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Abstract

The Discrete Fourier Transform (DFT) has many applications to signal
processing. One application leverages the uncertainty principle associated
with the DFT, allowing a message to be reconstructed exactly from in-
complete data. We generalize this uncertainty principle to an arbitrary
invertible linear transformation, and show that the DFT is in some sense
the optimal transform for this purpose. Stronger recovery properties are
possible for sparse signals via the DFT, and we will give an overview of
this theory, and provide examples of non-DFT transforms that satisfy this
stronger recovery property.

1 Introduction

1.1 The discrete Fourier transform and the classical un-
certainty principle

First we establish some notation. Throughout we will let V denote the complex
vector space of functions from Zd

N to C.

Definition 1.1. Given a function f : Zd
N → C, we define its Fourier transform

f̂ : Zd
N → C by

f̂(m) = N−d
∑
x∈Zd

N

χ(−m · x)f(x),

where m ∈ Zd
N , m · x is the dot product, and χ(y) = e

2πiy
N . We will also use

F : V → V to refer to the Fourier transform.

Proposition 1.1. Properties of the Fourier transform:

a. F is linear.

b. F is invertible, with inverse given by

f(x) =
∑

m∈Zd
N

χ(m · x)f̂(m).
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c. F satisfies the Plancherel identity:∑
x∈Zd

N

|f(x)|2 = Nd
∑

m∈Zd
N

|f̂(m)|2.

In order to prove this, we will need the following lemma:

Lemma 1.1. Let a ∈ ZN . Then

∑
y∈ZN

χ(ay) =

{
N if a = 0

0 if a ̸= 0

Proof. Linearity follows immediately from the linearity of finite sums. Before
we prove (b) and (c), we will prove the lemma.

If a = 0 then χ(ay) ≡ 1 and so the sum equals N , since |ZN | = N . If a ̸= 0,
then ∑

y∈ZN

χ(ay) =

N∑
y=1

χ(a)y =
1− χ(a)N

1− χ(a)
= 0,

where the second equality follows since

χ(a)N = χ(aN) = e2πi = 1,

and the third equality follows by interpreting the second as a geometric sum.
This proves the lemma.

Next we prove (b). With the lemma, this can be verified by direct compu-
tation: ∑

m∈Zd
N

χ(m · x)f̂(m) = N−d
∑

m∈Zd
N

∑
y∈Zd

N

χ(m · (x− y))f(y) = (∗).

We can expand the sum over m = (m1, ...,md) to sums over each coordinate.
Given that

χ(m · (x− y)) =

d∏
i=1

χ(mi(xi − yi)),

these sums will decouple, and so we have that

(∗) = N−d
∑
y∈Zd

N

f(y)

(
d∏

i=1

( ∑
mi∈ZN

χ(mi(xi − yi))

))
.

To deal with the innermost sum, we apply the lemma with a = xi − yi to
conclude that the only terms that contribute to (∗) are the ones where xi = yi,
so we can conclude that

(∗) = N−df(x)

d∏
i=1

N = f(x),
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verifying the inverse formula.
To prove (c), we first expand the left hand side with the inversion formula:

∑
x∈Zd

N

|f(x)|2 =
∑
x∈ZN

∣∣∣∣∣∣
∑

m∈Zd
N

χ(m · x)f̂(m)

∣∣∣∣∣∣
2

=
∑
x∈ZN

 ∑
m∈Zd

N

χ(m · x)f̂(m)

 ∑
m′∈Zd

N

χ(m′ · x)f̂(m′)


=
∑
x∈Zd

N

∑
m∈Zd

N

∑
m′∈Zd

N

χ((m−m′) · x)f̂(m)f̂(m′)

= Nd
∑

m∈Zd
N

f̂(m)f̂(m′) = Nd
∑

m∈Zd
N

|f̂(m)|2.

The fourth line follows from applying the lemma while summing over each co-
ordinate xi in x.

These properties can be used to prove the following result, which is central
to this paper:

Theorem 1.1. (Classical uncertainty principle) Let f : Zd
N → C be a function

that is not identically zero. Suppose that supp(f) = E and supp(f̂) = S. Then

|E| · |S| ≥ Nd.

This result essentially says that both f and f̂ cannot each be highly localized.
For example, if E = {y} (i.e. f is supported on exactly one point), then

f̂(m) =
∑
x∈Zd

N

χ(−m · x)f(x) ≡ χ(−m · y)f(y) ̸= 0,

so f̂ is supported on all of Zd
N . Note also that this shows the uncertainty

principle is sharp in general.

Proof. First we write f with the inversion formula, then estimate |f(x)|2 with
the Cauchy Schwarz inequality to see that

|f(x)|2 ≤

(∑
m∈S

1

)(∑
m∈S

∣∣∣χ(m · x)f̂(m)
∣∣∣2) = |S|

∑
m∈S

|f̂(m)|2

= N−d|S|
∑
x∈E

|f(x)|2,

with the second line obtained by applying Plancherel. Summing both the left
and right sides over E, and cancelling the

∑
x∈E |f(x)|2 factor (which is nonzero

by the assumption that f is not the zero function), we obtain that

1 ≤ N−d|E| · |S|,
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and we are done.

This inequality has a well documented application to signal recovery. We
will consider the function f as encoding some message to be transmitted (e.g.
if f : Z1

N → {0, 1}, then f represents a binary string of length N). Then if we
transmit f via its Fourier transform, it may be that some of the Fourier values
are lost, that is, only

{f̂(m)}m/∈S

is received, for some S ⊂ Zd
N .

If we cannot recover f from this data uniquely, then there is another function
g : Zd

N → C supported on a set F such that |E| = |F |, and satisfying

ĝ|Sc = f̂ |Sc .

Then h = f − g is supported on a subset of E ∪ F , which has size at most
2|E|. Since the Fourier transform is linear, and f̂ and ĝ agree outside S, ĥ is
supported on S. By assumption h is not identically zero, so we may apply the
classical uncertainty principle to h, yielding that

|E| · |S| ≥ Nd/2.

This gives us the following result:

Theorem 1.2. Let f : Zd
N → C be a functionn supported in E, and ĥ : Zd

N → C
be a function such that

ĥ(m) =

{
f̂(m) if m /∈ S

0 if m ∈ S

for some S ⊂ Zd
N . Then provided

|E| · |S| < Nd/2,

f can be recovered exactly from ĥ.

We will show that this result also holds for an entire class of linear operators
T : V → V .

1.2 Stronger uncertainty principles

Given that Theorem 1.2 holds for any function f ∈ V , it is bound to have
some limitations. For instance, if f encodes a binary message that contains
an equal number of ones and zeros, then |E| = Nd/2, and so the set S of
missing data must satisfy |S| < 1 in order to guarantee recovery. But since
|S| is a nonnegative integer, this means |S| = 0 and so for a general signal of
this profile, complete recovery is only possible with complete knowledge of its
Fourier transform.
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However, it turns out that if we impose additional assumptions on the sup-
port E of the signal, stronger results can be obtained. If instead of applying
Cauchy-Schwarz when we proved the uncertainty principle, we applied Holder’s
inequality, with 1 ≤ p < q ≤ ∞, we would have that

|f(x)| ≤ |S|1/p
(∑

m∈S

|f̂(m)|q
)1/q

= |S|

(
1

|S|
∑
m∈S

|f̂(m)|q
)1/q

(the equality follows from the fact that 1
p + 1

q = 1). The following definition
gives a condition for the set S that allows us to utlilize this idea.

Definition 1.2. Let S ⊂ Zd
N . Then S satisfies the (p, q) restriction bound (for

1 ≤ p < q ≤ ∞) if there is a constant Cp,q independent of N and S such that
for any function f : Zd

N → C,(
1

|S|
∑
m∈S

|f̂(m)|q
)1/q

≤ Cp,q ·N−d

∑
x∈Zd

N

|f(x)|p
1/p

.

If q = ∞, we take the left hand side to be ∥f∥∞.

If we suppose that S satisfies the (p, q) restriction bound (and again assuming
f is supported on a nonempty set E), then we have

|f(x)| ≤ |S|

(
1

|S|
∑
m∈S

|f̂(m)|q
)1/q

≤ Cp,q|S|N−d

∑
y∈E

|f(y)|p
1/p

.

Raising each side to the pth power, summing over x ∈ E, taking the pth root,

then cancelling the common
(∑

y∈E |f(y)|p
)1/p

factor from each side implies

that
Nd

Cp,q
≤ |E|

1
p |S|,

which is stronger than the classical uncertainty principle if p > 1. Iosevich and
Mayeli were able to show that certain sets satisfy a (4/3, 2) restriction estimate.
We build the theory for this condition below.

Definition 1.3. Let E ⊂ Zd
N be a set. Then the additive energy E(E) is defined

by
E(E) := |{(x, x′, y, y′) ∈ E4 : x+ y = x′ + y′}|.

Observe that trivially every quadruple (x, x, y, y) for any x, y ∈ E is counted
in the above definition, so

|E|2 ≤ E(E).

Moreover, any triple (x, y, x′) uniquely determines y′ = x + y − x′, and so we
also have that

E(E) ≤ |E|3.
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We say that a set is a Salem set if E(E) = C|E|2 for some absolute constant C.
One example of a Salem set is

P = {(t, t2) : t ∈ ZN} ⊂ Z2
N

for N > 2. We can see this by observing that if

(t+ s, t2 + s2) = (t′ + s′, (t′)2 + (s′)2),

then equating the first coordinates and squaring implies that

t2 + 2st+ s2 = (t′)2 + 2s′t′ + (s′)2 ⇒ 2st = 2s′t′.

Subtracting these from the equality in the second coefficients yields that

t2 − 2st+ s2 = (t− s)2 = (t′ − s′)2 = (t′)2 − 2s′t′ + (s′)2,

so
t− s = ±(t′ − s′).

Since t + s = t′ + s′, this means there are three possible cases where each of
these equalities can be satisfied:

1. s = s′ and t = t′

2. s = t′ and t = s′

3. s = −t′ and t = −s′

This means that for any choice of two points in P, there are at most three
quadruples (x, x′, y, y′) satisfying x+ y = x′ + y′, so

E(P ) ≤ 3|P |2.

Iosevich and Mayeli’s (4/3, 2) restriction estimate holds exactly when the
underlying set S is a Salem set. To give an idea of why additive energy is a
natural object to consider, we look at the following computation. Let E ⊂ Zd

N

and let E(x) denote its indicator function. Then∑
m∈Zd

N

|Ê(m)|4 =
∑

m∈Zd
N

Ê2(m)Ê2(m)

=
1

N4d

∑
x,x′,y,y′∈Zd

N

E(x)E(y)E(x′)(E(y′)χ(−m · (x+ y − x′ − y′))

= N−3dE(E)

.

This relation between the fourth moment of the Fourier transform and the
additive energy of a set allows for sharper estimates on ∥E∥L4 necessary to
prove their restriction estimate.
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2 Uncertainty Principles for Invertible Linear
Maps

2.1 Deriving the uncertainty principle

Let V be the complex vector space of functions f : Zd
N → C. Let A = A(m, y)

be an Nd by Nd matrix with complex entries. We will regard the entries in
the matrix as being indexed by Zd

N × Zd
N . The matrix A induces a linear

transformation TA : V → V by

TAf(m) =
∑
y∈Zd

N

A(m, y)f(y).

In the case when A(y,m) = χ(−m · y), we have that

TAf(m) =
∑
y∈Zd

N

χ(−m · y)f(y) = Ndf̂(m).

Our immediate goal is to derive an uncertainty principle for the transforma-
tion TA akin to the one that exists for the Fourier transfrom. To do this, there
are essentially two ingredients: an inversion formula, and an inequality of the
form

∥TAf∥2L2 ≤ C∥f∥2L2 ,

where C > 0 is a constant depending on N and d (i.e. on the size of the space).
In the case when the transform Af is induced by an orthogonal matrix TA, this
latter inequality is actually an equality. The Plancherel identity for the Fourier
transform is an example of this phenomenon.

In order for the transform to be invertible, it is enough to impose that the
matrix A be invertible. In this case, the inverse is given by

T−1
A f(x) =

∑
m∈Zd

N

A−1(x,m)f(m),

as the definition of TA implies

T−1
A TAf(x) =

∑
m∈Zd

N

∑
y∈Zd

N

A−1(x,m)A(m, y)f(y).

But ∑
m∈Zd

N

A−1(x,m)A(m, y) =

{
0 if x ̸= y

1 if x = y
,

so ∑
m∈Zd

N

∑
y∈Zd

N

A−1(x,m)A(m, y)f(y) = f(x).

7



Suppose that f is supported on E ̸= ∅ and TAf is supported on a set S. If
we follow the same steps as in the case of the Fourier transform here, we can
estimate |f(x)|2 in the following way:

|f(x)|2 =

∣∣∣∣∣∑
m∈S

A−1(x,m)TAf(m)

∣∣∣∣∣
2

≤

(∑
m∈S

|A−1(x,m)|2
)(∑

m∈S

|TAf(m)|2
)

≤
∑
m∈S

|A−1(x,m)|2 · ∥TA∥22 · ∥f∥2L2(E),

where
∥TA∥2 = sup

∥f∥L2=1

∥TAf∥L2

is the operator norm of TA. Again summing over E and cancelling the ∥f∥2L2(E)

factors, we see that

1 ≤ |E| · ∥TA∥22
∑
m∈S

|A−1(x,m)|2

≤ |E| · |S| · ∥TA∥22 · ∥A−1∥2∞.

If we want to recover the classical uncertainty principle, it is enough to have
that

∥TA∥22 · ∥A−1∥2∞ ≤ N−d. (1)

To compute ∥TA∥2, we can compute ∥A∥2. This is because if we identify V

with CNd

by identifying a function f ∈ V with the Nd-tuple (f(x1), ..., f(xNd)),
TA is simply matrix-vector multiplication. We have the following way to com-
pute ∥A∥2:

Proposition 2.1. Let A be a matrix with complex entries. Then ∥A∥2 equals
the square root of the largest eigenvalue of A∗A, where A∗ is the conjugate
transpose of A.

Proof. We will prove this using the singular value decomposition of a matrix
(cf. ch. 12 of [2]). There exist unitary matrices U and V such that

A = USV T ,

with S being a diagonal matrix whose entries along the diagonal are the square
roots of eigenvalues of A∗A, sorted in decreasing order of absolute value. How-
ever, for a unitary matrix T , we have that

⟨Tx, Tx⟩ = ⟨x, T ∗Tx⟩ = ⟨x, x⟩,

so T is an isometry. This means that

∥Ax∥ = ∥Sx∥,
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and so ∥A∥2 = ∥S∥2. But because of the structure of S, if si are the nonzero
entries entries in the diagonal of S, and ∥x∥ = 1, then

∥Sx∥2 =
∑
i

|sixi|2 ≤
∑
i

|s|2|xi|2 = |s|2 · ∥x∥2 = |s|2,

where s = s1 is the largest of the si. However, taking y = (1, 0, ..., 0), we see
that

∥Sy∥ = |s|,

so this upper bound is achieved. This means that

∥A∥2 = ∥S∥2 = |s|,

as claimed.

Proposition 2.2. Let A = A(i, j) be an invertible n× n matrix. Then

1√
n
≤ ∥A∥2 · ∥A∥∞.

Proof. Our strategy is two write

1 = det In = |detA| · | detA−1|,

and then estimate each determinant on the right hand side separately. A result
of Hadamard (cf. Appendix A for a proof) says that

|detA−1| ≤ ∥A−1∥∞nn/2.

For estimating |detA|, we first observe that

|detA| = |det(A∗A)|1/2

=

∣∣∣∣∣
n∏

i=1

λi

∣∣∣∣∣
1/2

≤ max
i

|λi|n/2,

where {λi}ni=1 are the eigenvalues of A∗A counted with multiplicity. By Propo-
sition 2.1, this last quantity is equal to ∥A∥n2 . Combining these estimates yields
that

1 ≤ ∥A∥n2 · ∥A−1∥∞nn/2,

which after dividing by nn/2 and raising both sides to the power 1/n implies
that

1√
n
≤ ∥A∥2 · ∥A−1∥∞,

as claimed.
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Proposition 2.2 tells us that the only way a linear map TA : V → V can
satsify the classical uncertainty principle is when we have the equality

∥TA∥22 · ∥A−1∥2∞ = N−d,

i.e. it is impossible for inequality (1) to be strict. This means that in general,
it is impossible for a linear transfromation to satisfy the classical uncertainty
principle with a stronger constant than the Fourier transform. Propositions 2.1
and 2.2 let us characterize unitary matrices that satisfy the classical uncertainty
principle, which will allow us to more systematically find new examples of such
linear maps.

Theorem 2.1. Let A be a unitary Nd ×Nd matrix. Then A satisfies

∥A∥22 · ∥A−1∥2∞ = N−d

(i.e. the operator TA satisfies the classical uncertainty principle) if and only if
every entry in A has absolute value N−d/2.

Proof. First we observe that since A is unitary, A∗A = INd . Since the identity
matrix has only 1 as an eigenvalue, Proposition 2.1 implies ∥A∥2 = 1. If every
entry in the matrix A has absolute value N−d/2, then immediately we have that

N−d = ∥A∥2∞ = ∥A∗∥2∞ = ∥A−1∥2∞,

so we have that
∥A∥22 · ∥A−1∥2∞ ≤ N−d.

Conversely, suppose that

∥A∥22 · ∥A−1∥2∞ ≤ N−d.

Since A is unitary, A∗ = A−1, but entries of A∗ have the same absolute values
as entries in A, so

∥A∥2∞ ≤ N−d.

If (a1, ..., aNd) is a row in A, then the unitary property implies

|a| = |a1|2 + ...+ |aNd |2 = 1.

Suppose that |ai| < N−d for some i. Then since every entry in A has absolute
value at most N−d, we have that

1 = |a1|2 + ...+ |ai|2 + ...+ |aNd |2 < N−d ·Nd = 1,

a contradiction. Thus since our choice of entry was arbitrary, we must have that
every entry in A has absolute value equal to N−d.
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Note that when we proved the reverse direction, we did in fact obtain equal-
ity in the statement ∥A∥22 · ∥A−1∥2∞ ≤ N−d. This also means that the uni-
tary matrices satisfying the uncertainty principle all behave somewhat like the
Fourier transform, in that the entries in its matrix representation are uniformly
distributed in absolute value.

In the next section, we will show that there exist linear transformations other
than the Fourier transform that satisfy the classical uncertainty principle. We
will also show that in some cases, these transfromations are similar enough to
the Fourier transfrom that we can deduce the stronger restriction estimates for
them.

2.2 The Hadamard transform

In the case when d = 1 and N = 2m, there is a transform with enough similarity
to the Fourier transform that we can apply the known (p, q) restriction bound.

Definition 2.1. The Hadamard transform Hm is a 2m × 2m matrix defined
recursively, with H0 the identity map and

Hm =

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
.

Additionally, we can see that

H0H
T
0 = I1

and

H1H
T
1 =

(
1 1
1 −1

)2

=

(
2 0
0 −2

)
,

while

HmHT
m =

(
Hm−1 Hm−1

Hm−1 −Hm−1

)2

=

(
H2

m−1 +H2
m−1 0

0 H2
m−1 +H2

m−1

)
=

(
2Hm−1H

T
m−1 0

0 2Hm−1H
T
m−1

)
.

The definition of Hm immediately implies Hm = HT
m, from which the last

equality follows. Inducting on m then implies that Hm−1H
T
m−1 = 2mI2m . The

only eigenvalues of 2mI2m is just 2m, and so Proposition 2.1 implies

∥Hm∥2 = 2m/2.

We then claim the following:

Proposition 2.3. The Hadamard transform Hm satisfies

∥Hm∥22 · ∥H−1
m ∥2 = 2−m.

As a consequence, the Hadamard transform obeys the classical uncertainty prin-
ciple.
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Proof. Our previous computation showed that Hm is invertible, so H−1
m is well

defined. In fact,
H−1

m = 2−mHT
m.

Since Hm and consequently HT
m only have entries ±1, we immediately have that

∥H−1
m ∥2∞ = 2−2m.

Combining these results gives the claimed identity.

2.3 Generalized Hadamard transform

The Hadamard transfrom poses a somewhat strict restriction in the context of
signal processing as it only works for signals of dyadic length. However, we
can recast the definition of the transform via the more general Kronecker prod-
uct. This, along with a simple way to construct matrices analogous to H0 of
varying lengths, will allow us to construct generalized Hadamard matrices of ar-
bitrary dimensions. These transforms bear some resemblance to their domain’s
respective Fourier tranfsorms, though in general they are distinct.

Definition 2.2. Let A = A(i, j) and B be complex matrices of dimension m×n
and p×q, respectively. Then the Kronecker product A⊗B is the mp×nq matrix
given in block form by

A⊗B =

A(1, 1)B · · · A(1, n)B
...

. . .
...

A(m, 1)B · · · A(m,n)B

 .

Taking A =

(
1 1
0 1

)
and B =

(
1 −1
−1 0

)
demonstrates that A⊗B ̸= B⊗A

in general, as
(A⊗B)(1, 2) = −1 ̸= 1 = (B ⊗A)(1, 2).

We can also use this definition to write the recursive definition of the Hadamard
transform more compactly:

Hm = H1 ⊗Hm−1.

This is the viewpoint we will take to generalize the Hadamard transform. Given
a positive integer n which can be factored into primes as n = p1 · ... · pk, we will
construct a pi × pi orthogonal matrix for each i, and then take successive Kro-
necker products to obtain an appropriate n× n matrix. We begin by recording
some properties of matrices associated with the Fourier transfrom.

Proposition 2.4. Let FN be an N ×N matrix whose jkth entry is given by

FN (j, k) =
χ(jk)√

N
.

Then FN is unitary.
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Proof. First we observe that since jk = kj, FN (j, k) = FN (k, j), so FN is a
symmetric matrix. The dot product of the jth column and kth column is

N∑
l=1

FN (l, j)FN (l, k) =
1

N

N∑
l=1

χ(l(j − k)) = δjk,

where δjk is the Kronecker delta. The last equality is an immediate consequence
of Lemma 1.1.

FN is just the matrix associated with the Fourier transform, having been
rescaled so that it is unitary (instead of just having mutually orthogonal columns).
These matrices will be our building blocks to construct a wide array of transfor-
mations obeying the classical uncertainty principle. In order to do this, we first
need some information about how these matrices will combine via the Kronecker
product.

Proposition 2.5. Let U and V be unitary n× n and m×m matrices, respec-
tively. Then U ⊗ V is a unitary nm× nm matrix.

Proof. The lth column in U ⊗ V is given by

(U ⊗ V )l = (U(1, l)V T
l , U(2, l)V T

l , ..., U(n, l)V T
l )T ,

where Vl is the lth column of V . Then

⟨(U ⊗ V )j , (U ⊗ V )k⟩ =
n∑

i=1

U(i, j)U(i, k)⟨Vj , Vk⟩

= ⟨Uj , Uk⟩⟨Vj , Vk⟩
= δjk.

Thus the columns of U ⊗ V form an orthonormal set, and so U ⊗ V is unitary.

Note by definition every entry in the Kronecker product FN ⊗ FM of two

Fourier matrices is of the form χ(x)√
NM

for some x. Proposition 2.4 allows us

to conclude this matrix is also unitary. This means we can Theorem 2.1 to
conclude that the linear transformation associated to FN ⊗ FM satisfies the
classical uncertainty principle.

In the case when the length of a message is of the form Nd for some d, there
is a much closer link between ⊗d

i=1FN and the Fourier transform on Zd
N . It

is worth observing that these two transformations are distinct for d > 1; the
characters appearing in entries of ⊗d

i=1FN are of the form

exp(−2πi(k1 + k2 + ...+ kd)/N),

while those in FNd are of the form

exp(−2πik/Nd)
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(where 1 ≤ k ≤ Nd and 1 ≤ ki ≤ N), meaning that when d > 1, the entries in
each matrix will in general be distinct. However there is a connection between
the Zd

N Fourier transform and this Hadamard transform.
We can make the connection between generalized Hadamard transfrorms for

integer powers and the Fourier transform explicit. Let f : ZNd → C. If we view
the input x of f(x) as an integer between 0 and Nd − 1, then it has a unique
base N representation consisting of at most d digits. This representation is
essentially an element of Zd

N , allowing us to regard f as a function from Zd
N into

C through this correspondance.
In view of this correspondence, we have the following result:

Theorem 2.2. Let f : ZNd → C be a function, and let HN,d = N−d/2⊗d
i=1FN .

If we interpret x ∈ Zd
N as an element in Zd

N according to the above correspon-
dence, then

THN,d
f(m) = f̂(m),

where f̂ is the Fourier transfrom when viewing f as a function on Zd
N under the

same correspondence (associating 0 and N with each other).

Proof. By definition,

THf(m) =
∑

x∈Z
Nd

HN,d(m,x)f(x).

By the recursive definition of H, we can locate an entry in the matrix by which
character N−1/2 exp(−2πikj/N) was multiplied at the jth step in the construc-
tion (for 1 ≤ j ≤ d). By the definition of FN , the number kj = mj lj where mj

and lj are between 1 and N . Here mj represents the row position in ⊗j
i=1FN

and lj represents the column position (when viewed as the N ×N block matrix

N−j/2FN ⊗
(
⊗j−1

i=1FN

)
). This allows us to write

HN,d(m,x) = N−d/2 exp(−2πi(m1l1 + ...+mdld)).

It is enough now to show that under the previously described correspondance,
m 7→ (m1, ...,md). But this is immediate from the construction, as md tells us
which of the Nd−1 long sections (of which there are N) m lies in, while within
this section md−1 tells us the location of m among the Nd−2 long sections within
this first section, and so on, until we reach m1.

For the sake of clarity we will look in detail at an example of this phe-
nomenon. In particular, we will compute explictly the equivalence between
TH3,2

and the Z2
3 Fourier transfrom. Let ω = e2πi/3 be a primitive cube root or

unity. In terms of ω, we have that

1√
3
F3 =

1

3

 ω ω2 1
ω2 ω 1
1 1 1

 .

14



Using this, we compute H2,3:

H3 =
1√
3
F3 ⊗

1√
3
F3

=
1

9



ω

 ω ω2 1
ω2 ω 1
1 1 1

 ω2

 ω ω2 1
ω2 ω 1
1 1 1

  ω ω2 1
ω2 ω 1
1 1 1


ω2

 ω ω2 1
ω2 ω 1
1 1 1

 ω

 ω ω2 1
ω2 ω 1
1 1 1

  ω ω2 1
ω2 ω 1
1 1 1

 ω ω2 1
ω2 ω 1
1 1 1

  ω ω2 1
ω2 ω 1
1 1 1

  ω ω2 1
ω2 ω 1
1 1 1




.

Then we can view an index for either a row or a column by a tuple in Z2
3.

For example, if we wanted to locate the (8,5) entry in the matrix, we can see
that the 8th row is really the second row in the third row of blocks, so this
corresponds to the (1,2) row by our correspondence. Similarly, the 5th column
is really the (1, 1) column. These strings, when interpreted as base-3 numbers,
equal 7 and 4, respectively. Because our labelling of the rows and columns starts
at 0 and ends at Nd−1 (8 in this case), this is consistent with what we expect
from the correspondance.

This association means that any uncertainty principles for the Fourier trans-
from will also hold for generalized Hadamard matrices on ZNd . In particular,
the stronger undertainty principles that follow from restriction estimates will
hold for these transformations. We will now explore this association explicitly.

Let I : ZNd → Zd
N represent the bijection described above, that is, to

compute I(x), we find the unique integer representative x′ of x such that 0 ≤
x′ ≤ Nd − 1. Then I(x) is defined to be the d−tuple of the digits of x′ in its
base−N representation. This inverse of this map simply undoes this operation,
i.e.

I−1(a1, ..., ad) = a1 + a2N + ...+ adN
d−1.

Let f : ZNd → C be a function. We have already shown that when inter-
preting the input of f as I(x) instead of x, we have that HN,df is essentially
the Zd

N Fourier transform. More precicely,

THN,d
f(m) = F(f ◦ I−1)(I(m)),

where F is the Zd
N Fourier transform.

The only other assumptions for their (4/3, 2) restiction estimate are that the
set S is not too big (|S| ≤ Nd/2) and that S is a Salem set. Our association map
I is a bijection, so we can impose the same size restriction on a set S ⊂ ZNd

without issue. In order for the restriction estimate to hold, then, we must have
that for our prospective set S, I(S) is a Salem set. The following proposition
addresses this problem.
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Proposition 2.6. Let S ⊂ ZNd . Then

E(I(S)) ≤ E(S).

Proof. Let x, y, x′, y′ ∈ I(S) with x = (x1, ..., xd), identifying xi with an integer
in [0, N − 1]. Further suppose that x+ y = x′ + y′. Then

I−1(x) + I−1(y) =

d∑
i=1

(xi + yi)N
i−1

and

I−1(x′) + I−1(y′) =

d∑
i=1

(x′
i + y′i)N

i−1.

But x+ y = x′ + y′ implies that xi + yi = x′
i + y′i, and so

I−1(x) + I−1(y) = I−1(x′) + I−1(y′).

Hence if (x, y, x′, y′) is a quadruple counted in E(I(S)), the quadruple

(I−1(x), I−1(y), I−1(x′), I−1(y′))

is counted in E(S), from which the desired inequality is immediate.

Note that the converse of what we proved in Proposition 2.6 does not hold
in general. Take N = 5 and d = 2, and let x = y = (3, 0), x′ = (1, 1), and
y′ = (0, 0). Then x+ y ̸= x′ + y′, yet

I−1(x) + I−1(y) = 6

and
I−1(x′) + I−1(y′) = 0 + 1 + 5 = 6.

This means that the inequality can in fact be strict. However, this is enough to
prove the following:

Theorem 2.3. Let S ⊂ ZNd be a set such that |S| ≤ Nd/2 and E(S) ≤ c|S|2
for some positive absolute constant c. Then S satisfies the (4/3, 2) restriction
bound with HN,d in place of the Fourier transfrom.

Proof. Let f : ZNd → C be a function. Then

(
1

|S|
∑
m∈S

|THN,d
f(m)|2

)1/2

=

 1

|S|
∑

m∈I(S)

|F(f ◦ I−1)(m)|2
1/2

= (∗)

by Theorem 2.2 and the fact that |S| = |I(S)|. Since we are assuming S is
Salem, the previous proposition implies that I(S) is Salem, and so applying
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the (4/3, 2) restriction bound for the Fourier transfrom to the right hand side
implies that

(∗) ≤ C4/3,2 ·N−d

∑
x∈Zd

N

|f(x)|4/3
4/3

,

from which the restriction bound for THN,d
is obtained.

3 The Radon transform

We have seen that Fourier transfrom is essentially a weighted average of a given
function. In the stronger uncertainty principle proven by Iosevich and Mayeli, a
necessary assumption is that the set a function is supported on is not too large.
This case effectively restricts the Fourier transform to be a weighted average
over a subset of the function’s domain, rather than over the entire domain. In
light of this fact, we will investigate uncertainty principles for the discrete Radon
transform.

Definition 3.1. Let f : Z2
p → C be a function and p a prime. Then the discrete

Radon transfrom of f , Rf , is defined as

Rf(m, t) =
1

p

∑
m·y=t

f(y).

The input t ∈ Zp, while m ∈ V, where V is the quotient of Z2
p under the

equivalence relation
a ∼ b ⇐⇒ a = λb

for some λ ̸= 0.

The reason for the involved definition of the m-coordinate of Rf is to avoid
redundancy, as the line ℓm,t := {y ∈ Z2

p : m · y = t} is the same for any l in the
same equivalence class as m. Throughout this section we will conflate m and
the equivalence class of m. This transform arises naturally in x-ray imaging. If
f represents (an approximation of) the density of a cross section of an object,
then x-rays, which eminate in straight lines, can be used to compute values of
Rf along particular lines. The Radon transform is invertible, which we develop
below.

Proposition 3.1. Let F2Rf denote the partial Fourier transform of Rf in the
second coordinate. Then

f(x) =
∑
m∈Z2

p

F2Rf(m, r)χ(rx ·m)

for any r ̸= 0.
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Proof. With the orthogonality condition from Lemma 1.1, we can write Rf in
the following way:

Rf(m, t) = p−1
∑

m·y=t

f(y)

= p−2
∑
s∈Zp

∑
y∈Z2

p

χ(s(m · y − t))f(y).

This implies that

F2Rf(m, r) = p−1
∑
t

Rf(m, t)χ(−rt)

= p−3
∑
t,s,y

χ(−s(m · y − t))χ(−rt)f(y).

This can be combined with the previous equality to obtain that

F2Rf(m, r) = p−3
∑
t,s,y

χ(t(s− r))χ(−sm · y)f(y)

= p−2
∑
y

χ(−rm · y)f(y)

= f̂(rm),

where the second to last equality comes from interpreting the sum over t as a
Gauss sum, which equals zero unless s = r, where it equals p.

By Fourier inversion, we have for r ̸= 0 that

f(x) =
∑
m∈M

f̂(m)χ(x ·m)

=
∑
m

f̂(rm)χ(rx ·m),

where the second equality holds because if r ̸= 0 then the assignment m 7→ rm is
a bijection. Note that this is enough to prove the claim, since we may substitute
F2Rf(m, r) for f̂(rm) in our modified Fourier inversion formula:

f(x) =
∑
m∈Z2

p

f̂(rm)χ(rx ·m)

=
∑
m∈Z2

p

F2Rf(m, r)χ(rx ·m)

Like before, our goal is to leverage the inversion formula to derive an uncer-
tainty principle for Rf and f to find situations in which f can be reconstructed
from incomplete Rf data.
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To do this, we will assume F2Rf(·, r) is supported on a set Mr ⊂ Z2
p (here we

are regarding Mr ⊂ Z2
p instead of as a subset of V so that the first coordinate of

Rf is compatible with our discrete Fourier transform). We can estimate |f(x)|2
with Cauchy-Schwarz:

|f(x)|2 =

∣∣∣∣∣ ∑
m∈Mr

F2Rf(m, r)χ(rx ·m)

∣∣∣∣∣
2

≤

∣∣∣∣∣ ∑
m∈Mr

1

∣∣∣∣∣ · ∑
m∈Mr

|F2Rf(m, r)χ(rx ·m)|2

= |Mr| ·
∑

m∈Mr

|F2Rf(m, r)χ(rx ·m)|2.

In our proof of the inversion formula for the Radon transform, we showed
that F2Rf(m, r) = f̂(rm). We can use this fact to see that∑

m∈Mr

|F2Rf(m, r)χ(rx ·m)|2 =
∑
m∈V

|f̂(rm)|2

=
∑
m∈Z2

p

|f̂(m)|2

= p−2
∑
y

|f(y)|2,

where the third equality follows from Plancherel’s identity. Combining this with
out estimate for |f(x)|2 yields that

|f(x)|2 ≤ |Mr| · p−2
∑
y∈E

|f(y)|2,

where E is the support of f . Summing over all x ∈ E and cancelling
∑

y∈E |f(y)|2
from each side (provided f is not the zero function) then implies

p2 ≤ |Mr| · |E|.

We have just proven the following result:

Theorem 3.1. (Uncertainty Principle for the Radon Transform). Let f : Z2
p →

C be a function that is not identically zero, and let r ̸= 0. If supp(f) ⊂ E and
supp(F2Rf(·, r)) ⊂ Mr, then

p2 ≤ |Mr| · |E|.

Because of the similarity between F2Rf and the discrete Fourier transform,
this result is not terribly surprising. We can view F2Rf(·, r) as differing from
the discrete Fourier transform by a linear change in variables (we showed it
equals the Fourier transform precomposed with the map m 7→ rm), and so
this can be viewed as an instance of our uncertainty principle for general linear
transformations.
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4 Future Work

4.1 The non-unitary case

We saw earlier that for a function FA induced by an N × N matrix to satisfy
the classical uncertainty principle, it must satisfy the identity

∥A−1∥2∞ · ∥A∥22 =
1

n
. (2)

In section 2, we dealt with the case when the matrix A is unitary. It would
likely be worthwhile to investigate what happens when A is not unitary. Note
that the left hand side of (2) is invariant when scaling A by a nonzero constant.
Because all of our linear maps are on finite dimensional complex vector spaces,
they are continuous, so ∥A∥∞ is bounded. This means that if we let c = 1

∥A∥2
,

then the matrix cA satisfies
∥cA∥2 = 1.

This means that without loss of generality, we could have assumed from the
beginning that ∥A∥2 = 1.

4.2 Restriction estimates for the Radon transform

Our analyis of the Radon transfrom relied on using the orthogonality property
from Lemma 1.1 to encode algebraically the fact that our transfrom restricted
the sum to a subset of the ambient space. It would be worth investigating how
this transfrom behaves when the sum defining it has weights introduced, or
when we modify the set on which we are taking averages.

An alternative way to think about the parameters in the Radon transfrom
is that they encode basic rigid motions applied to a fixed set. Instead of a
line, if our initial set was one that satisfies the conditions of the restriction
estimates of Iosevich and Mayeli, there could be interesting behavior present for
a transformation built with these facts in mind.

4.3 A conjecture of Hadamard

It is known that Hadamard matrices must have dimension 1, 2, or a multiple
of 4. It is however unknown whether there exists a Hadamard matrix with the
corresponding size for every multiple of 4.

Our generalized Hadamard matrix construction allows us to build matrices
of size a multiple of 4 having orthogonal rows and entries with constant absolute
value 1. If there was a Hadamard matrix Hk of size 4k for every k, then we
could find a unitary matrix U such that UHk equals our generalized Hadamard
matrix of the same size. One way to do this is to let the columns of our matrix
(call it A) form a basis, do the same for the columns of Hk, and let U be the
matrix representation of the map sending the latter basis to the former. The
resulting transformation is an isometry, and hence unitary.
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Conversely, if there is such a matrix, then U−1A is a Hadamard matrix and
the conjecture is resolved. Thus Hadamard’s conjecture is equivalent to finding
a unitary matrix that multiplies onto our generalized Hadamard matrix such
that the resulting matrix has entries only ±1.
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A Hadamard Determinant Estimate

In the proof of Proposition 2.2, we make use of the following estimate for an
n× n matrix M . The following proof is from pp. 418 of [6].

Theorem A.1. Let ai be the ith column of A. Then

|detA| ≤
n∏

i=1

∥ai∥.

Proof. First we observe that the result is immediate if detA = 0. Thus we can
assume that the ai are linearly independent, in particular each ai is nonzero.
Let B be the matrix obtained by normalizing each columm in A, and let bi be
the ith column of B. Then

|detA| = |detB| ·
n∏

i=1

∥ai∥,

and so it suffices to show that for a matrix B whose columns each have norm 1,

|detB| ≤ 1.

Consider the matrix C = B∗B, and let {λi}ni=1 be the eigenvalues of C
(counted with multiplicity). We have that

Cii = ∥bi∥ = 1,

so the trace of C is n. Then, applying the AM-GM inequality, we have that

detC =

n∏
i=1

λi ≤

(
1

n

n∑
i=1

λi

)n

=

(
1

n
tr(C)

)
= 1n = 1.

Hence |detB| = |detC|1/2 ≤ 1, and by our previous comments we are done.
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In the proof of Proposition 2.2, we use the following corollary of this inequal-
ity:

Corollary A.1. For an n× n matrix A,

|detA| ≤ nn/2∥A∥∞.

Proof. If ai is the ith row in A, then we have the trivial estimate

∥ai∥ =

 n∑
j=1

|aji|2
1/2

≤
√
n∥A∥∞.

In sight of the previous result, we have that

|detA| ≤
n∏

i=1

∥ai∥ ≤ nn/2∥A∥∞,

as desired.
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