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Abstract

A complexity measure on boolean functions f : {0, 1}n → {0, 1} condenses if the complexity of f can
be witnessed by some restriction of f to a number of variables depending only on the complexity of f . In
this paper, I explore the condensation properties of AND decision tree depth and monomial sparsity, and
connections to communication complexity and the log-rank conjecture of Lovasz and Saks. The main
result introduced is a condensation theorem for monomial sparsity, along with an approximate sharpness
example for this result. Additionally, I investigate the topological properties of the monomials of the
linear polynomial representing a boolean function and the coordinate sets tested in that function’s AND
decision tree.

1 Complexity Measures and Condensation

Let M be an n× n matrix over R. If M is of rank r, then there exists an r × r submatrix of M with rank
r. This is an example of a condensation property for the rank function. The rank function maps matrices
over R to non-negative integers. For an input M of size n, there exists a restriction of the rank function
to a subset of M ′ ⊆ M , whose size depends only on Rk(M), and not on n, such that Rk(M ′) = Rk(M).
A boolean function is a function f : {0, 1}n → {0, 1}. A complexity measure C maps boolean functions to
values in N (or sometimes in R+). A subfunction g of a boolean function f is a restriction of f to a subcube
of the {0, 1}n cube. That is, the values of some (xi)i∈S are fixed, to obtain a function on the remaining
(xj)j∈[n]\S .

Every boolean function f : {0, 1}n → {0, 1} can be represented by a unique multilinear polynomial P over
Rn. When evaluated at x ∈ {0, 1}n ⊂ Rn, P takes values in {0, 1}. It is important to note that if x ∈ {0, 1}n,
any xi in a monomial of P can be raised to any non-zero exponent without changing the value of P (x). If
a non-linear polynomial Q has the property that Q(x) = f(x)∀x ∈ {0, 1}n, a multilinear polynomial P for
f can be obtained from Q by replacing all exponents in Q with 1, and combining like terms. The number
of non-constant monomials in P with non-zero coefficients gives a complexity measure called the monomial
sparsity of f , denoted Mon(f). Each term in the multilinear polynomial for f is of the form

M(x) = αM

∏
i∈SM

xi

where αM ∈ R\{0}, and SM ⊆ [n]. Call the collection of sets {SM} for all monomials M of f the monomial
set system for f . A hitting set for f is a set H ⊆ [n] such that H ∩ SM ̸= ∅ for every SM in the monomial
set system for f . The size of the smallest possible hitting set for the monomial set system of f gives a
complexity measure called the hitting set size of f , denoted HS(f).

A boolean function f can also be represented by a decision tree. A decision tree T is a directed binary tree,
with edges orient from root to leaf. Every internal vertex v of T is associated with a coordinate iv ∈ [n], and
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each leaf has a label in {0, 1}. To evaluate f using T , start at the root of T . At vertex v, if xvi = 1, move
to the right child of v, and if xvi = 0, move to the left child. Once a leaf is reached, f is given by the label
of that leaf. The smallest depth of any decision tree that expresses f is a complexity measure called the
decision tree depth of f , denoted DT(f). An AND decision tree functions the same as a decision tree, but
each internal vertex is associated with a non-empty test set Mv ⊆ [n]. At vertex v in an AND decision tree,
the monomial

∏
i∈Mv

xi is evaluated, or equivalently, the boolean AND
∧

i∈Sv

xi is evaluated, to determine which

branch is taken. The minimum depth of AND decision tree required to represent f is denoted AND(f).

The complexity measures discussed so far have the following relationships:

HS(f) ≤ AND(f) ≤ Mon(f)

The bound HS(f) ≤ Mon(f) is immediate from the fact that choosing one xi from each monomial of f gives
a hitting set for f . To see that AND(f) ≤ Mon(f), first, observe that once the value of every monomial
of f at x is known, the value of f(x) is uniquely determined. Let T be an AND decision tree of depth
Mon(f) = k, with every layer full. Let M1...Mk ⊆ [n] be the monomials of f . Equip every node in layer j of
T with the test monomial Mj . Any path from the root of T to a leaf of T evaluates every monomial of T . If
the evaluation paths for x, y terminate in the same leaf of T , then for each monomial Mj , Mj(x) = Mj(y),
so f(x) = f(y). Labeling each leaf of T by f(x) for an arbitrary x in that leaf gives an AND decision tree
for f of depth k.

Showing HS(f) ≤ AND(f) requires slightly more work. A monomial Mi of f is called minimal if there
is no monomial Mj of f such that Mi ⊂ Mj . If Mj is not a minimal monomial, then f necessarily has
another monomial Mi ⊂ Mj . Therefore, H ⊆ [n] is a hitting set of f iff H has non-empty intersection
with every minimal monomial of f . Let Mi be a minimal monomial for f , and x ∈ {0, 1}n be defined by
xj = 1 iff j ∈ Mi. Then Mi(x) = 1, and Mj(x) = 0∀j ̸= i. Since f is a boolean function and Mi has
a non-zero coefficient, the coefficient on Mi in the polynomial for f must be 1 or −1. Importantly, all
monomials Mj , j ̸= i have the same value at x as at 0. Only the value of Mi differs. We can thus conclude
f(x) ̸= f(0). Let {Mi}i∈J be the minimal monomials of f . Define y ∈ {0, 1}n by yi = 1 iff i ∈

⋃
i∈J

Mi \H.

Then f(y) = f(0), since every monomial of f takes on the same value at y as at 0. However, if k ∈ H ∩Mi,
where Mi is a minimal monomial, then Mi(y+ ek) ̸= Mi(y), but for all j ̸= i, Mj(y+ ek) = Mj(y) = Mj(0).
Thus, at y, f is sensitive to all coordinates in H, in that flipping any coordinate in H flips the value of
f . Let My1

...Myr
be the sequence of monomials corresponding to the vertices in an AND decision tree for

f visited when evaluating f(y). If there exists a coordinate k ∈ H such that xk ̸∈ Myi for any i, then we

would have f(y + ek) = f(y), so
r⋃

i=1

Myi must cover H. Suppose k ∈ H is such that if k ∈ Myi for some i,

then there exists k′ ̸= k ∈ H ∩Myi . Then again we have f(y + ek) = f(y), since no monomials Myi differ
between y + ek and y. Therefore, the evaluation path for f at y contains at least one monomial for every
k ∈ H, and we can therefore conclude

AND(f) ≥ r ≥ |H| = HS(f)

Additionally, the following bounds hold:

AND(f) ≤ DT(f) ≤ n

This is because every decision tree is also an AND decision tree. In particular, an AND decision tree is a
decision tree if the test set at each vertex contains only a single coordinate. DT(f) ≤ n follows by exactly
the same argument as AND(f) ≤ Mon(f). If all n coordinates of x are known, then the value of f can be
determined.

Finally, the upper bound Mon(f) ≤ 3AND(f) is known. For proof, the reader is referred to [Kno+21]. Here,
I will prove the slightly weaker bound Mon(f) ≤ 4AND(f). Let T be an AND decision tree of depth m for
the boolean function f , and let g1...gk be the indicator functions for those leaves of T labeled 1. That is,
gj(x) = 1 iff f(x) = 1 and the evaluation path of x in T terminates in the leaf corresponding to gj . We can

write f(x) =
k∑

j=1

gj(x), since for any x, gj(x) = 1 for at most one j. For each gj , let Lj be the set of all
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nodes for which the 0 branch is taken in the path to the leaf gj , and Rj be the set of all nodes where the
right branch is taken. Then for each j,

gj(x) =

 ∏
N∈Lj

(1−N(x))

 ∏
N∈Rj

N(x)


If the path ending at gj is of lengthm, the above expression for gj will produce at most 2m distinct monomials.
An AND decision tree of depth m has at most 2m leaves, and the path to any leaf is of length at most m.

Therefore, f(x) =
k∑

j=1

( ∏
N∈Lj

(1−N(x))

)( ∏
N∈Rj

N(x)

)
has at most 2m · 2m = 22m = 4m monomials.

2 Communication Complexity

Let f : {0, 1}n × {0, 1}n → {0, 1}. Suppose Alice has x ∈ {0, 1}n, Bob has y ∈ {0, 1}n, and Alice wishes to
compute f(x, y). Alice and Bob are allowed to agree beforehand on a deterministic communication protocol,
where one bit of information can be sent from one party to the other (in either direction), until Alice has
computed f . Let B(p, x, y) denote the number of bits of information transmitted when protocol p is used
to compute f(x, y). Let P denote the set of all possible deterministic communication protocols for f . The
deterministic communication complexity of f is defined as

CC(f) = min
p∈P

max
x,y∈{0,1}n

B(p, x, y)

For any function f , it is always possible for Bob to send all of y to Alice, so for any choice of function f ,
CC(f) ≤ n. An example of a function with low communication complexity is the parity function, defined
by Par(x, y) = 1 iff the total number of 1 coordinates in x and y is odd. For Alice to compute Par(x, y),
she needs to know only whether Bob has an odd number of 1 coordinates in y, which Bob can communicate
with a single bit of information. However, Par(x, y) still depends on both x and y, so Alice cannot decide
Par(x, y) based on x alone, necessitating a non-zero amount of communication. In particular, the protocol
described previously is best possible, and we have CC(Par) = 1.

A function f : {0, 1}n × {0, 1}n → {0, 1} can also be described by a 2n × 2n communication matrix F . The
rows and columns of F are indexed by {0, 1}n, and Fxy is defined to be f(x, y). Lovasz and Saks [LS88]
proposed the following log-rank conjecture:

Conjecture 1 Let f : {0, 1}n×{0, 1}n → {0, 1} be represented by communication matrix F . Then for some
positive universal constant c,

CC(f) = O(logc Rk(F ))

Part of the challenge in resolving this conjecture has come from its generality; the bound is conjectured to
hold for any possible choice of f . As such, many efforts have focused on resolving the conjecture for smaller
spaces of boolean functions.

Given a function f : {0, 1}n → {0, 1}, and a gadget function g : {0, 1}2 → {0, 1}, we can define a lifted
function fg : {0, 1}n × {0, 1}n → {0, 1} by

fg(x, y) = f(g(x1, y1)...g(xn, yn))

One approach is to use lifting theorems, which, for a specific choice of gadget g, relate CC(fg) to various
complexity measures on f . Here, we will consider AND functions, which are lifted functions using the AND
gadget, x, y 7→ x ∧ y. The following lemma and proof from [Kno+21] relates the communication complexity
of an AND function to that function’s AND decision tree depth.

Lemma 1 Let f : {0, 1}n → {0, 1} be any boolean function, and f∧ : {0, 1}n × {0, 1}n → {0, 1} denote the
lifted AND function. Then CC(f∧) ≤ 2 · AND(f).
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The proof is to use the AND decision tree for f to construct a communication protocol for f∧. Consider a
node N in an AND decision tree T for f , as used to compute f∧(x, y) = f(x ∧ y).

N(x ∧ y) =
∏
i∈N

(x ∧ y)i =
∏
i∈N

xiyi =

(∏
i∈N

xi

)(∏
i∈N

yi

)
= N(x) ·N(y)

Therefore if Alice and Bob each privately compute N(x) and N(y), then exchange the results, they both
gain access to N(x ∧ y). Starting at the root of T , Alice and Bob can each transmit 1 bit, then take the
same branch, repeating until a leaf is reached. At every node in the path followed, 2 bits of information are
exchanged. Thus, we have a communication protocol for f∧ that transmits 2 ·AND(f) bits in the worst case
choice of x, y. □

The following result, also due to Knop et. al, relates AND decision tree depth to monomial sparsity:

Theorem 1 Let f : {0, 1}n → {0, 1} be a boolean function with Mon(f) = k. Then

AND(f) = O(log5(k) · log(n))

The reader is referred to [Kno+21] for a full proof. What I will draw our attention to are the consequences
of this result for the log-rank conjecture. In conjunction with Lemma 1, it produces the bound

CC(f∧) ≤ 2 · AND(f) = O(log5(Mon(f)) · log(n))

This is very closed to the bound proposed by the log-rank conjecture, except for the log(n) factor. In fact,
when Mon(f) = Ω(logr(n)) for some fixed r, the conditions of the log-rank conjecture are satisfied. It is only
the case of very sparse functions that remains unresolved. This is where condensation enters the picture.
Suppose we were to prove a condensation result of the following form:

Conjecture 2 Let f : {0, 1}n → {0, 1} has Mon(f) = k. Then there exists a sub-function g of f on P (k)
variables such that AND(g) ≥ AND(f)c for some universal constant c, 0 < c < 1.

Assuming this conjecture, Theorem 1 gives

AND(f)c = O(log5 Mon(f) · logP (Mon(f)))

In particular, suppose P (k) = 2log
α(k). Then

AND(f) = O(log5/c Mon(f) · logcα Mon(f))

as proposed by the log-rank conjecture.

3 Condensing Monomial Sparsity

This section will prove the following condensation theorem for monomial sparsity:

Theorem 2 Let f : {0, 1}n → {0, 1} be a boolean function with Mon(f) = k. Then there exists a subfunction
g of f on O(k2) coordinates with Mon(g) = k.

The theorem is trivially true when k ≥
√
n, since in that case, taking g = f is sufficient. Since Mon(f) can

be as high as 2n, Theorem 2 is only relevant in the particular case of low monomial sparsity. The proof of
Theorem 2 follows from a more general combinatorial lemma about set systems.
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3.1 Isomorphic Set Systems

Let X be any set. A set system S over X is a collection of non-empty elements of the power set 2X . If S1

is a set system over X1 and S2 is a set system over X2, define a set system isomorphism to be a bijection
h : S1 → S2 that preserves inclusions and pair-wise disjointness. That is, A ⊆ B iff h(A) ⊆ h(B), and
A ∩B = ∅ iff h(A) ∩ h(B) = ∅.

Lemma 2 Let S be a set system over a set X, with |S| = k. Then there exists A ⊂ X with |A| ≤ 3k(k−1)
2

such that the set system {E ∩ A : E ∈ S} is isomorphic to S. An isomorphism h : S → {E ∩ A : E ∈ S} is
given by h(E) = E ∩A.

To prove this lemma, we will construct such a set A. For each pair of sets Ei, Ej ∈ S, include in A one
element from each from Ei ∩ Ej , Ei \ Ej , and Ej \ Ei, provided the set in question is non-empty.

For a pair a given pair of sets Ei, Ej ∈ S, at least one, and at most all three of these will be non-empty.

There are k(k−1)
2 pairs of sets Ei, Ej , and each contributes at most 3 distinct elements to A, so |A| ≤ 3k(k−1)

2 .
What remains is to show that h : S → {S ∩A : E ∈ S} given by h(E) = E ∩A is a set system isomorphism.

First, suppose Ei, Ej are disjoint sets in S. Since A ∩ Ei ⊆ Ei and A ∩ Ej ⊆ Ej , h(Ei) ∩ h(Ej) = ∅.
Conversely, if h(Ei) ∩ h(Ej) ̸= ∅, then there exists a ∈ A such that a ∈ Ei ∩ Ej . Then a ∈ A ∩ Ei and
a ∈ A ∩ Ej , so h(Ei) ∩ h(Ej) ̸= ∅.

Next, suppose Ei ⊆ Ej . Then Ei ∩ A ⊆ Ej ∩ A, so h(Ei) ⊆ h(Ej). If h(Ej) ̸⊆ h(Ei), then there exists a
such that a ∈ A∩Ej but a ̸∈ A∩Ei. Therefore, (A∩Ei) \ (A∩Ej) ̸= ∅. But (A∩Ei) \ (A∩Ej) ⊆ Ei \Ej ,
so Ei \ Ej ̸= ∅, and therefore Ei ̸⊆ Ej . □

3.2 Proof of Theorem 2

Let f : {0, 1}n → {0, 1} be a boolean function given by a polynomial P , and let M1...Mk be the monomials
of P . The monomials of P form a set system M = {M1...Mk} over [n]. By Lemma 1, there exists A ⊆ [n]

with |A| ≤ 3k(k−1)
2 such that the set system M ′ = {Mj ∩ A : Mj ∈ M} is isomorphic to M . Let g be the

subfunction of f obtained by fixing xi to 1 for all i ̸∈ A. In general, fixing xi to 0 for some i causes every
monomial of P containing xi to become identically 0. Fixing xi to 1 has the effect of removing xi from each
monomial in which it occurs. Since g is defined by fixing coordinates only to 1, and not to 0, a polynomial
Q for g can be obtained by removing xi from each monomial Mj of P , and then combining like terms.

The monomials obtained by removing all xi ̸∈ A from the monomials of P are precisely M ′ = {Mj ∩ A :
Mj ∈ M}. P is already assumed to be fully simplified, so if Mi,Mj are distinct monomials of P , then at
least one of Mi \ Mj and Mj \ Mi is non-empty. Because M ′ is isomorphic to M under the set system
isomorphism mapping Mi 7→ M ′

i , at least one of M ′
i \M ′

j and M ′
j \M ′

i is non-empty. Therefore, no terms
combine in Q, and the sets in M ′ are precisely the monomials of Q. □

Remark: Q is obtained merely by removing some xi from the monomials of P . No terms combine, and no
modification is made to the coefficients on the monomials. Therefore, each monomial M ′

i has exactly the
same coefficient in Q as Mi does in P . Put another way, the set system isomorphism Mi 7→ M ′

i preserves
the coefficients on monomials when considered as a map from the terms of P to the terms of Q.

3.3 Sharpness

At the time of writing, the question remains open as to whether the O(k2) condensation given in Theorem
2 is the best possible condensation for monomial sparsity, up to constants. The following example, however,
provides a lower bound of Ω(k).
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Define f : {0, 1}n → {0, 1} by f(x) = 1 iff x = 1 − ei for some i. That is, f(x) = 1 iff there is some i such
that xi = 0, and xj = 1∀j ̸= i. The multilinear polynomial for f is given by

P (x) =

 n∑
i=1

∏
j ̸=i

xj

− n ·
n∏

j=1

xj

This expression for P is fully simplified, and we can observe that Mon(f) = n + 1. Suppose we wished to
build a subfunction g of f with Mon(g) = Mon(f). Fixing any xi to 0 is out of the question. For any xi, the
only monomial not containing xi is

∏
j ̸=i

xj . Fixing xi to 0 causes all other monomials to become identically

0, and the resulting function will have a monomial sparsity of 1. On the other hand, fixing xi to 1 results
in xi being removed from each monomial of P . In this case, the monomial M1 =

∏
j ̸=i

xi remains unchanged,

while the monomial M2 =
n∏

j=1

xj becomes equal to M1, and M1 and M2 combine into a single monomial. In

particular, the subfunction g obtained by fixing xi = 1 in f has Mon(g) = Mon(f) − 1 and is given by the
polynomial

Q((xj)j ̸=i) =

∑
i ̸=j

∏
k ̸=i,j

xk

− (n− 1)
∏
j ̸=i

xj

4 Condensing Hitting Set Size

The notions of minimal monomials and hitting sets as defined previously for the monomial set system of a
boolean function’s polynomial can be extended to arbitrary set systems. One property worth noting is that
a set system isomorphism h : S1 → S2 preserves minimal sets. If E ∈ S1 is such that there does not exist
F ∈ S1 \ {E} with F ⊆ E, then the same will be true of h(E) in S2 due to the inclusion preserving property
of set system isomorphisms. Conversely, if F ⊆ E, then h(F ) ⊆ h(E). As noted previously, a necessary and
sufficient condition for H ⊆ [n] to be a hitting set for the monomial set system M of a boolean function
f is for H to have non-empty intersection with every minimal monomial in M . Given the positive result
for condensation of monomial sparsity, it is reasonable to ask whether hitting set size would condense by a
similar construction.

4.1 Condensing With Respect to Monomial Sparsity

One result for condensation of hitting set size comes as a corollary of Theorem 2:

Corollary 1 Let f : {0, 1}n be a boolean function with Mon(f) = k and HS(f) = r. Then there exists a
subfunction g of f on O(k2) variables with HS(g) ≥ r.

Let g be the same subfunction constructed in the proof of Theorem 2, and M and M ′ be the monomial set
systems for f and g respectively. Let H be a hitting set of minimum possible size for M ′. By construction,
M ′

i ⊆ Mi. Therefore, if H ∩ M ′
i ̸= ∅, then H ∩ Mi ̸= ∅. Thus, H is also a hitting set for M , though not

necessarily an optimal one.

Remark: It should be noted that in general, set system isomorphisms do not preserve hitting set size.
As defined, our notion of set system isomorphism captures only the pair-wise incidence relations between
elements of the set system, and does distinguish structural differences that require more than 2 elements to
observe. For example, the following set systems are isomorphic:

S1 = {{1, 2}, {2, 3}, {3, 1}}
S2 = {{1, 2}, {1, 3}, {1, 4}}

However, {1, 2} is an optimal hitting set for S1, whereas {1} is an optimal hitting set for S2.
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4.2 Restricting to a Hitting Set Fails

Corollary 1 provides a condensation of hitting set size to a subfunction of size dependent on monomial
sparsity. The question remains, though, as to whether hitting set size can be condensed in a subfunction of
size depending on HS(f). One possible method could be to take a minimum hitting set H of f , and fix xi

to 1 for all i ̸∈ H. This construction would seem to preserve every minimal monomial, but for the fact that
it may produce like terms, which might then combine to 0.

The following examples illustrate the failure of this approach. Consider the boolean function

f(x, y, z) = xy + xz − 2xyz

An optimal hitting set for f is H = {x}. Fixing y, z to 1 results in the subfunction

f(x, 1, 1) = x+ x− 2x ≡ 0

More significantly, this function f can be used as a building block to construct larger examples. Let g :
{0, 1}n → {0, 1} be the indicator function of the 0 vector. A polynomial expressing g is given by

g(x) =

n∏
i=1

(1− xi)

Note that every possible monomial occurs with non-zero coefficient in g. Define h : {0, 1}3n → {0, 1} by

h(x1, y1, z1...xn, yn, zn) = g(f(x1, y1, z1), ...f(xn, yn, zn))

From the polynomial representations of f and g, we know that ∀i, the monomials xiyi and xizi occur in h
with coefficient −1. Therefore, a hitting set for h must hit all such monomials. Specifically, H = {x1...xn}
is a minimum hitting set for h. Fixing all variables not in H to 1 gives the subfunction

g(f(x1, 1, 1)...f(xn, 1, 1)) = g(0, ...0) ≡ 1

To summarize, we have constructed a boolean function h on 3n variables such that when all coordinates
outside of a minimum hitting set are fixed to 1, the resulting subfunction is constant.

5 Condensing AND Decision Tree Depth

5.1 The Topology of AND Decision Trees

As noted previously, the condensation for monomial sparsity constructed in the proof of Theorem 2 preserves
quite a lot of the structure of the polynomial, beyond just the number of monomials. The construction gives
a bijection between the monomials M1...Mk of f and the monomials M ′

1...M
′
k of the condensation g that is

a set system isomorphism, and corresponding monomials Mi and M ′
i have the same coefficients. Given this

similarity between the polynomial representations of f and g, it is reasonable to wonder whether the optimal
AND decision trees for f and g also exhibit some sort of similarity, such as being isomorphic as graphs.

More weekly, to obtain the desired condensation result for AND, it would suffice to show that AND(f) is
polynomially bounded above by AND(g). One route to such a result would be to somehow use an AND
decision tree for g to construct an AND decision tree for f . At the time of writing, the existence of such
a condensation result for AND has not yet been established. However, the following lemma establishes a
connection between the monomial sets of a boolean function f and the node sets in an AND decision tree
for f , suggesting this approach may hold promise as a future line of inquiry.

Lemma 3 Let f : {0, 1}n → {0, 1} be a boolean function with monomials {M1...Mk}. Let T be the topology
on [n] generated by taking {M1...Mk} as a sub-basis. There exists an optimal AND decision tree T for f
such that every node N of T is open in T .
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By the definition of a topology generated by a sub-basis, T has a basis B of all finite intersections of
{M1...Mk}. The space [n] is finite, so the topology T can have at most 2|n| distinct open sets, since that
is the size of the discrete topology. Because T is finite, the notion of a minimal open superset of a set is
well-defined, which is not the case in general topological spaces. In particular, each i ∈ [n] has a minimal
open neighborhood Ni. Ni is necessarily a basis element, since for any topological space X, if x ∈ U ⊆ X
where U is open, then there exists a basis element B such that x ∈ B ⊆ U . By the construction of the basis
B, we have

Ni =
⋂

{Mr:i∈Mr}

Mr

What we will show is that given any AND decision tree T for f , we create an AND decision tree T ′ that
still correctly decides f , in which each node N of T has been replaced by an open N ′ with N ⊆ N ′. In
particular, this N ′ will be given by

N ′ =
⋃
i∈N

Ni

To show that T ′ correctly decides f , it suffices by induction to instead prove the correctness of a tree T1, in
which, for a single i ∈ [n], each node N with i ∈ N is replaced by N ∪Ni. Additionally, if i ̸= j ̸= k ∈ [n],
and j ∈ Ni and k ∈ Nj , then k ∈ Ni. This is because k ∈ Nj iff every open U ⊆ [n] with j ∈ U also has
k ∈ U . If j ∈ Ni, then Ni is an open set containing j, so k ∈ Ni as well. Thus, the correctness of T1 again
follows inductively from the correctness of a tree Tij in which, for some i with j ̸= i ∈ Ni,

1 each node N
with i ∈ N has been replaced by N ∪ {j}.

To show that Tij correctly decides f , choose some x ∈ {0, 1}n. When xj = 1, x will have the same evaluation
path in Tij and T . This is because when xj = 1, N(x) = (N ∪ {j})(x), where the sets N and N ∪ {j} are
identified with their respective monomials for convenience of notation. When xj = 0, (N ∪ {j})(x) = 0 for
any monomial N . The tree Tij replaces the node N in T by N ∪ {j} only when i ∈ N . If xi = 0, then
N(x) = 0 already, so x again has the same evaluation path in Tij as in T . What remains is the case where
xi = 1 but xj = 0. Let y ∈ {0, 1}n be identical to x except that yi = 0. The evaluation path for x in Tij is
the same as the path for y in T . If f(x) = f(y), then x is still correctly classified in Tij , and it turns out
that this is, in fact, the case. To see this, consider any monomial Mr ∈ {M1...Mk}. If i ∈ Mr, then since
j ∈ Ni, j ∈ Mr as well, and xj = yj = 0, so Mr(x) = Mr(y) = 0. If i ̸∈ Mr, then j ̸∈ Mr either, so because
xk = yk for every k ̸= j, we again have Mr(x) = Mr(y). Since Mr(x) = Mr(y) for every monomial Mr of f ,
f(x) = f(y). □

5.2 Gluing Indistinguishable Points is Insufficient

Suppose i, j ∈ [n] are indistinguishable in the topology T generated by the sub-basis of the monomials
{M1...Mk} of f in that any open set E containing either i or j contains both i and j. Then every monomial
Mr containing either i or j has i, j ∈ Mr. In terms of the minimal neighborhoods defined in the proof of
Lemma 3, this is equivalent to having j ∈ Ni and i ∈ Nj . Note that this implies that the topology T does
not satisfy the T0 separation axiom.2 If x, y ∈ {0, 1}n are such that xk = yk∀k ̸= i, j and yi = yj = xi · xj ,
then f(x) = f(y), since Mr(x) = Mr(y) for every monomial of f , just as in the proof of Lemma 3.

Define an equivalence relation ∼ on [n] by i ∼ j iff i, j are topologically indistinguishable in the sense
described above. To verify that ∼ does in fact define an equivalence relation, recall that if j ∈ Ni and
k ∈ Nj , then k ∈ Ni. If i ∼ j and j ∼ k, we have j ∈ Ni and k ∈ Nj , implying k ∈ Ni, as well as i ∈ Nj and
j ∈ Nk, implying i ∈ Nk. Let C1...Cm denote the equivalence classes of ∼. If i ∼ j, then for any x, xi, xj

can both be replaced by xi · xj without affecting the value of f . Inductively, if all xi, i ∈ Ck are replaced by∏
j∈Ck

xj , the value of f at the resulting point will be the same as f(x). Similarly, as shown in the proof of

Lemma 3, if each node N in a decision tree T for f containing a member of Ck is replaced by N ∪ Ck, the
resulting tree will still decide f .

Let A ⊆ [n] contain one representative aj from each equivalence class Cj . Define g : {0, 1}m → {0, 1} to be
the subfunction of f obtained by fixing xi to 1 for all i ̸∈ A. Let T be any AND decision tree for g, and

1When Ni is a singleton, replacing each N having i ∈ N with N ∪Ni does not alter the tree at all.
2A topology T on a space X is T0 if for every pair x ̸= y ∈ X, there exists an open set U containing exactly one of x, y.
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define T ′ to be the AND decision tree obtained by, for j ∈ 1...m, replacing each occurrence of aj in T by
Cj . Then T ′ is an AND decision tree that decides f . Since g is a subfunction of f , AND(g) ≤ AND(f), so
we have AND(g) = AND(f). If Mon(f) = k and the relation ∼ for the topology generated by the monomials
of f has m equivalence classes, then by Theorem 1,

AND(f) = O(log5(k) log(m))

In particular, to obtain a condensation theorem that resolves log-rank for AND functions, it would suffice
to prove the claim that if f has k monomials, then the number of equivalence classes of ∼ is O(2log

c(k) for
some constant c.

Unfortunately, this claim is not true. TODO: example
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