
A Number of Perspectives on Signal Recovery

William Hagerstrom

Abstract

We discuss signal recovery in three settings: ℤ𝑑
𝑁 , ℝ𝑑 , and the 𝑆𝑈 (2) nonlinear Fourier transform series. In

particular, we explore the relationship between uncertainty principles, unique signal recovery, and restriction theory.

In ℤ𝑑
𝑁 and ℝ𝑑 , we provide mechanisms for recovery.

1 Introduction

Heuristically, the uncertainty principle in harmonic analysis is the notion that a function and its Fourier transform

cannot both be "simple." While this concept can take different rigorous forms (see [5]), one version in the setting of

ℤ𝑑
𝑁 is that |supp(𝑓 )||supp(𝑓 )| ≥ 𝑁𝑑 . The study of the connection between uncertainty principles of this type and

signal recovery was elucidated in [2].

Restriction theory is the study of sets 𝑆 ⊂ 𝐺 for which an inequality of the form

||𝑓 ||𝐿𝑞(𝑆) ≲ ||𝑓 ||𝐿𝑝(𝐺) (1)

holds. For example, the Hausdorff-Young inequality states that 𝑆 = 𝐺 = ℝ𝑑 satisfies (1) for 𝑝 < 2 and 𝑞 = 𝑝′. The

authors of [6] introduced restriction theory to the problem of signal recovery by showing that improvements can be

made to uncertainty principles when 𝑓 is supported in a set satisfying a nontrivial restriction estimate. This connection

has been further developed in [4] and [7].

In Sections 2 and 3, we provide an overview of the results that can be obtained by these concepts in the setting of

ℤ𝑑
𝑁 and ℝ𝑑 . In Section 4, we introduce the 𝑆𝑈 (2) nonlinear Fourier series (NLFS) from [1]. While there are technical

difficulties in translating arguments to the nonlinear setting, we use signal recovery on 𝑆1 to prove a unique recovery

result for the NLFS.

Remark. Some readers may be interested in Appendix 6.4, which covers an extension of Carleson’s theorem to ℝ𝑑 .

While some sources ([3] and [8]) allude to the result proven here, the author was unable to find a satisfactory proof in

the literature.
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2 Signal Recovery in ℤ𝑑
𝑁

2.1 Summary of the Fourier Transform in ℤ𝑑
𝑁

Throughout this section, a signal will refer to a function 𝑓 ∶ ℤ𝑑
𝑁 → ℂ. We use 𝜒 ∶ ℤ𝑁 → ℂ to denote the character

𝜒(𝑎) = 𝑒−2𝜋𝑖𝑎∕𝑁 . Copying conventions from Euclidean space, we define 𝑥 ⋅ 𝑦 =
∑𝑑

𝑖=1 𝑥𝑖𝑦𝑖 for 𝑥, 𝑦 ∈ ℤ𝑑
𝑁 . We are now

ready to introduce the Fourier transform.

Definition For a signal 𝑓 , we define 𝑓 ∶ ℤ𝑑
𝑁 → ℂ, the Fourier transform of 𝑓 , by

𝑓 (𝑚) = 𝑁−𝑑∕2
∑

𝑥∈ℤ𝑑
𝑁

𝜒(−𝑥 ⋅ 𝑚)𝑓 (𝑥).

Remark. It should be noted that the choice of normalizing constant in the definition above varies throughout the liter-

ature. We choose 𝑁−𝑑∕2 so that the Plancherel theorem has constant 1.

An essential result for the Fourier transform is the inversion theorem.

Theorem 1 (Fourier Inversion) For a signal 𝑓 , we have

𝑓 (𝑥) = 𝑁−𝑑∕2
∑

𝑚∈ℤ𝑑
𝑁

𝜒(𝑥 ⋅ 𝑚)𝑓 (𝑚).

PROOF: Plugging in the definition of 𝑓 gives us

𝑁−𝑑∕2
∑

𝑚∈ℤ𝑑
𝑁

𝜒(𝑥 ⋅ 𝑚)𝑓 (𝑚) = 𝑁−𝑑
∑

𝑚∈ℤ𝑑
𝑁

∑

𝑦∈ℤ𝑑
𝑁

𝜒(−𝑦 ⋅ 𝑚)𝜒(𝑥 ⋅ 𝑚)𝑓 (𝑦).

Interchanging the order of summation and using properties of of the exponential, the above is equal to

𝑁−𝑑
∑

𝑦∈ℤ𝑑
𝑁

𝑓 (𝑦)
∑

𝑚∈ℤ𝑑
𝑛

𝜒(𝑚 ⋅ (𝑥 − 𝑦)).

As shown in Appendix 6.1, the inner sum is nonzero only if 𝑥 = 𝑦. In this case it is 𝑁𝑑 . Hence, the sums collapse to

𝑓 (𝑥). This is the desired result. □

Remark. If we let {𝑋1,… , 𝑋𝑁𝑑} be some enumeration ofℤ𝑑
𝑁 and view a function 𝑓 as the vector (𝑓 (𝑋1),… , 𝑓 (𝑋𝑁𝑑 )),

then the operator mapping 𝑓 to 𝑓 has the matrix representation 𝑓 = 𝐴𝑓 , where 𝐴𝑖𝑗 = 𝑁−𝑑∕2𝜒(−𝑋𝑖 ⋅𝑋𝑗), 1 ≤ 𝑖, 𝑗 ≤

𝑁𝑑 . In light of this, the proof above shows that 𝐴 is an invertible matrix and (𝐴−1)𝑖𝑗 = 𝑁−𝑑∕2𝜒(𝑋𝑖 ⋅ 𝑋𝑗). This

perspective was explored systematically in [9].

As alluded to, we have the following result known as the Plancherel theorem.

Theorem 2 (Plancherel) For a signal 𝑓 , we have ||𝑓 ||𝐿2(ℤ𝑑
𝑁 ) = ||𝑓 ||𝐿2(ℤ2

𝑁 ).
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PROOF: We will work from the Fourier transform side and unwind definitions. We have

||𝑓 ||2
𝐿2(ℤ𝑑

𝑁 )
= 𝑁−𝑑

∑

𝑚∈ℤ𝑑
𝑁

⎛

⎜

⎜

⎝

∑

𝑥∈ℤ𝑑
𝑁

𝜒(−𝑥 ⋅ 𝑚)𝑓 (𝑥)
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∑

𝑦∈ℤ𝑑
𝑁

𝜒(−𝑦 ⋅ 𝑚)𝑓 (𝑦)
⎞

⎟

⎟

⎠

= 𝑁−𝑑
∑

𝑥,𝑦∈ℤ𝑑
𝑁

𝑓 (𝑥)𝑓 (𝑦)
∑

𝑚∈ℤ𝑑
𝑁

𝜒(𝑚 ⋅ (𝑦 − 𝑥))

The second line is achieved by the properties of the exponential and interchanging the order of summation. As in

the proof of the inversion theorem, the inner sum is 𝑁𝑑 when 𝑦 = 𝑥 and 0 otherwise. So, the last line becomes
∑

𝑥∈ℤ𝑑
𝑁
|𝑓 (𝑥)|2 = ||𝑓 ||2

𝐿2(ℤ𝑑
𝑁 )

. Taking square roots gives the desired result. □

2.2 Signal Recovery in ℤ𝑑
𝑁

With the necessary machinery now in place, we return to the question that defines the theme of this paper: What

can be known about a signal 𝑓 if some values of 𝑓 are unobserved? For a general signal 𝑓 , the invertibility of the

Fourier transform shows that the loss of any Fourier coefficient 𝑓 (𝑚) will result in the loss of 𝑓 . However, by placing

restrictions 𝑓 , we can obtain a positive result.

Definition The support of a signal 𝑓 is supp(𝑓 ) = {𝑥 ∈ ℤ𝑑
𝑁 ∶ 𝑓 (𝑥) ≠ 0}.

For some signal 𝑓 , let 𝐸 = supp(𝑓 ) and 𝑆 = supp(𝑓 ). To derive a recovery result, we start with the following

computation:

|𝑓 (𝑥)| = 𝑁−𝑑∕2
|

|

|

|

|

∑

𝑚∈𝑆
𝜒(𝑥 ⋅ 𝑚)𝑓 (𝑚)

|

|

|

|

|

≤ 𝑁−𝑑∕2
∑

𝑚∈𝑆
|𝑓 (𝑚)|

≤ 𝑁−𝑑
|𝑆|||𝑓 ||𝐿1(ℤ𝑑

𝑁 ).

In the last step, we bound the sum by the number of terms times the size of the largest term and the bound from Appendix

6.2 that |𝑓 (𝑚)| ≤ 𝑁−𝑑∕2
||𝑓 ||𝐿1(ℤ𝑑

𝑁 ). Summing the inequality over 𝑥 ∈ 𝐸 and noting the the RHS is independent of 𝑥,

we get ||𝑓 ||𝐿1(ℤ𝑑
𝑁 ) ≤ 𝑁−𝑑

|𝑆||𝐸|||𝑓 ||𝐿1(ℤ𝑑
𝑁 ). If 𝑓 is nonzero, we can divide by the 1-norm of 𝑓 to get |𝑆||𝐸| ≥ 𝑁𝑑 .

To summarize, we have proven the following.

Theorem 3 (Uncertainty Principle) If 𝑓 is a nonzero signal, then |supp(𝑓 )||supp(𝑓 )| ≥ 𝑁𝑑 .

Suppose we have a signal 𝑓 with a support of known size |supp(𝑓 )|. If 𝑓 (𝑚) is unobserved for 𝑚 ∈ 𝑆, we will have

unique recovery of 𝑓 if there is no signal 𝑔 ≠ 𝑓 such that 𝑔̂(𝑚) = 𝑓 (𝑚) for 𝑚 ∉ 𝑆 and |supp(𝑔)| = |supp(𝑓 )|. Suppose

some function 𝑔 of this type exists. Consider the function ℎ = 𝑓 − 𝑔. The support of ℎ has size at most 2|supp(𝑓 )| and

the support of ℎ̂ is contained in 𝑆. By Theorem 3, we have 2|supp(𝑓 )|||𝑆| ≥ 𝑁𝑑 . If we suppose that this inequality

does not hold, then the existence of 𝑔 supplies a contradiction. In summary, we have the following recovery result.
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Theorem 4 (Unique Recovery) If 𝑓 is a signal and 𝑓 (𝑚) is unobserved for 𝑚 ∈ 𝑆, then 𝑓 can be uniquely recovered

if |supp(𝑓 )||𝑆| < 𝑁𝑑

2 .

2.3 Recovery Mechanisms in ℤ𝑑
𝑁

It remains to provide a mechanism by which we can recover 𝑓 . In this section, we will explore two methods of recovery.

The first is the Direct Rounding Algorithm (DRA) introduced in [6], which provides recovery in the case that 𝑓 is the

indicator function of some set. The second is Logan’s method from [2], and is a computationally efficient way to recover

general signals 𝑓 . Both require that the bound of Theorem 4 is satisfied.

To state the DRA, we define a rounding function 𝑅 ∶ ℂ → {0, 1} by

𝑅(𝑥) =

⎧

⎪

⎨

⎪

⎩

0 |𝑥| < 1
2

1 |𝑥| ≥ 1
2

.

Theorem 5 (Direct Rounding Algorithm) Let 𝐸 ⊂ ℤ𝑑
𝑁 . If 𝑆 ⊂ ℤ𝑑

𝑁 and |𝑆||𝐸| < 𝑁𝑑

2 , then

1𝐸(𝑥) = 𝑅

(

𝑁−𝑑∕2
∑

𝑚∉𝑆
𝜒(𝑥 ⋅ 𝑚)1̂𝐸(𝑚)

)

.

PROOF: By the Fourier inversion formula,

1𝐸(𝑥) = 𝑁−𝑑∕2
∑

𝑚∉𝑆
𝜒(𝑥 ⋅ 𝑚)1̂𝐸(𝑚) +𝑁−𝑑∕2

∑

𝑚∈𝑆
𝜒(𝑥 ⋅ 𝑚)1̂𝐸(𝑚).

By the ∞-norm bound on 1̂𝐸 , the size of the second sum in bounded by 𝑁−𝑑
|𝑆||𝐸| < 1

2 . So,

|

|

|

|

|

|

1𝐸(𝑥) −𝑁−𝑑∕2
∑

𝑚∉𝑆
𝜒(𝑥 ⋅ 𝑚)1̂𝐸(𝑚)

|

|

|

|

|

|

< 1
2
.

So, 1𝐸(𝑥) = 0 only if 𝑁−𝑑∕2∑
𝑚∉𝑆 𝜒(𝑥 ⋅𝑚)1̂𝐸(𝑚) <

1
2 and 1𝐸(𝑥) = 1 only if 𝑁−𝑑∕2∑

𝑚∉𝑆 𝜒(𝑥 ⋅𝑚)1̂𝐸(𝑚) >
1
2 . Since

1𝐸 takes on only 0 and 1 as values, this implies the result. □

To state Logan’s method, we will make use of the following definition.

Definition For a function 𝑓 ∶ 𝑋 → ℝ≥0 and 𝐴 ⊂ 𝑋, we define argmin𝑥∈𝐴𝑓 (𝑥) to be the set of points 𝑥∗ such that

𝑓 (𝑥∗) ≤ 𝑓 (𝑥) for 𝑥 ∈ 𝐴.

Note that the argmin𝑥∈𝐴𝑓 (𝑥) could be an empty set. For example, argmin𝑥∈(0,1)𝑥 is empty. In Appendix 6.3, we

prove that the argmin used in the the proofs of Theorem 6 and Theorem 9 is nonempty.

Theorem 6 (Logan’s Method) Let 𝑓 be a signal supported in 𝐸 and suppose 𝑓 (𝑚) is unobserved for some set 𝑆 ⊂ ℤ𝑑
𝑁 .

If |𝑆||𝐸|

𝑁𝑑 < 1
2 , then 𝑓 is the only function contained in argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑

𝑁 ). Here, 𝐴 is the set of signals 𝑢 such that
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𝑢̂(𝑚) = 𝑓 (𝑚) for 𝑚 ∉ 𝑆.

PROOF: Let 𝑔 ∈ argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑
𝑁 ). Suppose 𝑔 ≠ 𝑓 and define ℎ = 𝑓 − 𝑔. Then,

||𝑔||𝐿1(ℤ𝑑
𝑁 ) = ||𝑔||𝐿1(𝐸) + ||𝑔||𝐿1(𝐸𝑐 )

= ||𝑓 − ℎ||𝐿1(𝐸) + ||ℎ||𝐿1(𝐸𝑐 )

≥ ||𝑓 ||𝐿1(ℤ𝑑
𝑁 ) + ||ℎ||𝐿1(𝐸𝑐 ) − ||ℎ||𝐿1(𝐸).

The second line follows from the fact that 𝑓 is supported on 𝐸 and the third follows from the triangle inequality. Now,

|ℎ(𝑥)| = 𝑁−𝑑∕2
|

|

|

|

|

∑

𝑚∈𝑆
𝜒(𝑥 ⋅ 𝑚)ℎ̂(𝑚)

|

|

|

|

|

≤ 𝑁−𝑑
|𝑆|||ℎ||𝐿1(ℤ𝑑

𝑁 ).

Summing over 𝐸, we get

||ℎ||𝐿1(𝐸) ≤
|𝑆||𝐸|

𝑁𝑑 ||ℎ||𝐿1(ℤ𝑑
𝑁 )

<
||ℎ||𝐿1(ℤ𝑑

𝑁 )

2
.

But, this implies that ||ℎ||𝐿1(𝐸𝑐 ) − ||ℎ||𝐿1(𝐸) > 0. So, ||𝑔||𝐿1(ℤ𝑑
𝑁 ) > ||𝑓 ||𝐿1(ℤ𝑑

𝑁 ). This contradicts our definition of 𝑔.

So, we must have 𝑓 = 𝑔. □

2.4 Restriction in ℤ𝑑
𝑁

The object of study in this section is the following:

Definition Let 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. A set 𝑆 ⊂ ℤ𝑑
𝑁 satisfies a (𝑝, 𝑞)-restriction estimate with constant 𝐶𝑝,𝑞 if we have

(

1
|𝑆|

∑

𝑚∈𝑆
|𝑓 |𝑞

)1∕𝑞

≤ 𝐶𝑝,𝑞𝑁
−𝑑∕2

||𝑓 ||𝐿𝑝(ℤ𝑑
𝑁 ).

for all signals 𝑓 .

We will see that in the presence of a restriction estimate on a set 𝑆, we can improve on the results from the previous

section. Suppose we have a (𝑝, 2)-restriction on some set 𝑆 with constant 𝐶 . Let 𝑓 be a nonzero signal with support
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in 𝐸 and Fourier support in 𝑆. Plancherel’s theorem, the restriction estimate, and Holder’s inequality give us

||𝑓 ||𝐿2(ℤ𝑑
𝑁 ) = ||𝑓 ||𝐿2(𝑆)

≤ 𝐶|𝑆|1∕2𝑁−𝑑∕2
||𝑓 ||𝐿𝑝(ℤ𝑑

𝑁 )

≤ 𝐶|𝑆|1∕2𝑁−𝑑∕2
||𝑓 ||2−(2∕𝑝)

𝐿2(ℤ𝑑
𝑁 )
||𝑓 ||(2∕𝑝)−1

𝐿1(ℤ𝑑
𝑁 )
.

So,

||𝑓 ||𝐿2(ℤ𝑑
𝑁 ) ≤ 𝐶 ′

|𝑆|𝑝∕(4−2𝑝)𝑁−𝑑𝑝∕(4−2𝑝)
||𝑓 ||𝐿1(ℤ𝑑

𝑁 ). (2)

Applying Holder’s inequality again and dividing by the 2-norm of 𝑓 , we get

1 ≤ 𝐶 ′
|𝑆|𝑝∕(4−2𝑝)𝑁−𝑑𝑝∕(4−2𝑝)

|𝐸|

1∕2.

To summarize, we have the following result:

Theorem 7 (Uncertainty Principle with Restriction) Suppose 𝑆 ⊂ ℤ𝑑
𝑁 satisfies a (𝑝, 2)-restriction estimate with con-

stant 𝐶 . If 𝑓 is a nonzero signal with support 𝐸 and Fourier support in 𝑆, then there is some constant 𝐶 ′ depending

on 𝑝 and 𝐶 such that

|𝐸|

(2∕𝑝)−1
|𝑆| ≥ 𝐶 ′𝑁𝑑 .

In a similar manner to the last section, we will convert Theorem 7 into a unique recovery result.

Theorem 8 Suppose 𝑆 ⊂ ℤ𝑑
𝑁 satisfies a (𝑝, 2)-restriction estimate. Let 𝐶 ′ be as in Theorem 7. Let 𝑓 be a signal

supported in 𝐸. If 𝑓 (𝑚) is unobserved for 𝑚 ∈ 𝑆 and |𝐸|

(2∕𝑝)−1
|𝑆| < 𝐶′𝑁𝑑

2(2∕𝑝)−1 , then 𝑓 can be uniquely recovered.

PROOF: Suppose 𝑔 is a signal with support 𝐹 such that |𝐹 | = |𝐸| and 𝑔̂(𝑚) = 𝑓 (𝑚) for 𝑚 ∉ 𝑆. If 𝑓 ≠ 𝑔, then

ℎ = 𝑓 − 𝑔 is a nonzero signal with support of size at most 2|𝐸| and Fourier support contained in 𝑆. By Theorem 7,

we have

2(2∕𝑝)−1|𝐸|

(2∕𝑝)−1
|𝑆| ≥ 𝐶 ′𝑁𝑑 .

After dividing by 2(2∕𝑝)−1, we see that this contradicts our assumption. Thus, we must have 𝑓 = 𝑔. □

We can also improve Theorem 6 in the presence of restriction.

Theorem 9 (Logan’s Method with Restriction) Suppose 𝑆 ⊂ ℤ𝑑
𝑁 satisfies a (𝑝, 2)-restriction estimate. Let 𝐶 ′ be as in

Theorem 7. Let 𝑓 be a signal and suppose 𝑓 (𝑚) is unobserved for 𝑚 ∈ 𝑆. If 𝐶 ′
|𝐸|

1∕2
|𝑆|𝑝∕(4−2𝑝)𝑁−𝑑𝑝∕(4−2𝑝) < 1

2 ,
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then 𝑓 is the only function contained in argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑
𝑁 ). Here, 𝐴 is the set of signals 𝑢 such that 𝑢̂(𝑚) = 𝑓 (𝑚)

for 𝑚 ∉ 𝑆.

PROOF: As before, let 𝑔 = argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑
𝑁 ), assume that 𝑓 ≠ 𝑔, and let ℎ = 𝑓 − 𝑔 (Again, the existence of 𝑔

follows from Appendix 6.3). Following the same steps as in the proof of Theorem 6, we have

||𝑔||𝐿1(ℤ𝑑
𝑁 ) ≥ ||𝑓 ||𝐿1(ℤ𝑑

𝑁 ) + ||ℎ||𝐿1(𝐸𝑐 ) − ||ℎ||𝐿1(𝐸).

Instead of bounding ℎ pointwise, we use Cauchy-Schwarz and (2) to get

||ℎ||𝐿1(𝐸) ≤ |𝐸|

1∕2
||ℎ||𝐿2(ℤ𝑑

𝑁 )

≤ 𝐶 ′
|𝑆|𝑝∕(4−2𝑝)𝑁−𝑑𝑝∕(4−2𝑝)

||ℎ||𝐿1(ℤ𝑑
𝑁 ).

By assumption, this quantity is strictly bounded by 1
2 ||ℎ||𝐿1(ℤ𝑑

𝑁 ). Thus, ||ℎ||𝐿1(𝐸𝑐 ) − ||ℎ||𝐿1(𝐸) > 0. So, we get the

contradiction ||𝑓 ||𝐿1(ℤ𝑑
𝑁 ) < ||𝑔||𝐿1(ℤ𝑑

𝑁 ). Thus, we must have 𝑓 = 𝑔. □

3 Signal Recovery in ℝ𝑑

3.1 Summary of The Fourier Transform in ℝ𝑑

As the development of the Fourier transform on ℝ𝑑 is lengthy and technical, we will not prove the main theorems. For

a reference on the topic, see [10]. We now outline the results needed for our purposes.

Definition For a finite measure 𝜇 of bounded variation, we define 𝜇̂ ∶ ℝ𝑑 → ℂ, the Fourier transform of 𝜇, to be

𝜇̂(𝜉) = ∫ℝ𝑑
𝑒−2𝜋𝑖𝜉⋅𝑥𝑑𝜇.

Theorem 10 (Fourier Inversion) If 𝑓 ∈ 𝐿1(ℝ𝑑) is a complex valued function and 𝑓 ∈ 𝐿1(ℝ𝕕), then

𝑓 (𝑥) = ∫ℝ𝑑
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉.

The assumption that 𝑓 ∈ 𝐿1(ℝ𝑑) will be too restrictive for our purposes. In Appendix 6.4, we will adapt methods

from [3] and [8] to prove the following:

Theorem 11 (Carleson’s Theorem in ℝ𝑑) Let 𝑃 ⊂ ℝ𝑑 be the convex hull of the points in ℝ𝑑 with each coordinate being

±1. If 𝑓 ∈ 𝐿2(ℝ𝑑), then for almost every 𝑥 we have

𝑓 (𝑥) = lim
𝑟→∞∫𝑟𝑃

𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉.

7



3.2 Restriction in ℝ𝑑

To begin our discussion of restriction on ℝ𝑑 , we give the following definition:

Definition For a set 𝑆 ⊂ ℝ𝑑 and a finite measure 𝜇 on 𝑆, we say that we have a (𝑝, 𝑞)-restriction estimate on 𝑆 relative

to the measure 𝜇 if for all 𝑓 ∈ (ℝ𝑑), we have ||𝑓 ||𝐿𝑞(𝑑𝜇) ≤ 𝐶||𝑓 ||𝐿𝑝(ℝ𝑑 ).

It is conjectured that a (𝑝, 𝑞)-restriction holds on 𝑆𝑑−1 with respect to the surface measure whenever 𝑝 < 2𝑑
𝑑+1 and

𝑞 ≤ 𝑑−1
𝑑+1𝑝

′. The celebrated Stein-Tomas theorem is a partial result in this direction.

Theorem 12 (Stein-Tomas) A (𝑝, 2)-restriction estimate on 𝑆𝑑−1 with respect to 𝜎, the surface measure, holds when

𝑝 ≤ 2𝑑+2
𝑑+3 .

For a proof of the Stein-Tomas theorem, see [10]. We are interested in recovering 𝑓 if 𝑓 is lost on some set of

positive Lebesgue measure. So, we will derive a version of the Stein-Tomas theorem on a "thickened" sphere. Let

𝑆𝛿 = {𝑥 ∈ ℝ𝑑 ∶ 1 − 𝛿∕2 < |𝑥| < 1 + 𝛿∕2}.

and 𝜇 be the restriction of the Lebesgue measure to 𝑆𝛿 . For 𝑝 ≤ 2𝑑+2
𝑑+3 , we have

∫𝑆𝛿
|𝑓 (𝜉)|2𝑑𝜉 = ∫

1+𝛿∕2

1−𝛿∕2
𝑟𝑑−1 ∫𝑆𝑑−1

|𝑓 (𝑟𝜔)|2𝑑𝜔𝑑𝑟

= ∫

1+𝛿∕2

1−𝛿∕2
𝑟−1−𝑑 ∫𝑆𝑑−1

|𝑓 (⋅∕𝑟)(𝜔)|2𝑑𝜔𝑑𝑟

≤ 𝐶2
𝑝 ∫

1+𝛿∕2

1−𝛿∕2
𝑟−1−𝑑||𝑓 (⋅∕𝑟)||2𝐿𝑝(ℝ𝑛)𝑑𝑟

= 𝐶2
𝑝 ||𝑓 ||

2
𝐿𝑝(ℝ𝑛) ∫

1+𝛿∕2

1−𝛿∕2
𝑟−1−𝑑+

2𝑑
𝑝 𝑑𝑟.

Assuming that 0 < 𝛿 < 1, the integrand is bounded above and below by a constant 𝐷 depending only on 𝑝 and 𝑑. So,

the integral is bounded by 𝐷𝛿. Consolidating our constants and taking square roots, we get

||𝑓 ||𝐿2(𝑑𝜇) ≤ 𝐶 ′
𝑝𝛿

1∕2
||𝑓 ||𝐿𝑝(ℝ𝑑 ).

To summarize, we have the following:

Theorem 13 (Stein-Tomas on a Thick Sphere) A (𝑝, 2)-restriction theorem holds on 𝑆𝛿 ⊂ ℝ𝑑 with respect to the

restriction of the Lebesgue measure with constant 𝐶𝑝𝛿1∕2 whenever 𝑝 ≤ 2𝑑+2
𝑑+3 .

3.3 Signal Recovery in ℝ𝑑

We are now equipped for our discussion of signal recovery in ℝ𝑑 . As promised, we return to the Direct Rounding

Algorithm from [6]. Suppose 𝐴 ⊂ ℝ𝑛 set with finite positive Lebesgue measure. By Theorem 11, for almost every 𝑥

8



we have

1𝐴(𝑥) = lim
𝑟→∞∫𝑟𝑃

𝑒2𝜋𝑖𝜉⋅𝑥1̂𝐴(𝜉)𝑑𝜉 + ∫𝑆𝛿
𝑒2𝜋𝑖𝜉⋅𝑥1̂𝐴(𝜉)𝑑𝜉.

Call the integrals (or limits of integrals) above 𝐼 and 𝐼𝐼 . As in the ℤ𝑑
𝑁 case, we will be interested in bounding 𝐼𝐼 .

Applying Holder’s inequality gives

𝐼𝐼 ≤ |𝑆𝛿
|

1∕2
||1̂𝐴||𝐿2(𝑑𝜇).

Stein-Tomas bounds this further by

𝐶𝛿1∕2|𝑆𝛿
|

1∕2
||1𝐴||𝐿(2𝑑+2)∕(𝑑+3)(ℝ𝑑 ) = 𝐶𝛿1∕2|𝑆𝛿

|

1∕2
|𝐴|(𝑑+3)∕(2𝑑+2).

Up to a constant depending on 𝑑, 𝑆𝛿 = 𝛿. So,

|

|

|

|

∫𝑆𝛿
𝑒2𝜋𝑖𝜉⋅𝑥1̂𝐴(𝜉)𝑑𝜉

|

|

|

|

≤ 𝐶 ′𝛿|𝐴|(𝑑+3)∕(2𝑑+2).

If |𝐴| <
(

𝐶 ′𝛿
)−(2𝑑+2)∕(𝑑+3), then |𝐼𝐼| < 1

2 and the DRA recovers 𝐴 away from a set of measure 0. This computation

is performed in [6] under the assumption that the restriction conjecture holds. In that case, the exponent improves to

− 2𝑑
𝑑+1 .

Now, we will be less restrictive. Instead of requiring that the DRA recovers 𝐴 away from a set of measure 0, lets

bound the size of the error set. Define

𝑓 (𝑥) = ∫𝑆𝛿
𝑒2𝜋𝑖𝜉⋅𝑥1̂𝐴(𝜉)𝑑𝜉 𝐵 =

{

𝑥 ∶ |𝑓 (𝑥)| ≥ 1
2

}

.

We clearly get ||𝑓 ||𝐿2(ℝ𝑑 ) ≥
√

|𝐵|
2 . An alternative way to write 𝑓 is (1̂𝐴1𝑆𝛿 )∨. From this perspective, the Plancherel

theorem and the Stein-Tomas theorem give

||𝑓 ||𝐿2(ℝ𝑑 ) = ||1̂𝐴||𝐿2(𝑑𝜇)

≤ 𝐶
√

𝛿||1𝐴||𝐿(2𝑑+2)∕(𝑑+3)(ℝ𝑑 )

= 𝐶
√

𝛿|𝐴|(2𝑑+2)∕(𝑑+3).

So, |𝐵| ≤ 𝐶 ′𝛿|𝐴|(4𝑑+4)∕(𝑑+3). In summary, we have the following results:

Theorem 14 (Exact DRA) Suppose 𝐴 ⊂ ℝ𝑑 is a set with finite positive Lebesgue measure. If 1̂𝐴 is unobserved outside

of 𝑆𝛿 and |𝐴| < (𝐶𝛿)−(2𝑑+2)∕(𝑑+3), then 𝐴 can be recovered by the DRA. Here, 𝐶 depends only on 𝑑.

Theorem 15 (Approximate DRA) Suppose 𝐴 ⊂ ℝ𝑑 is a set with finite positive Lebesgue measure. If 1̂𝐴 is unobserved
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outside of 𝑆𝛿 then the error set of the DRA does not have Lebesgue measure greater than 𝐶 ′𝛿|𝐴|(4𝑑+4)∕(𝑑+3). Here, 𝐶

depends only on 𝑑.

4 Signal Recovery for the Nonlinear Fourier Series

4.1 Introduction to Nonlinear Fourier Series

We begin by building up the necessary machinery in nonlinear Fourier analysis. We loosely follow [1]. For a set

𝐷 ⊂ ℂ, we define the reflected set 𝐷∗ = {𝑧−1 ∶ 𝑧 ∈ 𝐷}. We define the reflection of a function 𝑎 ∶ 𝐷 ⊂ ℂ → ℂ by

𝑎∗(𝑧) = 𝑎
(

𝑧−1
)

. As defined, if 𝑎 is meromorphic on 𝐷, then 𝑎∗ is meromorphic on 𝐷∗.

Let {𝐹𝑛}𝑛∈ℤ be a finitely supported sequence in ℤ with values in ℂ. Define the 𝑆𝑈 (2) nonlinear Fourier transform

of {𝐹𝑛} by

𝐹 (𝑧) =
∞
∏

𝑛=−∞

1
√

1 + |𝐹𝑛|
2

⎛

⎜

⎜

⎝

1 𝐹𝑛𝑧𝑛

−𝐹𝑛𝑧−𝑛 1

⎞

⎟

⎟

⎠

.

We interpret products of this form from left to right in increasing index. Note that the infinite product collapses to a

finite one given that factors outside the support of {𝐹𝑛} are the identity.

Lemma 1 The nonlinear Fourier transform of {𝐹𝑛}, a complex-valued sequence with finite support, is of the form

𝐹 (𝑧) =
⎛

⎜

⎜

⎝

𝑎(𝑧) 𝑏(𝑧)

−𝑏∗(𝑧) 𝑎∗(𝑧)

⎞

⎟

⎟

⎠

.

for meromorphic functions 𝑎, 𝑏 such that 𝑎𝑎∗ + 𝑏𝑏∗ = 1 on the unit disk.

PROOF: Let 𝑚 be the least value for which 𝐹𝑚 is nonzero and 𝑀 be the greatest value for which 𝐹𝑀 is nonzero. We

have that

𝐹 (𝑧) =
∞
∏

𝑛=−∞

1
√

1 + |𝐹𝑛|
2

⎛

⎜

⎜

⎝

1 𝐹𝑛𝑧𝑛

−𝐹𝑛𝑧−𝑛 1

⎞

⎟

⎟

⎠

=
𝑀
∏

𝑛=𝑚
𝐴𝑛

where

𝐴𝑛 =
⎛

⎜

⎜

⎝

(1 + |𝐹𝑛|
2)−1∕2 (1 + |𝐹𝑛|

2)−1∕2𝐹𝑛𝑧𝑛

−(1 + |𝐹𝑛|
2)−1∕2𝐹𝑛𝑧−𝑛 (1 + |𝐹𝑛|

2)−1∕2

⎞

⎟

⎟

⎠

.

It is easy to see that each 𝐴𝑛 is of the desired form. By induction, it suffices to show that the product of two matrix
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functions satisfying the properties stated in the theorem satisfies these same properties. Let

𝑃 (𝑧) =
⎛

⎜

⎜

⎝

𝑎(𝑧) 𝑏(𝑧)

−𝑏∗(𝑧) 𝑎∗(𝑧)

⎞

⎟

⎟

⎠

𝑄(𝑧) =
⎛

⎜

⎜

⎝

𝑐(𝑧) 𝑑(𝑧)

−𝑑∗(𝑧) 𝑐∗(𝑧)

⎞

⎟

⎟

⎠

be two such matrix functions. Then,

(𝑃𝑄)(𝑧) =
⎛

⎜

⎜

⎝

(𝑎𝑐 − 𝑏𝑑∗)(𝑧) (𝑎𝑑 + 𝑏𝑐∗)(𝑧)

(−𝑐𝑏∗ − 𝑎∗𝑑∗)(𝑧) (−𝑏∗𝑑 + 𝑎∗𝑐∗)(𝑧)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

(𝑎𝑐 − 𝑏𝑑∗)(𝑧) (𝑎𝑑 + 𝑏𝑐∗)(𝑧)

−(𝑎𝑑 + 𝑏𝑐∗)∗(𝑧) (𝑎𝑐 − 𝑏𝑑∗)∗(𝑧)

⎞

⎟

⎟

⎠

.

We can now read off that the matrix function 𝑃𝑄 has the desired form and that its entries are meromorphic. The fact

that its determinant is 1 follows from the homomorphism property of the determinant. This completes the proof. □

From this point on, we understand the row vector (𝑎, 𝑏) as the matrix
⎛

⎜

⎜

⎝

𝑎 𝑏

−𝑏∗ 𝑎∗

⎞

⎟

⎟

⎠

. Thus, multiplication of row

vectors is given by

(𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑∗, 𝑎𝑑 + 𝑏𝑐∗).

Now, we will derive the formulas for 𝑎 and 𝑏 in terms of {𝐹𝑛} that will provide the means for signal recovery. We begin

by decomposing the definition of the nonlinear Fourier transform using the fact that (1, 𝐹𝑛𝑧𝑛) = (1, 0) + (0, 𝐹𝑛𝑧𝑛).

(𝑎, 𝑏) =
∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2(1, 𝐹𝑛𝑧
𝑛)

=

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
)( ∞

∏

𝑛=−∞
((1, 0) + (0, 𝐹𝑛𝑧

𝑛))

)

=

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
)( ∞

∑

𝑘=0

∑

𝑗1<⋯𝑗𝑘

𝑘
∏

𝑛=1
(0, 𝐹𝑗𝑛𝑧

𝑗𝑛 )

)

.

Here, the empty 𝑘 = 0 term is to be treated as the identity matrix. Note that
∏𝑘

𝑛=1(0, 𝐹𝑛𝑧𝑛) is antidiagonal for odd 𝑘

and diagonal for even 𝑘. In either case, the nonzero entry in the row vector will be

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤𝑘
𝑛 odd

𝐹𝑗𝑛𝑧
𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤𝑘
𝑛 even

−𝐹𝑗𝑛𝑧
−𝑗𝑛

⎞

⎟

⎟

⎟

⎠

.

Thus,

𝑎(𝑧) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯𝑗2𝑘

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 odd

𝐹𝑗𝑛𝑧
𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 even

−𝐹𝑗𝑛𝑧
−𝑗𝑛

⎞

⎟

⎟

⎟

⎠

. (3)
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and

𝑏(𝑧) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯𝑗2𝑘+1

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛𝑧
𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛𝑧
−𝑗𝑛

⎞

⎟

⎟

⎟

⎠

. (4)

Given our treatment of the 𝑘 = 0 term above, the 𝑘 = 0 term in the formula for 𝑎 is 1. Notice that for a fixed 𝑘 > 0 and

𝑗1 < ⋯ 𝑗2𝑘, we have that the power of 𝑧 in the product (3) is

2𝑘
∑

𝑛=1
(−1)𝑘+1𝑗𝑘 < 0.

Since {𝐹𝑛} is finitely supported, we can freely interchange sums and integrals to get

1
2𝜋 ∫𝑆1

𝑎 =
∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2. (5)

We can generalize this computation to derive formulas for the Fourier coefficients of 𝑎 and 𝑏 in terms of the sequence

{𝐹𝑛}. For a fixed 𝑝 ∈ ℤ, letting 𝑧 = 𝑒𝑖𝑡 and multiplying (3) by 𝑒−𝑖𝑝𝑡 gives

𝑎(𝑒𝑖𝑡)𝑒−𝑖𝑝𝑡 =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯𝑗2𝑘

𝑒−𝑖𝑝𝑡
⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 odd

𝐹𝑗𝑛𝑧
𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 even

−𝐹𝑗𝑛𝑧
−𝑗𝑛

⎞

⎟

⎟

⎟

⎠

.

Integrating in 𝑡 from 0 to 2𝜋 gives

𝑎̂(𝑝) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯𝑗2𝑘
∑2𝑘

𝑛=1(−1)
𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

. (6)

We similarly get for 𝑏 that

𝑏̂(𝑝) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

. (7)

4.2 Signal Recovery for the Nonlinear Fourier Series

In this section, we will utilize (7) and results from [2] to establish the following recovery result for the nonlinear Fourier

transform.

Theorem 16 Suppose {𝐹𝑛} is a complex valued sequence with finite support 𝑊 ⊂ ℤ and let (𝑎, 𝑏) = 𝐹 . If 𝑏 is known

on 𝑆1 outside of some measurable set and

|𝐸|min
{

diam(𝑊 ) + 1, 2|𝑊 |−1} < 1
2
,
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then 𝑏 can be exactly recovered on 𝑆1.

The necessary result is an adaptation of Theorem 4 in [2]. In the source, it is stated in terms of the continuous linear

Fourier transform and a signal with noise. In Appendix 6.5, we prove the following:

Theorem 17 Suppose 𝑓 is supported on a finite set 𝑊 ⊂ ℤ and 𝑓 is known outside of a set 𝐸 ⊂ 𝑆1. If |𝑊 ||𝐸| < 1
2 ,

then 𝑓 can be reconstructed exactly. Here 𝑆1 is given the surface measure so that |𝑆1
| = 1.

It is clear by comparing this result and the result stated at the beginning of this section that it suffices to prove the

following:

Lemma 2 If {𝐹𝑛} is a complex valued sequence with finite support 𝑊 ⊂ ℤ and (𝑎, 𝑏) = 𝐹 , then

|supp(𝑏̂)| ≤ min
{

diam(𝑊 ) + 1, 2|𝑊 |−1} .

PROOF: We begin with (7):

𝑏̂(𝑝) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

.

By the formula above, we have that

supp(𝑏̂) ⊂

{

𝑝 ∈ ℤ ∶ there exists 𝑘 ∈ ℤ≥0 and 𝑗1 < ⋯ < 𝑗2𝑘+1 ∈ 𝑊 such that
2𝑘+1
∑

𝑛=1
(−1)𝑛+1𝑗𝑛 = 𝑝

}

. (8)

Let 𝑀 and 𝑚 be the sharpest upper and lower bounds on the support of {𝐹𝑛}. Let 𝑗1 < ⋯ < 𝑗2𝑘+1 ∈ 𝑊 . Then,

2𝑘+1
∑

𝑛=1
(−1)𝑛+1𝑗𝑛 = 𝑗2𝑘+1 +

2𝑘
∑

𝑛=1
(−1)𝑛+1𝑗𝑛

= 𝑗2𝑘+1 +
𝑘
∑

𝑛=1
𝑗2𝑛−1 − 𝑗2𝑛

≤ 𝑀.

On the other hand,

2𝑘+1
∑

𝑛=1
(−1)𝑛+1𝑗𝑛 = 𝑗1 +

2𝑘+1
∑

𝑛=2
(−1)𝑛+1𝑗𝑛

= 𝑗1 +
𝑘
∑

𝑛=1
𝑗2𝑛+1 − 𝑗2𝑛

≥ 𝑚.

This proves that supp(𝑏̂) ⊂ [𝑚,𝑀]. So, |supp(𝑏̂)| ≤ diam(𝑊 ) + 1.

13



It remains to show that |supp(𝑏̂)| ≤ 2|𝑊 |. The worst case is that every choice of 𝑗1 < ⋯ < 𝑗2𝑘+1 gives a different

value for

2𝑘+1
∑

𝑛=1
(−1)𝑛+1𝑗𝑛.

In this worst case, |supp(𝑏̂)| is bounded by the number of odd sized subsets of 𝑊 . This is equal to 2|𝑊 |−1. □

Remark. This bound is sharp in the sense that we can construct sequences {𝐹𝑛} with arbitrarily large support such that

supp(𝑏̂) = min
(

diam(𝑊 ) + 1, 2|𝑊 |−1). Further, we can construct such sets when the minimum is diam(𝑊 ) + 1 and

when the minimum is 2|𝑊 |−1. For this construction, see Appendix 6.6.
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6 Appendix

6.1 Proof of Collapsing Sum

In Section ??, we make use of the following computation:

Lemma We have

∑

𝑚∈ℤ𝑑
𝑁

𝜒(𝑥 ⋅ 𝑚) =

⎧

⎪

⎨

⎪

⎩

𝑁𝑑 if 𝑥 = 0

0 else
.

PROOF: In the case that 𝑥 = 0, we have 𝜒(𝑥 ⋅ 𝑚) = 𝜒(0) = 1. Since we are summing 1 over ℤ𝑑
𝑁 , we get 𝑁𝑑 . Now,

suppose 𝑥 ≠ 0. We have 𝑥𝑖 ≠ 0 for some 𝑖. By the properties of the exponential,

∑

𝑚∈ℤ𝑑
𝑁

𝜒(𝑥 ⋅ 𝑚) =
𝑑
∏

𝑗=1

∑

𝑚𝑗∈ℤ𝑁

𝜒(𝑚𝑗𝑥𝑗).

Since 𝑥𝑖 ≠ 0, we have

∑

𝑚𝑖∈ℤ𝑁

𝜒(𝑚𝑖𝑥𝑖) =
∑

𝑚𝑖∈ℤ𝑛

𝑒−2𝜋𝑖𝑚𝑖𝑥𝑖∕𝑁

=
𝑁−1
∑

𝑚𝑖=0
(𝑒−2𝜋𝑖𝑥𝑖∕𝑁 )𝑚𝑖

=
1 − (𝑒−2𝜋𝑖𝑥𝑖∕𝑁 )𝑁

1 − 𝑒−2𝜋𝑖𝑥𝑖∕𝑁

= 0.

The third line follows from the geometric sum formula, given that 𝑥𝑖 ≠ 0. □

6.2 ∞-norm bound for Fourier Transform in ℤ𝑑
𝑁

In Section 2, we make use of the following result:

Lemma If 𝑓 ∶ ℤ𝑑
𝑁 → ℂ is a signal, then ||𝑓 ||∞ ≤ 𝑁−𝑑∕2

||𝑓 ||1.

PROOF: By the definition of the Fourier transform,

|𝑓 (𝑚)| =
|

|

|

|

|

|

|

𝑁−𝑑∕2
∑

𝑥∈ℤ𝑑
𝑁

𝜒(−𝑥 ⋅ 𝑚)𝑓 (𝑥)
|

|

|

|

|

|

|

≤ 𝑁−𝑑∕2
∑

𝑥∈ℤ𝑑
𝑁

|𝑓 (𝑥)|.

The last line is the desired quantity. □
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6.3 Existence of argmin for Logan’s Method

In proving Theorem 6 and Theorem 9, we use the following result:

Lemma Let 𝑓 ∶ ℤ𝑑
𝑁 → ℂ be a signal and fix some set 𝑆 ⊂ ℤ𝑑

𝑁 . The set argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑
𝑁 ) is nonempty. Here, 𝐴

is the set of signals 𝑢 such that 𝑢̂(𝑚) = 𝑓 (𝑚) for 𝑚 ∉ 𝑆.

PROOF: First, note that argmin𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑
𝑁 ) being nonempty is equivalent to the existence of min𝑢∈𝐴||𝑢||𝐿1(ℤ𝑑

𝑁 ).

Further, if ||𝑔||𝐿1(ℤ𝑑
𝑁 ) is a minimum, we would have |𝑔̂(𝑚)| ≤ 𝑁−𝑑∕2

||𝑓 ||𝐿1(ℤ𝑑
𝑁 ). So, it suffices to show the existence

of min𝑢∈𝐵 ||𝑢||𝐿1(ℤ𝑑
𝑁 ) where 𝐵 is the subset of 𝐴 consisting of 𝑢 such that |𝑢̂(𝑚)| ≤ 𝑁−𝑑∕2

||𝑓 ||𝐿1(ℤ𝑑
𝑁 ) for all 𝑚 ∈ ℤ𝑑

𝑁 .

Let 𝐷 be the disk in ℂ with radius ||𝑓 ||𝐿1(ℤ𝑑
𝑁 ) and let {𝑋1,… , 𝑋𝑁𝑑} be an enumeration of ℤ𝑑

𝑁 . Then, it suffices to

show that the function 𝑓 ∶ 𝐷𝑁𝑑
→ ℝ≥𝟘 given by

𝑓 (𝑧1,… , 𝑧𝑛) =
|

|

|

|

|

|

|

|

|

|

|

|

𝑁𝑑
∑

𝑖=1
𝜒(𝑋𝑖 ⋅ 𝑥)𝑧𝑖

|

|

|

|

|

|

|

|

|

|

|

|𝐿1(ℤ𝑑
𝑁 )

has a minimum. This follows from the fact that 𝑓 is a continuous function. This completes the proof. □

6.4 Carleson’s Theorem for the Unit Cube in ℝ𝑑

The purpose of this section is to prove a meaningful extension of Carleson’s theorem on the real line to ℝ𝑑 . As stated

in [8], Carleson’s theorem on the real line is the following:

Theorem (Carleson’s Theorem in ℝ) If 𝑓 ∈ 𝐿2(ℝ), then for almost all 𝑥 we have

𝑓 (𝑥) = lim
𝑁→∞∫

𝑁

−𝑁
𝑒2𝜋𝑖𝜉𝑥𝑓 (𝜉)𝑑𝜉.

One object studied in [8] is the Carleson operator, given by

𝑓 (𝑥) = sup
𝑁∈ℝ

|

|

|

|

|

∫

𝑁

−∞
𝑒2𝜋𝑖𝜉𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

|

.

The proof of Carleson’s theorem hinges on the estimate

|

|

|

{

𝑥 ∈ ℝ𝑑 ∶ 𝑓 (𝑥) > 𝜆
}

|

|

|

≤
𝐶||𝑓 ||2

𝐿2(ℝ)

𝜆2
.

Here, 𝐶 is some uniform constant and 𝑓 ∈ 𝐿2(ℝ).

The technique that we will use to generalize into ℝ𝑑 was developed in [3] in the setting of Fourier series. The

appropriate translation to the Fourier transform on ℝ𝑑 is the following:

Theorem (Carleson’s Theorem in ℝ𝑑) Let 𝑃 ⊂ ℝ𝑑 be the convex hull of the points in ℝ𝑑 with each coordinate being
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±1. If 𝑓 ∈ 𝐿2(ℝ𝑑), then for almost every 𝑥 we have

𝑓 (𝑥) = lim
𝑟→∞∫𝑟𝑃

𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉.

The altered version of the Carleson operator required for our proof is given by

𝑓 (𝑥) = sup
𝑟∈ℝ

|

|

|

|

∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

.

Here, 𝑓 ∈ 𝐿2(ℝ𝑑). Correspondingly, our proof will hinge on the following:

Lemma There is a uniform constant 𝐶 such that for 𝑓 ∈ 𝐿2(ℝ𝑑), we have

|

|

|

{

𝑥 ∈ ℝ𝑑 ∶ 𝑓 (𝑥) > 𝜆
}

|

|

|

<
𝐶||𝑓 ||2

𝐿2(ℝ𝑑 )

𝜆2
.

PROOF: Our approach will be to split the integral

∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

into the domains that are the convex hull a face of 𝑟𝑃 and the origin. Each of these domains will be handled identically.

So, we consider

∫

𝑟

0 ∫
||𝜏||∞<𝜉1

𝑒2𝜋𝑖(𝜉1𝑥1+𝜏⋅(𝑥2,…,𝑥𝑑 ))𝑓 (𝜉1, 𝜏)𝑑𝜏𝑑𝜉. (9)

Here, 𝜏 ∈ ℝ𝑑−1. It will be easier to write this in terms of the function 𝑔 = (𝑓1𝑆 )∨, where 𝑆 is the union of the

domains that we are integrating on above as 𝑟 → ∞. It will be important to note that ||𝑔||𝐿2(ℝ𝑑 ) ≤ ||𝑓 ||𝐿2(ℝ𝑑 ). With

this notation, we can write (9) as

∫

𝑟

0 ∫
||𝜏||∞<𝜉1

𝑒2𝜋𝑖(𝜉1𝑥1+𝜏⋅(𝑥2,⋯,𝑥𝑑 ))𝑔̂(𝜉1, 𝜏)𝑑𝜏𝑑𝜉1 = ∫

𝑟

0
𝑒2𝜋𝑖𝜉1𝑥1 𝑔̃(𝜉1, 𝑥2,… , 𝑥𝑑)𝑑𝜉1.

This is just the Carleson operator on 𝑔(⋅, 𝑥2,… , 𝑥𝑑). So, for fixed 𝑥2,… , 𝑥𝑑 we have

|

|

|

|

|

{

𝑥1 ∈ ℝ ∶ sup
𝑟∈ℝ

|(9)| > 𝜆
}

|

|

|

|

|

<
𝐶1||𝑔(⋅, 𝑥2,… , 𝑥𝑑)||2𝐿2(ℝ)

𝜆2
.

Integrating this over 𝑥2,… , 𝑥𝑑 , we get

|

|

|

|

|

{

𝑥 ∈ ℝ𝑑 ∶ sup
𝑟∈ℝ

|(9)| > 𝜆
}

|

|

|

|

|

<
𝐶1||𝑔||2𝐿2(ℝ𝑑 )

𝜆2

≤
𝐶1||𝑓 ||2𝐿2(ℝ𝑑 )

𝜆2
.
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Doing this for all of the domains discussed above and taking the a large enough constant 𝐶 , we have the desired

result. □

We are now equipped to prove our extension of Carleson’s theorem to ℝ𝑑 . Our proof draws from Proposition 1.4

in [8].

PROOF: We would like to prove that

lim sup
𝑟→∞

|

|

|

|

𝑓 (𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

= 0

for almost every 𝑥. Let 𝑔 be a Schwartz function so that ||𝑓 − 𝑔||𝐿2(ℝ𝑑 ) < 𝜖. Then,

|

|

|

|

𝑓 (𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

=
|

|

|

|

𝑓 (𝑥) − 𝑔(𝑥) + 𝑔(𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥(𝑓 (𝜉) − 𝑔̂(𝜉) + 𝑔̂(𝜉))𝑑𝜉

|

|

|

|

≤ |𝑓 (𝑥) − 𝑔(𝑥)| +
|

|

|

|

∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 − 𝑔(𝜉)𝑑𝜉

|

|

|

|

+
|

|

|

|

𝑔(𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑔̂(𝜉)𝑑𝜉

|

|

|

|

.

So, we have

lim sup
𝑟→∞

|

|

|

|

𝑓 (𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

≤ |𝑓 (𝑥) − 𝑔(𝑥)| +(𝑓 − 𝑔)(𝑥).

Now,

|

|

|

𝑥 ∈ ℝ𝑑 ∶ |𝑓 (𝑥) − 𝑔(𝑥)| >
√

𝜖||
|

< 𝜖

and

|

|

|

𝑥 ∈ ℝ𝑑 ∶ (𝑓 − 𝑔) >
√

𝜖||
|

<
𝐶||𝑓 − 𝑔||2

𝐿2(ℝ𝑑 )

𝜖

= 𝐶𝜖.

So,

|

|

|

|

|

{

𝑥 ∈ ℝ𝑑 ∶ lim sup
𝑟→∞

|

|

|

|

𝑓 (𝑥) − ∫𝑟𝑃
𝑒2𝜋𝑖𝜉⋅𝑥𝑓 (𝜉)𝑑𝜉

|

|

|

|

> 2
√

𝜖
}

|

|

|

|

|

< 𝜖 + 𝐶𝜖.

Taking 𝜖 → 0, we see that ∫𝑟𝑃 𝑒2𝜋𝑖𝜉⋅𝑥𝑓𝜉𝑑𝜉 converges to 𝑓 (𝑥) as 𝑟 → ∞ for almost every 𝑥. □

6.5 Unique Recovery in 𝑆1

In Section 4.2, we make use of the following result in the spirit of Theorem 4 of [2]:

Theorem Let 𝑓 ∶ 𝑆1 → ℂ be a function such that 𝑓 is supported on a finite set 𝑊 ⊂ ℤ. If 𝑓 is known outside
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of 𝐸 ⊂ 𝑆1 and |𝐸||𝑊 | < 1
2 , then 𝑓 can be reconstructed exactly. Here, 𝑆1 is given the surface measure such that

|𝑆1
| = 1.

First, we have to establish an uncertainty principle. Suppose ℎ is a nonzero function supported on a set 𝐸 with

finite Fourier support 𝑊 . Then,

|ℎ(𝑥)| =
|

|

|

|

|

∑

𝑛∈𝑊
𝑒2𝜋𝑖𝑥∕𝑛ℎ̂(𝑛)

|

|

|

|

|

≤ |𝑊 |||ℎ||𝐿1(𝑆1).

Integrating both sides over 𝐸 and dividing by the 1-norm of ℎ, we get 1 ≤ |𝐸||𝑊 |. We now proceed with the proof.

PROOF: Suppose 𝑔 is function with Fourier support 𝑊 ′ with |𝑊 ′
| = |𝑊 | that agrees with 𝑓 outside of 𝐸. For the

sake of contradiction, assume that 𝑔 ≠ 𝑓 . Let ℎ = 𝑓 − 𝑔. Then, the Fourier support of ℎ has size at most 2|𝑊 | and

the support of ℎ is contained in 𝐸. By the uncertainty principle, we know that 2|𝑊 ||𝐸| ≥ 1, but this contradicts our

assumption. □

6.6 Construction of Nonlinear Fourier Series with Large Linear Fourier Support

Our goal is to construct sequences {𝐹𝑛} such that supp(𝑏̂) ∼ min
(

diam(𝑊 ) + 1, 2|𝑊 |−1) where 𝐹 = (𝑎, 𝑏). We will do

this in both the case that min
(

diam(𝑊 ) + 1, 2|𝑊 |−1) = diam(𝑊 ) + 1 and the case that min
(

diam(𝑊 ) + 1, 2|𝑊 |−1) =

2|𝑊 |−1.

We will handle the first case by induction on even and odd integers. Consider the sequence {𝐹𝑛} supported on {0}

where 𝐹0 = 1. By (7), we have

𝑏̂(𝑝) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

=

⎧

⎪

⎨

⎪

⎩

1
√

2
if 𝑝 = 0

0 else
.

If instead {𝐹𝑛} is supported on [0, 1] with 𝐹0 = 𝐹1 = 1, then

𝑏̂(𝑝) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
) ∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

=

⎧

⎪

⎨

⎪

⎩

1
√

2
if 𝑝 = 0

0 else
.
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With the base cases established, assume the result holds for all 𝑀 < 𝑁 where 𝑁 > 1. For a sequence {𝐹𝑛} supported

in [0, 𝑁], we have

𝑏̂(𝑁) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
)

𝐹𝑁 .

and

𝑏̂(0) =

( ∞
∏

𝑛=−∞
(1 + |𝐹𝑛|

2)−1∕2
)

𝐹0.

If 0 < 𝑝 < 𝑁 , we write

∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

= −𝐹𝑁𝐹𝑁−1

∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘−1<𝑁−1
∑2𝑘−1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝−1

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘−1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘−1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

+ 𝐹𝑁

∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘<𝑁−1
∑2𝑘

𝑛=1(−1)
𝑛+1𝑗𝑛=𝑝−𝑁

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

− 𝐹𝑁−1

∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘<𝑁−1
∑2𝑘

𝑛=1(−1)
𝑛+1𝑗𝑛=𝑝−𝑁+1

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

+
∞
∑

𝑘=0

∑

𝑗1<⋯<𝑗2𝑘+1<𝑁−1
∑2𝑘+1

𝑛=1 (−1)𝑛+1𝑗𝑛=𝑝

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 odd

𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

∏

1≤𝑛≤2𝑘+1
𝑛 even

−𝐹𝑗𝑛

⎞

⎟

⎟

⎟

⎠

.

By the inductive hypothesis,we can choose 𝐹1,… , 𝐹𝑁−2 so that the sum in the first term is nonzero for all 0 < 𝑝 < 𝑁 .

After taking the minimum size of the first sum and the maximum size of the other sums over 0 < 𝑝 < 𝑁 , and noting

that the first term grows with respect to |𝐹𝑁𝐹𝑁−1|, while second, third, and fourth terms grow linearly or are constant

with respect to |𝐹𝑁 | and |𝐹𝑁−1|, we can choose 𝐹𝑁 and 𝐹𝑁−1 large enough that 𝑏̂ is nonzero on [0, 𝑁].

We now turn our attention to a construction where min(diam(𝑊 ) + 1, 2|𝑊 |−1) = 2|𝑊 |−1. The key will be con-

structing a finite set 𝑊 ⊂ ℤ such that

𝑆(𝑗1,… , 𝑗2𝑘+1) =
2𝑘+1
∑

𝑛=1
(−1)𝑛+1𝑗𝑛.

is unique for each increasing set of numbers 𝑗1 < ⋯ < 𝑗𝑛 in 𝑊 . It is simpler to construct this set by scaling so that

𝑊 ⊂ ℚ ∩ [0, 1]. It is clear that we can recover a set of the original form by multiplying by the largest denominator in

𝑊 .

Let 𝑊 be the set of reciprocals of the first 𝑁 primes. For distinct primes 𝑝1,… , 𝑝𝑛+1, if 𝐶
𝑝1⋯𝑝𝑛

is in simplified form

for primes 𝑝1, then

𝐶
𝑝1⋯ 𝑝𝑛

± 1
𝑝𝑛+1

=
𝐶𝑝𝑛+1 ± 𝑝1… 𝑝𝑛

𝑝1⋯ 𝑝𝑛+1
.
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is in simplified form. This is because each prime divides exactly one of the terms in the numerator. Since there is only

one increasing sequence in 𝑊 containing a fixed set of prime reciprocals, there is only one sequence in 𝑊 that gives

an alternating sum with denominator in simplest form being the product of these primes. Thus, 𝑊 has the desired

property. In fact, it has a stronger property than needed because we only care about subsets of odd size.

We now scale 𝑊 by the product of the first 𝑁 primes. So, if 𝐴 = {𝑝1,… , 𝑝𝑁} is the set of the first 𝑁 primes, then

𝑊 =

{

∏

𝑝∈𝐵
𝑝 ∶ 𝐵 ⊂ 𝐴 and |𝐵| = 𝑁 − 1

}

.

We can scale this set further or choose 𝑁 large enough so that diam(𝑊 ) + 1 > 2|𝑊 |−1. Let {𝐹𝑛} be the sequence

supported on 𝑊 with value 1 on 𝑊 . By (7) and the properties of 𝑊 , we have that

|supp(𝑏̂)| =
|𝑊 |

∑

𝑘=0
𝑘 odd

(

|𝑊 |

𝑘

)

= 2|𝑊 |−1.
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