
APPLICATIONS OF
LINEAR PROGRAMMING

TO APPROXIMATION ALGORITHMS

JACK MANDELL

Abstract. Combinatorial optimization plays a vital role in areas
such as operations research and computer science. When design-
ing algorithms to solve combinatorial optimization problems, it is
important to consider both their accuracy and efficiency at finding
optima. However, many of the natural combinatorial optimiza-
tion problems that arise are known to be NP-hard, so hope for
polynomial-time algorithms is slim. By easing the requirement of
finding true optimal solutions, approximation algorithms provide a
framework for balancing optimally and runtime. In this paper, we
explore how approximation algorithms can be created for various
NP-hard problems by adapting techniques from linear program-
ming.

1. Introduction

A combinatorial optimization problem can be described as

minimize (or, maximize) c(x1, x2 . . . , xn)
subject to (x1, x2 . . . , xn) ∈ Ω

where Ω ⊆ Rn is called the feasible region, and c : Ω → R is an
objective function to be optimized. We say that any x ∈ Ω is a
feasible solution to the problem.
To motivate a framework for describing problems in combinatorial

optimization, we will define a set of optimizations problems known as
Minimum Weight Vertex Cover. We first define a concept in graph
theory.

Definition 1.1. Let G = (V,E) be a graph with V = [n] and let
C ⊆ V . C is a vertex cover if for any {i, j} ∈ E, either i ∈ C or
j ∈ C.

Example 1.2. Minimum Weight Vertex Cover (Min-WVC):
Given a graph G = (V,E) with non-negative weight function c : V →
R+, find a vertex cover of minimum total weight.

1

2 JACK MANDELL

Note that Min-WVC is not just a single combinatorial optimiza-
tion problem, but really an infinite set of combinatorial optimization
problems: there is a different combinatorial optimization problem for
each different choice of graph G and cost function c. We would like to
define a framework that captures this idea.

We say that a class of combinatorial optimization problems Π is a
set of optimization problems that share a common structure and can
be parameterized by a set of input values. We call any assignment
of these input values an instance. If I is an instance of Π, we let
optΠ(I) be the optimal value of Π, or opt(I) if Π is understood. To
demonstrate how the terminology is used in practice, we apply it to
the class Min-WVC.

In the above example, Π is Min-WVC, and instance I is a graph
G = (V,E) together with a cost function c on the vertices. Ω is the
set of all vertex covers, and optΠ(I) is the weight of the optimal vertex
cover in instance I.

If A is an algorithm to solve a class of optimization problems Π, and
A(I) is the output value produced by A in instance I, then ideally,
we would like that opt(I) = A(I). Instead, for an approximation algo-
rithm, we allow A(I) to be ”close” to opt(I). To quantify how exact
the algorithm is, we use the concept of a performance ratio. This will
give an measure of the worst-case inaccuracy.

Definition 1.3. The performance ratio of an approximation algo-
rithm A for optimization problem Π is defined as

r(A) := sup
I

A(I)

opt(I)

if Π is a class of minimization problems, and

r(A) := inf
I

opt(I)

A(I)

if Π is a class of maximization problems.

Note that the performance ratio gives a bound on the worst case
performance of A, which is typically of most concern to computer sci-
entists. While this definition captures the algorithm’s performance
quite nicely, it is often too difficult to show some number is indeed the
performance ratio. This involves constructing instances I such that
the ratio of A(I) to opt(I) is arbitrarily close to r(A). However, the
entire premise of approximation algorithm theory assumed that opt(I)
is too hard to calculate, and so it would then be impossible to calcu-
late the ratio. The performance ratio, however, motivates the following

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 3

weaker definition which is used in practice to analyze the performance
of approximation algorithms.

Definition 1.4. Let k ≥ 1. A algorithm A is a k-factor approxima-
tion for Π if for any instance I,

A(I) ≤ k · opt(I) (1.1)

if Π is a class of minimization problems, and

opt(I) ≤ k · A(I) (1.2)

if Π is a class of maximization problems.

Consider the minimization form first of the k-factor approximation.
If we divide by opt(I) on both sides of (1.1), then we obtain

A(I)

opt(I)
≤ k

This happens to look very similar to the definition of the performance
ratio. Because we are only looking for an upper bound (as opposed to
the least upper bound) of the ratios of A(I)/opt(I), calculating opt(I)
is not needed, and this is exactly why this definition is more practical.
In this paper, we will focus on finding approximation algorithms for
minimization problems, so finding k that satisfies (1.1) will be our
main goal.

So far, we have defined accuracy of an approximation, and now we
will need to discuss runtime. The notion of runtime of an approxi-
mation algorithm depends on the computational model at which the
algorithm is defined. At a low level, there is with a Turing Machine,
and at the high level, there is in terms of pseudocode. To truly define
runtime, one must utilize the framework of Turing Machines, which can
be used to define time complexity classes of P and NP. For the purpose
of this paper, we will not resort to this level of detail. The level of pseu-
docode will suffice. If an algorithm is written as pseudocode, we define
the runtime as the number of statements, such as logical comparisons or
binary operations, that make up the algorithm. For an approximation
algorithm A, we define the worst-case runtime on instance size n as the
maximum runtime over all instances I with size n. This function of n
will denote the time complexity of A. Lastly, an approximation al-
gorithm runs in polynomial time if the time complexity is a polynomial
in n.

Given an optimization problem, how does one go about creating k -
factor approximation algorithms? The general technique that we will
explore in this paper is as follows: for a combinatorial optimization
problem, it is first posed as an integer linear program. This framework

4 JACK MANDELL

allows one to define a cost function c and a set of linear inequality
constraints that will define Ω. For the majority of the paper, we will use
combinatorial optimization problems that arise in graph theory, which
can be converted into integer linear programs quite naturally. Once the
problem is converted into one of these programs, we can take advantage
of the rich theory and methods from integer and linear programming
to create an approximation algorithm. Two of these methods we will
explore are relaxation and the primal-dual scheme.

Relaxation involves increasing the size of the feasible region Ω to
some Γ ⊇ Ω, where finding the optimum in Γ can be found in polyno-
mial time. The optimal solution in Γ can then be converted, usually
through some sort of rounding technique, into a feasible solution in
Ω, which will be an approximate solution to the original optimization
problem. To ensure the approximation algorithm runs in polynomial
time, it is important to make sure that rounding can also be done
in polynomial time. To analyze an approximation algorithms perfor-
mance, the key will be estimating the loss in optimality that is gener-
ated when converting the optimum in Γ to a feasible solution in Ω.

To show how a k -factor approximation can be obtained, we will use
the following analysis. Suppose an instance I of Π is the problem
c(x∗) = minx∈Ω c(x). Now we relax the problem to Γ ⊇ Ω and let
I ′ denote the instance of the problem that gives c(y∗) = miny∈Γ c(y).
Lastly, we round y∗ to some xA ∈ Ω. We summarize the setup with
the figure below:

Then since Ω ⊆ Γ and we are minimizing over both sets, it follows that
c(y∗) ≤ c(x∗). Hence

c(xA)

c(x∗)
≤ c(xA)

c(y∗)

To use the notation from the beginning of the introduction, we have
that A(I) = c(xA), opt(I) = c(x∗), and opt(I ′) = c(y∗) and so

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 5

A(I)

opt(I)
≤ A(I)

opt(I ′)
(1.3)

Since we are able to obtain opt(I ′) in polynomial time, if we find a k
such that

A(I)

opt(I ′)
≤ k,

for any I, then by (1.3), we have that A(I) ≤ k · opt(I) and so A is
a k -factor approximation for the class of problems Π. We can repeat
the above analysis for the maximization problem as well and obtain a
similar conclusion.

2. Linear Programming

2.1. Preliminaries. A nice class of optimization problems are ones
where the cost function c is linear, and Ω is the intersection of linear
half-spaces. These type of optimization problems can be formulated
into what are known as Linear Programs (LP). If only integer values
in Ω are allowed, then it is called an Integer Linear Program (ILP).
We will see that Min-WVC as well as several other combinatorial
optimization problems can be posed as an ILP, which will form the
basis for constructing approximation algorithms. Any linear program
can be written in standard form as

minimize cTx
subject to Ax ≥ b

x ≥ 0
(2.1)

where A is an m × n matrix with entries in R, and both c and x are
n-dimensional column vectors.

Example 2.1. The following is an example of a linear program

minimize 3x1 + x2

subject to 2x1 + 2x2 ≥ 4
−x1 − x2 ≥ −4
2x1 − x2 ≥ 1
x1, x2 ≥ 0

In this example, we see that the feasible region is a convex polygon in
R2, and in general the feasible region need not be bounded.

6 JACK MANDELL

We will now transform Min-WVC into an ILP. Let G = (V,E) and
V = [n]. If C ⊆ V is the vertex cover with minimum weight, define

xi :=

{
1 if i ∈ C
0 if i /∈ C

Since C is a vertex cover, for any edge {i, j} ∈ E, we must have i ∈ C
or j ∈ C and so xi + xj ≥ 1. Since c(i) is the cost of including vertex
i in the vertex cover, the ILP for Min-WVC can be stated as follows.

minimize
n∑

i=1

c(i)xi

subject to xi + xj ≥ 1 {i, j} ∈ E
xi ∈ {0, 1} i ∈ V

(2.2)

Any LP can be solved in polynomial time. On the other hand, solving
an ILP is NP-hard.

2.2. Relaxation and Rounding.
To find approximation algorithms for problems that can be stated as
an ILP, the process of relaxation and rounding can be applied. An ILP
is first converted into an LP by relaxing integrality conditions. Once
this LP is solved, the solution to the linear program is rounded back
into an approximate solution to the original ILP. We will see that there
are various rounding techniques that can be employed.

2.2.1. Threshold Rounding.
For optimization problems that can be stated as binary integer linear
programs, such as Min-WVC, the condition of xi ∈ {0, 1} can be
relaxed to 0 ≤ xi ≤ 1. We now have the following linear program:

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 7

minimize
n∑

i=1

c(i)xi

subject to xi + xj ≥ 1 {i, j} ∈ E
0 ≤ xi ≤ 1 i ∈ V

(2.3)

Then, if x∗ = (x∗
1, x

∗
2 . . . , x

∗
n) is the solution to (2.3), an approximate

solution to (2.2) can be found by rounding each x∗
i to the nearest inte-

ger, essentially using the threshold 1/2. The algorithm can be stated
as follows.

Algorithm 1 Threshold Rounding Approximation for Min-WVC
1. Convert instance I of Min-WVC into the integer linear program

(2.2)
2. Relax the constraints of (2.2) to form the linear program (2.3)
3. For i ∈ V , let

xA
i :=

{
1 if x∗

i ≥ 0.5
0 if x∗

i < 0.5
4. Output xA = (xA

1 , x
A
2 . . . , xA

n)

Theorem 2.2. Algorithm 1 is a 2-factor approximation algorithm for
Min-WVC.

Proof. First we show that xA is a feasible solution to (2.2). For any
{i, j} ∈ E, we have that x∗

i + x∗
j ≥ 1. So, either x∗

i ≥ 0.5 or x∗
j ≥ 0.5.

Hence, either xA
i = 1 or xA

j = 1, and so the constraints are satisfied.

By step 3 in Algorithm 1, it follows that xA
i ≤ 2x∗

i . Hence

A(I) =
n∑

i=1

c(i)xA
i ≤ 2

n∑
i=1

c(i)x∗
i (2.4)

If optΠ(I) is the optimal solution of (2.2) and optΠ(I
′) is the optimal

solution to (2.3), by (2.4),

A(I)

optΠ(I)
≤ A(I)

optΠ(I ′)
≤ 2 (2.5)

Hence, Algorithm 1 is a 2-factor approximation algorithm.
□

A consequence of Theorem (2.2) is that r(A) ≤ 2. We can actually
show a much stronger conclusion for Algorithm 1.

Theorem 2.3. Algorithm 1 has performance ratio 2.

8 JACK MANDELL

Proof. To do this, we will construct a sequence of instances In, where
A(In)/opt(In) becomes arbitrarily close to 2.

Let Cn denote the cyclic graph of n vertices for n ∈ N. One can think
of this as an n-gon. Then take instance Ik to be C2k+1 together with the
weight function c(i) = 1 for every i ∈ V . Since the weight of each vertex
is the same and the graph is cyclic, it follows that an optimal vertex
cover is C = {1, 3, 5, . . . , 2k+1}, all odd vertices. Hence opt(Ik) = k+1.
But, if we convert the instance Ik into the integer linear program (2.2)
and solve the relaxation (2.3), we obtain that x∗

i =
1
2
for every i ∈ V .

Hence Algorithm 1 rounds all xi to 1, and so A(Ik) = 2k+1. Therefore,

A(Ik)

opt(Ik)
=

2k + 1

k + 1

If we let k → ∞, it follows that r(A) ≥ 2. So, since r(A) ≤ 2 as
previously said, it follows that r(A) = 2.

□

Are there approximation algorithms for Min-WVC that have a bet-
ter performance ratio than 2? In other words, a (2− ϵ)-factor approx-
imation for some ϵ ∈ (0, 1). In fact, if the Unique Games Conjecture
is true, which relates to the approximability of various problems in
Computer Science, then there are no polynomial-time algorithms with
performance ratio better than 2! So, not only is it hard to find exact
algorithms to solve Min-WVC in polynomial time, it is hard to find
good approximation algorithms for Min-WVC in polynomial time!

2.2.2. Iterated Rounding.
One issue that may present when implementing threshold rounding for
some integer linear program is that rounding down a combination of x∗

i

may lead to a violation of one or more constraints. To address this issue,
rounding can be performed in iterations to ensure that constraints are
never violated. We will introduce the Minimum Generalized Spanning
Network Problem to illustrate this method. First, we introduce some
definitions and lemma from graph theory which will be helpful for the
problem definition and construction of the integer linear program.

Definition 2.4. Given a graph G = (V,E) and k ∈ Z. G is k-edge-
connected if G′ = (V,E\F) is connected for any F ⊆ E with |F | < k.

Definition 2.5. Let G = (V,E). A cut of G, denoted by (S, V \S) for
some ∅ ̸= S ⊂ V , is a partition of V . The cut-set of a cut (S, V \ S),
denoted by δG(S), are the set of edges in G with one vertex in each S
and V \ S.

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 9

Example 2.6. Generalized Spanning Network (Min-GSN):
Given a graph G = (V,E) with non-negative cost function c : E → Z+

on edges and k ∈ Z, find a k-edge-connected subgraph of minimum
weight.

Lemma 2.7. G is k-edge-connected if and only if |δG(S)| ≥ k for any
cut (S, V \ S).

Proof. Assume that there exists a cut (S, V \ S) such that |δG(S)| =
l < k. Then deleting these l edges from F makes the subgraph G′

disconnected, which means that G′ can not be k-edge-connected.
Suppose that G is not k-edge-connected. Then there exists some

F ⊆ E with |F | < k such that G′ = (V,E \ F) is disconnected. Let
(H1, . . . , Hm) be the connected components of G′. Let F1 ⊆ F denote
the set of edges with one vertex in H1 and one in Hi for i ̸= 1. Then
F1 = δG(S) ⊆ F where S is the set of vertices in component H1. We
found a cut (S, V \ S) with |δG(S)| < k.

□

We first convert Min-GSN into an integer linear program. Let G′ =
(V, F) denote the optimal subgraph, where F ⊆ E. Note that G′ can be
determined solely by knowing F . Hence, to find the optimal subgraph
we need only determine F . Denote

xe :=

{
1 if e ∈ F
0 if e /∈ F

By lemma (2.7), G′ is k-edge-connected if and only if |δG′(S)| ≥ k
for any cut (S, V \ S). But, |δG′(S)| =

∑
e∈δG(S) xe. Hence, we can

represent Min-GSN in the following integer linear program:

minimize
∑
e∈E

c(e)xe

subject to
∑

e∈δG(S)

xe ≥ k ∅ ≠ S ⊊ V

xe ∈ {0, 1}

(2.6)

We can relax (2.6) to the following linear program:

minimize
∑
e∈E

c(e)xe

subject to
∑

e∈δG(S)

xe ≥ k ∅ ≠ S ⊊ V

0 ≤ xe ≤ 1 e ∈ E

(2.7)

10 JACK MANDELL

Definition 2.8. Let f : 2V → Z. We say that f is weakly supmodular,
if f(V) = 0 and for any A,B ⊆ V

f(A) + f(B) ≤ f(A \B) + f(B \ A)
or

f(A) + f(B) ≤ f(A ∪B) + f(B ∩ A)

We have the following lemma, which will be crucial to the iterated
rounding approximation algorithm.

Lemma 2.9. Let f be weakly supmodular, then any feasible solution
x∗ to

minimize
∑
e∈E

c(e)xe

subject to
∑

e∈δG(S)

xe ≥ f(S) ∅ ≠ S ⊂ V

0 ≤ xe ≤ 1 e ∈ E

(2.8)

has a component x∗
e ≥ 1/3.

We can transform (2.7) into the form (2.8) with f defined as follows:

f(S) :=

{
0 if S = ∅, V
k otherwise

(2.9)

f is a weakly supmodular function. Suppose that we round the xe ≥
1/3 to 1. Then, these edges are now part of the edge set F . We now
write a new linear but for the graph with the edges that have been
added to F deleted from the graph G.

minimize
∑

e∈E\F

c(e)xe

subject to
∑

e∈δ(V,E\F)(S)

xe ≥ f(S)− |δ(V,E\F)(S)| ∅ ̸= S ⊊ V

0 ≤ xe ≤ 1 e ∈ E
(2.10)

Then f(S)− |δ(V,E\F)(S)| is again weakly supmodular, and so Lemma
(2.9) applies. We can re-solve this program and repeat the rounding
step. By formalizing this process into pseudocode, we have the follow-
ing approximation algorithm for Min-GSN.

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 11

Algorithm 2 Iterated Rounding Approximation for Min-GSN
1. Transform Min-GSN into the integer linear program (2.6).
2. Relax the constraints of (2.6) to form the linear program (2.7)
3. Let f be defined as in (2.9), and let F = ∅
4. While F is not k-edge-connected
5. Compute optimal solution x∗ of (2.10)
6. F = F ∪ {x∗

e ∈ x∗|x∗
e ≥ 1/3}

7. Output F

Theorem 2.10. Algorithm 2 is a 3-factor approximation algorithm for
Min-GSN.

Proof. Let Fi denote the edges e added to F after the first i iterations.
Also, let F i = E \Fi. Suppose that the maximum number of iterations
completed is t and so in particular Ft = F . Denote x0 as the solution
to (2.10) with F = ∅ and denote xi as the solution to (2.10) with
F = Fi for i ∈ [t]. Then since we are deleting edges from the graph
each iteration and resolving the linear program (2.10), it follows that
xi−1
e ≤ xi

e for any i ∈ [t] and e ∈ E. Then, since xe = 1 if e ∈ Fi, we
have that

A(I) =
∑
e∈F

c(e) =
∑

e∈Ft−1

c(e) +
∑

e∈F t−1

c(e)

Then for any e ∈ F t−1, it follows that 1 ≤ 3xt−1
e . Hence:

A(I) ≤
∑

e∈Ft−1

c(e) + 3
∑

e∈F t−1

c(e)xt−1
e

Since xt−1
e ≤ xt−2

e

A(I) ≤
∑

e∈Ft−1

c(e) + 3
∑

e∈F t−1

c(e)xt−2
e

If e ∈ Ft−1, but e /∈ Ft−2, then e was added at iteration t − 1. So,
3xt−2

e ≥ 1. So

A(I) ≤
∑

e∈Ft−2

c(e) + 3
∑

e∈F t−2

c(e)xt−2
e

12 JACK MANDELL

Now we repeat this process again but with iteration i = t−3 to obtain

A(I) ≤
∑

e∈Ft−2

c(e) + 3
∑

e∈F t−2

c(e)xt−3
e

≤
∑

e∈Ft−3

c(e) + 3
∑

e∈F t−3

c(e)xt−3
e

By, repeating until going all the way down to i = 0,

≤
∑
e∈F0

c(e) + 3
∑
e∈F t

c(e)x0
e

= 3
∑
e∈E

c(e)x0
e ≤ 3 · opt(I)

Hence Algorithm 2 is a 3-factor approximation. □

2.2.3. Random Rounding.
Round fractional values randomly to an integer. We can obtain pretty
good expected performances, and the algorithms can be derandomized
in practice using conditional expectation.

Definition 2.11. Given a graph G = (V,E), F ⊆ E is an edge cut
if G′ = (V,E \ F) has two connected components.

Example 2.12. Minimum Feasible Cut (Min-FC):
Given a graph G = (V,E) with edge weight c : E → R+, a vertex
s ∈ V , and a set M of pairs of vertices in G, find a subset of V with
the minimum-weight edge cut that contains s but does not contain any
pair in M .

We will first transform Min-FC into an integer linear program. Let
S denote the optimal subset of vertices and F be the minimum-weight
edge cut. Let

yi :=

{
1 if i ∈ S
0 if i /∈ S

xe :=

{
1 if e ∈ F
0 if e /∈ F

To ensure that S does not contain any pair of vertices in M , for any
{i, j} ∈ M , we must have that yi + yj ≤ 1. To ensure that s ∈ V , we
need ys = 1. Lastly, to make sure that F is in fact the set of edges that
corresponds to the edge-cut generated by S, we must have the following
conditions: xe = 1 if and only if (yi, yj) = (1, 0) or (yi, yj) = (0, 1) and

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 13

xe = 0 if and only if (yi, yj) = (0, 0) or (yi, yj) = (1, 1). We can
simplify this condition to xe ≥ |yi − yj|. This inequality can then be
decomposed into two constraints, xe ≥ yi − yj and xe ≥ yj − yi, to
avoid using absolute values in the linear inequality. In summary, we
can represent Min-FC in the following integer linear program:

minimize
∑
e∈E

c(e)xe

subject to xe ≥ yi − yj e = {i, j} ∈ E
xe ≥ yj − yi e = {i, j} ∈ E
yi + yj ≤ 1 {i, j} ∈M
ys = 1
yi, xe ∈ {0, 1} i ∈ V, e ∈ E

(2.11)

We can relax (2.11) to the following linear program:

minimize
∑
e∈E

c(e)xe

subject to xe ≥ yi − yj e = {i, j} ∈ E
xe ≥ yj − yi e = {i, j} ∈ E
yi + yj ≤ 1 {i, j} ∈M
ys = 1
0 ≤ yi, xe ≤ 1 i ∈ V, e ∈ E

(2.12)

We can create an approximation algorithm for Min-FC as follows:

Algorithm 3 Random Rounding Approximation for Min-FC
1. Convert instance I of Min-FC into the integer linear program

(2.11)
2. Relax the constraints of (2.11) to the instance I ′ to form the

linear program (2.12)
3. Generate U ∼ Unif(1/2, 1) and if (x∗, y∗) is the optimal solution

to (2.12), then for i ∈ V let

yAi :=

{
1 if y∗i ≥ U
0 if y∗i < U

4. For e = {i, j} ∈ E, let xA
e = |yAi − yAj |

5. Output (xA, yA)

Theorem 2.13. Algorithm 3 is a 4-factor approximation algorithm for
Min-FC.

Proof. First we show that (xA, yA) is a feasible solution. Since U ≥ 1
2
,

for any edge e = {i, j}, either yi ≥ U or yj ≥ U , but not both. Hence,
only one of yAi or yAj is equal to 1 and so yi + yj ≤ 1. Also, since

14 JACK MANDELL

xA
e := |yAi − yAj |, it follows that both xA

e ≥ yAj − yAi and xA
e ≥ yi − yj.

Now, we show the performance bound. By linearity of expectation,

E

[∑
e∈E

c(e)xA
e

]
=

∑
e∈E

c(e) · E[xA
e]

Fix some e = {i, j} ∈ E. Since xA
e = |yAi − yAj | and yAi , y

A
j ∈ {0, 1}, it

follows that xA
e ∈ {0, 1} and so E[xA

e] = P (xA
e = 1). Since there are

two possible combinations of yAi and yAj that yield xA
e = 1,

P (xA
e = 1) = P (yAi = 1, yAj = 0) + P (yAi = 0, yAj = 1)

We will find a bound on P (yAi = 1, yAj = 0). By construction, yAi = 1

only if y∗i ≥ U and similarly yAj = 0 only if y∗j < U . Hence,

P (yAi = 1, yAj = 0) = P (U ∈ (y∗j , y
∗
i))

Since U is drawn uniformly at random from [1
2
, 1] and yAi − yAj ≤ x∗

e, it
follows that

P (yAi = 1, yAj = 0) ≤ 2x∗
e

We can repeat the above argument with slight modification to show

P (yAi = 0, yAj = 1) ≤ 2x∗
e

as well. Hence, E[xA
e] ≤ 4x∗

e and

E

[∑
e∈E

c(e)xA
e

]
≤ 4

∑
e∈E

c(e)x∗
e = 4 · optΠ(I ′)

E
[∑

e∈E c(e)xA
e

]
optΠ(I)

≤
E
[∑

e∈E c(e)xA
e

]
optΠ(I ′)

≤ 4

□

2.3. Primal-Dual Schema.
A rich theory in linear programming is duality theory. Given a linear
program, known as the primal problem, one can construct a comple-
ment to it, known as the dual linear program. We will see that the
primal and dual linear programs will have a special relationship that
will be useful for constructing approximation algorithms. To motivate
the dual linear program, we will use the example from earlier in the

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 15

paper. Recall Example (2.1):

minimize 3x1 + x2

subject to 2x1 + 2x2 ≥ 4
−x1 − x2 ≥ −4
2x1 − x2 ≥ 1
x1, x2 ≥ 0

(2.13)

One can show that x∗ = (1, 1) and 3x∗
1 + x∗

2 = 4 is the minimum value.
However, instead of thinking about minimizing the objective function,
what if we instead try to maximize lower bounds of the objective func-
tion implied by linear combinations of the constraints? To find lower
bounds on the objective function, we use the fact that any feasible
solution not only satisfies the constraints, but satisfies linear combi-
nations of the constraints with positive coefficients. However, only
certain types of these linear combinations generate a lower bound. We
give an example to demonstrate. Let Ii denote ith inequality of the
linear program (2.13) for i ∈ {1, 2, 3}. Since x∗ is a feasible solution, it
must satisfy Ii for all i and in particular I1 +

1
2
I2. Hence,

(2x1 + 2x2) +
1

2
(−x1 − x2) ≥ 4 +

1

2
(−4)

Therefore 3
2
x1 + x2 ≥ 2. Since the the xi are non-negative, we have

3x1 + x2 ≥
3

2
x1 + x2 ≥ 2

This means the minimum value must be at least 2. This linear com-
bination gave us a lower bound on the optimal value because of two
reasons. Firstly, I1 +

1
2
I2 is a linear combination with non-negative

coefficients. This ensured the signs on the inequalities were preserved.
Secondly, the coefficient in front of each xi in I1 +

1
2
I2 was less than

or equal to the coefficient of xi in the objective function, for i = 1, 2.
Hence, if y1I1 + y2I2 + y3I3 is to give a lower bound on the objective
function of (2.13), the yi must satsify

2y1 − y2 + 2y3 ≤ 3
2y1 − y2 − y3 ≤ 1
y1, y2, y3 ≥ 0

16 JACK MANDELL

To maximize the lower bound, we then generate the linear program

maximize 4y1 − 4y2 + y3
subject to 2y1 − y2 + 2y3 ≤ 3

2y1 − y2 − y3 ≤ 1
y1, y2, y3 ≥ 0

(2.14)

Linear program (2.14) is known as the dual of linear program (2.13).
If we recall the standard form primal

minimize cTx
subject to Ax ≥ b

x ≥ 0
(2.15)

then the dual linear program is

maximize bTy
subject to ATy ≤ c

y ≥ 0
(2.16)

Theorem 2.14 (Weak Duality Theorem). If x and y are feasible so-
lutions to linear programs (2.15) and (2.16), respectively, then we have
that cTx ≥ bTy.

Proof. Since x and y are feasible, we have that

cTx ≥ (ATy)Tx = yTAx ≥ yT b = (yT b)T = bTy (2.17)

□

Theorem 2.15 (Strong Duality Theorem). The primal problem has a
finite optimum iff its dual has a finite optimum. The optimal values
are the same.

The proof of the above theorem is not hard, but is tedious. It involves
the use of Gaussian Elimination to eliminate variables from the linear
program. We omit this from the paper.

We can use Weak and Strong Duality to derive the complementary
slackness conditions, which test whether two given feasible solutions
x and y of the primal and dual linear program are optimal. These
conditions will play a major role in the primal-dual scheme.

Definition 2.16. If x and y are feasible solutions to linear programs
(2.15) and (2.16), we say that x and y satisfy the complementary
slackness conditions if
(1) xj > 0 =⇒ (ATy)j = cj
(2) yi > 0 =⇒ (Ax)i = bi

The conditions (1) and (2) are also known as the primal and dual com-
plementary slackness conditions, respectively. We say that a constraint
is tight if equality holds.

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 17

Lemma 2.17. x and y are feasible solutions to linear programs (2.15)
and (2.16) that satisfy the complementary slackness conditions if and
only if x and y are optimal solutions.

Proof. For any component xj of x, we must have by complimentary
slackness that xj(c − ATy)j = 0. Since if xj = 0, then done, and if
xj > 0, then (c− ATy)j = 0 is assumed. Hence,

n∑
j=1

xj(c− ATy)j = 0

The above is equivalent to xT (c−ATy) = 0. Therefore, cTx = (ATy)Tx
and the first inequality in the proof of the Weak Duality Theorem
becomes equality. We can show by a similar argument using the dual
complementary slackness conditions that yTAx = yT b. So, the last
inequality of the proof of Weak Duality becomes equality, and so cTx =
bTy. By Strong Duality, x and y are hence optimal solutions.

For the opposite direction, since x and y are optimal and hence
feasible, cTx = bTy, and so by the proof of Weak Duality, we imme-
diately obtain cTx = (ATy)Tx and yTAx = yT b. We will just show
that the primal complimentary slackness condition follow from here, as
the dual complementary slackness conditions are similar in argument.
cTx = (ATy)Tx is equivalent to xT (c − ATy) = 0. Since this inner
product of vectors with non-negative entries equals zero, it must be
the case that xj(c − ATy)j = 0 for all j ∈ [n]. Therefore, if xj > 0,
then (c− ATy)j = 0.

□

The general idea behind the primal-dual scheme is to first start out
with some infeasible solution x to the primal problem and some feasible
solution y to the dual problem. We then will iteratively improve the
dual solution y and adjust the x solution in response until it becomes
feasible. This feasible x solution after iterating will be the approximate
solution to the optimization problem. To formally define the primal-
dual scheme, we will use the Minimum Hitting Set Problem.

Example 2.18. Minimum Hitting Set (Min-HS):
Given subsets T1, T2, . . . , Tp of a ground set E and a non-negative
weight function c : E → Q+, find a set A ⊆ E, such that A ∩ Ti ̸= ∅
for all i ∈ [p] and the cost

∑
e∈A c(e) is minimized.

Due to the structure of the above problem, many optimization prob-
lems can be easily posed as an instance of Min-HS. By writing the
primal-dual scheme in this general case, we need only to write an op-
timization problem as an instance of Min-HS, and the primal-dual

18 JACK MANDELL

approximation algorithm will follow. We will demonstrate this idea
later on by converting the problem Minimum Feedback Vertex Set into
an instance of Min-HS. Since performance analysis will be done for
the general problem, it will be easy to analyze the performance of the
algorithm for any instance. As usual, denote xe by

xe :=

{
1 if e ∈ A
0 if e /∈ A

and so the integer linear program for Min-FVS can be written as
follows:

minimize
∑
e∈E

c(e)xe

subject to
∑
e∈Ti

xe ≥ 1 ∀i ∈ [p]

xe ∈ {0, 1}

(2.18)

The dual of the relaxation of the integer linear program (2.18) can thus
be written as

maximize

p∑
i=1

yi

subject to
∑
i:e∈Ti

yi ≤ c(e) ∀e ∈ E

yi ≥ 0

(2.19)

We now motivate the primal-dual scheme algorithm. By applying the
definitions, the primal and dual complementary slackness conditions
are

xe > 0 =⇒
∑
i:e∈Ti

yi = ce

yi > 0 =⇒
∑
e∈Ti

xe = 1

Suppose we start out with x = (0, 0, . . . , 0), an infeasible solution to
(2.18), and also start with y = (0, 0, . . . , 0). Then there must exist
some violated constraint in primal. More specifically, there is some
k ∈ [p] such that

∑
e∈Tk

xe = 0 (Currently, this holds for any k ∈ [p]).
By definition, yk = 0 in the dual program. If yk is increased, then the
dual solution y improves as the dual is a maximization problem. So,
after increasing yk just enough, there will be some e ∈ Tk, such that∑

i:e∈Ti
yi = c(e). To make sure the improved y is still feasible, we need

to make sure that the constraints are still met. Since yk = 0, we have

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 19

that for all e ∈ E, the feasible solution y satisfies∑
i ̸=k:e∈Ti

yi ≤ c(e)

Then the maximum that yk can be while ensuring that y is still feasible
is the distance to the ”closest” constraint. In other words,

yk = min
e∈Tk

{
ce −

∑
i ̸=k:e∈Ti

yi

}
We then repeat this process until x is a feasible solution. Formally, the
primal-dual scheme can be constructed as follows:

Algorithm 4 General Primal-Dual Scheme for Min-HS
1. Let y = 0 and A = ∅
2. While there exists some k ∈ [p] such that A ∩ Tk = ∅
3. Increase yk until there is some e ∈ Tk such that

∑
i:e∈Ti

yi = c(e)
4. A← A ∪ {e}
5. Output A

To demonstrate how the algorithm works, we give the example below.

Example 2.19. Let E = {1, 2, 3, 4, 5}, T1 = {1, 2}, T2 = {2, 3}, T3 =
{1, 4, 5}, and lastly define c(e) = e for any e ∈ E. Then, it is easy to
see that the optimal hitting set is A = {1, 2}. By applying the general
dual program formulation (2.22) to this instance of Min-HS, we obtain
the following linear program:

maximize y1 + y2 + y3
subject to y1 + y3 ≤ 1

y1 + y2 ≤ 2
y2 ≤ 3
y3 ≤ 4
y3 ≤ 5
y1, y2, y3 ≥ 0

(2.20)

Now we begin the algorithm. Start with y = (0, 0, 0) and A = ∅.
Iteration 1: Since A∩Tk = ∅ for all k ∈ {1, 2, 3} currently, suppose

we begin by choosing k = 1. Note that since y1 is in the first two
constraints of (2.20) and all components of y are zero, the maximum
we can increase y1 to without violating any constraints is y1 = 1. When
we do this, the first constraint, which corresponds to e = 1, becomes
tight. Hence, we add e = 1 to A and so A = {1}.

Iteration 2: Since 1 ∈ T1 and 1 ∈ T3, the only set not hit yet is T2.
Hence, we are only left to choose k = 2. Note that since y2 is in the

20 JACK MANDELL

second and third constraints of (2.20) and y1 = 1, the maximum we
can increase y2 to without violating any constraints is y2 = 1. When
we do this, the second constraint, which corresponds to e = 2, becomes
tight. Hence, we had e = 2 to A and so A = {1, 2}.

Since all the Tk are hit, we have found an approximate solution to
the problem: A = {1, 2}. In this case, A(I) = opt(I). However, if we
chose a different k instead of k = 1 in the first iteration, we would have
ended up with a non-optimal solution as our approximate solution.

Theorem 2.20. Let k = maxi∈[p] |Ti|. Algorithm 4 is a k-factor ap-
proximation for Min-HS.

Proof.

A(I) =
∑
e∈E

c(e)xA
e

=
∑
e∈A

c(e)

But edge e was only added to the set A when the corresponding dual
constraint in (2.22) was tight. In other words, c(e) =

∑
i:e∈Te

yi, where
the yi are the values of the dual solution after the algorithm ends.
Hence,

A(I) =
∑
e∈A

∑
i:e∈Ti

yi

We can then rearrange the summation in the above expression

A(I) =

p∑
i=1

∑
e:e∈Ti∩A

yi

=

p∑
i=1

|Ti ∩ A|yi

Let k = maxi∈[p] |Ti|. Then since |Ti ∩ A| ≤ |Ti| ≤ k,

≤ k

p∑
i=1

yi

Recall that
∑p

i=1 yi is the objective function of the dual linear program
(2.22), and so by the Weak Duality Theorem

∑p
i=1 yi ≤ opt where opt

is the optimal value of the relaxation of (2.18). It follows that∑
e∈E

c(e)xe ≤ k · opt

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 21

and so Algorithm 4 is a k-factor approximation with k = maxi∈[p] |Ti|
□

We will now show how we can transform an optimization problem
from graph theory into an instance of Min-HS, even if it may not look
like one at first. The problem we will use is Minimum Feedback Vertex
Set. In order to give the problem definition, we include some prelimi-
naries from graph theory which will be helpful in the construction.

Definition 2.21. Let G = (V,E) be a directed graph. C ⊆ V is
called a feedback vertex set if the subgraph generated by removing
all vertices in C (as well as edges that contain vertices in C) is acyclic.

Definition 2.22. A (directed) graph G = (V,E) is bipartite if V can
be partitioned into two sets such no two vertices in the same partition
are adjacent.

Definition 2.23. Suppose G is a bipartite graph, with (S, V \S) being
the partition of vertices. G is a bipartite tournament if for any u ∈ S
and v ∈ V \ S, either (u, v) ∈ E or (v, u) ∈ E, but not both.

Example 2.24. Minimum Feedback Vertex Set (Min-FVS):
Given a bipartite tournament G = (V,E) with non-negative vertex
weight c : V → N, find a feedback vertex set of minimum weight.

The following Lemma will be the key tool which will connect Min-
FVS to Min-HS.

Lemma 2.25. A bipartite tournament G = (V,E) is acyclic if and
only if it contains no cycle of length 4.

Proof. The forward direction is trivial. If the tournament is acyclic,
then in particular, it can not contain any cycles of length 4.

Now suppose that there exists a cycle in G. Let C be a cycle having
vertex path (v1, v2, . . . , vm, v1) with minimal length m. We will show
that m = 4 by showing all other possibilities of m give contradictions.
Since G is bipartite, we need only consider m that are even. If m = 2,
then this does not give a valid cycle, as this means that (v1, v2) and
(v2, v1) are both edges in G, which contradicts that G is a bipartite
tournament. Suppose that m ≥ 6. Then since G is a bipartite tourna-
ment, there must exist some edge between v3 and vm, either (v3, vm) or
(vm, v3), but not both. First suppose that the edge is (vm, v3). Then
(v3, v4, . . . , vm, v3) is a cycle of strictly smaller length, which contradicts
that C is minimal. Suppose the edge is (v3, vm). Then (v1, v2, v3, vm, v1)
is a cycle of length 4, which contradicts that C is minimal. Hence, if
G is acyclic, there must be no cycles of length 4.

□

22 JACK MANDELL

Constructing the integer linear program for Min-FVS will be straight-
forward if we use Lemma (2.25). Note that in this case, the ground set
is V and the hitting sets are all 4-cycles in the graph G. Denote C the
set of all 4-cycles in G. Hence, by adapting the integer linear program
(2.22) to Min-FVS, we have the following integer linear program:

minimize
∑
v∈V

c(v)xv

subject to
∑
v∈C

xv ≥ 1 ∀C ∈ C

xv ∈ {0, 1}

(2.21)

Now, we find the dual of the relaxation of linear program (2.21).

maximize
∑
C∈C

yC

subject to
∑

C:v∈C

yi ≤ c(v) ∀v ∈ V

yC ≥ 0

(2.22)

We skip writing the primal-dual algorithm for Min-FVS, as it is essen-
tially the same as Algorithm 4. However, we include the short analysis
of the performance of the primal-dual algorithm when adapted to Min-
FVS

Theorem 2.26. The primal-dual scheme applied to Min-FVS is a
4-factor approximation algorithm for Min-FVS.

Proof. Note that the hitting sets are 4-cycles, so maxC∈C |C| = 4. By
Theorem (2.20), The algorithm is thus a 4-factor approximation. □

APPLICATIONS OF LP TO APPROXIMATION ALGORITHMS 23

References

1. Dinitz, Michael. 601.435/635 Approximation Algorithms, 2019.
https://www.cs.jhu.edu/ mdinitz/classes/ApproxAlgorithms/Spring2019/
Lectures /lecture19.pdf

2. Du, Ding-Zhu, Ker-I Ko, and Xiaodong Hu. Design and Analysis of Approxi-
mation Algorithms, 62, Springer, New York, 2012.

3. Goemans, Michel X., and David P. Williamson, The Primal-Dual Method for
Approximation Algorithms and its Application to Network Design Problems, in
Approximation Algorithms, 1997

4. Korte, Bernhard, and Jens Vygen. Combinatorial Optimization, Springer,
Berlin, 2000.

5. Vazirani, Vijay V. Approximation Algorithms, Springer, Berlin, 2011.
6. Zuylen, Anke van. Linear programming based approximation algorithms for

feedback set problems in bipartite tournaments. Theoretical Computer Science.
412 (2011), 23, 2556-2561.

