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Abstract

I introduce Kolmogorov complexity and the Erdös distinct distance problem, describe an intu-

itive connection between these topics, and explore whether they are actually related. I construct

sets in R2 with arbitrary Kolmogorov complexity and distance set size in order to show that the

Kolmogorov complexity and the size of the distance set for finite sets of fixed size are independent

quantities. I consider what alternative descriptions of set complexity might agree more closely

with my geometric intuition.

1 Introduction

I am interested in capturing the “structuredness” of a finite set of points. I study two notions of

complexity, Kolmogorov complexity and the size of the distance set. Kolmogorov complexity is the

length of the shortest program that outputs a given finite string; in the context of sets, I consider

the shortest program which lists the coordinates of all the set’s points. The distance set size, taken

from Erdös’ distinct distances problem, counts the number of unique distances between points in a

set. Each of these intuitively seems to measure how regular a set is. However, I find that they are

unrelated concepts: knowing a set’s Kolmogorov complexity gives no information about its distance

set size, and vice versa.

2 The Erdös Distinct Distance Problem

Definition 2.1 (∆(P )). For a set S ∈ R2, the distance set ∆(P ) is the set of unique distances between

points in P .

Note that |∆(P )| is the number of distinct distances between points in P .

Erdös’ distinct distance problem asks what the smallest possible number of distinct distances in

any arrangement of n points is. For example, three points may be arranged into a regular triangle,

producing one unique distance, but four points can at best be arranged into a square, producing two

unique distances (the square’s side length and its diagonal length).

Let Pn be the collection of all sets of n different points in R2.

Definition 2.2 (M(n)). For a positive integer n, let M(n) be the smallest possible number of distinct

distances in any arrangement of n different points on the plane:

M(n) = min
P∈Pn

|∆(P )|

The precise value ofM(n) is only known for very small n, and work on the distinct distance problem

seeks to bound M asymptotically:
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Definition 2.3 (Big-O). Given two functions f and g: R 7→ R, f is said to be ∈ O(g) or = O(g) if

∃C ∈ R and x0 ∈ R such that

|f(x)| ≤ Cg(x)∀x > x0.

Erdös’ original paper [1] shows that M(n) is between O(
√
n) and O( n√

logn
). The lower bound was

gradually improved until 2015, when Guth and Katz proved M(n) is at least O( n
logn ).

2.0.1 Upper Bounds

Example. Let P be n random points in the unit square. It is overwhelmingly likely that all distances

are unique and |∆(P )| =
(
n
2

)
∈ O(n2).

Example. Let P be n points arranged evenly on a circle. Pick any of these points to call a. a is the

same distance from each of its neighbors, and the same distance from the second point on its right as

from the second point on its left, etc: all distances from a to other points in P come in pairs, except

for the single distance from a to the point directly opposite it if n is even. By symmetry, any distance

between non-a points is the same as some distance involving a. So |∆(P )| = ⌊n
2 ⌋ ∈ O(n).

Figure 1: 7 points on a circle. One instance of each of this set’s distances is drawn in red. The blue

lines are examples of repeated distances.

Example (Erdös’ upper bound). For the sake of simplicity, assume n is a square integer. Let P be

n points arranged on a
√
n ×

√
n integer grid, with each coordinate running from 0 through

√
n − 1.

Then

|∆(P )| =
∣∣∣{√(xpi

− xpj
)2 + (ypi

− ypj
)2
}∣∣∣ = ∣∣∣{(xpi

− xpj
)2 + (ypi

− ypj
)2
}∣∣∣

≤
∣∣∣{a2 + b2|a, b ∈ Z+ ∩ [0,

√
n− 1]

}∣∣∣ ≤ ∣∣∣{a2 + b2|a, b ∈ Z+, a
2 + b2 ≤ 2n

}∣∣∣ ≤ bn√
log n

∈ O(
n√
log n

)

The last inequality is a limit by Landau.

Figure 2 shows a 6× 6 integer grid and illustrates why the number of distinct distances is < n
2 :

• Any distance between points on the grid can be rotated and shifted to start at the point high-

lighted in blue, so the set of distinct distances in the grid is the number of distinct distances

from the blue point to other points. There are n− 1 other points in the grid, so |∆| ≤ n− 1.

• Any point outside the green triangle is the same distance from the blue point as its diagonally

opposite point, so counting distances from the blue point to points in the green triangle is

sufficient. There are
∑√

n
i=1 i =

√
n(

√
n−1)
2 = n−

√
n

2 distances from the blue point to points in the

green triangle, so |∆| < n
2 .
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• Even the green triangle contains some repeated distances. Any triangle where all three side

lengths are integers ≤
√
n is present within the green triangle, and any integer distance ≤

√
n

also occurs along the top edge of the grid, so the hypotenuse of such a triangle repeats a distance

found along the top. The purple lines marked on Figure 2 are two different lines of length 5: one

sits on the top of the grid and the other is the hypotenuse of a 3-4-5 triangle.

Sets of integers x, y, h with x2 + y2 = h2 are called Pythagorean triples. Any Pythagorean triple

is of the form

x = k(2ab)

y = k(a2 − b2)

h = k(a2 + b2)

where k is any positive integer and a > b [2]. Restricting to k = 1, h is a repeated distance in

the grid when 2ab ≤
√
n and a2 − b2 ≤

√
n. The number of integer grid points in this region is

O(
√
n log n)1, so the number of distinct distances in the grid is at most O(n−

√
n log n).

Figure 2: A 6 × 6 square grid. All distances outside the green triangle are also present in the green

triangle. The green triangle contains some repeating distances: two lines of length 5 are drawn in

purple.

2.0.2 Lower Bounds

Finding any lower bound on M is less obvious. Here is Erdös’
√
n bound:

Proof. Let P be any set of n points in the plane. Take any a ∈ P . For each other point pi in P , draw

a circle through pi centered at a. Call the number of distinct circles drawn m.

• If m <
√
n, some circle must have at least

n

m
≥ n√

n
=

√
n

1For justification, please attend Fuyi Kuang’s thesis defense, which includes a calculation of the number of lattice

points under a hyperbola.
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points, so some hemisphere has at least
√
n
2 points. The distance from the leftmost point on this

hemisphere to each other point on the hemisphere is different, so there are at least
√
n
2 ∈ O(

√
n)

distances in P .

• Otherwise m >=
√
n, and each circle represents a distance from a to another point of p, so there

are at least
√
n
2 ∈ O(

√
n) distances in P .

3 Kolmogorov Complexity

Kolmogorov complexity is an concept from information theory which is designed to measure ran-

domness. Randomness is usually a property ascribed to generating processes, not individual objects,

but Kolmogorov complexity allows us to argue that the string “000000000000” is less random than

“128683487345”. The Kolmogorov complexity of a string is the length of the shortest program that

outputs it. In this situation, I will precisely define “programs” and describe properties of Kolmogorov

complexity.

3.1 Formalizing Computation

3.1.1 Turing Machines

Definition 3.1 (Turing machines). A Turing machine is a formalization of computing. It consists of

a finite set of states with a finite collection of transitions between states which accesses an infinite tape

through a pointer. On transitions, the machine may overwrite the currently accessible tape cell with

a new symbol and/or move the pointer right or left. The Turing machine must also specify a set of

acceptable states to end in and an input string composed of finitely many non-blank characters from

a finite alphabet which is written on the tape.

Any Turing machine may be finitely described by a tuple
〈
Σ, b, S, s0, δ, F

〉
, where Σ is the alphabet

of the input string, b ∈ Σ is the blank character, S is the set of states, s0 is the starting state, δ is the

transition function (S − F ) × Σ → S × Σ × {L,R,N}, and F is any subset of S. δ may be a partial

function, in which case a global state with no successor halts.

Example (Increment). Let Σ = {0, 1, B}, b = B,

S = {SEEK, CARRY, DONE}, s0 = SEEK, F = {DONE}, and δ is the function

(state, symbol) next state write move

(SEEK, 0) SEEK 0 R

(SEEK, 1) SEEK 1 R

(SEEK, B) CARRY B L

(CARRY, 0) DONE 1 N

(CARRY, 1) CARRY 0 L

(CARRY, B) DONE 1 N

Intuitively, this Turing machine moves to the right side of the input (SEEK), then flips bits from

right to left until it’s able to put a 1 in a previously-0 cell (CARRY). We can now (inefficiently) add n

to positive integers by writing n 1s to the left of our input and erasing one per run of this increment

routine. Positive integer addition can be (extremely inefficiently) built into integer multiplication, and

so on; this capacity for arithmetic plus the recursive structure provided by state transitions allows

for arbitrary computation. Notably, there exists a Turing machine which takes as input descriptions

of another Turing machines and simulates their execution, returning the result the specified Turing

machine would return.
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Time Tape Current State Next State Write Move

0 ...B101B... SEEK SEEK 1 R

1 ...B101B... SEEK SEEK 0 R

2 ...B101B... SEEK SEEK 1 R

3 ...B101B... SEEK CARRY B L

4 ...B101B... CARRY CARRY 0 L

5 ...B100B... CARRY DONE 1 L

6 ...B110B... DONE

Table 1: An example run of the increment machine on the input 101

Turing machines for any particular problem aren’t unique. In fact, it’s possible to translate any

Turing machine into a machine with only two states by increasing the number of symbols, or into a

machine with two symbols by increasing the number of states. However, the product of the number of

states in symbols stays within a constant factor after either of these translations, so we can comfortably

use this state × symbol complexity to describe any Turing machine’s complexity.

3.1.2 Programming Languages

Compared to Turing machines, real computers have additional features such as random-access memory

and limitations such as finite memory. Turing machines are also difficult to design and understand.

Programming languages allow simpler, human-readable descriptions of algorithms. Almost all pro-

gramming language are Turing-complete, meaning they are capable of simulating Turing machines. A

language is called Turing-equivalent if a Turing machine is capable of simulating running its programs,

and nobody has ever found a Turing-complete language which is not Turing-equivalent. It seems

extremely likely that no programming language can be more powerful than Turing machines.

For a Turing-equivalent language L, let TL be a Turing machine that simulates a program written in

L, and let LT be a program in L that simulates execution of a Turing machine. Then language L1 can

simulate a program written in language L2 by simulating the execution of TL2
. Since these programs

and Turing machines are finite, there exist finite translations between Turing-equivalent languages.

This shows that finite compilers – programs that translate between languages – exist. We may run a

program in a different language by appending a compiler to the program. This adds a constant length

to the program which depends on the two languages in use.

For the rest of this paper I will write programs in Python, but they could be written in any other

language with only a constant penalty to length.

3.1.3 Defining Kolmogorov Complexity

Definition 3.2. The length l(p) of a natural number p is the number of digits in its binary represen-

tation.

Definition 3.3 (Kolmogorov complexity with respect to a specifying function). Let S be a countable

set and enumerate it with natural numbers n(x). The Kolmogorov complexity of x ∈ S with respect

to the partial function f on natural numbers is

Cf (x) = min
p∈N

({l(p)|f(p) = n(x)} ∪ {∞}).

In terms of computing, S is a set of outputs, f is a programming language, p are programs, and Cf

reports the length of the shortest program that returns x when interpreted in language f . Cf returns

infinity if no program in f returns x.

Definition 3.4 (Minorizing functions). A function f minorizes a function g if there is a constant c

such that Cf (x) ≤ Cg(x) + c ∀x ∈ S.
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Definition 3.5 (Universal Functions). A function f is universal for a set of functions F if f minorizes

all functions in F .

If f and g are both universal for F , then their difference on any x is bounded by a constant, and

any non-universal function h in F is no more than a constant less than f . This means we can consider

only optimal descriptions relative to universal functions without worrying that other functions provide

shorter descriptions.

Definition 3.6 (Computable Functions). A partial function f : N → N is called computable if there

is some Turing machine which terminates with output f(n) on each input n for which f is defined.

Theorem 1 (A universal computable function fU exists). Proof. Let U be a Turing machine which

simulates other Turing machines. U must take two pieces of information, a description of the machine

to simulate and the input string to simulate running on. U expects this input in the format 11...10gp:

this is l(g) 1s, then one 0, then the literal description g of the desired Turing machine, then the literal

input string p. U may then use the prefix of 1s to separate g from p and run its simulation. Let fU be

the function executed by U .

Definition 3.7 (Kolmogorov Complexity). The Kolmogorov complexity of a finite string s is defined

as C(s) = CfU (s). We require that the program doesn’t take arguments, or equivalently that any

input to the program counts toward its length.

Theorem 2. Most strings are incompressible.

Proof. The set of n-length binary strings has 2n elements, and the set of shorter strings has 2n−1

elements, so there are at most 2n−1 different outputs of shorter programs. Even if we optimistically

assume that each of these outputs has length n, at least 2n−2n−1 = 2n−1 of the 2n strings with length

n cannot be more concisely represented.

Theorem 3. Kolmogorov complexity is uncomputable.

Proof. Suppose a program K with length a takes as input a finite string S and returns its Kolmogorov

complexity. Note that some shortest program always exists because it is at longest log S.

Write a new function C which decides if a string S is compressible:

from math import log

def C(S):

if K(s) >= log(s, 2):

return false

return true

This program is only a constant number of bits cC longer than K: C is a+ cC bits long.

And write a third function B which returns a string with arbitrarily high Kolmogorov complexity:

def B(min):

i = 1

while true:

if i > min and not C(i):

return i

i += 1
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This program is only a constant number of bits cB longer than C: B is a+ cC + cB bits long.

Choose min = 2a+cC+cB . Now B(min) returns a number b with K(b) > 2a+cC+cB . On the other

hand, we just saw that b was generated by the program B(min), which, including the length of its

argument, was at most a+ cC + cB + log 2a+cC+cB = 2(a+ cC + cB). This is a description of b which

is shorter than than K(b), the shortest possible description. This is a contradiction, so the function K

cannot actually exist.

The above definitions and facts are from Li and Vitányi’s book on Kolmogorov complexity [3],

except for the proof of uncomputability, for which I referenced Peter Miltersen’s course notes [5]. The

below definition is my own, for purposes of comparison with the Erdös distance problem:

Definition 3.8 (Kolmogorov Complexity of Sets). Let A be a finite set of integers. Index A by ai for

i from 0 through |A|, where a1 is the smallest value in A, a2 is the next smallest, etc. Define a string

representation of A to be the string S = “a1, a2, . . . a|A|” with each ai replaced by its literal value.

Define C(A) to be C(S).

Let B be a finite set of pairs of integers. Index these pairs by (ai1, ai2) for i from 1 through

|B|, where the ais in dictionary order. Define a string representation of B to be the string S =

“(a11, a12)\n(a21, a22)\n . . . (an1, an2)” where each (ai1, ai2) is replaced by its literal values. Define

C(B) to be C(S).

Lemma. Most subsets of N ∪ [0,
√
n) are incompressible.

Proof. Given a subset S of N∪ [0,
√
n), consider the string s with a length of

√
n bits, where the ith bit

is 1 if i ∈ S and 0 otherwise. This relationship is bijective between subsets S and
√
n-length strings.

If S is compressible, let the program P have length lP <
√
n and output S. Construct a new

program P ′ which generates S and then converts it to its bit-array representation as above; this

algorithm adds only a small constant number of bits. Now P ′ is an algorithm with length lP + c <
√
n

for sufficiently large n which generates S’s bit-array representation.

Since we can do this for each compressible subset S and generate a unique string of length
√
n, s is

compressible if S is. But most
√
n-length strings are incompressible, so most subsets S must be also.

Theorem 4. The Kolmogorov complexity of a set S does not depend on the order in which the elemts

of S are returned.

Proof. Suppose that any set S ∈ R2 with |S| = n has an order bi such that C(S) with respect to bi
(call this value Cb) is less than C(S) with respect to ai (call this value Ca).

If a list of numbers is already in the computer’s memory at list1, sorting it is possible with a

constant-length addition to the program:

list2 = []

while list1: #this means "while list1 is not empty:"

minimum = list1[0]

for k in list1:

if (k[0] < minimum[0] or

(k[0] = minimum[0] and k[1] < minimum[1])):

minimum = k

list1.remove(k)

list2.append(k)
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Of course a more time-efficient sort is possible, but this Python program lets us more easily picture

a corresponding Turing machine.

Appending programs comes at a length cost of log of the shorter program length, which is at most

a constant for this program.

Running this sorting program after the shorter program selected by Cb gives us a program for S

with the order ai that has length Cb + c for some constant c independent of S. Since Ca is defined to

be the length of the shortest program producing S with order ai, Ca can’t be larger than Cb + c. So

we can see that printing any order of the elements of S is a problem in the same class of Kolmogorov

complexity as Ca.

3.1.4 Kolmogorov Complexity versus Algorithm Complexity

There are many ways other ways of measuring how “hard” a problem is.

1. The usual metric of interest is time complexity: as the size of the input increases, roughly how

many CPU cycles does the program take to run? The problem of factoring large primes is hard

in this sense. While time complexity is defined for specific programs, it is also commonly used

to describe the best known solution to a problem.

2. Another important metric is space complexity: as the size of the input increases, roughly how

much active memory does the program require? Working with adjacency list representations of

large matrices is hard in this sense.

3. The complexity of a particular program is sometimes described by how many branching points

(conditional jumps) it has. High complexity in this sense indicates that a program is hard to

maintain and debug.

4. Mathematicians and programmers are frequently interested in the difficulty of coming up with

any solution at all to a problem, informally measuring complexity by years left unsolved.

Kolmogorov complexity is independent of all of the above metrics (note that Kolmogorov complexity

does not count memory used during computation, so it is not the same as space complexity).

Kolmogorov complexity is not frequently used in the field of computer science, possibly because

it is inconvenient. While any program gives an upper bound for the Kolmogorov complexity of the

problem it solves, finding the true value is generally impossible. In addition, computers thankfully

have enough memory these days that program size isn’t much of a limitation. Finally, it seems to me

that programmers simply refuse to write substantial programs which grow linearly with their inputs.

While Kolmogorov complexity doesn’t have much influence on concrete programs, it has value as

an abstract measure of problem complexity.

Definition 3.9 (Computable Numbers). Computable numbers are real numbers which a Turing ma-

chine can approximate to any desired precision. All rational numbers and some irrationals, such as e,

are computable. However, the computable numbers are countable because the set of Turing machines

is countable, so most real numbers are uncomputable.

Because I am comparing Kolmogorov complexity to distance set size, approximations of real num-

bers are not precise enough for my purposes. I want to consider only numbers which are precisely

finitely representable. These include the natural numbers and numbers k
2l

for k, l ∈ N because their

binary representations are finite. Any other rational number may be represented as fractions by delim-

iting pairs of integers with a new tape symbol, since we can perform arithmetic operations perfectly

well on fractions.
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These two representations of numbers have analogs in actual computers, which store numbers in

either of the forms k · 2l : k, l ∈ Z or k
m for a fixed large natural m to provide both a large range of

values alongside a good density of small numbers.

4 An Intuitive Relationship?

Kolmogorov complexity and the Erdös distinct distance problem have a number of commonalities:

• For a given set, Kolmogorov complexity and the size of the distance set give a sense of how

constrained the set is.

• The shortest program to output a set is incomputable and the arrangement producing the fewest

distances is extremely difficult to find.

• Both Kolmogorov complexity and distance set size are extremely sensitive to slight variation

– any degree of randomness added to any set brings both its Kolmogorov complexity and its

distance set size up to the maximum.

After noticing these similarities, I wondered if a formal direct relationship exists between these topics.

In the rest of this paper, I will show that these concepts are not directly related.

5 Kolmogorov Complexity and Distance Set Size are Indepen-

dent

I will show that Kolmogorov complexity and distance set size are not directly related by constructing

sets of minimal complexity with many distances, and sets of large complexity with minimal distances.

5.1 No upper bound on distance set size from Kolmogorov Complexity

Given an integer n, consider the following Python program:

for i in range(0, n):

x = 2**i

print(f"({x}, 0)\n")

After substituting in the actual integer for n, this program prints a list of n points (2m, 0) for

m ∈ N,m < n.

The set S = {(2m, 0)|m ∈ N,m < n} has no duplicate distances between its points:

Proof. Of course a set of one point has no duplicate distances.

Suppose the set Sm−1 = {(2k, 0)|k ∈ N, k < m − 1} has no duplicate distances. (2m, 0) is 2m−1

away from (2m−1, 0) and further from each other point in Sm−1. Since the maximum distance within

Sm−1 is 2m−1 − 1, all distances between (2m, 0) and points in Sm−1 are greater than all distances

within Sm−1. Also, (2m, 0) is a distinct distance 2m − 2k, k < m from each point in Sm−1. The

distances in Sm = {(2k, 0)|k ∈ N, k < m} are the distances in Sm−1 and the distances between (2m, 0)

and points in Sm−1, and since there are no repeated distances within or between these groups, Sm has

no duplicate distances.

So S has the maximum possible number of distances in any set of n points in R2, which is
(
n
2

)
∈

O(n2).

On the other hand, the program above has the minimum possible length for any program containing

the number n, so the problem of listing the points in S has very low Kolmogorov complexity:
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Proof. If n = 5, the program is 55 characters long, which translates to 55 bytes or 440 bits. The

program length increases by one character (or one byte or eight bits) for each extra digit in n, so

the length of the whole program is at least the number of digits in n. The rest of the program runs

correctly without modification for any n, so the remaining 54 bits of the program are constant. So,

the length of this program for arbitrary n is 54 + log10n. The Kolmogorov complexity of printing S is

at worst this length: C(S) ≤ 54 + log10n ∈ O(log n).

5.2 No upper bound on Kolmogorov complexity from distance set size

Let s be an incompressible string of n bits. Divide s up into
√
n segments: s1 is the first

√
n bits, s2

is the next
√
n bits, etc.

For each string si, define a set Si ∈ N∩ [1,
√
n] such that k is in Si exactly if the kth bit in si is 1.

Then take S = ∪{Si × {i}}. S is an incompressible random subset of the integer grid (N ∩ [1,
√
n])2,

since if S was compressible we could reverse this construction and compress s. So any program for

S requires at least n bits. This is much larger than the log n bits required to encode the complete√
n×

√
n integer grid.

On the other hand, S is a subset of the
√
n ×

√
n integer grid, Erdös’ original bound says that S

has at most O( n√
logn)

) distances.

6 Sets of arbitrary Kolmogorov complexity and distance set

size exist

In this section I will construct sets with minimal distance sets and arbitrary complexity, and sets with

small complexity but maximal distance sets.

6.1 Sets of arbitrary complexity exist with |∆| ∈ O(n)

There is a program which prints (0, 0) for all but m points, and either (1, 0) or (0, 0) at random for

the remaining m points. This program has a minimum program length of O(logm) bits.

For n points, suppose we want an arrangement which has complexity O(m) with 0 ≤ m ≤ n. Place

all n points along the x-axis. Assign the first ⌊m⌋ points each the y-coordinate 0 or 1 at random, and

assign all the remaining points the y-coordinate 0. Since the first m points have random y-coordinates

which take 1 bit each to describe, any program returning this set must include at least n bits.

Here is a Python program which prints this set:

rand = [b1, b2, ..., bm]

for b in rand:

print(f"({b},0)")

for i in range(n-m):

print("(0,0)")

For each of the random coordinates bi, decide arbitrarily whether bi in the program is literally 1 or 0.

Since most strings of any given length are incompressible, we can choose rand to be incompressible,

which means there is no more efficient way to remember which points are shifted. Then we can’t avoid

spending at least m bits.

Surprisingly, this set has very few distances. All points lie on an integer grid between (0, 0) and

(n, 1), so its distance set is a subset of this grid section’s distance set. The possible distances are those

between points with x = 1, those between points with x = 0, and those between a point with x = 1

and a point with x = 0:
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• Between points which both have x = 0, only integer distances ≤ n are possible. The same is true

between points which each have x = 1. Each of these cases produce at most n distinct distances.

• Any distance between a point with x = 0 and a point with x = 1 is the same as the distance

from (0, 0) to some point with x = 1, so this case also produces at most n distinct distances.

So |∆| here is at most 3n ∈ O(n).

6.1.1 Sets of arbitrary complexity exist with |∆| ∈ O( n√
logn

)

Place n points on an
√
n ×

√
n grid. Then decide arbitrarily whether to shift each of the first m

points right by
√
n. The total number of distances in this arrangement is no more than the number of

distances in a 2
√
n× 2

√
n grid which has 4n points and O( 4n√

log 4n
) ≤ O( 4n√

logn
) = O( n√

logn
) distances.

A program for this set is

import math

rand = [t1, t2, ..., tm]

s = math.sqrt(n)

index = 0

for i in range(1, s):

for j in range(1, s):

if index < m:

if t[index]:

print(f"({i+s},{j})")

else:

print(f"({i},{j})")

index += 1

else:

print(f"({i},{j})")

Where each ti is a boolean representing whether its corresponding point is shifted.

As in the linear case, most bit strings of length m are incompressible, so some sequence of tis gives

a set with a complexity of at least m bits. We can also see from this program that every sequence of

tis gives a set with a complexity of at most O(m), since the whole program is constant with respect

to m except for the length of rand.

6.2 Sets with arbitrary |∆| exist with complexity O(log n)

For any n ∈ N, suppose we want an arrangement of n points with O(nk) distances for k ∈ [1, 2].

Let M ⊂ R2 be an even number m of the n points evenly-spaced around a circle of radius 1
4 centered

at the origin, with one of the points at (0, 1
4 , so that there are m

2 distinct distances in M . Let K ⊂ R2

be the remaining n−m points placed at (2i, 0) for i ∈ N, i < m− n, so that there are
(
n−m

2

)
distinct

distances in K.

How many distinct distances exist between points in M and points in K?

For a fixed point k in K and a point m0 in M , note that m0 sits on a circle of radius 1
4 around the

origin and a circle of some radius d around k. If some other point in M also has distance d from k,

it must also be on both of these circles. Since the two circles intersect at at most two points, one of

which is m0, at most one other point in M is d away from k. In fact, since k is on the x-axis, the other

point in M at which is |k− (x, y) away from k is (x,−y). Since M is by design symmetrical across the

x-axis, the number of distances from k to M is exactly m
2 .
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Now consider any k′ ∈ K with k ̸= k′. Without loss of generality, suppose k falls to the left of k′.

I will use the following calculation to show that k and k′ do not share any distances to points in M :

Lemma. For any a ∈ M and k0 = (2i, 0) ∈ K, |a− k0| ∈ [2i − 1
4 , 2

i + 1
4 ]:

Proof.

a ∈ M → ay = ±
√

1

42
− a2x, ax ∈

[
− 1

4
,
1

4

]

→ |k0 − a| =
√
(2i − ax)2 + (0− ay)2 =

√
(2i − ax)2 +

(
±

√
1

42
− a2x

)2

=

√
(2i)2 − 2ax2i + a2x +

1

42
− a2x =

√
(2i)2 − 2ax2i +

1

42

∈

[√
(2i)2 − 2 · 1

4
· 2i + 1

42
,

√
(2i)2 + 2 · 1

4
· 2i + 1

42

]

=

[√
(2i − 1

4
)2,

√
(2i +

1

4
)2

]
=

[
2i − 1

4
, 2i +

1

4

]

Since k < k′ and both are ∈ K, k = (2i, 0) and k′ = (2j , 0) for 0 ≤ i < j, so |k1−k0| ≥ 1. Based on

this and the lemma above, |k−a| ≤ 2i+ 1
4∀a ∈ M and ∀b ∈ M, |k′−b| ≥ 2j− 1

4 > 2i+ 3
4 > 2i+ 1

4 ≥ |k−a|,
so |k − a| ≠ |k′ − b|.

So no distances between M and one k are duplicated with another k′ in K.Now there are m
2

distances from a specific k to points in M , and these distances are different for each of the n − m

points in K, so the total number of distances between M and K is (n−m)m2 .

Are any of these distances between M and K shared with distances within M or within K? No,

since every distance within M is ≤ 1
2 ; every distance between M and K is ≥ 3

4 and of the form√
2i + 1

16 so not an integer, and every distance within K is an integer.

Now the total number of distinct distances in M ∪K is

m

2
+

(
n−m

2

)
+ (n−m)

m

2

=
m

2
+

(n−m)(n−m− 1)

2
+

nm−m2

2

=
n2 − nm− n+ 2m

2

for m ≤ n. To get nα distances, set m = n2−nα

n−2 ; note that m exists and is nonnegative for n > 2,

and since α ≥ 1 it is less than n. Now

|∆| =
n2 − n(n

2−nα

n−2 )− n+ 2(n
2−nα

n−2 )

2
=

n2 − (n
2−nα

n−2 )(n− 2)− n

2

=
n2 − (n2 − nα)− n

2
=

nα − n

2
∈ O(nα)

since α > 1.

Unfortunately, m according to this formula might not be an integer, much less even. An arbitrary

real number m0 is no more than 2 below an even number; let m1 be the smallest even number ≥ m0,

so that m0 ≤ m1 ≤ m0 + 2. Since |∆| = n2−nm−n+2m
2 is a continuous function on real numbers and
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its derivative with respect to m is −n
2 + 1, |∆| strictly decreases as m increases whenever n > 2, so

the number of distinct distances for m = m1 is between |∆| for m0 and |∆| for m0 + 2.

So,

n2 − n(n
2−nα

n−2 )− n+ 2(n
2−nα

n−2 ))

2
≤ |∆m1

| ≤
n2 − n(n

2−nα

n−2 + 2)− n+ 2(n
2−nα

n−2 + 2)

2

→ nα − n

2
≤ |∆m1

| ≤
n2 − n(n

2−nα

n−2 )− 2n− n+ 2(n
2−nα

n−2 ) + 4

2
=

nα − 3n+ 4

2

→ |∆m1
| ∈ O(nα)

This shows that for any α between 1 and 2, some integer m < n gives |∆| ∈ O(nα).

7 Arguments Against Kolmogorov Complexity

As I explored a potential connection between distance sets and Kolmogorov complexity, I discovered

that Kolmogorov complexity lacks many helpful properties for describing set complexity.

• Kolmogorov complexity is not able to describe most sets in R2 because most numbers are not

finitely representable.

• Kolmogorov complexity does not increase with added points: a subset may have drastically

higher complexity than its superset.

• Kolmogorov complexity doesn’t capture symmetry, which would be preferable when discussing

geometric structure. The set of points 2i for 0 ≤ i < n has the same Kolmogorov complexity as

the set of points i for 0 ≤ i < n.

8 An Argument for Kolmogorov Complexity

Kolmogorov complexity doesn’t help much with any computation; time complexity is much more useful

to describe the cost of running any algorithm, and the space taken up by a program is usually trivial

in comparison to memory needed to run the program, much less the total memory of a modern com-

puter. Kolmogorov complexity seems to actually be for people: an algorithm with short Kolmogorov

complexity has fewer steps, and possibly fewer logical leaps, to get through a human head.

It is logically simple (though not physically feasible) to find a shortest program for a specific string

S given its Kolmogorov complexity. If it were even sometimes possible to find an upper bound for

a set’s complexity and translate this bound into a shorter program, we would sometimes be able to

make these sets more easily understandable. Extending this possibility to programs in general, such

as neural networks, highlights the possible power of such a development.

9 Alternatives for Set Complexity

I considered space complexity as an alternative to Kolmogorov complexity on the intuition that Kol-

mogorov complexity “cheats” by hiding work in computations, but I found that space complexity

doesn’t improve any of the examples in this paper.

At the start of my thesis, I had strong intuition that Kolmogorov complexity of a set is analogous

to the energy of a physical structure, such as a crystal structure for a regular set. I found that this

link between small Kolmogorov complexities and regular structures doesn’t exist, but I expect that a

related measure of energy might capture the intuitive link between distance set size and structuredness.
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From the other direction, Kolmogorov complexity is closely related to Hausdorff dimension, and a

few researchers have developed a constructive Hausdorff dimension which might serve as a more useful

description of complexity [4].

Either an energy-based metric or constructive Hausdorff dimension seem likely to work for infinite

sequences and real numbers.

10 Acknowledgements

Thank you to my advisor Professor Iosevich for introducing me to this problem and guiding me through

the research process, as well as for his constant encouragement throughout my undergraduate career.

I was incredibly lucky to find such an excellent teacher and mentor.

Thanks also to James Iler and Ben Coukos-Wiley for pointing out many errors, Alex Prideaux for

the Pythagorean triangles, and all of the above plus Fuyi Kuang, Lyrica Yanaway, and Baby the cat

for their friendship and support during this project.

References

[1] P. Erdos. “On Sets of Distances of n Points”. In: The American Mathematical Monthly 53.5 (1946),

pp. 248–250. issn: 00029890, 19300972. url: http://www.jstor.org/stable/2305092 (visited

on 04/15/2024).

[2] Jerzy Kocik. “Clifford Algebras and Euclid’s Parameterization of Pythagorean Triples”. In: Ad-

vances in Applied Clifford Algebras (2006). doi: https://doi.org/10.1007/s00006-006-0019-

2.
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