
AFFINE ÉTALE GROUP SCHEMES OVER TAMBARA FIELDS

NOAH WISDOM

Abstract. We classify finite étale extensions and finite affine étale group schemes over the G-
Tambara functor F, for F any algebraically closed field and G any finite group. This establishes
G-Galois descent from the Tambara functor algebraic closure of F. In particular, we find new
families of étale extensions of any G-Tambara functor and show that, together with one of the
families discovered by Lindenstrauss–Richter–Zou, these give all finite étale extensions of F. Our
arguments also show that the map K → FP(L) associated to any G-Galois extension L of K is étale,
generalizing a result of Lindenstrauss–Richter–Zou when G is cyclic. Lastly, we classify flat finitely
generated F-modules when G = Cp.
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1. Introduction

Tambara functors are equivariant analogues of rings arising in representation theory, group
cohomology, and equivariant homotopy theory. Recently, the commutative algebra of Tambara
functors has been studied by homotopy theorists motivated in part by the hope of establishing
equivariant analogues of classical applications of homological algebra and algebraic geometry to
equivariant homotopy theory.

For example, [CMQ+24] study the Nakaoka spectrum (the equivariant analogue of the Zariski
spectrum) of some free polynomial Tambara functors motivated in part by the hope of gaining
insight into the algebraic geometry of the Tambara affine line. On the other hand, [HMQ23] observe
that free polynomial Tambara functors often fail to be flat as modules, suggesting that new ideas
may be necessary to approach some of the homological algebra which appears in equivariant stable
homotopy theory.

One important concept in algebraic geometry is the notion of étaleness. For example, Grothendieck
introduced étale cohomology and used it to prove three of the four Weil conjectures. In fact,
Grothendieck was partially motivated by the observation that the Zariski topology was not always
the correct topology. Equivariant algebra has the same issue: localization of Tambara functors can
be very pathological, so the Zariski topology on the Nakaoka spectrum of a Tambara functor fails
to have desirable properties.

In [Hil17], Hill introduced genuine Kähler differentials in the Tambara functor setting and showed
that the genuine Kähler differentials support the universal Tambara functor derivation. Hill also
proposed definition a formally étale Tambara functor morphism as map of Tambara functors which
is both flat and for which the genuine Kähler differentials vanish. A Tambara functor morphism is
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étale if it is finitely presented and formally étale. Later in [LRZ24] Lindenstrauss, Richter, and Zou
discovered interesting families of étale morphisms of Cn-Tambara functors.

To start with, we establish many familiar properties of étale morphisms: they are closed under
composition, passing to projections, taking products and coinduction (a twisted product unique to
the equivariant world), and they are preserved by base-change. Next, we find more examples of
étale extensions.

Theorem A. (cf. Theorem 4.7) For any G-Tambara functor k and subgroup H ⊂ G, the canonical
map

k → CoIndGHResGHk

is étale.

Previous work of Schuchardt, Spitz, and the author shows that the Tambara functors CoIndGHF,
for F an algebraically closed field, should be viewed as the Tambara functor analogues of algebraically
closed fields. Now CoIndGe F carries a natural G-action, whose fixed-points are the constant Tambara
functor F. Already we are encountering interesting new behavior in the equivariant algebra world:
classically, the only group which acts faithfully on an algebraically closed field is C2, in which case
we must be in characteristic zero [AS27a] [AS27b].

As observed in [SSW25], CoIndGe gives a faithful embedding of the category of rings in the
category of G-Tambara functors, so that the finite étale R-algebras correspond precisely to finite
étale CoIndGe -algebras. In particular, an arbitrary CoIndGe F-algebra CoIndGe R is étale if and only if
R is an étale F-algebra.

Guided by the hope that Galois descent along F → CoIndGe F holds, we study finite affine étale
group schemes, defined as follows.

Definition B. A finite affine étale group scheme over a ground Tambara functor k is a representable
functor

Homk-Alg(R,−) : k-Alg → Grp

such that k → R is finite and étale. We will write

Grpfét-affk

for the category of such objects (with morphisms the natural transformations).

With sufficient control over flat modules, we are able to completely classify finite étale G-Tambara
functor maps out of the constant G-Tambara functor F, for F an algebraically closed field.

Theorem C. (cf. Theorem 5.7) Let G be an arbitrary finite group and F any algebraically closed
field. A finite F-algebra ℓ is étale if and only if it is a finite product of étale F-algebras

F → CoIndGHF.

Recall the topologist’s notation CBG for the category whose objects are the objects of a category
C equipped with an action of the group G, and whose morphisms are G-equivariant morphisms in C.
We are able to establish G-Galois descent along F → CoIndGe F for finite affine étale group schemes.

Corollary D. (cf. Corollary 5.8) Let G be an arbitrary finite group and F any algebraically closed
field. Then

evG/e : Grp
fét-aff
F → (Grpfét-affF )BG

is an equivalence of categories with inverse induced by the fixed-point construction FP.

Remark 1.1. From a homotopy theorist’s point of view, CoIndGe F is very uninteresting (for example,
Bredon cohomology with CoIndGe R coefficients only detects the underlying space of a G-space). On
the other hand, F is an extremely common choice of coefficients–especially F2 when G = C2 (cf.
[BW18, DHM24, HW20, Haz21, May20, Pet24]).
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Galois descent in chromatic homotopy theory is an important tool, for example along the Galois
extension LK(n)S → En with profinite Galois group the Morava stabilizer group. The topological

analogue of Galois descent along R → CoIndGe R is the homotopy fixed point spectral sequence,
which is of fundamental importance.

When |G| is invertible we can treat more general base Tambara functors.

Theorem E. (cf. Theorem 5.4) Let ℓ be a flat finitely presented k-algebra in G-Tambara functors
and assume either

(1) ℓ is cohomological and |G| is invertible in ℓ(G/G), or
(2) all transfers in ℓ are surjective.

Then ℓ is étale over k if and only if ℓ(G/e) is étale over k(G/e).

Using Theorem 5.4 we may generalize [LRZ24, Theorem 4.4]. Specifically, [LRZ24, Theorem 4.4]
is the special case of the following result in which K is a Cn-Kummer extension of a field L.

Corollary F. (cf. Corollary 5.5) Let L be a G-Galois extension of a field K. Then

K → FP(L)

is formally étale. Under a mild technical condition (K satisfies the Hilbert basis theorem) it is étale.

In a different direction, Theorem 5.4 allows us to establish G-Galois descent for affine étale group
schemes along R → CoIndGe R.

Corollary G. (cf. Corollary 5.6) Let R be a ring such that |G| is a unit in R. Under a mild
technical condition (R satisfies the Hilbert basis theorem), the functor

evG/e : Grp
fét-aff
R → (Grpfét-affR )BG

is an equivalence of categories with inverse induced by FP.

For example, if AG satisfies the Hilbert basis theorem and R is Noetherian, then R satisfies the
Hilbert basis theorem [Sun25]. AG is known to satisfy the Hilbert basis theorem for many groups:
Cp [CMQ+24], Dedekind groups [Sun25], and more (see [Sun25] for a more complete list).

On the other hand, in modular characteristic and when G = Cp we obtain the following. It
is of independent interest, and it may also be useful in the study of étale F-algebras when F has
characteristic p.

Theorem H. (cf. Theorem 3.6) Let F be any field of characteristic p and G = Cp. The following
conditions are equivalent for a finitely generated F-module M :

(1) M is flat
(2) M is projective
(3) M is free.

Besides flatness results, the other two ingredients in the proofs of Theorem 5.7 and Corollary 5.8
are the classification of finite étale extensions of algebraically closed fields, and [Wis25a, Propositions
3.6 and 3.8], which allow one to deduce some of the structure of a Tambara functor k from its
bottom level k(G/e). As the results of [Wis25a] that we use are false for Green functors, we do not
expect any variant of our argument to produce similar theorems for Green functors in modular
characteristic.

Acknowledgments. The author thanks Mike Hill for a wealth of insightful suggestions. Addi-
tionally, the author thanks David Chan, Ayelet Lindenstrauss, Jackson Morris, and Birgit Richter
for helpful conversations. Lastly, the author thanks Yuchen Liu for teaching a wonderful course in
algebraic geometry that was very inspirational.
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2. Recollections on the commutative algebra of Tambara functors

In this section we collect some known results in equivariant algebra and review the definition of
étaleness. We assume the reader is familiar with Mackey, Green, and Tambara functors. A module
over a Tambara functor is a module over the underlying Green functor.

Throughout, G is a finite group. We start by collecting some results on modules.

Lemma 2.1. Let ℓ be a Tambara functor such that either

(1) ℓ is cohomological and |G| is invertible in ℓ(G/G), or
(2) all transfers in ℓ are surjective

then all restrictions in every ℓ-module are injective.

Proof. If |G| is invertible in ℓ(G/G), then it is invertible in each ring ℓ(G/H). The cohomological
assumption then implies that all transfers are surjective, so the first hypothesis is a special case of
the second hypothesis.

Assume all transfers in ℓ are surjective and let H ⊂ K be arbitrary. Then 1 ∈ ℓ(G/K) is the
transfer of some y ∈ ℓ(G/H). If M is an ℓ-module, Frobenius reciprocity implies that the restriction
ResKH in M is injective:

m = 1 ·m = TrKH(y) ·m = TrKH(y · ResKH(m)).

□

Definition 2.2 ([CW25]). A Tambara functor k is relatively finite dimensional if each restriction
ResGH is a finite ring map (k(G/H) is a finitely generated k(G/G)-module).

Definition 2.3. We say that a map k → ℓ of Tambara functors is finite if ℓ is a finitely generated
k-module.

If k is relatively finite dimensional, then by [CW25, Proposition 3.31] k → ℓ is finite if and only if
it is levelwise finite.

Definition 2.4. Let k be a Tambara or Green functor and M a k-module. We say M is flat if the
functor M ⊠k − is exact.

If X is a finite G-set, We will use the notation evX to describe either the functor k 7→ k(X) from
Tambara functors to rings, or from Tambara functors to rings with an action of the Weyl group
Aut(X). It will be clear from context which of these two we mean.

Definition 2.5. Let k be a Tambara functor. The free polynomial k-algebra on a finite G-set X is
the representing object of the functor

evX : k-Alg → Ring.

We denote this k-algebra by k[yX ] and say yX is a generator in level X.

Definition 2.6. We say that a k-algebra R is finitely presented if R is isomorphic to a coequalizer

Coeq(k[xi]i∈I ⇒ k[xj ]j∈J)

of free k-algebras on finitely many generators.

Equivalently (by [SSW25, Proposition 4.3]) R is finitely presented if and only if it is compact in
the category of k-algebras, i.e. whenever F : D → k-Alg is a filtered diagram in k-algebras, the
canonical map

Homk(R,Colimd∈DF (d)) → Colimd∈DHomk(R,F (d))
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is a bijection of sets. From this description it follows that free polynomial k-algebras are finitely
presented, and any finite colimit of finitely presented k-algebras is finitely presented.

Definition 2.7. We say that a Tambara functor k satisfies the Hilbert basis theorem if every ideal
of every free polynomial k-algebra on finitely many generators is finitely generated (equivalently,
every free finitely generated polynomial k-algebra satisfies the ascending chain condition on ideals,
i.e. is Noetherian).

[CMQ+24, Corollary 3.12] and [Sun25, Theorems A and C] establish fairly general sufficient
criteria for a Tambara functor to satisfy the Hilbert basis theorem. However, there exists finite
groups G such that it is not currently known whether or not the Burnside Tambara functor AG

satisfies the Hilbert basis theorem.
If a k-algebra R receives a surjection from a free polynomial k-algebra on finitely many generators,

we say that R is finitely generated over k. Finitely presented implies finitely generated; the converse
is true if and only if k satisfies the Hilbert basis theorem.

Next, we review of the definition and first properties of étale morphisms of Tambara functors,
following the original definition due to Hill [Hil17] and the treatment by Lindenstrauss, Richter,
and Zou [LRZ24]. We start by working towards the definition of genuine Kähler differentials of a
morphism of Tambara functors.

Definition 2.8 ([Hil17]). Let I be a Tambara ideal of a Tambara functor R. Define I>1 to be the
sub-ideal of I generated by all nontrivial norms (including products) of elements of I. Explicitly,
I>1(G/H) is generated by I(G/H)2 along with the images of all norms I(G/K) → I(G/H) for K
conjugate to a proper subgroup of H.

Definition 2.9 ([Hil17]). Let k → R be a morphism of Tambara functors, let I be the kernel of
the map

R⊠k R → R,

and define the genuine Kähler differentials by

Ω1,Tamb
R/k := I/I>1.

Definition 2.10 ([Hil17]). A morphism k → R of Tambara functors is formally étale if Ω1,Tamb
R/k = 0

and R is flat as a k-module.

As in the classical case, the genuine Kähler differentials support the universal derivation.

Definition 2.11 ([Hil17, Definition 4.1]). Let R be a k-algebra and M an R-module. A k-module
morphism d : R → M is a genuine k-derivation if

(1) for all H ⊂ G, r1, r2 ∈ R(G/H),

d(r1 · r2) = r1 · d(r2) + d(r1) · r2,

(2) for all H ⊂ K ⊂ G, r ∈ R(G/H),

d(NmK
Hr) = TrKHNmd2Resd1(r) · d(r)

where di is the restriction to the compliment of the diagonal of the projection onto the ith
factor of K/H ×K/H, and

(3) d vanishes on the image of k in R.

The set of genuine k-derivations from R to M is denoted Derk(R,M).
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Theorem 2.12 ([Hil17, Theorem 5.7]). There is a natural isomorphism

Derk(R,−) ∼= HomR(Ω
1,Tamb
R/k ,−)

of functors.

Definition 2.13. A morphism k → R of Tambara functors is étale if it is formally étale and finitely
presented.

3. Flat modules are free

Let F be a field of characteristic p, G = Cp, and form the constant Tambara functor F. When
p = 2 and F = F2, [DHM24] prove that a finitely generated F2-module is flat if and only if it is free.
This is a consequence of a structure theorem in [DHM24] for F2-modules which is known to fail at
odd primes. In this section we show that this flatness result holds in greater generality.

Lemma 3.1. Let k be a G-Green functor. The endofunctors

CoIndGHResGH : k-Mod → k-Mod

and

CoIndGHResGHk ⊠k − : k-Mod → k-Mod

are naturally isomorphic.

Proof. By [Wis25a, Theorem F] we can choose a ResGHk-module N naturally in M so that we have
a natural isomorphism

CoIndGHResGHk ⊠k M ∼= CoIndGHN

of CoIndGHResGHk-modules (a fortiori of k-modules). It suffices to show ResGHM and N are naturally
isomorphic.

We apply the strong symmetric monoidal functor ResGH , obtaining∏
g∈H\G/H

CoIndHH∩gHRes
gH
H∩gH

g(ResGHk)⊠ResGHk Res
G
HM ∼=

∏
g∈H\G/H

CoIndHH∩gHRes
gH
H∩gH

gN.

One checks straghtforwardly that this isomorphism restricts to an isomorphism

ResGHk ⊠ResGHk Res
G
HM ∼= N

of ResGHk-modules on the identity double coset factor. This is the desired isomorphism. □

In fact, this admits a multiplicative refinment which will be useful later.

Lemma 3.2. Let k → R a map of G-Green or G-Tambara functors. Then

k R

CoIndGHResGHk CoIndGHResGHR

is a pushout square of k-algebras.

Proof. We must construct a natural isomorphism

CoIndGHResGHk ⊠k R ∼= CoIndGHResGHR

of k-algebras. By [Wis25a, Theorem F and Proposition 5.8] it suffices to show that we obtain
naturally isomorphic H-Tambara functors upon applying ResGH . Now the claim follows from strong
symmetric monoidality of ResGH , the double coset formula for the restriction of a coinduction, and
the fact that −⊠k R commutes with finite products. □
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It is not true that projective modules are flat in an arbitrary abelian category equipped with
bilinear symmetric monoidal structure. Fortunately, this result is true in the world of equviariant
algebra.

Lemma 3.3. Let k be a G-Green functor. All finitely generated projective k-modules are flat.

Proof. Since sums and summands of flat modules are easily seen to be flat, it suffices to show that
each k → CoIndGHResGHk is flat. Now we have natural isomorphisms

CoIndGHResGHk ⊠k − ∼= CoIndGHResGH(−)

of endofunctors of k-modules. ResGH and CoIndGH are exact (as they are each other’s left and right
adjoints) so the claim follows. □

Guided by the heuristic that flat modules are “torsion-free” and viewing the kernel of restriction
as torsion elements, we obtain the following.

Lemma 3.4. Let k be a G-Green functor such that all restrictions in k are injective. If M is a flat
k-module, then all restrictions in M are injective.

Proof. Our assumption on k implies that whenever L ⊂ H, the canonical k-algebra map

CoIndGHResGHk → CoIndGLRes
G
Lk

is injective. By Lemma 3.1 and flatness of M we deduce that

CoIndGHResGHM → CoIndGLRes
G
LM

is injective. The composition

M(G/H) ∼= (CoIndGHResGHM)(G/G) → (CoIndGLRes
G
LM)(G/G) ∼= M(G/L)

is the restriction ResHL in M . Since monics in k-Mod are detected levelwise, the claim follows. □

Remark 3.5. Let G = Cp and F a field of characteristic p. If M is any F-module, then M(Cp/e) is
a F[Cp]-module. Our characteristic assumption implies F[Cp] ∼= F[σ]/(σ − 1)p, which is a principal
ideal domain. If M is finitely generated, then M(Cp/e) is a finitely generated F[Cp]-module, and
consequently the structure theorem for finitely generated modules over principal ideal domains
applies. In particular, it supplies an isomorphism

M(Cp/e) ∼= ⊕iF[σ]/(σ − 1)ai

where i ranges through a finite indexing set and 1 ≤ ai ≤ p.

We required Theorem 3.6 to prove Corollary 5.8 in an earlier version of the article, although it is
now no longer necessary. However, besides being of intrinsic interest, it may be useful in the study
of finite étale F-algebras when one drops the assumption that F is algebraically closed.

Theorem 3.6. Let G = Cp and F a field of characteristic p. A finitely generated F-module is flat if
and only if it is free.

Proof. Free modules are flat by Lemma 3.3. Conversely, let M be a flat (finitely generated) F-module.
Let x ∈ M(Cp/e) be an element whose Cp-orbits are linearly independent; such an element exists if
and only if in the direct sum decomposition of Remark 3.5 there is a summand with ai = p. Then x

generates a submodule of M isomorphic to CoInd
Cp
e F. This is an injective F-module (cf. [CW25,

Lemma 4.8]) hence splits off as a summand. Since CoInd
Cp
e F is flat by the previous paragraph, M is

flat if and only if the complimentary summand is flat. Splitting off more such summands, we reduce
to the case that no terms with ai = p appear in the direct sum decomposition of Remark 3.5.
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Next, recall from Lemma 3.4 that the restriction in M is injective. The transfer is therefore
determined by the sum over Cp-orbits. In M(Cp/e), this corresponds to multiplication by

1 + σ + · · ·+ σp−1 =
σp − 1

σ − 1
=

(σ − 1)p

σ − 1
= (σ − 1)p−1

which is zero by the fact that we have reduced to the case

M(Cp/e) ∼= ⊕iF[σ]/(σ − 1)ai

with 1 ≤ ai ≤ p− 1.
Finally, let D be the F-module specified by D(Cp/Cp) = 0 and D(Cp/e) = F. There is an injection

D → F, and, since M is flat, it follows that D ⊠M → M is injective. We compute

(D ⊠M)(Cp/Cp) ∼= M(Cp/e)Cp/Res
Cp
e (M(Cp/Cp))

using the description of the box product in [Maz13], and the map to M(Cp/Cp) is given by sending
the class [x] of x ∈ M(Cp/e) to its transfer, which is zero. Since D⊠M → M is injective, we deduce

M(Cp/e)Cp/Res
Cp
e (M(Cp/Cp)) ∼= 0.

Unwinding definitions, if follows that the Cp-orbits of the image of the restriction in M generate
M(Cp/e). Since the restriction lands in the fixed points, the Cp-orbits of the image of the restriction
are equal to the image of restriction. Thus the restriction in M is surjective, hence an isomorphism.
We have thus shown that M is isomorphic to a sum of copies of F, which is free, as desired. □

Corollary 3.7. Let G = Cp and F a field of characteristic p. The following three conditions on a
finitely generated F-module are equivalent:

(1) flat
(2) projective
(3) free.

Proof. By Theorem 3.6 flat and free are equivalent, and by [CW25, Theorem 4.7] projective and
free are equivalent (since F is a relatively finite dimensional Green meadow). □

Morally, the most pathological behavior of field-like Tambara functors tends to be captured by
Fp when G = Cp, as these fail to be field-like Green functors. We therefore expect Corollary 3.7 to

be true for all field-like G-Tambara functors regardless of G.

4. Fundamental properties of étale morphisms

In this section we establish that compositions, products, and base-changes of étale morphisms are
étale. We begin with compositions.

Proposition 4.1. Let f : k → R and g : R → S be Tambara functor morphisms.

(1) If S is finitely presented over R and R is finitely presented over k, then S is finitely presented
over k.

(2) If S is flat over R and R is flat over k, then S is flat over k.

(3) If Ω1,Tamb
S/R = 0 and Ω1,Tamb

R/k = 0, then Ω1,Tamb
S/k = 0.

Consequently the class of étale morphisms of Tambara functors is closed under composition.

Proof. If S is finitely presented over R and R is finitely presented over k, then S is a finite colimit
of free polynomial R-algebras SR[xHi ]. Since base-change along k → k[xHi ] preserves colimits and
takes free algebras to free algebras, we deduce that each R[xHi ] is a finite colimit of free polynomial
k-algebras. Thus S is a finite colimit of free polynomial k-algebras.

Second, we have a natural isomorphism

S ⊠R R⊠k − ∼= S ⊠k −
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of functors, so that flatness of S over R and of R over k imply flatness of S over k.
Finally, we establish the claim about genuine Kähler differentials. Assume every genuine k-

derivation of R is zero and that every genuine R-derivation of S is zero. Let d : S → M be a
genuine k-derivation. Then d ◦ g is a genuine k derivation of R, hence is zero. Thus d is a genuine
R-derivation of S, hence is zero. □

Now we may move on to studying products and étaleness.

Lemma 4.2. Let R1 and R2 be k-algebras. Then we have

Ω1,Tamb
R1×R2/k

∼= Ω1,Tamb
R1/R

⊕ Ω1,Tamb
R2/R

as R1 ×R2-modules (where we view an Ri-module as an R1 ×R2-module by restriction along the
projection).

Proof. One straightforwardly checks that there is a natural isomorphism

Derk(R1 ×R2,M) ∼= Derk(R1,M1)⊕Derk(R2,M2).

where M ∼= M1 ⊕ M2 is the isomorphism of [Wis25a, Proposition 5.3]. The result follows from
Yoneda’s lemma and [Hil17, Theorem 5.7]. □

Proposition 4.3. Let R1 and R2 be k-algebras.

(1) R1 ×R2 is flat over k if and only if R1 and R2 are flat over k.

(2) Ω1,Tamb
R1×R2/k

= 0 if and only if Ω1,Tamb
R1/k

= 0 and Ω1,Tamb
R2/k

= 0.

(3) R1 ×R2 is finitely presented over k if and only if R1 and R2 are.

Consequently R1 and R2 are étale k-algebras if and only if R1 ×R2 is an étale k-algebra.

Proof. First, we note that products and direct sums are the same thing for modules. Since ⊠k is
additive, the direct sum of flat k-modules is flat, and summands of flat k-modules are flat. Second,

Lemma 4.2 implies that Ω1,Tamb
R1×R2/k

∼= 0 if and only if Ω1,Tamb
R1/k

∼= 0 and Ω1,Tamb
R2/k

∼= 0.

Lastly, we establish the claim about finite presentability. If R1 ×R2 is a compact k-algebra, then
k → R1 is the coequalizer of the two maps from k[xG] from the free polynomial k-algebra on a
generator in level G/G respectively classifying the choice of zero and the choice of the idempotent
generating the kernel of the projection

(R1 ×R2) (G/G) ∼= R1(G/G)×R2(G/G) → R1(G/G).

Therefore R1 is a finite colimit of finitely presented k-algebras, hence is finitely presented. By
symmetry R2 is also finitely presented.

Conversely, suppose R1 and R2 are finitely presented k-algebras. In (R1×R2)(G/e), let x1 = (1, 0)
and x2 = (0, 1). If S is any k-algebra, the set Homk(R1 ×R2, S) decomposes as the disjoint union
indexed by G-fixed idempotents y ∈ S(G/e) of the set of k-algebra morphisms R1 ×R2 → S which
send x1 to y. Writing S = yS1 × (1− y)S2 (using [Wis25a, Proposition 3.6]), we thus have

(1) Homk(R1 ×R2, S) ∼=
⊔
y

Homk(R1, yS) ⊔Homk(R2, (1− y)S).

Let F : D → k-Alg be a filtered diagram and y a G-fixed idempotent of ColimDF (d). Since filtered
colimits are computed levelwise, and filtered colimits of rings commute with the choice of a finite
list of elements satisfying a finite list of equations (by compactness of all quotients of Z[x1, . . . , xn]
in the category of rings), by passing to a cofinal diagram, we may assume each F (d)(G/e) contains
a G-fixed idempotent yd mapping to y in the colimit. By [Wis25a, Proposition 3.6] we are entitled
to write F (d) ∼= ydF (d)× (1− yd)F (d) as k-algebras.
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In light of Equation (1) and the fact that filtered colimits commute with all finite products and
all coproducts, it suffices to show for each y that we have an isomorphism

Homk(R1, y · ColimDF (d)) ⊔Homk(R2, (1− y) · ColimDF (d))

∼= ColimD(Homk(R1, ydF (d)) ⊔Homk(R1, (1− yd)F (d))).

But this follows immediately from compactness of R1 and R2 over k. □

Next, we show that flat base-change preserves étaleness. We start by showing that genuine Kähler
differentials enjoy the expected base-change property for flat morphisms.

Proposition 4.4. Let f : k → ℓ be a flat map of Tambara functors, R a k-algebra, and S := R⊠k ℓ.
Then we have a natural isomorphism

Ω1,Tamb
S/ℓ

∼= Ω1,Tamb
R/k ⊠k ℓ

of S-modules.

Proof. Let I be the kernel of R⊠k R → R and J the kernel of S ⊠ℓ S → S. We have a commutative
diagram

(R⊠k R)⊠k ℓ S ⊠ℓ S

R⊠k ℓ S

∼=

∼=

so that by flatness of ℓ over k, I ⊠k ℓ ∼= J . Note that this is an isomorphism of non-unital Tambara
functors. It follows that I>1 ⊠k ℓ

>1 ∼= J>1. Since ℓ is unital, ℓ>1 = ℓ, whence we compute

Ω1,Tamb
S/ℓ = J/J>1 ∼= (I ⊠k ℓ)/(I

>1 ⊠k ℓ) ∼= (I/I>1)⊠k ℓ = Ω1,Tamb
R/k ⊠k ℓ

as desired. □

When G is the trivial group Proposition 4.4 is known to hold without the flatness assumption.
One way to remove the flatness assumption in the Tambara setting would be to mimic the proof
of [Sta25, Lemma 10.131.12]. The only difficulty one enounters is showing that, if d : R → M is a
genuine k-differential, then d⊗k 0 : S → M ⊠k ℓ is a genuine ℓ-differential. Checking the first and
third conditions in Definition 2.11 for d⊗k 0 to be a differential is straightforward, although checking
the second condition amounts to a very complicated computation involving the exponential formula
for norms. When G = Cp, the formula simplifies enough to check by hand, so that Proposition 4.4
can be seen to hold without the flatness assumption.

Proposition 4.5. Let k → ℓ be a map of G-Tambara functors. The base-change functor −⊠k ℓ
enjoys the following properties:

(1) if R is finitely presented over k, then R⊠k ℓ is finitely presented over ℓ.
(2) if R is flat over k, then R⊠k ℓ is flat over ℓ.

(3) if k → ℓ is flat and Ω1,Tamb
R/k = 0, then Ω1,Tamb

R⊠kℓ/ℓ
= 0.

Hence flat base-change preserves étale morphisms.

Proof. Base-change preserves colimits and free polynomial algebras, hence preserves being finitely
presented. If R is flat over k, then

R⊠k ℓ⊠ℓ − ∼= R⊠k −
so that R⊠k ℓ is a flat ℓ-module. Finally, if Ω1,Tamb

R/k
∼= 0 and ℓ is flat over k, then by Proposition 4.4

we have
Ω1,Tamb
R⊠kℓ/ℓ

∼= Ω1,Tamb
R/k ⊠k ℓ ∼= 0.

□
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Remark 4.6. The Green functor analogue of Proposition 4.4 is true without a flatness assumption.
It is also true that a Green formally étale morphism of Tambara functors is Tambara formally étale.
Therefore the (possibly non-flat) base-change of a Green étale morphism of Tambara functors is
Tambara étale.

Finally, we study the interaction between coinduction and étaleness.

Theorem 4.7. Let k be any G-Tambara functor. Then the adjunction unit

k → CoIndGHResGHk

is étale.

Proof. Our proof is by induction on |G|. If H = G, then there is nothing to prove, so we assume
|H| < |G|.

First, we show CoIndGHResGHk is finitely presented by showing that it is compact. Let F : D →
k-Alg be a filtered diagram. If ColimDF (d) is not in the image of CoIndGH , then no F (d) is in the
image of CoIndGH , using the fact that ColimDF (d) is an F (d)-algebra for each object d of D and
that fact that any Tambara functor receiving a map from a coinduced Tambara functor is coinduced
(by [Wis25a, Corollary G]). Consequently

ColimDHomk(CoInd
G
HResGHk, F (d)) ∼= ColimD∅ ∼= ∅ ∼= Homk(CoInd

G
HResGHk,ColimDF (d)).

On the other hand, if ColimDF (d) is in the image of CoIndGH , then since filtered colimits
are computed levelwise, we see that for some d in D, the G-ring F (d)(G/e) contains a type H-
idempotent whose distinct G-orbits form a complete set of orthogonal idempotents (since filtered
colimits commute with the existence of finitely many elements satisfying finite lists of equations by
compactness of all quotients of Z[x1, . . . , xn] in the category of rings). Thus there is some x in D
such that F (x) ∼= CoIndGHR, and by passing to a cofinal subdiagram we may assume by [Wis25a,
Corollary G] that F lands in CoIndGHR-algebras.

The map k → CoIndGHR is adjoint to ResGHk → R, so that applying CoIndGH makes CoIndGHR into

a CoIndGHResGHk-algebra. Thus we may view F as landing in CoIndGHResGHk-algebras. As filtered
colimits are computed levelwise, changing the target category of F in this way does not change
the colimit. By [Wis25a, Corollary G], F factors through CoIndGH in the sense that we may write
F = CoIndGH ◦ E for some functor E : D → ResGHk-Alg.

By inductive hypothesis, for each g ∈ H\G/H,

ResGHk → CoIndHH∩gHRes
gH
H∩gH

gResGHk

is finitely presented. Thus, by Proposition 4.3 and the double coset formula for the restriction of a
coinduction,

ResGHk → ResGHCoIndGHResGHk

is finitely presented. Since CoIndGH commutes with filtered colimits, we compute

Homk(CoInd
G
HResGHk,ColimDF (d)) ∼= Homk(CoInd

G
HResGHk,CoIndGHColimDE(d))

∼= HomResGHk(Res
G
HCoIndGHResGHk,ColimDE(d))

∼= ColimDHomResGHk(Res
G
HCoIndGHResGHk,E(d))

∼= ColimDHomk(CoInd
G
HResGHk, F (d)).

We have thus shown that CoIndGHResGHk is finitely presented over k. Next, by Lemma 3.3 free
k-modules are flat. Finally, we check that the genuine Kähler differentials vanish.

Let I be the kernel of

CoIndGHResGHk ⊠k CoInd
G
HResGHk → CoIndGHResGHk.
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Via Lemma 3.2, the isomorphism

CoIndGHResGHCoIndGHResGHk ∼=
∏

g∈H\G/H

CoIndGH∩gHRes
gH
H∩gH

gResGHk,

and [Wis25b, Theorem A], I is the coinduction of the ideal J defined as the kernel of∏
g∈H\G/H

CoIndHH∩gHRes
gH
H∩gH

gResGHk ⊠ResGHk

∏
g∈H\G/H

CoIndHH∩gHRes
gH
H∩gH

gResGHk

→
∏

g∈H\G/H

CoIndHH∩gHRes
gH
H∩gH

gResGHk

Additionally, one straightforwardly checks I>1 = CoIndGH(J>1) (ultimately because resGH : G-Set →
H-Set preserves cardinality). Since coinduction preserves quotients we deduce

Ω1,Tamb

CoIndGHResGHk/k
= I/I>1

∼= CoIndGH(J/J>1)

∼= CoInd

(
Ω1,Tamb∏

g∈H\G/H CoIndHH∩gHRes
gH
H∩gH

gResGHk/ResGHk

)
∼= CoIndGH0 ∼= 0

where the second-to-last isomorphism follows from the third statement of Proposition 4.3 and the
inductive hypothesis. □

Proposition 4.8. Let k → R be a morphism of H-Tambara functors. Then we have an isomorphism

Ω1,Tamb

CoIndGHR/CoIndGHk
∼= CoIndGHΩ1,Tamb

R/k

of CoIndGHR-modules.

Proof. This follows from flat base-change along k → CoIndGHResGHk using Lemmas 3.1 and 3.2
and Proposition 4.4. □

Proposition 4.9. Let k → R be a morphism of H-Tambara functors.

(1) If R is finitely presented over k, then CoIndGHR is finitely presented over CoIndGHk.
(2) R is flat over k if and only if CoIndGHR is flat over CoIndGHk.

(3) Ω1,Tamb
R/k = 0 if and only if Ω1,Tamb

CoIndGHR/CoIndGHk
= 0.

Thus if R is étale over k, then CoIndGHR is étale over CoIndGHk.

Proof. The forwards direction is the special case of Proposition 4.5 applied to flat base-change
along k → CoIndGHResGHk, using Lemma 3.2. The backwards direction on the flatness statement

follows from the fact that CoIndGH is an exact symmetric monoidal equivalence of abelian categories
[Wis25a, Theorem F], and the backwards direction on the statement on vanishing of the genuine
Kähler differentials follows from Proposition 4.8 and the fact that CoIndGH reflects zero. □

5. Classification theorems

We begin by showing that evG/e preserves finite affine étale group schemes. Throughout this

section we will sometimes implicitly use the identification ResGHR ∼= R of constant H-Tambara
functors at a ring R.

Lemma 5.1. Let k → R be a map of Tambara functors. We have a natural isomorphism

Ω1,Tamb
R/k (G/e) ∼= Ω1

R(G/e)/k(G/e)

of k(G/e)-modules.
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Proof. Let I denote the kernel of R⊠k R → R. In level G/e this map has the form

R(G/e)⊗k(G/e) R(G/e) → R(G/e)

so it suffices to check I>1(G/e) = I(G/e)2. Since the only norms landing in the G/e-level of a
Tambara functor are honest multiplications, the claim follows. □

Proposition 5.2. Fix a relatively finite dimensional G-Tambara functor k. The functor evG/e

preserves the following:

(1) finitely generated k-modules,
(2) flat k-modules,
(3) finitely generated k-algebras,
(4) finitely presented k-algebras, and
(5) cogroup structures over k.

In particular, it preserves finite affine étale group schemes.

Proof. evG/e preserves finitely generated modules by relative finite dimensionality of k. Since evG/e

is strong symmetric monoidal with respect to the box product over k and tensor product over
k(G/e), it takes flat k-modules to flat k(G/e)-modules.

By [Bru05, Theorem A] all free k-algebras on finitely many generators are sent by evG/e to free
k(G/e)-algebras on finitely many generators. Thus evG/e preserves finite generation. Since evG/e

(viewed as landing in the category of rings) is left adjoint to CoIndGe , it preserves coequalizers, hence
finite presentation. Finally, since evG/e is strong symmetric monoidal, it also preserves cogroup
structures. □

Corollary 5.3. The functor

evG/e : Grp
fét-aff
k → Grpfét-affk(G/e)

naturally factors through the forgetful functor

(Grpfét-affk(G/e))
BG → Grpfét-affk(G/e)

from finite affine étale group schemes with G-action to finite affine étale group schemes.

Proof. Let R represent any finite affine étale group scheme over k. The Weyl action defines a G-
action on the ring evG/eR = R(G/e). The G-action is by cogroup homomorphisms as the G/e-level
of the box product is the tensor product with the diagonal G-action, so it determines a G-action on
the group scheme R(G/e) represents. □

Theorem 5.4. Let k be a G-Tambara functor and ℓ a flat k-algebra. Assume either

(1) ℓ is cohomological and |G| is invertible in ℓ(G/G), or
(2) all transfers in ℓ are surjective

then ℓ is formally étale over k if and only if ℓ(G/e) is formally étale over k(G/e). If ℓ is finitely
presented over k, then ℓ is étale over k if and only if ℓ(G/e) is étale over k(G/e).

Proof. By Lemma 5.1 we have

Ω1,Tamb
ℓ/k (G/e) ∼= Ω1

ℓ(G/e)/k(G/e).

Since all restrictions in the ℓ-module Ω1,Tamb
ℓ/k are injective Lemma 2.1, Ω1,Tamb

ℓ/k
∼= 0 if and only if

Ω1,Tamb
ℓ/k (G/e) ∼= 0. □

Corollary 5.5. Let L be a G-Galois extension of a field K. Then

K → FP(L)

is formally étale. If K satisfies the Hilbert basis theorem, then it is étale.
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Proof. First, we observe FP(L) is flat. Observe the K[G]-module isomorphic L ∼= K[G] ∼=
(CoIndGe K)(G/e). Since L and CoIndGe K are fixed-point K-modules, we have a chain of k-module
isomorphisms

FP(L) ∼= FP((CoIndGe K)(G/e)) ∼= CoIndGe K.

Thus FP(L) is a free K-module, so that it is flat by Lemma 3.3. Additionally, since all transfers in
CoIndGe K are surjective, we deduce that all transfers in FP(L) are also surjective, so that we are in
the situation of Theorem 5.4.

If K satisfies the Hilbert basis theorem, then since FP(L) is levelwise finite over K, it is finitely
generated over K, hence finitely presented. Since Galois extensions of fields are étale, Theorem 5.4
applies. □

If k is cohomological and |G| is invertible in k(G/G), then every k-algebra is fixed point by
Lemma 2.1. Since fixed-point Mackey functors are cohomological, we deduce that every k-algebra R
is cohomological and that |G| is invertible in R(G/G). It would be interesting to have an application
of Theorem 5.4 in the case that k is not cohomological and/or |G| is not invertible in k(G/G).

Corollary 5.6. Let R be a ring such that |G| is a unit in R. If R satisfies the Hilbert basis theorem,
then

evG/e : Grp
fét-aff
R → (Grpfét-affR )BG

is an equivalence of categories with inverse induced by FP.

Proof. Let L be the representing ring of a finite affine étale group scheme over R with G-action.
Then L is a cogroup equipped with a G-action by cogroup automorphisms. Our assumption on R
implies that

FP : R[G]-Mod → R-Mod

is strong symmetric monoidal (it’s the inverse equivalence to the strong symmetric monoidal functor
evG/e by Lemma 2.1), so we deduce that FP(L) represents a finite affine group scheme over R. By

Theorem 5.4, FP(L) is étale over R. We have also used that each LH is a finite R-algebra, so that
FP(L) is finitely generated over R, hence finitely presented by the assumption that R satisfies the
Hilbert basis theorem.

It remains to check that evG/e and FP are mutually inverse, up to natural isomorphism. If ℓ
represents an affine étale group scheme over k, then the adjunction unit ℓ → FP(evG/eℓ) is an
isomorphism by Lemma 2.1. Conversely, if L is the representing ring of an affine étale group scheme
over k(G/e) with G-action, then evG/eFP(L) clearly returns L. □

For example, Corollary 5.6 applies to the Tambara functor R whenever Q ⊂ R, at least for the
list of finite groups G appearing in [Sun25, Theorem A].

We now turn our attention to the case in which the characteristic possibly divides the order of G.

Theorem 5.7. Let G be an arbitrary finite group and F any algebraically closed field. Then a finite
F-algebra ℓ is étale if and only if it is a finite product of F-algebras

F → CoIndGHF.

Proof. By Proposition 5.2 ℓ(G/e) is a finite étale F-algebra. Thus ℓ(G/e) ∼=
∏

i F for a finite indexing
set; G acts by permuting factors. Since ℓ(G/e) is Noetherian, [Wis25a, Theorem D] supplies a
G-Tambara functor isomorphism

ℓ ∼=
∏
i

CoIndGHi
ℓi

where ℓi is an Hi-Tambara functor under F such that ℓi(G/e) ∼= F. By Proposition 4.3 each ℓi is
étale, so without loss of generality we may take ℓ = ℓi.



AFFINE ÉTALE GROUP SCHEMES OVER TAMBARA FIELDS 15

Now we induct on |G|. The base case is G = {e}, wherein the result is classical. In the inductive
step, we have two things to show: first, if ℓ ∼= CoIndGHℓ′, then ℓ′ is an étale CoIndGHF-algebra, so
that by inductive hypothesis

ℓ ∼= CoIndGHCoIndHKF ∼= CoIndGKF.
Second, we must show that if ℓ(G/e) ∼= F, then ℓ ∼= F

For the first point, by Lemma 3.2 the base-change of F → CoIndGHℓ′ along the flat map F →
CoIndGHF is an étale map

CoIndGHF → CoIndGHResGHCoIndGHℓ′ ∼=
∏

g∈H\G/H

CoIndGH∩gHRes
gH
H∩gH

gℓ′

By Proposition 4.3 the projection onto the identity double coset factor describes an étale map

CoIndGHF → CoIndGHℓ′

of F-algebras.
For the second point, observe that all restrictions in ℓ are injective by Lemma 3.4. For each

H ⊂ G we have a commutative diagram

F F(G/H) ℓ(G/H)

F(G/e) ℓ(G/e) F

=

Id ResHe
∼= ∼=

from which it follows that F(G/H) → ℓ(G/H) is an isomorphism. This establishes the claim. □

We are finally able to establish G-Galois descent for finite affine étale group schemes along
F → CoIndGe F in the case of modular characteristic.

Corollary 5.8. Let F be an algebraically closed field and G an arbitrary finite group. Then

evG/e : Grp
fét-aff
F → (Grpfét-affF )BG

is an equivalence of categories with inverse induced by FP.

Proof. Clearly evG/e◦FP ∼= Id. On the other hand, by Theorem 5.7, if ℓ represents a finite affine étale
group scheme, then the adjunction unit ℓ → FP(ℓ(G/e)) is an isomorphism. Thus FP ◦ evG/e

∼= Id
as well. □
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