integer m,
00 O_a(pm+r) B i (1 . p(T—l—m—l-l)a)
prs - (1 _ pa)prs

r=0 r=0

1 (i 1 iprerJrl )
(1—=p*) \ ‘=P rs

B 1 1 p(m+1)a
S (1-p) \(A-p)  (1-pr)

1—pos — p(m+1)a + p(m+1)afs
(1=p*) (L =p=#)(1 — p*=*)

Because og = d, the result then follows by applying Theorem 2.1 and taking the limit a — 0.

Proof of Theorem 2.3: For a prime p which does not divide any of the k;,

i IT7 £ ta)+) i [T, fi) Z filp
~ prs —~ prs prs

A prime p does not divide any of the k; if and only if it does not divide K = Hm k;, thus

inj:1 fj(pdp iET) ZH] 1 fi(p Pr(ky)FT)

— P 2T fi(n) = P 2T fi(n)
H Ozw 2 e |l Oifjw P
p|K n= p n=

rs
r=0 p




The proof then follows by taking the same steps as in Theorem 2.1:

Z IT7L £ ()
m=_ " 5 I A
p - fj(pr)m n=1 ne
; prs
X T fi (%) tT)

- pe I fi")
T [ I
P Z j\p p r=0
s prs
B S S (por(Ra)FT)
I £ilkn)
_7; J pr

examples, we will write out this formula for m = 2:

i F»WH) f(p

H r=0 _
fp

For the sake of discussing some basic

(5p(l)+7“)

3
2
®

2. f(kn)f(In
$° S ftin) _

o f(n)?
my DI
n=1 n=1

plkl
TS

Proof of Corollary 2.4: By Theorem 2.3, we have that

e d(pép(k)+r)d(p6p(l)+r)

i d(kn)d(In) _ = P . i d(n)?
- ns & d<pr)2 — ns
n= P Z n=1
r=0 p
io: (0p(k) +7r+1)(6p(1) + 7+ 1)
s H r=0 prs C(S)4
. i (r+1)2 ((2s)
= pT’S
We can compute that for an arbitrary constants a, b, c,
= ar? ar® +br+c br+c = ar
ap”*(1+ p‘s) bp‘s c
+ +
(I=p=)*  (I-p=*)? 1-p-
_ap (L4 p )+ bp (L —p ) (1 —p°)?
(1—ps)?




In the case a = 1,b = 2,c = 1 (which is what we get from (r + 1)?),

i r2+2r+1  po(14p )+ 2p (1 —p )+ (1—p*)? 1+p*

prs - (1 _ p—s)3 (1 _ p—s)S'

r=0

Combining this result with our previous expression, we get that

E(;S 1;[ ( )(2 +0p(k) + 0p(1)p~° + - (1+ S)Uﬁ))(l +0,(0)(1 —p‘s)>
2 ;)8‘; 1;[ ( )(2 + 0p(k) + 6p(1)p~" le(r; 5p)(k))(1 +0p(0)(A — p‘s)>
E(;S 1;[ ( ) (1- 5p(k)5p(l))pz L()l_;; Ip(K)) (1 + 5p(l))) .

Proof of Corollary 2.5: If k,l are coprime, then Vp, §,(k)d, () = 0, thus by Corollary 2.4,

= dlkm)d(in) _ G 7T (e gy e (L= R0 + (14 8,(k) (1 + 3,(0)
2 T <2s>1;[<p H=r T+p) )
(

¢
_ <) 11 <p_s +(1—p) <p‘5 + 0+ 5p(kz)(1 + 5p(l)))>
(

n=1

(1+p~%)

(1+p79)

I ()

As discussed before, the argument of this product is 1 if p does not divide k or [. If k,[ are coprime,
then any other prime either divides k or divides [. Therefore,

S d(k‘nrzzl(ln) _ ggg g (1 + (iz - 1) (6, (k) + (l))> 11 (1 < — ) (6, (k) + 5p(1))>
(

n=1 pll
1))
/-

¢(s)* PP -1

= 1+ 6,(k

<(28)H BRI II{
plk p|l

Proof of Corollary 2.6: For each p|K, at least one k; satisfies d,(k;) > 1. Then, if r > 1, for

this k;, p%(ki)+7 g not square free. Therefore,

p(p Ty =0

9



Then, by Theorem 2.3, we can compute that

i [T, p(p®r k)t
= H;n:1 p(kjn) _ —0 p" ' > pu(n)™
Z{ n };I( iu(pr)m nzz‘{ n
~ prs
[ TR e ™) S
}I_l[( 14 CO7 ; ns
S m oo ( )m
B Hp5+(—1) [Luths) 'ZMZS

As on the first line, only the » = 0 term of the sum in the numerator is nonzero for the reasoning
mentioned above. It is stated in Titchmarsh [Ti] that

Likewise, for even m, u(n)™ = |u(n)|, hence

[T wlkin) — ((s) P’ T
Z ns T ((2s) Hps—l-l jllu(kj) '

n=1 plK

Proof of Corollary 2.7: Consider the 2m integers given by ki, k1, ..., km, km. By Corollary 2.6,

< [T ik (s N\ (B
Z ’ 1ns = CC((QS)) (H psp_|_ 1) (Jl—llﬂ(kj)2> .

n=1 p| K2

p|K? if and only if p|K, thus we can write this as

2T ulkn)? ¢(s) p* s
> " = 209) Hp3+1 ]Hlu(k:j)? :

n=1 plEK

If each k; is square free, then

X T k)| ST wlkin)® ¢(s) p°
nZ:l ns _nz:l ns _C(Zs).p‘Kps—i-l'

10



3 Application of Perron’s Formula

Suppose that

is a Dirichlet series such that a(n) = O(¢)(n)) for some 1(n) which is non-decreasing, and

- (o)

n=1

Perron’s formula [Ti] states that if ¢ > 0 and ¢+ ¢ > 1, z is not an integer, and N is the closest
integer to N, then
an 1

c+iT W ¢
— = — F —d O ————— 3.1
ns 27 Jo_ir (5 +w) w P + (T(O’ +c— 1)0‘) (3.1)

o () o (25

n<x

We are interested in applying this formula for s = 0, hence we will be using ¢ > 1 and computing
the integral by pulling the contour to the left. The expressions we are interested in are in terms of
¢(s), hence we will be calculating the residue of F(s) at s = 1. In order to compute this residue,
we will use the Laurent series for ((s) at s =1 [Ber|, which is given by

((s) = sil +nyk(s—1)k. (3.2)
k=0
Where . i -
_ =Dt log(n)” _ log()
Y= {; n k+1 } (3:3)

We will also need the Taylor series for 1/((2s) at s = 1. Consider that for o > 0.5,
1 & p(n)
eI

This is a uniformly convergent sum, thus the k%" order derivative of this expression is

(_2)k i :U’(n) log(n)k )
n=1

n2s

Each of which is convergent for ¢ > 1. Therefore,

1 o
c@s) kz_ock(s "

Where ¢y = 1/{(2), and generally,

(2" 55 ) log(n)"

Cl —
k! n2

n=1

11



In addition, we will also be using the Taylor series

o TIBE L T,
k=0 k=0
For o > 1,
’g(s)zzlﬁ) SZ;{,ZC(S)<<%1- (3.4)
n=1 n=1

Proof of Theorem 3.1: Denote

As proven in Corollary 2.7, for o > 1,

Pl — SO 7P <0

((2s) ap 1 (2)

- Hg (s).

Note that Hg(s) is analytic everywhere except where p® = —1 for some p|K, which occurs when
s =ilog(p)(m + 27k) k€ Z.

Hence the poles of Hi(s) all occur along the Re{s} = 0 line. We want to compute for ¢ > 1

1 c+iT w 1 c+iT w w
1 Fw)™ dw = - C(w) P z
2mi c—iT w 2mi c—iT C(Qw)

w
p‘Kp +1) w

((s) has a pole of order 1 at s = 1, hence to compute the residue of the integrand at s = 1, we only
need the first term from the Taylor series of the remaining expressions.

((w) =¥ P _CCHK _
Resu=1 3 Fow) " w e LT TrQHp+1

By residue theorem, for b > 1/2,

Res,y_ 1{%.“.%(@}

c+iT b+1T b—1iT c—iT xw
L Lo o ) (G 5 i0wtw0)
" 2m v Jowr w

Take b = (1/2) + 1/ log(x). If In{w} = T and b < Re{w} < ¢, then

w 1
Kp“’p+1:H1_p 1§1|_z[<<1+ ><H< 1/2—1>_CK'
p

p|lK plK

By equation (3.4), for o > b,




For o > 1/2, ((o + it) < tY/¢ ([Ti], pg 115). Therefore,
b+iT C(w) ¥

O LA dw‘ <
i Cw) w KL
And the bottom edge has the same bound. If we consider the left edge, then

b+iT C( ) T C b+Zt xb-l—it
Sw) 2 ) d Hy(w) dt
o Cw) w HEW w‘ ’/Tg 2+ i) b1 i ) ‘

Crxlog(z)
T5/6

2 toue) T | 41/6
C 08lT) ]
S Crrey Og(m)/_T b+ it

< CKa:l/z log(x)Tl/ﬁ.

Therefore,

1 il ¥ 6 CrzxClog(x
— F(w)"—dw = | — 11 ]% z+0 <KT5/6g()> +0 (CKm1/2 1og(x)T1/6) .
K

21t T w

Now, we want to apply Perron’s formula. |u(n)| < 1, hence we can take 1(n) = 1. In addition,

=Ny J i \Mkn 1
Y <Zno— CESE

n=1

Hence we can take o = 1. Taking z to be half of an odd integer, the error terms from Perron’s

formula are
¢ x°
O(T@+c—wa>_O(T@—D>’

O(W%n;ﬂ%w>20<ﬂ?@»’

© (wT(\];[)_xlz\_/D =0 (%) '

Take ¢ = 1+ 1/log(z). Then,

o(men)=o(%57) o(F) =0 (M),

In order to minimize error, we want

xlog(x)
T5/6

=22 log(2)T"® — T =2'/2.

Then, by Perron’s formula,

ST litksn)| = ﬁHpH x+O(CK:c7/1210g(x)).

n<r j=1

13



Proof of Corollary 3.2: Suppose n is a square free, but one of its prime factors is p. Then,
|u(n)] = 1, but |u(pn)| = 0. If n is not square free, then both are 0. In general, if py, ..., p,, are
distinct primes, then H;”:l |(pjn)| = 0 if n contains any of the p; as a prime factor. Therefore, by
Theorem 3.1, we can interpret that

Z H lu(pin)| | = % H pjpj— B @) <CK3:7/12 10g($)) .
J=1 j=1

n<x

is the count of all n < z which are square free and are not divisible by p1, ..., Dp.

Suppose that T and P are disjoint finite sets of primes. Let K = HpeTqueP g and Cg be
the coefficient in error term used in Theorem 3.1. Observe that for any subset of these primes, the
error term coeflicient is less than or equal to this Cx. For any S C T, let

l
6
Vs = 2 | Tt Tt = | 52 IG5 L | o0 (O oeto),

n<x \peS

Then, Ng is the count of all the square free numbers up to & which are not divisible by any g € P
and not divisible by any p € S. We can then compute the number of square free numbers up to x
which are not divisible by ¢ € P but are divisible by all p € T as

> (=1)FINg.
SCT
We want to show that

6 1 q
S 0Ns= | ST ) et0 (2(|T|+1)CK957/12 log(x)) .
SCT pGTp qeP q

Consider the case where |T| = 1, where T'= {p}. Then, S = @ or {p}, thus

6 q 6 P q 7/12
N — N» — | | - | | 2 1
' m QEPQ+1 ! s <P+1>qEPQ+1 v O<CKm og(x))

(1P N[5y 7/12
_<1 p+1> WQ(E)Q—I-l 93+2O(0Kx log(a:))

_ (6 (1 _7 2 7/12
= 7r2<p+1>}6—£q+1 .’L’—|—O(2CK$ 10g(x)).

Suppose true for |T'| = k. Suppose |T'| = k + 1, and select an arbitrary pp € T. If S C T does not
contain pg, then

_ | 6 p q 7/12
Nsugpoy = — H P H ] z+ 0 (C’Ka: log(x))
peSU{po} qeP

Do 6 p q 7/12
= —QH— H —— |z+0 (CKq: log(m))
po+ 1 \m gptl patl

_ Do 7/12
_ (po o 1> Ns + 20 (CKx log(x)) .

14



Thus, we can compute that

S (1BINg = 3 (—1)SINg + 3 (-1)Sv

SCT SCT SCT
poéS po€ES
e ) Ns) + 3 20 (Crea log(a))
po+1 S 2 K g
SCT cT
pogs PoES
1 El 7| 7/12
=—— X p¥Ng|+2%0 (chg log(x))
Pot 1\ scmipo)
1 6
_ 6 1 7] olT] 7/12
el e ele‘! b q]gjq+1 x—i—(? +2 )O(CKx log(fv))
p Po

6 1 q
=5 I o | =+ 0 (U eka™  tog(a).
peT qeP

Where the fourth line follows from our induction hypothesis.

Proof of Theorem 3.3: Denote

2. d(kn
:Zl (ns)

By Corollary 2.2, for o > 1,
F(s) = ¢3(s) [T+ 6,(k)(1 = p7*)) = ((s) Hi(s).
plk

To compute the residue for Perron’s formula, we will need the first two terms of the Taylor series
for Hy(s) about s = 1. Using logarithmic differentiation, we can compute that

/ - 5p(k) log(p)p~* N 5p(k) log(p)
H) = () 2 TS =)~ ) 2 g, (ar — 1)

Thus, we get that

_ - 1) 3,(k) og ()
) = [J0+ 480 -7, D) = H) 3 s Ty

The residue of the expression is thus
w

Resy=1 {CQ(w)Hk(w)z } = 2yHy(1)x + H(1)z + Hp(1)zlog(z) — Hy(1)x
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By residue theorem, for b > 1/2,

et = g ([ L L+ ) (o) ae

Take b = (1/2) +1/log(x). If Im{w} = £T and b < Re{w} < ¢, then

He(w)] = | L0+ 6091 = p=*)| < [T+ 601+ p72)) = C
plk plk

Then, we have that

b+iT w 1/3 c c

T oT2/3

c+iT

And the bottom edge has the same bound. If we consider the left edge, then

bHT L T, ‘ bt
/b ¢ (w)Hk(w); dwl = '/_TC (b+2t)Hk(b+zt)b+Z,t dt‘

—iT

(/2 +10g(@) [ | 17
C og(x
K Ok /_T b+ it

< Cpa' 273,

Therefore,
1 c+iT W 9 W C’kx 1
_ B /21/3
3 [, Fl) Resw_l{c (w) Hy,(w) *— }+o <T2/3> —l—O(Ckx T )

Now, we want to apply Perron’s formula. |d(kn)| < (k:n)5, hence take ¢(n) = k%n%. In addition,

Ood(kn)_aoo _02 1
nz::l ne -h nl n=1 o) < (0 —1)%

Thus a = 2. Taking x to be half of an odd integer, the error terms from Perron’s formula are

(7o) =0 ()

; <w<2x>x1; 1og<x>) :O (M ;gw)

T W
0 < Tlz—N| ) 0 T )’
We will take ¢ =1+ 1/log(z). Then,
x¢ - zlog(x)? 21+ log(z) Crz®\ [ Cpx
O<T(c—1)2>_0< T <0 T © T2/3 ) \T12/3 )"

In order to minimize error, we want

X

maps =2 AT = T=af?,

16



Then, by Perron’s formula,

»(k) lo
;d(kn) = zlog(z)H(1) + xH(1) (2'7 1+ Z o 5 <)k)(»?;(11) 1)) + O(Cra?3).

p|lK
Proof of Theorem 3.4: Denote
_ 2. d(kn)d(In)
n=1
For o > 1,
_ ((s)* < o ey (L= 0p(R)G ()P + (14 6p(K)) (1 +5p(l))> _ ((s)*
o= oy LI 0 T+0) = g
The Taylor expansion of (*(s) at s = 1 is given by
a_ 1 dy 692 +4dy1 | 497 + 16971 + 472
R O F A (YA PR

1 al a9 as
G- -1 (-2 (s—1)

Then, we can compute

Resq—1 { () Hkl(w)f} = rlog(x)? <H’:§1)>

((2w)
alog(oy? (1200 ) | L) - Ha(1)

+ Ok,l (zlog(x)).

By residue theorem, for b > 1/2,

C(w)4 xw} _1( c+iT b+iT T c— zT)( :L“w>
Resy=1 {C@w)sz(w) Al Gl /CiT —l—/CHT /HT / k1 (w) ” dw.

Note that

_ 1y (L= 0p(R) (1) + (14 dp(k)) (1 + 6p(1))
Hklm—g(p Fo-1) e )
Take b = (1/2) +1/log(x). If [Im{w}| < T and b < Re{w} < ¢, then

Hu(w)| =] (1= 0p(k)Sp(D)p~* + (1 + 8,()) (1 + 5,(1)) '

p+(1-p77)

te (1+p9)
/ 12y L= 0 (RO (DIp ™2 + (14 8p(k) (1 +6,(1) | _
< g ( 12 4 (14 p7 12 =y = Cyy.

Then, we have that

T ¢ (w)* z¥ T*3Cpaclog(x) _ Cra®log(x)
H _— =
/c—i-iT ¢(2w) alw) dw) < T T1/3
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And the bottom edge has the same bound. If we consider the left edge, then

b+iT C(U})4 C b+Zt xb+it
H b+ it — dt
p—ir C(2w) alw ‘ ’ _p C(b+it) Hia ”b‘*‘z’f ‘
(1/2) +log(z) hes
og(w)
< Cux og(x) /_T T dt
< Ckl:vl/Q log(x)T2/3
Therefore,
1 ct+il ¥ C(w)* W
_— F(w)=— = we H, —
270 J o (w)w dw = Res 1{@“(2111) kl(w)w}
Criz€log(z) 1/2 2/3
i) (Tl/g ) (Cklx log(z)T )

|d(kn)| < (kn)®, thus we take 9(n) = (k1)°n?°. In addition,

n=1 n=1
Choose a = 4. Taking x to be half of an odd integer, the error terms from Perron’s formula are
x¢ x¢
O\ =——— =0 ==4——
(7o) =0 (e 77

0 (w(l’r)x;" log(ﬂf)) _0 (xH%TlOg(w)) 7

o(ratsr) o ()

We will take ¢ =1+ 1/log(z). Then,

n=1

o () o (M) <o (). o (M) - (H5).

In order to minimize error, we want

rlog(x)
T1/3

= 1/QIOg( )T2/3 — T =22

Then, by Perron’s formula,

Z d(kn)d(In) = Resy=1 {EE;UU);; Hkl(w)l;u} + O(Cyz®/ log(x)).

n<x

Proof of Corollary 3.5: By Corollary 2.5, Hy;(1) simplifies to

Hu() =] (1 + dp(k) (E)) 11 (1 0 (1) (E)) |

plk pll
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A Code

import math
def main():

# Parameters and counts

primes = [2, 3] # List primes to filter out here

N = 1000000 # Select number to count until

square_free = 0 # Count for square frees

sf_without_p = 0 # Count for square frees without the specified primes

# Running the loop
for i in range(N):

# Variables for the loop

square_free_add = 1 # Assume i is square free
without_add =1 # Assume i is indivisible by specified primes
previous_prime = 1 # Variable to keep track of previous prime

cri = math.ceil(i ** (1 / 3)) # Highest factor we need to check is i~{1/3}

while i > cri:

next_prime = prime_factor(i)

if next_prime == previous_prime:
square_free_add = 0O
without_add = 0
break

if next_prime in primes:
without_add = 0

previous_prime = next_prime

i /= previous_prime

# Checking if remainder is equal to previous prime
if i in primes:

without_add = 0
if i == previous_prime:

square_free_add = 0

without_add = 0

# Print out results
print(square_free)
print (sf_without_p)

def prime_factor(n):
if n in [1, 2, 3]:
return n
for i in range(2, math.ceil(math.sqrt(n)) + 1):
ifn¥%i==
return i
return n
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