On Zeros of the p-adic zeta-Function, and Generic Newton Polygons of Hecke Polynomials

Guowei Shan

May 8, 2019

Abstract

This paper introduces the *p*-adic ζ -function and Hecke polynomials with Newton Polygon, respectively. Motivated by finding zeros of *p*-adic ζ -function, we study so-called Δ -conjecture, using *p*-adic techniques. In the second section of the paper, we consider the generic Newton polygon of Hecke polynomials for fixed prime *p* and congruence subgroup Γ . We then give some conjectures on length of the zero slope and quadratic lower bounds of generic Newton polygons for different *p* and Γ .

Contents

1	The <i>p</i> -adic ζ -Function	1
	1.1 Introduction to p-adic ζ -Function	1
	1.2 Irregular pair and Δ -conjecture	3
2	Hecke Polynomials	6
	2.1 Introduction to Hecke Polynomial	6
	2.2 Newton Polygons for congruence subgroup $\Gamma_0(3)$	7
	2.3 Newton Polygons for other congruence subgroups	10
3	Appendix	11
	3.1 Magma Code	11
	3.2 Sage Code	11

1 The *p*-adic ζ -Function

1.1 Introduction to *p*-adic ζ -Function

The Riemann ζ -function is defined as a function of real numbers greater than 1 by :

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

One can easily show that this series converges for s > 1.

The *p*-adic ζ -function can be constructed by the *p*-adic interpolation of Riemann ζ -function. However, instead of exploring the interpolation step by step, we will first introduce some basic definitions and theorems, and then define the *p*-adic ζ -function directly. **Definition 1.1.** The k^{th} Bernoulli number B_k is defined as the coefficient of the term $t^k/k!$ in the Taylor series for

$$\frac{t}{e^t - 1} = \frac{1}{1 + t/2! + t^2/3! + t^3/4! + \cdots}$$
$$= \sum_{k=0}^{\infty} B_k \frac{t^k}{k!}.$$

Here are the first few Bernoulli numbers:

$$B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_3 = 0, B_4 = -1/30, \dots$$

All Bernoulli numbers are rational. In addition, we define $\hat{B}(k) = B_k/k$. The following theorem [3, Chap. 2] provides us with some useful properties of Bernoulli numbers.

Theorem 1.2. Let $k \in \mathbb{N}$ and p be a prime number.

- 1. If k > 1 is odd, then $\hat{B}(k) = 0$.
- 2. If $p-1 \nmid k$, then $\hat{B}(k)$ is a p-adic integer.

Throughout this paper, we only consider odd prime numbers p and Bernoulli numbers with even index k.

Theorem 1.3 (Kummer's congruence). Let p be a prime, $k, k', N \in \mathbb{N}$. If $p-1 \nmid k$ and $k \equiv k' \pmod{p^N(p-1)}$, then

$$(1-p^{k-1})\widehat{B}(k) \equiv (1-p^{k'-1})\widehat{B}(k') \pmod{p^{N+1}}.$$

Theorem 1.4 (E. Lehmer [1]). Let p be a prime and k be a positive even integer. If $p - 1 \nmid k - 2$, then

$$(2^k - 1)\widehat{B}(k) \equiv \sum_{0 < a < p/2} (p - 2a)^{k-1} (mod \ p^2).$$

Now let's consider the function in two variables t and x:

$$\frac{te^{xt}}{e^t - 1} = (\sum_{k=0}^{\infty} B_k \frac{t^k}{k!}) (\sum_{k=0}^{\infty} \frac{(xt)^k}{k!}).$$

In this product, by collecting terms with t^k , we obtain a polynomial in x for each k. The k^{th} Bernoulli polynomial $B_k(x)$ is defined by the product of k! and that polynomial, i.e.

$$\frac{te^{xt}}{e^t - 1} = \sum_{k=0}^{\infty} B_k(x) \frac{t^k}{k!}.$$

In the following definitions, \mathbb{Q}_p is the set of all *p*-adic numbers. In addition, \mathbb{Z}_p and \mathbb{Z}_p^{\times} mean the set of *p*-adic integers and the set of *p*-adic units, which are the compact-open subsets of \mathbb{Q}_p . A *p*-adic interval $a + p^N \mathbb{Z}_p$ is defined by

$$a + p^N \mathbb{Z}_p = \{x \in \mathbb{Q}_p | |x - a|_p \le 1/p^N\}$$

for some $a \in \mathbb{Q}_p$ and $N \in \mathbb{Z}$. It is sometimes abbreviated as $a + (p^N)$, where $a \in \mathbb{Z}_p$. Without loss of generality, we can further assume that a is an integer between 0 and $p^N - 1$.

Definition 1.5. Let X be a compact-open subset of \mathbb{Q}_p , such as \mathbb{Z}_p or \mathbb{Z}_p^{\times} . A p-adic distribution μ on X is an additive map from the set of compact-opens in X to \mathbb{Q}_p . It means that if $U \subset X$ is the disjoint union of compact-open sets U_1, U_2, \ldots, U_n , then $\mu(U) = \mu(U_1) + \mu(U_2) + \cdots + \mu(U_n)$. And the p-adic distribution μ is a measure if its values on $U \subset X$ are bounded by some constant $B \in \mathbb{R}$, *i.e.*, $|\mu(U)|_p \leq B$ for every compact-open $U \subset X$.

Now we define a map $\mu_{B,k}$ on the intervals $a + (p^N)$ by

$$\mu_{B,k}(a + (p^N)) = p^{N(k-1)} B_k(\frac{a}{p^N}).$$

Since

$$\mu_{B,k}(a + (p^N)) = \sum_{b=0}^{p-1} \mu_{B,k}(a + bp^N + (p^{N+1})), \forall a + (p^N) \subset \mathbb{Z}_p,$$

 $\mu_{B,k}$ extends uniquely [3, p.32] to a *p*-adic distribution on \mathbb{Z}_p , which is called the k^{th} Bernoulli distribution.

Although Bernoulli distributions are not measures, they can be turned into measures by "regularization". Let α be an integer not equal to 1 and not divisible by p, and $\mu_{B,k}$ be the k^{th} Bernoulli distribution. The regularized Bernoulli distribution on \mathbb{Z}_p is defined by

$$\mu_{k,\alpha}(U) = \mu_{B,k}(U) - \alpha^{-k} \mu_{B,k}(\alpha U), \text{ for all compact-open } U \subset \mathbb{Z}_p.$$

One can verify that $\mu_{k,\alpha}$ is a measure on \mathbb{Z}_p .

Definition 1.6. Let μ be a p-adic measure on X and let $f : X \to \mathbb{Q}_p$ be a continuous function. We define the Riemann sums

$$S_{N,(x_{a,N})} = \sum_{\substack{0 \le a < p^N; \\ a + (p^N) \subset X}} f(x_{a,N}) \mu(a + (p^N)),$$

where the sum is taken over all a for which $0 \leq a < p^N$ and $a + (p^N) \subset X$, and $x_{a,N}$ is an arbitrary point in the interval $a + (p^N)$. And we define $\int_X f\mu$ to be the limit of $S_{N,(x_{a,N})}$, as $N \to \infty$.

With the definition of $\int_X f\mu$, we can define the *p*-adic ζ -function.

Definition 1.7. Fix prime number p and $s_0 \in \{0, 1, 2, ..., p-2\}$. For $s \in \mathbb{Z}_p (s \neq 0 \text{ if } s_0 = 0)$, the *p*-adic ζ -function $\zeta_{p,s_0}(s)$ is defined by

$$\zeta_{p,s_0}(s) = \frac{1}{\alpha^{-(s_0 + (p-1)s)} - 1} \int_{\mathbb{Z}_p^{\times}} x^{s_0 + (p-1)s - 1} \mu_{1,\alpha}.$$

It is worth noting that the p-adic ζ -function ζ_{p,s_0} is independent of the choice of α .

1.2 Irregular pair and Δ -conjecture

For fixed prime p and s_0 as above, does the p-adic ζ -function ζ_{p,s_0} have any zero? In other words, can we find some p-adic integer s, such that $\zeta_{p,s_0}(s) = 0$? B.C. Kellner studied this question and proved that $\zeta_{p,l}(s)$ has a unique zero [2, Theorem 4.6] when (p, l) is an irregular pair (defined below), assuming the so-called " Δ -Conjecture" holds.

Definition 1.8. Let p be an odd prime and l be a positive integer. The pair (p, l) is an irregular pair if $p \mid \hat{B}(l)$, where l is even and $2 \leq l \leq p-3$. The index of irregularity of p is defined by

$$i(p) = \#\{(p,l): p \mid B(l); l = 2, 4 \dots p - 3\}$$

The prime p is called an irregular prime if $i(p) \neq 0$

Here $p \mid \hat{B}(l)$ means p divides the numerator of $\hat{B}(l)$. Or if we think $\hat{B}(l)$ as a p-adic integer, i.e. $\hat{B}(l) = \sum_{n=0}^{\infty} a_n p^n$, then $p \mid \hat{B}(l)$ implies $a_0=0$. Then we define Ψ^{irr} to be the set of all irregular pairs.

Definition 1.9. For $(p, l) \in \Psi^{irr}$, define

$$\Delta_{(p,l)} \equiv p^{-1}(\widehat{B}(l+p-1) - \widehat{B}(l)) \pmod{p},$$

where $0 \leq \Delta_{(p,l)} < p$. If $\Delta_{(p,l)} = 0$, then we say $\Delta_{(p,l)}$ is singular, otherwise nonsingular.

Conjecture 1.10 (Δ -Conjecture). $\Delta_{(p,l)}$ is nonsingular for all irregular pairs $(p,l) \in \Psi^{irr}$.

Consider $(p,l) \in \Psi^{irr}$. By the definition of irregular pair, we already know $p \mid \hat{B}(l)$. In order to have $\Delta_{(p,l)}$ well-defined, p should also divide $\hat{B}(l+p-1)$, which is proved by the following lemma.

Lemma 1.11. For every irregular pair $(p,l) \in \Psi^{irr}$, $p \mid \hat{B}(l+p-1)$.

Proof. By definition, l is an even integer between 2 and p-3. So $p-1 \nmid l$. Since $l \equiv l+p-1 \pmod{p-1}$, by Kummer Congruence, $(1-p^{l-1})\hat{B}(l) \equiv (1-p^{l+p-2})\hat{B}(l+p-1) \pmod{p}$. Since $l \ge 2, p^{l-1}\hat{B}(l) \equiv p^{l+p-2}\hat{B}(l+p-1) \equiv 0 \pmod{p}$. It implies that $\hat{B}(l) \equiv \hat{B}(l+p-1) \pmod{p}$. Since $(p,l) \in \Psi_1^{irr}, p \mid \hat{B}(l)$. Therefore, $\hat{B}(l+p-1) \equiv 0 \pmod{p}$.

By the previous lemma, in order to prove Δ -conjecture holds, it suffices to show that $\hat{B}(l+p-1) - \hat{B}(l) \neq 0 \pmod{p^2}$.

Lemma 1.12. Let p be an odd prime and k be an even natural number. If $p - 1 \nmid k$, then

$$\sum_{0 < a < p/2} a^k \equiv 0 \pmod{p}.$$

Proof. Since p is odd, 2 and p are relatively prime. It suffices to show that $2 \sum_{0 < a < p/2} a^k \equiv 0 \pmod{p}$. Since k is even,

$$2\sum_{0 < a < p/2} a^k \equiv \sum_{0 < a < p/2} a^k + \sum_{0 < a < p/2} (p-a)^k$$
$$\equiv \sum_{0 < a < p/2} a^k + \sum_{p/2 < a < p} a^k$$
$$\equiv \sum_{0 < a < p} a^k \pmod{p}$$

Since $\mathbb{F}_p^{\times} = \{1, 2, \dots p-1\}$ is a cyclic group, there exists a $l \in \mathbb{F}_p^{\times}$, such that $\langle l \rangle = \mathbb{F}_p^{\times}$. Since $p-1 \not \mid k$, $l^k \not\equiv 1 \pmod{p}$. Assume $S = \sum_{0 < a < p} a^k$, then

$$l^k S \equiv \sum_{0 < a < p} (la)^k \equiv \sum_{0 < b < p} b^k \equiv S \pmod{p}$$

It follows that $(l^k - 1)S \equiv 0 \pmod{p}$. Since $l^k \neq 1 \pmod{p}$, S must be congruent to $0 \mod p$. **Theorem 1.13.** Δ -conjecture holds if for every irregular pair (p, l), $(2^l - 1) \cdot \sum_{0 < a < p/2} (-2a)^{l-1} m_a \neq 0$ $(mod \ p)$, where $(-2a)^{p-1} \equiv 1 + m_a \cdot p \pmod{p^2}$.

Proof. Since $(2^l - 1) \cdot \sum_{0 < a < p/2} (-2a)^{l-1} m_a \neq 0 \pmod{p}$, $2^l \neq 1 \pmod{p}$. By Fermat's Little Theorem, $2^{l+p-1} \neq 1 \pmod{p}$. It follows that $2^l, 2^{l+p-1} \neq 1 \pmod{p^2}$. Let's consider $(\hat{B}(l+p-1) - \hat{B}(l))(2^{l+p-1} - 1)(2^l - 1) \pmod{p^2}$ and replace l by 2k. Since $p - 1 \nmid 2k - 2$, by Theorem 1.4, we

$$\begin{aligned} (\hat{B}(2k+p-1) - \hat{B}(2k))(2^{2k+p-1} - 1)(2^{2k} - 1) \\ &\equiv (2^{2k} - 1) \sum_{0 < a < p/2} (p - 2a)^{2k+p-2} - (2^{2k+p-1} - 1) \sum_{0 < a < p/2} (p - 2a)^{2k-1} \\ &\equiv A + B \pmod{p^2} \end{aligned}$$

where

$$\begin{aligned} A &:= \left((2^{2k} - 1) \sum_{0 < a < p/2} (-2a)^{2k+p-2} \right) - \left((2^{2k} 2^{p-1} - 1) \sum_{0 < a < p/2} (-2a)^{2k-1} \right). \\ B &:= \left((2^{2k} - 1) \sum_{0 < a < p/2} (2k+p-2)(-2a)^{2k+p-3} p \right) - \left((2^{2k} 2^{p-1} - 1) \sum_{0 < a < p/2} (2k-1)(-2a)^{2k-2} p \right). \end{aligned}$$

If we divide B by p, then

$$p^{-1}B \equiv (2^{2k} - 1)\sum(2k + p - 2)(-2a)^{2k + p - 3} - (2^{2k}2^{p - 1} - 1)\sum(2k - 1)(-2a)^{2k - 2} \pmod{p}.$$

Since gcd(-2a, p) = gcd(2, p) = 1, by Fermat's Little Theorem, we obtain:

$$p^{-1}B \equiv (2^{2k} - 1) \sum (2k + p - 2)(-2a)^{2k-2} - (2^{2k} - 1) \sum (2k - 1)(-2a)^{2k-2}$$

$$\equiv (2^{2k} - 1) \sum (p - 1)(-2a)^{2k-2}$$

$$\equiv (2^{2k} - 1)2^{2k-2}(-1) \sum a^{2k-2} \pmod{p}.$$

By Lemma 1.12, B is congruent to $0 \mod p^2$.

Now let's consider A. Fermat's Little Theorem implies that $2^{p-1} \equiv 1 + l \cdot p \pmod{p^2}$ and $(-2a)^{p-1} \equiv 1 + m_a \cdot p \pmod{p^2}$, for some integers $0 \leq l, m_a \leq (p-1)$. If we replace 2^{p-1} by 1 + lp and $(-2a)^{p-1}$ by $1 + m_a p$ in A, we obtain:

$$A \equiv (2^{2k} - 1) \sum (1 + m_a p) (-2a)^{2k-1} - (2^{2k}(1 + lp) - 1) \sum (-2a)^{2k-1} \equiv (2^{2k} - 1) \sum m_a p (-2a)^{2k-1} - 2^{2k} lp \sum (-2a)^{2k-1} \pmod{p^2}$$

If we divide A by p, then

$$p^{-1}A \equiv (2^{2k} - 1) \sum m_a (-2a)^{2k-1} - 2^{2k}l \sum (-2a)^{2k-1} \pmod{p}.$$

Since (p, 2k) is an irregular prime, by definition, $p|\hat{B}(2k)$. Thus $(2^{2k}-1)\hat{B}(2k) \equiv 0 \pmod{p}$. By Theorem 1.4,

$$(2^{2k} - 1)\widehat{B}(2k) \equiv \sum_{0 < a < p/2} (p - 2a)^{2k-1} \pmod{p^2}.$$

The congruence relation also holds for modulo p. Hence,

$$(2^{2k} - 1)\widehat{B}(2k) \equiv \sum_{0 < a < p/2} (p - 2a)^{2k - 1} \equiv \sum_{0 < a < p/2} (-2a)^{2k - 1} \equiv 0 \pmod{p}$$

It implies that $p^{-1}A \equiv (2^{2k}-1)\sum m_a(-2a)^{2k-1} \pmod{p}$. Since $(2^{2k}-1)\sum m_a(-2a)^{2k-1} \not\equiv 0 \pmod{p}$, by assumption, $A \not\equiv 0 \pmod{p^2}$. Since $2^{2k}, 2^{2k+p-1} \not\equiv 1 \pmod{p^2}$, we obtain $\widehat{B}(2k+p-1) - \widehat{B}(2k) \not\equiv 0 \pmod{p^2}$. Therefore, Δ -conjecture holds.

2 Hecke Polynomials

2.1 Introduction to Hecke Polynomial

Definition 2.1. The special linear group of degree 2 over integers

$$SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

is called the full modular group.

For any positive integer N, we define

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | a \equiv d \equiv 1, b \equiv c \equiv 0 \pmod{N} \right\}.$$

 $\Gamma(N)$ is a normal subgroup of $SL_2(\mathbb{Z})$ and is called the principal congruence subgroup of level N. A subgroup of $SL_2(\mathbb{Z})$ is called a congruence subgroup of level N if it contains $\Gamma(N)$. Here are two important congruence subgroups:

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) | c \equiv 0 \pmod{N} \right\};$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) | a \equiv 1 \pmod{N} \right\}.$$

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and $H = \{z \in \mathbb{C} | Im(z) > 0\}$. Let f(z) be a function on $\overline{H} = H \cup \mathbb{Q} \cup \{\infty\}$ with values in $\mathbb{C} \cup \{\infty\}$, and let $k \in \mathbb{Z}$. We define $f|[\gamma]_k$ as a function whose value at $z \in \overline{H}$ is $(cz+d)^{-k}f((az+b)/(cz+d))$, i.e.

$$f(z)|[\gamma]_k = (cz+d)^{-k}f((az+b)/(cz+d)), \text{ for } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

Definition 2.2. Let f(z) be a meromorphic function on H, and Γ be a congruence subgroup of level N. Let $k \in \mathbb{Z}$.

1. f(z) is a modular function of weight k for Γ if

$$f|[\gamma]_k = f, \text{ for all } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

and if for any $\gamma_0 \in SL_2(\mathbb{Z})$,

$$f(z)|[\gamma_0]_k$$
 has the form $\sum_{-\infty}^{\infty} a_n q^n$ with $q = e^{2\pi i z}$ and $a_n = 0$ for $n \ll 0$.

- 2. If a modular function f(z) is holomorphic on H, and if for all $\gamma_0 \in SL_2(\mathbb{Z})$, $a_n = 0$ for all n < 0, then f(z) is a modular form of weight k for Γ .
- 3. If f(z) is a modular form with $a_0 = 0$, then f(z) is a cusp-form.

The set of all modular forms of weight k for Γ and the set of all cusp-forms of weight k for Γ are denoted by $M_k(\Gamma)$ and $S_k(\Gamma)$ respectively. Both $M_k(\Gamma)$ and $S_k(\Gamma)$ are vector spaces.

Although the general definition of Hecke operator is complicated, we can obtain the following equivalent definition [4] of the p^{th} -Hecke operator T_p for prime number p.

Definition 2.3. Let p be a prime number and $S_k(\Gamma)$ be the set of cusp forms of weight k, for some congruence subgroup Γ of level N. Let $f(z) = \sum_{n=1}^{\infty} a_n q^n$, where $q = e^{2\pi i z}$, $f \in S_k(\Gamma)$. If we define

$$U_p(f) = \sum_{n=1}^{\infty} a_{pn} q^n \text{ and } V_p(f) = \sum_{n=1}^{\infty} a_n q^{pn}, \text{ then the } p^{th} \text{-Hecke operator}$$
$$T_p = \begin{cases} U_p & \text{if } p | N\\ U_p + p^{k-1} V_p & \text{if } p \nmid N \end{cases}.$$

 T_p is an operator on $S_k(\Gamma)$. Then we can define the Hecke polynomial as

$$H_k(x) = \begin{cases} det(I - T_p x | S_k(\Gamma)) & \text{if } p \mid N \\ det(I - T_p x + p^{k-1} x^2 I | S_k(\Gamma)) & \text{if } p \nmid N \end{cases}$$

where I is the identity matrix whose size is the same as T_p .

For example, suppose $T_p = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a Hecke operator T_p and $p \nmid N$. By definition, we obtain: $H_k = det \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} a & b \\ c & d \end{pmatrix} x + \begin{pmatrix} p^{k-1}x^2 & 0 \\ 0 & p^{k-1}x^2 \end{pmatrix} \right)$ $= det \begin{pmatrix} 1 - ax + p^{k-1}x^2 & -bx \\ -cx & 1 - dx + p^{k-1}x^2 \end{pmatrix}$

We can write $H_k = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$ by expanding the polynomial in powers of x. Given any Hecke polynomial H_k with prime p, we can define what the newton polygon of H_k is.

Definition 2.4 (Newton Polygon). Let $H_k = \sum_{i=0}^n c_i x^i$ be a Hecke polynomial. The Newton polygon of H_k is defined to be the lower convex hull of the set of points $P_{p,k} = \{(i, ord_p(c_i)) : 0 \le i \le n\}$.

Example:

2.2 Newton Polygons for congruence subgroup $\Gamma_0(3)$

In this section, we fix the congruence subgroup to be $\Gamma_0(3)$ and study the Hecke operators and their corresponding Newton Polygons as prime p varies.

Firstly, let's define the generic Newton polygon for prime p to be the lower convex hull of the set of points $P_p = \bigcup_{k=1}^{\infty} P_{p,k}$. Figure 2 shows the graphs of the Newton Polygons for p = 3, 5, 7 and 11 respectively, as k varies between 3 and 30. From the graphs, we notice that for p = 3, all the vertices lie above the x-axis except the origin, i.e. the length of zero slope is 0, and the length of zero slope increases as p increases.

Based on the observation above, can we determine the length of zero slope of the generic Newton polygon under fixed prime p? In other words, can we find the vertex $(i_0, ord_p(c_{i_0}))$ of the generic Newton polygon, such that $ord_p(c_{i_0}) = 0$ and $ord_p(c_j) > 0$ for all $j > i_0$? So far, we are unable to prove a specific vertex works for all k, but the following conjecture can be obtained from the results calculated by Magma (codes in Appendix).

Figure 2: The Newton Polygons for $p = 3, 5, 7, 11; 3 \le k \le 30$

Conjecture 2.5. For congruence subgroup $\Gamma_0(3)$ and prime number $p \ge 3$, $(\lfloor \frac{p-2}{3} \rfloor, 0)$ is the length of the zero slope.

Let's focus on the case p = 3. Our conjecture claims that (0,0) is the only zero point and $ord_3(c_i) > 0$ for all $i \ge 1$. It is easy to show that (0,0) is a vertex of the Newton Polygon. By definition, the Hecke polynomial $H_k(x) = det(I - T_p x)$, where T_p is the p^{th} -Hecke operator. If we expand H_k in powers of x, then the constant term of H_k only comes of the identity matrix I. It follows that the constant terms of H_k must be 1, which is not divisible by 3. Thus, $(0, ord_3(c_0)) = (0, 0)$ for all weight k.

Now let's write $H_k = \sum_{i=0}^n c_i x^i$. It suffices to show that for any weight k, c_i is divisible by 3, whenever $i \ge 1$. Although it is hard to compute or express the explicit formula of the p^{th} -Hecke operator, from computer calculation, we conjecture that for p = 3, the matrix representations of T_p satisfy the properties listed in the following theorem, which implies that Conjecture 2.5 holds for p = 3.

Theorem 2.6. Let M be a $n \times n$ matrix, i.e.

$$M = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \dots & m_{nn} \end{bmatrix}$$

Suppose M has the following properties:

- 1. $3 \mid m_{ii}, \text{ for all } i = 1, 2, ..., n.$
- 2. Let $l_i = ord_3(i)$. If $l_i = 0$, then $3 \mid m_{ij}$, for all j = 1, 2, ..., n. If $l_i \ge 1$, then $3 \mid m_{ij}$, for all $j \ne \frac{i}{3} \pmod{3^{l_i}}$

Then for the polynomial $det(I - Mx) = \sum_{i=0}^{n} c_i x^i$, c_i is divisible by 3 for all $i \ge 1$.

Proof. For any i, the coefficient c_i is determined by the following formula:

$$c_i = (-1)^i \cdot \sum_{\substack{1 \le u_1 < u_2 \cdots < u_i \le n;\\ \sigma \in S_i}} sgn(\sigma) \cdot m_{u_1,\sigma(u_1)} \cdot m_{u_2,\sigma(u_2)} \cdots m_{u_i,\sigma(u_i)},$$

where S_i is the symmetric group $Sym(u_1, u_2 \dots u_i)$ and $sgn(\sigma)$ is the sign of permutation σ .

By the formula above, we know $c_1 = -(m_{11} + m_{22} + \cdots + m_{nn}) = -tr(M)$. Since $3 \mid m_{ii}$ for all $i, 3 \mid c_1$.

To show $3 \mid c_2$, it suffices to show that for every $1 \leq u_1 < u_2 \leq n$ and $\sigma \in S_2$, $3 \mid m_{u_1,\sigma(u_1)} \cdot m_{u_2,\sigma(u_2)}$. It is obvious that S_2 only contains the identity e and the permutation (u_1u_2) , which interchanges u_1 and u_2 . If σ is the identity, then $3 \mid m_{u_1,u_1} \cdot m_{u_2,u_2}$ by property 1. So we just need to show that for all $1 \leq u_1 < u_2 \leq n$, $3 \mid m_{u_1,u_2} \cdot m_{u_2,u_1}$.

Suppose there exists $1 \leq u_1 < u_2 \leq n$ such that $3 \nmid m_{u_1,u_2} \cdot m_{u_2,u_1}$. Then both m_{u_1,u_2} and m_{u_2,u_1} are not divisible by 3. By property 2, we have $l_{u_1}, l_{u_2} \geq 1$. Suppose at least one of l_{u_1} and l_{u_2} are equal to 1. Without loss of generality, we assume $l_{u_1} = 1$. It implies that $3 \mid u_1$ but $9 \nmid u_1$. In order to have $3 \nmid m_{u_1,u_2}, u_2$ must be congruent to $\frac{u_1}{3} \pmod{3}$. Since $9 \nmid u_1, u_2$ is congruent to either 1 or 2 (mod 3). Thus $l_{u_2} = 0$, which implies that $3 \mid m_{u_2,u_1}$. Contradiction. Hence, we must have $l_{u_1}, l_{u_2} \geq 2$.

Similarly, suppose at least one of l_{u_1} and l_{u_2} are equal to 2. Without loss of generality, assume $l_{u_1} = 2$. Then $9 \mid u_1$ but $27 \nmid u_1$. In order to have $3 \nmid m_{u_1,u_2}$, u_2 must be congruent to $\frac{u_1}{3} \pmod{9}$. However, since $l_{u_1} = 2$, l_{u_2} must be less than or equal to 1. It follows that $3 \mid m_{u_2,u_1}$. Hence, we must have $l_{u_1}, l_{u_2} \ge 3$.

By continuing this process, we obtain that for all $1 \leq u_1 < u_2 \leq n$ such that $3 \mid m_{u_1,u_2} \cdot m_{u_2,u_1}$. Therefore, $3 \mid c_2$. The proof of the general case is similar but very technical. So we omit the proof here. One can show that $3 \mid c_i$ for all $i \geq 1$ by the similar argument and induction.

Also from Figure 2, one may notice that all the Newton polygons are bounded below. Now let's still fix the prime p and consider quadratic lower bounds of the generic Newton polygon. Assuming Conjecture 2.5 holds, we already know two vertices lying on the x-axis, i.e. (0,0) and $(\lfloor \frac{p-2}{3} \rfloor, 0)$. Since a quadratic polynomial can be determined by only 3 points, another interesting question is whether we can find a quadratic lower bound which depends on p and hits the zero points of the generic Newton polygon. Although it is still complicated to prove that a specific polynomial is a lower bound for all weight $k \in \mathbb{N}$, we can at least calculate the first several k's by Magma and obtain the following conjecture.

Conjecture 2.7. For congruence subgroup $\Gamma_0(3)$ and prime number $p \ge 3$, $y = \frac{1}{p-1}x(x - \lfloor \frac{p-2}{3} \rfloor)$ is a quadratic lower bound of the generic Newton polygon.

It is easy to check that y hits the zero points (0,0) and $\left(\lfloor \frac{p-2}{3} \rfloor, 0\right)$. However, we are just claiming that y is a quadratic lower bound. It may not the "greatest lower bound" which is the lower bound that hits at least 3 vertices on the generic Newton polygon. For example, when p = 3, $y = \frac{3}{2}x^2 + \frac{1}{2}x$ is the conjectured greatest lower bound.

2.3 Newton Polygons for other congruence subgroups

In this section, we give more conjectures about the two questions mentioned before: the length of zero slope and quadratic lower bound, but consider Hecke polynomials in different congruence subgroups Γ .

Conjecture 2.8. For prime $p \ge 3$,

- 1. if $\Gamma = \Gamma_1(3)$, then the length of zero slope is $\lfloor \frac{p-2}{3} \rfloor$;
- 2. if $\Gamma = \Gamma_0(4) = \Gamma_1(4)$, then the length of zero slope is $\lfloor \frac{p-2}{2} \rfloor$;
- 3. if $\Gamma = \Gamma_0(5)$, then the length of zero slope is $\lfloor \frac{p+1}{4} \rfloor + \lfloor \frac{p-1}{4} \rfloor;$
- 4. if $\Gamma = \Gamma_1(5)$, then the length of zero slope is p-2.

Conjecture 2.9. For prime $p \ge 3$,

- 1. if $\Gamma = \Gamma_1(3)$, $y = \frac{1}{n-1}x(x \lfloor \frac{p-2}{3} \rfloor)$ is a quadratic lower bound of the generic Newton polygon.
- 2. if $\Gamma = \Gamma_0(4) = \Gamma_1(4)$, $y = \frac{1}{p+1}x(x \lfloor \frac{p-2}{2} \rfloor)$ is a quadratic lower bound of the generic Newton polygon.

3 Appendix

3.1 Magma Code

The following Magma code gives all vertices of Newton polygons for p = 3, $\Gamma = \Gamma_1(3)$, as weight k varies from 1 to 100.

```
R<x> := PolynomialRing(Integers());
p := 3;
for k in [1..100] do
   S := CuspForms(Gamma1(3),k);
     P := HeckePolynomial(S,p);
     P := ReciprocalPolynomial(P);
     NP := NewtonPolygon(P,p);
     AllVertices(NP);
```

end for;

The following Magma code determines the divisibility of each entry in the Hecke matrix for p = 3, $\Gamma' = \Gamma_0(3)$, as weight k varies from 1 to 100.

```
p:= 3;
for k in [1..100] do
    M:= CuspForms(Gamma0(3),k);
    d:= Dimension(M);
    T:= HeckeOperator(M,p);
    for i in [1..d] do
        for j in [1..d] do
            T[i,j]:= T[i,j] mod p;
        end for;
    end for;
    print k;
    print T;
end for;
```

3.2Sage Code

The following Sage code plots the graph of Newton polygons for p = 3, $\Gamma = \Gamma_1(3)$, as weight k varies from 1 to 30.

```
p = 3
G = Gamma1(3)
N = 30
```

from sage.geometry.newton_polygon import NewtonPolygon

```
def hecke_poly(k):
    W = CuspForms(G,k)
    d = W.dimension()
    H = W.hecke_matrix(p)
    I = matrix.identity(d)
    U = I - H * x
    Q = U.determinant()
    return Q
```

```
K = Qp(p)
R. <t> = K[]
print "p = ",p,"
                  ---- Newton slopes of Hecke"
E = []
for k in [1..N]:
    hecke = hecke_poly(k)
    L = hecke.coefficients(sparse=False)
    p_{hecke} = R(L)
    NP = p_hecke.newton_slopes()
    NP_half = []
    for i in [0..len(NP)/2-1]:
        NP_half.append(-NP[i])
    NP12 = NewtonPolygon(NP_half).plot()
    E.append(NP12)
sum(E)
```

Here the Hecke operator U = I - Hx, since p = 3 is divisible by 3. If p doesn't divide 3, then $U = I - Hx + p^{(k-1)}x^2I$.

References

- Wells Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251–265. MR 0376512
- Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), no. 257, 405–441. MR 2261029
- [3] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, second ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003
- [4] _____, Introduction to elliptic curves and modular forms, second ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR 1216136