
THE REACTION-DIFFUSION THEORY  

OF MORPHOGENESIS 

 

 

 

BY  

CIERRA TINSON 

 

 

 

HONORS THESIS 

 

Submitted in partial fulfillment of the requirements 

for the Honors Bachelor of Science in Mathematics  

in the School of Arts and Sciences of the  

University of Rochester, 2022 

 

 

Rochester, New York 

 

 

 

Advisor:  

 Professor Alex Iosevich 

 

Honors Thesis Committee:  

 Professor Alex Iosevich 

 Professor Jonathan Pakianathan 

 Professor Dan-Andrei Geba  

 

  



ii 
 

ABSTRACT 

 

Morphogenesis is the biological process during embryonic development which gives rise to 

a spectrum of spatially differentiated forms. Since his seminal paper “The Chemical Basis of 

Morphogenesis” in 1952, Alan Turing’s reaction-diffusion theory for morphogenesis has 

become a foundational model for studying self-organization behavior and pattern formation 

in biological, chemical, and physical systems. From how the leopard gets its spots to how 

panic and disease spreads throughout the masses, seemingly chaotic patterns in nature can 

be effectively studied with reaction-diffusion theory. While the cellular mechanisms that 

drive pattern formation and give rise to complex hierarchical structural architectures in 

natural materials such as bamboo are of great abstract and applied interest, relevant 

computational models remain largely unexplored. This paper provides (1) an introduction 

to reaction-diffusion theory and agent-based modeling, (2) a review of biological pattern 

formation and the role of reaction-diffusion systems for morphogenesis, and (3) an 

implementation of two cellular models, a cellular automaton (CA) and the cellular Potts 

model, to simulate Turing patterns under varying inhibitor field values and cell-cell adhesion 

energy coefficients respectively.  
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I. INTRODUCTION 
 

Despite their apparent randomness, patterns are ubiquitous in nature, adhering to 

predictable structures and orders. Most patterns form naturally from a homogeneous, 

uniform state, primarily due to self-organizational processes. In self-organizing systems 

– both physical and biological – local interactions give rise to global spatial and temporal 

structures. Commonly studied examples include multi-scale hierarchical structures in 

natural materials (e.g., wood, bone, and bamboo), pedestrian dynamics (e.g., epidemic 

spread, traffic jams, and crowding), and geological patterning (e.g., drainage patterns, 

wind ripples in sand, and self-organized vegetation). Understanding the dynamics of cell 

behavior and pattern formation is of foremost importance in a number of fields, including 

but not limited to developmental biology, regenerative medicine, and mechanical 

engineering. Various models have been postulated to explain the formation of these self-

organized patterns during the developmental process, the majority classified as a type of 

“reaction-diffusion” system. The purpose of this paper is to explore the mathematical 

basis of morphogenesis (the biological process by which cells develop their shape) and 

some dynamic modeling techniques for simulating individual and collective cell behavior, 

cell self-organization, and pattern formation.  

 

A. REACTION-DIFFUSION THEORY 
 

Reaction-diffusion systems are a type of continuous field model in which the state of a 

system is solely determined by reaction and diffusion processes. In such systems, the 

concentration of one or more substances in a given space is a result of local reactions 

between the substances and diffusion of the individual substances throughout the space. 

Mathematically, reaction-diffusion systems are modeled by non-linear partial differential 

equations. Reaction-diffusion partial differential equations have the following general 

form: 

 
𝜕𝑓

𝜕𝑡
= 𝑅(𝑓) + 𝐷∇ଶ𝑓 

 

where 𝑓(𝐱, 𝑡) is a state variable of the system, describing the density of a constituent of 

the system at position 𝐱 ∈ Ω ⊂ ℝௗ  at time 𝑡 (Ω a bounded domain), 𝑅(𝑓) describes the 

reaction kinetics of the system, 𝐷 is the diffusion coefficient, and ∇ଶ denotes the Laplace 

operator.  
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If there are 𝑛 coupled reactions involving constituents 𝑓 , then the array of reaction 

diffusion equations is 

 
𝜕𝑓ଵ

𝜕𝑡
= 𝑅ଵ(𝑓ଵ, 𝑓ଶ, … , 𝑓) + 𝐷ଵ∇ଶ𝑓ଵ 

𝜕𝑓ଶ

𝜕𝑡
= 𝑅ଶ(𝑓ଵ, 𝑓ଶ, … , 𝑓) + 𝐷ଶ∇ଶ𝑓ଶ 

⋮ 
𝜕𝑓

𝜕𝑡
= 𝑅(𝑓ଵ, 𝑓ଶ, … , 𝑓) + 𝐷∇ଶ𝑓 

 

where 𝑅(𝑓ଵ, … , 𝑓) describes the local dynamics of constituents (independent of spatial 

derivatives) and 𝐷∇ଶ𝑓 are the diffusion terms [15].  

 

B. CELLULAR AUTOMATA (Ishida, micromachines, 2018) 
 

A cellular automaton is a discrete, rule-based computational model. Invented by John von 

Neumann and Stanislaw Ulam in the 1950s for understanding machine self-replication, 

cellular automata have since been developed for other applications, including but not 

limited to (1) modeling the dynamic behavior of individual and collective biological cells, 

(2) high-speed computing and information processing, and (3) simulating phenomena in 

fields such as physics and chemistry, as well as phenomena observed in physical systems. 

It has been theorized that cellular automata introduce the possibility of controlling self-

organized patterns such as those observed in tissue, bone, and other natural materials.  

 A cellular automaton is an 𝑛-dimensional array of cells (𝑛 = 1, 2, 3) which evolve in 

[discrete] space and time according to a defined set of stepwise transition rules and local 

interactions in a defined neighborhood (namely, the set of nearby cells with which a cell-

of-interest can interact). Two common types of neighborhoods include von Neumann’s 

diamond-shaped regions and Moore’s square-shaped regions (see Fig. 1). 

 

 
 

FIG. 1. The symmetry of (a) Moore neighborhoods and (b) von Neumann neighborhoods for a two-

dimensional cellular automaton. [3] 
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C. EQUATION-BASED MODELING VERSUS AGENT-BASED MODELING 
 

Two main approaches are used to model the spatiotemporal behavior of a system: agent-

based modeling and equation-based modeling. Agent-based modeling is a bottom-up 

approach: the individuals of a system are initially regarded as autonomous agents with 

different properties and behaviors, and the outcome of the system emerges as a result of 

agent interactions. Conversely, equation-based modeling is more reminiscent of a top-

down approach: the overall behavior of the system is modeled using a set of equations 

representing system variability over time (ordinary differential equation) or over time 

and space (partial differential equations). Agent-based models are advantageous as a 

discrete model for systems characterized by high degrees of localization and distribution, 

whereas equation-based models are preferable when representing the overall behavior 

and physical processes of a system. [18] 

Various equation-based models exist, the most notable being ordinary differential 

equations and partial differential equations. Similarly, there are two main categories of 

agent-based models: on lattice models (discrete time and space) and off lattice models 

(continuum of time and space). For modeling multicellular systems, the prominent on 

lattice models include cellular automata and the cellular Potts model, and the prominent 

off lattice models include center-based models and deformable cell models (see Fig. 2). 

 

 
 

FIG. 2. The four main categories of agent-based models. [2] 

   

 Although they are classified differently, cellular Potts models are in actuality a type of 

cellular automaton used to describe biophysical systems and cell populations. In the 

Potts model, individual and collective cell behavior is dictates by pre-described energy 

kinetics using a built-in Hamiltonian (an operator corresponding to the total energy of 

the system). While on-lattice models consider a physical system prescribed to a set of 

lattice points (e.g., a real coordinate space), off-lattice models consider agents which 

diffuse continuously through space. In center-based models, cells are identified as points 

moving in continuous space, able to interact with their neighbors through adhesion and 

repulsion forces. Similarly, in deformable cell models, the shape of each cell is modeled 

explicitly and changes according to the pressure forces from neighboring cells. [2] 
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II. BIOLOGICAL PATTERN FORMATION 
 

Morphogenesis is the biological process through which an initially uniform field of cells 

acquires complex, organized, and spatially differentiated forms. British mathematician 

Alan Turing was among the first to propose a theoretical mechanism for how various self-

organized patterns form autonomously in an organism. In his 1952 paper “The Chemical 

Basis of Morphogenesis,” Turing postulated that identical biological cells differentiate 

due to intercellular reaction-diffusion processes. More specifically, despite the possible 

initial homogeneity of a chemical system, patterns and structures may form “due to an 

instability of the homogeneous equilibrium, which is triggered off by random 

disturbances” [1]. 

 

A. ALAN TURING’S REACTION-DIFFUSION MODEL 
 

Consider two chemical substances, called morphogens, homogeneously distributed 

throughout a medium of fixed space. The two morphogens (say 𝑈 and 𝑉) undergo local 

chemical reactions with each other and which diffuse throughout the medium at different 

rates. In the absence of diffusion, the morphogens remain in the stable, homogeneous 

state. By introducing spatial dependence and diffusion processes, the homogeneous state 

is destabilized, and a non-homogeneous state arises. During this destabilization, 

morphogenic interactions establish chemical gradients and autonomously generate 

various spatial patterns. A general form of Turing’s reaction-diffusion partial differential 

equation model for two chemical substances is as follows: 

 
𝜕𝑈

𝜕𝑡
= 𝑓(𝑈,  𝑉) + 𝐷𝛻ଶ𝑈 

𝜕𝑉

𝜕𝑡
= 𝑔(𝑈,  𝑉) + 𝐷𝛻ଶ𝑉 

 

where 𝑈 and 𝑉 are the morphogen concentrations, 𝑓(𝑈, 𝑉) and 𝑔(𝑈, 𝑉) are the [local] 

reaction kinetics (describing the production and decay of morphogens), 𝐷  and 𝐷  are 

the morphogen diffusion coefficients, and ∇ଶ is the Laplace operator.  

From this model, Turing predicted six stable-state solutions, independent of the 

initial conditions of the system: uniform (I) stationary and (II) oscillatory states, 

[extremely] short wavelength (III) stationary and (IV) oscillatory states, and finite 

wavelength (V) oscillatory and (VI) stationary states. The sixth stable solution predicted 

by Turing’s model – stationary waves with finite wavelength – are of particular interest 

in physical and biological pattern formation. 
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FIG. 2. Six potential steady states predicted by Turing’s model, independent of the initial condition. [7] 

 

B. NATURAL “TURING” PATTERNS 
 

Under certain conditions, various non-homogeneous patterns (e.g., patches, spots, 

stripes, and rosettes) emerge from this solution, their spatial heterogeneity reminiscent 

of naturally occurring patterns in nature – the so called “Turing Patterns.” Said patterns 

emerge from the “stationary waves with finite wave-length” stable solution, as indicated 

by Fig. 2 above. Though Turing patterns are most often associated with morphogenesis 

and animal pigmentation patterns (see Fig. 3), they are also observable in larger-scale 

physical systems.  

 Turing patterns emerge from a series of small perturbations in the homogenous 

concentrations, becoming stable over time. The first morphogen (say 𝑈) is an activator, 

capable of inducing activator concentrations in local cells through short-range 

interactions. The second morphogen (say 𝑉) is an inhibitor, restraining activator growth 

in nearby cells. Although the exact values differ, the diffusivity 𝑈 is typically much less 

than the diffusivity of 𝑉 during morphogenesis; the combination of a slowly diffusing 

activator and a quickly diffusing inhibitor resulting in coupled short-range activation and 

long-range inhibition. Cell activity is driven by morphogenic concentrations from nearby 

cells, transforming via local chemical reactions and spreading out through the medium.  
 

 
 

FIG. 3. Reaction-diffusion simulations and corresponding color patterns in nature. [8] 
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C. EXAMPLE REACTION-DIFFUSION MODELS 
 

Since Turing’s seminal 1952 paper (published only a year after he first turned his 

attention to biomathematics), many coupled systems of reaction-diffusion equations 

have emerged to model autonomous pattern formation in biological systems. For the 

sake of brevity, four widely studied systems are summarized below, though other notable 

models include the Thomas-Murray Model and the Brusselator Model. In the following 

models, 𝑈 and 𝑉 are the concentrations of two generic chemical species 𝑢 and 𝑣 with 

respective diffusivity terms 𝐷∇ଶ𝑈 and 𝐷∇ଶ𝑉. The remaining terms describe the 

reaction kinetics of the system for fixed constants 𝑎, 𝜖, 𝜌 , 𝜇, etc. The complete models 

given below can be found in references [4], [6], [16], and [9] respectively. 

 

1. THE FITZ-HUGH NAGUMO MODEL (1961)  
 

𝜕𝑈

𝜕𝑡
= (𝑎 − 𝑈)(𝑈 − 1)𝑈 − 𝑉 + 𝐷∇ଶ𝑈 

𝜕𝑉

𝜕𝑡
= 𝜖(𝑏𝑈 − 𝑉) + 𝐷∇ଶ𝑉 

 

2. THE GIERER-MEINHARDT MODEL (1972) 
 

𝜕𝑈

𝜕𝑡
= 𝜌 ቆ

𝑈ଶ

ℎ
− 𝜇𝑈ቇ + 𝐷∇ଶ𝑈 

𝜕𝑉

𝜕𝑡
= 𝜌(𝑉ଶ − 𝜈ℎ) + 𝐷∇ଶ𝑉 

 

3. THE SCHNAKENBERG MODEL (1979) 
 

𝜕𝑈

𝜕𝑡
= 𝑎 − 𝑈 + 𝑈ଶ𝑉 + 𝐷∇ଶ𝑈 

𝜕𝑉

𝜕𝑡
= 𝑏 − 𝑈ଶ𝑉 + 𝐷∇ଶ𝑉 

 

4. THE GRAY-SCOTT MODEL (1984)  
 

𝜕𝑈

𝜕𝑡
= 𝐷∇ଶ𝑈 − 𝑈𝑉ଶ + 𝐹(1 − 𝑈) 

𝜕𝑉

𝜕𝑡
= 𝐷∇ଶ𝑉 + 𝑈𝑉ଶ − (𝐹 + 𝑘)𝑉 
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III. MODELING TURING PATTERNS 
 

Two computational approaches have been used successfully to model pattern formation. 

The first is a cellular automata model, a rule-based alternative to Turing’s reaction-

diffusion partial differential equation system. The second is a cellular Potts model, a 

cellular and tissue-formation computational system used to simulate individual and 

collective cell behavior and tissue morphogenesis. Natural [Turing] patterns are initially 

derived from the cellular automata solution for the generalized reaction-diffused system 

and are then replicated in cellular Potts models by altering cellular parameters such as 

cell-cell adhesion energy coefficients.  

 

A. DAVID A. YOUNG ACTIVATOR-INHIBITOR MODEL [21] 
 

In his 1984 paper “A Local Activator-Inhibitor Model of Vertebrate Skin Patterns,” David 

Young proposed an activator-inhibitor diffusion theory as an alternative to the Turing 

model for skin pigmentation patterns (an extension of N.V. Swindale’s 1980 model for 

pattern formation in the visual cortex of the brain). Contrary to the Turing model, Young 

theorized that “the intercellular interaction [of pigment cells] is local, possibly due to 

short-range diffusion of morphogen molecules or to direct cell contact,” and the initial 

and boundary conditions as well as the various cell interactions give rise to a spectrum 

of pigment patterns.  

 

 
 

FIG. 4. The canonical two-component “activator-inhibitor” Turing system, as proposed by Young. [10] 

 

1. THEORETICAL MODEL 
 

Young’s model starts by assuming a uniform distribution of two types of pigments cells – 

differentiated (colored) cells (DCs) and undifferentiated cells (UCs) – on the early 

embryonic skin of a vertebrate. Each DC produces two morphogens at a constant rate, an 

activator 𝑀(ଵ) and an inhibitor 𝑀(ଶ), while the UCs are passive and produce no active 
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substances. Both the inhibitor morphogens and the activator morphogens are diffusible 

substances, uniformly degraded by the surrounding cells. The inhibitor morphogens 

simulate the dedifferentiation of nearby DCs while the activator morphogens stimulate 

the differentiation of nearby UCs.  

The production, diffusion, and decay processes for a morphogen can mathematically 

be represented by the generalized diffusion equation, 

 
𝜕𝑀

𝜕𝑡
= 𝛁 ∙ 𝐃 ∙ 𝛁𝑀 − 𝐾𝑀 + 𝑄 

 

where 𝑀 = 𝑀(𝐫, 𝑡) is the activator (or inhibitor) morphogen concentration, 𝛁 ∙ 𝐃 ∙ 𝛁𝑀 is 

the diffusion process of 𝑀, 𝐾𝑀 is the first-order chemical transformation of 𝑀, and 𝑄 is 

the production rate of 𝑀. The results of these substance interactions are dependent on 

four variables per morphogen: (1) the rate of production, (2) the rate of degradation, (3) 

the rate of diffusion, and (4) the strength of their activating/inhibiting interactions.  

Conventionally, the activator morphogens 𝑀(ଵ) are diffusing at a much slower rate 

than the inhibitor morphogens 𝑀(ଶ), inducing short-range activation regions and long-

range inhibition regions, respectively. For each morphogenic pair produced by a DC, the 

steady-state distributions of their concentrations constitute a morphogenic field 𝑤(𝑅) of 

radius 𝑅, centered at the DC. The state of each pigment cell (DC and UC) is driven by the 

net activation-inhibition effect of the neighboring DCs. A net activation effect is denoted 

by a positive field value, and the net inhibition effect is denoted by a negative field value.  

 

 
 

FIG. 5. A schematic illustration of the local activator-inhibitor model as provided by Young, showing (left) 

the steady-state activator and inhibitor concentrations against their ranges and (right) the net effect of 

the activator-inhibitor field, where 𝑤(𝑅) is the morphogenic field read at distance 𝑅 from a DC. [21] 

 

2. CELLULAR AUTOMATON MODEL 
 

In the next section of his paper, Young describes how to convert his local activator-

inhibitor continuum model for pattern formation into a cellular automaton. To do so, 

Young discretizes cell positions on a rectangular grid of points – each point representing 
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one DC or UC pigment cell – and assumes an initial random distribution of the DCs 

throughout the grid. He then simplifies the morphogenic field as follows: 

 

For each grid point at position 𝐑, the field values due to all nearby DCs at positions 𝐑𝐢 

are added up. If ∑ 𝑤(|𝐑 − 𝐑𝐢|) > 0 , then the point at 𝐑 becomes (or remains) a DC. If 

∑ 𝑤(|𝐑 − 𝐑𝐢|) = 0 , then the point does not change state, and if ∑ 𝑤(|𝐑 − 𝐑𝐢|) < 0, 

the point becomes (or remains) a UC.  

 

Assuming the activation area has a radius of 2.30, the inhibition area has a radius of 

6.01, and the activation field value 𝑤ଵ is +1.0, Young produced the following patterns by 

varying the inhibition field value 𝑤ଶ as indicated at the bottom of each image:  

 

 
 

FIG. 6. Turing-like patterns produced by Young using his activator-inhibitor model. [21] 

 

Young noted that the general form of the final [stable] pattern is independent of the initial 

distribution of the DCs. Moreover, when the inhibitor field value is high (relative to the 

activator field value), the DCs are restrained in a way so as to only be able to form isolated 

spots. As the inhibitor field value decreases and the activator field value dominates, the 

DCs self-organize into spots and connect up to stripes.  
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3. SIMULATION 
 

Young’s cellular automata model was replicated in Python using a similar prescribed set 

of transition rules, a 2-dimensional grid, and Moore neighborhoods. As in Young’s model, 

four model parameters were considered:  

 

𝑟ଵ: Radius of activation 

𝑟ଶ:  Radius of inhibition 

𝑤ଵ:  Weight of activation (normalized to +1) 

𝑤ଶ: Weight of inhibition 

 

 
 

FIG. 7. Outline of Young’s model. The focal cell is located at 𝑹 and the neighboring cell at 𝑹𝒊.  

 

For the following simulations, the probability that a cell is initially a differentiated (DC) 

or colored (UC) cell was also parameterized. The cell-state transition rules are as follows:  

 

Short-Range Activation:  

Cell State = 1 𝑖𝑓  𝑤2(|𝑹 − 𝑹𝒊|)
𝑖

> 0 

 

Long-Range Inhibition:  

Cell State = 0 𝑖𝑓  𝑤2(|𝑹 − 𝑹𝒊|)
𝑖

< 0 

 

 Stable State:  

Cell State = Unchanged i𝑓  𝑤2(|𝑹 − 𝑹𝒊|)
𝑖

= 0 
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To check the validity of the model, simulations were run using the same parameters as 

Young: the radius of activation was 𝑟ଵ = 2.30, the radius of inhibition was 𝑟ଶ = 6.01, and 

the weight of activation was 𝑤ଵ = 1.00. Periodic boundary conditions and Moore 

neighborhoods were assumed. The probability a cell was initially a differentiated cell was 

𝑝 = 0.015 and the weight of inhibition 𝑤ଶ < 0 was varied. Each simulation is run for 30 

time-steps to yield the following stable patterns:  

 

 
 

FIG. 8. Patterns produced using the activator-inhibitor cellular automaton simulations written in Python. 

 

As expected, the patterns produced by the cellular automaton devolved from stripes to 

spots as the inhibition field value 𝑤ଶ was increased (Fig. 8, left to right). Extended results 

are given in Appendix B.  

 

B. CELLULAR POTTS MODEL (CPM) / GRANER-GLAZIER-HOGEWEG (GGH) MODEL  
 

A cellular Potts model (CPM), also known as the Glazier-Graner-Hogeweg (GGH) model, 

is a spatial lattice-based computational modeling method for cells and tissue. Originally 

proposed by François Graner and James Glazier in 1992 for the simulation of biological 

cell sorting, CPMs gained popularity for studying morphogenesis in 1997 by Paulien 

Hogeweg. They have since been extensively used for modeling the complex dynamics and 

spatiotemporal behavior of biological cell populations, including tumor growth.  

 

1. THEORETICAL MODEL 
 

The cellular Potts model is characterized by a set of generalized cells on a lattice, internal 

states for each cell, and auxiliary fields such as diffusing chemicals. In the original Graner-

Glazier model, cells of two types were assumed, with different adhesion energies for cells 

of the same type and cells of a different type. Both types of cells were also assumed to 

have a different contact energy with the medium and cell volume was assumed to remain 

close to a target volume. An example of a cellular Potts model and the corresponding 

lattice for two cell types is given in Fig. 9. The dynamics of the cellular Potts model are 
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governed by the Hamiltonian, which describes the total energy of the multicellular 

system in a given configuration on the lattice. The individual and collective cells generally 

act in such a way that minimizes the value of the Hamiltonian 𝐻 of the system, 

 

𝐻 =  𝐽 ቀ𝜏(𝜎),  𝜏൫𝜎൯ቁ (1 − 𝛿൫𝜎 ,  𝜎൯

,  ௦

+ 𝜆 ൫𝑣(𝜎) − 𝑉(𝜎)൯
ଶ

ఙ

 

 

𝜎 ≡ Cell at site 𝑖 

𝜏(𝜎) ≡ Cell type of cell 𝜎 

𝐽 ቀ𝜏(𝜎), 𝜏൫𝜎൯ቁ ≡ Adhesion coefficient between two cells of types 𝜏(𝜎) and 𝜏൫𝜎൯ respectively 

𝛿൫𝜎, 𝜎൯ ≡ Kronecker delta 

𝜆 ≡ Lagrange multiplier for the strength of the volume constraint (the “lambda volume”)  

𝑣(𝜎) ≡ Volume of cell 𝜎 

𝑉(𝜎) ≡ Target volume of cell 𝜎 

 

for lattice sites 𝑖 and 𝑗 [7].Similar to the inhibition field value for the cellular automaton model of 

morphogenesis, a spectrum of different cell sorting behaviors will expectedly emerge by varying 

the adhesion coefficients between cells of the same type and of different types.  

 

 
 

FIG. 9. Detail of a typical 2D Graner-Glazier-Hogeweg (GGH) cell-lattice configuration. Each generalized 

cell is a set of cell-lattice sites. [17] 

 

2. SIMULATION 
 

A CPM was implemented in CompuCell3D (CC3D), a three-dimensional C++ software 

designed for modeling the dynamics of autonomous multicellular biological systems. By 

varying the biological properties and energy rules of cells, a spectrum a cellular behavior 

such as morphogenesis emerges. In an attempt to derive the cellular mechanisms that 
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drive the formation of Turing patterns, two cell types – condensing “Type 1” cells (blue) 

and non-condensing “Type 2” cells (green) – as well as the surrounding medium (black) 

were considered. Simulation parameters were defined as follows:  

 

𝑣௧௧ = 25 𝜇𝑚ଷ 

𝑣ఒ = 2 𝜇𝑚ଷ 

𝐽ெିଵ = 𝐽ெିଶ = 𝐽ଵିଶ = 16
𝐽

𝜇𝑚ଷ
 

𝐽ଵିଵ & 𝐽ଶିଶ ∈ {0.5,  1,  … ,17.5,  18}
𝐽

𝜇𝑚ଷ
  

 

where 𝐽ି  refers to the adhesion energy coefficient for interacting cells of type 𝑝 and 𝑞. 

Each simulation was run for approximately 3000 Monte Carlo Steps, or until the patterns 

stabilized in time (the number of steps given by the CC3D program).  

 

 
 

FIG. 10. Patterns produced using the CompuCell3D cellular Potts model.  

 

Some of the results generated are given above in Fig. 10 and extended results are 

provided in Appendix D. When the adhesion energy between cells of the same type was 

small in comparison to the adhesion energy between cells of distinct types, the 

condensing cells grouped to form thick and distinct stripes. As the adhesion energy 

between cells of the same type increased, the stable patterns produced by the CPM 

became a combination of stripes and spots before forming a maze-like pattern. If the 

adhesion energy between cells of the same type was greater than the adhesion energy 

between cells of distinct types, then the individual condensing cells became evenly 

distributed among the non-condensing cells. 
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IV. CONCLUDING REMARKS 
 

Certain natural materials (e.g., trabecular [spongy] bone, tissue, cuticle, culm, bamboo, 

nacre, and wood) exhibit multi-scale hierarchical structures. These complex structural 

architectures arise as a result of self-organization processes at different length scales in 

the material during development. Consequently, these materials have superior 

mechanical properties compared to synthetic materials like plastics and metals. For 

example, these natural materials have a higher specific yield strength while requiring less 

energy to be produced. The specific strength of bamboo (~ 114 𝑀𝑃𝑎 × 𝑐𝑚ଷ/𝑔) is 3-4 

times greater than that of structural steel (~ 32 𝑀𝑃𝑎 × 𝑐𝑚ଷ/𝑔), and the energy required 

to produced bamboo (below 1 𝑀𝐽/𝑘𝑔) is significantly less than that of steel (25 𝑀𝐽/𝑘𝑔). 

The cellular mechanisms that form such architectural patterns are of great interest in the 

design of lightweight engineering structures as well as in the design and fabrication of 

tissues and organs using 3D bioprinting methods.  

Understanding what drives these patterns to form may function as a guide for the 

synthesis of material microstructures, though relevant computation models remain 

unexplored. As discussed, and demonstrated, in this paper, cell sorting behavior, pattern 

formation and morphogenesis can be studied using discrete dynamical systems such as 

the cellular automaton and the cellular Potts model. Despite the simplistic nature of both 

the cellular automaton and cellular Potts model used, each has been successfully used for 

the replication of natural “Turing” patterns (see Fig. 11). 

 

     

          
 

FIG. 11. Patterns formed by the cellular automata, the cellular Potts model, and by nature. Assuming the 

same simulation parameters are before, an inhibition field value of 𝑤ଶ = −0.20 and a cell-cell adhesion 

coefficient of 𝐽ଵିଵ = 𝐽ଶିଶ = 15 correspond to leopard spots (top) [14]. Similarly, a combination of  

𝑤ଶ =  −0.32 and 𝐽ଵିଵ = 𝐽ଶିଶ = 3 correspond to zebra stripes (bottom) [20].  
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It has been observed that an increasing inhibition field value 𝑤ଶ roughly correlates to a 

decreasing adhesion energy coefficient 𝐽 between cells of the same type, while also 

indicating that intercellular adhesion is one of the driving forces for morphogenesis. It 

was also observed that increasing the inhibition field value (alternatively, decreasing the 

cell-cell adhesion energy coefficients for cells of the same type) produces patterns that 

connect down from stripes to spots. To continue to understand the architectural patterns 

found in natural hierarchical structures – such as that seen in Fig. 12 for bamboo – future 

models should include a way of approximating the strain-energy field (such as with finite 

element analysis) and expanding to pattern formation across multiple length scales.  

 

 
 

FIG. 12. Hierarchical structure of bamboo. [4] 
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APPENDIX A: CELLULAR AUTOMATON CODE FOR TURING PATTERNS WITH 

MOORE NEIGHBORHOODS  
 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[1]: 

 

# Import the necessary libraries/packages 

import numpy as np 

import random 

import matplotlib.pyplot as plt 

import pylab 

 

# In[2]: 

 

# Cell grid / lattice 

width = 100 

height = 100 

 

# In[3]: 

 

# There is a probability p that a cell is initially assigned to be a DC (differentiated, or 

colored, cell) 

# All other cells are undifferentiated cells (UC's) 

p = 0.015 

 

# In[4]: 

 

# Radii of neighborhoods (0 < Ra < Ri) 

Ra = 2 # For activation (inner radii) 

Ri = 5 # For inhibition (outer radii) 

 

# In[5]: 

 

# Weight of the neighborhoods (representing their relative strengths) 

wa = 1 # Activation field value 

wi = 0.2 # Inhibitor field value 

 



19 
 

# In[6]: 

 

# Initialize the random number generator 

random.seed() 

 

# In[7]: 

 

# Initial state of all cells is 0 (passive) 

grid = np.zeros([height, width])  

 

# Initial state of all cells after one timestep is 0 

# Note: new_grid is populated with the next states of the cells at the time of state 

updating 

new_grid = np.zeros([height, width])  

 

time = 0 # Start simulation at 0 seconds 

 

for x in range(width): 

    for y in range(height): 

         

# If the random value assigned to the cell is less than the probability that a cell is 

initially a DC 

        if random.random() < p: 

            state = 1 # Cell is in an active state 

             

# If the random value assigned to the cell is greater than or equal to the probability 

of the cell being a UC 

        else: 

            state = 0 # Cell is in a passive state      

         

        # Update the grid with the states of the cells 

        grid[y, x] = state 

 

# In[8]: 
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# Simulate the evolution of the system 

 

def step(grid, new_grid): 

     

    for x in range(width):     

        for y in range(height): 

             

            # Retrieve current state of the cell: Active or Passive 

            state = grid[y, x] 

             

            # Neighborhood of activation 

            Na = 0 

             

            # Neighborhood of inhibition 

            Ni = 0 

             

            # Consider relative coordinate variables, dx and dy, ranging from -1 to 1 

            # Sweep through the neighbor cells for the state-transition function 

            # Use mod operator to implement periodic boundary conditions  

            # Periodic BC's implies that the patterns will seamlessly tile the plane  

             

            for dx in range(-Ra, Ra + 1):   

                for dy in range(-Ra, Ra + 1):                     

                    Na += grid[(y + dy) % height, (x + dx) % width] 

                     

            for dx in range(-Ri, Ri + 1):              

                for dy in range(-Ri, Ri + 1):                    

                    Ni += grid[(y + dy) % height, (x + dx) % width] 

                     

            # The state of the cell depends on the sum of the states of the local cells 

# Calculate the weighted sum of the activating cells and inhibiting cells in the 

neighborhood 

            WS = Na * wa - Ni * wi 

             

            # Short-range activation 

            # Weighted sum of activating cells is greater than weighted sum of inhibiting cells 

            if WS > 0: 

                state = 1 
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            # Long-range inhibition 

            # Weighted sum of activating cells is less than weighted sum of inhibiting cells 

            elif WS < 0: 

                state = 0 

             

            # Cell does not change state 

            # Weighted sum of activating cells equals weighted sum of inhibiting cells 

            else: 

                state = grid[y, x] 

             

            # Determine the next state of the model 

            new_grid[y, x] = state 

 

    return new_grid 

 

# In[9]: 

 

# Show the state of the CA at the end of the simulation for fixed time t 

fig = plt.figure() 

 

plt.figtext(0.5, -0.25, 

           'p = ' + str(p) + 

            '\n$R_{activation}$ = ' + str(Ra) + 

            '\n$w_{activation}$ = '+ str(wa) + 

            '\n$R_{inhibition}$ = ' + str(Ri) + 

            '\n$w_{inhibition}$ = '+ str(wi), 

            wrap = True,  

            horizontalalignment = 'center',  

            fontsize = 12) 

 

# Run the CA for a fixed amount of time 

for time in range(21): 

    plt.pcolor(grid, vmin = 0, vmax = 1, cmap = "binary")   

    plt.axis('image') 

    plt.title('Time: ' + str(time)) 

    plt.draw() 

 

    # Advance the simulation 

    grid = step(grid, new_grid)   
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APPENDIX B: EXTENDED CELLULAR AUTOMATON RESULTS 
 

The figures provided here were generated by fixing the following simulation parameters:  

 

𝑝 = 0.015 

𝑅 = 2  

𝑅 = 5 

𝑤 = 1 

 

B1. EVOLUTION OVER TIME (𝐰𝟐 = 𝟎. 𝟐) 
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B2. VARYING INHIBITOR FIELD VALUE (TIME-STEPS = 20) 
 

The following plots were generated by varying the inhibitor field value 𝑤ଶ from 1.05 

(upper left figure) to 0.10 (bottom right figure) in increments of 0.05: 
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APPENDIX C: COMPUCELL3D CELLULAR POTTS MODEL CODE 
 

C1. MAIN PYTHON SCRIPT 
 

from cc3d import CompuCellSetup 

 

from cellsort_2DSteppables import cellsort_2DSteppable 

 

CompuCellSetup.register_steppable(steppable=cellsort_2DSteppable(frequency=1)) 

 

CompuCellSetup.run() 

 

C2. XML SCRIPT 
 

<CompuCell3D> 

    <Potts> 

        <Dimensions x="100" y="100" z=”1”/> 

        <Anneal>10</Anneal> 

        <Steps>10000</Steps> 

        <Temperature>10</Temperature> 

        <Flip2DimRatio>1</Flip2DimRatio> 

        <NeighborOrder>2</NeighborOrder> 

    </Potts> 

 

    <Plugin Name=”Volume”> 

        <TargetVolume>25</TargetVolume> 

        <LambdaVolume>2.0</LambdaVolume> 

    </Plugin> 

 

    <Plugin Name=”CellType”> 

        <CellType TypeName="Medium" TypeId="0"/> 

        <CellType TypeName="Condensing" TypeId="1"/> 

        <CellType TypeName="NonCondensing" TypeId="2"/> 

    </Plugin> 

 

    <Plugin Name=”Contact”> 

        <Energy Type1="Medium" Type2="Medium">0</Energy> 

        <Energy Type1="NonCondensing" Type2="NonCondensing" >14</Energy> 

        <Energy Type1="Condensing" Type2="Condensing" >14</Energy> 
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        <Energy Type1="NonCondensing" Type2="Condensing" >16</Energy> 

        <Energy Type1="NonCondensing" Type2="Medium">16</Energy> 

        <Energy Type1="Condensing" Type2="Medium">16</Energy> 

        <NeighborOrder>2</NeighborOrder> 

    </Plugin> 

 

    <Steppable Type=”BlobInitializer”> 

 

        <Region> 

            <Center x="50" y="50" z=”0”/> 

            <Radius>40</Radius> 

            <Gap>0</Gap> 

            <Width>5</Width> 

            <Types>Condensing,NonCondensing</Types> 

        </Region> 

    </Steppable> 

 

</CompuCell3D> 

 

C3. PYTHON SCRIPT 
 

from cc3d.core.PySteppables import * 

 

class cellsort_2DSteppable(SteppableBasePy): 

 

    def __init__(self,frequency=1): 

 

        SteppableBasePy.__init__(self,frequency) 

 

    def start(self): 

        """ any code in the start function runs before MCS=0 """ 

 

    def step(self,mcs): 

        """ type here the code that will run every frequency MCS 

        :param mcs: current Monte Carlo step """ 

 

    def finish(self): 

        """ Finish Function is called after the last MCS """ 
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APPENDIX D: EXTENDED CELLULAR POTTS MODEL RESULTS 
 

The following figures were generated after 3000 Monte Carlo Steps by fixing 𝐽ெିெ = 0 

and 𝐽ଵିଶ = 𝐽ெିଵ = 𝐽ெିଶ = 16 and by varying the adhesion energy for cells of the same 

𝐽ି (𝑝 = 1,2) from 0.5 (upper left) to 18.0 (bottom right) in 0.5 increments of 0.5:  

 

 
 

 

 

 

 
 


