
Learning in Biologically Plausible Neural Networks

Draco Xu
Department of Mathematics, Computer Science

University of Rochester

Abstract

Biologically Plausible Neural Networks (BPNNs) have attracted significant attenti-
on in recent years, mainly due to their ability to bridge the gap between artificial
neural networks and the biological processes that underlie them. In this paper, I
present an exhaustive literature review of learning algorithms for three specific
types of BPNNs: 1) Constrained Deep Neural Networks (CDNNs), 2) Spiking
Neural Networks (SNNs), and 3) Reduced Spiking Neural Networks (Rate Models,
RSNNs). Through case studies, I demonstrate the implementation and training
of CDNNs and introduce a novel learning method for RSNNs, which we also
implement. Furthermore, I propose an innovative approach to compare Spiking
Neural Networks and Constrained Deep Neural Networks. As future work, I plan
to expand my investigation of learning algorithms for SNNs, an endeavor that will
further enhance our understanding of biologically inspired neural network models.

1 Introduction

The success of ChatGPT has sparked public interest in deep neural networks and fostered positive
expectations for the rapid development of super-human artificial intelligence. Some researchers
attribute the advancements in large language models to their biologically plausible architectures,
which are based on neural network structures. However, others challenge this claim, arguing that
engineering perspectives, rather than biologically plausible architectures, have driven this success.
They maintain that designing biologically plausible architectures is not essential for achieving general
artificial intelligence. Despite the controversy, both sides concur that the earliest artificial neural
networks were inspired by findings in neuroscience. Over the past 50 years, the field of neural
networks has been extensively studied, resulting in two primary categories: deep neural networks
(DNNs) and spiking neural networks (SNNs). DNNs underpin the large language models seen today,
such as AlphaGo, which defeated the best human players in Go. In contrast, SNNs are considered
more biologically plausible and energy-efficient.

Deep neural network success can be attributed to advancements in hardware and learning approaches
based on backpropagation. Historically, SNNs have been challenging to train because backpropagation
cannot be directly applied due to the lack of a proper gradient at spiking times. However, recent
discoveries of effective gradient estimation functions for spiking times have renewed interest in
SNN learning within both academia and industry. Companies such as Intel and IBM have invested
significantly in the development of algorithms and hardware for neuromorphic computing.

In this study, I will present a thorough review of learning processes in biologically plausible neural
networks, with an emphasis on spiking neural networks. Additionally, I will introduce two innovative
learning methods for these networks and illustrate their applications in neuroscience and neuromorphic
computing.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



2 Related Work in Spiking Neural networks

In this section, we review the literature related to learning algorithms for spiking neural networks
(SNNs). Spiking Neural Networks (SNNs) are a type of artificial neural networks that are inspired
by the behavior of biological neurons. SNNs employ spiking neurons, which communicate through
discrete events called spikes or action potentials, to process and transmit information. Due to their
event-driven nature, SNNs are capable of processing temporal information and are computationally
efficient.

1. Neuron Model:
There are various mathematical models to describe the behavior of spiking neurons. One of
the most widely used models is the Leaky Integrate-and-Fire (LIF) neuron model. The LIF
neuron model can be described by the following differential equation (Ghosh-Dastidar and
Adeli, 2009):

τm
dVm

dt
= −(Vm − Vrest) +RmI(t) (1)

where Vm is the membrane potential, Vrest is the resting potential, Rm is the membrane
resistance, τm is the membrane time constant, and I(t) is the input current. When the
membrane potential reaches a threshold value Vth, the neuron emits a spike and resets its
membrane potential to the reset potential Vreset.

2. Synaptic Dynamics (Taherkhani et al., 2020):
The synaptic connections between neurons in an SNN determine how the spikes are trans-
mitted and processed. Synaptic dynamics can be modeled using various approaches, such as
exponential or alpha synapses. For instance, the dynamics of an exponential synapse can be
described by the following equation:

τs
dx

dt
= −x+ w

∑
f

δ(t− tf ) (2)

where x is the synaptic variable, τs is the synaptic time constant, w is the synaptic weight,
and tf represents the spike times of the presynaptic neuron.

3. Spike Propagation:
In an SNN, the propagation of spikes through the network is determined by the connectivity
and the synaptic weights. The output spikes of a neuron are transmitted to its postsynap-
tic neurons through the synapses. The postsynaptic neurons then update their membrane
potentials based on the input spikes and the synaptic weights, as described by the neuron
model.

4. Learning and Plasticity (Caporale and Dan, 2008):
SNNs can learn and adapt their behavior through various learning algorithms, such as
Spike-Timing-Dependent Plasticity (STDP), which adjust the synaptic weights based on the
timing of pre- and post-synaptic spikes. The general STDP learning rule can be expressed
as:

∆wij = η(f+(tj − ti)− f−(tj − ti)) (3)

where ∆wij is the change in synaptic weight between neuron i and neuron j, η is the
learning rate, ti and tj are the spike times of pre- and post-synaptic neurons, and f+ and f−
are the potentiation and depression functions that depend on the spike timing.

2.1 Supervised Learning in SNNs

Supervised learning in spiking neural networks (SNNs) focuses on adjusting synaptic weights based
on available input-output pairs to minimize a predefined loss function. The aim is to enable the
network to generalize and produce correct outputs for new, unseen inputs. This section delves
deeper into supervised learning algorithms for SNNs and discusses their principles, advantages, and
limitations.

2



SpikeProp SpikeProp, introduced by Bohte et al. (2000), was one of the first supervised learning
algorithms for SNNs. It extended the error backpropagation method used in traditional artificial neural
networks (ANNs) to single-layer SNNs. The algorithm relied on precise spike timing to compute
the error gradient and adjust the synaptic weights. While SpikeProp demonstrated the potential of
supervised learning in SNNs, it was limited to single-layer networks and lacked the ability to model
complex tasks.

Let t(l)j be the spike time of the j-th neuron in layer l. We define the error between the desired spike

time t
(L)
j for the output neuron j and the actual spike time as:

1. Compute the error for each output neuron j by comparing the actual spike time t
(L)
j with

the desired spike time t
(L)
j desired:

Ej =
1
2 (t

(L)
j − t

(L)desired
j )2

2. Calculate the total network error by summing the errors for all output neurons:
E =

∑NL

j=1 Ej

3. Find the derivative of the error with respect to the spike time for output neuron j:
∂Ej

∂t
(L)
j

= t
(L)
j − t

(L)desired
j

4. Compute the derivative of the spike time with respect to the membrane potential for neuron
j in layer l:
∂t

(l)
j

∂V
(l)
j

= 1

V
(l)′
j −V

(l)
j

5. Calculate the derivative of the membrane potential with respect to the synaptic weight
between neuron i in layer (l − 1) and neuron j in layer l:
∂V

(l)
j

∂w
(l)
ji

=
∑

k∈P
(l−1)
j

w
(l−1)
kj · ρ(t(l)j − t

(l−1)
k )

6. Using the chain rule, find the gradient of the error with respect to the synaptic weight
between neuron i in layer (l − 1) and neuron j in layer l:
∂Ej

∂w
(l)
ji

=
∂Ej

∂t
(L)
j

· ∂t
(l)
j

∂V
(l)
j

· ∂V
(l)
j

∂w
(l)
ji

7. Update the synaptic weights using gradient descent to minimize the error:
w

(l)
ji ← w

(l)
ji − η

∂Ej

∂w
(l)
ji

ReSuMe The Remote Supervised Method (ReSuMe) proposed by Kasinski and Ponulak (2005)
combined spike-timing-dependent plasticity (STDP), a biologically inspired unsupervised learning
rule, with gradient descent-based error backpropagation. ReSuMe could be applied to multi-layer
SNNs and allowed for more flexibility in terms of spike timing. The algorithm minimized the
difference between the desired and actual spike times to achieve learning, but faced challenges related
to the non-differentiable nature of spike events and the inherent complexity of the algorithm.

1. Initialize the synaptic weights wij and eligibility trace eij for each synapse between presyn-
aptic neuron i and postsynaptic neuron j.

2. For each input spike, update the membrane potential Vj of the postsynaptic neuron j using
the following equation:
Vj(t) = Vj(t) + wij · δ(t− ti)
where ti is the spike time of the presynaptic neuron i, and δ is the Dirac delta function.

3. When the membrane potential Vj of the postsynaptic neuron j reaches the threshold, generate
an output spike and reset the membrane potential.

4. Calculate the spike timing error ∆tjk for each output neuron j as the difference between the
actual spike time tj and the desired spike time tdesired

j :
∆tjk = tj − tdesired

j

5. Update the eligibility trace eij for each synapse using the following equation:
eij(t) = αeij(t) + δ(t− ti)
where α is the trace decay factor.

3



6. Update the synaptic weights wij using the following learning rule:
wij ← wij − η ·∆tjk · eij(t)
where η is the learning rate.

ANN-to-SNN Conversion In order to harness the power of deep learning techniques, Diehl et al.
(2016) proposed a method to convert pre-trained ANNs to SNNs. This approach involved training a
deep ANN using conventional backpropagation, followed by converting the trained network to an
equivalent SNN with the same architecture. To achieve this, activation functions were replaced by
spike generation mechanisms, and the continuous weights were discretized to match the binary nature
of SNNs. While this method enabled the application of deep learning techniques to SNNs, it did not
fully exploit the temporal dynamics and unique features of spiking neurons.

1. Train an Artificial Neural Network (ANN) with a deep learning algorithm such as back-
propagation. The ANN should have synaptic weights wANN

ij , biases bANN
j , and activation

functions ϕ(·) for each neuron.
2. Normalize the synaptic weights in the ANN. For each layer l, compute the maximum

absolute weight W (l)
max and divide each weight by it:

wnormalized
ij =

wANN
ij

W
(l)
max

3. Convert the ANN activation functions to Integrate-and-Fire (IF) neuron models in the
Spiking Neural Network (SNN). For each neuron j in the SNN, the membrane potential
V SNN
j (t) is updated as follows:

V SNN
j (t) = V SNN

j (t) +
∑N

i=1 w
normalized
ij · δ(t− ti)

where N is the number of input neurons, ti is the spike time of the presynaptic neuron i,
and δ is the Dirac delta function.

4. Set the firing threshold θj for each neuron in the SNN based on the ANN biases and
normalized weights:
θj = bANN

j ·W (l)
max

5. For each input spike, update the membrane potential V SNN
j (t) of the postsynaptic neuron j.

When the membrane potential reaches the firing threshold θj , generate an output spike and
reset the membrane potential.

6. Optionally, apply a refractory period or spike frequency adaptation mechanism to the SNN
neurons to fine-tune their spiking behavior and match the dynamics of the ANN more
closely.

Spike-Based Backpropagation To address the challenges posed by the non-differentiable nature of
spike events, researchers have developed spike-based backpropagation algorithms. One such method,
introduced by Lee et al. (2020) , utilized surrogate gradients to approximate the true gradient of the
loss function with respect to spike timings. By replacing the non-differentiable spike function with a
differentiable surrogate, this approach enabled gradient-based learning in multi-layer SNNs.

1. Initialize the synaptic weights wij , biases bj , and spike times t(l)j for each neuron j in layer
l of the Spiking Neural Network (SNN).

2. For each input spike, update the membrane potential V (l)
j (t) of neuron j in layer l using the

following equation:
V

(l)
j (t) = V

(l)
j (t) +

∑N
i=1 w

(l)
ij · δ(t− t

(l−1)
i )

where N is the number of neurons in layer (l − 1), and t
(l−1)
i is the spike time of neuron i

in layer (l − 1).

3. When the membrane potential V (l)
j of a neuron j in layer l reaches the firing threshold,

generate an output spike and reset the membrane potential.

4. Calculate the error for each output neuron j by comparing the actual spike time t
(L)
j with

the desired spike time t
(L)
j desired:

Ej =
1
2 (t

(L)
j − t

(L)desired
j )2

4



5. Calculate the total network error by summing the errors for all output neurons:
E =

∑NL

j=1 Ej

6. Compute the gradient of the error with respect to the synaptic weights w(l)
ij and biases b(l)j

for each neuron j in layer l using spike timing-based backpropagation rules.
7. Update the synaptic weights and biases using gradient descent to minimize the error:

w
(l)
ij ← w

(l)
ij − η

∂Ej

∂w
(l)
ij

b
(l)
j ← b

(l)
j − η

∂Ej

∂b
(l)
j

where η is the learning rate.

SuperSpike Another spike-based backpropagation method, known as SuperSpike (Zenke and Ganguli,
2018), used the principle of the feedback alignment algorithm to train SNNs. It also employed a
surrogate gradient to overcome the non-differentiability of spike events, and introduced a novel
synaptic plasticity rule that promoted learning in deep SNNs. While SuperSpike showed promising
results, it still faced challenges in training very deep networks and handling complex tasks.

Temporal Coding Methods Temporal coding methods in supervised learning for SNNs focus on
leveraging the precise timing of spikes to encode and process information. Spike Timing Dependent
Plasticity with Error Backpropagation (STDP-EB) (Tavanaei and Maida, 2019) combined the princip-
les of STDP and error backpropagation to train SNNs using precise spike timing. By minimizing the
spike timing difference between the desired and actual output, STDP-EB enabled learning in deep
SNNs. However, the algorithm’s reliance on precise spike timing made it sensitive to input noise and
temporal jitter.

2.2 Unsupervised Learning in SNNs

Unsupervised learning methods have been developed to exploit the advantages of SNNs in tasks
without explicit target outputs. One such method is STDP (Caporale and Dan, 2008), a biologically
inspired learning rule that modifies synaptic weights based on the relative timing of pre- and post-
synaptic spikes. Another approach, Spike Timing Dependent Plasticity with Adaptive Normalization
(STDP-AN) (Tegner and Kepecs, 2002), extended STDP to incorporate weight normalization, which
improved the stability of unsupervised learning in SNNs.

2.3 Reinforcement Learning in SNNs

Reinforcement learning (RL) techniques have also been applied to SNNs, allowing them to learn
from interaction with their environment. One notable example is Tempotron (Gütig and Sompolinsky,
2006), which used a spike-based RL algorithm to train a single-layer SNN for time-sensitive tasks.
More recently, Frémaux et al. (2013) proposed a biologically plausible SNN model that combined
STDP and RL principles, enabling the network to learn complex tasks in a spiking neural environment.

Reinforcement Learning (RL) in Spiking Neural Networks (SNNs) is an area of research that
seeks to develop learning algorithms for SNNs that can adapt their behavior based on the feedback
received from the environment. The goal is to enable SNNs to learn complex tasks and make decisions
autonomously. Reinforcement learning in SNNs combines the computational efficiency and biological
plausibility of spiking neurons with the powerful learning mechanisms of RL.

1. RL Framework in SNNs:
Reinforcement learning in SNNs follows the standard RL framework consisting of an agent,
environment, states, actions, and rewards. In the context of SNNs, the agent is the SNN
itself, which interacts with the environment by processing sensory inputs (in the form of
spike trains) and generating actions (also represented as spike trains). The agent receives
feedback from the environment in the form of rewards or punishments, which are used to
guide the learning process.

2. Neuronal Reward Signals:
To implement RL in SNNs, one of the main challenges is to develop a mechanism to convey
the reward signals to individual neurons, which can then modulate their synaptic weights
based on the feedback. One approach is to use global reward signals, which are broadcasted

5



to all neurons in the network. Another approach is to use local reward signals, which are
computed and delivered to specific neurons or groups of neurons based on their activity and
contribution to the overall network performance.

3. Learning Rules for RL in SNNs:
A variety of learning rules have been proposed for implementing RL in SNNs. Some of the
most prominent ones include:

• Reward-modulated STDP (Legenstein et al., 2008):
Spike-Timing-Dependent Plasticity (STDP) with reward-modulated learning adjusts
the synaptic weights based on the timing of pre- and post-synaptic spikes as well as the
received reward signals. The learning rule can be expressed as:
∆wij = η(r − r̄) · (f+(tj − ti)− f−(tj − ti))
where ∆wij is the change in synaptic weight between neuron i and neuron j, η is
the learning rate, r is the received reward, r̄ is the baseline reward, ti and tj are the
spike times of pre- and post-synaptic neurons, and f+ and f− are the potentiation and
depression functions that depend on the spike timing.

• Temporal Difference (TD) Learning: (Jeong, 2018)
TD learning in SNNs involves updating the synaptic weights based on the difference
between the predicted and actual rewards. The learning rule can be expressed as:
∆wij = η · δ · xi(t)
where ∆wij is the change in synaptic weight between neuron i and neuron j, η is the
learning rate, δ is the temporal difference error given by δ = r+γ ·V (s′)−V (s), xi(t)
is the eligibility trace of neuron i, and V (s) and V (s′) are the values of the current state
s and the next state s′, respectively. The discount factor γ determines the importance
of future rewards.

• Policy Gradient Methods (Huh and Sejnowski, 2018):
Policy gradient methods in SNNs involve directly optimizing the network’s policy,
which maps states to actions, by updating the synaptic weights based on the gradient of
the expected cumulative reward. The learning rule can be expressed as:
∆wij = η · ∇wJ(w)
where ∆wij is the change in synaptic weight between neuron i and neuron j, η is the
learning rate, J(w) is the expected cumulative reward, and ∇wJ(w) is the gradient
of the expected cumulative reward with respect to the synaptic weights. The gradient
can be estimated using various techniques, such as the REINFORCE algorithm or the
advantage actor-critic method.

2.4 Hybrid Learning Approaches

Some research has focused on developing hybrid learning methods that combine elements of supervi-
sed, unsupervised, and reinforcement learning. One such example is Deep Belief Networks for SNNs
(DBN-SNN) (Campbell et al., 2020), which utilized a combination of unsupervised pre-training and
supervised fine-tuning to train deep SNNs. Another approach, proposed by Kulkarni and Rajendran
(2018), combined STDP with backpropagation to create a hybrid learning algorithm that leveraged
the advantages of both techniques.

Hybrid Learning Approaches in the context of Spiking Neural Networks (SNNs) refer to the com-
bination of different learning paradigms to exploit their strengths and mitigate their limitations. By
integrating supervised, unsupervised, and reinforcement learning methods, hybrid learning approa-
ches aim to create more robust and efficient learning mechanisms for SNNs, which can handle
complex tasks and adapt to diverse environmental conditions.

1. Supervised-Unsupervised Hybrid Learning:
In supervised-unsupervised hybrid learning, SNNs combine the use of labeled data for
learning specific tasks with the extraction of features from unlabeled data. This approach can
enhance the network’s ability to generalize to new, unseen data and improve its robustness
against noisy inputs. Some popular methods for supervised-unsupervised hybrid learning in
SNNs include:

• Autoencoders: Train SNNs to learn efficient, low-dimensional representations of high-
dimensional input data in an unsupervised manner, which can then be used as input for
supervised learning tasks.

6



• Unsupervised pre-training: Train an SNN in an unsupervised manner to learn features
from the data and then fine-tune the network using supervised learning for the specific
task.

2. Supervised-Reinforcement Hybrid Learning:
In supervised-reinforcement hybrid learning, SNNs combine the use of labeled data for
learning specific tasks with the optimization of the network’s behavior based on the feedback
received from the environment. This approach can enhance the network’s ability to adapt
to changing environmental conditions and improve its overall performance. Some popular
methods for supervised-reinforcement hybrid learning in SNNs include:

• Imitation learning: Train SNNs to mimic the behavior of an expert or another neural
network using supervised learning and then refine the network’s behavior using reinfor-
cement learning to improve its performance.

• Auxiliary tasks: Train SNNs to learn multiple tasks simultaneously, with some tasks
being supervised and others being reinforcement-based, to leverage the shared know-
ledge and improve the network’s overall performance.

3. Unsupervised-Reinforcement Hybrid Learning:
In unsupervised-reinforcement hybrid learning, SNNs combine the extraction of features
from unlabeled data with the optimization of the network’s behavior based on the feedback
received from the environment. This approach can enhance the network’s ability to adapt
to diverse environmental conditions and improve its robustness against noisy inputs. Some
popular methods for unsupervised-reinforcement hybrid learning in SNNs include:

• Intrinsic motivation: Train SNNs to learn features from the data in an unsupervised
manner and then optimize the network’s behavior using reinforcement learning based
on intrinsic rewards, which are generated based on the network’s internal states and
activities.

• Exploration-exploitation trade-off: Train SNNs to learn features from the data in an
unsupervised manner and then optimize the network’s behavior using reinforcement
learning, balancing the need to explore new states and actions with the need to exploit
the knowledge already acquired.

3 Introduction to Rate Model

Mean field theory (MFT) is a powerful mathematical framework widely used to analyze the collective
behavior of large-scale systems, such as spiking neural networks (SNNs) (Hasegawa, 2003). In
the context of neuroscience, MFT provides an effective approach to describe the average behavior
of neurons within a network while reducing the complexity associated with simulating individual
interactions. In this section, we introduce the fundamental concepts of MFT as applied to SNNs and
present the mathematical details necessary for a comprehensive understanding.

The primary idea behind MFT is to approximate the behavior of a neuron in the network by the
average behavior of all neurons, under the assumption that the interactions between individual neurons
are sufficiently weak. Let us denote the membrane potential of neuron i at time t as Vi(t) and the
spike train of neuron i as Si(t). The dynamics of Vi(t) can be described by the following differential
equation:

τm
dVi(t)

dt
= −Vi(t) +

N∑
j=1

wijSj(t) + Ii(t), (4)

where τm is the membrane time constant, wij represents the synaptic weight from neuron j to neuron
i, and Ii(t) is the external input to neuron i. The spike train Sj(t) is given by:

Sj(t) =
∑
k

δ(t− tj,k), (5)

where δ(t) is the Dirac delta function and tj,k represents the time of the k-th spike emitted by neuron
j.

7



Abbildung 1: Behavioral Data

In order to apply MFT, we introduce the population-averaged membrane potential V̄ (t) and
population-averaged firing rate r̄(t), defined as:

V̄ (t) =
1

N

N∑
i=1

Vi(t), (6)

r̄(t) =
1

N

N∑
i=1

∑
k

δ(t− ti,k). (7)

By replacing the individual membrane potentials and spike trains with their respective population
averages in the differential equation for Vi(t), we obtain a mean-field approximation for the dynamics
of the network:

τm
dV̄ (t)

dt
= −V̄ (t) + wavg r̄(t) + Ī(t), (8)

where wavg is the average synaptic weight and Ī(t) is the population-averaged external input.

The mean-field approximation greatly simplifies the analysis of SNNs, as it reduces the complexity
of simulating individual neuronal interactions to describing the average behavior of the network. This
approximation is particularly useful for studying the emergent properties and dynamics of large-scale
networks, which can provide insights into the underlying principles governing neural computation
and information processing.

In naturalistic motion perception, even though a stimulus may barely occupy a receptive field for a
limited time, observers must nonetheless extract accurate estimations of both self and object motion.
Much of the earlier motion research has employed longer stimuli (Newsome and Pare, 1988), such as
those lasting hundreds of milliseconds or longer, which require observers to integrate weak signals
over time to determine the sensitivity of observers to analogously brief stimuli. Recently, there is a
dataset based on an psychophysics experiment. It was four-alternative forced-choice visual motion
discrimination task, employing both short and long stimuli.

As shown in the Figure 1, It’s basically a traditional psychophysics experiment. The stimulus is the
plaid motion shown here. It could move in four directions, up, down, left, and right. And the subjects
are going to make the decision on what direction it’s moving. You could imagine that we only show
the stimulus to subjects for a short time, for example, 10 ms. Then subjects are basically making a

8



Abbildung 2: simplified four-variable version of a biophysically realistic cortical network model of
decision making

random guess. But if we show for a long time; then there is a high chance they could make the right
decision. Here we have four conditions. The contrast could be high or low, which means you could
see white or black in the stimulus or just gray. And the size of the ball could be big or small. If we
suppose the right direction is the correct one, then you could see the results from these four figures.
The x is the time, and y are the probability of the four directions the subjects made. It makes sense
that with the limited time, they are all just 0.25, which is a random guess. And the correct one will
converge to 1 when time goes up. However, what interests us is that in the high contrast condition,
you could see the left, which is the opposite direction, going up and down. And in low contrast, there
is no such thing. We call it the axis extraction since there seems to be a temporary preference for
the axis in the high contrast condition; I mean, the right and the left are on the same axis. The other
interesting finding is that in the big size here, there will be an interval of time when the opposite
direction is even higher. The project is trying to explain the axis extraction with the help of neural
network.

4 Results

4.1 Reduced Spiking Neural Network (RSNN)

4.1.1 Network Definition

Xiaojing-Wang Wang (2002) proposed a biophysically realistic cortical network model for a binary
visual discrimination experiment. It’s a common way to reduce the model by treating the net input
to a neuron in a large homogeneous population as a Gaussian random process (Wong and Wang,
2006). Therefore, for a binary visual decision making task, the mean activity of a (homogeneous)
population (left/right) can be represented by a single unit. Based on the well-developed simplified
two-variable version of a biophysically realistic cortical network model of decision making (Wong
and Wang, 2006), I extended it to a four-variable version (See Figure 2). The 4 units stand for 4
directions, where 1/2/3/4 indicate 180/90/0/270 deg. There is a self-to-self excitation for each unit,
and each unit will send inhibition to all the other three units.

Basically, let r be the firing rate of a leaky integrate-and-fire (LIF) neuron receiving a noisy input
current. Then, the firing rate could be described by the equation 9 (Amit and Tsodyks, 1991; Renart

9



et al., 2003; Ricciardi, 2013) shown below.

r = Φ(Isyn) = (τref + τm
√
ϕ

∫ Vth−Vss
σV

Vreset−Vss
σV

ex
2

(1 + erf(x))dx)−1 (9)

where Φ is a function of the total synaptic input current Isyn. τm is the membrane time constant. Vth

is the spiking threshold for the membrane voltage, Vreset is the reset voltage, τref is the refractory
period, σV is the membrane potential SD, and V ss = V L+

Isyn

gL
. Instead of using the equation 9,

the two-variable version used Abbott and Chance function (Abbott and Chance, 2005) for Φ(Isyn).
Then, they could use several first-order dynamical equations to model the firing rate of the model.
Here, I used the same simplification but for four variables. The model considers four excitatory neural
assemblies, populations 1, 2, 3 and 4, standing for left, up, right and down, that compete with each
other through a shared pool of inhibitory neurons. The firing rate is shown in the equation 10.

ri = F (Ii) =
aIi − b

1− exp(−d(aIi − b))
, i = 1, 2, 3, 4 (10)

In the equation 10, I let r1, r2, r3, and r4 be firing rates of E and I populations, and the total
synaptic input current Ii and the resulting firing rate ri of the neural population i obey the following
input-output relationship (F − I curve).It captures the current-frequency function of a leaky integrate-
and-fire neuron.
Moreover, the synapic drive is defined as below

dS1

dt
= F (I1)γ(1− S1)− S1/τs (11)

dS2

dt
= F (I2)γ(1− S2)− S2/τs (12)

dS3

dt
= F (I3)γ(1− S3)− S3/τs (13)

dS4

dt
= F (I4)γ(1− S4)− S4/τs (14)

The net current into each population directions 1/2/3/4 indicate 180/90/0/270 deg:

I1 = JES1 + JIothgS2 + JIopstS3 + JIothgS4 + Ib + Jextµ1 (15)

I2 = JES2 + JIothgS1 + JIopstS4 + JIothgS3 + Ib + Jextµ2 (16)
I3 = JES3 + JIothgS2 + JIopstS1 + JIothgS4 + Ib + Jextµ3 (17)
I4 = JES3 + JIothgS1 + JIopstS2 + JIothgS3 + Ib + Jextµ4 (18)

There are three critical parameters in this model, which are JE , JIothg and JIopst, where is the
connection weight for the self-to-self excitatory connection weight, JIopst is the self-to-opposite
inhibitory connection weight, and JIothg is the self-to-orthogonal inhibitory connection weight. Since
unit 1 (180o) to unit 3 (0o) are opposite direction, and 1 (180o) to both unit 2 (90o) and unit 4 (270o)
are orthogonal direction, the JE , JIothg and JIopst are set accordingly in the equation 15.

An important contribution here I made is designing the input of the RSNN. Basically, I computed the
motion energy of the input stimulus. After using the Naka-Rushton function (Schauder et al., 2017)
to fit the motion energy, I design the input based on the motion energy.

4.1.2 RSNN Training Proposed

The firing rate ri of the unit for the i-th choice is shown as follows: ri = F (Ii) =
aIi−b

1−exp(−d(aIi−b)) , i = 1, · · · ,K , where Ii (Input current) at time t is define as Ii = Σj
iJji · Sj +

Ibi + Jext · µi. Here, the Si (the synaptic drive) is defined as dSi

dt = F (Ii) γ (1− Si)− S1/τi. Jji

is the connection weight from the unit j to the unit i, Ibi is the background input, and µi is the
egit (input as we mentioned before) constrained by a uniform weight Jext. Except for µi, all the
other variables with parameters we don’t introduce in detail is trainable. The output of i-th unit at
time t (trial g) is defined as egit = σ (I) i, where σ is SoftMax and I = (r1, r2, · · · , rK). That said,

10



f (x)
g
t = (e

g1
t , eg2t , · · · , egKt ). We define the objective function O is consisting of two parts, one is

the hypothesis reading from the data and the other one is the weighted 2-normal distance between the
model outputs and the labels. Therefore, I proposed the training for the RSNN as an optimization
problem, the objective function is shown below:

O(f(x), y)) = Ψy(f(x)) +M(f(x), y)

M (f (x) , y) = Et[Σ
k
i

Σk
i |y

gi
t |+ |e

gi
t |

|ygit |+ |e
gi
t |

(
egit − ygit

)2

Ψy = K · sgn(E| dr1dt
dr3
dt |>ϵ

(r3 − r1)) · Ec,| dr1dt
dr3
dt |>ϵ,

dr1
dt >0,

dr3
dt >0

ec(
dr3
dt
− dr1

dt
)

Here H and C are constants. Here the hypothesis reading encoded are the two key characteristics
of motion perceptual choice: (1) the axes effect—observers first perceive the motion axes (i.e.,
horizontal/vertical) then delineate the exact direction (i.e., left/right) within the axes of the high
contrast motion stimuli; (2) the opposite-direction effect—Brief Suppression. We develop a derivation
of the adjoint method(Errico, 1997) to compute the gradients of the parameters numerically, then take
Adam(Kingma and Ba, 2015) as the learning method. The results show that our training method can
reproduce the behavior data well. The results, only considering hypothesis reading is hard to capture
the temporal pattern.

Here since we have only three parameters to be trained, JE , JIothg and JIopst, we could use numerical
differentiation to do the SGD for this optimization.

4.1.3 input to RSNN

The input to the RSNN is the motion energy based on the spatiotemporal energy models (Adelson
and Bergen, 1985). It’s a classical method in capturing the perception of motion, based on the outputs
of quadrature pairs of filters. The first step is to compute the Fourier Transform of the stimulus, then
numerically fitting the distribution of the frequencies across the time.

Abbildung 3: Low Contrast Motion Enengry

11



Abbildung 4: High Contrast Motion Enengry

As shown in the Figure 3 4 for low-contrast stimuli, the ratio difference immediately emerges at
very short durations. But for high-contrast stimuli, the ratio difference gradually increases. This may
explain why we see the two directions get tangled only for high-contrast stimuli.

4.2 Training of RNN

The training of the RNN is based on a framework proposed for modeling a wide range of neural
activity patterns and behavior (Song et al., 2016a). The implementation was done with Neurogym.
The input is a 1× 44 vector, representing the stimulus’s radius and contrast. We have 4 conditions:
low contrast-high contrast, low contrast-low contrast, high contrast-low contrast, high contrast-high
contrast. Then there is a hidden layer that has 256 nodes. The input connects the hidden layer with a
44× 256 matrix with a 1× 256 bias matrix. Every unit in the hidden layer connects with all the other
units in the hidden layer, so there is a 256×256 hidden to hidden matrix. It is an Excitation-Inhibition
network because we define some of the connections must be positive and some of them must be
negative. To be specific, 204 units are designed to be excitatory, and 52 are designed to be inhibitory.
Then, we link the 204 excitatory units to a 1× 4 output vector. Therefore, there is a 4× 204 output
matrix. The output vector represents the behaviour, e.g. 1-left, 2-up.

4.2.1 RSNN Results

After training the model accordingly, we could obtain the firing rate for low (contrast=0.05) and
high (contrast=0.99) contrast conditions, as shown in Figure ?? and Figure 5. The parameters are
listed as follows: JE = 0.3103, JIothg = -0.007, JIopst = -0.048. There is a stronger self-to-opposite
inhibitory connection weight. As we can see, both in the low and high contrast condition, there is a
competition among the four groups of neurons at the beginning, and then, following with the wining
of the right direction. However, only in the high contrast condition could we observe the stronger
opposite direction (left) comparing to the orthogonal directions (up/down). In terms of the decision
making, we could put the firing rate to a softmax function to derive the psychophysical curve shown
in Figure ?? and Figure ??. That’s a good match to the behavioral data regarding the axis extraction.

4.3 Excitatory-Inhibitory Recurrent Neural Network

Excitatory-Inhibitory Recurrent Neural Network has been proven to be powerful in uncovering the
dynamical and computational principles governing population responses when optimized to perform
the same tasks as behaving animals Song et al. (2016b). Here, we used the Excitatory-Inhibitory
Recurrent Neural Network to model the 4AFC task.

4.3.1 Network Architecture

As seen in the Figure 6, there is a single hidden layer in the network, which is made up of 256 units.
They are fully connected by a 256× 256 weight matrix across the time. As seen in 6, 80% of the
units are designed to be excitatory, that is the weights across time are forced to be positive, while the
left 20% are inhibitory whose weights across time are forced to be negative.

12



Abbildung 5: RSNN Results: (a) Firing Rate for Low Contrast (b) Firing Rate for High Contrast (c)
Decision-Making for Low Contrast (d) Decision-Making for High Contrast

Abbildung 6: Hidden Layer

4.3.2 Training Results

After training, we could have the output of the network shown in the Figure 7. It’s not surprising to
see the good fitting ability based on the nature of RNN.

13



Abbildung 7: RNN Results

Abbildung 8: RNN Connection Map (All Contrast Inputs)

Abbildung 9: RNN Weight Connection

If we look at the the selective units in the 256 × 256 weight matrix, then we could compare the
connection strength for different directions. As shown in the Figure 9, there is a strong self-to-
self excitatory connection. Moreover, self-to-opposite inhibitory connection is stronger to self-to-
orthogonal inhibitory connection. The results are consistent with what we see in the RSNN, regrading
the JE , JIothg and JIopst.

14



4.3.3 Single RNN units don’t explain the activity of single RSNN neurons

I used a metric referred to “alignment score” (Higgins et al., 2021), which measures the extent to
which variance in each neuron’s firing rate can be explained by a single RNN unit. The alignment score
of the four RSNN neurons are 0.0128, 0.027, 0.104, and 0.096, which is relatively low. However, we
notice that the alignment score of the right direction is the highest. Overall, it shows that single RNN
units don’t explain the activity of single RSNN neurons. It raises the need for a more disentangling
neural network, which should be a part of the future work.

5 Reinforcement Learning Approach

Q-learning: Learn function Q : X ×A → R
Require:

States X = {s1, . . . , snx
}

Actions A = {a1, . . . , sna
}, A : X ⇒ A

Reward function R : X ×A → R
Black-box (probabilistic) transition function T : X ×A → X
Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
procedure QLEARNING(X , A, R, T , α, γ)

Initialize Q : X ×A → R arbitrarily
while Q is not converged do

Start in state s ∈ X
while s is not terminal do

Calculate π according to Q and exploration strategy (e.g. π(x)← argmaxa Q(x, a))
a← π(s)
r ← R(s, a) ▷ Receive the reward
s′ ← T (s, a) ▷ Receive the new state
Q(s′, a)← (1− α) ·Q(s, a) + α · (r + γ ·maxa′ Q(s′, a′))
s← s′

return Q

We define Sd = {0 ± k ∗ β | k = 0, 1, · · · , N}, then the three trainable parameters JE ,
JIothg, JIopst ∈ Sd (the space size nx = (2N + 1)3).

For each state s, we have to decide the possible actions, here we set the A =
{[0, 0, 0], [β, 0, 0], [−β, 0, 0], [0, β, 0], [0,−β, 0], [0, 0, β], [0, 0,−β]}, which is of size na. We first
initialize a Q table, here we need to create a table of size nx × na. Here we need to design the R, we
propose that r(s, a) is how well the model based on s′ fits the data. We let {et} denotes the simulated
data, and {yt} denotes the observed data. For each condition (contrast / size), we have the objective
function Oc below:

Oc(s) = Et[Σ
4
i

Σ4
i

∣∣yit∣∣+ ∣∣eit∣∣∣∣yit∣∣+ ∣∣eit∣∣ (
eit − yit

)2
]

, where e = e(s). Then we define the R to be −ΣcOc.

The problem I see here is the q-learning approach would be able to find us in finding the optimal s∗.
The steps we need for finding the s∗ first time is largely dependent on the initial Q table, which we
should have no control.

6 Forward-Forward Non-BP SNN training

Ongoing

7 DISCUSSIONS

The proposed a biophysically realistic cortical network model provides a good explanation the
quadruple visual discrimination experiment. Turning the spiking neural network could be converted to

15



an optimization problem when the number of parameters is limited. Therefore, the training strategy for
machine learning could be useful to train the reduced spiking neural network based on the numerical
differentiation.

Both the RSNN and RNN show that the strong self-to-self excitatory connection and stronger self-to-
opposite inhibitory connection comparing with self-to-orthogonal inhibitory connection is critical
to the axis extraction. However, since single RNN units don’t explain the activity of single RSNN
neurons, we may need to use a more disentangling neural network in the future. It could be the
disentangled sequential autoencoder (Li and Mandt, 2018), and the idea is to train it with the natural
video dataset, then compare it with the RSNN, bring a more normative explanation for the axis
extraction.

However, the RSNN doesn’t consider the size effect at present, thus not able to fitting the time-
dependent suppression of the opposite direction as seen in the Figure 1. I will work on the temporal
properties of center–surround interactions in motion (Tadin et al., 2006) to include the size as a factor.

Biologically Plausible Neural Networks (BPNNs) have attracted significant attention in recent years,
mainly due to their ability to bridge the gap between artificial neural networks and the biological
processes that underlie them. In this paper, I present an exhaustive literature review of learning
algorithms for three specific types of BPNNs: 1) Constrained Deep Neural Networks (CDNNs), 2)
Spiking Neural Networks (SNNs), and 3) Reduced Spiking Neural Networks (Rate Models, RSNNs).
Through case studies, I demonstrate the implementation and training of CDNNs and introduce a
novel learning method for RSNNs, which we also implement. Furthermore, I propose an innovative
approach to compare Spiking Neural Networks and Constrained Deep Neural Networks. As future
work, I plan to expand my investigation of learning algorithms for SNNs, an endeavor that will further
enhance our understanding of biologically inspired neural network models.

16



Literatur
Larry F Abbott and Frances S Chance. 2005. Drivers and modulators from push-pull and balanced

synaptic input. Progress in brain research 149 (2005), 147–155.

Edward H Adelson and James R Bergen. 1985. Spatiotemporal energy models for the perception of
motion. Josa a 2, 2 (1985), 284–299.

Daniel J Amit and MV Tsodyks. 1991. Quantitative study of attractor neural network retrieving at
low spike rates. I. Substrate-spikes, rates and neuronal gain. Network: Computation in neural
systems 2, 3 (1991), 259.

Sander M Bohte, Joost N Kok, and Johannes A La Poutré. 2000. SpikeProp: backpropagation for
networks of spiking neurons.. In ESANN, Vol. 48. Bruges, 419–424.

Sawyer D Campbell, Ronald P Jenkins, Philip J O’Connor, and Douglas Werner. 2020. The explosion
of artificial intelligence in antennas and propagation: How deep learning is advancing our state of
the art. IEEE Antennas and Propagation Magazine 63, 3 (2020), 16–27.

Natalia Caporale and Yang Dan. 2008. Spike timing–dependent plasticity: a Hebbian learning rule.
Annu. Rev. Neurosci. 31 (2008), 25–46.

Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. 2016. Conversion
of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic
hardware. In 2016 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 1–8.

Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. 2013. Reinforcement learning using a
continuous time actor-critic framework with spiking neurons. PLoS computational biology 9, 4
(2013), e1003024.

Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Spiking neural networks. International journal
of neural systems 19, 04 (2009), 295–308.

Robert Gütig and Haim Sompolinsky. 2006. The tempotron: a neuron that learns spike timing–based
decisions. Nature neuroscience 9, 3 (2006), 420–428.

Hideo Hasegawa. 2003. Dynamical mean-field theory of noisy spiking neuron ensembles: Application
to the Hodgkin-Huxley model. Physical Review E 68, 4 (2003), 041909.

Irina Higgins, Le Chang, Victoria Langston, Demis Hassabis, Christopher Summerfield, Doris Tsao,
and Matthew Botvinick. 2021. Unsupervised deep learning identifies semantic disentanglement in
single inferotemporal face patch neurons. Nature communications 12, 1 (2021), 1–14.

Dongsung Huh and Terrence J Sejnowski. 2018. Gradient descent for spiking neural networks.
Advances in neural information processing systems 31 (2018).

Doo Seok Jeong. 2018. Tutorial: Neuromorphic spiking neural networks for temporal learning.
Journal of Applied Physics 124, 15 (2018), 152002.

Andrzej Kasinski and Filip Ponulak. 2005. Experimental demonstration of learning properties of
a new supervised learning method for the spiking neural networks. ICANN (1) 3696 (2005),
145–152.

Shruti R Kulkarni and Bipin Rajendran. 2018. Spiking neural networks for handwritten digit
recognition—Supervised learning and network optimization. Neural Networks 103 (2018), 118–
127.

Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik
Roy. 2020. Enabling spike-based backpropagation for training deep neural network architectures.
Frontiers in neuroscience (2020), 119.

Robert Legenstein, Dejan Pecevski, and Wolfgang Maass. 2008. A learning theory for reward-
modulated spike-timing-dependent plasticity with application to biofeedback. PLoS computational
biology 4, 10 (2008), e1000180.

17



Yingzhen Li and Stephan Mandt. 2018. Disentangled sequential autoencoder. arXiv preprint
arXiv:1803.02991 (2018).

William T Newsome and Edmond B Pare. 1988. A selective impairment of motion perception
following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8, 6 (1988),
2201–2211.

Alfonso Renart, Nicolas Brunel, and Xiao-Jing Wang. 2003. Mean-field theory of recurrent cortical
networks: working memory circuits with irregularly spiking neurons. Computational neuroscience:
A comprehensive approach (2003), 432–490.

Luigi M Ricciardi. 2013. Diffusion processes and related topics in biology. Vol. 14. Springer Science
& Business Media.

Kimberly B Schauder, Woon Ju Park, Duje Tadin, and Loisa Bennetto. 2017. Larger receptive field
size as a mechanism underlying atypical motion perception in autism spectrum disorder. Clinical
Psychological Science 5, 5 (2017), 827–842.

H Francis Song, Guangyu R Yang, and Xiao-Jing Wang. 2016a. Training excitatory-inhibitory
recurrent neural networks for cognitive tasks: a simple and flexible framework. PLoS computational
biology 12, 2 (2016), e1004792.

H. Francis Song, Guangyu R. Yang, and Xiao-Jing Wang. 2016b. Training Excitatory-Inhibitory
Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework. PLOS
Computational Biology 12, 2 (02 2016), 1–30. https://doi.org/10.1371/journal.pcbi.
1004792

Duje Tadin, Joseph S. Lappin, and Randolph Blake. 2006. Fine Temporal Properties of Cen-
ter–Surround Interactions in Motion Revealed by Reverse Correlation. Journal of Neuros-
cience 26, 10 (2006), 2614–2622. https://doi.org/10.1523/JNEUROSCI.4253-05.2006
arXiv:https://www.jneurosci.org/content/26/10/2614.full.pdf

Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P Maguire, and T Martin
McGinnity. 2020. A review of learning in biologically plausible spiking neural networks. Neural
Networks 122 (2020), 253–272.

Amirhossein Tavanaei and Anthony Maida. 2019. BP-STDP: Approximating backpropagation using
spike timing dependent plasticity. Neurocomputing 330 (2019), 39–47.

Jesper Tegner and Ádám Kepecs. 2002. An adaptive spike-timing-dependent plasticity rule. Neuro-
computing 44 (2002), 189–194.

Xiao-Jing Wang. 2002. Probabilistic decision making by slow reverberation in cortical circuits.
Neuron 36, 5 (2002), 955–968.

Kong-Fatt Wong and Xiao-Jing Wang. 2006. A Recurrent Network Mechanism of Time Integration in
Perceptual Decisions. Journal of Neuroscience 26, 4 (2006), 1314–1328. https://doi.org/10.
1523/JNEUROSCI.3733-05.2006 arXiv:https://www.jneurosci.org/content/26/4/1314.full.pdf

Friedemann Zenke and Surya Ganguli. 2018. Superspike: Supervised learning in multilayer spiking
neural networks. Neural computation 30, 6 (2018), 1514–1541.

18

https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1523/JNEUROSCI.4253-05.2006
https://doi.org/10.1523/JNEUROSCI.3733-05.2006
https://doi.org/10.1523/JNEUROSCI.3733-05.2006

	Introduction
	Related Work in Spiking Neural networks
	Supervised Learning in SNNs
	Unsupervised Learning in SNNs
	Reinforcement Learning in SNNs
	Hybrid Learning Approaches

	Introduction to Rate Model
	Results
	Reduced Spiking Neural Network (RSNN)
	Network Definition
	RSNN Training Proposed
	input to RSNN

	Training of RNN
	RSNN Results

	Excitatory-Inhibitory Recurrent Neural Network
	Network Architecture
	Training Results
	Single RNN units don't explain the activity of single RSNN neurons


	Reinforcement Learning Approach
	Forward-Forward Non-BP SNN training
	DISCUSSIONS

