
Algorithms for Galois Theory

Ben Kuehnert
Advised by Amanda Tucker

May 14, 2021

1 Introduction

Galois theory is an essential tool in algebra — it is famously used to prove
that you can’t trisect an angle or double a cube, to prove that there is no
formula for the roots of a quintic equation under radicals, and even that
Fermat’s Last Theorem holds. The central object in the subject, the Galois
group, is difficult to compute by hand, and exercises to compute it are ubiq-
uitous in undergraduate algebra courses. Hence, it is important to have an
effective method to solve this problem.

2 Preliminaries

In the context of this paper, Galois groups will always be defined over Q,
shown below.

Definition 2.1 (Galois group of a polynomial) Let f(x) ∈ Z[x]. Let K be
the splitting field of f . Then, the Galois group of f is

G = {σ ∈ Aut(K) : ∀x ∈ Q, σ(x) = x}

where Aut(K) denotes the group of automorphisms of K. As our eventual
goal is to actually compute Galois groups, it is important to have a simple
way to represent them. The following theorem helps with this.

Theorem 2.1 Let f be monic and irreducible. Let X = {α1, α2, . . . , αn} be
the roots of f , which lie in some fixed algebraic closure of Q. Let G be the

1

Galois group of f . Then, G acts freely and transitively on X via the action

(σ, α) 7→ σ(α).

where σ ∈ G and α ∈ X.

This means that G is isomorphic to a transitive subgroup of Sym(X).
Each element σ ∈ G can be identified by where it takes each root of f .

Moving forward, f(x) ∈ Z[x] will be assumed to be square-free, which
is a simpler class of polynomials. We can make this assumption because we
have a polynomial-time algorithm to compute the square-free factorization
of a polynomial f , and this factorization necessarily has the same roots as f ,
and thus the same Galois group. To do this, note that α is a multiple root
of f if and only if it is also a root of f ′. Thus, if we divide f by the greatest
common divisor of f with f ′, denoted (f, f ′), our result will be the square-
free factorization of f . Computing derivatives of polynomials and dividing
them are easy, so the only roadblock is computing (f, f ′). This is done with
the “Sub-resultant Algorithm” and is described on page 122 of [2].

The algorithm to compute the Galois group of f is done in three steps.
The first step is to factor f into a product of irreducibles, so f = f1 · f2 · · · fl
where each fi is irreducible over Q. The next step is to compute the Galois
group Gi of each fi. The final step is to use the Gi to compute the Galois
group G of f .

3 Root-finding algorithms

Algorithms to compute the roots of a polynomial will be used as a subroutine
in the Galois group computation.

3.1 Over the integers

In this section, we will describe the method for finding integer roots for monic
polynomials in Z[x]. This problem can be reduced to integer factorization
via the following theorem:

Theorem 3.1 (Rational Root Theorem) Let f(x) = anx
n+an−1x

n−1 + · · ·+
a1x+ a0 have ai ∈ Z, a0, an 6= 0. Then, if p/q ∈ Q satisfies f(p/q) = 0, then
p divides a0 and q divides an.

2

An immediate corollary is that all integer roots must divide a0. So, to
find all integer roots, just compute all factors of a0 and test each for being a
root. Algorithms such as the Sieve of Eratosthenes exist to find factors of a
number, although in general integer factorization is hard for large numbers.
However, we expect polynomials to have small coefficients so this is not an
issue.

3.2 Over the complex numbers

Finding roots in general is more complicated. For this, we will use Newton’s
method. This process works by iteratively improving an initial guess for a
root, until the root is within the desired accuracy.

The process will be described recursively: Let f be a a square-free poly-
nomial in Z. Let x0 be an initial “guess”. It does not necessarily need to be
a good guess, and in fact it could be almost any complex number and the
process will still converge. Now the recursive step: suppose we have some
guess xn. Then, we can improve this to a guess xn+1 via

xn+1 = xn −
f(xn)

f ′(xn)

The convergence of this method is due to Taylor’s theorem. Let xn be the
approximation obtained at the n-th step of the process, and define εn =
|α−xn| where α is the root of f that we are approximating. Taylor expanding
about α gives

0 = f(α) = f(xn) + f ′(xn)(α− xn) +
1

2
f ′′(ξn)(α− xn)2

for some ξn ∈ I where I is the interval between xn and α. Assuming f ′(xn) 6=
0 (which is usually OK to do since f is square-free – it doesn’t have multiple
roots, hence f ′(α) 6= 0) we have:

f(xn)

f ′(xn)
+ (α− xn) =

−f ′′(ξn)

2f ′(xn)
(α− xn)2.

Then, since xn+1 = xn − f(xn)
f ′(xn)

, we have

α− xn+1 =
−f ′′(ξn)

2f ′(xn)
(α− xn)2

3

taking an absolute value gives

εn+1 =
|f ′′(ξn)|
2|f ′(xn)|

· ε2n.

which shows that the error term is strictly decreasing if

sup
ξn∈I

1

2

∣∣∣∣f ′′(ξn)

f ′(xn)

∣∣∣∣ < 1

which occurs in the vast majority of cases. To find other roots of f , compute

f̃(x) = f(x)/(x− α̃) where α̃ is obtained approximate root, and then re-run
the algorithm on this new function. Care must be taken to not propagate
error, though. One way to avoid this is to run the iterative step with f rather
that f̃ for subsequent roots at the end, to ensure that the acquired roots are
indeed approximate roots of f . Pseudocode for this algorithm, along with
some parameters and extra steps tuned for real world examples can be found
in [2].

4 Factoring polynomials over Z
The first step in our algorithm is to factor f(x) ∈ Z[x] into a product of
irreducibles over Z. In 1982, A. Lenstra, H. Lenstra, and L. Lovász de-
vised the LLL algorithm, which solved this problem in polynomial time [6].
However, for our purposes we will be using a slightly different LLL-based
algorithm. This algorithm proceeds by computing the minimal polynomial
of an approximation of an algebraic integer α, described in [5]. Paired with
the above algorithm for computing approximate roots of a polynomial, this
turns into a polynomial-time algorithm for factorizing a polynomial.

To describe this algorithm, we must first define the LLL algorithm.

4.1 The LLL algorithm

Before giving the LLL algorithm, a few definitions are necessary:

Definition 4.1 Let b1, . . . , bk be linearly independent vectors in Rn. The
lattice generated by b1, . . . , bk is the set

L = L(b1, . . . , bk) =

{
k∑
i=1

λibi : λi ∈ Z

}

4

we call b1, . . . , bk a basis for L.

Note that in general there are multiple bases for a particular lattice L.
Next,

Definition 4.2 Let b1, . . . , bk be a basis, let b∗1, . . . , b
∗
k be the Gram-Schmidt

orthogonolization of the basis. We call b1, . . . , bk LLL reduced if

• For all 1 ≤ j < i ≤ n, ∣∣∣∣ 〈bi, b∗j〉〈b∗j , b∗j〉

∣∣∣∣ ≤ 1

2

• For i = 2, 3, . . . , n

3

4
‖b∗i−1‖2 ≤ ‖b∗k‖2 +

∣∣∣∣ 〈bk, b∗k−1〉〈b∗k−1, b∗k−1〉

∣∣∣∣ · ‖b∗k−1‖2
The goal of the LLL algorithm is to produce short vectors for a lattice.

The problem of finding the shortest vector in a lattice is known as the Shortest
Vector Problem (SVP), and is known to be intractable in general. The idea
behind LLL is to find a basis for the lattice that is close to orthogonal. This
is because the shortest vector in an orthogonal basis is the shortest vector
in the lattice. Intuitively, the shortest vector in a nearly orthogonal basis is
nearly the shortest vector in the lattice. This is formalized in the following
theorem.

Theorem 4.1 Suppose b1, . . . , bk ∈ Rn is an LLL reduced basis for a lattice
L. Then,

‖b1‖2 ≤ 2(n−1) · λ(L)2

where λ(L) is the length of the shortest vector in L.

Proof. Proposition 1.11 of [6]

Finally, we can define the LLL algorithm:

Theorem 4.2 Let b1, . . . , bk ∈ Rn be a basis for a lattice L. Then, there is an
algorithm which terminates and produces an LLL-reduced basis v1, . . . , vk for
L in O(n · k3 · logB) arithmetic operations where B = max{‖b1‖, . . . , ‖bk‖}.

Proof. Proposition 1.26 of [6]

5

4.2 Computing minimal polynomials

Now, we can describe the minimal polynomial algorithm. The basic idea is
to take some algebraic integer α, and compute an integral relation among
1, α, α2, . . . , αd for 0 ≤ d ≤ n. If d is minimal such that there is an integral
relation c0+c1α+c2α

2+· · · cdαd = 0, then the polynomial h(x) =
∑d

i=0 cix
i is

the minimal polynomial for α. In practice, however, we do not have access to
αi to full precision. So, moving forward, αi will represent an approximation
of αi. If f(x) =

∑n
i=0 cix

i, then fα =
∑n

i=0 ciαi.
Let f(x) ∈ Z[x] have degree n. Let α be a root of f . Define Ls as

L(b1, . . . , bn+1 where the bi are the rows of the following matrix:
1 0 0 · · · 0 2s<(α0) 2s=(α0)
0 1 0 · · · 0 2s<(α1) 2s=(α1)
0 0 1 · · · 0 2s<(α2) 2s=(α2)
...

...
...

. . .
...

...
...

0 0 0 · · · 1 2s<(αn) 2s=(αn)


Then, Z[x] and Ls are in one-to-one correspondence via

g(x) =
n∑
i=0

aix
i 7→

n∑
i=0

aibi = g̃ ∈ Ls

The variable s is an integer parameter that will be used to guarantee that
the resulting short vector is indeed the minimal polynomial of α. This is
done by the following theorem:

Theorem 4.3 Let α be an algebraic integer, and h(x) be its minimal poly-
nomial. Let H be the maximum among absolute values of h’s coefficients,
and d be the degree of h. Then, if s is the smallest integer such that

2s ≥ 2d
2/2 · (d+ 1)(3d+4)/2 ·H2d

and if |αi − αi| ≤ 2−s for 1 ≤ i ≤ d. Then, for any g 6= h with degree n or
less, we have

‖g̃‖2 > 2n‖h̃‖2

where g̃ and h̃ are the images of g and h in Ls.

Proof. Lemma 1.9 of [5]

6

This gives us the following algorithm. Suppose s and the αi satisfy the
above conditions (H and d can be replaced with the height and degree of f ,
respectively). Run LLL on the lattice Ls, and let ṽ be the first vector in the
resulting LLL-reduced basis. Then,

‖ṽ‖2 ≤ 2n‖h̃‖2

by theorem 4.1. Now, suppose v(x) is not equal to the minimal polynomial
of α, h(x). Then, by theorem 4.3

‖ṽ‖2 > 2n‖h̃‖2

which contradicts the above inequality. Thus, v(x) = h(x).

5 Galois groups of irreducible polynomials

Now that we can factor f into a product of irreducibles, we give an algorithm
to compute the Galois group for each irreducible factor.

5.1 Invariants

In a previous section, we showed that for an irreducible monic polynomial
f ∈ Z[x], its Galois group G is isomorphic to a transitive subgroup of Sn
where n = deg(f). The task of the algorithm will be to look through the
transitive subgroups in an efficient way, and throw out subgroups which are
not isomorphic to G. This theory of invariants will give us tools to do that.
Define R = Z[x1, . . . , xn]. Then, σ ∈ Sn acts on h ∈ R via

(σ, h) = h(σ(x1), . . . , σ(xn))

when σ is considered as a permutation of the xi.

Definition 5.1 (Invariant) h ∈ R is an invariant for U ⊆ Sn if

(σ, h) = h ∀σ ∈ U

If V ⊆ U and h is an invariant for V but not invariant for U , then h is called
a U-relative invariant for V

This leads into the main theorem for invariants:

7

Theorem 5.1 Let V (U ⊆ Sn where V is a maximal subgroup of U . Let
h ∈ R be an U -relative invariant for V . Then, if W ⊆ U then

W ⊆ V ⇐⇒ h is an invariant for W.

Proof. If W ⊆ V , then clearly h is an invariant for W as h is fixed by every
σ ∈ V , hence it is fixed by all σ ∈ W .

Next, suppose that h is an invariant for W . Suppose there is some σ ∈ W
which is not in V . Consider the group X = 〈V, σ〉. Since V is a maximal
subgroup of U , then X must contain U as a subgroup. Let τ ∈ X. Then,
τ is some composition of elements in V and σ, all of which fix h. Thus,
(τ, h) = h. Hence, h is an invariant for X. Thus, U is invariant for h as it is
a subgroup of X. This is contradicts the hypothesis of h being a U -relative
invariant for V . Thus, each element of W must lie in V , hence W ⊆ V .

5.2 Resolvent descent method

This section closely follows [4], which gives a general algorithm for computing
Galois groups. Throughout this section, f ∈ Z[x] is monic and irreducible
and G is the Galois group of f . Define ϕ : R → K via h 7→ h(α1, . . . , αn)
where K is the splitting field of f , and the αi are the roots of f lying in K.
Note that ϕ is a homomorphism. Specifically,

Lemma 5.2 Let h ∈ R, σ ∈ G. Then,

ϕ((σ, h)) = (σ, ϕ(h))

Proof. This is clear since multiplication and addition are commutative in
C.

This homomorphism will be important in deciding if a given element in
R is invariant for G.

Lemma 5.3 If

ϕ((σ, h)) 6= ϕ(h) for all σ ∈ Sn \ {id}

then h is G-invariant if and only if ϕ(h) ∈ Z.

8

Proof. Suppose h is G invariant. So,

ϕ(h) = ϕ((σ, h)) = (σ, ϕ(h))

for each σ ∈ G. Since ϕ(h) is fixed by all Galois automorphisms, it lies in the
base field, which is Q. Yet, ϕ(h) is an polynomial in αi, which are algebraic
integers. Thus, it lies in the intersection of algebraic integers and Q, which
is Z.

Conversely, suppose ϕ(h) ∈ Z, and suppose h is not G invariant. Then,
there exists some σ ∈ G such that (σ, h) 6= h. By the assumption, ϕ(h) 6=
ϕ((σ, h)). Yet,

ϕ((σ, h)) = (σ, ϕ(h)) = ϕ(h)

which is a contradiction. The first equality is by lemma 5.2. The second
equality is since ϕ(h) ∈ Z, hence is fixed by any σ ∈ G.

As mentioned in [4], for each h, there exists an f̂ such that this property
holds and the splitting field of f̂ is K.

Next, we form the lattice of transitive subgroups of Sn. Forming this
lattice is extremely computationally intensive, as the order of Sn is n!. At
this point, we could proceed by computing a U -relative V invariant h for each
pair (U, V) where V is a maximal subgroup of U , and test for containment of
G by checking if ϕ(h) ∈ Z. However, this is unnecessarily slow, as we end up
considering conjugate subgroups multiple times. The following polynomial
will be useful in allowing us to check for containment of G for all conjugates
at once.

Definition 5.2 Let V (U ⊆ Sn be groups where V is a maximal subgroup
of U . Let h be a U -relative invariant for V . The relative resolvent for V is
defined as

R(x) =
∏
σ∈U

(x− ϕ((σ, h)))

Then,

Theorem 5.4 Let V be a maximal subgroup of U , with G ⊆ U . Let R(x)
be the relative resolvent of V . Then,

(1) R(x) has integer coefficients.

9

(2) z is a root of R, so z = ϕ((σ, h)) for some σ if and only if G is a subgroup
of σV σ−1 for some σ.

Proof. To prove (1): this follows from the coefficients of R being symmetric
functions in the αi, so they are fixed by all Galois automorphisms hence they
are in Q. At the same time, since they are combinations of the αi, they are
algebraic integers. Hence, they are integral.

To prove (2): suppose z ∈ Z and σ ∈ U satisfies z − ϕ((σ, h)) = 0, so
ϕ((σ, h)) = z. By Lemma 5.3, this happens if and only if (σ, h) is invariant
for G. Next, (σ, h) is a U -relative invariant for σV σ−1. Let στσ−1 ∈ σV σ−1.
Then,

(στσ−1, (σ, h)) = (στ, h) = (σ, (τ, h)) = (σ, h)

as τ ∈ V and h is invariant for V . By theorem 5.1 this occurs if and only if
G ⊆ σV σ−1.

So, we continue as follows: Start at U = Sn, and for each pair (U, V)
where V is a maximal subgroup of U , compute h a U -relative invariant for
V . An algorithm which does this is described in [3]. Next, check if h satisfies
the condition in lemma 5.3. If not, apply a Tschirnhaus transformation to f
to obtain a f̂ such that it holds. With this f̂ , compute the relative resolvent
for V . Next, invoke the algorithm in section 3.1 to check the resolvent for
integral roots. If it does, then we know that G ⊆ σV σ−1 for some σ ∈ U .
Recursively run the algorithm on all maximal subgroups of σV σ−1. At the
base case, if we know that G ⊆ U and the relative resolvents for each maximal
subgroup of U do not have integral roots, then we can conclude that G = U .

6 Galois groups of reducible polynomials

At this point, for any polynomial f , we can factor f as f = f1 · f2 · · · fk and
compute Gi, the Galois group of fi. It is known that the Galois group G of
f is isomorphic to a subgroup of

∏
Gi, and our goal is to pick which one it

is. However, the information we have alone is not enough.
For example, if f = f1f2 where f1(x) = x4 − 2 and f2(x) = x2 + 1, then

the splitting field for f1 is K1 = Q(i, 4
√

2) which has Galois group D8 over
Q. Meanwhile, the splitting field for f2 is K2 = Q(i) which has Galois group
Z/2Z over Q. Note that K2 ⊆ K1, hence K1K2 = K1 so the Galois group

10

for f is just D8. Alternatively, if f = f1f3 where f3(x) = x2 − 3, then the
splitting field for f3 is K3 = Q(

√
3) which has trivial intersection with K1,

hence the Galois group for K1K3 is D8 × (Z/2Z). Critically, information
about how the splitting fields interact is necessary to find the Galois group
of the compositum field.

A polynomial called the “compositum polynomial” will help in low-degree
cases. First, we define the resultant.

Definition 6.1 Let f1 and f2 be monic polynomials with coefficients in
some integral domain R. Suppose f1 has roots α1, . . . , αm and f2 has roots
β1, . . . , βn in a fixed algebraic closure of the quotient field of R. Then, the
resultant of f1 and f2 is

Res(f1, f2) =
∏

1≤i≤m
1≤j≤n

(αi − βj)

Theorem 6.1 Let R be an integral domain, and f1, f2 ∈ R[x]. Then,
Res(f1, f2) ∈ R.

Proof. Corollary of Lemma 3.3.4 of [2].

Now, we can define the compositum polynomial, as defined in [1].

Definition 6.2 Let f1, f2 be irreducible monic polynomials with coefficients
in Z. Let

r(x) = Res(f1(y), f2(x− y))

Then, the compositum of f1 and f2, denoted comp(f1, f2), is the largest
irreducible factor of r(x).

Since f1(y) and f2(x−y) can be regarded as polynomials with coefficients
in Z[x]. Theorem 6.1 tells us that r(x), and hence comp(f1, f2), is a member
of Z[x]. The compositum has the property that it is the minimal polynomial
of αi + βj for some i and j. This is because if α1, . . . , αm are the roots of f1,
then

f1(y) = (y − α1) · · · (y − αm)

and if β1, . . . , βn are the roots of f2, then x− β1, . . . , x− βn are the roots of
f2(x− y), so

f2(x− y) = (y − (x− β1)) · · · (y − (x− βn))

11

then, applying the resultant formula,

Res(f1(y), f2(x− y)) =
∏

1≤i≤m
1≤j≤n

((x− βj)− αi) =
∏

1≤i≤m
1≤j≤n

(x− (βj + αi))

So, if f1 and f2 are both quadratic, and have splitting fields Q(α) and Q(β)
respectively, then the splitting field for comp(f1, f2) is Q(α + β). Thus,
the degree of comp(f1, f2) is equal to the degree of Q(α, β) over Q. At this
point, we can now give an algorithm to compute the Galois group of reducible
polynomials up to degree 5.

6.1 Degree 2 and 3

If f has degree 2 or 3, then f has at most one irreducible factor of degree
2 or more. If f does indeed have one irreducible factor of degree 2 or more,
say f1, then this means that the roots of f consist of the roots of f1 together
with some roots lying in Z. Thus, the Galois group of f is the Galois group
of f1, G1. If f does not have an irreducible factor of degree 2 or more, then
it necessarily factors over Z, hence its Galois group is trivial.

6.2 Degree 4

If f has degree 4, then f is either irreducible, a product of two quadratics,
or it reduces to a previous case. The only non-trivial one is when f = f1f2
where f1 and f2 are irreducible quadratics, in which case G is isomorphic to
a subgroup of (Z/2Z)2.

To decide which subgroup G is, compute g = comp(f1, f2). If deg(g) = 4,
then the splitting fields of f1 and f2 intersect trivially, hence G ∼= (Z/2Z)2.
If deg(g) = 2, then the splitting fields of f1 and f2 are equal, so G ∼= Z/2Z.

6.3 Degree 5

If f has degree 5, then the only case that isn’t covered in previous sections
is when f = f1f2 when deg(f1) = 3 and deg(f2) = 2. Let K1 and K2 be the
splitting fields for f1 and f2 respectively, and let G1 and G2 be the Galois
groups of K1 and K2 over Q. A priori, we know that G1 is isomorphic to
some transitive subgroup of S3, so either Z/3Z or S3 itself. We also know

12

that G2
∼= Z/2Z, as it is the only transitive subgroup of S2.

If G1
∼= Z/3Z, then G ∼= G1 × G2

∼= Z/6Z. This is because the degrees
of K1 and K2 are coprime, hence K1 ∩K2 = Q. If G1

∼= S3, then G is iso-
morphic to a subgroup of S3 × (Z/2Z) which necessarily contains subgroups
isomorphic to G1 (S3) and G2 (Z/2Z). The only possible options for G are
then S3 × (Z/2Z) or S3. To decide these cases, we look at the intersection
between K1 and K2. Clearly G ∼= S3 × (Z/2Z) if and only if K1 ∩K2 = Q.
On the other hand, G ∼= S3 if and only if K2 ⊆ K1. We will use the theory
of cubic fields to decide which case we are in.

Let d1 be the discriminant of f1. Then, d1 can be written uniquely as
d1 = ef 2 where e is either 1 or a fundamental discriminant. Additionally, the
splitting field for f1 (which is K1) contains a unique quadratic subfield Q(

√
e)

(Section 6.4.5 of [2]). Since this analysis takes place only when G1
∼= S3, then

we know that d1 is not a square, hence e is indeed a fundamental discriminant.
Thus, K2 ⊆ K1 if and only if the discriminant of f2 is equal to e. If the
discriminant of f2 is not equal to e, then K1 ∩K2 = Q and the Galois group
is S3 × (Z/2Z). This leads to the following algorithm for computing the
Galois group of f1f2:

1. Compute G1 and G2, the Galois groups of f1 and f2 respectively.

2. If G1
∼= Z/3Z, output Z/6Z.

3. Compute disc(f1) · disc(f2). If the result is square-free then return S3 ×
(Z/2Z). If the result is a square, then output S3.

Algorithms to compute the Galois group for reducible polynomials of
degree 6 and 7 are given in [1].

7 Future considerations

The clear bottleneck in the algorithm is section 6, as the algorithms in the
previous sections are tractable when run on polynomials with degrees much
higher than 7. So, any work to expand section 6 to higher degree would
directly translate to making the algorithm more useful overall. This requires
having a general algorithm to answer the following question: Given two fields

13

K1 and K2 which are Galois over Q, what is the field K1K2? What is K1∩K2?

One idea for solving this is to make use of the LLL algorithm. If K1 =
Q(α) and K2 = Q(β), then we can use LLL to solve for the minimal poly-
nomial of β over K1 (and vice versa). This gives us the degree of K1K2 over
K1. In low-degree cases, this could yield enough information to decide the
Galois group of K1K2, but in general it is not enough.

8 Acknowledgements

I would like to thank my advisor Amanda Tucker for her help in writing this
thesis by providing feedback and helping me understand this topic. I would
also like to thank Professor Haessig and Professor Jochnowitz for being on
my thesis committee.

References

[1] C. Awtrey, T. Cesarski, and P. Jakes. Determining galois groups of re-
ducible polynomials via discriminants and linear resolvents. JP Journal
of Algebra Number Theory and Applications, 39(5):685–702, 2017.

[2] H. Cohen. A course in computational algebraic number theory. Graduate
Texts in Mathematics, 1993.

[3] K. Girstmair. On invariant polynomials and their application in field
theory. Mathematics of Computation, 48(178):781–797, 1987.

[4] A. Hulpke. Techniques for the computation of galois groups. In B. H.
Matzat, G.-M. Greuel, and G. Hiss, editors, Algorithmic Algebra and
Number Theory, pages 65–77, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[5] R. Kannan, A. K. Lenstra, and L. Lovász. Polynomial factorization and
nonrandomness of bits of algebraic and some transcendental numbers. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’84, page 191–200, New York, NY, USA, 1984. Association
for Computing Machinery.

14

[6] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with ra-
tional coefficients. Mathematische Annalen, 261, 12 1982.

15

