On Zeros of the p-adic zeta-Function, and Generic Newton Polygons of Hecke Polynomials

Guowei Shan

May 8, 2019

Abstract

This paper introduces the p-adic ζ-function and Hecke polynomials with Newton Polygon, respectively. Motivated by finding zeros of p-adic ζ-function, we study so-called Δ-conjecture, using p-adic techniques. In the second section of the paper, we consider the generic Newton polygon of Hecke polynomials for fixed prime p and congruence subgroup Γ. We then give some conjectures on length of the zero slope and quadratic lower bounds of generic Newton polygons for different p and Γ.

Contents

1 The p-adic ζ-Function 1
1.1 Introduction to p-adic ζ-Function 1
1.2 Irregular pair and Δ-conjecture 3
2 Hecke Polynomials 6
2.1 Introduction to Hecke Polynomial 6
2.2 Newton Polygons for congruence subgroup $\Gamma_{0}(3)$ 7
2.3 Newton Polygons for other congruence subgroups 10
3 Appendix 11
3.1 Magma Code 11
3.2 Sage Code 11

1 The p-adic ζ-Function

1.1 Introduction to p-adic ζ-Function

The Riemann ζ-function is defined as a function of real numbers greater than 1 by :

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} .
$$

One can easily show that this series converges for $s>1$.
The p-adic ζ-function can be constructed by the p-adic interpolation of Riemann ζ-function. However, instead of exploring the interpolation step by step, we will first introduce some basic definitions and theorems, and then define the p-adic ζ-function directly.

Definition 1.1. The $k^{t h}$ Bernoulli number B_{k} is defined as the coefficient of the term t^{k} / k ! in the Taylor series for

$$
\begin{aligned}
\frac{t}{e^{t}-1} & =\frac{1}{1+t / 2!+t^{2} / 3!+t^{3} / 4!+\cdots} \\
& =\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
\end{aligned}
$$

Here are the first few Bernoulli numbers:

$$
B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30, \ldots
$$

All Bernoulli numbers are rational. In addition, we define $\widehat{B}(k)=B_{k} / k$. The following theorem [3, Chap. 2] provides us with some useful properties of Bernoulli numbers.

Theorem 1.2. Let $k \in \mathbb{N}$ and p be a prime number.

1. If $k>1$ is odd, then $\widehat{B}(k)=0$.
2. If $p-1 \nless k$, then $\widehat{B}(k)$ is a p-adic integer.

Throughout this paper, we only consider odd prime numbers p and Bernoulli numbers with even index k.

Theorem 1.3 (Kummer's congruence). Let p be a prime, $k, k^{\prime}, N \in \mathbb{N}$. If $p-1 \nmid k$ and $k \equiv k^{\prime}(\bmod$ $\left.p^{N}(p-1)\right)$, then

$$
\left(1-p^{k-1}\right) \widehat{B}(k) \equiv\left(1-p^{k^{\prime}-1}\right) \widehat{B}\left(k^{\prime}\right)\left(\bmod p^{N+1}\right)
$$

Theorem 1.4 (E. Lehmer [1]). Let p be a prime and k be a positive even integer. If $p-1 \nmid k-2$, then

$$
\left(2^{k}-1\right) \widehat{B}(k) \equiv \sum_{0<a<p / 2}(p-2 a)^{k-1}\left(\bmod p^{2}\right)
$$

Now let's consider the function in two variables t and x :

$$
\frac{t e^{x t}}{e^{t}-1}=\left(\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(x t)^{k}}{k!}\right)
$$

In this product, by collecting terms with t^{k}, we obtain a polynomial in x for each k. The $k^{t h}$ Bernoulli polynomial $B_{k}(x)$ is defined by the product of k ! and that polynomial, i.e.

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

In the following definitions, \mathbb{Q}_{p} is the set of all p-adic numbers. In addition, \mathbb{Z}_{p} and \mathbb{Z}_{p}^{\times}mean the set of p-adic integers and the set of p-adic units, which are the compact-open subsets of \mathbb{Q}_{p}. A p-adic interval $a+p^{N} \mathbb{Z}_{p}$ is defined by

$$
a+p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}| | x-\left.a\right|_{p} \leqslant 1 / p^{N}\right\}
$$

for some $a \in \mathbb{Q}_{p}$ and $N \in \mathbb{Z}$. It is sometimes abbreviated as $a+\left(p^{N}\right)$, where $a \in \mathbb{Z}_{p}$. Without loss of generality, we can further assume that a is an integer between 0 and $p^{N}-1$.

Definition 1.5. Let X be a compact-open subset of \mathbb{Q}_{p}, such as \mathbb{Z}_{p} or \mathbb{Z}_{p}^{\times}. A p-adic distribution μ on X is an additive map from the set of compact-opens in X to \mathbb{Q}_{p}. It means that if $U \subset X$ is the disjoint union of compact-open sets $U_{1}, U_{2}, \ldots, U_{n}$, then $\mu(U)=\mu\left(U_{1}\right)+\mu\left(U_{2}\right)+\cdots+\mu\left(U_{n}\right)$. And the p-adic distribution μ is a measure if its values on $U \subset X$ are bounded by some constant $B \in \mathbb{R}$, i.e., $|\mu(U)|_{p} \leqslant B$ for every compact-open $U \subset X$.

Now we define a map $\mu_{B, k}$ on the intervals $a+\left(p^{N}\right)$ by

$$
\mu_{B, k}\left(a+\left(p^{N}\right)\right)=p^{N(k-1)} B_{k}\left(\frac{a}{p^{N}}\right) .
$$

Since

$$
\mu_{B, k}\left(a+\left(p^{N}\right)\right)=\sum_{b=0}^{p-1} \mu_{B, k}\left(a+b p^{N}+\left(p^{N+1}\right)\right), \forall a+\left(p^{N}\right) \subset \mathbb{Z}_{p}
$$

$\mu_{B, k}$ extends uniquely [3, p.32] to a p-adic distribution on \mathbb{Z}_{p}, which is called the $k^{t h}$ Bernoulli distribution.

Although Bernoulli distributions are not measures, they can be turned into measures by "regularization". Let α be an integer not equal to 1 and not divisible by p, and $\mu_{B, k}$ be the $k^{t h}$ Bernoulli distribution. The regularized Bernoulli distribution on \mathbb{Z}_{p} is defined by

$$
\mu_{k, \alpha}(U)=\mu_{B, k}(U)-\alpha^{-k} \mu_{B, k}(\alpha U), \text { for all compact-open } U \subset \mathbb{Z}_{p}
$$

One can verify that $\mu_{k, \alpha}$ is a measure on \mathbb{Z}_{p}.
Definition 1.6. Let μ be a p-adic measure on X and let $f: X \rightarrow \mathbb{Q}_{p}$ be a continuous function. We define the Riemann sums

$$
S_{N,\left(x_{a, N}\right)}=\sum_{\substack{0 \leqslant a<p^{N} ; \\ a+\left(p^{N}\right) \subset X}} f\left(x_{a, N}\right) \mu\left(a+\left(p^{N}\right)\right)
$$

where the sum is taken over all a for which $0 \leqslant a<p^{N}$ and $a+\left(p^{N}\right) \subset X$, and $x_{a, N}$ is an arbitrary point in the interval $a+\left(p^{N}\right)$. And we define $\int_{X} f \mu$ to be the limit of $S_{N,\left(x_{a, N}\right)}$, as $N \rightarrow \infty$.

With the definition of $\int_{X} f \mu$, we can define the p-adic ζ-function.
Definition 1.7. Fix prime number p and $s_{0} \in\{0,1,2, \ldots, p-2\}$. For $s \in \mathbb{Z}_{p}\left(s \neq 0\right.$ if $\left.s_{0}=0\right)$, the p-adic ζ-function $\zeta_{p, s_{0}}(s)$ is defined by

$$
\zeta_{p, s_{0}}(s)=\frac{1}{\alpha^{-\left(s_{0}+(p-1) s\right)}-1} \int_{\mathbb{Z}_{p}^{\times}} x^{s_{0}+(p-1) s-1} \mu_{1, \alpha}
$$

It is worth noting that the p-adic ζ-function $\zeta_{p, s_{0}}$ is independent of the choice of α.

1.2 Irregular pair and Δ-conjecture

For fixed prime p and s_{0} as above, does the p-adic ζ-function $\zeta_{p, s_{0}}$ have any zero? In other words, can we find some p-adic integer s, such that $\zeta_{p, s_{0}}(s)=0$? B.C. Kellner studied this question and proved that $\zeta_{p, l}(s)$ has a unique zero $[2$, Theorem 4.6] when (p, l) is an irregular pair (defined below), assuming the so-called " Δ-Conjecture" holds.

Definition 1.8. Let p be an odd prime and l be a positive integer. The pair (p, l) is an irregular pair if $p \mid \widehat{B}(l)$, where l is even and $2 \leqslant l \leqslant p-3$. The index of irregularity of p is defined by

$$
i(p)=\#\{(p, l): p \mid \widehat{B}(l) ; l=2,4 \ldots p-3\}
$$

The prime p is called an irregular prime if $i(p) \neq 0$
Here $p \mid \widehat{B}(l)$ means p divides the numerator of $\widehat{B}(l)$. Or if we think $\widehat{B}(l)$ as a p-adic integer, i.e. $\widehat{B}(l)=\sum_{n=0}^{\infty} a_{n} p^{n}$, then $p \mid \widehat{B}(l)$ implies $a_{0}=0$. Then we define $\Psi^{i r r}$ to be the set of all irregular pairs.

Definition 1.9. For $(p, l) \in \Psi^{i r r}$, define

$$
\Delta_{(p, l)} \equiv p^{-1}(\widehat{B}(l+p-1)-\widehat{B}(l))(\bmod p),
$$

where $0 \leqslant \Delta_{(p, l)}<p$. If $\Delta_{(p, l)}=0$, then we say $\Delta_{(p, l)}$ is singular, otherwise nonsingular .
Conjecture 1.10 (Δ-Conjecture). $\Delta_{(p, l)}$ is nonsingular for all irregular pairs $(p, l) \in \Psi^{i r r}$.
Consider $(p, l) \in \Psi^{i r r}$. By the definition of irregular pair, we already know $p \mid \widehat{B}(l)$. In order to have $\Delta_{(p, l)}$ well-defined, p should also divide $\widehat{B}(l+p-1)$), which is proved by the following lemma.

Lemma 1.11. For every irregular pair $(p, l) \in \Psi^{i r r}, p \mid \widehat{B}(l+p-1)$.
Proof. By definition, l is an even integer between 2 and $p-3$. So $p-1 \nmid l$. Since $l \equiv l+p-$ $1(\bmod p-1)$, by Kummer Congruence, $\left(1-p^{l-1}\right) \widehat{B}(l) \equiv\left(1-p^{l+p-2}\right) \widehat{B}(l+p-1)(\bmod p)$. Since $l \geqslant 2, p^{l-1} \widehat{B}(l) \equiv p^{l+p-2} \widehat{B}(l+p-1) \equiv 0(\bmod p)$. It implies that $\widehat{B}(l) \equiv \widehat{B}(l+p-1)(\bmod p)$. Since $(p, l) \in \Psi_{1}^{i r r}, p \mid \widehat{B}(l)$. Therefore, $\widehat{B}(l+p-1) \equiv 0(\bmod p)$.

By the previous lemma, in order to prove Δ-conjecture holds, it suffices to show that $\widehat{B}(l+p-$ $1)-\widehat{B}(l) \not \equiv 0\left(\bmod p^{2}\right)$.
Lemma 1.12. Let p be an odd prime and k be an even natural number. If $p-1 \nmid k$, then

$$
\sum_{0<a<p / 2} a^{k} \equiv 0(\bmod p) .
$$

Proof. Since p is odd, 2 and p are relatively prime. It suffices to show that $2 \sum_{0<a<p / 2} a^{k} \equiv 0(\bmod p)$. Since k is even,

$$
\begin{aligned}
2 \sum_{0<a<p / 2} a^{k} & \equiv \sum_{0<a<p / 2} a^{k}+\sum_{0<a<p / 2}(p-a)^{k} \\
& \equiv \sum_{0<a<p / 2} a^{k}+\sum_{p / 2<a<p} a^{k} \\
& \equiv \sum_{0<a<p} a^{k}(\bmod p)
\end{aligned}
$$

Since $\mathbb{F}_{p}^{\times}=\{1,2, \ldots p-1\}$ is a cyclic group, there exists a $l \in \mathbb{F}_{p}^{\times}$, such that $\langle l\rangle=\mathbb{F}_{p}^{\times}$. Since $p-1 \nmid k$, $l^{k} \not \equiv 1(\bmod p)$. Assume $S=\sum_{0<a<p} a^{k}$, then

$$
l^{k} S \equiv \sum_{0<a<p}(l a)^{k} \equiv \sum_{0<b<p} b^{k} \equiv S(\bmod p)
$$

It follows that $\left(l^{k}-1\right) S \equiv 0(\bmod p)$. Since $l^{k} \not \equiv 1(\bmod p), S$ must be congruent to $0 \bmod p$.
Theorem 1.13. Δ-conjecture holds if for every irregular pair $(p, l),\left(2^{l}-1\right) \cdot \sum_{0<a<p / 2}(-2 a)^{l-1} m_{a} \not \equiv 0$ $(\bmod p)$, where $(-2 a)^{p-1} \equiv 1+m_{a} \cdot p\left(\bmod p^{2}\right)$.
Proof. Since $\left(2^{l}-1\right) \cdot \sum_{0<a<p / 2}(-2 a)^{l-1} m_{a} \not \equiv 0(\bmod p), 2^{l} \not \equiv 1(\bmod p)$. By Fermat's Little Theorem, $2^{l+p-1} \not \equiv 1(\bmod p)$. It follows that $2^{l}, 2^{l+p-1} \not \equiv 1\left(\bmod p^{2}\right)$. Let's consider $(\widehat{B}(l+p-1)-$ $\widehat{B}(l))\left(2^{l+p-1}-1\right)\left(2^{l}-1\right)\left(\bmod p^{2}\right)$ and replace l by $2 k$. Since $p-1 \nmid 2 k-2$, by Theorem 1.4, we obtain:

$$
\begin{aligned}
(\widehat{B}(2 k+p-1) & -\widehat{B}(2 k))\left(2^{2 k+p-1}-1\right)\left(2^{2 k}-1\right) \\
& \equiv\left(2^{2 k}-1\right) \sum_{0<a<p / 2}(p-2 a)^{2 k+p-2}-\left(2^{2 k+p-1}-1\right) \sum_{0<a<p / 2}(p-2 a)^{2 k-1} \\
& \equiv A+B\left(\bmod p^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A:=\left(\left(2^{2 k}-1\right) \sum_{0<a<p / 2}(-2 a)^{2 k+p-2}\right)-\left(\left(2^{2 k} 2^{p-1}-1\right) \sum_{0<a<p / 2}(-2 a)^{2 k-1}\right) . \\
& B:=\left(\left(2^{2 k}-1\right) \sum_{0<a<p / 2}(2 k+p-2)(-2 a)^{2 k+p-3} p\right)-\left(\left(2^{2 k} 2^{p-1}-1\right) \sum_{0<a<p / 2}(2 k-1)(-2 a)^{2 k-2} p\right) .
\end{aligned}
$$

If we divide B by p, then

$$
p^{-1} B \equiv\left(2^{2 k}-1\right) \sum(2 k+p-2)(-2 a)^{2 k+p-3}-\left(2^{2 k} 2^{p-1}-1\right) \sum(2 k-1)(-2 a)^{2 k-2}(\bmod p) .
$$

Since $\operatorname{gcd}(-2 a, p)=\operatorname{gcd}(2, p)=1$, by Fermat's Little Theorem, we obtain:

$$
\begin{aligned}
p^{-1} B & \equiv\left(2^{2 k}-1\right) \sum(2 k+p-2)(-2 a)^{2 k-2}-\left(2^{2 k}-1\right) \sum(2 k-1)(-2 a)^{2 k-2} \\
& \equiv\left(2^{2 k}-1\right) \sum(p-1)(-2 a)^{2 k-2} \\
& \equiv\left(2^{2 k}-1\right) 2^{2 k-2}(-1) \sum a^{2 k-2}(\bmod p) .
\end{aligned}
$$

By Lemma $1.12, B$ is congruent to $0 \bmod p^{2}$.
Now let's consider A. Fermat's Little Theorem implies that $2^{p-1} \equiv 1+l \cdot p\left(\bmod p^{2}\right)$ and $(-2 a)^{p-1} \equiv 1+m_{a} \cdot p\left(\bmod p^{2}\right)$, for some integers $0 \leqslant l, m_{a} \leqslant(p-1)$. If we replace 2^{p-1} by $1+l p$ and $(-2 a)^{p-1}$ by $1+m_{a} p$ in A, we obtain:

$$
\begin{aligned}
A & \equiv\left(2^{2 k}-1\right) \sum\left(1+m_{a} p\right)(-2 a)^{2 k-1}-\left(2^{2 k}(1+l p)-1\right) \sum(-2 a)^{2 k-1} \\
& \equiv\left(2^{2 k}-1\right) \sum m_{a} p(-2 a)^{2 k-1}-2^{2 k} l p \sum(-2 a)^{2 k-1}\left(\bmod p^{2}\right)
\end{aligned}
$$

If we divide A by p, then

$$
p^{-1} A \equiv\left(2^{2 k}-1\right) \sum m_{a}(-2 a)^{2 k-1}-2^{2 k} l \sum(-2 a)^{2 k-1}(\bmod p) .
$$

Since $(p, 2 k)$ is an irregular prime, by definition, $p \mid \widehat{B}(2 k)$. Thus $\left(2^{2 k}-1\right) \hat{B}(2 k) \equiv 0(\bmod p)$. By Theorem 1.4,

$$
\left(2^{2 k}-1\right) \widehat{B}(2 k) \equiv \sum_{0<a<p / 2}(p-2 a)^{2 k-1}\left(\bmod p^{2}\right)
$$

The congruence relation also holds for modulo p. Hence,

$$
\left(2^{2 k}-1\right) \widehat{B}(2 k) \equiv \sum_{0<a<p / 2}(p-2 a)^{2 k-1} \equiv \sum_{0<a<p / 2}(-2 a)^{2 k-1} \equiv 0(\bmod p)
$$

It implies that $p^{-1} A \equiv\left(2^{2 k}-1\right) \sum m_{a}(-2 a)^{2 k-1}(\bmod p)$. Since $\left(2^{2 k}-1\right) \sum m_{a}(-2 a)^{2 k-1} \not \equiv 0(\bmod p)$, by assumption, $A \not \equiv 0\left(\bmod p^{2}\right)$. Since $2^{2 k}, 2^{2 k+p-1} \not \equiv 1\left(\bmod p^{2}\right)$, we obtain $\widehat{B}(2 k+p-1)-\widehat{B}(2 k) \not \equiv$ $0\left(\bmod p^{2}\right)$. Therefore, Δ-conjecture holds.

2 Hecke Polynomials

2.1 Introduction to Hecke Polynomial

Definition 2.1. The special linear group of degree 2 over integers

$$
S L_{2}(\mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

is called the full modular group.
For any positive integer N, we define

$$
\Gamma(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, a \equiv d \equiv 1, b \equiv c \equiv 0(\bmod N)\right\}
$$

$\Gamma(N)$ is a normal subgroup of $S L_{2}(\mathbb{Z})$ and is called the principal congruence subgroup of level N. A subgroup of $S L_{2}(\mathbb{Z})$ is called a congruence subgroup of level N if it contains $\Gamma(N)$. Here are two important congruence subgroups:

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0(\bmod N)\right\} \\
& \Gamma_{1}(N)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(N) \right\rvert\, a \equiv 1(\bmod N)\right\}
\end{aligned}
$$

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $H=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$. Let $f(z)$ be a function on $\bar{H}=$ $H \cup \mathbb{Q} \cup\{\infty\}$ with values in $\mathbb{C} \cup\{\infty\}$, and let $k \in \mathbb{Z}$. We define $f \mid[\gamma]_{k}$ as a function whose value at $z \in \bar{H}$ is $(c z+d)^{-k} f((a z+b) /(c z+d))$, i.e.

$$
f(z) \mid[\gamma]_{k}=(c z+d)^{-k} f((a z+b) /(c z+d)), \text { for } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})
$$

Definition 2.2. Let $f(z)$ be a meromorphic function on H, and Γ be a congruence subgroup of level N. Let $k \in \mathbb{Z}$.

1. $f(z)$ is a modular function of weight k for Γ if

$$
f \mid[\gamma]_{k}=f, \text { for all } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

and if for any $\gamma_{0} \in S L_{2}(\mathbb{Z})$,

$$
f(z) \mid\left[\gamma_{0}\right]_{k} \text { has the form } \sum_{-\infty}^{\infty} a_{n} q^{n} \text { with } q=e^{2 \pi i z} \text { and } a_{n}=0 \text { for } n \ll 0
$$

2. If a modular function $f(z)$ is holomorphic on H, and if for all $\gamma_{0} \in S L_{2}(\mathbb{Z}), a_{n}=0$ for all $n<0$, then $f(z)$ is a modular form of weight k for Γ.
3. If $f(z)$ is a modular form with $a_{0}=0$, then $f(z)$ is a cusp-form.

The set of all modular forms of weight k for Γ and the set of all cusp-forms of weight k for Γ are denoted by $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ respectively. Both $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ are vector spaces.

Although the general definition of Hecke operator is complicated, we can obtain the following equivalent definition [4] of the $p^{t h}$-Hecke operator T_{p} for prime number p.

Definition 2.3. Let p be a prime number and $S_{k}(\Gamma)$ be the set of cusp forms of weight k, for some congruence subgroup Γ of level N. Let $f(z)=\sum_{n=1}^{\infty} a_{n} q^{n}$, where $q=e^{2 \pi i z}, f \in S_{k}(\Gamma)$. If we define $U_{p}(f)=\sum_{n=1}^{\infty} a_{p n} q^{n}$ and $V_{p}(f)=\sum_{n=1}^{\infty} a_{n} q^{p n}$, then the $p^{t h}$-Hecke operator

$$
T_{p}=\left\{\begin{array}{ll}
U_{p} & \text { if } p \mid N \\
U_{p}+p^{k-1} V_{p} & \text { if } p \nmid N
\end{array} .\right.
$$

T_{p} is an operator on $S_{k}(\Gamma)$. Then we can define the Hecke polynomial as

$$
H_{k}(x)=\left\{\begin{array}{ll}
\operatorname{det}\left(I-T_{p} x \mid S_{k}(\Gamma)\right) & \text { if } p \mid N \\
\operatorname{det}\left(I-T_{p} x+p^{k-1} x^{2} I \mid S_{k}(\Gamma)\right) & \text { if } p \nmid N
\end{array},\right.
$$

where I is the identity matrix whose size is the same as T_{p}.
For example, suppose $T_{p}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a Hecke operator T_{p} and $p \nmid N$. By definition, we obtain:

$$
\begin{aligned}
H_{k}= & \operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) x+\left(\begin{array}{cc}
p^{k-1} x^{2} & 0 \\
0 & p^{k-1} x^{2}
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
1-a x+p^{k-1} x^{2} & -b x \\
-c x & 1-d x+p^{k-1} x^{2}
\end{array}\right)
\end{aligned}
$$

We can write $H_{k}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$ by expanding the polynomial in powers of x. Given any Hecke polynomial H_{k} with prime p, we can define what the newton polygon of H_{k} is.

Definition 2.4 (Newton Polygon). Let $H_{k}=\sum_{i=0}^{n} c_{i} x^{i}$ be a Hecke polynomial. The Newton polygon of H_{k} is defined to be the lower convex hull of the set of points $P_{p, k}=\left\{\left(i, \operatorname{ord}_{p}\left(c_{i}\right)\right): 0 \leqslant i \leqslant n\right\}$.

Example:

(a) Newton polygon: $p=3, \Gamma^{\prime}=\Gamma_{1}(3), k=30$

2.2 Newton Polygons for congruence subgroup $\Gamma_{0}(3)$

In this section, we fix the congruence subgroup to be $\Gamma_{0}(3)$ and study the Hecke operators and their corresponding Newton Polygons as prime p varies.

Firstly, let's define the generic Newton polygon for prime p to be the lower convex hull of the set of points $P_{p}=\bigcup_{k=1}^{\infty} P_{p, k}$. Figure 2 shows the graphs of the Newton Polygons for $p=3,5,7$ and 11 respectively, as k varies between 3 and 30 . From the graphs, we notice that for $p=3$, all the vertices
lie above the x-axis except the origin, i.e. the length of zero slope is 0 , and the length of zero slope increases as p increases.

Based on the observation above, can we determine the length of zero slope of the generic Newton polygon under fixed prime p ? In other words, can we find the vertex $\left(i_{0}, \operatorname{ord}_{p}\left(c_{i_{0}}\right)\right)$ of the generic Newton polygon, such that $\operatorname{ord}_{p}\left(c_{i_{0}}\right)=0$ and $\operatorname{ord}_{p}\left(c_{j}\right)>0$ for all $j>i_{0}$? So far, we are unable to prove a specific vertex works for all k, but the following conjecture can be obtained from the results calculated by Magma (codes in Appendix).

Figure 2: The Newton Polygons for $p=3,5,7,11 ; 3 \leqslant k \leqslant 30$

Conjecture 2.5. For congruence subgroup $\Gamma_{0}(3)$ and prime number $p \geqslant 3$, $\left(\left\lfloor\frac{p-2}{3}\right\rfloor, 0\right)$ is the length of the zero slope.

Let's focus on the case $p=3$. Our conjecture claims that $(0,0)$ is the only zero point and $\operatorname{ord}_{3}\left(c_{i}\right)>0$ for all $i \geqslant 1$. It is easy to show that $(0,0)$ is a vertex of the Newton Polygon. By definition, the Hecke polynomial $H_{k}(x)=\operatorname{det}\left(I-T_{p} x\right)$, where T_{p} is the $p^{t h}$-Hecke operator. If we expand H_{k} in powers of x, then the constant term of H_{k} only comes of the identity matrix I. It follows that the constant terms of H_{k} must be 1 , which is not divisible by 3 . Thus, $\left(0, \operatorname{ord}_{3}\left(c_{0}\right)\right)=(0,0)$ for all weight k.

Now let's write $H_{k}=\sum_{i=0}^{n} c_{i} x^{i}$. It suffices to show that for any weight k, c_{i} is divisible by 3 , whenever $i \geqslant 1$. Although it is hard to compute or express the explicit formula of the $p^{t h}$-Hecke operator, from computer calculation, we conjecture that for $p=3$, the matrix representations of T_{p} satisfy the properties listed in the following theorem, which implies that Conjecture 2.5 holds for $p=3$.

Theorem 2.6. Let M be a $n \times n$ matrix, i.e.

$$
M=\left[\begin{array}{cccc}
m_{11} & m_{12} & \ldots & m_{1 n} \\
m_{21} & m_{22} & \ldots & m_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
m_{n 1} & m_{n 2} & \ldots & m_{n n}
\end{array}\right]
$$

Suppose M has the following properties:

1. $3 \mid m_{i i}$, for all $i=1,2, \ldots n$.
2. Let $l_{i}=$ ord $_{3}(i)$. If $l_{i}=0$, then $3 \mid m_{i j}$, for all $j=1,2, \ldots, n$. If $l_{i} \geqslant 1$, then $3 \mid m_{i j}$, for all $j \not \equiv \frac{i}{3}\left(\bmod 3^{l_{i}}\right)$
Then for the polynomial $\operatorname{det}(I-M x)=\sum_{i=0}^{n} c_{i} x^{i}, c_{i}$ is divisible by 3 for all $i \geqslant 1$.
Proof. For any i, the coefficient c_{i} is determined by the following formula:

$$
c_{i}=(-1)^{i} \cdot \sum_{\substack{1 \leqslant u_{1}<u_{2} \cdots<u_{i} \leqslant n ; \\ \sigma \in S_{i}}} \operatorname{sgn}(\sigma) \cdot m_{u_{1}, \sigma\left(u_{1}\right)} \cdot m_{u_{2}, \sigma\left(u_{2}\right)} \cdots m_{u_{i}, \sigma\left(u_{i}\right)},
$$

where S_{i} is the symmetric group $\operatorname{Sym}\left(u_{1}, u_{2} \ldots u_{i}\right)$ and $\operatorname{sgn}(\sigma)$ is the sign of permutation σ.
By the formula above, we know $c_{1}=-\left(m_{11}+m_{22}+\cdots+m_{n n}\right)=-\operatorname{tr}(M)$. Since $3 \mid m_{i i}$ for all $i, 3 \mid c_{1}$.

To show $3 \mid c_{2}$, it suffices to show that for every $1 \leqslant u_{1}<u_{2} \leqslant n$ and $\sigma \in S_{2}, 3 \mid m_{u_{1}, \sigma\left(u_{1}\right)}$. $m_{u_{2}, \sigma\left(u_{2}\right)}$. It is obvious that S_{2} only contains the identity e and the permutation $\left(u_{1} u_{2}\right)$, which interchanges u_{1} and u_{2}. If σ is the identity, then $3 \mid m_{u_{1}, u_{1}} \cdot m_{u_{2}, u_{2}}$ by property 1 . So we just need to show that for all $1 \leqslant u_{1}<u_{2} \leqslant n, 3 \mid m_{u_{1}, u_{2}} \cdot m_{u_{2}, u_{1}}$.

Suppose there exists $1 \leqslant u_{1}<u_{2} \leqslant n$ such that $3 \nmid m_{u_{1}, u_{2}} \cdot m_{u_{2}, u_{1}}$. Then both $m_{u_{1}, u_{2}}$ and $m_{u_{2}, u_{1}}$ are not divisible by 3 . By property 2 , we have $l_{u_{1}}, l_{u_{2}} \geqslant 1$. Suppose at least one of $l_{u_{1}}$ and $l_{u_{2}}$ are equal to 1 . Without loss of generality, we assume $l_{u_{1}}=1$. It implies that $3 \mid u_{1}$ but $9 \npreceq u_{1}$. In order to have $3 \npreceq m_{u_{1}, u_{2}}, u_{2}$ must be congruent to $\frac{u_{1}}{3}(\bmod 3)$. Since $9 \npreceq u_{1}, u_{2}$ is congruent to either 1 or $2(\bmod 3)$. Thus $l_{u_{2}}=0$, which implies that $3 \mid m_{u_{2}, u_{1}}$. Contradiction. Hence, we must have $l_{u_{1}}, l_{u_{2}} \geqslant 2$.

Similarly, suppose at least one of $l_{u_{1}}$ and $l_{u_{2}}$ are equal to 2 . Without loss of generality, assume $l_{u_{1}}=2$. Then $9 \mid u_{1}$ but $27 \npreceq u_{1}$. In order to have $3 \npreceq m_{u_{1}, u_{2}}, u_{2}$ must be congruent to $\frac{u_{1}}{3}(\bmod 9)$. However, since $l_{u_{1}}=2, l_{u_{2}}$ must be less than or equal to 1 . It follows that $3 \mid m_{u_{2}, u_{1}}$. Hence, we must have $l_{u_{1}}, l_{u_{2}} \geqslant 3$.

By continuing this process, we obtain that for all $1 \leqslant u_{1}<u_{2} \leqslant n$ such that $3 \mid m_{u_{1}, u_{2}} \cdot m_{u_{2}, u_{1}}$. Therefore, $3 \mid c_{2}$. The proof of the general case is similar but very technical. So we omit the proof here. One can show that $3 \mid c_{i}$ for all $i \geqslant 1$ by the similar argument and induction.

Also from Figure 2, one may notice that all the Newton polygons are bounded below. Now let's still fix the prime p and consider quadratic lower bounds of the generic Newton polygon. Assuming Conjecture 2.5 holds, we already know two vertices lying on the x-axis, i.e. $(0,0)$ and ($\left.\left\lfloor\frac{p-2}{3}\right\rfloor, 0\right)$. Since a quadratic polynomial can be determined by only 3 points, another interesting question is whether we can find a quadratic lower bound which depends on p and hits the zero points of the generic Newton polygon. Although it is still complicated to prove that a specific polynomial is a lower bound for all weight $k \in \mathbb{N}$, we can at least calculate the first several k 's by Magma and obtain the following conjecture.
Conjecture 2.7. For congruence subgroup $\Gamma_{0}(3)$ and prime number $p \geqslant 3, y=\frac{1}{p-1} x\left(x-\left\lfloor\frac{p-2}{3}\right\rfloor\right)$ is a quadratic lower bound of the generic Newton polygon.

It is easy to check that y hits the zero points $(0,0)$ and $\left(\left\lfloor\frac{p-2}{3}\right\rfloor, 0\right)$. However, we are just claiming that y is a quadratic lower bound. It may not the "greatest lower bound" which is the lower bound that hits at least 3 vertices on the generic Newton polygon. For example, when $p=3, y=\frac{3}{2} x^{2}+\frac{1}{2} x$ is the conjectured greatest lower bound.

2.3 Newton Polygons for other congruence subgroups

In this section, we give more conjectures about the two questions mentioned before: the length of zero slope and quadratic lower bound, but consider Hecke polynomials in different congruence subgroups Γ.

Conjecture 2.8. For prime $p \geqslant 3$,

1. if $\Gamma=\Gamma_{1}(3)$, then the length of zero slope is $\left\lfloor\frac{p-2}{3}\right\rfloor$;
2. if $\Gamma=\Gamma_{0}(4)=\Gamma_{1}(4)$, then the length of zero slope is $\left\lfloor\frac{p-2}{2}\right\rfloor$;
3. if $\Gamma=\Gamma_{0}(5)$, then the length of zero slope is $\left\lfloor\frac{p+1}{4}\right\rfloor+\left\lfloor\frac{p-1}{4}\right\rfloor$;
4. if $\Gamma=\Gamma_{1}(5)$, then the length of zero slope is $p-2$.

Conjecture 2.9. For prime $p \geqslant 3$,

1. if $\Gamma=\Gamma_{1}(3), y=\frac{1}{p-1} x\left(x-\left\lfloor\frac{p-2}{3}\right\rfloor\right)$ is a quadratic lower bound of the generic Newton polygon.
2. if $\Gamma=\Gamma_{0}(4)=\Gamma_{1}(4), y=\frac{1}{p+1} x\left(x-\left\lfloor\frac{p-2}{2}\right\rfloor\right)$ is a quadratic lower bound of the generic Newton polygon.

3 Appendix

3.1 Magma Code

The following Magma code gives all vertices of Newton polygons for $p=3, \Gamma=\Gamma_{1}(3)$, as weight k varies from 1 to 100 .

```
R<x> := PolynomialRing(Integers());
p := 3;
for k in [1..100] do
    S := CuspForms(Gamma1(3),k);
        P := HeckePolynomial(S,p);
        P := ReciprocalPolynomial(P);
        NP := NewtonPolygon(P,p);
        AllVertices(NP);
end for;
```

The following Magma code determines the divisibility of each entry in the Hecke matrix for $p=3$, $\Gamma^{\prime}=\Gamma_{0}(3)$, as weight k varies from 1 to 100 .
$\mathrm{p}:=3$;
for k in [1..100] do
M:= CuspForms(Gamma0(3),k);
$\mathrm{d}:=$ Dimension(M);
$\mathrm{T}:=$ HeckeOperator (M, p);
for i in [1..d] do
for j in [1..d] do
$T[i, j]:=T[i, j] \bmod p ;$
end for;
end for;
print k;
print T;
end for;

3.2 Sage Code

The following Sage code plots the graph of Newton polygons for $p=3, \Gamma=\Gamma_{1}(3)$, as weight k varies from 1 to 30 .

```
p = 3
G = Gamma1(3)
N = 30
from sage.geometry.newton_polygon import NewtonPolygon
def hecke_poly(k):
    W = CuspForms(G,k)
    d = W.dimension()
    H = W.hecke_matrix(p)
    I = matrix.identity(d)
    U = I - H*x
    Q = U.determinant()
    return Q
```

```
K = Qp(p)
R.<t> = K[]
print "p = ",p," ----- Newton slopes of Hecke"
E = []
for k in [1..N]:
    hecke = hecke_poly(k)
    L = hecke.coefficients(sparse=False)
    p_hecke = R(L)
    NP = p_hecke.newton_slopes()
    NP_half = []
    for i in [0..len(NP)/2-1]:
        NP_half.append(-NP[i])
    NP12 = NewtonPolygon(NP_half).plot()
    E.append(NP12)
sum(E)
```

Here the Hecke operator $U=I-H x$, since $p=3$ is divisible by 3 . If p doesn't divide 3 , then $U=I-H x+p^{(k-1)} x^{2} I$.

References

[1] Wells Johnson, p-adic proofs of congruences for the Bernoulli numbers, J. Number Theory 7 (1975), 251-265. MR 0376512
[2] Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), no. 257, 405-441. MR 2261029
[3] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, second ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003
[4] _ , Introduction to elliptic curves and modular forms, second ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR 1216136

