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1 Introduction

In short, the method of Stationary Phase concerns itself with obtaining
bounds for oscillatory integrals of the following form

I(f,R) =

Z

Rn

eiRf(x)  (x) dx

where  (x) is a bump function.
The method of stationary phase is of great importance in the field of

Harmonic Analysis. One can find applications of this to other areas in Har-
monic Analysis, Partial Di↵erential Equations, Geometric Measure Theory,
and Geometric Combinatorics to name a few. Di↵erent bounds are obtained
depending on the conditions imposed on f(x). In general varying conditions
on the smoothness of f have yielded promising results. Throughout this pa-
per, we will go through some of the most basic results on the subject while
also providing some of the motivation for why these results are expected.
Then we’ll go through an application of stationary phase to getting a bound
for the Fourier transform of the surface measure on a sphere.

2 Introduction to Stationary Phase

The simplest oscillatory integral one can consider is

I(x,R) =

Z
b

a

eiRx dx

and a basic substitution and integral estimate tells us that

|I(x,R)|  2

R
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Such an estimate is begging for a more general result. The first of these
is the Vander-Corput lemma.

Lemma 2.1. (Vander Corput) Suppose that f 2 C1(a, b), f 0(x) � 1, and
f 0(x) is monotonic. Then

|I(f,R)| =
����
Z

b

a

eiRf(x) dx

���� 
2

R

Proof. We make use of the following trick

|I(f,R)| =
����
Z

b

a

1

iRf 0(x)

d

dx

✓
eiRf(x)

◆
dx

���� (1)

=

����

✓
eiRf(b)

iRf 0(b)
� eiRf(a)

iRf 0(a)

◆
�
Z

b

a

eiRf(x) d

dx

✓
1

iRf 0(x)

◆
dx

���� (2)

 1

R

✓
1

f 0(b)
+

1

f 0(a)

◆
+

����
Z

b

a

eiRf(x) d

dx

✓
1

iRf 0(x)

◆
dx

���� (3)

To deal with the last integral, we make use of the monotonicity of f and
the fundamental theorem of calculus

����
Z

b

a

eiRf(x) d

dx

✓
1

iRf 0(x)

◆
dx

���� 
Z

b

a

����e
iRf(x) d

dx

✓
1

iRf 0(x)

◆����dx (4)

=

����
Z

b

a

d

dx

✓
1

iRf 0(x)

◆
dx

���� (5)

=

����

✓
1

iRf 0(b)
� 1

iRf 0(a)

◆���� (6)

=
1

R

����
1

f 0(b)
� 1

f 0(a)

���� (7)

Putting these two estimate together, we obtain that

|I(f,R)|  1

R

✓
1

f 0(b)
+

1

f 0(a)
+

����
1

f 0(b)
� 1

f 0(a)

����

◆

By considering cases x  y and x > y separately, it’s easy to conclude
that x+ y + |x� y| = 2max(x, y). So finally

1

f 0(b)
+

1

f 0(a)
+

����
1

f 0(b)
� 1

f 0(a)

���� = 2max

⇢
1

f 0(a)
,

1

f 0(b)

�
 2
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and |I(f,R)|  2
R

Three observations are important in this proof. First, notice that even
though we only assumed that f 2 C1(a, b), we are still allowed to talk about

d

dx

✓
1

iRf 0(x)

◆

because the monotonicity of f 0(x) guarantees that this derivative exists al-
most everywhere. Hence, we’re considering that integral as a Lebesgue in-
tegral.

Secondly, the condition that f 0(x) � 1 is far stronger than necessary.
We could just suppose that f 0(x) � � where � > 0 and make the appropiate
changes to have a trivially more general result.

Lastly, the computation that preceded the theorem shows that the con-
stant 2 in the bound of 2

R

is the best that we can do in terms of constants.

This result can be extended by considering derivatives of higher powers.
Before stating this, result, we should consider some motivation. Previously,
our motivation for Vander-Corput was the estimate

����
Z

b

a

eiRx dx

���� 
2

R

Naturally, we’d like to look at integrals of the form

I(xn, R) =

Z
b

a

eiRx

n

dx

In order to gain some intuition on what results we should expect, we
recall the classic Fresnel Integral. I won’t prove this result as I will prove a
more general result in a moment; however, the Fresnel integral tell us that

Z 1

0
eiRx

2
dx =

1

R1/2

Z 1

0
eix

2
dx =

1 + i

R1/2

r
⇡

8

By similar methods, we can also deduce that
Z 1

0
eiRx

n

dx =
C
n

R1/n
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where C
n

=
R1
0 eix

n

dx

This suggests conditions on f(x) similar to that of xn and bounds of the
form

|I(f,R)|  C

R1/n

Lemma 2.2. (Vander Courput) Let f(x) 2 Cm(a, b). Suppose that

f (m)(x) � 1. Then

|I(f,R)|  C
m

R�1/m

where C
m

will depend solely on m

Proof. We proceed with induction. Suppose that the result holds for m� 1.
If f (m�1)(x) 6= 0 on (a, b) then we follow the proof of Lemma 2.1 where we
again use the fact that

����
Z

b

a

1

iRf 0(x)

d

dx

✓
eiRf(x)

◆����

Since f (m)(x) � 1 and f (m�1)(x) is monotonic, there is at most one
point, x0 such that f (m�1)(x0) = 0. Then there exist at most one x0

I(f,R) =

Z
x0��

a

eiRf(x) dx+

Z
x0+�

x0��

eiRf(x) dx+

Z
b

x0+�

eiRf(x) dx

By the fact that |eiRf(x)| = 1

����
Z

x0+�

x0��

eiRf(x) dx

����  2�

Moreover, we can observe that if x 2 (x0 + �, b), then by using the mean
value theorem, we deduce that

f (m�1)(x)� f (m�1)(x0)

x� x0
= f (m)(c)

for c 2 (x0, x). Since f (m�1)(x0) = 0 and f (m)(c) � 1 we have

f (m�1)(x) � �

on (x0 + �, b) which further implies that f

(m�1)(x)
�

� 1 .
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Applying the induction hypothesis, we obtain
����
Z

b

x0+�

eiRf(x) dx

���� =
����
Z

b

x0+�

eiR�

f(x)
� dx

����  C
m�1(R�)

�1/(m�1)

We can apply the exact same argument to �f(x) in the first integral and
obtain ����

Z
x0��

a

eiRf(x) dx

����  C
m�1(R�)

�1/(m�1)

Putting this together, we obtain that

|I(f,R)|  2C
m�1(R�)

�1
m�1 + 2�

If we choose � = R�1/m, we have

|I(f,R)|  2C
m�1(RR�1/m)

�1
m�1 + 2R�1/m

and since

�1

m� 1
+

✓
�1

m

◆
�1

m� 1
=

�m

m(m� 1)
+

1

m(m� 1)
(8)

=
1�m

m(m� 1)
(9)

=
�1

m
(10)

we finally have that

|I(f,R)|  (2C
m�1 + 1)R� 1

m

where if C
m

= 2C
m�1 + 1 , then our proof is complete.

It may be worth nothing that we can play around with the constants by
choosing � in the above proof to be di↵erent.

It is natural to wonder whether we can keep extending this result. The
motivation we used suggests the consideration of fractional powers of x.

I(x↵, R) =

Z
b

a

eiRx

↵

dx

where ↵ > 1.
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To show that

lim
A!+1

Z
A

0
eiRx

↵

dx

exists, we first use the fact that
����
Z 1

0
eiRx

↵

dx

����  1

which tells us that

lim
A!+1

����
Z

A

0
eiRx

↵

dx

����  1 + lim
A!+1

����
Z

A

1
eiRx

↵

dx

����

If we make the substitution

t = Rx↵, so that x =

✓
t

R

◆ 1
↵

and dx =
t1/↵�1

↵R1/↵
dt

.
We have

Z
A

1
eiRx

↵

dx =

Z
RA

↵

1
eit

t1/↵�1

↵R1/↵
dt (11)

=
1

↵R1/↵


ieitt1/↵�1

����
RA

↵

1

�
Z

RA

↵

1

ieitt1/↵�2

1
↵

� 1

�
(12)

=
1

↵R1/↵


ieiRA

↵

(RA↵)1/↵�1 � iei �
Z

RA

↵

1

ieitt1/↵�2

1
↵

� 1

�
(13)

Since ↵ > 1 we have that 1
↵

� 2 < �1. Therefore; the leftmost integral
converges as A ! 1. So taking the limit as A ! 1 and letting the value
of the integral be denoted by C, we finally have

lim
A!+1

����
Z

A

0
eiRx

↵

dx

����  1 +
1 + C

↵R1/↵

For our purposes, what’s important about this result is the factor R1/↵

which appears in the proof of convergence. More motivation is given by the
following calculation below.

Theorem 2.3. Let ↵ > 1.
Z 1

0
eiRx

↵

dx =
1

↵R1/↵
�

✓
1

↵

◆✓
cos

✓
⇡

2↵

◆
+ isin

✓
⇡

2↵

◆◆
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Proof. Consider the quarter annulus with inner radius ✏ and outer radius r,
denoted, �

✏,r

. Let ↵ 2 (0, 1). By Cauchy’s Theorem we have that for all
r, ✏ > 0 Z

�

✏,r

z↵�1eiz = 0

We can break up the contour we’re integrating over into four parts yield-
ing the following

0 =

Z
r

✏

xa�1eix dx +

Z
⇡/2

0
(reit)↵�1ei(re

it)ireit

�
Z

r

✏

(ix)a�1ie�x dx�
Z

⇡/2

0
(✏eit)↵�1ei(✏e

it)i✏eit

We will get the second integral and the fourth integral out of the way by
using some basic integral estimates and basic results in measure theory. We
proceed as follows

����
Z

⇡/2

0
i(✏eit)↵ei✏e

it

dt

���� 
Z

⇡/2

0

����i(✏e
it)↵ei✏e

it

���� dt (14)

=

Z
⇡/2

0
✏↵
����e

i✏(cos(t)+isin(t) )

���� dt (15)

=

Z
⇡/2

0
✏↵e�✏sin(t) dt (16)

On this domain, our integrand is a family of functions indexed by ✏ which
is uniformly bounded by ✏↵e✏ on a set of finite measure and approaches 0
point-wise as ✏ ! 0. Therefore, we may apply the dominated convergence
theorem and obtain

lim
✏!0

Z
⇡/2

0
✏↵e�✏sin(t) dt =

Z
⇡/2

0
lim
✏!0

✏↵e�✏sin(t) dt = 0

Similarly we have that

����
Z

⇡/2

0
(reit)↵�1ei(re

it)ireit dt

���� 
Z

⇡/2

0
re�rsin(t) dt

Recall that removing a point from the domain of integration, [0,⇡/2]
does not change the value of the integral. Therefore we may view the last
integral as being over (0,⇡/2]. The purpose of doing this is because on
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this domain, our integrand is a family of functions indexed by ✏ which is
uniformly bounded by the integrable function ⇡

2 r. The domain is a set of set
of finite measure and the family of functions inside the integral approaches 0
point-wise as r ! 1. We have satisfied the conditions so that the dominated
convergence theorem can be applied. We have

lim
r!1

Z
⇡/2

0
re�rsin(t) dt = 0

So we are now left with the following
Z 1

0
x↵�1eix =

Z 1

0
(ix)↵�1e�x dx = �(↵)ei⇡↵/2

The result follows from the fact that a change of variables and the fact
that if ↵ > 1, 1

↵

2 (0, 1). So we have

Z 1

0
eiRx

↵

dx = R�1/↵
Z 1

0
eix

↵

dx (17)

=
1

↵R1/↵

Z 1

0
x

1
↵

�1eix (18)

=
1

↵R1/↵
�

✓
1

↵

◆
ei⇡/2↵ (19)

Note that if R = 1 and ↵ = 2, we obtain the result of Fresnel integral.

It would seem that an extension of the Vander-Corput lemma would re-
quire a treatment of fractional derivatives. I’m going to finish our discussion
of the method of stationary phase here however, my hope is to convince the
reader that such an extension of the Vander-Corput lemma is quite likely to
exist.

3 Applications

We will use what we developed so far to give estimates for the Fourier trans-
form of the surface measure � on a sphere Sn�1 ⇢ Rn. First we start o↵
by diving a bit more into our oscillatory integrals. We assume an introduc-
tion of the Fourier transform and in particular, we will assume the following
theorem.
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Theorem 3.1. Let T be an invertible n ⇥ n real symmetric matrix with

signature �. Define

G
T

(x) = e�i⇡hTx,xi

G
T

has a distributional Fourier transform which is equal to

e�⇡i

�

4 |detT |�1/2 G�T

�1(⇠)

Put another way, we have that for any �(x) 2 S(Rn)

Z
e�i⇡hTx,xi�̂(x) = e�⇡i

�

4 |detT |�1/2
Z

ei⇡hT
�1

x, xi�(x) dx

Using this theorem, we’re able to prove the following:

Theorem 3.2. Let T be a real symmetric invertible matrix with signature

�. Let  (x) 2 C1
0 and define

I(R) =

Z

R
e�i⇡RhTx,xi  (x) dx

Then for any N , we have the following equality

I(R) = e�⇡i

�

4 |detT |R�n/2

✓
 (0) +

NX

j=1

R�jD
j

 (0) +O(R�(N+1))

◆

For our purposes the constants D
j

will not be of importance here.

Proof. If we invoke Lemma 3.1, and the Fourier inversion formula, we have
that

I(R) = e�⇡i

�

4 |detT | R
�n

2

Z
 ̂(�⇠) eR�1

⇡ihT�1
⇠,⇠i d⇠

Using Taylor’s theorem on eix, we have that

e⇡ihT
�1

⇠,⇠i =
NX

j=0

(⇡ihT�1⇠, ⇠i)j

j!
+O

✓
|⇠|2N+2

RN+1

◆

where the convergence in uniform in ⇠ and R. Putting this together with
our equation for I(R),
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Z
 ̂(⇠) e⇡iR

�1h T

�1
⇠, ⇠i d⇠ =

Z
 ̂(⇠)

✓
1 +

NX

j=1

(⇡ihT�1⇠, ⇠i)j

j!

◆
d⇠

+ O

✓Z
| ˆ (⇠)| |⇠|

2N+2

RN+1
d⇠

◆

The proof follows from the fact that
R
 ̂(⇠) d⇠ =  (0) and that from

Distribution theory,

Z
 ̂(⇠)

(⇡ihT�1⇠, ⇠i)j

j!
d⇠ = D

j

 

for appropriate di↵erential operators D
j

, and lastly by the fact that

Z
| ̂(⇠)||⇠|2N+2 d⇠ < C

since  ̂(⇠) is also a Schwartz function.

The following theorem, we will take for granted; however, it is a corollary
of the theorem just proven.

Theorem 3.3. Let � be C1
and assume that r�(p) = 0 and H

�(p) is

invertible. Let � be the signature of H
�(p), and let � = 2�n|det(H

�(p)|. Let

 be a bump function supported in a su�ciently small neighborhood of p.

Defining

I(R) =

Z
e�i⇡Rf(x) �(x) dx

we have the following

I(R) = e�⇡iR�(p)e�i⇡

�

4 �
�1
2 R�n/2

✓
 (p) +

NX

j=1

R�jD
j

 (p) +O(R�(N+1))

◆

Theorem 3.4. Assume that r�(p) = 0 and H
�(p) is invertible. Then, for

 supported in a small neighborhood of p, we have the following estimate

����
dk

dRk

(ei⇡R�(p))I(R)

����  C
k

R�(n2+k)
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We need to demonstrate the following claim: Let �M
i=1 be real valued

smooth functions and assume that �(p) = 0 and that r�(p) = 0. Lastly, let

� =
Y

�
i

Then all partial derivatives of � of order less than 2M also vanish at p.

Proof. By the product rule any partial D↵� is a linear combination of terms
of the form

MY

i=1

D�

i�
i

with
P
�
i

= ↵ . If |↵| < 2M , then some �
i

must be less than 2, so by
hypothesis all such terms vanish at p.

To prove our theorem, we need only di↵erentiate I(R) under the integral
sign in order to obtain

dk

dRk

(e�⇡iR(�(x)��(p))) = (�⇡i)k
Z
(�(x)� �(p)))k (x)e�⇡iR(�(x)��(p)) dx

Let b(x) = (�(x) � �(p))k (x). By the above claim all partials of b
of order less than 2k vanish at p. Now look at the expansion in previous
theorem replacing  with b and setting N = k � 1. By the claim the terms
D

j

b(p) must vanish when j < k, as well as b(p) itself. Hence, the above
theorem shows the desired result.

We now have all the tools we need to give our estimate. Suppose that
� : Rn ! R is smooth and M is a k-dimensional submanifold. Recall that if
we are given p 2 M , U ⇢ Rn and a local coordinate map F : U ! M � � F
will have a critical point at F�1(p) i↵ r�(p) is orthogonal to the tangent
space to M at p. Henceforth this is independent of the choice of F.

In order to estimate the Fourier transform of �, it su�ces to consider
�̂(�e

n

) where e
n

= (0, ... 0, 1) and � > 0. We can put local coordinates on
the sphere the standard way:

F1(x) =
p
1� |x|2 (20)

F2(x) = �
p
1� |x|2 (21)
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and all that is required of the remaining maps is that they map onto sets
whose closures do not contain {±e

n

}

Let �
k

be a suitable partition of unity subordinate to this covering by
charts. Let P

n

be the projection map defined by

P
n

(x) = e
n

· x

The gradient of P
n

is normal to the sphere at {±e
n

} only.

Putting all this together, we have

�̂(�e
n

) =

Z
e2i⇡�en·x d�(x) (22)

=
kX

j=1

Z
e2i⇡�en·x�

j

(x) d�(x) (23)

=

Z
e2i⇡�F1(x) �1(x)

F1(x)
dx+

Z
e2i⇡�F2(x) �2(x)

F2(x)
dx (24)

+
kX

j=3

Z
e2i⇡�Fj

(x)�
j

(x) dx (25)

The integrals are all in Rn�1, and the phase functions �
k

(x) have no
critical points if k � 3 in the support of �

k

(x). The Heissian of 2
p
1� |x|2

is invertible. Moreover the first and second terms are complex conjugates.
So we have that

�̂(�e
n

) = Re(a(�)e2⇡i�) + y(�)

And by invoking, we have

dja(�)

d�j
. ��

n�1
2 �j (26)

djy(�)

d�j
. ��N (27)

for all N .
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