Exploring Sampling Techniques in Large
Graphs and Networks

Anna Myakushina

University of Rochester
Spring 2023 Honors Thesis
Advisor: Alex losevich

Abstract

Graphs are an important branch of data science that are essential to visualizing and repre-
senting relationships, particularly in spaces with many observations. Working with large graphs
(10,000 nodes or more), however, can be extremely difficult- runtime increases dramatically,
and results are often difficult to visualize and interpret due to how busy the model becomes.
For this reason, efficient and accurate sampling techniques are necessary to scale down data to
a manageable magnitude. This study will explore sampling methods of three different classes:
random selection techniques, sampling by exploration, and deletion methods. Various existing
methods are introduced and explained, and the probability of node selection is calculated for
each method in order to compare and discuss advantages and pitfalls of each method. In total 15
existing methods are explored and discussed, including Forest Fire Selection (FFS), a popular
method utilizing graph traversal.

The last section of this study then proposes a new sampling technique, Spontaneous Forest
Fire Sampling (SFFS), which has been modified from FFS. Both FFS and SFFS are modeled
on a Facebook social network at three different forward burning probabilities (py = 0.2,0.5, and
0.7) and four different sample sizes (5%, 10%, 15%, and 20% of the population). A modification
to both FFS and SFFS to include more edges, named edge restoration, is also proposed and
modeled. Finally, SFFS is tested separately at ”jumping frequencies” of N = 1,2,3,5, and
7. In total, 80 samples are generated, modeled, and compared using Kolmogorov-Smirnov D-
statistics. It is found that depending on sampling goals, either edge-restored SFFS or traditional
FFS performed the best.

Contents

1 Introduction

1.1 Background and Motivation
1.2 Definitions and Notation
1.3 Goals and Desired Characteristics

2 Existing Sampling Methods

2.1 Random Selection Techniques
2.1.1 Sampling by Node Selection
2.1.2 Sampling by Edge Selection

2.2 Sampling by Exploration
2.2.1 Graph Traversal
2.2.2 Random Walks

2.3 Deletion Methods

3 Previous Work

3.1 Motivation e
3.2 Summary of Original Study
3.2.1 Data e e
3.2.2 Methods e
3.2.3 Visualization, Evaluation, and Conclusions

4 Spontaneous Forest Fire Sampling (SFFS)

4.1 Forest Fire Sampling (FFS)
4.2 Modifying FFS: Spontaneous Forest Fire Sampling (SFFS)
4.3 Modeling
4.3.1 Datao
4.3.2 Methods and Evaluation
4.4 Results. e
4.4.1 Comparing FFS and SFFS o
4.4.2 FFS and SFFS as Node Selection Techniques

4.4.3 SFFS at Different Jump Frequencies
5 Concluding Remarks

References

10
11

12
12
12
12
13
13

14
14
15
16
16
17
18
18
20
21

24

25

1 Introduction

1.1 Background and Motivation

Graphs are powerful tools that are regularly used to visualize and learn about spaces, with
social networks being a common application. They can be used to present relationships is ways
that would otherwise be be infeasible to do given the inherent quantity and complexity of the data,
and to detect patterns and groupings that may not be obvious otherwise.

Though graphs are certainly better equipped than text when it comes to representing large,
complex relationship data, they still have limitations. A graph with tens or hundreds of thousands
of observations would be extremely computationally expensive to visualize and work with- runtime
of such operations could extend for hours, if not days. Furthermore, even if such a space is able to
be visualized, the results would be useless. With so many observations and connections between
them, the generated model would be far too busy to easily observe underlying patterns.

All of these issues are ones that were encountered first-hand in a previous project [10]. The
importance and necessity of accurate and representative sample sizes was quickly recognized and
explored. This study is an extension of the work started then. It explores and introduces a
classification system for existing sampling methods, calculates the probability of node selection in
each graph, and finally introduces and tests a new sampling method, as well as proposes a modified

usage of an existing one.

1.2 Definitions and Notation

Definition 1.2.1 (Graph) A graph is a set of points connected by lines. The points are called

nodes and the lines are called edges.

There are two types of graphs:

Definition 1.2.2 A directed graph is a graph in which edges have a direction, and are denoted
visually with an arrow rather than a line. A graph with undirected edges is called an undirected

graph.

That is, in a directed graph a node v; can be connected to vy without vy being connected to ;.
In an undirected graph, if v is connected to vy then wve is connected to v1 and vice versa. For the
sake of simplicity, this study will focus on undirected graphs. In applied settings, graphs are called

networks:

Definition 1.2.3 (Network) A network is a type of graph in which nodes represent observations,

and edges represent connections between them. Networks can be directed or undirected.

Lastly, there is one more term of note:

Definition 1.2.4 (Incidence) An edge is said to be incident to a node v if v is one of its endpoints.

The following symbols will be used throughout the paper:

Symbol Meaning

G The full, unsampled graph
v The set of all nodes in G
E The set of all edges in the full graph G
n n = |V|; the number of nodes G contains
m m = | E|; the number of edges G contains
G’ The graph sample
V! The set of sampled nodes
£ The set of sampled edges
P The percent of V that is desired for G’ to retain; ideally |V'| = np
n;, n;) = np, the number of nodes desired to be in the sample graph
|A| The number of nodes the graph A has

| A| The number of edges the graph A has

deg(v) The degree of node v
G[S] The graph induced by the subset of nodes S
p(v) p(v € V'); the probability of the node v being in the sample graph
/ The graph sample at time ¢

Sy The set of nodes that gets sampled at time ¢
v/ {Ui=1,...+—15i}; The set of all nodes that have been sampled up until time ¢
Vi {v e Vv & V/}; The set of all nodes that have not been sampled up until time ¢
ne |Vi|; The total number of unsampled nodes at time ¢
ny |V/]; The total number of sampled nodes at time ¢

my The number of edges between the unsampled nodes at time ¢
m The number of edges already sampled at time ¢

pe(v) The probability of the node v getting selected at time ¢
E, The set of edges incident to v
Ve The set of two nodes that are the endpoints of edge e
Vi The set of nodes that share an edge with the node v

e(v1,v9) The edge connecting nodes v; and vy (if none exists, e(vy, v2) = &)

Table 1: Establishment of Notation.

1.3 Goals and Desired Characteristics

When sampling from large graphs, different methodologies are preferable based on the goals of
the sample. Specifically, samples may address sampling from one of two perspectives. The first
is with a ”back-in-time” sampling goal. With this approach, the sampled graph attempts to
”time travel” and replicate what the original graph looked like at the time that it had n; nodes.
That is, if G, denotes the graph G at the time when it had n; nodes, the goal of the sampled
, ;3 nodes from G in such a way that the result resembles th;)

graph G} , would be to sample n
and replicgtes its topology [6]. Such a goal may be preferable when working with dynamic graphs

meant to model changes over time- say, for instance, a graph modeling the growth in popularity of

a social media platform over time. Taking a back-in-time sample then would allow one to estimate
what connections on the platform looked like at any given point in time. There are some distinct
challenges associated with a back-in-time sampling problem. Namely, samples are drawn from G,
which is just a final, static view of the space. If information regarding node ages is available, this
can be incorporated into the sampling algorithm to generate a more accurate sample [6].

This study, however, will take on a ”scale-down” sampling goal instead. With this approach,
the goal is to sample from G to create a sample graph G;Lp with n, nodes that preserves many of
the properties of G, but is of a far smaller magnitude [11]. Essentially, this approach attempts to
create a "mini model” of G that contains fewer nodes while preserving its topology. Such a goal
may be preferable when working with static graphs containing an unfeasibly large quantity of data.
By generated an accurate scale-down sample, a graph is created that can still provide valuable
information about the full space while being far easier to work with.

To measure how ”accurate” a scale-down sample is, degree distributions will be compared. e,
for each graph, the degree of each node will be calculated and then the distributions of node degrees
will be analyzed. An accurate sample will preserve the degree distribution of G. To quantify this
comparison, Kolmogorov-Smirnov D-statistics will be used, which measures the maximal distance
between empirical cumulative distribution function F’ of the sampled graph’s degree distribution

and the cumulative distribution function F' of the original graph. It is calculated as follows [12]:
D = max, {|F'(z) — F(x)[}

A smaller D-statistic indicates less deviance from the original distribution, suggesting that the

sample better replicates it.

2 Existing Sampling Methods

Throughout the literature, a number of different sampling methods for graphs and networks
have been proposed. Laregly, these can be broken up into three broad categories : (1) random

selection techniques (2) sampling by exploration and (3) deletion methods.

2.1 Random Selection Techniques

Random selection techniques methodically take advantage of randomization to sample nodes,
edges, or both in a way that attempts to scale down the size of the graph while preserving its
topology. Methods utilizing random selection techniques fall into one of two categories: sampling

by node selection, and sampling by edge selection.

2.1.1 Sampling by Node Selection

These methods prioritize node selection in constructing the sample graph. Specifically, they

each sample n;, nodes, so that [V'| = nj, and G’ = G[V']. Examples of sampling by node selection

include the following;:

1. Random Node (RN) Sampling: In this method, n;, nodes are uniformly selected at random:
p _ P
n

RN sampling was explored in a previous work and is discussed later in the paper (section 3).
Though a very intuitive approach, this method can sometimes fail to capture the intricacies of

a graph’s topology. Other methods have been found to preserve graph structure far better.

2. Random Degree Node (RDN) Sampling: Unlike RN sampling, this is an example of a
non-uniform sampling method. Rather than assigning each node a uniform probability, each

node’s selection probability is directly proportional to its degree:
p(v) x deg(v), Yv € V

Evidently, this process is biased towards nodes of high degrees, and others have noted that as a

result it does poorly with preserving the degree distribution of the original graph [6].

3. Random PageRank (RPN) Sampling: Inspired by Google’s PageRank®© algorithm, this is
another non-uniform sampling technique. This method, however, assigns node selection proba-
bilities that are proportional to each node’s PageRank score PR(v), which ranks nodes based
on their relative popularity. This parameter is a function of not just the degree of the node, but

of its degree relative to the rest of the nodes in the graph [8]:
px PR(v), Vv eV

PageRank score can be thought of as a measure of where a node lies on the graph’s degree
distribution, and by extension the probability of it getting randomly selected [1]. Given this
adjustment, this algorithm had been found to be less biased towards higher degree nodes [6].

2.1.2 Sampling by Edge Selection

While some of these methods still give consideration to nodes, they are distinct in that all or
many of the selections they make originate at the edges of the graph. Examples of sampling by

edge selection include the following:

1. Random Edge (RE) Sampling: Analogously to RN sampling, this technique uniformly selects
k edges at random [6], so that

G' = G|VE],Ve = Uecpr Ve

Samples drawn by RE sampling tend to have large diameters due to being sparsely connected

and thus do not preserve graph structure [6]. Furthermore, since

_k deg(v)

p(v) , YveV

RE faces the same issue as RDN in that it is biased towards high degree nodes.

. Random Node-Edge (RNE) Sampling: A variation of RE, this method performs a single
step of both RN and RE at each iteration. Each iteration consists of two steps:

(1) RN: one node v is uniformly picked at random and added to G’

(2) RE: one edge incident to v is uniformly picked at random, and both the edge and its other
endpoint are added to G’

[6] So if t = 1 is the first step, we have that when ¢ is odd we have a step of RN and when ¢ is
even we have a step of RE. Since at each step we are either sampling one node, or an edge with

one vertex already in V//, we have that for any ¢
1S =1

Let s; € S; denote the single element in S;. Then for any v € V,

i t odd
pi(v) = IEsiﬁ’ t even and and e(v,s;_1) # @
0 t even, and e(v,s;_1) = @

We can make also modify this algorithm to make it more strict by only choosing from nodes and

edges that have not been sampled yet. Then:

0, veV/
n%’ v ¢ V/ and t odd
pt(v) - 1 /
B, v ¢ V/ and t even and e(v,s;_1) # &
0 v & V/, teven, and e(v,s;_1) = &

In either case, this process is continued up until nj, < |V/|. Let ¢y be the stop time. Then
G' = (VtIO,EVt/O), EWO = {e(si,si—1)[i =2,...,t0 — 1}

That is, the sample graph is the one consisting of (a) the set of nodes randomly selected during
the RN steps, (b) the edges selected during the RE steps, and (c) the nodes connecting to (a)
via (b). With the incorporation of RN, higher-node bias is eliminated [6]. However, this method

even more so suffers from the issue of sparse connections.

3. Hybrid (HYB) Sampling: This unique approach combines RNE and RE. At each step, RNE
is used with a set probability P and RE is used with a probability of 1 — P [6]. Since RNE is a
two-step process, we have that at each ¢, the type of step that will be done is influenced by the
previous two steps:

(1) If regular RE was done at step t—1, then step ¢ will be the RN step of RNE with probability
P and another regular RE step with probability 1 — P

(2) If the RN step of RNE was done at step t — 1 (ie step t — 1 was beginning RNE), then step
t will be the RE step of RNE

(3) If the RE step of RNE was done at step ¢t — 1 (ie both previous steps were RNE), then step
t will be the RN step of RNE with probability P and another RE step with probability 1— P

Then

Previous step was a RE step (either as part of RNE or on its own)
pe(v) = ToE Previous step was RN and e(v, s;_1) # @&
St—1

0, Previous step was RN and e(v, s;-1) = @

We can again modify this algorithm to make it more strict by only choosing from nodes and

edges that have not been sampled yet. For a node v, let
Zy = E, — {e(v,s)]s € V/}

Then with the algorithm modification,

0, veV/

n% + (lfp)(dirgiv)ﬂznl) v € V/ and previous step was RE (either as part of RNE or on its own)
pe(v) = \E‘Stﬁ’ v & V/, previous step was RN, and e(v, s;—1) # &

0, v & V/, previous step was RN, and e(v,s;—1) = &

By alternating between RE and RNE, this method is able to reduce higher-node bias without
sacrificing as much in terms of graph sparsity.
2.2 Sampling by Exploration

An alternative to strategic random selection is the utilization of crawling techniques. These can

again be split into two broad categories: graph traversal and random walks.

2.2.1 Graph Traversal

Graph traversal methods are designed to select each node at most once in order to prevent the
issue of cycling. The order in which they visit each node, however, varies. Some methods include

the following:

1. Random Node Neighbor (RNN) In this method, at each iteration a node v € V; is uniformly
selected at random, along with V,, and E, [6]. This is repeated until the desired sample size is

reached. Hence for any v € V4, we have

_ 1+deg(v)

pt(v) o

Because a new jump is made at each iteration and only connections with immediate neighbors

are preserved, this sampling method does a poor job of preserving community structures [6].

2. Breadth-Search-First (BSF) With this sampling method, an initial starting node vy is uni-
formly selected at random. Then all of its immediate neighbors are sampled, and then the
immediate neighbors of those nodes are sampled, and so on until the desired number of nodes
is reached [4][5]. In this case, the probability of a node getting sampled at time ¢ is 1 if it has
an edge incident to a node in S;_1, and 0 otherwise. Because node selection relies so heavily on
proximity to previously sampled nodes, this method works well for graphs in which all nodes

are closely connected, but not ones with distinct clusters.

3. Depth-Search-First (DSF) This sampling method, on the other hand, uniformly selects a
starting node vy at random, then uniformly selects one of its incident edges at random, as well
as the other endpoint of that edge. Then an edge from that node is uniformly selected at random,
as well as the other endpoint of that new edge. This process is then repeated until a node is
reached that has no edges connecting to upsampled nodes, in which case a new starting point is
chosen (revisitation is allowed when selecting a new starting node, but not at other steps in the
process) [4][5]. This process is continued until the desired number of nodes has been reached. If

v; is the node that is sampled at time ¢, then for v € V;

%, deg(vi—1) =0
pi(v) = m, deg(vi—1) > 0 and e(v,v¢_1) # @
0, deg(vi—1) > 0 and e(v,v4—1) = @

In this case, deg(v) is updated at each time ¢ to include only edges incident to other upsampled
nodes in degree calculations. This method, unlike BSF, does better with more sparsely connected

graphs and those with distinct clustering.

Forest Fire Sampling (FFS), another example of sampling by exploration through graph traversal, is

later presented in great detail (section 4). Furthermore, a modified approach, named Spontaneous

Forest Fire Sampling (SFFS) is proposed and explored later (section 4) as well.

2.2.2 Random Walks

While graph traversal visits each node no more than once, revisitation is permitted in random

walks [3]. Some methods include the following:

1. Random Walk (RW) Sampling: In this sampling method, a starting node vy is picked
uniformly at random, and then a random walk on the graph is simulated. A ”fly back” probability
¢ (often, ¢ = 0.15) is selected, and at every step the algorithm returns back to the starting node
and restarts the random walk with probability c. Let s; denote the node selected at time ¢, and

so the starting node [6]. For a simple random walk, then we have that for any v € V,

c, v =350 and e(v,s_1) = &

1—
c+ W_CJ’ v=s5¢ and e(v,s_1) # &

pe(v) =<0, V= St_1 F S
0, v # 50, 81—1 and e(v,8,_1) = &
Witﬁ, v # S0, 5t—1 and e(v, $;_1) # &

This process is continued until [V}/| = nj,.

One issue that frequently arrises with RW sampling is that the algorithm may get ”stuck”-
if the starting node happens be part of an isolated portion of the graph, it is unable to travel to
the rest of the graph and therefore cannot gather a representative sample. To get around this
issue, the algorithm can be slightly modified. If after a certain large number (say, 100 - n) of

steps V}/ < n;, a new starting node is uniformly selected at random and the process is repeated.

2. Random Jump (RJ) Sampling: RJ sampling is very similar to RW but instead of ¢ being
the probability of jumping back to the starting node, it is the probability of jumping to any new
random node [6]. So with probability 1 — ¢ the random walk continues for another step, and
with probability ¢ a new node is uniformly selected at random and jumped to. Let s; denote

the node selected at time t. Then for any v € V,

¢, V=841
p(v) =< c, v # 5.1 and e(v, $4—1) = &

c+ IElsi;fl\’ v # s-1 and e(v, sp-1) # D

RJ sampling was explored in a previous work and is discussed later in the paper (section 3).

10

2.3 Deletion Methods

Both random selection and sampling by exploration begin from a null set and build up to the
desired number of nodes. Deletion methods, on the other hand, begin with the full graph and work
backwards to iteratively reduce the number of nodes in the sample graph until the desired number
is reached. For this section, p;(v) shall denote the probability of ”surviving” deletion and staying

in the sample graph, ie of NOT getting selected.

1. Deletion of Random Node (DRN) Analogous to RN sampling. Instead of randomly choosing

n;, nodes to add to G’, however, DRN uniformly selects nodes at random for removal one at a

time [5]. Thus we have that for any v € V; at time ¢, the probability of not getting removed
(and thereby staying the sample) is

Normally this is done in iterations, with some predetermined proportion d of the remaining
nodes being deleted one at a time each iteration [5]. The probability of a node remaining after

an iteration then is 1 — d.

2. Deletion of Random Edge (DRE) Analogous to RE sampling. Edges are chosen uniformly
at random and deleted one at a time. If this results in any isolated nodes, they get deleted as
well. This process is then repeated until the desired sample size is reached. For any v € V; then
we have

0, deg(v) > 1

11— L =m=l ' deg(v) =1

me mg

Again, this is normally done in iterations, with some predetermined portion d of the remaining

edges being deleted at each iteration.

3. Deletion of Random Node/Edge (DRNE) Analogous to RNE sampling. A node s; is
selected uniformly at random, and then one of its incident edges is uniformly selected at random
and removed. If this results in isolated points, isolated points get removed. Hence if t = 1 is the
time at which the first DRN is performed, we have that DRNE will perform a step of DRN if ¢
is odd and a step of DRE if ¢ is even. If ¢ is odd, let s; be the node that is selected and deleted
at time ¢t. Then

”%7—1, t odd
t
|Bap_y |1
p(v)=1<1— \Elstl = ItEslt‘\ , teven, deg(v) =1, e(v,s81) # @
0, All else

11

3 Previous Work

3.1 Motivation

The contents of this paper are an extension of a project that was completed in December,
2022 titled Sampling Methods for Social Networks with Applications in Spotify Latent Space Models
[10]. The original goal of this project was to learn about modeling social networks in a Bayesian
setting, but a significant issue emerged almost right away: there was simply too much data to be
able to reasonably work with or extract the desired information from. This resulted in a pivot in
research goals, and the paper instead became an exploration of sampling techniques in the context
of large graphs. This original project was merely a first introduction into the field and of a far
smaller magnitude than this work; this paper has greatly expanded upon what was originally done.
Nonetheless, the original findings are not only relevant to the subject of this paper, but they were
also a significant guide during the research process. This paper would not be complete without
those previous findings, and so this section has been included

Because the original project was intended as a first introduction into the field, only two sampling
techniques were explored: Random Node (RN) sampling (see section 2.11) and Random Jump
(RN) sampling (see section 2.2.2). Each method, however, was performed at four different values
of p: 0.10, 0.15, 0.25, and 0.50. These methods were applied to a social network modeling artists
on Spotify and their collaboration, where each node was an artist, and edges between artists
represented collaborations. The goal was to model this space and attempt to identify clusters

based on genre and/or country.

3.2 Summary of Original Study
3.2.1 Data

Data was obtained through Kaggle [2]. This graph was undirected and consisted of 156,422
artists, as well as all of their collaboration between September 28th, 2013 and October 9th, 2022.
For the sake of computation, the graph was restricted to include only artists with popularity in the
United States. This brought the number of nodes down to 1,185, with 46,933 edges between them.
The remaining artists covered a total of 559 genres. As this would not be feasible to visualize, the
data was further restricted to only include artists that fell into one of the following three genres:
rock, rap, and/or indie. The resulting subset consisted of 614 nodes, with 27,462 edges between
them. For a more detailed explanation of the data cleaning process, see [10].

Once the data was cleaned, a 614x614 adjacency matrix was generated. Each row-column pair
represented a pair of artists- if those artists had at least one collaboration, a 1 was entered. If
not, 0. Once this was done, all rows and columns with entirely zero entries were removed- these
signified artists with no collaborations with anyone else in the subset, and thus would have been
isolated points in the graph. Once this was completed, there were 470 artists left: 87 in rock, 354

in rap, and 29 in indie.

12

3.2.2 Methods

Before sampling, the built-in ergmm() function in R was used to perform latent space modeling
on the all 470 artists. This was done to provide a point of reference and determine what the network
looked like and what patterns sampled spaces should be mirroring. Modeling was done twice: once
from the frequentist perspective using MLE, and a second time from a Bayesian perspective using
posterior means as point estimates.

Four samples were drawn using each method and the following sample sizes: 47, 71, 118, and 253
(10%, 15%, 25%, and 50% of N = 470). Each of the eight sample spaces was then modeled twice
using ergmm() in R, from both a frequentist and Bayesian perspective. When plotting the 50%
RN sample, it was found that a few isolated points were skewing the entire graph, so these were
removed and the space was modeled again. All models were compared to the full space to assess the
graph topologies. Lastly, Kolmogorov-Smirnov D-statistics were calculated for each sample space

to compare their degree distribution to that of the full space.

3.2.3 Visualization, Evaluation, and Conclusions

Modeling the full space (Figure 1) did not reveal any significant clustering, but color coding
artists by genre revealed that most of the rap artists tended to be positioned towards the center,

while rock and indie artists were on the perimeter of the graph.

Full Space MLE positions Full Space Posterior Means
2 s :
- m Rock - W Rock
] B Rap W Rap
@ Inde O Indie
@
& o i=]
NS ™
w
; o |
‘_’2
T T T T T T T T
-20 -10 0 10 20 -15 -10 -5 0 5 10 15
z 2,

Figure 1: Full Space in Latent Space from both a frequentist and Bayesian perspective

In general, it was found that a 10-15% sample size was not sufficient for either method to properly
preserve graph structures. Both methods did well at 25-50%, with RN slightly outperforming RJ
The previously observed pattern of rap artists being located near the center while rock and indie
artists disperse on the outside began to emerge in these samples (Figure 2). D-statistics supported
these findings, with D improving as sample size increased and overall being better with RN than
RJ (Table 2).

13

RN Sampling: 25% Nodes MLE positions RN Sampling: 50% Nodes MLE positions (Adjusted)
L] .
— h = . -
. 2 \
- B Rock . ®m Rock oyl
A W Rap ® Rap
0 - O Indie o O Indie
L] L]
IQ‘ = ° oo
. L]
e . @
-1 -
(=
[=]] -
S T T T T | : : :
-20 0 2 40 20 -10 0 10 20
z, z,

Figure 2: 25% and 50% adjusted sample using RN sampling

\ 0.10 | 0.15 | 0.25
0.5957 | 0.5429 | 0.4065 | 0.1851

0.7197 | 0.7337 | 0.6995 | 0.6122

Random Node (RN)
RN (adjusted)
Random Jump (RJ)

Table 2: Table of Kolmogorov-Smirnov D-Statistics for each sample

Low D-statistics and poor graph structure preservation were likely due to an insufficient popu-
lation size. The fact that only at 50% did the sample perform well suggests that sampling smaller
graphs may be pointless, as very large proportions of the data need to be sampled in order to
to generate accurate representations of the full space. Because of this, a much larger space was

sampled from later in this study (section 4).

4 Spontaneous Forest Fire Sampling (SFFS)

4.1 Forest Fire Sampling (FFS)

The Forest Fire graph generation model [4] was first introduced by Jure Leskovec, Jon Kleinberg,
and Christos Faloutsos, and was then later adapted by Leskovec and Faloutsos into a sampling
technique [7]. Forest Fire Sampling (FFS) is graph traversing exploration technique, and the

algorithm is as follows:

1. From the graph G, uniformly select a node v at random

Pf

2. L

Randomly select a number x from the geometric distribution with mean , where the

parameter py denotes the forward burning probability.

. Let W denote the set of edges connected to v that have not yet been traversed, and let
nw = min(z, [W])

14

Uniformly selected nyy edges in W at random, and let wy,wo, ..., wy,, denote the nodes at

the other ends of these selected edges.

4. Repeat steps (2) and (3) recursively at each wi,ws, ..., wy,, until the desired number of
nodes have been sampled. To avoid cycling, nodes are visited at most once- that is, in these
subsequent steps only edges connected to previously upsampled nodes are drawn from. If at
some time t, W = & for each "end node” w; (also known as the fire dying) before the desired
number of nodes have been sampled, restart the process by uniformly selecting a new node v

at random from the nodes that have not yet been sampled [6].

Note that for the purposes of this study, the FF'S algorithm has been modified from that proposed
by Leskovec and Faloutsos in order to handle cases when x > |W/|. Further modifications can be
made to accommodate directed graphs by including a second parameter py, the backward burning
probability, but this modification will not be explored as the focus of this study is on undirected
graphs.

Define Z,+ = {e(v, s)|s € S;_1} for a node v. Let

Y, = [USEStES] - [USGStES] N [UwEVt’Ew]

That is, let Y; be the set of edges connecting to the nodes that is sampled at time ¢ whose other
endpoint has not been sampled already. Then at time ¢, for any v € V;\V}:

n%, If a new fire is started at ¢
pe(v) =<0, If an existing fire is continued at ¢ and Z,; = &
Hé ZH, If an existing fire is continued at ¢ and Z,; # @

Since | Z,;| is related to deg(v) (that is, high degree nodes are more likely to have edges connecting
them to a node sampled in the previous step) this algorithm is biased towards higher degree nodes.
Furthermore, if the graph has very isolated distinct groups, FFS may get ”stuck” at one group and
fail to visit the other(s).

4.2 Modifying FFS: Spontaneous Forest Fire Sampling (SFFS)

In an attempt to address these issues, in this paper I propose a modified version of FFS, which

I shall refer to as Spontaneous Forest Fire Sampling (SFFS). The algorithm is as follows:

1. From the graph G, uniformly select a node v at random

2. Randomly select a number x from the geometric distribution with mean %’ where the

parameter py denotes the forward burning probability.

3. Let W denote the set of edges connected to v that have not yet been traversed, and let
ny = min(z, |W|)

15

Uniformly selected nyy edges in W at random, and let wy,wo, ..., wy,, denote the nodes at

the other ends of these selected edges.

4. Repeat steps (2) and (3) recursively at each wy, wy, ..., wy,, N times, where N is a predeter-
mined, fixed number of iterations (henceforth referred to as the ”jumping frequency”). To
avoid cycling, nodes are visited at most once- that is, in these subsequent steps only edges
connected to previously upsampled nodes are drawn from. If at some step the fire dies before
the Nth iteration, go to step (5).

5. If at this point V' < n,, uniformly selecting a new node v at random from V; and repeat steps
(2)-(4) until V/ > n,

SFFS forces a new jump more often than FFS, which prevents the algorithm from getting ”stuck”
in any one part of the graph and encourages exploration into other areas. This allows the sample
to capture more clusters that may otherwise be missed or underrepresented. As in FFS, for any
veV\V/

= If a new fire is started at ¢

pi(v) =10, If an existing fire is continued at ¢ and Z,; = &

|Zovt]
[Yi—1]’

If an existing fire is continued at t and Z,; # @

However since a new fire is started more frequently, there is less bias towards high degree and

closer-connected nodes.

4.3 Modeling
4.3.1 Data

A dataset containing node and edge information of a Facebook social network was obtained
through Kaggle [11] and used for the purposes of demonstration and exploration. It consisted of
two columns containing node identification numbers. Each row in the dataset represented an edge
between the node listed in the first and second column. In total, the dataset contained 22,470
nodes with 171,002 edges connecting them.

Each node in the dataset represented a verified Facebook page, and each edge represented a
mutual like between two pages. All information was collected in November 2017 by the author of
the dataset using the Facebook Graph API. To ensure a manageable set of data, the author of the
dataset chose to include only pages falling under one of the following four groups pre-defined and
assigned by Facebook in data collection: politicians, governmental organizations, television shows,
and companies.

The full space was plotted (Figure 3) in order to have a point of reference to compare sample

models to.

16

Full Space (22470 Nodes, 171002 Edges)

Figure 3: The entire graph before sampling.

4.3.2 Methods and Evaluation

Both FFS and and SFFS were modeled, analyzed, and compared in this study. Both FFS and
SFFS were performed on the entire dataset at 4 different sample size (5%, 10%, 15%, and 20% of
the population, resulting in sample sizes of n; = 1124, 2247, 3370, and 4494, respectively) and 3
different forward burning probabilities (py = 0.2, 0.5, and 0.7) for a total of 12 samples per method,
24 samples in total. Sample sizes were chosen in light of both the previous work and in consultation
with the literature. Forward burning probabilities were selected based on [6], in which it was found
that 0.2 worked well for back-in-time purposes and 0.7 worked well for scaling down goals. 0.5 was
chosen both because it lies between these two values, and for its unbiasedness.

After using the sampling algorithms in the traditional way, they were also used exclusively as
node selection technique. For this approach, the sample graph was that induced by the nodes
selected in the original approach. This was again done 12 times for each algorithm (at the previous
4 different sample sizes and 3 different forward burning probabilities each) resulting in a total of
24 new samples. These methods were named Restored FFS and Restored SFFS for the way that
they ”restore” edges between nodes that were previously left out.

Finally, SFFS was analyzed separately at four additional ”jumping frequencies” by setting N =
1,2,5, and 7. It was found that beyond N = 7, SSF'S was virtually identical to FFS. For this section

17

of the analysis, the forward burning probability was fixed at p; = 0.7 and again sample sizes of
5%, 10%, 15% and 20% of the population were used to obtain 16 new samples. The edge-restored
version of SFFS was also performed for each of these samples, resulting in 16 more samples.

In total, 80 samples were drawn. For each sample, runtimes, the number of jumps made, node
and edge proportion reduction, and Kolmogorov-Smirnov D-statistics were calculated. Each sample

was also visualized in order to compare to the topology of the full space.
4.4 Results

4.4.1 Comparing FFS and SFFS

First, FFS and SFFS were both performed and visualized (Figures 4 and 5). Output for both
can be found in Appendix A and B, respectively. Kolmogorov-Smirnov D-statistics, however, are

summarized in Table 3 below.

FFS with ps= 02 FFS with pr= 0.5 FFS with ps= 0.7

5% Sample Size 10% Sample Size 5% Sample Size 10% Sample Size 5% Sample Size 10% Sample Size

15% Sample Size 20% Sample Size 15% Sample Size 20% Sample Size 15% Sample Size 20% Sample Size

Figure 4: FF'S at forward burning probabilities py = 0.2,0.5,0.7

SFFS with pr=0.2 SFFS with pr=0.5 SFFS with pr=0.7

5% Sample Size 10% Sample Size 5% Sample Size 10% Sample Size 5% Sample Size 10% Sample Size

A B
ta)/\l»}

-2

) : - Al
5 X
. ’%’:’:;; Mﬁ:\t‘;&

i .
. -
LN

Figure 5: SFFS at forward burning probabilities py = 0.2,0.5,0.7

18

Percentage of Sampling Method
Popuation FFS SFFS
Sampled pr=02|pr=05|p;r=07]|pr=02|pr=05]|pr=07
5% 0.6533 0.5408 0.4754 0.6702 0.5911 0.5190
10% 0.6569 0.5497 0.4878 0.6720 0.5772 0.5265
15% 0.6548 0.5408 0.4568 0.6696 0.5824 0.5215
20% 0.6520 0.5345 0.4460 0.6716 0.5770 0.5178

In general, FFS slightly outperformed SFFS giving slightly lower D-statistics overall (Figure 6,
top). SFFS appeared to be more sparsely connected than FFS at p; = 0.2, though this difference
was less noticeable after increasing py. FFS preserved the topology of the full space for all 12
samples, whereas SFF'S did so for samples using py = 0.5 and 0.7. This could be explained by the
fact that SFFS produced approximately 15.02% less edges, on average, than its corresponding FFS
sample. One advantage of SFFS, however, is that for p; = 0.2 and 0.5, it outperformed FFS in

Table 3: Table of Kolmogorov-Smirnov D-Statistics for each sample.

terms of runtime, suggesting that this algorithm is more efficient (Figure 6, bottom).

08

= = =3
n o -

Kolmogorow-Smimov D-Statistic

=
=

D-Statistic vs Sample Size by Forward Burning Probability

pr=02

pr=0.

5

pr=07

0.8

07

0.6

05

Kolmogorow-Smimov D-Statistic

04

08

07

0.6

0s

Kolmogorow-Smimov D-Statistic

0.4

Method
FFS
— SFFS

03
0.050 0.075 0100 0125

0150 0175 0200

Percentage of Population Sampled

03
0.050 0.075 0100 0125

0150 0175 0.200

Percentage of Population Sampled

03
0.050 0.075

0.100 0125 0150 0175 0.200
Percentage of Population Sampled

Runtime (seconds)
g

20

pr=02

5

Runtime vs Sample Size by Forward Burning Probability
pr=0.

pr=0.7

80

0

Runtime (seconds)
2z

40

30

20

Runtime (seconds}

10

Method

— SFFS

0.050 0.075

0.100 0125 0150 0175 0.200

Percentage of Population Sampled

0.050 0075 0100 0.125

0.150 0175 0.200

Percentage of Population Sampled

0050 0.075

0100 0125 0150 0.175 0.200
Percentage of Population Sampled

Figure 6: Comparison of FFS and SFFS by their D-statistics (top) and runtime (bottom).

19

4.4.2 FFS and SFFS as Node Selection Techniques

Next, edge-restoration was done for all 24 of the FFS and SFFS samples from section 4.4.1,

and the resulting samples were visualized (Figures 7 and 8). Output for both can be found in

Appendix C and D, respectively.

Table 4 below.

Kolmogorov-Smirnov D-statistics, however, are summarized in

Restored FFS with pr=0.2

5% Sample Size

10% Sample Size

5% Sample Size

Restored FFS with pr=0.5

10% Sample Size

—

Restored FFS with pr=0.7

5% Sample Size

15% Sample Size
Yy

w6l -

10% Sample Size

B

/@%‘F

20% Sample Size

\
N~

Figure 7: Edge-Restored FFS at forward burning probabilities py = 0.2,0.5,0.7

Restored SFFS with pr=0.2

5% Sample Size

15% Sample Size

10% Sample Size

20% Sample Size

5% Sample Size

Restored SFFS with pr=0.5

10% Sample Size

20% Sample Size

Restored SFFS with ps= 0.7

5% Sample Size

10% Sample Size

20% Sample Size

Al Iy
_Hee .

A

B g\‘

Figure 8: Edge-restored SFFS at forward burning probabilities py = 0.2,0.5,0.7

20

Percentage of Sampling Method
Popuation FFS (Restored) SFFS (Restored)
Sampled pr=02|pr=05|p;r=07]|pr=02|pr=05]|pr=07
5% 0.2599 0.1698 0.1342 0.2038 0.1015 0.1582
10% 0.1775 0.1868 0.2426 0.1194 0.0708 0.1332
15% 0.2512 0.3035 0.2474 0.0483 0.1087 0.1699
20% 0.2191 0.2460 0.2626 0.0619 0.1216 0.1826

Table 4: Table of Kolmogorov-Smirnov D-Statistics for each edge-restored sample.

On average, restoring edges increased the number of edges in the sample by 89.79% in the
FFS samples and by 85.93% in the SFFS samples. Interestingly, restoring the edges appeared to
preserve degree distribution far better than the standard algorithm, as D-scores were significantly
lower across the board. This suggests that FFS and SFFS have the issue of not sampling enough
edges. Also of note, restored SFFS outperformed FFS in most cases after restoring edges. These

results are summarized in Figure 9.

D-Statistic vs Sample Size by Forward Burning Probability

pr=02 pr=05 pr=07

07
0.6 0.6

0.6

05 05

0.5 Method

0.4 e
SFFS

0.4

04 Restored FFS

03 03 Restored SFFS
0.3
02

Kelmogorov-Smirmov D-Statistic
Kolmogaorov-Smirnov D-Statistic
Kolmogaorov-Smirnov D-Statistic

02

0.1
01

01

0050 0075 0100 0125 0150 0175 0200
Percentage of Population Sampled

0.050 0075 0100 0125 0150 0175 0200
Percentage of Population Sampled

0050 0.075 0100 0125 0150 0175 0200
Percentage of Population Sampled

Figure 9: FFS and SFFS D-statistics before and after edge restoration.

For sample sizes of 10% of the population or greater, restored SFFS appears to be the best
method, both in terms of runtime and preserving degree distribution. This, however, comes at the
cost of more preserving more edges, and thus having a larger dataset to work with and process. If
edge restoration is not an option (say, if constraints are placed on the size of the sampled dataset)

FFS would be the preferred method, though the sampling distribution will be far less accurate.

4.4.3 SFFS at Different Jump Frequencies

Finally, SFFS was performed at various values of N to assess how jump frequency impacts SFF'S

performance. The forward-burning probability was fixed at p; = 0.7, and then samples were drawn

21

for N =1,2,5, and 7. Results for N = 3 were taken from sections 4.4.1 and 4.4.2. All samples
were visualized (Figures 10 and 11). Output for both the traditional sampling and edge-restored
sampling can be found in Appendixes E and F, respectively. Kolmogorov-Smirnov D-statistics,

however, are summarized in Table 5 below.

SFES with jumping frequency of V= 1 SFFS with jumping frequency of V=2 SFFS with jump frequency of N =3

5% Sample Size 10% Sample Size 5% Sample Size 10% sample Size 5% Sample Size 10% sample Size

15% Sample Size 20% Sample Size 15% Sample Size 20% Sample Size

SFES with jumping frequency of N =5 SFFS with jumping frequency of N=T

5% Sample Size 10% Sample Size 5% Sample Size 10% sample Size

20% Sample Size

e

Figure 10: SFFS at jump frequencies N =1,2,3,5,7.

22

5% Sample Size

Restored SFFS with jumping frequency of N=1

10% Sample Size

20% Sample Size

Restored SFFS with jumping frequency of N =2

5% Sample Size

10% Sample Size

20% sample Size

Restored SFFS with jump frequency of N =2

5% Sample Size

15% sample Size

10% Sample Size

20% Sample Size

15% Sa

Restored SFFS with jumping frequency of N=5

5% Sample Size

mple Size

10% Sample Size

20% Sample Size

Restored SFFS with jumping frequency of N =7

5% Sample Size

10% Sample Size

Figure 11: Edge-restored SFFS at jump frequencies N = 1,2,3,5,7.

Sampling Method

SFFS SFFS (Restored)
N=1| N=2 | N=3| N=4| N=5|N=1| N=2 | N=3 | N=5|N=7
5% 0.5791 | 0.5186 | 0.5190 | 0.4785 | 0.4732 | 0.1518 | 0.0575 | 0.1582 | 0.1440 | 0.3364
10% 0.5794 | 0.5331 | 0.5265 | 0.5011 | 0.4749 | 0.0858 | 0.0805 | 0.1332 | 0.1895 | 0.2043
15% 0.5787 | 0.5358 | 0.5215 | 0.4799 | 0.4940 | 0.0633 | 0.1207 | 0.1699 | 0.1963 | 0.2260
20% 0.5797 | 0.5305 | 0.5178 | 0.5032 | 0.4880 | 0.0852 | 0.1368 | 0.1826 | 0.1626 | 0.1383

Table 5: Table of D-Statistics for SFFS and Restored SFFS samples at various jump frequencies.

Both SFFS and restored SFFS did a poor job of preserving graph structure for N =1 and 2, as

these graphs appeared to be sparesly connected. N = 3,5, and 7 appeared to be sufficient. Again,

restored SFFS outperformed SFFS in terms of D-statistic. Increasing N appeared to have opposite
effects on restored vs traditional SFFS. As N increased, traditional SFFS D-statistics decreased,
while restored SFFS D-statistics increased (Figure 12). This is likely explained by the fact that
traditional SFFS does not sample enough edges.

23

D and Restored D-Statistic vs Sample Size by Jump Frequency
Kolmogorov-Smirnowv D-Statistic D-Statistic After Restoring Edges
030
058 V\
o 056 g 025
£ £
i A Jump Frequency
[=] — —
2 054 Co20 N=1
g 2 =2
H E N=3
u uwl
., 052 i — N=4
2 3 015
g g N=5
g g
] 050 5
010
D48 v—‘/’
005
D(I]E DE]B DiD Dlll Di4 BIIE DiB Déﬂ D(I]E DE]B DIID Dil Dllﬂ DiE DIIB Déﬂ
Percentage of Population Sampled Percentage of Population Sampled

Figure 12: SFFS and edge-restore SFFS performance at various jump frequencies.

5 Concluding Remarks

Many different sampling methods have been introduced in the literature in order to address
both the differing sampling goals one might have, as well as the specific topological characteristics
of each individual graph. While a number of these have been introduced in this study, there are far
more that exist within each of the three categories discussed. Analyzing node selection probabilities
of each method provides an understanding of the merits and challenges of each method, and thus
can help in selecting an appropriate sampling method. What works well for one graph may not
work as well for another, and so there is no one universal ”ideal” method- in each case, it is best
to attempt a number of methods, and then select the most representative sample.

This study also introduced Spontaneous Forest Fire sampling (SFFS), a new modification to
traditional Forest Fire Sampling (FFS). While, for the particular graph analyzed in this study,
traditional FFS outperformed SFFS, utilizing these graph traversal method for node selection, and
then inducing a graph on the selected nodes, proved to be more efficient when utilizing SFFS as
opposed to FFS. This increased accuracy, however, came at the cost of a larger dataset storing
more edges, and so which of these methods (traditional FFS or edge-restored SFFS) one should
choose depends on whether there are any predetermined constraints on the sample dataset.

This study could be continued in a number of ways. Both FFS and SFFS could be performed
on other graphs with significantly different topologies to see how performance varies. Specifically,
it is expected that SFFS would perform better on a graph with distinct clusters present, as the
increased jump probability allows for a broader exploration of the space that does not rely on
proximity to previously sampled nodes. Other modifications to FFS could also be introduced, such
as incorporating deletion at every other step, to see if performance could be further improved.
To better understand how these modifications might aid in increasing sample accuracy, random

selection methods and their deletion method analogues could first be be modeled and compared.

24

References

1]

2]

[9]

Brin, S., & Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
http://infolab.stanford.edu/ backrub/google.html

Freyberg, J. Spotify Artist Feature Collaboration Network.
https://www.kaggle.com/datasets/jfreyberg/spotify-artist-feature-collaboration-

network?select=nodes.csv

Gjoka, M., Kurant, M., Butts, C. T., & Markopoulou, A. Walking in Facebook: A Case Study
of Unbiased Sampling of OSNs. https://iecexplore.ieee.org/document /5462078

Hu, P., & Lau, W. C. A Survey and Taxonomy of Graph Sampling.
https://arxiv.org/pdf/1308.5865.pdf

Krishnamurthy, V., Faloutsos, M., Chrobak, M., Lao, L., Cui, J.-H., & Percus, A. G.
Reducing Large Internet Topologies for Faster Simulations.
http://www.cs.ucr.edu/ michalis/PAPERS /sampling-networking-05.pdf

Leskovec, J., & Faloutsos, C. Sampling from Large Graphs.
https://cs.stanford.edu/people/jure/pubs/sampling-kdd06.pdf

Leskovec, J., Kleinberg, J., & Faloutsos, C. Graphs over Time: Densification Laws, Shrinking
Diameters and Possible Explanations.
https://www.cs.cornell.edu/home/kleinber /kdd05-time.pdf

Mateos, G. PageRank: Ranking of Nodes in Graphs.
https://www.hajim.rochester.edu/ece/sites/gmateos/ ECE440/Slides/
block_3_markov_chains_part_c.pdf

Mayank, M. Visualizing Networks in python. Medium. Towards Data Science.
https://towardsdatascience.com/visualizing-networks-in-python-d70f4cbeb259

[10] Myakushina, A. Sampling Methods for Social Networks with Applications in Spotify Latent

Space Models. https://docs.google.com/document/d/
1jXhWbnWclONSGVPNAOBtDKWN5ucBs5_N9ewJHY 7RB5s

[11] Rozemberczki, B. MUSAE Facebook Page-Page Network.

https://www.kaggle.com/datasets/rozemberczki/musae-facebook-pagepage-

network?resource=download&select=musae_facebook_edges.csv

[12] Wicklin, R. (2019, May 15). What is Kolmogorov’s D statistic?

https://blogs.sas.com/content /iml/2019/05/15/kolmogorov-d-statistic.html

25

Appendix A

Forest Fire Sampling (FFS) Output

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1165 edges
95.00% node reduction, 99.32% edge reduction

Runtime: 22.369297742843628 seconds
1 jumps made (count excludes initial starting peint)

Kolmogorov-Smirnov Test Result: D=0.6533, p=0.0
10% Target Sample Size

Original Graph Size: 22470 neodes, 171002 edges
Sample Graph Size: 2247 nodes, 2355 edges
90.00% node reduction, 98.62% edge reduction

Runtime: 41.122857093811035 seconds
1 jumps made (count excludes initial starting peoint)

Kolmogorov-Smirnov Test Result: D=0.6569, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3534 edges
85.00% node reduction, 97.93% edge reduction

Runtime: 62.41842794418335 seconds
9 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.6548, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 4740 edges
80.00% node reduction, 97.23% edge reduction

Runtime: 81.07119488716125 seconds
19 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.652, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1342 edges
95.00% node reduction, 99.22% edge reduction

Runtime: 21.297196626663208 seconds
2 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5408, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2643 edges
90.00% node reduction, 98.45% edge reduction

Runtime: 38.83174109458923 seconds
3 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5497, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3980 edges
85.00% node reduction, 97.67% edge reduction

Runtime: 57.68982005119324 seconds
1 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5408, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 5490 edges
80.00% node reduction, 96.79% edge reduction

Runtime: 81.4551329612732 seconds
5 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5345, p=0.0

26

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1477 edges
95.00% node reduction, 99.14% edge reduction

Runtime: 11.300B54682922363 seconds
0 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.4754, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2801 edges
90.00% node reduction, 98.36% edge reduction

Runtime: 26.024853944778442 seconds
2 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.4878, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 4672 edges
85.00% node reduction, 97.27% edge reduction

Runtime: 45.68734312057495 seconds
0 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.4568, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 6433 edges
80.00% node reduction, 96.24% edge reduction

Runtime: 55.504591941833496 seconds
4 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.446, p=0.0

27

Appendix B

Spontaneous Forest Fire Sampling (SFFS) Output

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 980 edges
95.00% node reduction, 99.43% edge reduction

Runtime: 21.2496440410614 seconds
149 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.6702, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 1951 edges
90.00% node reduction, 98.86% edge reduction

Runtime: 38.9117329120636 seconds
316 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.672, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3369 nodes, 2929 edges
85.01% node reduction, 98.29% edge reduction

Runtime: 48.088228940963745 seconds
470 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.6696, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4493 nodes, 3929 edges
80.00% node reduction, 97.70% edge reduction

Runtime: 65.45633220672607 seconds
622 jumps made (count excludes initial starting point)

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1102 edges
95.00% node reduction, 99.36% edge reduction

Runtime: 14.677306175231934 seconds
51 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5911, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2246 edges
90.00% node reduction, 9B.69% edge reduction

Runtime: 29.392446994781494 seconds
105 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5772, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3358 edges
85.00% node reduction, 98.04% edge reduction

Runtime: 42.43881916999817 seconds
171 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5824, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 4485 edges
80.00% node reduction, 97.38% edge reduction

Runtime: 53.1286780834198 seconds
232 jumps made (count excludes initial starting peint)

28

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1228 edges
95.00% node reduction, 99.28% edge reduction

Runtime: 11.940685033798218 seconds
20 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.519, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2445 edges
90.00% node reduction, 98.57% edge reduction

Runtime: 22.358628749847412 seconds
29 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5265, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3765 edges
85.00% node reduction, 97.80% edge reduction

Runtime: 34.257766008377075 seconds
55 jumps made (count excludes initial starting point)

Kolmegorov-Smirnov Test Result: D=0.5215, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 5084 edges
80.00% node reduction, 97.03% edge reduction

Runtime: 45.3412230014801 seconds

29

Appendix C

Edge-Restored FFS Output

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 14066 edges
95.00% node reduction, 91.77% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2091, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 28804 edges
90.00% node reduction, 83.16% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2541, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 36701 edges
85.00% node reduction, 78.54% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2043, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 53439 edges
80.00% node reduction, 6B8.75% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2292, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 11053 edges
95.00% node reduction, 93.54% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1939, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 33814 edges
90.00% node reduction, 80.23% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2796, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 43803 edges
85.00% node reduction, 74.38% edge reduction

Kolmegorov-Smirnov Test Result: D=0.2436, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 55770 edges
80.00% node reduction, 67.39% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2288, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 22401 edges
95.00% node reduction, 86.90% edge reduction

Kolmogorov-Smirnov Test Result: D=0.3862, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 24016 edges
90.00% node reduction, 85.96% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2626, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 50099 edges
85.00% node reduction, 70.70% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2955, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 63276 edges
80.00% node reduction, 63.00% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2749, p=0.0

30

Appendix D

Edge-Restored SFFS Output

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 3769 edges
95.00% node reduction, 97.80% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2194, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 10480 edges
90.00% node reduction, 93.87% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1267, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3369 nodes, 17688 edges
85.01% node reduction, 89.66% edge reduction

Kolmegorov-Smirnov Test Result: D=0.09%6, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4493 nodes, 29130 edges
80.00% node reduction, 82.97% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0632, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 6670 edges
95.00% node reduction, 96.10% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0625, p=0.0004
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 15532 edges

90.00% node reduction, 90.92% edge reduction

Kolmegorov-Smirnov Test Result: D=0.1073, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 27409 edges
85.00% node reduction, 83.97% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1192, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 41240 edges
80.00% node reduction, 75.88% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1397, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 7058 edges
95.00% node reduction, 95.87% edge reductien

Kolmogorov-Smirnov Test Result: D=0.049, p=0.0113
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 19642 edges

90.00% node reduction, 88.51% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1059, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 37144 edges
85.00% node reduction, 78.28% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1646, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 46562 edges
B80.00% node reduction, 72.77% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1716, p=0.0

31

Appendix E

Output for Testing SFFS at Various Jumping Frequencies

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1123 nodes, 1073 edges
95.00% node reduction, 99.37% edge reduction

Runtime: 13.480593919754028 seconds
97 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.5869, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2246 nodes, 2170 edges
90.00% node reduction, 98.73% edge reduction

Runtime: 23.77849507331848 seconds
204 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.5731, p=0.0

15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3187 edges
85.00% node reduction, 98.14% edge reduction

Runtime: 30.0943021774292 seconds
325 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5849, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4493 nodes, 4246 edges
80.00% node reduction, 97.52% edge reduction

Runtime: 44.52803134918213 seconds
476 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5794, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1179 edges
95.00% node reduction, 99.31% edge reduction

Runtime: 13.107907056808472 seconds
40 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5319, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2358 edges
90.00% node reduction, 98.62% edge reduction

Runtime: 23.585181951522827 seconds
87 jumps made (count excludes initial starting point)

FKolmogorov-Smirnov Test Result: D=0.5363, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 3568 edges
85.00% node reduction, 97.91% edge reduction

Runtime: 34.72717618942261 seconds
119 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5453, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 4798 edges
80.00% node reduction, 97.19% edge reduction

Runtime: 45.243168115615845 seconds
184 jumps made (count excludes initial starting peint)

Kolmogorov-Smirnov Test Result: D=0.5334, p=0.0

32

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1238 edges
95.00% node reduction, 99.28% edge reduction

Runtime: 12.166322946548462 seconds
2 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.5288, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2732 edges
90.00% node reduction, 98.40% edge reduction

Runtime: 27.622340202331543 seconds
5 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.4838, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 4073 edges
85.00% node reduction, 97.62% edge reduction

Runtime: 36.74536490440369 seconds
10 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.4933, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 5329 edges
80.00% node reduction, 96.88% edge reduction

Runtime: 47.39647626876831 seconds
16 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.5036, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 1398 edges
95.00% node reduction, 99.18% edge reduction

Runtime: 12.535233974456787 seconds
0 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.4976, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 2582 edges
90.00% node reduction, 98.49% edge reduction

Runtime: 24.359357833862305 seconds
2 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.5198, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 4491 edges
85.00% node reduction, 97.37% edge reduction

Runtime: 32.98215699195862 seconds
1 jumps made (count excludes initial starting point)

Kolmogorov-Smirnov Test Result: D=0.4692, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 5668 edges
80.00% node reduction, 96.69% edge reduction

Runtime: 43.767987966537476 seconds
2 jumps made (count excludes initial starting point)

Folmogorov-Smirnov Test Result: D=0.4818, p=0.0

33

Appendix F

Output for Edge-Restored SFFS at Various Jumping Frequencies

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 4611 edges
95.00% node reduction, 97.30% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1518, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 12152 edges
90.00% node reduction, 92.89% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0858, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 24462 edges
85.00% node reduction, 85.69% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0633, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 36037 edges
80.00% node reduction, 78.93% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0852, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, €511 edges
95.00% node reduction, 96.19% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0575, p=0.0016
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2246 nodes, 16609 edges

90.00% node reduction, 90.29% edge reduction

Kolmogorov-Smirnov Test Result: D=0.0805, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 27215 edges
85.00% node reduction, 84.08% edge reduction

Folmogorov-Smirnov Test Result: D=0.1207, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 37393 edges
80.00% node reduction, 78.13% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1368, p=0.0

34

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 9163 edges
95.00% node reduction, 94.64% edge reduction

Kolmogorov-Smirnov Test Result: D=0.144, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 23283 edges
90.00% node reduction, 86.38% edge reduction

Folmogorov-Smirnov Test Result: D=0.1895, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 34075 edges
85.00% node reduction, 80.07% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1963, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 41038 edges
80.00% node reduction, 76.00% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1626, p=0.0

5% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 1124 nodes, 18005 edges
95.00% node reduction, 89.47% edge reduction

Kolmogorov-Smirnov Test Result: D=0.3364, p=0.0
10% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 2247 nodes, 27796 edges
90.00% node reduction, 83.75% edge reduction

Kolmogorov-Smirnov Test Result: D=0.2043, p=0.0
15% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 3370 nodes, 38587 edges
85.00% node reduction, 77.43% edge reduction

Kolmogorov-Smirnov Test Result: D=0.226, p=0.0
20% Target Sample Size

Original Graph Size: 22470 nodes, 171002 edges
Sample Graph Size: 4494 nodes, 38732 edges
80.00% node reduction, 77.35% edge reduction

Kolmogorov-Smirnov Test Result: D=0.1383, p=0.0

35

