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Abstract

This paper introduces the p-adic ζ-function and Hecke polynomials with Newton Polygon, re-
spectively. Motivated by finding zeros of p-adic ζ-function, we study so-called ∆-conjecture, using
p-adic techniques. In the second section of the paper, we consider the generic Newton polygon of
Hecke polynomials for fixed prime p and congruence subgroup Γ. We then give some conjectures on
length of the zero slope and quadratic lower bounds of generic Newton polygons for different p and
Γ.
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1 The p-adic ζ-Function

1.1 Introduction to p-adic ζ-Function

The Riemann ζ-function is defined as a function of real numbers greater than 1 by :

ζpsq “
8
ÿ

n“1

1

ns
.

One can easily show that this series converges for s ą 1.
The p-adic ζ-function can be constructed by the p-adic interpolation of Riemann ζ-function.

However, instead of exploring the interpolation step by step, we will first introduce some basic
definitions and theorems, and then define the p-adic ζ-function directly.
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Definition 1.1. The kthBernoulli number Bk is defined as the coefficient of the term tk{k! in the
Taylor series for

t

et ´ 1
“

1

1` t{2!` t2{3!` t3{4!` ¨ ¨ ¨

“

8
ÿ

k“0

Bk
tk

k!
.

Here are the first few Bernoulli numbers:

B0 “ 1, B1 “ ´1{2, B2 “ 1{6, B3 “ 0, B4 “ ´1{30, . . .

All Bernoulli numbers are rational. In addition, we define pBpkq “ Bk{k. The following theorem
[3, Chap. 2] provides us with some useful properties of Bernoulli numbers.

Theorem 1.2. Let k P N and p be a prime number.

1. If k ą 1 is odd, then pBpkq “ 0.

2. If p´ 1 ffl k, then pBpkq is a p-adic integer.

Throughout this paper, we only consider odd prime numbers p and Bernoulli numbers with even
index k.

Theorem 1.3 (Kummer’s congruence). Let p be a prime, k, k1, N P N. If p´ 1 ffl k and k ” k1pmod
pN pp´ 1qq, then

p1´ pk´1q pBpkq ” p1´ pk
1´1q pBpk1qpmod pN`1q.

Theorem 1.4 (E. Lehmer [1]). Let p be a prime and k be a positive even integer. If p´ 1 ffl k ´ 2,
then

p2k ´ 1q pBpkq ”
ÿ

0ăaăp{2

pp´ 2aqk´1pmod p2q.

Now let’s consider the function in two variables t and x:

text

et ´ 1
“ p

8
ÿ

k“0

Bk
tk

k!
qp

8
ÿ

k“0

pxtqk

k!
q.

In this product, by collecting terms with tk, we obtain a polynomial in x for each k. The kth

Bernoulli polynomial Bkpxq is defined by the product of k! and that polynomial, i.e.

text

et ´ 1
“

8
ÿ

k“0

Bkpxq
tk

k!
.

In the following definitions, Qp is the set of all p-adic numbers. In addition, Zp and Zˆp mean
the set of p-adic integers and the set of p-adic units, which are the compact-open subsets of Qp. A
p-adic interval a` pNZp is defined by

a` pNZp “ tx P Qp||x´ a|p ď 1{pNu

for some a P Qp and N P Z. It is sometimes abbreviated as a` ppN q, where a P Zp. Without loss of
generality, we can further assume that a is an integer between 0 and pN ´ 1.

Definition 1.5. Let X be a compact-open subset of Qp, such as Zp or Zˆp . A p-adic distribution µ
on X is an additive map from the set of compact-opens in X to Qp. It means that if U Ă X is the
disjoint union of compact-open sets U1, U2, . . . , Un, then µpUq “ µpU1q ` µpU2q ` ¨ ¨ ¨ ` µpUnq. And
the p-adic distribution µ is a measure if its values on U Ă X are bounded by some constant B P R,
i.e., |µpUq|p ď B for every compact-open U Ă X.
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Now we define a map µB,k on the intervals a` ppN q by

µB,kpa` pp
N qq “ pNpk´1qBkp

a

pN
q.

Since

µB,kpa` pp
N qq “

p´1
ÿ

b“0

µB,kpa` bp
N ` ppN`1qq,@a` ppN q Ă Zp,

µB,k extends uniquely [3, p.32] to a p-adic distribution on Zp, which is called the kth Bernoulli
distribution.

Although Bernoulli distributions are not measures, they can be turned into measures by “regu-
larization”. Let α be an integer not equal to 1 and not divisible by p, and µB,k be the kth Bernoulli
distribution. The regularized Bernoulli distribution on Zp is defined by

µk,αpUq “ µB,kpUq ´ α
´kµB,kpαUq, for all compact-open U Ă Zp.

One can verify that µk,α is a measure on Zp.

Definition 1.6. Let µ be a p-adic measure on X and let f : X Ñ Qp be a continuous function. We
define the Riemann sums

SN,pxa,N q “
ÿ

0ďaăpN ;
a`ppN qĂX

fpxa,N qµpa` pp
N qq,

where the sum is taken over all a for which 0 ď a ă pN and a` ppN q Ă X, and xa,N is an arbitrary
point in the interval a` ppN q. And we define

ş

X fµ to be the limit of SN,pxa,N q, as N Ñ8.

With the definition of
ş

X fµ, we can define the p-adic ζ-function.

Definition 1.7. Fix prime number p and s0 P t0, 1, 2, . . . , p ´ 2u. For s P Zpps ‰ 0 if s0 “ 0q, the
p-adic ζ-function ζp,s0psq is defined by

ζp,s0psq “
1

α´ps0`pp´1qsq ´ 1

ż

Zˆp
xs0`pp´1qs´1µ1,α.

It is worth noting that the p-adic ζ-function ζp,s0 is independent of the choice of α.

1.2 Irregular pair and ∆-conjecture

For fixed prime p and s0 as above, does the p-adic ζ-function ζp,s0 have any zero? In other words,
can we find some p-adic integer s, such that ζp,s0psq “ 0? B.C. Kellner studied this question and
proved that ζp,lpsq has a unique zero [2, Theorem 4.6] when pp, lq is an irregular pair (defined below),
assuming the so-called “∆-Conjecture” holds.

Definition 1.8. Let p be an odd prime and l be a positive integer. The pair pp, lq is an irregular
pair if p � pBplq, where l is even and 2 ď l ď p´ 3. The index of irregularity of p is defined by

ippq “ #tpp, lq : p � pBplq; l “ 2, 4 . . . p´ 3u

The prime p is called an irregular prime if ippq ‰ 0

Here p � pBplq means p divides the numerator of pBplq. Or if we think pBplq as a p-adic integer, i.e.

pBplq “
8
ř

n“0
anp

n, then p � pBplq implies a0=0. Then we define Ψirr to be the set of all irregular pairs.
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Definition 1.9. For pp, lq P Ψirr, define

∆pp,lq ” p´1p pBpl ` p´ 1q ´ pBplqq (mod p),

where 0 ď ∆pp,lq ă p. If ∆pp,lq “ 0, then we say ∆pp,lq is singular, otherwise nonsingular .

Conjecture 1.10 (∆-Conjecture). ∆pp,lq is nonsingular for all irregular pairs pp, lq P Ψirr.

Consider pp, lq P Ψirr. By the definition of irregular pair, we already know p � pBplq. In order to
have ∆pp,lq well-defined, p should also divide pBpl` p´ 1qq, which is proved by the following lemma.

Lemma 1.11. For every irregular pair pp, lq P Ψirr, p | pBpl ` p´ 1q.

Proof. By definition, l is an even integer between 2 and p ´ 3. So p ´ 1 ffl l. Since l ” l ` p ´
1 (mod p ´ 1q, by Kummer Congruence, p1 ´ pl´1q pBplq ” p1 ´ pl`p´2q pBpl ` p ´ 1q (mod pq. Since
l ě 2, pl´1 pBplq ” pl`p´2 pBpl`p´1q ” 0 (mod pq. It implies that pBplq ” pBpl`p´1q (mod pq. Since
pp, lq P Ψirr

1 , p � pBplq. Therefore, pBpl ` p´ 1q ” 0 (mod pq.

By the previous lemma, in order to prove ∆-conjecture holds, it suffices to show that pBpl ` p´
1q ´ pBplq ı 0 (mod p2).

Lemma 1.12. Let p be an odd prime and k be an even natural number. If p´ 1 ffl k, then

ÿ

0ăaăp{2

ak ” 0pmod pq.

Proof. Since p is odd, 2 and p are relatively prime. It suffices to show that 2
ř

0ăaăp{2

ak ” 0pmod pq.

Since k is even,

2
ÿ

0ăaăp{2

ak ”
ÿ

0ăaăp{2

ak `
ÿ

0ăaăp{2

pp´ aqk

”
ÿ

0ăaăp{2

ak `
ÿ

p{2ăaăp

ak

”
ÿ

0ăaăp

akpmod pq

Since Fˆp “ t1, 2, . . . p´1u is a cyclic group, there exists a l P Fˆp , such that xly “ Fˆp . Since p´1 ffl k,

lk ı 1 (mod p). Assume S “
ř

0ăaăp
ak, then

lkS ”
ÿ

0ăaăp

plaqk ”
ÿ

0ăbăp

bk ” S (mod p)

It follows that plk ´ 1qS ” 0 (mod p). Since lk ı 1 (mod p), S must be congruent to 0 mod p.

Theorem 1.13. ∆-conjecture holds if for every irregular pair pp, lq, p2l´1q ¨
ř

0ăaăp{2

p´2aql´1ma ı 0

(mod p), where p´2aqp´1 ” 1`ma ¨ p (mod p2).

Proof. Since p2l´ 1q ¨
ř

0ăaăp{2

p´2aql´1ma ı 0 (mod p), 2l ı 1(mod p). By Fermat’s Little Theorem,

2l`p´1 ı 1 (mod p). It follows that 2l, 2l`p´1 ı 1 (mod p2). Let’s consider p pBpl ` p ´ 1q ´
pBplqqp2l`p´1 ´ 1qp2l ´ 1q (mod p2) and replace l by 2k. Since p ´ 1 - 2k ´ 2, by Theorem 1.4, we
obtain:
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p pBp2k ` p´ 1q ´ pBp2kqqp22k`p´1 ´ 1qp22k ´ 1q

” p22k ´ 1q
ÿ

0ăaăp{2

pp´ 2aq2k`p´2 ´ p22k`p´1 ´ 1q
ÿ

0ăaăp{2

pp´ 2aq2k´1

” A`B (mod p2)

where

A :“

ˆ

p22k ´ 1q
ÿ

0ăaăp{2

p´2aq2k`p´2
˙

´

ˆ

p22k2p´1 ´ 1q
ÿ

0ăaăp{2

p´2aq2k´1
˙

.

B :“

ˆ

p22k ´ 1q
ÿ

0ăaăp{2

p2k ` p´ 2qp´2aq2k`p´3p

˙

´

ˆ

p22k2p´1 ´ 1q
ÿ

0ăaăp{2

p2k ´ 1qp´2aq2k´2p

˙

.

If we divide B by p, then

p´1B ” p22k ´ 1q
ÿ

p2k ` p´ 2qp´2aq2k`p´3 ´ p22k2p´1 ´ 1q
ÿ

p2k ´ 1qp´2aq2k´2 (mod p).

Since gcdp´2a, pq “ gcdp2, pq “ 1, by Fermat’s Little Theorem, we obtain:

p´1B ” p22k ´ 1q
ř

p2k ` p´ 2qp´2aq2k´2 ´ p22k ´ 1q
ř

p2k ´ 1qp´2aq2k´2

” p22k ´ 1q
ř

pp´ 1qp´2aq2k´2

” p22k ´ 1q22k´2p´1q
ř

a2k´2 (mod p).

By Lemma 1.12, B is congruent to 0 mod p2.

Now let’s consider A. Fermat’s Little Theorem implies that 2p´1 ” 1 ` l ¨ p (mod p2q and
p´2aqp´1 ” 1`ma ¨ p (mod p2q, for some integers 0 ď l,ma ď pp´ 1q. If we replace 2p´1 by 1` lp
and p´2aqp´1 by 1`map in A, we obtain:

A ” p22k ´ 1q
ř

p1`mapqp´2aq2k´1 ´ p22kp1` lpq ´ 1q
ř

p´2aq2k´1

” p22k ´ 1q
ř

mapp´2aq2k´1 ´ 22klp
ř

p´2aq2k´1 (mod p2)

If we divide A by p, then

p´1A ” p22k ´ 1q
ÿ

map´2aq2k´1 ´ 22kl
ÿ

p´2aq2k´1 (mod p).

Since pp, 2kq is an irregular prime, by definition, p| pBp2kq. Thus p22k ´ 1q pBp2kq ” 0 (mod p). By
Theorem 1.4,

p22k ´ 1q pBp2kq ”
ÿ

0ăaăp{2

pp´ 2aq2k´1 (mod p2).

The congruence relation also holds for modulo p. Hence,

p22k ´ 1q pBp2kq ”
ÿ

0ăaăp{2

pp´ 2aq2k´1 ”
ÿ

0ăaăp{2

p´2aq2k´1 ” 0 (mod p)

It implies that p´1A ” p22k´1q
ř

map´2aq2k´1 (mod p). Since p22k´1q
ř

map´2aq2k´1 ı 0 (mod p),
by assumption, A ı 0 (mod p2). Since 22k, 22k`p´1 ı 1(mod p2), we obtain pBp2k`p´1q´ pBp2kq ı
0 (mod p2). Therefore, ∆-conjecture holds.
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2 Hecke Polynomials

2.1 Introduction to Hecke Polynomial

Definition 2.1. The special linear group of degree 2 over integers

SL2pZq “

#˜

a b
c d

¸

|a, b, c, d P Z, ad´ bc “ 1

+

is called the full modular group.

For any positive integer N , we define

ΓpNq “

#˜

a b
c d

¸

P SL2pZq|a ” d ” 1, b ” c ” 0(mod N)

+

.

ΓpNq is a normal subgroup of SL2pZq and is called the principal congruence subgroup of level
N . A subgroup of SL2pZq is called a congruence subgroup of level N if it contains ΓpNq. Here are
two important congruence subgroups:

Γ0pNq “

#˜

a b
c d

¸

P SL2pZq|c ” 0 (mod N)

+

;

Γ1pNq “

#˜

a b
c d

¸

P Γ0pNq|a ” 1 (mod N)

+

.

Let γ “

ˆ

a b
c d

˙

P SL2pZq and H “ tz P C|Impzq ą 0u. Let fpzq be a function on H̄ “

H YQY t8u with values in CY t8u, and let k P Z. We define f |rγsk as a function whose value at
z P H̄ is pcz ` dq´kfppaz ` bq{pcz ` dqq, i.e.

fpzq|rγsk “ pcz ` dq
´kfppaz ` bq{pcz ` dqq, for γ “

ˆ

a b
c d

˙

P SL2pZq.

Definition 2.2. Let fpzq be a meromorphic function on H, and Γ be a congruence subgroup of level
N . Let k P Z.

1. fpzq is a modular function of weight k for Γ if

f |rγsk “ f, for all γ “

˜

a b
c d

¸

P Γ,

and if for any γ0 P SL2pZq,

fpzq|rγ0sk has the form
8
ÿ

´8

anq
n with q “ e2πiz and an “ 0 for n ăă 0.

2. If a modular function fpzq is holomorphic on H, and if for all γ0 P SL2pZq, an “ 0 for all
n ă 0, then fpzq is a modular form of weight k for Γ.

3. If fpzq is a modular form with a0 “ 0, then fpzq is a cusp-form.

The set of all modular forms of weight k for Γ and the set of all cusp-forms of weight k for Γ are
denoted by MkpΓq and SkpΓq respectively. Both MkpΓq and SkpΓq are vector spaces.

Although the general definition of Hecke operator is complicated, we can obtain the following
equivalent definition [4] of the pth-Hecke operator Tp for prime number p.
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Definition 2.3. Let p be a prime number and SkpΓq be the set of cusp forms of weight k, for some

congruence subgroup Γ of level N . Let fpzq “
8
ř

n“1
anq

n, where q “ e2πiz, f P SkpΓq. If we define

Uppfq “
8
ř

n“1
apnq

n and Vppfq “
8
ř

n“1
anq

pn, then the pth-Hecke operator

Tp “

#

Up if p|N

Up ` p
k´1Vp if p - N

.

Tp is an operator on SkpΓq. Then we can define the Hecke polynomial as

Hkpxq “

#

detpI ´ Tpx|SkpΓqq if p � N

detpI ´ Tpx` p
k´1x2I|SkpΓqq if p ffl N

,

where I is the identity matrix whose size is the same as Tp.

For example, suppose Tp “

˜

a b
c d

¸

is a Hecke operator Tp and p - N . By definition, we obtain:

Hk “ det

˜˜

1 0
0 1

¸

´

˜

a b
c d

¸

x`

˜

pk´1x2 0
0 pk´1x2

¸¸

“ det

˜

1´ ax` pk´1x2 ´bx
´cx 1´ dx` pk´1x2

¸

We can write Hk “ c0 ` c1x ` c2x
2 ` c3x

3 ` c4x
4 by expanding the polynomial in powers of x.

Given any Hecke polynomial Hk with prime p, we can define what the newton polygon of Hk is.

Definition 2.4 (Newton Polygon). Let Hk “
n
ř

i“0
cix

i be a Hecke polynomial. The Newton polygon

of Hk is defined to be the lower convex hull of the set of points Pp,k “ tpi, ordppciqq : 0 ď i ď nu.

Example:

0.5 1 1.5 2 2.5 3 3.5 4

5

10

15

20

25

30

35

(a) Newton polygon: p “ 3,Γ1 “ Γ1p3q, k “ 30

2.2 Newton Polygons for congruence subgroup Γ0p3q

In this section, we fix the congruence subgroup to be Γ0p3q and study the Hecke operators and their
corresponding Newton Polygons as prime p varies.

Firstly, let’s define the generic Newton polygon for prime p to be the lower convex hull of the set
of points Pp “

Ť8
k“1 Pp,k. Figure 2 shows the graphs of the Newton Polygons for p “ 3, 5, 7 and 11

respectively, as k varies between 3 and 30. From the graphs, we notice that for p “ 3, all the vertices
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lie above the x-axis except the origin, i.e. the length of zero slope is 0, and the length of zero slope
increases as p increases.

Based on the observation above, can we determine the length of zero slope of the generic Newton
polygon under fixed prime p? In other words, can we find the vertex pi0, ordppci0qq of the generic
Newton polygon, such that ordppci0q “ 0 and ordppcjq ą 0 for all j ą i0? So far, we are unable to
prove a specific vertex works for all k, but the following conjecture can be obtained from the results
calculated by Magma (codes in Appendix).

(a) p “ 3 (b) p “ 5

(c) p “ 7 (d) p “ 11

Figure 2: The Newton Polygons for p “ 3, 5, 7, 11; 3 ď k ď 30

Conjecture 2.5. For congruence subgroup Γ0p3q and prime number p ě 3, ptp´23 u, 0q is the length
of the zero slope.

Let’s focus on the case p “ 3. Our conjecture claims that p0, 0q is the only zero point and
ord3pciq ą 0 for all i ě 1. It is easy to show that p0, 0q is a vertex of the Newton Polygon. By
definition, the Hecke polynomial Hkpxq “ detpI ´ Tpxq, where Tp is the pth-Hecke operator. If we
expand Hk in powers of x, then the constant term of Hk only comes of the identity matrix I. It follows
that the constant terms of Hk must be 1, which is not divisible by 3. Thus, p0, ord3pc0qq “ p0, 0q for
all weight k.

Now let’s write Hk “
n
ř

i“0
cix

i. It suffices to show that for any weight k, ci is divisible by 3,

whenever i ě 1. Although it is hard to compute or express the explicit formula of the pth-Hecke
operator, from computer calculation, we conjecture that for p “ 3, the matrix representations of Tp
satisfy the properties listed in the following theorem, which implies that Conjecture 2.5 holds for
p “ 3.

Theorem 2.6. Let M be a nˆ n matrix, i.e.
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M “

»

—

—

—

–

m11 m12 . . . m1n

m21 m22 . . . m2n
...

...
. . .

...
mn1 mn2 . . . mnn

fi

ffi

ffi

ffi

fl

Suppose M has the following properties:

1. 3 � mii, for all i “ 1, 2, . . . n.

2. Let li “ ord3piq. If li “ 0, then 3 | mij, for all j “ 1, 2, . . . , n. If li ě 1, then 3 | mij, for all
j ı i

3 pmod 3liq

Then for the polynomial detpI ´Mxq “
n
ř

i“0
cix

i, ci is divisible by 3 for all i ě 1.

Proof. For any i, the coefficient ci is determined by the following formula:

ci “ p´1qi ¨
ÿ

1ďu1ău2¨¨¨ăuiďn;
σPSi

sgnpσq ¨mu1,σpu1q ¨mu2,σpu2q ¨ ¨ ¨mui,σpuiq,

where Si is the symmetric group Sympu1, u2 . . . uiq and sgnpσq is the sign of permutation σ.
By the formula above, we know c1 “ ´pm11 `m22 ` ¨ ¨ ¨ `mnnq “ ´trpMq. Since 3 � mii for all

i, 3 � c1.
To show 3 � c2, it suffices to show that for every 1 ď u1 ă u2 ď n and σ P S2, 3 � mu1,σpu1q ¨

mu2,σpu2q. It is obvious that S2 only contains the identity e and the permutation pu1u2q, which
interchanges u1 and u2. If σ is the identity, then 3 � mu1,u1 ¨mu2,u2 by property 1. So we just need
to show that for all 1 ď u1 ă u2 ď n, 3 � mu1,u2 ¨mu2,u1 .

Suppose there exists 1 ď u1 ă u2 ď n such that 3 ffl mu1,u2 ¨mu2,u1 . Then both mu1,u2 and mu2,u1

are not divisible by 3. By property 2, we have lu1 , lu2 ě 1. Suppose at least one of lu1 and lu2 are
equal to 1. Without loss of generality, we assume lu1 “ 1. It implies that 3 � u1 but 9 ffl u1. In order
to have 3 ffl mu1,u2 , u2 must be congruent to u1

3 (mod 3). Since 9 ffl u1, u2 is congruent to either 1
or 2 (mod 3). Thus lu2 “ 0, which implies that 3 � mu2,u1 . Contradiction. Hence, we must have
lu1 , lu2 ě 2.

Similarly, suppose at least one of lu1 and lu2 are equal to 2. Without loss of generality, assume
lu1 “ 2. Then 9 � u1 but 27 ffl u1. In order to have 3 ffl mu1,u2 , u2 must be congruent to u1

3 (mod 9).
However, since lu1 “ 2, lu2 must be less than or equal to 1. It follows that 3 � mu2,u1 . Hence, we
must have lu1 , lu2 ě 3.

By continuing this process, we obtain that for all 1 ď u1 ă u2 ď n such that 3 � mu1,u2 ¨mu2,u1 .
Therefore, 3 � c2. The proof of the general case is similar but very technical. So we omit the proof
here. One can show that 3 � ci for all i ě 1 by the similar argument and induction.

Also from Figure 2, one may notice that all the Newton polygons are bounded below. Now let’s
still fix the prime p and consider quadratic lower bounds of the generic Newton polygon. Assuming
Conjecture 2.5 holds, we already know two vertices lying on the x-axis, i.e. (0,0) and ptp´23 u, 0q.
Since a quadratic polynomial can be determined by only 3 points, another interesting question is
whether we can find a quadratic lower bound which depends on p and hits the zero points of the
generic Newton polygon. Although it is still complicated to prove that a specific polynomial is a
lower bound for all weight k P N, we can at least calculate the first several k’s by Magma and obtain
the following conjecture.

Conjecture 2.7. For congruence subgroup Γ0p3q and prime number p ě 3, y “ 1
p´1xpx´ t

p´2
3 uq is

a quadratic lower bound of the generic Newton polygon.

It is easy to check that y hits the zero points (0,0) and ptp´23 u, 0q. However, we are just claiming
that y is a quadratic lower bound. It may not the “greatest lower bound” which is the lower bound
that hits at least 3 vertices on the generic Newton polygon. For example, when p “ 3, y “ 3

2x
2` 1

2x
is the conjectured greatest lower bound.
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2.3 Newton Polygons for other congruence subgroups

In this section, we give more conjectures about the two questions mentioned before: the length
of zero slope and quadratic lower bound, but consider Hecke polynomials in different congruence
subgroups Γ.

Conjecture 2.8. For prime p ě 3,

1. if Γ “ Γ1p3q, then the length of zero slope is t
p´2
3 u;

2. if Γ “ Γ0p4q “ Γ1p4q, then the length of zero slope is t
p´2
2 u;

3. if Γ “ Γ0p5q, then the length of zero slope is t
p`1
4 u` t

p´1
4 u;

4. if Γ “ Γ1p5q, then the length of zero slope is p´ 2.

Conjecture 2.9. For prime p ě 3,

1. if Γ “ Γ1p3q, y “
1
p´1xpx´ t

p´2
3 uq is a quadratic lower bound of the generic Newton polygon.

2. if Γ “ Γ0p4q “ Γ1p4q, y “
1
p`1xpx ´ t

p´2
2 uq is a quadratic lower bound of the generic Newton

polygon.
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3 Appendix

3.1 Magma Code

The following Magma code gives all vertices of Newton polygons for p “ 3, Γ “ Γ1p3q, as weight k
varies from 1 to 100.

R<x> := PolynomialRing(Integers());

p := 3;

for k in [1..100] do

S := CuspForms(Gamma1(3),k);

P := HeckePolynomial(S,p);

P := ReciprocalPolynomial(P);

NP := NewtonPolygon(P,p);

AllVertices(NP);

end for;

The following Magma code determines the divisibility of each entry in the Hecke matrix for p “ 3,
Γ1 “ Γ0p3q, as weight k varies from 1 to 100.

p:= 3;

for k in [1..100] do

M:= CuspForms(Gamma0(3),k);

d:= Dimension(M);

T:= HeckeOperator(M,p);

for i in [1..d] do

for j in [1..d] do

T[i,j]:= T[i,j] mod p;

end for;

end for;

print k;

print T;

end for;

3.2 Sage Code

The following Sage code plots the graph of Newton polygons for p “ 3, Γ “ Γ1p3q, as weight k varies
from 1 to 30.

p = 3

G = Gamma1(3)

N = 30

from sage.geometry.newton_polygon import NewtonPolygon

def hecke_poly(k):

W = CuspForms(G,k)

d = W.dimension()

H = W.hecke_matrix(p)

I = matrix.identity(d)

U = I - H*x

Q = U.determinant()

return Q
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K = Qp(p)

R.<t> = K[]

print "p = ",p," ----- Newton slopes of Hecke"

E = []

for k in [1..N]:

hecke = hecke_poly(k)

L = hecke.coefficients(sparse=False)

p_hecke = R(L)

NP = p_hecke.newton_slopes()

NP_half = []

for i in [0..len(NP)/2-1]:

NP_half.append(-NP[i])

NP12 = NewtonPolygon(NP_half).plot()

E.append(NP12)

sum(E)

Here the Hecke operator U “ I ´Hx, since p “ 3 is divisible by 3. If p doesn’t divide 3, then
U “ I ´Hx` ppk´1qx2I.
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