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Abstract

In this paper, we study the dynamics of rotation-like logistic maps. In particular,

we focus on the case of rotation-like logistic maps with Fibonacci quotient, including

related parts on Hubbard tree, kneading invariant and kneading map. We shall present

theorems and conjectures on their associated kneading maps.
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2 Introduction

At the beginning of the twenty-first century, Ble and Douady [2] introduced a family of

logistic maps inspired from ideas originated from holomophic dynamical systems. Despite

the connection between the dynamics of logistic maps and holomorphic dynamics, there has

been little study carried on from the perspective of both areas. Our goal is to study the

kneading invariant and the kneading map of the logistic maps in Ble-Douady’s family. In

this paper, we shall only study one particular subset of these logistic maps: rotation-like

logistic maps with Fibonacci quotient.

3 Preliminaries

3.1 Basic Concepts in Complex Dynamics

A discrete dynamical system (X, f) is a space/set X along with a map f : X → X,

where X is our “system”, and f is “the law of dynamics”.

Definition If f(z) = z, then z is called a fixed point of f . More generally, if fn(z) = z and

fm(z) 6= z∀1 ≤ m ≤ n− 1, then z = z0 → f(z) = z1 → f 2(z) = z2 → · · · → fn−1(z) = zn−1

is called a periodic orbit of period n.

Definition Let z be a fixed point of f . If ∃U , a neighborhood of z such that f(U) ⊂ U and

∀z′ ∈ U , we have limn→∞ f
n(z′) = z, then z is called an attracting fixed point. If instead,

z is in an periodic orbit of period n, then z = z0 → f(z) = z1 → f 2(z) = z2 → · · · →

fn−1(z) = zn−1 is called an attracting periodic orbit if z is an attracting fixed point of

fn.
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Notice that in this way, every point in the orbit is a fixed point of fn. In some sense, the

study of an attracting periodic orbit can sometimes be “simplified” to the study of a fixed

point in this way. The next step is to find a more quantitative way to identify attracting

fixed points and periodic orbits. We introduce the following notion:

Definition Let z be a point in an n-periodic orbit of a differentiable map f . Then the

derivative (fn)′(z) = λ is called the multiplier of this orbit.

Yes, this is the quantity we are seeking for.

In contrast to the attracting periodic orbit, we define a repelling periodic orbit similarly

(with |λ| > 1).

Definition The basin of attraction B with respect to an orbit z0 → f(z) = z1 → f 2(z) =

z2 → · · · → fn−1(z) = zn−1 is the collection of all points such that converges to one of the

orbit points after infinite iterations of fn. Formally,

B = {z : lim
m→∞

fmn(z) ∈ {z0, · · · , zn−1}} (1)

The immediate basin of attraction is the connected components of B that contains at

least one orbit point.

Now let us get to the ordinary quadratic polynomial pc(z) = z2 + c. When do pc have

attracting periodic orbits? Since this might be worth studying, we define the following set:

Definition M0 = {c : pc has a periodic orbit }.

Definition Let f : C→ C be a holomorphic map. Then a ∈ C is called a critical point if

f ′(a) = 0.

Definition Let a be a critical point of a holomorphic map f . Then f(a) is called a critical

value of f . The following lemma will be helpful for understanding the motivation of intro-

4



ducing another special set:

Theorem (Fatou) Let p be a non-linear polynomial of order n. Then every immediate

basin of attraction for a periodic orbit contains at least one critical point of p.

Corollary There can be at most n− 1 different attracting periodic orbits.

As a corollary in our quadratic polynomial case, the immediate basin of attraction of an

attracting periodic orbit, which has to be bounded (if |z| is large enough, pnc (z) will blows

to infinity no matter what c we choose), must contain the orbit {pnc (0)}. Inspired by this

observation, we now define the following more general set, called the Mandelbrot set:

M = {c : ∃Ac, |pnc (0)| < Ac,∀n ∈ N} (2)

It is conjectured that M is the closure of M0. We shall not discuss further on that.

It is proved by Douady and Hubbard that the Mandelbrot set is connected.

Following from our previous discussions, there might also be of some interest to consider the

collection of all points that are bounded under infinite iteration. It is called the filled Julia

set, denoted by K = K(f). The formal definition is

K(f) = {z : ∃Cz > 0, fn(z) < Cz,∀n ∈ N} (3)

Its boundary ∂K is called the Julia set, denoted by J = J(f). We see that Julia set is

indeed the boundary between being “blowing to infinity” and ”forever bounded” after infinite

iterations.

For a quadratic family pc(z) = z2 + c, we denote Kc to be K(pc). Actually, there is another

version of the definition Mandelbrot sets, which is the primary version used in Blé’s paper.

Proving equivalence to our previous definition is very nontrivial and involves the use of Green

5



function, which is somewhat a characterization of “the speed of blowing to infinity”. We

shall not discuss into details here.

Definition’ The Mandelbrot set M is the collection of all c’s for which Kc is connected.

There are some very interesting properties of Julia sets. We will introduce them without

detailed proofs:

Theorem If f is a rational function, then J(f) 6= ∅.

Theorem J is forward invariant. More specifically, let z ∈ Ĉ, then f(z) ∈ J if and only if

z ∈ J .

Theorem J(f) = J(fn)∀n ∈ N.

There are two equivalent definitions of Fatou set. One of them is more “intuitive”, and the

other is defined using the normal family of functions.

Definition The Fatou set is the complement of the Julia set. In other words, it is the union

of all points that are bounded under infinite iterations of f , as well as those in the basin of

attraction for ∞.

The following theorem is a great illustration of what Julia and Fatou sets really mean:

Theorem The repelling orbit points of f are completely contained in J(f); on the other

hand, the attracting orbit points of f are completely contained in Ĉ \ J(f).

Let us recall how we constructed the Mandelbrot set M . The set in the first iteration,

consisting of all the values of c resulting in an attracting fixed point, denoted by M1, main

hyperbolic component, and ∂M̄1 is called the main cardioid.

A point in M with an attracting cycle is called hyperbolic.

Theorem M is locally connected when restricted to the hyperbolic components.
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In particular, M is locally connected when restricted to the main cardioid.

Definition The orbit of a critical point with respect to a polynomial f is called a critical

orbit. The critical orbit is preperiodic if the orbit is finite. If the critical orbits are periodic

or preperiodic (or both), then the polynomial f is called PCF (postcritically finite). In

the case that all critical orbits are periodic, f is called a center; if they are all preperiodic,

f is called a Misiurewicz polynomial. Denote the set of all critical points of f by C(f).

Then the postcritical set is the union of all subsequent images of all critical points under

f .

Definition Let X, Y be topological spaces and let (X, f) and (Y, g) be their corresponding

dynamical systems. If h is a homeomorphism from Y to X such that h−1 ◦ f ◦ h = g,

then (X, f) and (Y, g) are called topologically conjugate. If instead h is continuous and

surjective (but not necessarily a homeomorphism), then (X, f) and (Y, g) are called semi-

conjugate.

In some sense, we see that conjugation means “the same after a change of coordinates”.

Theorems by Koenig and Bottcher show that a polynomial map behaves “locally like a

linear or a monomial map” near its attracting fixed point in the sense that the map is

conjugate to a polynomial in some open neighborhood of its fixed point under a conformal

map. Therefore, the dynamics (i.e. the properties of the corresponding maps under long

iterations) of two conjugate dynamical systems are very similar.

It can be shown that when restricted to J(pc), pc is semi-conjugate to the angle doubling map

ξ : T→ T : θ → 2θ, where T = R/Z is a representation of the circle with unit circumference.

In addition, our choice of θ can ensure that the orbit of θ under the angle doubling map does
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not intersect the interval [1
4

+ θ
4
, 1
2

+ θ
4
].

3.2 Hubbard Tree

Now we construct the Hubbard tree (this follows the definition in Ble’s paper [2]). A graph

Γ = (V,E) consists of a set of vertices V and a set of edges E, each connecting two vertices.

If in addition, Γ is connected (intuitively, you can start from any vertex and reach any

other vertex by going through the edges in E) without a loop, then it is called a tree. For

convenience, if n edges meet at the same vertex, then the angle between any two edges is an

integer multiple of 1
n
.

Definition A Hubbard tree is a tree that further satisfies the following properties:

(1) There exists a skew-symmetric function ξ : (l, l′) → T, assigning each pair of edges

meeting at the same vertex an angle, that satisfies (ξ(l, l′) = 0 if and only if l = l′) and

(ξ(l, l′) + ξ(l′, l′′) = ξ(l, l′′)).

(2) There exists a map δ : V → N, called a local degree function, that assigns a degree to

each vertex, with the property 1+
∑

(δ(v)−1) > 1. (Here, N does not include 0.) If δ(v) > 1,

then v is critical. Note that if there is no critical vertex, then 1 +
∑

(δ(v)− 1) = 1 + 0 = 1,

so there must be at least one critical point.

(3) There exists a homeomorphism τ : H → H mapping vertices to vertices and edges to

edges, with the property that ξ(τ(l), τ(l′)) = δ(v)ξ(l, l′) where v is the vertex on which the

two edges meet. If τn(v) = v for a positive integer n, then v is called a periodic. If v is a

critical point in addition, then its orbit is called a critical cycle. If v is not in the mage of

a critical cycle under τ−n∀n ∈ N, the v is a Julia vertex; otherwise, v is called a Fatou
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vertex.

(4) There exists a metric d : V ×V → N∪{0}, counting the number of edges in the shortest

path between two vertices.

(5) H is expanding. This means that for all Julia vertices v, v′ that are connected by an

edge l, d(τn(v), τn(v′)) > 1 for some nl.

Here we provide three concrete examples for the Hubbard tree. Let us consider a rotation-

like logistic map. The general form of the map is f(z) = e2πiγz, z ∈ C, where γ is a

characterizing quantity of the map. If γ is a rational number, then all points on the unit

circle are periodic points with period being the denominator of γ (written in lowest terms).

In this paper, we are particularly interested in the case when γ is a Fibonacci quotient.

This means the numerator and denominator in each gamma are neighboring terms in the

Fibonacci sequence, or γ = Fn−1

Fn
, where Fn is the n − th Fibonacci number. The version

of Fibonacci number we are using is that F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, and

Fn = Fn−1 + Fn−2 for n ≥ 2. For the purpose of Hubbard trees, we shall only consider

those starting from F3

F4
The first few Fibonacci quotients are γ = 2

3
, γ = 3

5
, and γ = 5

8
. For

the purpose of kneading invariants and kneading maps, we shall only consider those starting

from F4

F5
= 3

5
.

The steps to construct the Hubbard tree in the case of Fibonacci quotient is as follows (this

is also from [2] by G. Blé):

1. Draw a unit circle. Set (1, 0) as x0, and label all iterations of x0. There are finitely many

of them, since γ ∈ Q.

2. Split the circle into two half-circles at x1 and x2. There will be a longer half-circle and a
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shorter half-circle (unless γ = 1/2, which we shall not consider here). Just for mathematical

rigor, take the closure of the two half-circles so they are both compact segments. Relabel x1

and x2 on the longer half-circle as x′1 and x′2.

3. “Paste” x2 and x′1 together (more rigorously, we can consider performing a quotient map

by identifying these two points on the two half-circles) and label it as α. (We do not have

to use α in our discussion below. This is just for construction.)

4. Now we have an interval. The interval goes from x1 to x′2 in ascending order. We can

map this interval to the real line homeomorphically and set x0 = 0 for simplicity.

We can see the first three examples in the picture below:

Now that we have a Hubbard tree, we are looking for a map such that f(x0) = x1, f(x1) = x2,

etc. It is not hard to imagine that there are many maps that satisfy this condition, even if

we stipulate that the map must be holomorphic.

Theorem A Hubbard tree corresponds to a unique PCF (a polynomial map that have finitely

many critical points along with their iterations under f) up to an affine conjugation.

This theorem is critical in that we can construct our Hubbard trees with more freedom in

choosing a corresponding map.

We now introduce the notion of kneading invariant.

3.3 Kneading Invariant

Suppose we have a unimodal map f : [0, 1] → [0, 1], which means that f is a continuous

map with one and only one maximum x0 and that f(0) = 0 = f(1). Let x+0 be the right

limit of x0.
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Figure 1: Examples on construction of the Hubbard Tree
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Definition The kneading invariant of f is defined as a sequence v(f) = v1v2v3 · · ·, where

each vi denote the i-th digit in the sequence, and is defined to be:

vi =


0, if f i(x+0 ) < x0

1, if f i(x+0 ) > x0

Here, we use x+0 instead of x0 in order to avoid the case when f (i)(x0) = x0.

Also, we are only considering the case where we are in the “dynamical core”. In other words,

f (2)(x0) < x0 < f(x0) or f(x0) < x0 < f (2)(x0). This is to ensure that the dynamics of this

one-dimensional map is “interesting”, in the sense that if not, we will see that the map is “too

predictable”. For example, if x0 < f (2)(x0) < f(x0), then f((x0, f(x0))) = (f (2)(x0), f(x0)),

which is a proper subset of the interval (x0, f(x0)). If we consider f((x0, f(x0))), we will

obtain an even smaller interval. In other words, the map is “strictly shrinking”.

Now, in the case of a rotation-like logistic map f with rational quotient γ = m
n

(including

those with Fibonacci quotient), the kneading invariant is periodic, in the sense that there

will be some string d = d1d2d3 · · · dn such that v(f) = ddd · · ·. This can be easily seen from

the fact that there are n images of x0. In some sense, the kneading invariant preserves the

information on the position of images of x0 under f relative to x0. Let r(n) denote the

length of the n− th block. Let R(n) denote the total length of the first n blocks and define

R(0) = 0. There are some more results on the properties of the kneading invariant and the

blocks in Hofbauer’s paper [8]. In general, these can be proved easily by considering and

visualizing the positions of the images of x0 under iterations of f .

A theorem by Hofbauer shows that a kneading invariant v(f) = v1v2v3 · · · can be decomposed
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into an infinite number of blocks in a unique way through an algorithm.

The algorithm for the decomposition is as follows [8]:

1. Start with either 0 or 1, depending on whether v(f) starts with 0 or 1, and consider 0v(f)

or 1v(f) accordingly.

2. Now, compare the portion of v(f) starting from the digit of interest (in this case, the first

digit) with 0v(f) or 1v(f). For rotation-like logistic maps with rational γ, the x1 is always

negative, which means the first digit of the kneading invariant is always 0. Thus, we will

always start with 0v(f).

3. The comparing process is as follows: check whether the next digit, v2, is the same as v1;

if v2 = v1, continue to v3; if not, end the block at v2.

4. Now, in the case when v2 = v1, if v3 = v2, continue; if v3 6= v2, end the block at v3.

5. Continue the process until the block ends.

6. Next, comparing the portion of v(f) starting from the r(1)+1− th digit with either 0v(f)

or 1v(f), depending on whether the r(1) + 1 − th digit is 0 or 1. If the r(1) + 2 − th digit

is the same as the first digit of v(f), continue to compare the r(1) + 3 − th digit and the

second digit of v(f); if not, stop the block.

7. Continue the comparing process indefinitely.
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3.4 Kneading Map

The kneading map, compared to kneading invariant, is defined in a much more implicit way.

Definition The kneading map Q : N→ N is the map that satisfies:

RQ(n) + 1 = r(n) (4)

The image of the kneading map of a rotation-like logistic map with Fibonacci quotient is

a repetitive sequence. In other words, there is some period p such that Q(N) = Q(N mod

p). This directly follows from the fact that the kneading invariant of f is periodic, since this

means the block decomposition of v(f) is also periodic, so it follows from the definition of

the kneading map that Qf must be periodic also.

To have a better understanding or more intuition on the kneading map, it might be helpful

to introduce Hofbauer’s tower. A more detailed discussion can be found in [4].

Definition Let I be a unit interval, f : I → I be a unimodal map, and c. The Hofbauer’s

tower H = H1 ×H2 ×H3 × · · · is a subspace of IN such that H1 = (x0, f(x0)), and

Hi+1 =


(f (i+1)(x0), f(x0)), if x0 ∈ Hi

f(Hi), otherwise

Definition If x0 ∈ Hi for some i ∈ N, then i is a cutting time. We denote the n − th

cutting time by Sn and set S0 = 1. In the case where n is the smallest natural number such

that there is no n− th cutting time, we set Sn =∞.

Now, it can be shown from the definition of H that HSn ⊂ HSn−Sn−1 , so that Sn−Sn−1 must

also be a cutting time. This motivates the following definition:
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Definition’ The kneading map Q : N→ N is the map that satisfies:

SQ(n) = Sn − Sn−1 (5)

4 Examples

We now compute two examples of the kneading invariant of the logistic maps with Fibonacci

quotient. Before that, we need to have a map which takes x0 to x1, x1 to x2, · · · . This map

does not have to be unique; rather, as we have previously discussed, they only have to be

equivalent up to an affine conjugation. In this case, just for simplicity, we use the quadratic

map f(x) = x2 + c. Now, a requirement is that when iterated enough times (in particular,

multiples of the period of the number of points in the Hubbard tree), f takes x0 back to

itself. Here, we assume that the points in the Hubbard tree are mapped to the real line

and let x0 = 0 be the turning point of the unimodal map f . Actually, f is not exactly a

unimodal map here, since it is not mapping from [0, 1] to [0, 1]. However, it is equivalent to

a unimodal map up to an affine conjugation, so they have the same dynamics and therefore

can be treated equally. We are mapping the Hubbard tree to a real interval, and it does not

matter much where the interval is on the real line regarding the dynamics on the Hubbard

tree.

4.1 Case γ = 3
5

We can actually solve for c by noting that f(x0) = f(0) = c = x1, f(x1) = c2 + c = x2,

f(x2) = (c2+c)2+c = x3, f(x3) = ((c2+c)2+c)2+c = x4, f(x4) = (((c2+c)2+c)2+c)2+c =
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x0 = 0. Although the value of c does not matter much in our discussion later, we will just

compute c as a reference. Note that since this is a polynomial, we will have multiple solutions

of c, which may or may not be real, and not all of them will satisfy the requirement that the

relative position of the images of x0 must be the same as we desired. For example, the trivial

solution c = 0 is not valid for our purposes, since if we take c = 0, we will have x0 = x1 = x2

instead of x1 < x0 < x2. An unproved conjecture is that only one c is valid. The only valid

c here is c ≈ −1.6254.

The kneading invariant is 01000 · · · . The repeating part is 01000. Let us practice the block

decomposition for this map as an example:

1.Starting with the first digit 0 and comparing the sequence of v(f) starting from the first

digit with 0v(f) (recall that if the digit we are considering is 0, we compare the kneading

invariant starting with this digit with 0v(f); otherwise, we compare it with 1v(f)), since 1

is the second digit in v(f), and 0 is the first digit of v(f), and 1 6= 0, we stop, so the first

block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the

second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the first digit in

v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of

v(f), which is 1, we find 0 6= 1, so we stop on this block, and the the second block is (10).

3.Next, starting from the fourth digit of v(f), which is 0, and compare the sequence of v(f)

starting from it with 0v(f): since the fifth digit of v(f) is 0, and the first digit of v(f) is 0,

we continue; now, the sixth digit of v(f) is 0, and the second digit of v(f) is 1, 1 6= 0, so we

stop with this block, so the third block is (00).
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4.Since the kneading invariant forward is just repeating the first five digits, the block de-

composition will be exactly the same as the three we did above, which means we will have

blocks (0)(10)(00) repeating forever.

Now we calculate the sequence of kneading map of f :

1.First, R(Q(1)) + 1 = r(1) = 1, so R(Q(1)) = 0. Since R is a strictly increasing function (a

block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) + 1 = r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we

must have Q(2) = 1.

3.Next, R(Q(3)) + 1 = r(3) = 2, or R(Q(3)) = 1. By the same reason, since R(1) = 1, we

must have Q(3) = 1.

4.From this point on, for any j ≥ 4, R(Q(j mod 3)) + 1 = r(j mod 3), so we must have

Q(j) = Q(j mod 3).

4.2 Case γ = 5
8

Similarly as the procedures in the last example, we have f(x0) = f(0) = c = x1, f(x1) =

c2 + c = x2, f(x2) = (c2 + c)2 + c = x3, f(x3) = ((c2 + c)2 + c)2 + c = x4, f(x4) =

(((c2 +c)2 +c)2 +c)2 +c = x5, f(x5) = ((((c2 +c)2 +c)2 +c)2 +c)2 +c = x6, f(x6) = (((((c2 +

c)2+c)2+c)2+c)2+c)2+c = x7, f(x7) = ((((((c2+c)2+c)2+c)2+c)2+c)2+c)2+c = x0 = 0.

By checking the relative positions of the images of x0 under f for different c, we see that the

only valid c here is c ≈ −1.7111.

The kneading invariant is 01001000 · · · . The repeating part is 01001000. Let us practice the

block decomposition for this map:
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1.Starting with the first digit 0 and comparing the sequence of v(f) starting from the first

digit with 0v(f) (recall that if the digit we are considering is 0, we compare the kneading

invariant starting with this digit with 0v(f); otherwise, we compare it with 1v(f)), since 1

is the second digit in v(f), and 0 is the first digit of v(f), and 1 6= 0, we stop, so the first

block is (0).

2.Next, starting from the second digit 1 and comparing the portion of v(f) starting from the

second digit with 1v(f), since the third digit in v(f) is 0, which is equal to the first digit in

v(f), we continue; comparing the fourth digit of v(f), which is 0, with the second digit of

v(f), which is 1, we find 0 6= 1, so we stop on this block, and the the second block is (10).

3.Next, start from the fourth digit 0, and compare the sequence of v(f) starting from it with

0v(f): since the fifth digit of v(f) is 1, and the first digit of v(f) is 0, we stop here, so the

third block is (0).

4.Next, start from the fifth digit 1, and compare the sequence of v(f) starting from it with

1v(f): since the sixth digit of v(f) is 0, which is equal to the first digit 0, we continue; since

the seventh digit is 0, which is not equal to the second digit 1, we stop here, so the fourth

block is (10).

5.Next, start from the seventh digit 0, and compare the sequence of v(f) starting from it

with 0v(f): since the eighth digit 0 is equal to the first digit 0, we continue; since the ninth

digit 0 is different from the second digit 1, we stop here, so the fifth block is (00).

6.Since the kneading invariant forward is just repeating the first eight digits, the block

decomposition will be exactly the same as the three we did above, which means we will have

blocks (0)(10)(0)(10)(00) repeating forever.
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Now we calculate the sequence of kneading map of f :

1.First, R(Q(1)) + 1 = r(1) = 1, so R(Q(1)) = 0. Since R is a strictly increasing function (a

block must have length at least 1), and R(0) = 0, we must have Q(1) = 0.

2.Next, R(Q(2)) + 1 = r(2) = 2, or R(Q(2)) = 1. By the same reason, since R(1) = 1, we

must have Q(2) = 1.

3.Next, R(Q(3)) + 1 = r(3) = 1, or R(Q(3)) = 0. By the same reason, since R(0) = 0, we

must have Q(3) = 0.

4.Next, R(Q(4)) + 1 = r(4) = 2, or R(Q(4)) = 1. By the same reason, since R(1) = 1, we

must have Q(4) = 1.

5.Next, R(Q(5)) + 1 = r(5) = 2, or R(Q(5)) = 1. By the same reason, since R(1) = 1, we

must have Q(5) = 1.

6.From this point on, for any j ≥ 6, R(Q(j mod 6)) + 1 = r(j mod 5), so we must have

Q(j) = Q(j mod 5).

5 Main Conjectures

For a rotation-like logistic map fn = e2πiγn with Fibonacci quotient γn = Fn

Fn+1
and its asso-

ciated kneading map Qn:

(a) Let Bn denote the smallest repeating part of the image of Qn. Then for n ≥ 6:

(i) If n is even, then Bn = Bn−1Bn−2;

(ii) If n is odd, then Bn = Bn−2Bn−1;

(b) Let v(fn) = v1v2v3 · · · be the kneading invariant of fn. Then:

(i) vFk
= 1 if k ≡ 1 mod 2 and k 6= n+ 1;
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(ii) vFk
= 0 if k ≡ 0 mod 2;

(iii) vFn+1 = 0;

To get an idea about what these conjectures really mean, we list the first few values of B:

γ = 3
5
: B4 = 011

γ = 5
8
: B5 = 01011

γ = 8
13

: B6 = (01011)(011)

γ = 13
21

: B7 = [(01011)][(01011)(011)]

γ = 21
34

: B8 = [(01011)(01011)(011)][(01011)(011)]

γ = 34
55

: B9 = [(01011)(01011)(011)][(01011)(01011)(011)(01011)(011)]

Conjecture (a) just states that B6 = B5B4, and in order to obtain B7, we take B5 and paste

to the left of B6; then, in order to obtain B8, we take B6 and paste it to the right of B7;

then, in order to obtain B9, we take B7 and paste it to the left of B8, · · · .

For conjecture (b), let us look at the case γ = F4

F5
= 3

5
as an example. The kneading invariant

for f4 is v(f4) = (01000)(01000) · · · . Now, the F2 = 1st digit is 0 by (ii), the F3 = 2nd digit

is 1 by (i), the F4 = 3rd digit is 0 by (ii), the F5 = 5th digit is 0 by (i) and (iii).

These conjectures above have not been proved yet. However, we have conducted a decent

amount of computation and verification so far. For (a), we have verified the conjecture up

until γ = F17

F18
. For (b), we have verified the conjecture up until γ = F9

F10
.

Shenxiong Li [10] has recently shown that Conjecture (a) is true if Conjecture (b) is true.

Unfortunately, neither of us could prove Conjecture (b) up until this point.

Remark These conjectures are greatly inspired by examples of computations using Mathe-

matica, provided by Shenxiong Li, which have been up until case F17

F18
.
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