
Exploring Sampling Techniques in Large

Graphs and Networks

Anna Myakushina

University of Rochester

Spring 2023 Honors Thesis

Advisor: Alex Iosevich

Abstract

Graphs are an important branch of data science that are essential to visualizing and repre-

senting relationships, particularly in spaces with many observations. Working with large graphs

(10,000 nodes or more), however, can be extremely difficult- runtime increases dramatically,

and results are often difficult to visualize and interpret due to how busy the model becomes.

For this reason, efficient and accurate sampling techniques are necessary to scale down data to

a manageable magnitude. This study will explore sampling methods of three different classes:

random selection techniques, sampling by exploration, and deletion methods. Various existing

methods are introduced and explained, and the probability of node selection is calculated for

each method in order to compare and discuss advantages and pitfalls of each method. In total 15

existing methods are explored and discussed, including Forest Fire Selection (FFS), a popular

method utilizing graph traversal.

The last section of this study then proposes a new sampling technique, Spontaneous Forest

Fire Sampling (SFFS), which has been modified from FFS. Both FFS and SFFS are modeled

on a Facebook social network at three different forward burning probabilities (pf = 0.2, 0.5, and

0.7) and four different sample sizes (5%, 10%, 15%, and 20% of the population). A modification

to both FFS and SFFS to include more edges, named edge restoration, is also proposed and

modeled. Finally, SFFS is tested separately at ”jumping frequencies” of N = 1, 2, 3, 5, and

7. In total, 80 samples are generated, modeled, and compared using Kolmogorov-Smirnov D-

statistics. It is found that depending on sampling goals, either edge-restored SFFS or traditional

FFS performed the best.

1

Contents

1 Introduction 3

1.1 Background and Motivation . 3

1.2 Definitions and Notation . 3

1.3 Goals and Desired Characteristics . 4

2 Existing Sampling Methods 5

2.1 Random Selection Techniques . 5

2.1.1 Sampling by Node Selection . 5

2.1.2 Sampling by Edge Selection . 6

2.2 Sampling by Exploration . 8

2.2.1 Graph Traversal . 9

2.2.2 Random Walks . 10

2.3 Deletion Methods . 11

3 Previous Work 12

3.1 Motivation . 12

3.2 Summary of Original Study . 12

3.2.1 Data . 12

3.2.2 Methods . 13

3.2.3 Visualization, Evaluation, and Conclusions 13

4 Spontaneous Forest Fire Sampling (SFFS) 14

4.1 Forest Fire Sampling (FFS) . 14

4.2 Modifying FFS: Spontaneous Forest Fire Sampling (SFFS) 15

4.3 Modeling . 16

4.3.1 Data . 16

4.3.2 Methods and Evaluation . 17

4.4 Results . 18

4.4.1 Comparing FFS and SFFS . 18

4.4.2 FFS and SFFS as Node Selection Techniques 20

4.4.3 SFFS at Different Jump Frequencies . 21

5 Concluding Remarks 24

References 25

2

1 Introduction

1.1 Background and Motivation

Graphs are powerful tools that are regularly used to visualize and learn about spaces, with

social networks being a common application. They can be used to present relationships is ways

that would otherwise be be infeasible to do given the inherent quantity and complexity of the data,

and to detect patterns and groupings that may not be obvious otherwise.

Though graphs are certainly better equipped than text when it comes to representing large,

complex relationship data, they still have limitations. A graph with tens or hundreds of thousands

of observations would be extremely computationally expensive to visualize and work with- runtime

of such operations could extend for hours, if not days. Furthermore, even if such a space is able to

be visualized, the results would be useless. With so many observations and connections between

them, the generated model would be far too busy to easily observe underlying patterns.

All of these issues are ones that were encountered first-hand in a previous project [10]. The

importance and necessity of accurate and representative sample sizes was quickly recognized and

explored. This study is an extension of the work started then. It explores and introduces a

classification system for existing sampling methods, calculates the probability of node selection in

each graph, and finally introduces and tests a new sampling method, as well as proposes a modified

usage of an existing one.

1.2 Definitions and Notation

Definition 1.2.1 (Graph) A graph is a set of points connected by lines. The points are called

nodes and the lines are called edges.

There are two types of graphs:

Definition 1.2.2 A directed graph is a graph in which edges have a direction, and are denoted

visually with an arrow rather than a line. A graph with undirected edges is called an undirected

graph.

That is, in a directed graph a node v1 can be connected to v2 without v2 being connected to v1.

In an undirected graph, if v1 is connected to v2 then v2 is connected to v1 and vice versa. For the

sake of simplicity, this study will focus on undirected graphs. In applied settings, graphs are called

networks:

Definition 1.2.3 (Network) A network is a type of graph in which nodes represent observations,

and edges represent connections between them. Networks can be directed or undirected.

Lastly, there is one more term of note:

Definition 1.2.4 (Incidence) An edge is said to be incident to a node v if v is one of its endpoints.

3

The following symbols will be used throughout the paper:

Symbol Meaning

G The full, unsampled graph

V The set of all nodes in G

E The set of all edges in the full graph G

n n = |V |; the number of nodes G contains

m m = |E|; the number of edges G contains

G′ The graph sample

V ′ The set of sampled nodes

E′ The set of sampled edges

p The percent of V that is desired for G′ to retain; ideally |V ′| = np

n′p n′p = np, the number of nodes desired to be in the sample graph

|A| The number of nodes the graph A has

||A|| The number of edges the graph A has

deg(v) The degree of node v

G[S] The graph induced by the subset of nodes S

p(v) p(v ∈ V ′); the probability of the node v being in the sample graph

G′t The graph sample at time t

St The set of nodes that gets sampled at time t

V ′t {∪i=1,...,t−1Si}; The set of all nodes that have been sampled up until time t

Vt {v ∈ V |v 6∈ V ′t }; The set of all nodes that have not been sampled up until time t

nt |Vt|; The total number of unsampled nodes at time t

n′t |V ′t |; The total number of sampled nodes at time t

mt The number of edges between the unsampled nodes at time t

m′t The number of edges already sampled at time t

pt(v) The probability of the node v getting selected at time t

Ev The set of edges incident to v

Ve The set of two nodes that are the endpoints of edge e

Vv The set of nodes that share an edge with the node v

e(v1, v2) The edge connecting nodes v1 and v2 (if none exists, e(v1, v2) = ∅)

Table 1: Establishment of Notation.

1.3 Goals and Desired Characteristics

When sampling from large graphs, different methodologies are preferable based on the goals of

the sample. Specifically, samples may address sampling from one of two perspectives. The first

is with a ”back-in-time” sampling goal. With this approach, the sampled graph attempts to

”time travel” and replicate what the original graph looked like at the time that it had n′p nodes.

That is, if Gtn′p
denotes the graph G at the time when it had np nodes, the goal of the sampled

graph G′tn′p
would be to sample n′p nodes from G in such a way that the result resembles Gtn′p

and replicates its topology [6]. Such a goal may be preferable when working with dynamic graphs

meant to model changes over time- say, for instance, a graph modeling the growth in popularity of

4

a social media platform over time. Taking a back-in-time sample then would allow one to estimate

what connections on the platform looked like at any given point in time. There are some distinct

challenges associated with a back-in-time sampling problem. Namely, samples are drawn from G,

which is just a final, static view of the space. If information regarding node ages is available, this

can be incorporated into the sampling algorithm to generate a more accurate sample [6].

This study, however, will take on a ”scale-down” sampling goal instead. With this approach,

the goal is to sample from G to create a sample graph G′np
with np nodes that preserves many of

the properties of G, but is of a far smaller magnitude [11]. Essentially, this approach attempts to

create a ”mini model” of G that contains fewer nodes while preserving its topology. Such a goal

may be preferable when working with static graphs containing an unfeasibly large quantity of data.

By generated an accurate scale-down sample, a graph is created that can still provide valuable

information about the full space while being far easier to work with.

To measure how ”accurate” a scale-down sample is, degree distributions will be compared. Ie,

for each graph, the degree of each node will be calculated and then the distributions of node degrees

will be analyzed. An accurate sample will preserve the degree distribution of G. To quantify this

comparison, Kolmogorov-Smirnov D-statistics will be used, which measures the maximal distance

between empirical cumulative distribution function F ′ of the sampled graph’s degree distribution

and the cumulative distribution function F of the original graph. It is calculated as follows [12]:

D = maxx{|F ′(x)− F (x)|}

A smaller D-statistic indicates less deviance from the original distribution, suggesting that the

sample better replicates it.

2 Existing Sampling Methods

Throughout the literature, a number of different sampling methods for graphs and networks

have been proposed. Laregly, these can be broken up into three broad categories : (1) random

selection techniques (2) sampling by exploration and (3) deletion methods.

2.1 Random Selection Techniques

Random selection techniques methodically take advantage of randomization to sample nodes,

edges, or both in a way that attempts to scale down the size of the graph while preserving its

topology. Methods utilizing random selection techniques fall into one of two categories: sampling

by node selection, and sampling by edge selection.

2.1.1 Sampling by Node Selection

These methods prioritize node selection in constructing the sample graph. Specifically, they

each sample n′p nodes, so that |V ′| = n′p and G′ = G[V ′]. Examples of sampling by node selection

5

include the following:

1. Random Node (RN) Sampling: In this method, n′p nodes are uniformly selected at random:

p(v) =
n′p
n

=
np

n
= p

RN sampling was explored in a previous work and is discussed later in the paper (section 3).

Though a very intuitive approach, this method can sometimes fail to capture the intricacies of

a graph’s topology. Other methods have been found to preserve graph structure far better.

2. Random Degree Node (RDN) Sampling: Unlike RN sampling, this is an example of a

non-uniform sampling method. Rather than assigning each node a uniform probability, each

node’s selection probability is directly proportional to its degree:

p(v) ∝ deg(v), ∀v ∈ V

Evidently, this process is biased towards nodes of high degrees, and others have noted that as a

result it does poorly with preserving the degree distribution of the original graph [6].

3. Random PageRank (RPN) Sampling: Inspired by Google’s PageRank c© algorithm, this is

another non-uniform sampling technique. This method, however, assigns node selection proba-

bilities that are proportional to each node’s PageRank score PR(v), which ranks nodes based

on their relative popularity. This parameter is a function of not just the degree of the node, but

of its degree relative to the rest of the nodes in the graph [8]:

p ∝ PR(v), ∀v ∈ V

PageRank score can be thought of as a measure of where a node lies on the graph’s degree

distribution, and by extension the probability of it getting randomly selected [1]. Given this

adjustment, this algorithm had been found to be less biased towards higher degree nodes [6].

2.1.2 Sampling by Edge Selection

While some of these methods still give consideration to nodes, they are distinct in that all or

many of the selections they make originate at the edges of the graph. Examples of sampling by

edge selection include the following:

1. Random Edge (RE) Sampling: Analogously to RN sampling, this technique uniformly selects

k edges at random [6], so that

G′ = G[VE], VE = ∪e∈E′Ve

Samples drawn by RE sampling tend to have large diameters due to being sparsely connected

6

and thus do not preserve graph structure [6]. Furthermore, since

p(v) =
k deg(v)

m
, ∀v ∈ V

RE faces the same issue as RDN in that it is biased towards high degree nodes.

2. Random Node-Edge (RNE) Sampling: A variation of RE, this method performs a single

step of both RN and RE at each iteration. Each iteration consists of two steps:

(1) RN: one node v is uniformly picked at random and added to G′

(2) RE: one edge incident to v is uniformly picked at random, and both the edge and its other

endpoint are added to G′

[6] So if t = 1 is the first step, we have that when t is odd we have a step of RN and when t is

even we have a step of RE. Since at each step we are either sampling one node, or an edge with

one vertex already in V ′t , we have that for any t

|St| = 1

Let st ∈ St denote the single element in St. Then for any v ∈ V ,

pt(v) =

1
n , t odd

1
|Est−1 |

, t even and and e(v, st−1) 6= ∅

0 t even, and e(v, st−1) = ∅

We can make also modify this algorithm to make it more strict by only choosing from nodes and

edges that have not been sampled yet. Then:

pt(v) =

0, v ∈ V ′t
1
nt
, v 6∈ V ′t and t odd

1
|Est−1 |

, v 6∈ V ′t and t even and e(v, st−1) 6= ∅

0 v 6∈ V ′t , t even, and e(v, st−1) = ∅

In either case, this process is continued up until n′p ≤ |V ′t |. Let t0 be the stop time. Then

G′ = (V ′t0 , EV ′t0
), EV ′t0

= {e(si, si−1)|i = 2, ..., t0 − 1}

That is, the sample graph is the one consisting of (a) the set of nodes randomly selected during

the RN steps, (b) the edges selected during the RE steps, and (c) the nodes connecting to (a)

via (b). With the incorporation of RN, higher-node bias is eliminated [6]. However, this method

even more so suffers from the issue of sparse connections.

7

3. Hybrid (HYB) Sampling: This unique approach combines RNE and RE. At each step, RNE

is used with a set probability P and RE is used with a probability of 1− P [6]. Since RNE is a

two-step process, we have that at each t, the type of step that will be done is influenced by the

previous two steps:

(1) If regular RE was done at step t−1, then step t will be the RN step of RNE with probability

P and another regular RE step with probability 1− P

(2) If the RN step of RNE was done at step t− 1 (ie step t− 1 was beginning RNE), then step

t will be the RE step of RNE

(3) If the RE step of RNE was done at step t− 1 (ie both previous steps were RNE), then step

t will be the RN step of RNE with probability P and another RE step with probability 1−P

Then

pt(v) =

P
n + (1−P) deg(v)

m Previous step was a RE step (either as part of RNE or on its own)

1
|Est−1 |

, Previous step was RN and e(v, st−1) 6= ∅

0, Previous step was RN and e(v, st−1) = ∅

We can again modify this algorithm to make it more strict by only choosing from nodes and

edges that have not been sampled yet. For a node v, let

Zv = Ev − {e(v, s)|s ∈ V ′t }

Then with the algorithm modification,

pt(v) =

0, v ∈ V ′t
P
nt

+ (1−P)(deg(v)−|Zn|)
mt

v 6∈ V ′t and previous step was RE (either as part of RNE or on its own)

1
|Est−1 |

, v 6∈ V ′t , previous step was RN, and e(v, st−1) 6= ∅

0, v 6∈ V ′t , previous step was RN, and e(v, st−1) = ∅

By alternating between RE and RNE, this method is able to reduce higher-node bias without

sacrificing as much in terms of graph sparsity.

2.2 Sampling by Exploration

An alternative to strategic random selection is the utilization of crawling techniques. These can

again be split into two broad categories: graph traversal and random walks.

8

2.2.1 Graph Traversal

Graph traversal methods are designed to select each node at most once in order to prevent the

issue of cycling. The order in which they visit each node, however, varies. Some methods include

the following:

1. Random Node Neighbor (RNN) In this method, at each iteration a node v ∈ Vt is uniformly

selected at random, along with Vv and Ev [6]. This is repeated until the desired sample size is

reached. Hence for any v ∈ Vt, we have

pt(v) =
1 + deg(v)

nt

Because a new jump is made at each iteration and only connections with immediate neighbors

are preserved, this sampling method does a poor job of preserving community structures [6].

2. Breadth-Search-First (BSF) With this sampling method, an initial starting node v0 is uni-

formly selected at random. Then all of its immediate neighbors are sampled, and then the

immediate neighbors of those nodes are sampled, and so on until the desired number of nodes

is reached [4][5]. In this case, the probability of a node getting sampled at time t is 1 if it has

an edge incident to a node in St−1, and 0 otherwise. Because node selection relies so heavily on

proximity to previously sampled nodes, this method works well for graphs in which all nodes

are closely connected, but not ones with distinct clusters.

3. Depth-Search-First (DSF) This sampling method, on the other hand, uniformly selects a

starting node v0 at random, then uniformly selects one of its incident edges at random, as well

as the other endpoint of that edge. Then an edge from that node is uniformly selected at random,

as well as the other endpoint of that new edge. This process is then repeated until a node is

reached that has no edges connecting to upsampled nodes, in which case a new starting point is

chosen (revisitation is allowed when selecting a new starting node, but not at other steps in the

process) [4][5]. This process is continued until the desired number of nodes has been reached. If

vt is the node that is sampled at time t, then for v ∈ Vt

pt(v) =

1
n , deg(vt−1) = 0

1
deg(vt−1)

, deg(vt−1) > 0 and e(v, vt−1) 6= ∅

0, deg(vt−1) > 0 and e(v, vt−1) = ∅

In this case, deg(v) is updated at each time t to include only edges incident to other upsampled

nodes in degree calculations. This method, unlike BSF, does better with more sparsely connected

graphs and those with distinct clustering.

Forest Fire Sampling (FFS), another example of sampling by exploration through graph traversal, is

later presented in great detail (section 4). Furthermore, a modified approach, named Spontaneous

9

Forest Fire Sampling (SFFS) is proposed and explored later (section 4) as well.

2.2.2 Random Walks

While graph traversal visits each node no more than once, revisitation is permitted in random

walks [3]. Some methods include the following:

1. Random Walk (RW) Sampling: In this sampling method, a starting node v0 is picked

uniformly at random, and then a random walk on the graph is simulated. A ”fly back” probability

c (often, c = 0.15) is selected, and at every step the algorithm returns back to the starting node

and restarts the random walk with probability c. Let st denote the node selected at time t, and

s0 the starting node [6]. For a simple random walk, then we have that for any v ∈ V ,

pt(v) =

c, v = s0 and e(v, st−1) = ∅

c + 1−c
|Est−1 |

, v = s0 and e(v, st−1) 6= ∅

0, v = st−1 6= s0

0, v 6= s0, st−1 and e(v, st−1) = ∅
1−c
|Est−1 |

, v 6= s0, st−1 and e(v, st−1) 6= ∅

This process is continued until |V ′t | = n′p.

One issue that frequently arrises with RW sampling is that the algorithm may get ”stuck”-

if the starting node happens be part of an isolated portion of the graph, it is unable to travel to

the rest of the graph and therefore cannot gather a representative sample. To get around this

issue, the algorithm can be slightly modified. If after a certain large number (say, 100 · n) of

steps V ′t < n′p, a new starting node is uniformly selected at random and the process is repeated.

2. Random Jump (RJ) Sampling: RJ sampling is very similar to RW but instead of c being

the probability of jumping back to the starting node, it is the probability of jumping to any new

random node [6]. So with probability 1 − c the random walk continues for another step, and

with probability c a new node is uniformly selected at random and jumped to. Let st denote

the node selected at time t. Then for any v ∈ V ,

pt(v) =

c, v = st−1

c, v 6= st−1 and e(v, st−1) = ∅

c + 1−c
|Est−1 |

, v 6= st−1 and e(v, st−1) 6= ∅

RJ sampling was explored in a previous work and is discussed later in the paper (section 3).

10

2.3 Deletion Methods

Both random selection and sampling by exploration begin from a null set and build up to the

desired number of nodes. Deletion methods, on the other hand, begin with the full graph and work

backwards to iteratively reduce the number of nodes in the sample graph until the desired number

is reached. For this section, pt(v) shall denote the probability of ”surviving” deletion and staying

in the sample graph, ie of NOT getting selected.

1. Deletion of Random Node (DRN) Analogous to RN sampling. Instead of randomly choosing

n′p nodes to add to G′, however, DRN uniformly selects nodes at random for removal one at a

time [5]. Thus we have that for any v ∈ Vt at time t, the probability of not getting removed

(and thereby staying the sample) is

pt(v) = 1− 1

nt
=

nt − 1

nt

Normally this is done in iterations, with some predetermined proportion d of the remaining

nodes being deleted one at a time each iteration [5]. The probability of a node remaining after

an iteration then is 1− d.

2. Deletion of Random Edge (DRE) Analogous to RE sampling. Edges are chosen uniformly

at random and deleted one at a time. If this results in any isolated nodes, they get deleted as

well. This process is then repeated until the desired sample size is reached. For any v ∈ Vt then

we have

pt(v) =

0, deg(v) > 1

1− 1
mt

= mt−1
mt

, deg(v) = 1

Again, this is normally done in iterations, with some predetermined portion d of the remaining

edges being deleted at each iteration.

3. Deletion of Random Node/Edge (DRNE) Analogous to RNE sampling. A node st is

selected uniformly at random, and then one of its incident edges is uniformly selected at random

and removed. If this results in isolated points, isolated points get removed. Hence if t = 1 is the

time at which the first DRN is performed, we have that DRNE will perform a step of DRN if t

is odd and a step of DRE if t is even. If t is odd, let st be the node that is selected and deleted

at time t. Then

pt(v) =

nt−1
nt

, t odd

1− 1
|Est |

=
|Est−1 |−1
|Est |

, t even, deg(v) = 1, e(v, st−1) 6= ∅

0, All else

11

3 Previous Work

3.1 Motivation

The contents of this paper are an extension of a project that was completed in December,

2022 titled Sampling Methods for Social Networks with Applications in Spotify Latent Space Models

[10]. The original goal of this project was to learn about modeling social networks in a Bayesian

setting, but a significant issue emerged almost right away: there was simply too much data to be

able to reasonably work with or extract the desired information from. This resulted in a pivot in

research goals, and the paper instead became an exploration of sampling techniques in the context

of large graphs. This original project was merely a first introduction into the field and of a far

smaller magnitude than this work; this paper has greatly expanded upon what was originally done.

Nonetheless, the original findings are not only relevant to the subject of this paper, but they were

also a significant guide during the research process. This paper would not be complete without

those previous findings, and so this section has been included

Because the original project was intended as a first introduction into the field, only two sampling

techniques were explored: Random Node (RN) sampling (see section 2.11) and Random Jump

(RN) sampling (see section 2.2.2). Each method, however, was performed at four different values

of p: 0.10, 0.15, 0.25, and 0.50. These methods were applied to a social network modeling artists

on Spotify and their collaboration, where each node was an artist, and edges between artists

represented collaborations. The goal was to model this space and attempt to identify clusters

based on genre and/or country.

3.2 Summary of Original Study

3.2.1 Data

Data was obtained through Kaggle [2]. This graph was undirected and consisted of 156,422

artists, as well as all of their collaboration between September 28th, 2013 and October 9th, 2022.

For the sake of computation, the graph was restricted to include only artists with popularity in the

United States. This brought the number of nodes down to 1,185, with 46,933 edges between them.

The remaining artists covered a total of 559 genres. As this would not be feasible to visualize, the

data was further restricted to only include artists that fell into one of the following three genres:

rock, rap, and/or indie. The resulting subset consisted of 614 nodes, with 27,462 edges between

them. For a more detailed explanation of the data cleaning process, see [10].

Once the data was cleaned, a 614x614 adjacency matrix was generated. Each row-column pair

represented a pair of artists- if those artists had at least one collaboration, a 1 was entered. If

not, 0. Once this was done, all rows and columns with entirely zero entries were removed- these

signified artists with no collaborations with anyone else in the subset, and thus would have been

isolated points in the graph. Once this was completed, there were 470 artists left: 87 in rock, 354

in rap, and 29 in indie.

12

3.2.2 Methods

Before sampling, the built-in ergmm() function in R was used to perform latent space modeling

on the all 470 artists. This was done to provide a point of reference and determine what the network

looked like and what patterns sampled spaces should be mirroring. Modeling was done twice: once

from the frequentist perspective using MLE, and a second time from a Bayesian perspective using

posterior means as point estimates.

Four samples were drawn using each method and the following sample sizes: 47, 71, 118, and 253

(10%, 15%, 25%, and 50% of N = 470). Each of the eight sample spaces was then modeled twice

using ergmm() in R, from both a frequentist and Bayesian perspective. When plotting the 50%

RN sample, it was found that a few isolated points were skewing the entire graph, so these were

removed and the space was modeled again. All models were compared to the full space to assess the

graph topologies. Lastly, Kolmogorov-Smirnov D-statistics were calculated for each sample space

to compare their degree distribution to that of the full space.

3.2.3 Visualization, Evaluation, and Conclusions

Modeling the full space (Figure 1) did not reveal any significant clustering, but color coding

artists by genre revealed that most of the rap artists tended to be positioned towards the center,

while rock and indie artists were on the perimeter of the graph.

Figure 1: Full Space in Latent Space from both a frequentist and Bayesian perspective

In general, it was found that a 10-15% sample size was not sufficient for either method to properly

preserve graph structures. Both methods did well at 25-50%, with RN slightly outperforming RJ

The previously observed pattern of rap artists being located near the center while rock and indie

artists disperse on the outside began to emerge in these samples (Figure 2). D-statistics supported

these findings, with D improving as sample size increased and overall being better with RN than

RJ (Table 2).

13

Figure 2: 25% and 50% adjusted sample using RN sampling

Sample Size (Value of p)

0.10 0.15 0.25 0.50

Sampling Random Node (RN) 0.5957 0.5429 0.4065 0.1851

Technique RN (adjusted) 0.1494

Random Jump (RJ) 0.7197 0.7337 0.6995 0.6122

Table 2: Table of Kolmogorov-Smirnov D-Statistics for each sample

Low D-statistics and poor graph structure preservation were likely due to an insufficient popu-

lation size. The fact that only at 50% did the sample perform well suggests that sampling smaller

graphs may be pointless, as very large proportions of the data need to be sampled in order to

to generate accurate representations of the full space. Because of this, a much larger space was

sampled from later in this study (section 4).

4 Spontaneous Forest Fire Sampling (SFFS)

4.1 Forest Fire Sampling (FFS)

The Forest Fire graph generation model [4] was first introduced by Jure Leskovec, Jon Kleinberg,

and Christos Faloutsos, and was then later adapted by Leskovec and Faloutsos into a sampling

technique [7]. Forest Fire Sampling (FFS) is graph traversing exploration technique, and the

algorithm is as follows:

1. From the graph G, uniformly select a node v at random

2. Randomly select a number x from the geometric distribution with mean
pf

1−pf , where the

parameter pf denotes the forward burning probability.

3. Let W denote the set of edges connected to v that have not yet been traversed, and let

nW = min(x, |W |)

14

Uniformly selected nW edges in W at random, and let w1, w2, ..., wnW denote the nodes at

the other ends of these selected edges.

4. Repeat steps (2) and (3) recursively at each w1, w2, ..., wnW until the desired number of

nodes have been sampled. To avoid cycling, nodes are visited at most once- that is, in these

subsequent steps only edges connected to previously upsampled nodes are drawn from. If at

some time t, W = ∅ for each ”end node” wi (also known as the fire dying) before the desired

number of nodes have been sampled, restart the process by uniformly selecting a new node v

at random from the nodes that have not yet been sampled [6].

Note that for the purposes of this study, the FFS algorithm has been modified from that proposed

by Leskovec and Faloutsos in order to handle cases when x > |W |. Further modifications can be

made to accommodate directed graphs by including a second parameter pb, the backward burning

probability, but this modification will not be explored as the focus of this study is on undirected

graphs.

Define Zvt = {e(v, s)|s ∈ St−1} for a node v. Let

Yt = [∪s∈StEs]− [∪s∈StEs] ∩ [∪w∈V ′t Ew]

That is, let Yt be the set of edges connecting to the nodes that is sampled at time t whose other

endpoint has not been sampled already. Then at time t, for any v ∈ Vt\V ′t :

pt(v) =

1
nt
, If a new fire is started at t

0, If an existing fire is continued at t and Zvt = ∅
|Zvt|
|Yt−1| , If an existing fire is continued at t and Zvt 6= ∅

Since |Zvt| is related to deg(v) (that is, high degree nodes are more likely to have edges connecting

them to a node sampled in the previous step) this algorithm is biased towards higher degree nodes.

Furthermore, if the graph has very isolated distinct groups, FFS may get ”stuck” at one group and

fail to visit the other(s).

4.2 Modifying FFS: Spontaneous Forest Fire Sampling (SFFS)

In an attempt to address these issues, in this paper I propose a modified version of FFS, which

I shall refer to as Spontaneous Forest Fire Sampling (SFFS). The algorithm is as follows:

1. From the graph G, uniformly select a node v at random

2. Randomly select a number x from the geometric distribution with mean
pf

1−pf , where the

parameter pf denotes the forward burning probability.

3. Let W denote the set of edges connected to v that have not yet been traversed, and let

nW = min(x, |W |)

15

Uniformly selected nW edges in W at random, and let w1, w2, ..., wnW denote the nodes at

the other ends of these selected edges.

4. Repeat steps (2) and (3) recursively at each w1, w2, ..., wnW N times, where N is a predeter-

mined, fixed number of iterations (henceforth referred to as the ”jumping frequency”). To

avoid cycling, nodes are visited at most once- that is, in these subsequent steps only edges

connected to previously upsampled nodes are drawn from. If at some step the fire dies before

the Nth iteration, go to step (5).

5. If at this point V ′t < np, uniformly selecting a new node v at random from Vt and repeat steps

(2)-(4) until V ′t ≥ np

SFFS forces a new jump more often than FFS, which prevents the algorithm from getting ”stuck”

in any one part of the graph and encourages exploration into other areas. This allows the sample

to capture more clusters that may otherwise be missed or underrepresented. As in FFS, for any

v ∈ Vt\V ′t

pt(v) =

1
nt
, If a new fire is started at t

0, If an existing fire is continued at t and Zvt = ∅
|Zvt|
|Yt−1| , If an existing fire is continued at t and Zvt 6= ∅

However since a new fire is started more frequently, there is less bias towards high degree and

closer-connected nodes.

4.3 Modeling

4.3.1 Data

A dataset containing node and edge information of a Facebook social network was obtained

through Kaggle [11] and used for the purposes of demonstration and exploration. It consisted of

two columns containing node identification numbers. Each row in the dataset represented an edge

between the node listed in the first and second column. In total, the dataset contained 22,470

nodes with 171,002 edges connecting them.

Each node in the dataset represented a verified Facebook page, and each edge represented a

mutual like between two pages. All information was collected in November 2017 by the author of

the dataset using the Facebook Graph API. To ensure a manageable set of data, the author of the

dataset chose to include only pages falling under one of the following four groups pre-defined and

assigned by Facebook in data collection: politicians, governmental organizations, television shows,

and companies.

The full space was plotted (Figure 3) in order to have a point of reference to compare sample

models to.

16

Figure 3: The entire graph before sampling.

4.3.2 Methods and Evaluation

Both FFS and and SFFS were modeled, analyzed, and compared in this study. Both FFS and

SFFS were performed on the entire dataset at 4 different sample size (5%, 10%, 15%, and 20% of

the population, resulting in sample sizes of n′p = 1124, 2247, 3370, and 4494, respectively) and 3

different forward burning probabilities (pf = 0.2, 0.5, and 0.7) for a total of 12 samples per method,

24 samples in total. Sample sizes were chosen in light of both the previous work and in consultation

with the literature. Forward burning probabilities were selected based on [6], in which it was found

that 0.2 worked well for back-in-time purposes and 0.7 worked well for scaling down goals. 0.5 was

chosen both because it lies between these two values, and for its unbiasedness.

After using the sampling algorithms in the traditional way, they were also used exclusively as

node selection technique. For this approach, the sample graph was that induced by the nodes

selected in the original approach. This was again done 12 times for each algorithm (at the previous

4 different sample sizes and 3 different forward burning probabilities each) resulting in a total of

24 new samples. These methods were named Restored FFS and Restored SFFS for the way that

they ”restore” edges between nodes that were previously left out.

Finally, SFFS was analyzed separately at four additional ”jumping frequencies” by setting N =

1, 2, 5, and 7. It was found that beyond N = 7, SSFS was virtually identical to FFS. For this section

17

of the analysis, the forward burning probability was fixed at pf = 0.7 and again sample sizes of

5%, 10%, 15% and 20% of the population were used to obtain 16 new samples. The edge-restored

version of SFFS was also performed for each of these samples, resulting in 16 more samples.

In total, 80 samples were drawn. For each sample, runtimes, the number of jumps made, node

and edge proportion reduction, and Kolmogorov-Smirnov D-statistics were calculated. Each sample

was also visualized in order to compare to the topology of the full space.

4.4 Results

4.4.1 Comparing FFS and SFFS

First, FFS and SFFS were both performed and visualized (Figures 4 and 5). Output for both

can be found in Appendix A and B, respectively. Kolmogorov-Smirnov D-statistics, however, are

summarized in Table 3 below.

Figure 4: FFS at forward burning probabilities pf = 0.2, 0.5, 0.7

Figure 5: SFFS at forward burning probabilities pf = 0.2, 0.5, 0.7

18

Percentage of Sampling Method

Popuation FFS SFFS

Sampled pf = 0.2 pf = 0.5 pf = 0.7 pf = 0.2 pf = 0.5 pf = 0.7

5% 0.6533 0.5408 0.4754 0.6702 0.5911 0.5190

10% 0.6569 0.5497 0.4878 0.6720 0.5772 0.5265

15% 0.6548 0.5408 0.4568 0.6696 0.5824 0.5215

20% 0.6520 0.5345 0.4460 0.6716 0.5770 0.5178

Table 3: Table of Kolmogorov-Smirnov D-Statistics for each sample.

In general, FFS slightly outperformed SFFS giving slightly lower D-statistics overall (Figure 6,

top). SFFS appeared to be more sparsely connected than FFS at pf = 0.2, though this difference

was less noticeable after increasing pf . FFS preserved the topology of the full space for all 12

samples, whereas SFFS did so for samples using pf = 0.5 and 0.7. This could be explained by the

fact that SFFS produced approximately 15.02% less edges, on average, than its corresponding FFS

sample. One advantage of SFFS, however, is that for pf = 0.2 and 0.5, it outperformed FFS in

terms of runtime, suggesting that this algorithm is more efficient (Figure 6, bottom).

Figure 6: Comparison of FFS and SFFS by their D-statistics (top) and runtime (bottom).

19

4.4.2 FFS and SFFS as Node Selection Techniques

Next, edge-restoration was done for all 24 of the FFS and SFFS samples from section 4.4.1,

and the resulting samples were visualized (Figures 7 and 8). Output for both can be found in

Appendix C and D, respectively. Kolmogorov-Smirnov D-statistics, however, are summarized in

Table 4 below.

Figure 7: Edge-Restored FFS at forward burning probabilities pf = 0.2, 0.5, 0.7

Figure 8: Edge-restored SFFS at forward burning probabilities pf = 0.2, 0.5, 0.7

20

Percentage of Sampling Method

Popuation FFS (Restored) SFFS (Restored)

Sampled pf = 0.2 pf = 0.5 pf = 0.7 pf = 0.2 pf = 0.5 pf = 0.7

5% 0.2599 0.1698 0.1342 0.2038 0.1015 0.1582

10% 0.1775 0.1868 0.2426 0.1194 0.0708 0.1332

15% 0.2512 0.3035 0.2474 0.0483 0.1087 0.1699

20% 0.2191 0.2460 0.2626 0.0619 0.1216 0.1826

Table 4: Table of Kolmogorov-Smirnov D-Statistics for each edge-restored sample.

On average, restoring edges increased the number of edges in the sample by 89.79% in the

FFS samples and by 85.93% in the SFFS samples. Interestingly, restoring the edges appeared to

preserve degree distribution far better than the standard algorithm, as D-scores were significantly

lower across the board. This suggests that FFS and SFFS have the issue of not sampling enough

edges. Also of note, restored SFFS outperformed FFS in most cases after restoring edges. These

results are summarized in Figure 9.

Figure 9: FFS and SFFS D-statistics before and after edge restoration.

For sample sizes of 10% of the population or greater, restored SFFS appears to be the best

method, both in terms of runtime and preserving degree distribution. This, however, comes at the

cost of more preserving more edges, and thus having a larger dataset to work with and process. If

edge restoration is not an option (say, if constraints are placed on the size of the sampled dataset)

FFS would be the preferred method, though the sampling distribution will be far less accurate.

4.4.3 SFFS at Different Jump Frequencies

Finally, SFFS was performed at various values of N to assess how jump frequency impacts SFFS

performance. The forward-burning probability was fixed at pf = 0.7, and then samples were drawn

21

for N = 1, 2, 5, and 7. Results for N = 3 were taken from sections 4.4.1 and 4.4.2. All samples

were visualized (Figures 10 and 11). Output for both the traditional sampling and edge-restored

sampling can be found in Appendixes E and F, respectively. Kolmogorov-Smirnov D-statistics,

however, are summarized in Table 5 below.

Figure 10: SFFS at jump frequencies N = 1, 2, 3, 5, 7.

22

Figure 11: Edge-restored SFFS at jump frequencies N = 1, 2, 3, 5, 7.

Percentage of Sampling Method

Popuation SFFS SFFS (Restored)

Sampled N = 1 N = 2 N = 3 N = 4 N = 5 N = 1 N = 2 N = 3 N = 5 N = 7

5% 0.5791 0.5186 0.5190 0.4785 0.4732 0.1518 0.0575 0.1582 0.1440 0.3364

10% 0.5794 0.5331 0.5265 0.5011 0.4749 0.0858 0.0805 0.1332 0.1895 0.2043

15% 0.5787 0.5358 0.5215 0.4799 0.4940 0.0633 0.1207 0.1699 0.1963 0.2260

20% 0.5797 0.5305 0.5178 0.5032 0.4880 0.0852 0.1368 0.1826 0.1626 0.1383

Table 5: Table of D-Statistics for SFFS and Restored SFFS samples at various jump frequencies.

Both SFFS and restored SFFS did a poor job of preserving graph structure for N = 1 and 2, as

these graphs appeared to be sparesly connected. N = 3, 5, and 7 appeared to be sufficient. Again,

restored SFFS outperformed SFFS in terms of D-statistic. Increasing N appeared to have opposite

effects on restored vs traditional SFFS. As N increased, traditional SFFS D-statistics decreased,

while restored SFFS D-statistics increased (Figure 12). This is likely explained by the fact that

traditional SFFS does not sample enough edges.

23

Figure 12: SFFS and edge-restore SFFS performance at various jump frequencies.

5 Concluding Remarks

Many different sampling methods have been introduced in the literature in order to address

both the differing sampling goals one might have, as well as the specific topological characteristics

of each individual graph. While a number of these have been introduced in this study, there are far

more that exist within each of the three categories discussed. Analyzing node selection probabilities

of each method provides an understanding of the merits and challenges of each method, and thus

can help in selecting an appropriate sampling method. What works well for one graph may not

work as well for another, and so there is no one universal ”ideal” method- in each case, it is best

to attempt a number of methods, and then select the most representative sample.

This study also introduced Spontaneous Forest Fire sampling (SFFS), a new modification to

traditional Forest Fire Sampling (FFS). While, for the particular graph analyzed in this study,

traditional FFS outperformed SFFS, utilizing these graph traversal method for node selection, and

then inducing a graph on the selected nodes, proved to be more efficient when utilizing SFFS as

opposed to FFS. This increased accuracy, however, came at the cost of a larger dataset storing

more edges, and so which of these methods (traditional FFS or edge-restored SFFS) one should

choose depends on whether there are any predetermined constraints on the sample dataset.

This study could be continued in a number of ways. Both FFS and SFFS could be performed

on other graphs with significantly different topologies to see how performance varies. Specifically,

it is expected that SFFS would perform better on a graph with distinct clusters present, as the

increased jump probability allows for a broader exploration of the space that does not rely on

proximity to previously sampled nodes. Other modifications to FFS could also be introduced, such

as incorporating deletion at every other step, to see if performance could be further improved.

To better understand how these modifications might aid in increasing sample accuracy, random

selection methods and their deletion method analogues could first be be modeled and compared.

24

References

[1] Brin, S., & Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine.

http://infolab.stanford.edu/ backrub/google.html

[2] Freyberg, J. Spotify Artist Feature Collaboration Network.

https://www.kaggle.com/datasets/jfreyberg/spotify-artist-feature-collaboration-

network?select=nodes.csv

[3] Gjoka, M., Kurant, M., Butts, C. T., & Markopoulou, A. Walking in Facebook: A Case Study

of Unbiased Sampling of OSNs. https://ieeexplore.ieee.org/document/5462078

[4] Hu, P., & Lau, W. C. A Survey and Taxonomy of Graph Sampling.

https://arxiv.org/pdf/1308.5865.pdf

[5] Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L., Cui, J.-H., & Percus, A. G.

Reducing Large Internet Topologies for Faster Simulations.

http://www.cs.ucr.edu/ michalis/PAPERS/sampling-networking-05.pdf

[6] Leskovec, J., & Faloutsos, C. Sampling from Large Graphs.

https://cs.stanford.edu/people/jure/pubs/sampling-kdd06.pdf

[7] Leskovec, J., Kleinberg, J., & Faloutsos, C. Graphs over Time: Densification Laws, Shrinking

Diameters and Possible Explanations.

https://www.cs.cornell.edu/home/kleinber/kdd05-time.pdf

[8] Mateos, G. PageRank: Ranking of Nodes in Graphs.

https://www.hajim.rochester.edu/ece/sites/gmateos/ECE440/Slides/

block 3 markov chains part c.pdf

[9] Mayank, M. Visualizing Networks in python. Medium. Towards Data Science.

https://towardsdatascience.com/visualizing-networks-in-python-d70f4cbeb259

[10] Myakushina, A. Sampling Methods for Social Networks with Applications in Spotify Latent

Space Models. https://docs.google.com/document/d/

1jXhWbnWc10NSGVPNAOBtDKWN5ucBs5 N9ewJHY7RB5s

[11] Rozemberczki, B. MUSAE Facebook Page-Page Network.

https://www.kaggle.com/datasets/rozemberczki/musae-facebook-pagepage-

network?resource=download&select=musae facebook edges.csv

[12] Wicklin, R. (2019, May 15). What is Kolmogorov’s D statistic?

https://blogs.sas.com/content/iml/2019/05/15/kolmogorov-d-statistic.html

25

Appendix A

Forest Fire Sampling (FFS) Output

26

27

Appendix B

Spontaneous Forest Fire Sampling (SFFS) Output

28

29

Appendix C

Edge-Restored FFS Output

30

Appendix D

Edge-Restored SFFS Output

31

Appendix E

Output for Testing SFFS at Various Jumping Frequencies

32

33

Appendix F

Output for Edge-Restored SFFS at Various Jumping Frequencies

34

35

