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1 Introduction

The goal of this note is to give a brief introduction to the theory of minimal surfaces in
R3, and to show how one would go about generalizing the theory to oriented k-dimensional
hypersurfaces in Rn. We will also touch on some interesting problems, applications, and re-
sults related to the field. We will touch on Plateau’s laws for soap films, Plateau’s problem,
the Double Bubble theorem, and finally show some pictures.

First let’s say what we mean by a minimal surface. Roughly, a minimal surface is one
for which each point has neighborhood which, as itself a surface, has smallest possible area
among surfaces sharing the same boundary. That is, a minimal surface is one which locally
minimizes area. To have a concrete idea of how to come up with such things, let’s begin
with the classical derivation of the minimal surface equation as the Euler-Lagrange equation
for the area functional, which is a certain PDE condition due to Lagrange circa 1762 de-
scribing precisely which functions can have graphs which are minimal surfaces. By viewing
a function whose graph was a minimal surface as a minimizing function for a certain area
functional (i.e. a smooth map from a function space into R which measures “area”), we are
able to use techniques from the calculus of variations to show that for an oriented surface,
locally minimizing area is equivalent with the vanishing of the divergence of the unit normal
vector to that surface. It is from this perspective that we can generalize the situation to
arbitrary k-dimensional submanifolds of Rn, and in fact to any k-dimensional submanifold
of a Riemannian manifold.

Recall that any surface is locally the graph of some smooth function. This is a relatively
easy consequence of the inverse function theorem, based on what it means to be a regular
parametrized surface, that is, where the two co-ordinate vectors for the parametrization span
a two dimensional vector space. Then by the above discussion, to find more general minimal
surfaces it will su�ce to find minimal graphs of functions. Let U 6= ? be a bounded open
set in R2, and let � : U ! �(U) ⇢ R3 be any di↵eomorphism. We should think of the
the set �(@U) as a closed “wire” in space. In the setting of a regular surface, this role will
be filled by the boundary of the neighborhood in which the surface can be viewed as the
graph of a function. In any case, let’s consider the set H of functions h 2 C1(U) such that
h(@U) = �(@U) (i.e. whose boundaries are the given wire). We’ll say that the graph of
f 2 H has minimal area with respect to @U if
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Here is how the minimizing functions were characterized. Suppose f minimizes a. Then
chose any other smooth ⌘ 2 H so that ⌘’s value on @U is identically 0. We can get a
parametrized family of functions z
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Now, applying the formula div('F) = hr',Fi+'
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so that integrating both sides and applying the divergence theorem, we can rewrite equa-
tion (1) again as
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on @U . We can now apply the fundamental lemma of the calculus of variations, which states
that if ⌦ 2 Rn is an open set, and f is a continuous function on ⌦, then if for all compactly
supported functions ' 2 C1(⌦) one has
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'(x)f(x)dx,

then f is identically 0 on ⌦. In our present situation, any function ' which is compactly
supported on U will extend to a function ' 2 C1(U) which will vanish on @U , so we can
conclude, as desired, that
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on all of U if and only if f is a minimizer of the area functional a. Equation (2) is called
the minimal surface equation. Here, D is the Jacobian matrix of the function fp
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If we compute all the partials and simplify, we get the following PDE
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It can be shown that any solution to this equation must be real-analytic. This demon-
strates that functions of minimal area are not so readily abundant. As a final note, it
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turns out that the shape operator of any graph of minimal area parametrized via r(x, y) =
(x, y, f(x, y)) has no trace anywhere, because the trace of this map turns out to be exactly

the minimal surface equation (3) up to some non-zero multiple. Let’s see this. It’s not hard
to compute the coe�cients of the first and second fundamental forms of a function as
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Since the trace of the shape operator of a surface is independent of choice of parametriza-
tion, one may instead say a parametrized surface is minimal whenever its shape operator has
no trace anywhere. This definition provides us with some more geometric perspective. Mean
curvature tells us the average value of the normal curvatures of the surface over all possible
directions. It is well known that the mean curvature is determined by the average of the
eigenvalues of the shape operator, which correspond respectively to the maximum and min-
imum of the principal curvatures of the surface at a point over all possible directions. This
directions of maximal and minimal curvature are called principal directions. So namely,
the trace of the shape operator being 0 everywhere tells us that the principal curvatures at
each point cancel each other. This means that for all points on the surface, the curvature of
a curve in the principal direction of the surface will be the negative of the curvature in the
other principal direction.

Let us now try to generalize the situation. Basically the same procedure we outlined
above will make sense for an arbitrary k-submanifold of Rn, but first we have to say clearly
what the “area” (volume more generally) element is for such a thing. For a regular surface,
the most natural definition is that the area element would be the size of the area of the
parallelogram spanned by the co-ordinate tangent vectors to the surface at a point times
the usual area element dx ^ dy. In general, any k-dimensional linear subspace of some n-
dimensional inner product space is itself an inner product space via the induced inner product
on the bigger space. We already know from linear algebra that the area of the parallelogram
spanned by the linearly independent set {v1, . . . , vk} of vectors is gotten by taking the size
of the determinant of the symmetric matrix which encodes how the inner product operates
on the subspace generated by the vectors. The matrix in other words encodes all of the
information about lengths and angles in the span of the set. This matrix is called the Gram
matrix of the linearly independent set. It is given by

G(v1, . . . , vk) = (v1 . . . v
k

)T (v1 . . . v
k

),

or perhaps more clearly, [G(v1, . . . , vk)]ij = hv
i

, v
j

i. All local geometric properties (i.e.
those relating to concepts of size (length, area, volume etc) and angle) of a submanifold of
Rn are described by the way the canonical basis for the tangent space at a point inherits
an inner product structure from Rn. In the very particular situation of a regular surface
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So that the Gram matrix is exactly the first fundamental form of the surface at a point.
This is clearly the right generalization. We can now define the area element for an arbitrary
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for the tangent space. When our submanifold is an oriented hypersurface, we are able to
basically repackage the above argument to get that a function minimizing the “volume func-
tional” v(h) =
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(where now h is a smooth Rn�1 ! R function) is equivalent with the
divergence of the unit normal vector field (which we can define because we’re working with
an oriented hypersurface) of the graph of that function vanishing. So we can study minimal
hypersurfaces too.

2 The Helicoid and the Catenoid

Let’s look closely at an example of a minimal surface. Suppose f is minimal, and consider
a level curve of f given implicitly by f(x, y) = c for some constant c. It’s not hard to compute
the curvature k of this curve as
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Should f have level curves which are straight lines, it must be that k ⌘ 0, implying that
f is harmonic. To see this, simply notice that we can simplify equation (1) to

f
xx

(1 + f 2
y

)� 2f
x

f
y

f
xy

+ f
yy

(1 + f 2
x

) = (f
xx

+ f
yy

) + (f
xx

f 2
y

� 2f
x

f
y

f
x

+ f 2
x

)

= f
xx

+ f
yy

= 0.

It turns out that the only harmonic functions with linear level curves are of the form

f(x, y) = � arctan
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for constants �, µ, x0, y0 2 R.
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If � 6= 0, the graph of such a function is called a helicoid (otherwise we get a plane,
a somewhat trivial minimal surface). To see what’s happening, let’s work with a more
illuminating parametrization. It can be shown that the following parametrization gives the
same surface as f .

Remark. We are taking the whole plane as our domain here, but there’s no need for that.

We could instead consider compact helicoids and get the same results.

x = u cos v + x0

y = u sin v + y0

z = �v + µ.

Figure 1: A Helicoid

This surface is special in that it is ruled, meaning that it is gotten by sweeping a line
along some base curve, admitting a parametrization of the form r(u, v) = b(v)+u�(v), where
b is an analytic curve (called the directrix or base curve) perpendicular to the rulings (i.e.
the individual lines) of the surface, and �(v) is a unit vector in the direction of the ruling
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through r(u, v).

Indeed, notice that we can rewrite the given parametrization r for the helicoid as
r(u, v) = (0, 0, v) + u

�
cos v, sin v, 0

�
, so it is ruled, and indeed it can be easily seen as a

partition into lines along helixes. Of particular interest is that any ruled minimal surface
(except the plane) can be isometrically embedded into some helicoid. Thus the helicoid
actually characterizes all ruled minimal surfaces.

As an exercise in computing surface curvatures, let’s verify that the helicoid has no mean
curvature. In what follows, putX = r(R2) ⇢ R3. Since we’ll be working with a single smooth
regular parametrization r : R2 ! R3, we get a natural choice of smooth non-vanishing unit
normal vector field Ñ gotten by taking the cross product of the basis vectors (r
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We have r

u

=
�
@x

@u

, @y

@u

, @z

@u

�
=

�
cos v, sin v, 0

�
and r

v

=
�
@x

@v

, @y
@v

, @z

@v

�
=

�
� u sin v, u cos v,�

�
.

Thus,

r
u

^ r
v

=
�
� sin v,�� cos v, u

�
,

so that

N(r(u, v)) =
r
u

^ r
v

kr
u

^ r
v

k =
� � sin vp

�2 + u2
,
�� cos vp
�2 + u2

,
up

�2 + u2

�
= (N1, N2, N3).

The idea here is to generalize Euler’s characterization of curvature as the infinitesimal
change of angle between tangent vectors with respect to position along the curve in order to
get a curvature measure. Then the natural generalization for the “curvature” of a surface at
a point p = r(u, v) would be the Jacobian determinant of N (the Jacobian matrix dNp of
N is called the shape operator). This number is called the Gaussian curvature of X at
p. We might as well start by computing the Gaussian curvature, as we need to coe�cients
of the fundamental forms in order to compute mean curvature anyway. Recalling that by
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We seek to write N
u

= a11ru+a21rv and N
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K will simply be the number a11a22 � a12a21. Thankfully we can appeal to the Weingarten
equations to compute these a

ij

. That is,

a11 =
eG�fF

EG�F

2 a12 =
fG�gF

EG�F

2

a21 =
fE�eF

EG�F

2 a22 =
gE�fF

EG�F

2 ,

where (E,F,G) and (e, f, g) are the coe�cients of the first and second fundamental forms
of X, respectively. Recalling that

E = r

u

· r
u

F = r

u

· r
v

G = r

v

· r
v

e = N

u

· r
u

f = N

u

· r
v

g = N

v

· r
v

,

we can easily conclude that E = 1, F = 0 and G = �2+u2, while e = 0, f = � �p
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principal curvatures) are easily seen to be ± �
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2 , and thus their sum is 0, meaning that
the helicoid X has no mean curvature anywhere, and hence is a minimal (parametrized)
surface as desired. (Notice here that it is crucially important that dN

p

is a self-adjoint linear
operator, because that allows us to orthonormally diagonalize dN

p

thanks to the spectral the-
orem. This allows us to conclude the principal curvatures agree with the eigenvalues of dN

p

.)

As a final note, since once again dN
p

is self-adjoint, we can express the Gaussian curva-
ture as simply the product of the eigenvalues. This tells us immediately that the Gaussian
curvature of any minimal surface is going to be negative, meaning that in particular each
point of a minimal surfaces is a saddle point.

Now, we’ve seen that angles and lengths of tangent vectors on a surface are completely
determined by the first fundamental form. It stands to reason that any regular parametrized
surface s(u, v) which shares the same fundamental form with r at a point must be locally
isometric to r. That is, they measure distances and angles exactly the same way. As an
ant walked around from point to point, it would not be able to distinguish between these
two surfaces geometrically.
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It turns out that the helicoid possess a certain parametrization, called a Weierstrass
parametrization, which generated a parametrized family of minimal surfaces, each locally
isometric to the helicoid. One might imagine the family as a system of local isometric
deformations of the helicoid into a “dual” minimal surface, in this case called a catenoid.
Specifically, a Weierstrass parametrization has the form

x
k
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0

�
k

(z)dz

◆
+ c

k

where �1 = f(1�g

2)
2 , �2 = if(1+g

2)
2 , and �3 = fg, where f is analytic, g is meromorphic

(analytic except at a set of isolated points), and fg2 is analytic. This parametrizes an
associate family of pairwise locally isometric minimal surfaces by

x
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ei✓

Z
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0

�
k

(z)dz
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+ c

k

for ✓ 2 [0, 2⇡] and c
k

2 R.
It can be shown that the parametrization

x = cos ✓ sinh v sin u+ sin ✓ cosh v cos u

y = � cos ✓ sinh v cos u+ sin ✓ cosh v sin u

z = u cos ✓ + v sin ✓.

has this form, with (u, v) 2 (�⇡, ⇡]⇥ R, ✓ 2 (�⇡, ⇡]. The values at ✓ = 0, ⇡ correspond
to helicoids, and the values at ✓ = ±⇡

2 correspond to these aformentioned catenoids.

Figure 2: A Catenoid. It can be realized as the surface of revolution generated by a catenary
curve.
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Figure 3: A picture of the deformation ✓.

3 Soap Films and Plateau’s Problem

A soap film is the surface you’d get from dipping a wire in some bubble soap.
The Young-Laplace equation

�p = 2�H

relates the surface tension � and mean curvature H of an interface between two fluids (like
a soap film) to the di↵erence between the capillary pressures on either side of the interface.
This equation physically captures why soap films should be minimal surfaces, just take the
surrounding fluid to be air. The same pressure is exerted from either side of the film, so
there is no pressure di↵erential and hence the film arranges itself to minimize area. As an
example, imagine that two soap bubbles have joined together. The interface along with they
meet is an example of a soap film (where the “wire” is the boundary along which the bubbles
meet), and the complex they form is called a double bubble.

The Double bubble theorem, proved in 2002, asserts that the smallest surface enclosing
and separating two given volumes is exactly the “double bubble” described above. Similar
to the isoperimetric inequality.
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Soap films were first studied extensively in the early 19th century by the Belgian physicist
Joseph Plateau, who proposed that soap films always exhibited certain phenomena when
taken in groups. These properties were called Plateau’s Laws, and they are as follows:

• Soap films are smooth surfaces.

• Soap films have constant mean curvature everywhere.

• Soap films always meet in threes, at a mutual dihedral angle of 120�.

• The four lines along which soap films meet intersect at a common vertex, forming a
tetrahedron in the sense that, taken pairwise, the lines meet at tetrahedral angles.
(109.47�)

Figure 4: A foam of soap films demonstrating the above phenomena

It is a very amazing fact that these conditions can in fact be proven mathematically by
modeling soap films in a way which reflects a certain area minimizing principle for surfaces.
This was done in 1976 by Frederick Almgren and Jean E. Taylor. The principle they chose
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to model was that a physical system would remain in a given geometric configuration only if
it cannot readily change to a configuration which requires less energy to maintain. Ignoring
the e↵ects of gravitational potential energy on the configuration of the surface, the only
other thing that contributes is the compressional energy supplied by the surrounding air (a
static fluid), and the surface energy of the suspended fluid (soap in our case). Thus, when
there is no contribution from the air pressure, the surface energy per unit surface area must
be minimized. Among other things, this has the e↵ect of minimizing the area of the surface
along the boundary, i.e. these soap films are minimal surfaces.

4 Plateau’s Problem

Perhaps a natural question to question to ask at this point is whether there is always
a minimal surface with a given boundary. After all, our intuition about soap films would
support this being the case.

Figure 5: A helicoid is the minimal surface bounded by a helix. We see a soap film taking
on this shape.

This is known as Plateau’s problem. The answer is in the a�rmative, and mathemati-
cian Jesse Douglas won a Fields medal for his solution. It was shown by Gauss that any
regular parametrized surface r : B(0, 1) ⇢ C ! Rn admits a conformal parametrization (i.e.
the Jacobian matrix is a scalar times a rotation matrix, so that the parametrization preserves
angles). The first step was to realize that for a conformal parametrization (so that E = G
and F = 0 for the coe�cients of I

p

), the minimality condition is equivalent with having
the component functions r

i

all harmonic. Thus the Plateau problem may be formulated as
follows:
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Problem 1. Given a contour � ⇢ Rn, find a regular parametrization r : B(0, 1) ! Rn

which is harmonic (i.e. all co-ordinate functions are harmonic) and conformal on B(0, 1)
and for which the restriction to @B(0, 1) is a regular parametrization for �.

An important fact about harmonic functions defined on open subsets of the complex
plane is the following: suppose u : ⌦ � {p} ⇢ C ! R is harmonic except at p 2 ⌦ (⌦ a
domain), and u is bounded in some neighborhood of p, then u extends to a harmonic map
on all of ⌦. This is called a harmonic extension of u to ⌦. Thus

Douglas’ idea was to find a parametrization g⇤ of the contour � whose harmonic extension
was conformal, giving a minimal surface bounded by � and thus solving Plateau’s problem.
He showed if g : @B(0, 1) ! � ⇢ R3 parametrized � and � : @B(0, 1) ! @B(0, 1) was any
homeomorphism solving the following integral equation

Z

�

g0(t) · g0(⌧)
�(t)� �(⌧)

d⌧ = 0,

that the harmonic extension of g � ��1 to the upper half plane by means of the Poisson
Kernel is the required harmonic and conformal extension. He found this � to be the minimizer
of a a certain mysterious functional, called his A-functional, whose definitional motivation
remains largely unknown.

5 Further Direction

I am interested to look more closely at how the theory generalizes to general Riemannian
manifolds, and in the future am looking to develop a better understand of the methods of
Douglas and Taylor to motivate further study of the more generalized theory of minimal
submanifolds. A very special thanks to Professor Sema Salur, without whose direction,
prudence, and kindness, this project would not have happened.
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6 Other Examples

Figure 6: This is an example of an embedded minimal surface with 3 ends (3 ways to “reach
infinity.”) It is homeomorphic to a triply-punctured torus.
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Figure 7: The Riemann examples are a parametrized family of minimal surfaces which are
foliated by circles. They characterize all planar minimal surfaces (boundary is a 2 circles
between two parallel planes.
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