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1 Introduction

The Dirichlet Divisor Problem, named after the German mathematician Peter Gustav Leje-

une Dirichlet, is a classical problem in number theory. It concerns the distribution of the

number of divisors of positive integers, which plays a crucial role in various areas of mathe-

matics, including analytic number theory and algebraic geometry.

The problem can be succinctly stated as follows: given an integer n, let the divisor function

d(n) be the number of integer divisors of n (including 1 and n itself). For example, 24 has

divisors di = 1, 2, 3, 4, 6, 8, 12, 24. Thus, d(24) = 8.

Let D(x) =
∑

n≤x d(n), so that D(x) sums the numbers of divisors of integers smaller than

x. Thus, the average number of divisors for any integer ≤ x is 1
x
D(x).

In 1849, Dirichlet proposed this question and developed a method now known as the hyper-

bola method to prove that D(x) =
∑

n≤x d(n) = x log x+x(2γ− 1)+O(
√
x), where γ is the

Euler’s constant. His proof will be shown later in this paper. The Dirichlet Divisor Problem

asks for the best estimate of the error term.

Despite its seemingly elementary nature, the Dirichlet Divisor Problem remains one of the

most challenging unsolved problems in number theory. Progress has been made in certain

special cases and under various assumptions, but a complete understanding of its behavior

remains elusive. It is conjectured that θ = 1/4 + ϵ. In 1916, G. H. Hardy showed that

inf θ ≥ 1
4
. In other words, the above bound becomes false if 1

4
is replaced by any smaller

value.

In this paper, we will introduce Van der Corput’s method of exponential sums, which pro-

vides a systematic way to bound exponential sums by exploiting the oscillatory behavior of

the complex exponential function. We will describe the van der Corput’s method, as well as

its applications to the Dirichlet Divisor Problem.
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2 Notation

In this section, we define some notations that we will use in this thesis. 1. ⌊x⌋: ⌊x⌋ is defined
to be the largest integer that does not exceed x.

Examples: ⌊1.5⌋ = 1, ⌊2⌋ = 2

2. {x}: {x} is defined to be the fractional part of x. {x} = x− ⌊x⌋.
Notice: For any x, {x} < 1.

Examples: {1.8} = 0.8, {2} = 0

3. Big O notation: Let f , the function to be estimated, be a real or complex valued function

and let g, the comparison function, be a real valued function. Let both functions be defined

on some unbounded subset of the positive real numbers, and let g(x) be strictly positive for

all large enough values of x.

If the absolute value of f is at most a positive constant multiple of g(x), i.e., if there exists

a positive integer N and a positive real constant c such that |f(x)| ≤ c(g(x)) ∀x ≥ N , we

write f(x) = O(g(x).

Equivalently, we can write f(x) ≪ g(x).

Examples:

• A constant function is : O(1)

• A linear function is : O(n)

• A logarithmic function is “order log(n)”: If f(n) = loga n and g(n) = logb n, then

O(f(n)) = O(g(n)); all log functions grow in the same manner in terms of Big-O.

4. Small o notation: The symbol o(g(x)) represents the set of functions f(x) that grow

slower than g(x) as x approaches a certain limit. Formally, for two functions f(x) and g(x),

we say that f(x) is in the set o(g(x)) if

lim
x→c

f(x)

g(x)
= 0,

for some limit point c in the domain of f(x) and g(x).

5. Let f be a a real function. We say f ≈ g if and only if f(x) ≪ g(x) and g(x) ≪ f(x).

6. A function f : R → R is said to be in C1(R) if it is continuously differentiable, i.e., both

f and its derivative f ′ exist and are continuous on R.
Similarly, a function f : R → R is said to be in C2(R) if it is twice continuously differentiable,

i.e., both f and its first two derivatives f ′ and f ′′ exist and are continuous on R.
7. An integrable function f : R → R is said to be in L1(R) if the integral of the absolute
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value of f(x) over the entire real line exists and is finite. In the other words, a function f

belongs to L1(R) if ∫ ∞

−∞
|f(x)| dx < ∞.

3 Dirichlet’s Method

Theorem 1.1: For all N ≥ 1,
∑

n≤N d(n) = N logN +N(2γ − 1) +O(
√
N).

Proof. Dirichlet’s method turns the problem of solving forD(N) into the problem of counting

the lattice points in a bounded region.

Notice that geometrically, d(n) counts the number of lattice points (points with integer

coordinates) on the parabola xy = n.

Figure 1: lattice points under xy=6

Each lattice point will be on some parabola xy = n. Thus, D(N) counts the lattice points

in the first quadrant that are on or below the parabola xy = N .

This region under xy = N can be divided into three parts: a square of length
√
N and two

symmetrical regions separated by the square.

In the square, there are ⌊
√
N⌋2 lattice points.

In the region bounded by xy = N and y =
√
N , there are ⌊N

n
⌋−⌊

√
N⌋ on the each line x = n.

Adding the number of lattice points on each line, the number of lattice points contained in

this region is
⌊
√
N⌋∑

n=1

⌊N
n
⌋ − ⌊

√
N⌋.
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The number of lattice points in the symmetrical regions are identical. Combining these three

parts , we have

N∑
n=1

d(n) = 2

⌊
√
N⌋∑

n=1

(⌊N
n
⌋ − ⌊

√
N⌋) + ⌊

√
N⌋2

= 2

⌊
√
N⌋∑

n=1

⌊N
n
⌋ − 2

⌊
√
N⌋∑

n=1

⌊
√
N⌋+ ⌊

√
N⌋2

= 2

⌊
√
N⌋∑

n=1

⌊N
n
⌋ − 2⌊

√
N⌋

⌊
√
N⌋∑

n=1

1 + ⌊
√
N⌋2

= 2

⌊
√
N⌋∑

n=1

⌊N
n
⌋ − 2⌊

√
N⌋2 + ⌊

√
N⌋2

= 2

⌊
√
N⌋∑

n=1

⌊N
n
⌋ − ⌊

√
N⌋2

= 2

⌊
√
N⌋∑

n=1

(
N

n
− {N

n
})− (

√
N − {

√
N})2

= 2N

⌊
√
N⌋∑

n=1

1

n
− 2

⌊
√
N⌋∑

n=1

{N
n
} −N + 2

√
N{

√
N} − {

√
N}2.

(1)

Noticing that the fractional part is always ≤ 1:

2

√
N∑

n=1

{N
n
} ≤ 2

√
N∑

n=1

1 = 2
√
N.
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Therefore,

2

√
N∑

n=1

{N
n
} = O(

√
N).

Similarly,

2
√
N{

√
N} ≤ 2

√
N,

which gives us

2
√
N{

√
N} = O(

√
N).

Finally,

{
√
N}2 < 1.

Thus, we have {
√
N}2 = O(1), which is absorbed by O(

√
N).

Combining these terms, we obtain

N∑
n=1

d(n) = 2N

√
N∑

n=1

1

n
−N +O(

√
N) (2)

Theorem 1.2 (Partial Sums of Harmonic Series):

For large N,
N∑
1

1

n
≈ lnN + γ,

where γ = limx→∞(
∑N

1
1
n
− lnN) is the Euler constant (Euler, 1735).

It is approximately equal to 0.57721.

By Theorem 1.2,

∫ √
N

1

1

n
dn =

⌊
√
N⌋∑

n=1

1

n
+ γ +O(

1√
N
)

⌊
√
N⌋∑

n=1

1

n
=

∫ √
N

1

1

n
dn− γ +O(

1√
N
)

⌊
√
N⌋∑

n=1

1

n
= ln

√
N − γ +O(

1√
N
)

(3)

By (2), we have
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N∑
n=1

d(n) = 2N(ln
√
N − γ +O(

1√
N
))−N +O(

√
N)

= 2N ln
√
N − 2Nγ +O(

N√
N
)−N +O(

√
N)

= 2N lnN
1
2 − 2Nγ −N +O(

√
N)

= N lnN −N(2γ + 1) +O(
√
N).

(4)

This completes the proof.

4 Van der Corput’s Method

Johannes van der Corput was a Dutch mathematician who worked in the field

of analytic number theory. He introduced the method of exponential sums which was a

new method for making number-theoretic estimates. This theory is typically relevant to the

Dirichlet divisor problem and to the circle problem. In 1922, van der Corput obtained that

the remainder term in the Dirichlet divisor problem has order≪ϵ 33/100 + ϵ

We first start by defining exponential sums.

Definition 1 (Exponential sum). Let A = {x1, x2, ..., xN} ∈ R. An exponential sum is a

sum of the form

∑
x∈A

e(x) =
∑
x∈A

e2πix,

where we introduce the standard notation e(f(x)) = e2πif(x).

Notice: trivially, |
∑

x∈A e(x)| ≤ N , with equality whenever the terms are all equal.

We will make use of the Poisson summation formula to study trigonometric sums.

Definition 2 (Fourier transform). The Fourier transform of f is the function f̂ : R → C
given by

f̂(θ) =

∫ ∞

−∞
f(t)e(−θt) (f ∈ L1(R)).

Theorem 2.1: Let f ∈ L1(R). Assume that the series

φ(t) =
∑
n∈Z

f(n+ t) (5)

converges for all t and its sum defines a function of bounded variation on [0,1] which is
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continuous at 0. Then we have

lim
N→∞

∑
|ν|≤N

f̂(ν) =
∑
n∈Z

f(n). (6)

Theorem 2.2: Let f ∈ C1[a, b] be such that f ′(t) is monotone and of constant sign on [a, b].

Write

m := inf
a<t<b

|f ′(t)|.

Then we have

|
∫ b

a

e(f(t))dt| ≤ 2/πm. (7)

Proof. Without loss of generality we may assume f ′ is non-increasing on [a, b].

de(f(t))

dt
= e(f(t))2πf ′(t).

Thus, ∣∣∣∣2π ∫ b

a

e(f(t))dt

∣∣∣∣ = ∣∣∣∣∫ b

a

1

f ′(t)
de(f(t))

∣∣∣∣
=

∣∣∣∣e(f(t))f ′(t)

∣∣∣∣b
a

−
∫ b

a

e(f(t))d
1

f ′(t)

∣∣∣∣
=

∣∣∣∣e(f(b))f ′(b)
− e(f(a))

f ′(a)
−
∫ b

a

e(f(t))d
1

f ′(t)

∣∣∣∣
≤
∣∣∣∣e(f(b))f ′(b)

∣∣∣∣+ ∣∣∣∣e(f(a))f ′(a)

∣∣∣∣+ ∣∣∣∣ ∫ b

a

e(f(t))d
1

f ′(t)

∣∣∣∣
≤ 2/m+

∫ b

a

d
1

f ′(t)
(as |e(f(t))| ≤ 1)

≤ 2/m+
1

f ′(b)
+

1

f ′(a)

= 4/m

(8)

Theorem 2.3: Let f ∈ C2[a, b] be such that f ′′(t) has constant sign on [a, b]. Write

r := inf
a<t<b

|f ′′(t)|.

Then we have ∣∣∣∣ ∫ b

a

e(f(t))dt

∣∣∣∣ ≤ 4
√

2/πr. (9)
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Proof. Let us suppose, f ′′(t) ≤ −r ≤ 0 for a < t < b. Then f ′(t) vanishes at most once on

[a, b], say at t=c, i.e.f ′(c) = 0.

Then, we can separate [a, b] into three intervals and write

I :=

∫ b

a

e(f(t))dt =

∫ c−δ

a

+

∫ c+δ

c−δ

+

∫ b

c+δ

= I1 + I2 + I3,

where the positive parameter δ satisfies a + δ ≤ c ≤ b − δ. By Fundamental Theorem of

Calculus, we have

|f ′(t)− f ′(c)| = |f ′(t)| =
∣∣∣∣ ∫ t

c

f ′′(ν)dν

∣∣∣∣ ≥ r|t− c| ≥ rδ

for t ∈ [a, c− δ] ∪ [c− δ, b]. On [a, c− δ] and [c+ δ, b] respectively, f ′(t) is decreasing and of

constant sign. Thus we can apply Theorem 2.2 and obtain

|I1|+ |I3| ≤ 4/πrδ.

Since trivially, |I2| ≤ 2δ, it follows that

|I| ≤ 2δ + 4/πrδ.

By choosing δ =
√

2/πr, we have the stated result.

If with this choice of δ we have either c < a + δ or c > b − δ, say c < a + δ , then we can

write:

|I| ≤
∣∣∣∣ ∫ c

a

∣∣∣∣+ ∣∣∣∣ ∫ c+δ

c

∣∣∣∣+ ∣∣∣∣ ∫ b

c+δ

∣∣∣∣ ≤ 2δ + 2/πrδ,

so that the stated upper bound remains valid.

If f ′(t) does not vanish on [a, b], then f ′(t) is decreasing and of a constant sign on [a, b].

Without loss of generality, suppose f ′(t) > 0. Then, infa<t<b f
′(t) = f ′(b) > 0. For t∈

[a, b− δ],

|f ′(t)− f ′(b)| = f ′(t)− f ′(b) =

∣∣∣∣ ∫ b

t

f ′′(ν)dν

∣∣∣∣ ≥ r|t− b| ≥ rδ

Thus, f ′(t) > rδ. By theorem 2.2,
∫ b−δ

a
e(f(t))dt ≤ 4/πrδ. Trivially, |

∫ b

b−δ
| ≤ δ.

Thus,

|I| ≤
∣∣∣∣ ∫ b−δ

a

∣∣∣∣+ ∣∣∣∣ ∫ b

b−δ

∣∣∣∣ ≤ 4/πrδ + δ

Lemma 2.4: Let M, N, ν be integers.
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∑
M<ν≤N

e(−νt) ≪ min(N −M,
1

||t||
).

Proof. (Proof of lemma)∑
M<ν≤N

e(−νt) = e(−(M + 1)t)(1 + e(−t) + ...+ e(−t(−N + 1)))

= e(−(M + 1)t)
1− e(−t(N + 2))

1− e(−t)

(Geometric series with N+2 terms and ratio r = e(−t)

= e(−(M + 1)t)
e(Nt

2
)[(e(−Nt

2
)− e(Nt

2
)]

e(− t
2
)− e( t

2
)

= e(−(M + 1)t+
Nt

2
)
e(−Nt

2
)− e(Nt

2
)

e(− t
2
)− e( t

2
)

= e(−(M + 1)t+
Nt

2
)
sin(πNt)

sin(πt))

≤
∣∣∣∣e(−(M + 1)t+

Nt

2
)

∣∣∣∣ |sin(πNt)|
sin(πt))

≤ 1

sin(πt))
(using the trivial upper bound)

(10)

For t ∈ [−1
2
, 1
2
], |sinπt| ≥ 2|t|.Let ||t|| denote the distance from t to the closest integer.

Then, ||t|| ≤ 1/2.Thus, sin(πt) ≥ 2||t||, i.e., 1
sin(πt))

≤ 2||t||. Hence, 1
sin(πt))

≪ 1
||t|| . When

t gets close to an integer, 1
||t|| gets large. In that case, we use the other trivial bound,∑

M<ν≤N e(−νt) ≪ N −M .

Thus, we obtain the stated result.

Theorem 2.5: Let f ∈ C1[a, b] such that f ′(t) is monotone on [a, b]. Set

α := inf
a<t<b

f ′(t), β := sup
a<t<b

f ′(t).

Then, for each ϵ > 0, we have

∑
a<n≤b

e(f(n)) =
∑

α−ϵ<ν<β+ϵ

∫ b

a

e(f(t)− νt)dt+Oϵ(log(β − α + 2)). (11)

Proof. Let ϵ be fixed. If f(t) is replaced by g(t) = f(t) + kt for any k ∈ Z, formula (11) is

invariant.

α′ := inf
a<t<b

g′(t) = inf
a<t<b

f ′(t) + k = α + k.
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Similarly,

β′ := sup
a<t<b

g′(t) = sup
a<t<b

f ′(t) + k = β + k.

Thus, we can assume that −1 ≤ α− ϵ < 0 without loss of generality.

We could equally well restrict ourselves to the case when a and b are of the form m+ 1
2
for

some m ∈ Z.
For any b, exists some integer m such that |b−m| ≤ 1

2
. If we replace b by m + 1

2
, then the

left hand side of (11) becomes ∑
a<n≤m+1/2

e(f(n)).

Thus, the error term on the left hand side is at most O(1), if b < m.

By Lemma 2.4,
∑

α−ϵ<ν<β+ϵ e(−νt) ≪ min(β − α + 2, 1
||t||) since α − ϵ and β + ϵ are not

necessarily integers. Without loss of generality, let us assume m ≤ b < m+ 1/2.

If we replace b by m+ 1
2
, the error resulted in the right hand side of (11) is

∑
α−ϵ<ν<β+ϵ

∫ m+ 1
2

b

e(f(t)− νt)dt

=
∑

α−ϵ<ν<β+ϵ

∫ m+ 1
2

b

e(f(t))e(−νt)dt

≤
∣∣∣∣ ∫ m+ 1

2

b

∑
α−ϵ<ν<β+ϵ

e(f(t))e(−νt)dt

∣∣∣∣
≤
∫ m+ 1

2

b

∣∣∣∣ ∑
α−ϵ<ν<β+ϵ

e(f(t))e(−νt)

∣∣∣∣dt
≤
∫ m+ 1

2

b

∣∣∣∣ ∑
α−ϵ<ν<β+ϵ

e(−νt)

∣∣∣∣dt
≤
∫ m+ 1

2

m

∣∣∣∣ ∑
α−ϵ<ν<β+ϵ

e(−νt)

∣∣∣∣dt (since m ≤ b by assumption)

≪
∫ m+ 1

β−α+2

m

(β − α + 2)dt+

∫ m+ 1
2

m+ 1
β−α+2

1

||t||
dt

= 1 + log(
1

2
) + log(β − α + 2)

By similar argument, if we replace a with some integer Thus, the error on the right hand

side is O(log(β − α + 2)).

Finally, sincef ′(t) is monotone on [a, b], we can suppose f ′ is decreasing on [a, b] without loss
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of generality. Let us set

F (t) =

e(f(t)), if a < t ≤ b

0, otherwise

Let φ :=
∑

n∈Z F (n + t). φ is continuous at 0 since a, b /∈ Z. Moreover, φ has bounded

variation on [0, 1]. The Poisson formula (6) then implies∑
a<n≤b

e(f(n)) =
∑
|ν|≤N

F̂ (ν) + o(1) (N → ∞)

with

F̂ (ν) =

∫ b

a

e(f(t)− νt)dt.

Taking account of −1 ≤ α− ϵ < 0, it remains to show that we have∑
|ν≤N |

ν /∈[0,β+ϵ]

F̂ (ν) = Oϵ(log(β + 2)). (12)

Since
d

dt
e(f(t)− νt) = e(f(t)− νt)2πi(f ′(t)− ν)

,

2πiF̂ (ν) =

∫ b

a

d{e(f(t)− νt)}
f ′(t)− ν

=

[
e(f(t)− νt)

f ′(t)− ν

]b
a

−
∫ b

a

e(f(t)− νt)d{ 1

f ′(t)− ν
}

=
e(f(b)− νb)

f ′(b)− ν
− e(f(a)− νa)

f ′(a)− ν
−
∫ b

a

e(f(t)− νt)d{ 1

f ′(t)− ν
}

(13)

As a, b are of the form m+ 1
2
, with m∈ Z,

e(f(b)− νb) = e(f(b))e(−νb)

= e(f(b))e(−νm− 1

2
ν)

= e(f(b))e−2πimνe−πiν

= e(f(b)) · 1 · (e−πi)ν

= e(f(b))(−1)ν

Similarly, e(f(a)− νa) = e(f(a))(−1)ν .

(14)
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Moreover, by assumption, f ′(t) is decreasing on [a, b]. Thus, f ′(b) = infa<t<b f
′(t) = α and

f ′(a) = supa<t<b f
′(t) = β.

We can rewrite (12),

2πiF̂ (ν) = (−1)ν
e(f(b))

α− ν
+ (−1)ν+1 e(f(a))

β − ν
−
∫ b

a

e(f(t)− νt)d{ 1

f ′(t)− ν
}

= (−1)ν
e(f(b))

α− ν
+ (−1)ν+1 e(f(a))

β − ν
+O(

1

α− ν
− 1

β − ν
)

(15)

The contribution to (12) of the main terms is Oϵ(1).

Moreover, that of the error term is

∑
ν /∈[0,β+ϵ]

1

α− ν
− 1

β − ν

=
∑

ν /∈[0,β+ϵ]

β − α

(α− ν)(β − ν)

≪
∑

ν /∈[0,β+ϵ]

β + 1

ν(ν − β)
(as −1 + ϵ ≤ α < ϵ)

=
∑
ν≤−1

β + 1

ν(ν − β)
+
∑

ν>β+ϵ

β + 1

ν(ν − β)

=
∑

ν∈[1,∞]

β + 1

−ν(−ν − β)
+
∑

ν>β+ϵ

β + 1

ν(ν − β)

=
∑

ν∈[1,∞]

β + 1

ν(ν + β)
+
∑

ν>β+ϵ

β + 1

ν(ν − β)

≤
[ ∑

1≤ν≤β+1

β + 1

ν(ν + β)
+

∑
β+ϵ<ν≤2β

β + 1

ν(ν + β)
+
∑
ν>2β

β + 1

ν(ν + β)

]
+

[ ∑
β+ϵ<ν≤2β

β + 1

ν(ν − β)
+
∑
ν>2β

β + 1

ν(ν − β)

]
≤

∑
1≤ν≤β+1

β + 1

ν(ν + β)
+

∑
β+ϵ<ν≤2β

[
β + 1

ν(ν + β)
+

β + 1

ν(ν − β)

]
+
∑
ν>2β

[
β + 1

ν(ν + β)
+

β + 1

ν(ν − β)

]
.

The first term is

≤
∑

1≤ν≤β+1

β + 1

ν(1 + β)
=

∑
1≤ν≤β+1

1

ν
.
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The second term is ∑
β+ϵ<ν≤2β

β + 1

ν(ν + β)
+

β + 1

ν(ν − β)

≤
∑

β+ϵ<ν≤2β

β + 1

(β + 1)(2β + 1)
+

β + 1

(β + 1)(ν − β)

=
∑

β+ϵ<ν≤2β

1

2β + 1
+

1

ν − β

= O(1) +
∑

β+ϵ<ν≤2β

1

ν − β

The third term is

= (β + 1)
∑
ν>2β

2ν

ν(ν2 − β2)

≤ (β + 1)
∑
ν>2β

2

ν2 − (ν
2
)2

=
8

3
(β + 1)

∑
ν>2β

1

ν2
.

Combing these terms, we obtain that the error term is

≪ϵ

∑
1≤ν≤β+1

1

ν
+

∑
β+ϵ<ν≤2β

1

ν − β
+

8

3
(β + 1)

∑
ν>2β

1

ν2

≪ϵ

∫ β+1

1

1

ν
+

∫ 2β

β+ϵ

1

ν − β
+

8

3
(β + 1)

∫ ∞

2β

1

ν2

= log |ν|
∣∣∣∣β+1

1

+ log |ν − β|
∣∣∣∣2β
β+ϵ

+
8

3
(β + 1)

1

ν

∣∣∣∣∞
2β

= log(β + 1) + log(β)− log(ϵ) +
8

3
· β + 1

2β

≪ log (β + 2).

This completes the proof.

Theorem 2.6(van der Corput): Let f ∈ C2[a, b], such that

|f ′′(t)| ≈ λ > 0 (a < t < b).

13



Then we have ∑
a<n≤b

e(f(n)) ≪ (b− a+ 1)λ1/2 + λ−1/2. (16)

Proof. If λ > 1, then (19) is satisfied trivially since

|
∑

a<n≤b

e(f(n))| ≤
∑

a<n≤b

|e(f(n))|

≤ b− a+ 1

≪ (b− a+ 1)λ1/2 + λ−1/2.

Thus, we can assume λ ≤ 1.

Let α := infa<t<b f
′(t), β := supa<t<b f

′(t)

By Theorem 2.5,

∑
a<n≤b

e(f(n)) ≪
∑

α−ϵ<ν<β+ϵ

∫ b

a

e(f(t)− νt)dt+ log(β − α + 2)

≪ (β − α + 1) max
α+ϵ<ν<β+ϵ

∣∣∣∣ ∫ b

a

e(f(t)− νt)dt

∣∣∣∣+ log(β − α + 2).

(17)

Since f ′′(t) ≈ λ > 0, f ′′(t) has constant sign on [a, b].

There exists some constant c such that infa<t<b |f ′′(t)| = cλ.

| d
2

dt2
(f(t)− vt)| = |f ′′(t)|.

Applying Theorem 2.3, we have

|
∫ b

a

e(f(t)− νt)dt| ≤ 4
√
2/πcλ ≪ λ−1/2.

The upper bound in (20) is thus

≪ (β − α + 1)λ−1/2 + log(β − α + 2).

The condition on f ′′ forces f to be monotone. We may assume f ′ is increasing on [a, b]. By

Mean Value Theorem,

β − α =

∣∣∣∣ ∫ b

a

f ′′(t)dt

∣∣∣∣ ≈ λ(b− a).

14



The previous bound is thus

≪ λ(b− a)λ1/2 + λ−1/2 + log(λ(b− a) + 2)

≪ λ(b− a)λ1/2 + λ−1/2 + 1 + λ(b− a)

≪ λ(b− a)λ1/2 + λ−1/2

We establish a variant of Theorem 2.6 for a function of class C3.

Theorem 2.7: Let f ∈ C3[a, b], with b− a ≥ 1. Suppose that

|f ′′′(t)| ≈ λ > 0 (a < t < b).

Then ∑
a<n≤b

e(f(n)) ≪ (b− a)λ1/6 + (b− a)1/2λ−1/6 (18)

To prove Theorem 2.7, we first prove the following lemma.

Lemma 2.8: Let f be a real function defined on [a, b]. For any integer q with 1 ≤ q ≤ b−a,

we have∣∣∣∣ ∑
a<n≤b

e(f(n))

∣∣∣∣ ≤ 2(b− a)
√
q

+ 2

{
(b− a)

q

q−1∑
r=1

∣∣∣∣ ∑
a<n≤b−r

e(f(n+ r)− f(n))

∣∣∣∣}1/2

.

Proof of Lemma. Let

F (t) =

e(f(t)), if a < t ≤ b

0, otherwise

Set S :=
∑

n∈Z F (n) be the sum to be estimated. For any fixed m,∑
n∈Z

F (n+m) =
∑

a<n+m≤b

e(f(n+m))

=
∑

a<n′≤b

e(f(n′))

=
∑
n∈Z

F (n)

Thus, we have

S =
1

q

q∑
m=1

∑
n∈Z

F (n+m).

15



Interchanging the order of summation, we obtain

S =
1

q

∑
n∈Z

q∑
m=1

F (n+m).

Cauchy-Schwarz Inequality for Complex Sums: For all complex numbers z1, z2, . . . , zn

and w1, w2, . . . , wn, the following inequality holds:∣∣∣∣∣
n∑

i=1

ziwi

∣∣∣∣∣
2

≤
n∑

i=1

|zi|2
n∑

i=1

|wi|2 (19)

where wi denotes the complex conjugate of wi.

Apply the Cauchy-Schwarz Inequality, we have

|S|2 = 1

q2

(∣∣∣∣∑
n∈Z

q∑
m=1

F (n+m)

∣∣∣∣
)2

≤ 1

q2

∑
n∈Z

′1 ·
∑
n∈Z

′
∣∣∣∣ q∑
m=1

F (n+m)

∣∣∣∣2
=

1

q2

∑
n∈Z

′1 ·
∑
n∈Z

′
q∑

m, m′=1

F (n+m)F (n+m′)

(20)

where ′ indicates that the summation is restricted to integers n with a < n +m ≤ b for

at least one m such that 1 ≤ m ≤ q. Thus,
∑

n∈Z
′1 does not exceed b− a+ q ≤ 2(a− b).

We can rewrite the inner sum and obtain

q∑
m, m′=1

F (n+m)F (n+m′)

=

q∑
m=1

F (n+m)F (n+m) +
∑

1≤m<m′≤q

(
F (n+m)F (n+m′) + F (n+m′)F (n+m)

) (21)

Since

F (n+m′)F (n+m) = F (n+m)F (n+m′),

the expression in (23) is equal to

q + 2ℜ

( ∑
1≤m<m′≤q

F (n+m)F (n+m′)

)
.

16



Since ℜ(α) ≤ |α|, the second sum
∑

n∈Z
′∑q

m, m′=1 F (n+m)F (n+m′) is at most

2(b− a)q + 2

∣∣∣∣ ∑
1≤m<m′≤q

∑
n∈Z

F (n+m)F (n+m′)

∣∣∣∣. (22)

Let m + n = ν, m −m′ = r, then ν runs through Z and r ∈ {1, 2, . . . , q − 1}. Let ν, r be

fixed, then there are exactly q− r solutions for {n,m,m′}, since n = ν−m, m′ = m+ r and

1 ≤ m+ r ≤ q ⇒ m ∈ {1, 2, . . . , q − r}.

After perform the change of variable, we obtain that the expression in (24) is

≤ 2(b− a)q + 2

∣∣∣∣ q−1∑
r=1

(q − r)
∑
ν∈Z

F (ν)F (ν − r)

∣∣∣∣
≤ 2q

{
(b− a) +

q−1∑
r=1

∣∣∣∣∑
ν∈Z

F (ν + r)F (ν)

∣∣∣∣}

Inserting this upper bound in (23), we have

|S|2 ≤ 1

q2
· 2(b− a) · 2q

{
(b− a) +

q−1∑
r=1

∣∣∣∣∑
ν∈Z

F (ν + r)F (ν)

∣∣∣∣}

=
4(b− a)2

q
+

4(b− a)

q

q−1∑
r=1

∣∣∣∣∑
ν∈Z

F (ν + r)F (ν)

∣∣∣∣
=

4(b− a)2

q
+

4(b− a)

q

q−1∑
r=1

∣∣∣∣ ∑
a<n≤b−r

e(f(n+ r))e(−f(n))

∣∣∣∣
(23)

Since ∀a, b ∈ R, 2
√
ab ≥ 0, we have

a+ 2
√
ab+ b ≥ a+ b,

which indicates

(
√
a+

√
b)2 ≥ (

√
a+ b)2.

Thus,
√
a+

√
b ≥

√
a+ b.
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Taking square root on both sides, we have the stated result. Applying it to (26), we have

|S| ≤

√√√√4(b− a)2

q
+

4(b− a)

q

q−1∑
r=1

∣∣∣∣ ∑
a<n≤b−r

e(f(n+ r)− f(n))

∣∣∣∣
≤ 2(b− a)

√
q

+ 2

{
(b− a)

q

q−1∑
r=1

∣∣∣∣ ∑
a<n≤b−r

e(f(n+ r)− f(n))

∣∣∣∣}1/2

.

Proof of Theorem 2.7. Let g(x) := f(x+ r)− f(x), then for x ∈ (a, b− r),

g′′(x) = f ′′(x+ r)− f ′′(x).

Since f ′′ is differentiable, Taylor’s theorem of order 1 states

f ′′(x) ≈ f ′′(x0) + f ′′′(x)(x− x0).

Thus,

g′′(x) ≈ f ′′′(x+ r)(x+ r − x0)− f ′′′(x)(x− x0).

Since |f ′′′(x)| ≈ λ > 0, we have |g′′(x)| ≈ rλ.

Let L := b− a. Applying Lemma 2.8, we have

∑
a<n≤b

e(f(n)) ≪ Lq−1/2 +

{
Lq−1

∣∣∣∣ ∑
a<n≤b−r

e(f(n+ r)− f(n))

∣∣∣∣}1/2

= Lq−1/2 +

{
Lq−1

∣∣∣∣ ∑
a<n≤b−r

e(g(n))

∣∣∣∣}1/2

.

(24)

Then, we can apply Theorem 2.6 on
∑

a<n≤b−r e(g(n)) and get (24)

≪ Lq−1/2 +

{
Lq−1

q−1∑
r=1

(
L(rλ)1/2 + (rλ)−1/2

)}1/2

.
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Through observation, we notice that this bound is

≪ Lq−1/2 +

{
Lq−1q

(
L(qλ)1/2 + (qλ)−1/2

)}1/2

= Lq−1/2 +

{
L2(qλ)1/2 + L(qλ)−1/2

}1/2

≤ Lq−1/2 + L(qλ)1/4 + L1/2(qλ)−1/4.

If λ satisfies 1 ≤ λ−1/3 ≤ L, we could choose q = ⌊λ−1/3⌋. This makes the upper bound

≪ Lλ1/6 + Lλ1/6 + L1/2λ−1/6

≪ (b− a)λ1/6 + (b− a))1/2λ−1/6,

which is the desired result.

The estimate (18) is trivially valid when λ > 1 or λ < L−3.

Now we show the error term obtained using van der Corput’s method in the Dirichlet

divisor problem is Oϵ(x
1/3+ϵ). Theorem 2.8 (Voroni, 1903). For x ≥ 2, we have∑
n≤x

d(n) = x(log x+ 2γ − 1) +O(x1/3 log x). (25)

Proof. The hyperbola method (Theorem 1.1) shows that the left-hand side of (25)

= 2

⌊
√
x⌋∑

n=1

⌊x
n
⌋ − ⌊

√
x⌋2 (see (1)). (26)

Write N := ⌊
√
x⌋. Let B1(t) = t− 1

2
denote the first Bernoulli function, then (26) becomes

2
∑
n≤N

⌊x
n
⌋ −N2 = 2

∑
n≤N

(
⌊x
n
⌋ − {x

n
}
)
−N2

= 2
∑
n≤N

(
x

n
−B1

(
x

n

)
− 1

2
· 2

N∑
n=1

1−N2

= 2
∑
n≤N

(
x

n
−B1

(
x

n

))
−N −N2

Using the harmonic series result to estimate
∑

x≤N
1
x
, we can write the above expression in

the form

P (x)− 2R(x)
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with

P (x) := 2x(logN + γ +
1

2N
+O(

1

x
))−N −N2

and

R(x) :=
∑
n≤N

B1(
x

n
).

Writing N =
√
x− θ, with 0 ≤ θ < 1, we have

P (x) = 2x

(
log(

√
x− θ) + γ +

1

2(
√
x− θ)

+O

(
1

x

))
− (

√
x− θ)− (

√
x− θ)2

= 2x log(
√
x− θ) + 2xλ− x+

x√
x− θ

+O(1)−
√
x+ θ − x− θ2 + 2

√
xθ

= 2x log(
√
x(1− θ√

x
)) + 2xλ− x+

x√
x− θ

+O(1)−
√
x+ θ − x− θ2 + 2

√
xθ

= 2x log(
√
x) + 2x log(1− θ√

x
)) + 2xλ− x+

x√
x− θ

+O(1)−
√
x+ θ − x− θ2 + 2

√
xθ

= xlog(x) + 2x log(1− θ√
x
)) + 2xλ− 2x+

x√
x− θ

−
√
x+ 2

√
xθ +O(1)

Then, we expand log(1− θ√
x
) as a function of θ√

x
up to order 1 and obtain

log(1− θ√
x
) = − θ√

x
.

Thus, P(x) is

= x log(x)− 2x
θ√
x
+ 2xλ− 2x+

x√
x− θ

−
√
x+ 2

√
xθ +O(1)

= x log(x)− 2
√
xθ + 2xλ− 2x+

x√
x− θ

−
√
x+ 2

√
xθ +O(1)

= x log(x) + 2xλ− 2x+
x√
x− θ

−
√
x+O(1)

= x(log x+ 2λ− 1) +

√
xθ√

x− θ
+O(1).

Since 0 ≤ θ < 1, √
xθ√

x− θ
≤

√
x√

x− 1
= O(1).

Thus, we obtain that

P (x) = x(log x+ 2λ− 1) +O(1).
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Hence, to obtain the desired result, it suffices for us to prove

R(x) ≪ x1/3 log x. (27)

To establish (27), we apply van der Corput’s technique. To begin with, we expand B1(t) as

a Fourier series, which gives us

B1(t) = − 1

π

∞∑
j=1

sin(2πjt)

j
.

Integrate B1, we get

B(t) :=

∫
B1(t)dt =

∞∑
j=1

cos(2πjt)

2π2j2
.

Since ∣∣∣∣ ∞∑
j=1

cos(2πjt)

2π2j2

∣∣∣∣ ≤ ∞∑
j=1

∣∣∣∣cos(2πjt)2π2j2

∣∣∣∣ ≤ ∞∑
j=1

1

2π2j2
,

B(t) is absolutely convergent.
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