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Introduction

Random walks are a fundamental topic in probability theory with wide-ranging
applications across physics, engineering, mathematics, and computer science. In
fact, there are over 11,000 papers on arXiv that explore them in depth. Random
walks can be used to model a variety of real-world phenomena, including fluid
dynamics, stock price movements, genetic drift, animal foraging behavior, and
search algorithms.

But what exactly is a random walk? At its core, it’s a simple model of an
indecisive traveler. To understand how such a versatile model works, let’s look
at its simplest form. Imagine standing at 0 on a number line. You flip a fair
coin: if it lands heads, you take a step to the right; if tails, a step to the left.
For instance, let’s say you flip the coin and get heads—you move to position 1.
That’s the first step in your random walk.

and if we get tails after that...

A lot of research goes into modeling where we would end up after n steps and
with what probability. This process can also be generalized to higher dimensions
(moving on a grid or in a 3d space instead of just the number line where we
move in each direction with the same probability) and those processes have their
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own interesting properties. For the purpose of this paper, our random walks
will occur on graphs.

A graph is a mathematical structure made up of nodes, called vertices, and
the connections between them, called edges. This can be conceived as a system
of towns and the roads that connect them. Consider now a random walk on a
graph. At each step, the choice of direction depends only on the current position
and the available edges, not on the path taken to get there. Whether the edges
are directed or undirected, weighted or unweighted, the behavior of the random
walk changes accordingly, revealing insights into the structure and dynamics of
the graph itself. Through this lens, a graph becomes not just a static diagram,
but a playground of movement, chance, and connectivity.

Motivation and Problem Statement

The central focus of this honors thesis is the hitting time, which refers to the
number of steps required for a random walk to move from one vertex to another.
In probabilistic terms, for a graph G = (V,E), we define the hitting time as

τi,j = inf{t | X0 = i,Xt = j}

where Xt denotes the position of the random walker at time t, and i and j are
two distinct vertices in the graph.

Studying hitting times in Markov chains is essential because they provide
deep insights into the behavior and dynamics of stochastic processes over time.
Specifically, a hitting time represents the expected number of steps it takes for
a Markov chain to reach a particular state for the first time, starting from a
given initial state. This concept is crucial across a variety of fields. In network
theory, it helps us understand the expected time it takes for a random walk
to reach a specific node. In reliability engineering, it can model the time until
a system fails or recovers. In algorithm design, hitting times are important
for evaluating the efficiency of randomized algorithms, while in economics and
biology, they offer tools for modeling transitions between key states or events.
By studying hitting times, we gain a clearer understanding of the temporal
aspects of randomness, enabling us to predict, optimize, and control complex
systems governed by uncertainty. Any system that can be modeled by a random
walk benefits from the investigation of hitting times.

One effective way to explore hitting times is through simulation. For exam-
ple, consider the cycle graph with 10 nodes. The following diagram shows the
graph:
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Suppose we are interested in the random variable τ0,5, representing the num-
ber of steps needed to go from node 0 to node 5. After running 10,000 trials,
we obtain the following frequency graph:

What stands out here is the large variance in the distribution. The sample
mean is 25.0306, and the sample variance is 410, indicating that the variance is
relatively large compared to the mean.

We can observe a similar behavior in the hypercube graph with 8 nodes,
which is shown below:

Now, suppose we are interested in τ(0,0,0),(1,1,1), the number of steps needed
to move from node (0, 0, 0) to node (1, 1, 1). After running 10,000 trials, we
obtain the following frequency graph:
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The sample mean in this case is 10, and the sample variance is 63.
This observation leads to the central motivation for this thesis. In the lit-

erature, the primary focus in the study of hitting times has been on expected
hitting times, denoted E[τi,j ]. However, as demonstrated above, the expected
value alone is often a poor predictor of how the random walk behaves. In this
paper, we will examine two related quantities: P (τi,j = n), the probability mass
function of hitting times, and Var(τi,j), the variance of the hitting time. Despite
their importance, these quantities receive less attention due to computational
challenges. Our approach will involve general computations, with a subsequent
focus on vertex-transitive graphs.

Markov Chains on General Graphs

Many of the ideas from the next section comes from [2] and [3]

Distributions

Let’s try to find the distribution of P (τi,j = n) on our graph G with Markov
matrix A. One relationship becomes clear.

P (τi,j = n) =
∑
k ̸=j

P (τi,k = 1)P (τk,j = n− 1)

The above formula calculates the probability of reaching an adjacent node to
our ending node in n− 1 steps and then making a step from that adjacent node
to the end. By setting k ̸= j, we make sure that we aren’t adding the probability
that we arrive to ending node j one move early. The above is true, as each step
of a random walk is independent. Let us fix an ending node j, and then let us
define a vector

Pn =


P (τ1,j = n)
P (τ2,j = n)

...
P (τ|V |−1,j = n)
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the nodes 1, 2...|V | − 1 represent some arbitrary numbering of the nodes of the
graph once j is removed. Let Q be the matrix such that Qik = P (τik = 1) such
that i, k ̸= j. We then have

Pn = QPn−1

as the recursion above is simply matrix multiplication. So then by induction,
we have

Pn = Qn−1P1

One might notice that Q is simply the Markov matrix of our graph but with
removed jth row and jth column. Therefore, here we have a solid way of cal-
culating distributions. As we are taking arbitrary powers of a matrix, it often
comes down to diagonalizing Q. This is often hard to do by hand, but a com-
puter can help. There are a couple things to note about the eigenvalues of such
a matrix.

1. Q is a substochastic matrix as the sum of every row is less than or equal
to 1. This implies that |λ| < 1. Where λ is an eigenvalue of 1.

2. Q is the adjacency graph of a subgraph of G. Which implies by the
Interlacing theorem of Spectral Graph Theory that all the eigenvalues of
Q are embedded between the eigenvalues of A.

Consider this graph

. We will use every step on a random walk is independent and assuming that
walking across any edge is equally likely. Setting j = 0 and then Q is0 1

3
1
3

1
3 0 1

3
1
2

1
2 0


and P1 is  1

3
1
3
0
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. Then

Qn−1P1 =

P (τ1,0 = n)
P (τ2,0 = n)
P (τ3,0 = n)

 =


−(−1)n∗2(2∗n)∗3n∗

√
13+(2∗

√
13+14)n∗

√
13

13∗(
√
13+1)

n∗2n∗3n

−(−1)n∗2(2∗n)∗3n∗
√

13+(2∗
√

13+14)n∗
√

13

13∗(
√
13+1)

n∗2n∗3n

13∗(−1)n∗2(2∗n)∗3n+13∗(2∗
√

13+14)n+(−1)n∗2(2∗n)∗3n∗
√

13−(2∗
√

13+14)n∗
√

13

26∗(
√
13+1)

n∗2n∗3n


We can see that even for relatively simple looking graphs, the distributions
can be very complicated and often intractable to compute by hand with larger
graphs. Later, we will restrict the graphs we will work with to make sure this
process is simpler.

Characteristic Function

Let’s consider the value of the ϕτi,j (t). We can compute this directly using
standard techniques

ϕτi,j (t) = E[eitτi,j ] =

∞∑
n=−∞

eintP (τi,j = n)

As it is impossible to move to another node in negative moves. Also since i ̸= j,
it follows that n ̸= 0. Therefore, we can write the sum as

∞∑
n=1

eintP (τi,j = n)

∞∑
n=1

einteTi Q
n−1P1

Instead of just considering just one moment generating function, we consider
all the characteristic functions ϕτi,j (t) for all i ̸= j. We will call this vector
function Mτ∗,j (t).

ϕτ∗,j (t) =

∞∑
n=1

eintQn−1P1

ϕτ∗,j (t) = eit
∞∑

n=0

eintQnP1

ϕτ∗,j (t) = eit(I − eitQ)−1P1

We can take the derivative of this

ϕ′
τ∗,j (t) = ieit(I − eitQ)−1P1 + eit(I − eitQ)−1ieitQ(I − eitQ)−1P1

ϕ′
τ∗,j (t) = ieit(I − eitQ)−1(I + eitQ(I − eitQ)−1)P1

ϕ′
τ∗,j (t) = ieit(I − eitQ)−1((I − eitQ+ eitQ)(I − eitQ)−1)P1
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ϕ′
τ∗,j (t) = ieit(I − eitQ)−2P1

Since iE[τ∗,j ] = ϕτ∗,j (0)

ϕ′
τ∗,j (0) = i(I −Q)−2P1

Therefore, we have
E[τ∗,j ] = (I −Q)−2P1

We have another way of reaching this quantity by considering the quantity
agian.

ϕτ∗,j (t) = eitP1

(I − eitQ)ϕτ∗,j (t) = eitP1

We take the derivative of both sides

(I − eitQ)ϕ′
τ∗,j (t)− ieitQϕτ∗,j (t) = ieitP1

(I − eitQ)ϕ′
τ∗,j (t) = ieitP1 + ieitQϕτ∗,j (t)

We now plug in t = 0.

(I −Q)ϕ′
τ∗,j (0) = iP1 + iQϕτ∗,j (0)

Since ϕτi,j (0) =
∑∞

n=1 e
i0tP (τi,j = n) = 1. If 1 is the vector of all 1’s, then we

have that
(I −Q)ϕ′

τ∗,j (0) = iP1 +Q1

ϕ′
τ∗,j (0) = i(I −Q)−1(P1 +Q1)

It follows that Q1i =
∑

k ̸=j P (τi,k = 1). Therefore, (P1 +Q1) = 1

ϕ′
τ∗,j (0) = i(I −Q)−11

So then

E[τ∗,j ] = (I −Q)−11 =

∞∑
n=0

Qn1

We then have that second derivative of this is

ϕ′′
τ∗,j (t) = −2Q(I −Q)−21

Which means that
E[τ2∗,j ] = 2Q(I −Q)−21

E[τ2∗,j ] = 2

∞∑
n=0

nQn1

When it comes to actually computing these quantities. The above calculations
exist for approximate values found by a computer. In some cases, it is feasible
to use the above formulae to find the distributions for general classes of graphs.
The cases below are generally easier to compute. Later in this paper, we will
introduce machinery to tackle harder cases.
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Complete Case

The complete graph is where each node is connected to every other node. It
looks like this. In this case, it is clear that for a complete graph of k nodes, we
have

P (τi,j = 1) =
1

k − 1

if we have a simple random walk. Then, it is clear that for all vertices i, j in
the graph

P (τi,j = n) =

(
k − 2

k − 1

)n−1
1

k − 1

Where the walker makes n−1 ”wrong” moves and then makes the right one once.
We can see above that the distribution is geometric with success probability of
1

k−1 so
E[τi,j ] = k − 1

V ar[τi,j ] = (k − 1)(k − 2)

Complete Bipartite Case

A complete bipartite graph consists of two disjoint sets of nodes, say of sizes k1
and k2, where every node in one set is connected to every node in the other,
but there are no edges within a set.

Suppose the walker starts at a node in set A (with k1 nodes), and aims to
reach a node in set B (with k2 nodes). The walker alternates between the two
sets on each step due to the bipartite structure.

In this case, the probability of hitting a particular node in the opposite set
in one step is:

P (τi,j = 1) =
1

k2
if i ∈ A, j ∈ B

Because the walker must switch sets each time, for i, j in opposite sets, τi,j
takes only odd values. The probability of reaching j in exactly 2n − 1 steps
involves making n− 1 failed visits to other nodes in the target set, interspersed
with returns to the starting set. This yields a geometric-like structure with a
modified step size, so then we have

P (τi,j = 2n+ 1) =

(
k2 − 1

k2

)n−1
1

k2
, if i ∈ A, j ∈ B

P (τi,j = 2n) =

(
k2 − 1

k2

)n−1
1

k2
, if i ∈ A, j ∈ A

The hitting time distribution is again geometric (over odd steps), and the ex-
pected hitting time from one set to the other is:

E[τi,j ] = 2k2 − 1 if i ∈ A, j ∈ B
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Similarly, for transitions within the same set (which require at least two
steps), the expected hitting time is:

E[τi,j ] = 2k2 if i, j ∈ A, i ̸= j

So then variance follows

V ar[τi,j ] = 4(k2)(k2 − 1) if i ∈ A, j ∈ B

V ar[τi,j ] = 4(k2)(k2 − 1) if i ∈ A, j ∈ A

The variances are the same as both of these processes are the same as there is
full probability that a walker moves from A to B or back every move. The first
case where i ∈ A, j ∈ B is offset from when i, j ∈ A by one move.

Cycle Case

Let’s perform these computations for a cycle. It clearly follows for a k-cycle
(denoted as Ck)

Q =


0 1

2 0 0 ... 0 0
1
2 0 1

2 0 ... 0 0
0 1

2 0 1
2 ... 0 0

... ... ... ... ... ... ...
0 0 0 0 ... 1

2 0

 , P1 =


1
2
0
...
0
1
2


So then we have

0 1
2 0 0 ... 0 0

1
2 0 1

2 0 ... 0 0
0 1

2 0 1
2 ... 0 0

... ... ... ... ... ... ...
0 0 0 0 ... 1

2 0




P (τ1,0 = n− 1)
P (τ2,0 = n− 1)

...
P (τk−1,0 = n− 1)

 =


P (τ1,0 = n)
P (τ2,0 = n)

...
P (τk−1,0 = n)


Or in other words

0 1
2 0 0 ... 0 0

1
2 0 1

2 0 ... 0 0
0 1

2 0 1
2 ... 0 0

... ... ... ... ... ... ...
0 0 0 0 ... 1

2 0


n−1 

P (τ1,0 = 1)
P (τ2,0 = 1)

...
P (τk−1,0 = 1)

 =


mn(1)
mn(2)
...

mn(k − 1)


So it follows we want to take the diagonalization of the Toeplitz Matrix above.
Let us call that matrix H and its diagonlization LDL−1. Thankfully, the eigen-
vectors and eigenvalues for tridiagonal toeplitz matrices are well known and
with that we have the following as the diagonalization. These eigenvalues were
found in [1]
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0 1

2 0 0 ... 0 0
1
2 0 1

2 0 ... 0 0
0 1

2 0 1
2 ... 0 0

... ... ... ... ... ... ...
0 0 0 0 ... 1

2 0



=
2

k


sin(πk ) sin( 2πk ) ... sin( (k−1)π

k )

sin( 2πk ) sin( 4πk ) ... sin( 2(k−1)π
k )

... ... ... ...

sin( (k−1)π
k ) sin( 2(k−1)π

k ) ... sin( (k−1)2π
k )



cos(πk ) 0 ... 0

0 cos( 2πk ) 0 ... 0
... ... ... ... ...

0 0 0 ... cos( (k−1)π
k )




sin(πk ) sin( 2πk ) ... sin( (k−1)π
k )

sin( 2πk ) sin( 4πk ) ... sin( 2(k−1)π
k )

... ... ... ...

sin( (k−1)π
k ) sin( 2(k−1)π

k ) ... sin( (k−1)2π
k )


As we know from earlier, 

P (τ1,0 = 1)
P (τ2,0 = 1)

...
P (τk−1,0 = 1)

 =


1
2
0
...
1
2


So, then we first multiply by L−1 or the last matrix in the diagonalization.

sin(πk ) sin( 2πk ) ... sin( (k−1)π
k )

sin( 2πk ) sin( 4πk ) ... sin( 2(k−1)π
k )

... ... ... ...

sin( (k−1)π
k ) sin( 2(k−1)π

k ) ... sin( (k−1)2π
k )




1
2
0
...
1
2

 =
1

2


sin(πk ) + sin( (k−1)π

k )

sin( 2πk ) + sin( 2(k−1)π
k )

...

sin( (k−1)π
k ) + sin( (k−1)2π

k )


We next multiply by the diagonal matrix.

1

2


cos(πk ) 0 ... 0

0 cos( 2πk ) 0 ... 0
... ... ... ... ...

0 0 0 ... cos( (k−1)π
k )


n−1


0

sin( 2πk )
0

sin( 4πk )
...

 =
1

2


cos(πk ) sin(

π
k )

n−1 + sin( (k−1)π
k ))

cos( 2πk )n−1 sin( 2πk ) + sin( 2(k−1)π
k )

...

cos( (k−1)π
k )n−1(sin( (k−1)π

k ) + sin( (k−1)2π
k ))


And lastly multiplying by L.

2

k


sin(πk ) sin( 2πk ) ... sin( (k−1)π

k )

sin( 2πk ) sin( 4πk ) ... sin( 2(k−1)π
k )

... ... ... ...

sin( (k−1)π
k ) sin( 2(k−1)π

k ) ... sin( (k−1)2π
k )

 1

2


cos(πk ) sin(

π
k )

n−1 + sin( (k−1)π
k ))

cos( 2πk )n−1 sin( 2πk ) + sin( 2(k−1)π
k )

...

cos( (k−1)π
k )n−1(sin( (k−1)π

k ) + sin( (k−1)2π
k ))
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=


1
k

∑k−1
j=0 cos(

jπ
k )n−1(sin( jπk ) + sin( j(k−1)π

k )) sin( jπk )
1
k

∑k−1
j=0 cos(

jπ
k )n−1(sin( jπk ) + sin( j(k−1)π

k )) sin( 2jπk )
1
k

∑k−1
j=0 cos(

jπ
k )n−1(sin( jπk ) + sin( j(k−1)π

k )) sin( 3jπk )

...
1
k

∑k−1
j=0 cos(

jπ
k )n−1(sin( jπk ) + sin( j(k−1)π

k )) sin( (k−1)jπ
k )


Therefore

P (τi,j = n) =
1

k

k−1∑
j=0

cos(
jπ

k
)n−1(sin(

jπ

k
) + sin(

j(k − 1)π

k
)) sin(

ijπ

k
)

Extensions

One important class of graphs where hitting time distributions can be derived
explicitly is the cycle. Consider the path graph Pk, which is a chain of k nodes
connected in sequence.

For generality, we take one of the endpoints as the absorbing state (i.e., the
destination node).

This assumption does not result in a loss of generality. Suppose instead
we selected an interior node (e.g., node 3 in a 5-node path) as the destination.
Then, any walk from one end (e.g., node 1) that eventually reaches the other end
(e.g., node 5) without hitting the interior node is irrelevant to the hitting time
to that interior node. Thus, conditioning on reaching the interior node without
escape effectively partitions the walk into two disjoint path subgraphs. Hence,
the analysis of hitting times to an endpoint captures the general behavior.

Now consider the cycle graph C2k, where nodes are connected in a closed
loop of 2k vertices. By folding the cycle along the line of symmetry, we can pair
nodes that are equidistant from a chosen target node. (The line of symmetry
would be a hypothetical line from 0 to 6.
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Under this pairing, the probability of stepping toward or away from the target
remains unchanged, and the resulting random walk is statistically identical (in
terms of hitting time) to that of a path graph with k nodes. Therefore, the
hitting time distribution for a path of k nodes corresponds exactly to that of a
cycle of 2k nodes under this symmetry.

In the context of Cayley graphs, the cycle graph on k nodes can be seen as
the Cayley graph of the cyclic group Zk with generating set {±1}. Extending
this idea, we now consider the group Z2

p, where p is an odd prime. A standard
set of generators for its Cayley graph is:

{(±1, 0), (0,±1)},

which gives rise to the 2D torus graph — a grid with wrap-around edges.
However, an alternative set of generators is:

{(±1,±1)},

which corresponds to diagonal steps in the lattice. These generators also pro-
duce a valid Cayley graph, albeit with a rotated geometry. Importantly, these
generator sets are related via a linear automorphism:

ϕ(a, b) =

(
a+ b

2
,
a− b

2

)
,

which is an automorphism of Z2
p since 2 is invertible in Zp (as p is odd). This

transformation maps the standard coordinate basis to the new one spanned by
the diagonal generators.

Let cn(i) denote the probability that a walk on a p-cycle starting at 0 hits
i for the first time at step n. If we define ϕ−1(a − c, b − d) = (a′, b′), then
(a′, b′) represents the displacement between (a, b) and (c, d) expressed in terms
of the diagonal generator basis. Under the assumption of independence in each
coordinate (which holds due to the structure of the walk), the hitting time
distribution on Z2

p can be expressed as:

P (τ(a,b),(c,d) = n) =

n∑
i=0

ci(a
′) · cn−i(b

′).

That is, the distribution of the hitting time is a convolution of the 1D hitting
time distributions along the transformed coordinates.
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Fourier View for Finite Groups

Much of the ideas of the section orginated from the paper [4] Let’s suppose
we have a random walk on a group G. For each successive time step, we have
that for x, y ∈ G p∗(x, y) is the probability of moving from x to y. For random
walks on groups, we are assuming a time-independent increment distribution.
Therefore, we can define a new function p(g) = p∗(x, xg) = P (τx,xg = 1).

For this portion of the paper, we are concerned with the distribution of τg,e on
finite groups G. For the ease of writing, we will define that P (τg,e = n) = mn(g).
It follows that p(g) = m1(g) It follows that we have

mn(g) =
∑
s∈G

p∗(g, gs−1)mn−1(gs
−1)

and
mn(e) = 0

for n ≥ 1. So, we can design a new function cn

cn(g) =

{
0 g ̸= e∑

s∈G mn−1(s)m1(s) g = e

mn(g) = −cn(g) +
∑
s∈G

m1(s
−1)mn−1(gs

−1)

For the purposes of this write-up, we will assume that our random walk is
symmetric.

mn(g) = −cn(g) +
∑
s∈G

m1(s)mn−1(gs
−1)

m̂n(ρj) = −I
∑
s∈G

mn−1(s)p(s) + p̂(ρj)m̂n−1(ρj)

m̂n(ρj) = −I
∑
s∈G

mn−1(s)m1(s
−1) + m̂1(ρj)m̂n−1(ρj)

By Plancharel’s Theorem on Abelian Groups and the fact that Abelain groups
have exactly the same number of irreducible representations and group elements.

m̂n(ρj) = −1

k

k−1∑
a=0

m̂n−1(ρa)m̂1(ρa) + m̂1(ρj)m̂n−1(ρj)

and so then we have that

m̂n(ρj) = −1

k

k−1∑
a=0

m̂n−1(ρa)m̂1(ρa) + m̂1(ρj)m̂n−1(ρj)
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So then we have a recurrence relation such that.

A


̂mn−1(ρ0)
̂mn−1(ρ1)
...

̂mn−1(ρk−1)

 =


m̂n(ρ0)

m̂n(ρ1)
...

̂mn(ρk−1)


Where

A =


k−1
k m̂1(ρ0) − 1

k m̂1(ρ1) ... − 1
k m̂1(ρk−1)

− 1
k m̂1(ρ0)

k−1
k m̂1(ρ1) .... − 1

k m̂1(ρk−1)
... ... ... ...

− 1
k m̂1(ρ0) − 1

k m̂1(ρ1) .... k−1
k m̂1(ρk−1)



A =


k−1
k − 1

k ... − 1
k

− 1
k

k−1
k .... − 1

k
... ... ... ...
− 1

k − 1
k .... k−1

k



p̂(ρ0) 0 ... 0
0 p̂(ρ1) .... 0
... ... ... ...
0 0 .... p̂(ρk−1)


Which means that we have that

An−1m̂1 = m̂n

I haven’t made any assumptions so far except for symmetric random walks and
abelian groups. Right now, we will be working with cycles and then generalize
to abelian groups as a whole.

Association Schemes

LetAk be the distance indicator matrices of k matrices. LetMni,j = P (Probability that it takes n steps for first arrival from i to j).
It is clear that any vertex transitive graph that we have.

M0 = I

and

M1 =
1

d
A1 − 1

d

Trace(A)

V
I

This makes sure that a vertex can’t visit itself in one move. We also have.

M2 =
1

d2
A2 − 1

d

Trace(A)

V
M1 −

1

d2
Trace(A2)

V
M0

This has it so we can’t visit our selves in 2 moves or 1 move. Generalizing this

Mn =
1

dn
An −

n∑
k=1

1

dk
Trace(Ak)

V
Mn−k
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Basically this says, we are not allowed to visit the node earlier than n moves and
then make a loop to that same node to achieve a walk of technically technically
n moves from i to j. We get this sum.

n∑
k=0

1

dk
Trace(Ak)

V
Mn−k =

1

dn
An

As this is a Cauchy product, we get the following

∞∑
n=0

tn

dn
Trace(An)

V

∞∑
n=0

Mnt
n =

∞∑
n=0

tn

dn
An

By definition of trace we have.

1

V

( ∞∑
n=0

tk

dk

V∑
i=0

λk
i

) ∞∑
n=0

Mnt
n =

∞∑
n=0

tn

dn
An

1

V

(
V∑
i=0

∞∑
n=0

λk
i

tk

dk

) ∞∑
n=0

Mnt
n =

∞∑
n=0

tn

dn
An

1

V

(
V∑
i=0

1

1− λit
d

) ∞∑
n=0

Mnt
n = (I − t

d
A)−1

so for |t| < 1
∞∑

n=0

Mnt
n =

V (I − t
dA)−1∑V

i=0
1

1−λit

d

This is a very general result for all vertex transitive graphs. Which apply to all
Cayley graphs as well.
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