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Abstract

This honors thesis is a discussion of linear integral equations of the

second kind. Much of the content draws upon an article from Mathemat-

ics Magazine by Glenn Ledder and we cover the theoretical background

associated to these equations. We also go over some of their applications

to various population models.

1 Introduction

In this paper, we present linear integral equations of the second kind. We

focus on their analytical features, in particular the study of their solutions.

This includes methodology proving their existence and uniqueness, as well as

estimating their sizes. We also discuss applications of these integral equations

to population modeling problems.

A linear integral equations of the second kind has the general form

y(x) = f(x) +

∫ b(x)

a

k(x, s) y(s) ds, (1)

where f = f(x) and k = k(x, s) are known functions, y = y(x) is the unknown

function, a is a real constant and b = b(x) is either x or a real constant c >

a. In terms of terminology, the function k is usually called the kernel of the

integral equation. Moreover, when b(x) = x the equation is called a linear

Volterra integral equation, while when b(x) = c ∈ R the equation is called a

linear Fredholm integral equation. Given that these equations have many

properties in common, we will work onward with the generic upper bound b. As

it is usually the case, these equations are called homogeneous when f ≡ 0.
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2 Prerequisites

In here, we introduce some of the basic assumptions and elements that we will

be working with in establishing the theoretical results for our integral equations,

as well as their practical applications discussed in this paper. We begin with:

Definition 2.1 Let k : [a, b]× [a, b] → R be a continuous function. Then

Mv := max
(x,s)∈[a,b]×[a,b]

|k(x, s)|

and

Mf := max
x∈[a,b]

∫ b

a

|k(x, s)| ds.

Both quantities are well-defined nonnegative real numbers. For Mv, this is

due to Weierstrass theorem applied for the continuous function k on the compact

[a, b] × [a, b]. For Mf , this follows from the fact that a continuous function of

several variables is also continuous in each of its variables. We will use Mv in

connection to Volterra integral equations, while Mf will be relied upon when

studying Fredholm integral equations.

It is to see that

0 ≤
∫ b

a

|k(x, s)| ds ≤ (b− a)Mv, ∀ x ∈ [a, b],

and, consequently,

Mf ≤ (b− a)Mv.

Next, we introduce sequences of functions associated to the two integral

equations.

Definition 2.2 Let f : [a, b] → R and k : [a, b]× [a, b] → R be both continuous

functions. If y0 : [a, b] → R is an arbitrary continuous function, consider the

sequence of functions (yn)n≥0 : [a, b] → R defined iteratively by

yn(x) := f(x) +

∫ b

a

k(x, s)yn−1(s) ds, ∀ n ≥ 1, x ∈ [a, b].

These are called Volterra or Fredholm sequences depending on the particular

formula for b.
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An important tool used in working with Volterra and Fredholm sequences

is that their homogeneous versions are uniformly convergent to the zero func-

tion, with an additional assumption in the case of Fredholm sequences. This

is the content of the following two lemmas. The first one addresses Volterra

homogeneous sequences.

Lemma 2.3 If y0 : [a, b] → R is an arbitrary continuous function and

yn(x) =

∫ x

a

k(x, s)yn−1(s) ds, ∀ n ≥ 1, x ∈ [a, b],

then

|yn(x)| ≤
cMn

v (x− a)n

n!
, ∀ n ≥ 1, x ∈ [a, b],

where

c = max
x∈[a,b]

|y0(x)|.

As an immediate consequence,

|yn(x)| ≤
cMn

v (b− a)n

n!
, ∀ n ≥ 1, x ∈ [a, b],

and, hence, yn → 0 uniformly on [a, b] as n → ∞.

Proof. The argument is by induction over n. For the base case, n = 1, we have

|y1(x)| ≤
∫ x

a

|k(x, s)||y0(s)| ds ≤ cMv

∫ x

a

ds = cMv(x− a), ∀ x ∈ [a, b].

If we assume

|yn(x)| ≤
cMn

v (x− a)n

n!
, ∀ x ∈ [a, b],

then

|yn+1(x)| ≤
∫ x

a

|k(x, s)||yn(s)| ds ≤ cMn+1
v

n!

∫ x

a

(s− a)n ds

=
cMn+1

v (x− a)n+1

(n+ 1)!
, ∀ x ∈ [a, b].

This concludes the proof.

The second lemma deals with Fredholm homogeneous sequences.
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Lemma 2.4 If y0 : [a, b] → R is an arbitrary continuous function and

yn(x) =

∫ b

a

k(x, s)yn−1(s) ds, ∀ n ≥ 1, x ∈ [a, b],

then

|yn(x)| ≤ cMn
f , ∀ n ≥ 1, x ∈ [a, b],

where c is as in the previous lemma. If Mf < 1, then yn → 0 uniformly on [a, b]

as n → ∞.

Proof. We rely again on induction over n. When n = 1 we have

|y1(x)| ≤
∫ b

a

|k(x, s)||y0(s)| ds ≤ c

∫ b

a

|k(x, s)| ds ≤ cMf , ∀ x ∈ [a, b].

If we assume

|yn(x)| ≤ cMn
f , ∀ x ∈ [a, b],

then

|yn+1(x)| ≤
∫ b

a

|k(x, s)||yn(s)| ds ≤ cMn
f

∫ b

a

|k(x, s)| ds

≤ cMn+1
f , ∀ x ∈ [a, b].

This finishes the argument.

We conclude this section by discussing the optimality of these estimates for

two actual Volterra/Fredholm homogeneous sequences. We take:

[a, b] = [0, 1], k(x, s) = λxs2, y0 ≡ 1.

Computation of a few terms for both sequences allows one to formulate an

induction hypothesis in regards to a general formula in terms of n, which is then

proven in a direct manner. The results are as follows. The Volterra homogeneous

sequence has the general formula

yn(x) =
λnx4n

3 · 7 · 11 · . . . · (4n− 1)

and the Fredholm homogeneous sequence is given by

yn(x) =
λnx

3 · 4n−1
.
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On the other hand, using Definition 2.1, we deduce

Mv = |λ| and Mf =
|λ|
3
.

Thus, according to Lemma 2.3 and Lemma 2.4, we should have

|yn(x)| ≤
|λ|nxn

n!

for the Volterra sequence and

|yn(x)| ≤
|λ|n

3n

for the Fredholm sequence. By comparing these bounds with the above formulas,

we first notice that the Volterra sequence decays faster than what Lemma 2.3

predicts. This is because x4n decays considerably faster than xn on [0, 1] and

the denominator in the formula for the sequence is significantly larger than n!

(i.e., by a factor of 3n). For the Fredholm sequence the situation is somewhat

similar, in the sense that it actually decays like (|λ|/4)n, rather than like (|λ|/3)n

as Lemma 2.4 suggests. Another important remark is that Lemma 2.4 is also

more restrictive than the actual formula in terms of values for λ which are

amenable to uniform convergence. Lemma 2.4 predicts |λ| < 3, while the actual

formula accommodates |λ| < 4.

To have a visual idea about the decay of the two sequences, on the next

page, we included the graphs of the first five iterates: y0 ≡ 1 (red graph), y1

(blue graph), y2 (green graph), y3 (purple graph), and y4 (black graph). For

the Volterra homogeneous sequence, we use the values λ = 8 and λ = 2. For

the Fredholm homogeneous sequence, we use the values λ = 2 and λ = 0.5.

5



(a) y0 = 1, k(x, s) = 8xs2, a = 0, b = 1

(b) y0 = 1, k(x, s) = 2xs2, a = 0, b = 1

Figure 1: Homogeneous Volterra Iteration
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(a) y0 = 1, k(x, s) = 2xs2, a = 0, b = 1

(b) y0 = 1, k(x, s) = 0.5xs2, a = 0, b = 1

Figure 2: Homogeneous Fredholm Iteration
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3 Uniqueness and Existence Theorems

Having established these lemmas, we can put the to use by showing the existence

and uniqueness of continuous solutions. This first theorem deals with the both

the existence and uniqueness of such a solution in the homogeneous case for

both Volterra and Fredholm equations.

Theorem 3.1 (for homogeneous equations)

• y = 0 is the unique solution to y(x) =
∫ x

a
k(x, s)y(s) ds

• If Mf < 1, y = 0 is the unique solution to y(x) =
∫ b

a
k(x, s)y(s) ds

Proof. y = 0 is clearly a solution for y(x) =
∫ x

a
k(x, s)y(s) ds. Now let y0 = ϕ

where ϕ is also a solution. Now using the iteration for Volterra/Fredholm se-

quences, y1(x) =
∫ x

a
k(x, s)ϕ ds = ϕ and clearly, yn = ϕ for all n. Therefore,

limn→∞ yn(x) = ϕ. Now applying Lemma 2.3 in the Volterra case and Lemma

2.4 in the Fredholm case, limn→∞ yn(x) = 0 (as long as Mf < 1 for the Fred-

holm case). Therefore, ϕ = 0.

Using the above theorem, we can achieve a similar result to prove the unique-

ness of solutions in the non-homogeneous case.

Theorem 3.2 (uniqueness of solutions)

• y(x) = f(x) +
∫ x

a
k(x, s)y(s) ds has at most one solution

• If Mf < 1, then y(x) = f(x) +
∫ b

a
k(x, s)y(s) ds has at most one solution

Proof. Let ϕ1 and ϕ2 be solutions and let z = ϕ1 − ϕ2. Now z(x) =∫ x

a
k(x, s)(ϕ1(s) − ϕ2(s)) ds =

∫ x

a
k(x, s)z(s) ds. Since this integral equation is

homogeneous, theorem 3.1 can be applied to z, yielding z = 0, so ϕ1 = ϕ2.

Having shown the uniqueness of solutions in both the homegenous and non-

homogeneous cases, all that remains is the issue of existence, for which we apply

the previous lemmas.
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Theorem 3.3 (existence of solutions) Let y0 = f and consider a Volterra/Fredholm

sequence {yn} using k(x, s).

• In the Volterra case, {yn} converges to the unique solution of y(x) =

f(x) +
∫ x

a
k(x, s)y(s) ds

• In the Fredholm case, if Mf < 1, then {yn} converges to the unique solu-

tion of y(x) = f(x) +
∫ b

a
k(x, s)y(s) ds

Proof. First define the sequence {En}: E0 = y0 and En = yn − yn−1. Im-

portantly, the triangle inequality gives that for any positive integers n and m:

| yn+m − yn| = |yn+m − yn+m−1 + yn+m−1 − yn+m−2 + ...yn+1 − yn|

≤ |En+m|+ |En+m−1|+ ...|En+1| <
∞∑

m=1

|En+m|

This will help us prove that {yn} is a Cauchy series, which means that it con-

verges to some function ϕ. Furthermore, the convergent function ϕ will be a

solution to the integral equation because of the aforementioned uniform conver-

gence:

ϕ(x) = lim
n→∞

yn(x) =

∫ R

a

k(x, s) lim
n→∞

yn−1(s) ds =

∫ R

a

k(x, s)ϕ(s) ds

Theorem 3.2 gives that limn→∞ yn = ϕ will be the unique solution to the inte-

gral equations. Now all we need to show is that gn =
∑∞

m=1 |En+m| exists and
converges to zero. The above related inequality will then automatically show

that {yn} is a Cauchy series.

To this end, we will use induction to first establish:

En =

∫ R

a

k(x, s)En−1(s) ds
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When n=1, we have

E1 = y1 − y0 = f(x) +

∫ R

a

k(x, s)y0(s) ds− f(x) =

∫ R

a

k(x, s)E0(s) ds

If we assume

Em =

∫ R

a

k(x, s)Em−1(s) ds for m = 1....n− 1

Then,

En = yn − yn−1 =

∫ R

a

k(x, s)(yn−1(s)− yn−2(s)) ds =

∫ R

a

k(x, s)En−1(s) ds

Now we can now use Lemmas 2.3and 2.4 on En.

In the Volterra case, define the real number β =
∑∞

m=1[M
m
V (b− a)m/m!] =

eMv(b−a) − 1. Now applying Lemma 2.3:

gn =

∞∑
m=1

|En+m| ≤
∞∑

m=1

cMn+m
V (x− a)n+m/(n+m)!

< cMn
V (x− a)n/(n)! ∗

∞∑
m=1

cMm
V (x− a)m/(m)! ≤ βcMn

V (b− a)n/(n)!

This computation is done first applying lemma, then by systematically replacing

x with b and then using n!m! < (m+n)! . Given this bound for gn, limn→∞ gn =

0 and the proof is completed for the Volterra case.

In the Fredholm case, we can simply apply Lemma 2.4 so long as MF < 1:

gn =
∞∑

m=1

|En+m| ≤
∞∑

m=1

cMn+m
F = cMn+1

F

∞∑
m=1

cMm−1
F = c(1−MF )

−1Mn+1
F

Given this bound {gn} converges to 0 in the Fredholm case as well, completing

the proof.

3.1 Non-Homogenous Examples

Given the constructive nature of theorem 3, we can construct an iterative se-

quence that will converge to the solution of any Volterra equation and Fredholm

equation with Mf < 1. Using computers, it is simple to compute enough terms

to achieve a given accuracy. However, this process will still be affected by how
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quickly the sequence converges. To demonstrate this process, we will use the fol-

lowing 2 examples to show the convergence of non-homogeneous linear integral

equations.

y(x) = 1− 2x4/3 +

∫ x

0

2xs2y(s) ds

y(x) = 1− 2x/3 +

∫ 1

0

2xs2y(s) ds

In this example, [a, b] = [0, 1] and Mv = 2,Mf = 2/3, so we can safely

apply the theorem. Additionally, the kernal functions have been taken from the

previous homogeneous examples and the non-homogeneous terms were chosen

to ensure that the sequence converged to y ≡ 1. The following graphs once

again show the first 5 iterations: y0 ≡ f (red graph), y1 (blue graph), y2 (green

graph), y3 (purple graph), and y4 (black graph).

Figure 3: Non-Homogeneous Volterra Iteration
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Figure 4: Non-Homogeneous Fredholm Iteration

4 Population Model

To illustrate an application of integral equations, we will showcase their use in a

simple population model: a general single sex population model with unlimited

resources and an immortal population. First, let P (t) be a continuous function

representing the population and let P (0) = P0 be the initial population. As is

generally the case when modelling large populations, P (t) is an approximation

of the population, not the actual population, which is an integer equation that

is not continuous.

Next, let B(t) be the net birth rate such that B(t) = dP/dt. In the case of

a constant fertility rate r:

B(t) = rP (t), P (0) = P0

In the rest of the model, we assume that the net birth rate is related to the

current population by a positive, continuous, age-dependent fertility rate, r(a)

where a is the age. This function is assumed to be increasing up to age A and

decreases thereafter.
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4.1 Age Distribution

Aside from the total population, it is also important to keep track of the pop-

ulation’s age distribution. As a result, let Q(a, t) represent the population of

individuals under age a at time t, and let u(a, t) be the population density

function:

u(a, t) =
dQ

da
(a, t) ≥ 0

Using this definition, the population of individuals between ages a1 and a2,

Pa1,a2 can be represented as:

Pa1,a2(t) = Q(a2, t)−Q(a1, t) =

∫ a2

a1

dQ

da
(a, t) da =

∫ a2

a1

u(a, t) da

P (t) = P0,∞(t) =

∫ ∞

0

u(a, t) da

This integral converges whenever the population is finite. Now let u(a, 0) =

u0(a) be the known initial age distribution. As a result:

P (0) =

∫ ∞

0

u0(a) da

Furthermore, the birth rate at time t of individuals from ages a to a + da is

approximated by r(a)u(a, t)da, which gives the following equation for the net

birth rate at time t:

B(t) =

∫ ∞

0

r(a)u(a, t) da

This integral collapses into B(t) = rP (t) when r is constant. To show that this

integral converges generally, we use the fact that r(a) increases until a point A

and decreases thereafter:

0 ≤
∫ ∞

0

r(a)u(a, t) da =

∫ A

0

r(a)u(a, t) da+

∫ ∞

A

r(a)u(a, t) da ≤∫ A

0

r(a)u(a, t) da+ r(A)PA,∞(t)

Once we solve for the birth rate, we can integrate over the birth rate to determine

the population at any time:

P (t) = P (0) +

∫ t

0

B(s) ds
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4.2 Solving the Birthrate

Since our population is immortal:

Q(∞, t)−Q(a+ t, t) = Q(∞, 0)−Q(a, 0)

Differentiating with respect to a yields

u(a+ t, t) = u(a, 0)

or

u(a, t) = u(a− t, O) = u0(a− t) for a ≥ t ≥ O.

Moreover, given a < t, the number of individuals under age a at time t is simply

the number of individuals born between t-a and t:

Q(a, t) =

∫ t

t−a

B(τ) dτfora < t

Differentiating with respect to a once again:

u(a, t) = B(t− a)fora < t

Now we can substitute back into our equation for B(t):

B(t) =

∫ ∞

t

r(a)u0(a− t) da+

∫ t

0

r(a)B(t− a) da

We can now change the variables to make this into a Volterra equation, finish-

ing the model and allowing us to use the previously discussed properties and

iteration:

B(t) = f(t) +

∫ t

0

r(t− s)B(s) ds

where

f(t) =

∫ ∞

0

r(t+ s)u0(s) ds

5 Incorporating Death Rates

Adding to the previous model, we rework the problem to include an age depen-

dent death rate, removing the previous immortality assumption. Let u(a, t) for

a, t ≥ 0 be the age distribution function that we need to solve. Let µ(a, t) ≥ 0
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be the age specific death rate and λ(a, t) is the age specific fertility rate. We

subject u(a,t) to the following conditions:

∂u

∂a
+

∂u

∂t
= −µ(a, t)u (2)

u(0, t) =

∫ ∞

0

λ(a, t)u(a, t) da (3)

u(a, 0) = u0(a)

5.1 Method of Characteristics

To solve for u(a, t) for a, t ≥ 0 we will employ the method of characteristics

on the first condition [3]. Let x = (a(s), t(s)), z = u(x(s)), p(s) = Du(x(s)).

Restructuring equation 2:

F (p, z, x) = p1 + p2 + µ(x1, x2)z = 0

Therefore, the method of characteristics indicates:

ẋ = Fp = (1, 1) (4)

ż = p · Fp = p1 + p2 = −µ(x1, x2)z (5)

Using equation 5 and integrating factors, the general solution to u(x1, x2) with

initial data c is:

u(x1(s), x2(s)) = c ∗ exp(−
∫ S

0

µ(x1(σ), x2(σ)) dσ)

From equation 4, we see that the characteristics of this differential equation

are parallel to t=a. However, our conditions is only valid for a, t ≥ 0, so the

initial data will change based on whether a ≥ t or a < t. In the first case,

let γ = a − t, so x1(s) = s + γ and x2(s) = s. Furthermore, the initial data

z0 = u(γ, 0) = u0(a− t) and thus the solution to u for a ≥ t is:

u(a, t) = u0(a− t) ∗ exp(−
∫ t

0

µ(σ + a− t, σ) dσ)

Similarly, if a < t, let γ = t − a and suppose there exists a function such that

B(t) = u(0, t). The initial data would then be z0 = u(0, γ) = B(t− a), and for
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x we have x1(s) = s and x2(s) = s+ γ. Therefore the solution to u for a < t is:

u(a, t) = B(t− a) ∗ exp(−
∫ a

0

µ(σ, σ + t− a) dσ)

Now solving for B(t), set

k(a, t) = exp(−
∫ a

0

µ(σ, σ + t− a) dσ)

m(a, t) = exp(−
∫ t

0

µ(σ + a− t, σ) dσ)

Now using equation 3, B(t) = u(0, t) =
∫∞
0

λ(a, t)u(a, t) da and substituting for

k and m:

B(t) =

∫ t

0

λ(a, t)B(t− a)k(a, t) da+

∫ ∞

t

λ(a, t)u0(t− a)m(a, t) da

Rewriting this equation, we can reduce the problem of solving for u(a,t) to a

Volterra equation:

B(t) = f(t) +

∫ t

0

K(a, t)B(t− a) da (6)

Where f(t) =
∫∞
t

λ(a, t)u0(t − a)m(a, t) da and K(a, t) = λ(a, t)k(a, t). Im-

portantly, f(t) and K(a,t) depend solely on given data for the given population

[3].
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