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Summary. This survey describes the algebraic K-groups of local and global fields, and the
K-groups of rings of integers in these fields. We have used the result of Rost and Voevodsky
to determine the odd torsion in these groups.

Introduction5.1

The problem of computing the higher K-theory of a number field F, and of its rings
of integers OF , has a rich history. Since 1972, we have known that the groups Kn(OF)
are finitely generated [48], and known their ranks [7], but have only had conjectural
knowledge about their torsion subgroups [5,33,34] until 1997 (starting with [76]).
The resolutions of many of these conjectures by Suslin, Voevodsky, Rost and others
have finally made it possible to describe the groups K∗(OF). One of the goals of this
survey is to give such a description; here is the odd half of the answer (the integers
wi(F) are even, and are defined in Sect. 5.3):

1 Theorem 1 Let OS be a ring of S-integers in a number field F. Then Kn(OS) =̃ Kn(F)
for each odd n ≥ 3, and these groups are determined only by the number r1, r2 of
real and complex places of F and the integers wi(F):
a) If F is totally imaginary, Kn(F) =̃ Zr2 ⊕ Z|wi(F);
b) IF F has r1 > 0 real embeddings then, setting i = (n + 1)|2,

Kn(OS) =̃ Kn(F) =̃






Z
r1+r2 ⊕ Z|wi(F), n ≡ 1 (mod 8)

Z
r2 ⊕ Z|2wi(F) ⊕ (Z|2)r1−1, n ≡ 3 (mod 8)

Z
r1+r2 ⊕ Z| 1

2 wi(F), n ≡ 5 (mod 8)

Z
r2 ⊕ Z|wi(F), n ≡ 7 (mod 8) .

In particular, Kn(Q) =̃ Z for all n ≡ 5 (mod 8) (as wi = 2; see Lemma 27).
More generally, if F has a real embedding and n ≡ 5 (mod 8), then Kn(F) has no
2-primary torsion (because 1

2 wi(F) is an odd integer; see Proposition 22).
The proof of Theorem 1 will be given in 70, 73, and Sect. 5.8 below.
We also know the order of the groups Kn(Z) when n ≡ 2 (mod 4), and know

that they are cyclic for n < 20 000 (see Example 96 – conjecturally, they are cyclic
for every n ≡ 2). If Bk denotes the kth Bernoulli number (24), and ck denotes the
numerator of Bk|4k, then |K4k−2(Z)| is: ck for k even, and 2ck for k odd; see 95.

Although the groups K4k(Z) are conjectured to be zero, at present we only
know that these groups have odd order, with no prime factors less than 107. This
conjecture follows from, and implies, Vandiver’s conjecture in number theory
(see 102 below). In Table 5.1, we have summarized what we know for n < 20 000;
conjecturally the same pattern holds for all n (see 105–107).
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Table 5.1. The groups Kn(Z), n < 20 000. The notation ‘(0?)’ refers to a finite group, conjecturally zero,

whose order is a product of irregular primes > 107

K0(Z) = Z K8(Z) = (0?) K16(Z) = (0?)

K1(Z) = Z|2 K9(Z) = Z⊕ Z|2 K17(Z) = Z⊕ Z|2

K2(Z) = Z|2 K10(Z) = Z|2 K18(Z) = Z|2

K3(Z) = Z|48 K11(Z) = Z|1008 K19(Z) = Z|528

K4(Z) = 0 K12(Z) = (0?) K20(Z) = (0?)

K5(Z) = Z K13(Z) = Z K21(Z) = Z

K6(Z) = 0 K14(Z) = 0 K22(Z) = Z|691

K7(Z) = Z|240 K15(Z) = Z|480 K23(Z) = Z|65 520

K8a(Z) = (0?) K8a+4(Z) = (0?)

K8a+1(Z) = Z⊕ Z|2 K8a+5(Z) = Z

K8a+2(Z) = Z|2c2a+1 K8a+6(Z) = Z|c2a+2

K8a+3(Z) = Z|2w4a+2 K8a+7(Z) = Z|w4a+4

For n ≤ 3, the groups Kn(Z) were known by the early 1970’s; see Sect. 5.2.
The right hand sides of Table 5.1 were also identified as subgroups of Kn(Z) by
the late 1970’s; see Sects. 5.3 and 5.4. The 2-primary torsion was resolved in 1997
(Sect. 5.8), but the rest of Table 5.1 only follows from the recent Voevodsky-Rost
theorem (Sects. 5.7 and 5.9).

The K-theory of local fields, and global fields of finite characteristic, is richly
interconnected with this topic. The other main goal of this article is to survey the
state of knowledge here too.

In Sect. 5.2, we describe the structure of Kn(OF) for n ≤ 3; this material is rela-
tively classical, since these groups have presentations by generators and relations.

The cyclic summands in Theorem 1 are a special case of a more general con-
struction, due to Harris and Segal. For all fields F, the odd-indexed groups K2i−1(F)
have a finite cyclic summand, which, up to a factor of 2, is detected by a variation
of Adams’ e-invariant. These summands are discussed in Sect. 5.3.

There are also canonical free summands related to units, discovered by Borel,
and (almost periodic) summands related to the Picard group of R, and the Brauer
group of R. These summands were first discovered by Soulé, and are detected by
étale Chern classes. They are discussed in Sect. 5.4.
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The K-theory of a global field of finite characteristic is handled in Sect. 5.5. In
this case, there is a smooth projective curve X whose higher K-groups are finite,
and are related to the action of the Frobenius on the Jacobian variety of X. The
orders of these groups are related to the values of the zeta function ζX(s) at negative
integers.

The K-theory of a local field E containingQp is handled in Sect. 5.6. In this case,
we understand the p-completion, but do not understand the actual groups K∗(E).

In Sect. 5.7, we handle the odd torsion in the K-theory of a number field. This
is a consequence of the Voevodsky-Rost theorem. These techniques also apply to
the 2-primary torsion in totally imaginary number fields, and give 1(a).

The 2-primary torsion in real number fields (those with an embedding in R) is
handled in Sect. 5.8; this material is taken from [51], and uses Voevodsky’s theorem
in [69].

Finally, we consider the odd torsion in K2i(Z) in Sect. 5.9; the odd torsion in
K2i−1(Z) is given by 1. The torsion occurring in the groups K2i(Z) only involves
irregular primes, and is determined by Vandiver’s conjecture (102). The lack of
torsion for regular primes was first guessed by Soulé in [58].

The key technical tool that makes calculations possible for local and global fields is
the motivic spectral sequence, from motivic cohomology H∗

M to algebraic K-theory.
With coefficients Z|m, the spectral sequence for X is:

E
p,q
2 = H

p−q
M (X;Z|m(−q)) ⇒ K−p−q(X;Z|m) . (5.1)

This formulation assumes that X is defined over a field [69]; a similar motivic
spectral sequence was established by Levine in [32, (8.8)], over a Dedekind domain,
in which the group Hn

M(X,Z(i)) is defined to be the (2i − n)-th hypercohomology
on X of the complex of higher Chow group sheaves zi.

When 1|m ∈ F, Voevodsky and Rost proved in [69] (m = 2ν) and [68] (m odd)
that Hn

M(F,Z|m(i)) is isomorphic to Hn
ét(F, µ⊗i

m ) for n ≤ i and zero if n > i. That is,
the E2-terms in this spectral sequence are just étale cohomology groups.

If X = Spec(R), where R is a Dedekind domain with F = frac(R) and 1|m ∈ R,
a comparison of the localization sequences for motivic and étale cohomology
(see [32] and [58, p. 268]) shows that Hn

M(X,Z|m(i)) is: Hn
ét(X, µ⊗i

m ) for n ≤ i; the
kernel of Hn

ét(X, µ⊗i
m ) → Hn

ét(F, µ⊗i
m ) for n = i + 1; and zero if n ≥ i + 2. That is, the

E2-terms in the fourth quadrant are étale cohomology groups, but there are also
modified terms in the column p = +1. For example, we have E1,−1

2 = Pic(X)|m. This
is the only nonzero term in the column p = +1 when X has étale cohomological
dimension at most two for �-primary sheaves (cd�(X) ≤ 2), as will often occur in
this article.

WritingZ|�∞(i) for the union of the étale sheavesZ|�ν(i), we also obtain a spec-
tral sequence for every field F:

E
p,q
2 =






H
p−q
ét (F;Z|�∞(−q)) for q ≤ p ≤ 0,

0 otherwise
⇒ K−p−q(F;Z|�∞) , (5.2)
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and a similar spectral sequence for X, which can have nonzero entries in the column
p = +1. If cd�(X) ≤ 2 it is:

E
p,q
2 =






H
p−q
ét (X;Z|�∞(−q)) for q ≤ p ≤ 0,

Pic(X) ⊗ Z|�∞ for (p, q) = (+1, −1),

0 otherwise

⇒ K−p−q(X;Z|�∞) .

(5.3)

2Remark 2: (Periodicity for � = 2.) Pick a generator v4
1 of πs(S8;Z|16) =̃ Z|16; it

defines a generator of K8(Z[1|2];Z|16) and, by the edge map in (5.1), a canonical
element of H0

ét(Z[1|2]; µ⊗4
16 ), which we shall also call v4

1. If X is any scheme, smooth
overZ[1|2], the multiplicative pairing of v4

1 (see [16,32]) with the spectral sequence
converging to K∗(X;Z|2) gives a morphism of spectral sequences E

p,q
r → E

p−4,q−4
r

from (5.1) to itself. For p ≤ 0 these maps are isomorphisms, induced by E
p,q
2 =̃

H
p−q
ét (X,Z|2); we shall refer to these isomorphisms as periodicity isomorphisms.

Since the Voevodsky-Rost result has not been published yet (see [68]), it is ap-
propriate for us to indicate exactly where it has been invoked in this survey. In
addition to Theorem 1, Table 5.1, (5.2) and (5.3), the Voevodsky-Rost theorem is
used in Theorem 54, Sect. 5.7, 94–96, and in Sect. 5.9.
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Classical K-Theory of Number Fields 5.2

Let F be a number field, i.e., a finite extension of Q, and let OF denote the ring of
integers in F, i.e., the integral closure of Z in F. The first few K-groups of F and OF

have been known since the dawn of K-theory. We quickly review these calculations
in this section.

When Grothendieck invented K0 in the late 1950’s, it was already known that
over a Dedekind domain R (such as OF or the ring OS of S-integers in F) every
projective module is the sum of ideals, each of which is projective and satisfies
I ⊕ J =̃ IJ ⊕ R. Therefore K0(R) = Z⊕ Pic(R). Of course, K0(F) = Z.

In the case R = OF the Picard group was already known as the Class group
of F, and Dirichlet had proven that Pic(OF) is finite. Although not completely
understood to this day, computers can calculate the class group for millions of
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number fields. For cyclotomic fields, we know that Pic(Z[µp]) = 0 only for p ≤ 19,
and that the size of Pic(Z[µp]) grows exponentially in p; see [71].

Example 3. (Regular primes.) A prime p is called regular if Pic(Z[µp]) has no
elements of exponent p, i.e., if p does not divide the order hp of

Pic(Z[µp]). Kummer proved that this is equivalent to the assertion that p does not
divide the numerator of any Bernoulli number Bk, k ≤ (p − 3)|2 (see 24 and [71,
5.34]). Iwasawa proved that a prime p is regular if and only if Pic(Z[µpν ]) has
no p-torsion for all ν. The smallest irregular primes are p = 37, 59, 67, 101, 103
and 131. About 39% of the primes less than 4 million are irregular.

The historical interest in regular primes is that Kummer proved Fermat’s Last
Theorem for regular primes in 1847. For us, certain calculations of K-groups
become easier at regular primes (see Sect. 5.9.)

We now turn to units. The valuations on F associated to the prime ideals ℘ of OF

show that the group F× is the product of the finite cyclic group µ(F) of roots of
unity and a free abelian group of infinite rank. Dirichlet showed that the group of
units of OF is the product of µ(F) and a free abelian group of rank r1 + r2 − 1, where
r1 and r2 are the number of embeddings of F into the real numbersR and complex
numbers C, respectively.

The relation of the units to the class group is given by the “divisor map” (of
valuations) from F× to the free abelian group on the set of prime ideals ℘ in OF .
The divisor map fits into the “Units-Pic” sequence:

0 → O×
F → F× div→ ⊕℘Z→ Pic(OF) → 0 .

If R is any commutative ring, the group K1(R) is the product of the group R×
of units and the group SK1(R) = SL(R)|[SL(R), SL(R)]. Bass–Milnor–Serre proved
in [3] that SK1(R) = 0 for any ring of S-integers in any global field. Applying this
to the number field F we obtain:

K1(OF) = O×
F =̃ µ(F) × Zr1+r2−1 . (5.4)

For the ring OS of S-integers in F, the sequence 1 → O×
F → O×

S → Z[S]
div→

Pic(OF) → Pic(OS) → 1 yields:

K1(OS) = O×
S =̃ µ(F) × Z|S|+r1+r2−1 . (5.5)

The 1967 Bass–Milnor–Serre paper [3] was instrumental in discovering the
group K2 and its role in number theory. Garland proved in [18] that K2(OF) is
a finite group. By [49], we also know that it is related to K2(F) by the localization
sequence:

0 → K2(OF) → K2(F)
∂→ ⊕℘k(℘)× → 0 .

Since the map ∂ was called the tame symbol, the group K2(OF) was called the
tame kernel in the early literature. Matsumoto’s theorem allowed Tate to calculate
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K2(OF) for the quadratic extensions Q(
√

−d) of discriminant < 35 in [4]. In
particular, we have K2(Z) = K2

(
Z[ 1+

√
−7

2 ]
)

= Z|2 on {−1, −1}, and K2(Z[i]) = 0.
Tate’s key breakthrough, published in [65], was the following result, which was

generalized to all fields by Merkurjev and Suslin (in 1982).

4Theorem 4: (Tate [65]) If F is a number field and R is a ring of S-integers in F
such that 1|� ∈ R then K2(R)|m =̃ H2

ét(R, µ⊗2
m ) for every prime power m = �ν. The

�-primary subgroup of K2(R) is H2
ét(R,Z�(2)), which equals H2

ét(R, µ⊗2
m ) for large

ν.
If F contains a primitive mth root of unity (m = �ν), there is a split exact sequence:

0 → Pic(R)|m → K2(R)|m → mBr(R) → 0 .

Here Br(R) is the Brauer group and mBr(R) denotes {x ∈ Br(R)|mx = 0}. If we
compose with the inclusion of K2(R)|m into K2(R;Z|m), Tate’s proof shows that the
left map Pic(R) → K2(R;Z|m) is multiplication by the Bott element β ∈ K2(R;Z|m)
corresponding to a primitive m-th root of unity. The quotient mBr(R) of K2(R) is
easily calculated from the sequence:

0 → Br(R) → (Z|2)r1 ⊕
∐

v∈S
finite

(Q|Z) → Q|Z→ 0 . (5.6)

Example 5. Let F = Q(ζ�ν ) and R = Z[ζ�ν , 1|�], where � is an odd prime and ζ�ν

is a primitive �ν-th root of unity. Then R has one finite place, and
r1 = 0, so Br(R) = 0 via (5.6), and K2(R)|� =̃ Pic(R)|�. Hence the finite groups
K2(Z[ζ�ν , 1|�]) and K2(Z[ζ�ν ]) have �-torsion if and only if � is an irregular prime.

For the groups Kn(OF), n > 2, different techniques come into play. Homological
techniques were used by Quillen in [48] and Borel in [7] to prove the following
result. Let r1 (resp., r2) denote the number of real (resp., complex) embeddings of
F; the resulting decomposition of F ⊗Q R shows that [F : Q] = r1 + 2r2.

6Theorem 6: (Quillen–Borel) Let F be a number field. Then the abelian groups
Kn(OF) are all finitely generated, and their ranks are given by the formula:

rank Kn(OF) =






r1 + r2, if n ≡ 1 (mod 4) ;

r2, if n ≡ 3 (mod 4) .

In particular, if n > 0 is even then Kn(OF) is a finite group. If n = 2i − 1, the rank
of Kn(OF) is the order of vanishing of the function ζF at 1 − i.

There is a localization sequence relating the K-theory of OF , F and the finite fields
OF| ℘; Soulé showed that the maps Kn(OF) → Kn(F) are injections. This proves
the following result.
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7 Theorem 7 Let F be a number field.
a) If n > 1 is odd then Kn(OF) =̃ Kn(F).
b) If n > 1 is even then Kn(OF) is finite but Kn(F) is an infinite torsion group fitting

into the exact sequence

0 → Kn(OF) → Kn(F) →
⊕

℘⊂OF

Kn−1(OF| ℘) → 0 .

For example, the groups K3(OF) and K3(F) are isomorphic, and hence the direct
sum of Zr2 and a finite group. The Milnor K-group KM

3 (F) is isomorphic to (Z|2)r1

by [4], and injects into K3(F) by [38].
The following theorem was proven by Merkurjev and Suslin in [38]. Recall that

F is said to be totally imaginary if it cannot be embedded into R, i.e., if r1 = 0
and r2 = [F : Q]|2. The positive integer w2(F) is defined in Sect. 5.3 below, and is
always divisible by 24.

8 Theorem 8: (Structure of K3F.) Let F be a number field, and set w = w2(F).
a) If F is totally imaginary, then K3(F) =̃ Zr2 ⊕ Z|w;
b) If F has a real embedding then KM

3 (F) =̃ (Z|2)r1 is a subgroup of K3(F) and:

K3(F) =̃ Zr2 ⊕ Z|(2w) ⊕ (Z|2)r1−1 .

Example 9.
a) When F = Q we have K3(Z) = K3(Q) =̃ Z|48, because w2(F) = 24. This group

was first calculated by Lee and Szcarba.
b) When F = Q(i) we have w2(F) = 24 and K3(Q(i)) =̃ Z⊕ Z|24.
c) When F = Q(

√±2) we have w2(F) = 48 because F(i) = Q(ζ8). For these two
fields, K3(Q(

√
2)) =̃ Z|96 ⊕ Z|2, while K3(Q(

√
−2)) =̃ Z⊕ Z|48.

Classical techniques have not been able to proceed much beyond this. Although
Bass and Tate showed that the Milnor K-groups KM

n (F) are (Z|2)r1 for all n ≥ 3, and
hence nonzero for every real number field (one embeddable in R, so that r1 ≠ 0),
we have the following discouraging result.

10 Lemma 10 Let F be a real number field. The map KM
4 (F) → K4(F) is not injective,

and the map KM
n (F) → Kn(F) is zero for n ≥ 5.

Proof The map πs
1 → K1(Z) sends η to [−1]. Since πs∗ → K∗(Z) is a ring

homomorphism and η4 = 0, the Steinberg symbol {−1, −1, −1, −1} must be zero
in K4(Z). But the corresponding Milnor symbol is nonzero in KM

4 (F), because it
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is nonzero in KM
4 (R). This proves the first assertion. Bass and Tate prove [4] that

KM
n (F) is in the ideal generated by {−1, −1, −1, −1} for all n ≥ 5, which gives the

second assertion.

11Remark 11 Around the turn of the century, homological calculations by Rognes [53]
and Elbaz-Vincent/Gangl/Soulé [15] proved that K4(Z) = 0, K5(Z) = Z, and that
K6(Z) has at most 3-torsion. These follow from a refinement of the calculations
by Lee-Szczarba and Soulé in [57] that there is no p-torsion in K4(Z) or K5(Z) for
p > 3, together with the calculation in [51] that there is no 2-torsion in K4(Z),
K5(Z) or K6(Z).

The results of Rost and Voevodsky imply that K7(Z) =̃ Z|240 (see [76]). It is still
an open question whether or not K8(Z) = 0.

The e-Invariant 5.3

The odd-indexed K-groups of a field F have a canonical torsion summand, dis-
covered by Harris and Segal in [23]. It is detected by a map called the e-invariant,
which we now define.

Let F be a field, with separable closure F and Galois group G = Gal(F|F).
The abelian group µ of all roots of unity in F is a G-module. For all i, we shall
write µ(i) for the abelian group µ, made into a G-module by letting g ∈ G act as
ζ 
→ gi(ζ). (This modified G-module structure is called the i-th Tate twist of the
usual structure.) Note that the abelian group underlying µ(i) is isomorphic toQ|Z
if char(F) = 0 and Q|Z[1|p] if char(F) = p ≠ 0. For each prime � ≠ char(F), we
write Z|�∞(i) for the �-primary G-submodule of µ(i), so that µ(i) = ⊕Z|�∞(i).

For each odd n = 2i − 1, Suslin proved [60, 62] that the torsion subgroup of
K2i−1(F) is naturally isomorphic to µ(i). It follows that there is a natural map

e : K2i−1(F)tors → K2i−1(F)G
tors =̃ µ(i)G . (5.7)

If µ(i)G is a finite group, write wi(F) for its order, so that µ(i)G =̃ Z|wi(F). This
is the case for all local and global fields (by 14 below). We shall call e the e-
invariant, since the composition πs

2i−1 → K2i−1(Q)
e→ Z|wi(Q) is Adams’ complex

e-invariant by [50].
The target group µ(i)G is always the direct sum of its �-primary Sylow subgroups

Z|�∞(i)G. The orders of these subgroups are determined by the roots of unity in
the cyclotomic extensions F(µ�ν ). Here is the relevant definition.

12Definition 12 Fix a prime �. For any field F, define integers w(�)
i (F) by

w(�)
i (F) = max

{
�ν | Gal

(
F(µ�ν )|F

)
has exponent dividing i

}

for each integer i. If there is no maximum ν we set w(�)
i (F) = �∞.
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13 Lemma 13 Let F be a field and set G = Gal(F|F). Then Z|�∞(i)G is isomorphic to
Z|w(�)

i (F). Thus the target of the e-invariant is
⊕

� Z|w(�)
i (F).

Suppose in addition that w(�)
i (F) is 1 for almost all �, and is finite otherwise.

Then the target of the e-invariant is Z|wi(F), where wi(F) =
∏

w(�)
i (F).

Proof Let ζ be a primitive �ν-th root of unity. Then ζ⊗i is invariant under g ∈ G
(the absolute Galois group) precisely when gi(ζ) = ζ, and ζ⊗i is invariant under all
of G precisely when the group Gal(F(µ�ν )|F) has exponent i.

14 Corollary 14 Suppose that F(µ�) has only finitely many �-primary roots of unity
for all primes �, and that [F(µ�) : F] approaches ∞ as � approaches ∞. Then the
wi(F) are finite for all i ≠ 0.

This is the case for all local and global fields.

Proof For fixed i ≠ 0, the formulas in 20 and 22 below show that each w(�)
i is finite,

and equals one except when [F(µ�) : F] divides i. By assumption, this exception
happens for only finitely many �. Hence wi(F) is finite.

Example 15. (Finite fields.) Consider a finite field Fq. It is a pleasant exercise to
show that wi(Fq) = qi − 1 for all i. Quillen computed the K-theory of

Fq in [47], showing that K2i(Fq) = 0 for i > 0 and that K2i−1(Fq) =̃ Z|wi(Fq). In this
case, the e-invariant is an isomorphism.

The key part of the following theorem, i.e., the existence of a Z|wi summand,
was discovered in the 1975 paper [23] by Harris and Segal; the splitting map was
constructed in an ad hoc manner for number fields (see 18 below). The canonical
nature of the splitting map was only established much later, in [11, 21, 28].

The summand does not always exist when � = 2; for example K5(Z) = Z
but w3(Q) = 2. The Harris–Segal construction fails when the Galois groups of
cyclotomic field extensions are not cyclic. With this in mind, we call a field F non–
exceptional if the Galois groups Gal(F(µ2ν )|F) are cyclic for every ν, and exceptional
otherwise. There are no exceptional fields of finite characteristic. Both R and Q2

are exceptional, and so are each of their subfields. In particular, real number fields
(like Q) are exceptional, and so are some totally imaginary number fields, like
Q(

√
−7).

16 Theorem 16 Let R be an integrally closed domain containing 1|�, and set wi =
w(�)

i (R). If � = 2, we suppose that R is non-exceptional. Then each K2i−1(R) has
a canonical direct summand isomorphic to Z|wi, detected by the e-invariant.
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The splitting Z|wi → K2i−1(R) is called the Harris–Segal map, and its image is
called the Harris–Segal summand of K2i−1(R).

Example 17. If R contains a primitive �ν-th root of unity ζ, we can give a simple
description of the subgroup Z|�ν of the Harris–Segal summand. In

this case, H0
ét(R, µ⊗i

�ν ) =̃ µ⊗i
�ν is isomorphic to Z|�ν, on generator ζ ⊗ · · · ⊗ ζ. If

β ∈ K2(R;Z|�ν) is the Bott element corresponding to ζ, the Bott map Z|�ν →
K2i(R;Z|�ν) sends 1 to βi. (This multiplication is defined unless �ν = 21.) The
Harris–Segal map, restricted to Z|�ν ⊆ Z|m, is just the composition

µ⊗i
�ν =̃ Z|�ν Bott→ K2i(R;Z|�ν) → K2i−1(R) .

18Remark 18 Harris and Segal [23] originally constructed the Harris–Segal map
by studying the homotopy groups of the space BN+, where N is the union of the
wreath products µ � Σn, µ = µ�ν . Each wreath product embeds in GLn(R[ζ�ν ]) as
the group of matrices whose entries are either zero or �ν-th roots of unity, each
row and column having at most one nonzero entry. Composing with the transfer,
this gives a group map N → GL(R[ζ�ν ]) → GL(R) and hence a topological map
BN+ → GL(R)+.

From a topological point of view, BN+ is the zeroth space of the spectrum
Σ∞(Bµ+), and is also the K-theory space of the symmetric monoidal category of
finite free µ-sets. The map of spectra underlying BN+ → GL(R)+ is obtained by
taking the K-theory of the free R-module functor from finite free µ-sets to free
R-modules.

Harris and Segal split this map by choosing a prime p that is primitive mod �,
and is a topological generator of Z×

� . Their argument may be interpreted as saying
that if Fq = Fp[ζ�ν ] then the composite map Σ∞(Bµ+) → K(R) → K(Fq) is an
equivalence after KU-localization.

If F is an exceptional field, a transfer argument using F(
√

−1) shows that there is
a cyclic summand in K2i−1(R) whose order is either wi(F), 2wi(F) or wi(F)|2. If F is
a totally imaginary number field, we will see in 73 that the Harris–Segal summand
is always Z|wi(F). The following theorem, which follows from Theorem 82 below
(see [51]), shows that all possibilities occur for real number fields, i.e., number
fields embeddable in R.

19Theorem 19 Let F be a real number field. Then the Harris–Segal summand in
K2i−1(OF) is isomorphic to:
1. Z|wi(F), if i ≡ 0 (mod 4) or i ≡ 1 (mod 4), i.e., 2i − 1 ≡ ±1 (mod 8);
2. Z|2wi(F), if i ≡ 2 (mod 4), i.e., 2i − 1 ≡ 3 (mod 8);
3. Z| 1

2 wi(F), if i ≡ 3 (mod 4), i.e., 2i − 1 ≡ 5 (mod 8).
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Here are the formulas for the numbers w(�)
i (F), taken from [23, p. 28], and from [74,

6.3] when � = 2. Let log�(n) be the maximal power of � dividing n, i.e., the �-adic
valuation of n. By convention let log�(0) = ∞.

20 Proposition 20 Fix a prime � ≠ 2, and let F be a field of characteristic ≠ �. Let
a be maximal such that F(µ�) contains a primitive �a-th root of unity. Then if
r = [F(µ�) : F] and b = log�(i) the numbers w(�)

i = w(�)
i (F) are:

(a) If µ� ∈ F then w(�)
i = �a+b;

(b) If µ� �∈ F and i ≡ 0 (mod r) then w(�)
i = �a+b;

(c) If µ� �∈ F and i �≡ 0 (mod r) then w(�)
i = 1.

Proof Since � is odd, G = Gal(F(µ�a+ν )|F) is a cyclic group of order r�ν for all ν ≥ 0.
If a generator of G acts on µ�a+ν by ζ 
→ ζg for some g ∈ (Z|�a+ν)× then it acts on
µ⊗i by ζ 
→ ζgi

.

Example 21. If F = Q(µpν ) and � ≠ 2, p then w(�)
i (F) = w(�)

i (Q) for all i. This
number is 1 unless (� − 1) | i; if (� − 1) � i but � � i then w(�)

i (F) = �.
In particular, if � = 3 and p ≠ 3 then w(3)

i (F) = 1 for odd i, and w(3)
i (F) = 3 exactly

when i ≡ 2, 4 (mod 6). Of course, p|wi(F) for all i.

22 Proposition 22 (� = 2) Let F be a field of characteristic ≠ 2. Let a be maximal such
that F(

√
−1) contains a primitive 2a-th root of unity. Let i be any integer, and let

b = log2(i). Then the 2-primary numbers w(2)
i = w(2)

i (F) are:
(a) If

√
−1 ∈ F then w(2)

i = 2a+b for all i.
(b) If

√
−1 |∈ F and i is odd then w(2)

i = 2.
(c) If

√
−1 |∈ F, F is exceptional and i is even then w(2)

i = 2a+b.
(d) If

√
−1 |∈ F, F is non–exceptional and i is even then w(2)

i = 2a+b−1.

Example 23. (Local fields.) If E is a local field, finite over Qp, then wi(E) is finite
by 14. Suppose that the residue field is Fq. Since (for � ≠ p) the

number of �-primary roots of unity in E(µ�) is the same as in Fq(µ�), we see
from 20 and 22 that wi(E) is wi(Fq) = qi − 1 times a power of p.

If p > 2 the p-adic rational numbersQp have wi(Qp) = qi − 1 unless (p − 1)|i; if
i = (p − 1)pbm (p � m) then wi(Qp) = (qi − 1)p1+b.

For p = 2 we have wi(Q2) = 2(2i − 1) for i odd, because Q2 is exceptional, and
wi(Q2) = (2i − 1)22+b for i even, i = 2bm with m odd.
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Example 24. (Bernoulli numbers.) The numbers wi(Q) are related to the Bernoulli
numbers Bk. These were defined by Jacob Bernoulli in 1713 as coef-

ficients in the power series

t

et − 1
= 1 −

t

2
+

∞∑

k=1

(−1)k+1Bk
t2k

(2k)!
.

(We use the topologists’ Bk from [41], all of which are positive. Number theorists
would write it as (−1)k+1B2k.) The first few Bernoulli numbers are:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
,

B5 =
5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
.

The denominator of Bk is always squarefree, divisible by 6, and equal to the product
of all primes with (p−1)|2k. Moreover, if (p−1) � 2k then p is not in the denominator
of Bk|k even if p|k; see [41].

Although the numerator of Bk is difficult to describe, Kummer’s congruences
show that if p is regular it does not divide the numerator of any Bk|k (see [71, 5.14]).
Thus only irregular primes can divide the numerator of Bk|k (see 3).

25Remark 25 We have already remarked in 3 that if a prime p divides the numerator
of some Bk|k then p divides the order of Pic(Z[µp]). Bernoulli numbers also arise
as values of the Riemann zeta function. Euler proved (in 1735) that ζQ (2k) =
Bk(2π)2k|2(2k)!. By the functional equation, we have ζQ (1 − 2k) = (−1)kBk|2k. Thus
the denominator of ζ(1 − 2k) is 1

2 w2k(Q).

26Remark 26 The Bernoulli numbers are of interest to topologists because if n = 4k−1
the image of J : πnSO → πs

n is cyclic of order equal to the denominator of Bk|4k,
and the numerator determines the number of exotic (4k − 1)-spheres that bound
parallizable manifolds; (see [41], App. B).

From 24, 20 and 22 it is easy to verify the following important result.

27Lemma 27 If i is odd then wi(Q) = 2 and wi(Q(
√

−1)) = 4. If i = 2k is even then
wi(Q) = wi(Q(

√
−1)), and this integer is the denominator of Bk|4k. The prime �

divides wi(Q) exactly when (� − 1) divides i.
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Example 28. For F = Q or Q(
√

−1), w2 = 24, w4 = 240, w6 = 504 = 23 · 32 · 7,
w8 = 480 = 25 · 3 · 5, w10 = 264 = 23 · 3 · 11, and w12 = 65 520 =

24 · 32 · 5 · 7 · 13.
The wi are the orders of the Harris–Segal summands of K3(Q[

√
−1]),

K7(Q[
√

−1]), …, K23(Q[
√

−1]) by 16. In fact, we will see in 73 that K2i−1(Q[
√

−1]) =̃
Z⊕ Z|wi for all i ≥ 2.

By 19, the orders of the Harris–Segal summands of K7(Q), K15(Q), K23(Q),
… are w4, w8, w12, etc., and the orders of the Harris–Segal summands of K3(Q),
K11(Q), K19(Q), … are 2w2 = 48, 2w6 = 1008, 2w10 = 2640, etc. In fact, these
summands are exactly the torsion subgroups of the K2i−1(Q).

Example 29. The image of the natural maps πs
n → Kn(Z) capture most of the

Harris–Segal summands, and were analyzed by Quillen in [50].
When n is 8k+1 or 8k+2, there is aZ|2-summand in Kn(Z), generated by the image
of Adams’ element µn. (It is the 2-torsion subgroup by [76].) Since w4k+1(Q) = 2,
we may view it as the Harris–Segal summand when n = 8k+1. When n = 8k+5, the
Harris–Segal summand is zero by 19. When n = 8k + 7 the Harris–Segal summand
of Kn(Z) is isomorphic to the subgroup J(πnO) =̃ Z|w4k+4(Q) of πs

n.
When n = 8k + 3, the subgroup J(πnO) =̃ Z|w4k+2(Q) of πs

n is contained in the
Harris–Segal summand Z|(2wi) of Kn(Z); the injectivity was proven by Quillen
in [50], and Browder showed that the order of the summand was 2wi(Q).

Not all of the image of J injects into K∗(Z). If n = 0, 1 (mod 8) then J(πnO) =̃ Z|2,
but Waldhausen showed (in 1982) that these elements map to zero in Kn(Z).

Example 30. Let F = Q(ζ + ζ−1) be the maximal real subfield of the cyclotomic
fieldQ(ζ), ζp = 1 with p odd. Then wi(F) = 2 for odd i, and wi(F) =

wi(Q(ζ)) for even i > 0 by 20 and 22. Note that p|wi(F[ζ]) for all i, p|wi(F) if and
only if i is even, and p|wi(Q) only when (p − 1)|i. If n ≡ 3 (mod 4), the groups
Kn(Z[ζ + ζ−1]) = Kn(F) are finite by 6; the order of their Harris–Segal summands
are given by Theorem 19, and have an extra p-primary factor not detected by the
image of J when n �≡ −1 (mod 2p − 2).

31 Conjecture 31: (Birch–Tate Conjecture.) If F is a number field, the zeta function
ζF(s) has a pole of order r2 at s = −1. Birch and Tate [64] conjectured that for totally
real number fields (r2 = 0) we have

ζF(−1) = (−1)r1 |K2(OF)||w2(F) .

The odd part of this conjecture was proven by Wiles in [77], using Tate’s Theorem 4.
The two-primary part is still open, but it is known to be a consequence of the 2-adic
Main Conjecture of Iwasawa Theory (see Kolster’s appendix to [51]), which was
proven by Wiles in loc. cit. for abelian extensions of Q. Thus the full Birch–Tate
Conjecture holds for all abelian extensions ofQ. For example, when F = Qwe have
ζQ (−1) = −1|12, |K2(Z)| = 2 and w2(Q) = 24.
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Étale Chern Classes 5.4

We have seen in (5.4) and 4 that H1
ét and H2

ét are related to K1 and K2. In order
to relate them to higher K-theory, it is useful to have well-behaved maps. In one
direction, we use the étale Chern classes introduced in [58], but in the form found
in Dwyer-Friedlander [14].

In this section, we construct the maps in the other direction. Our formulation
is due to Kahn [26–28]; they were introduced in [27], where they were called “anti-
Chern classes”. Kahn’s maps are an efficient reorganization of the constructions
of Soulé [58] and Dwyer-Friedlander [14]. Of course, there are higher Kahn maps,
but we do not need them for local or global fields so we omit them here.

If F is a field containing 1|�, there is a canonical map from K2i−1(F;Z|�ν) to
H1

ét(F, µ⊗i
�ν ), called the first étale Chern class. It is the composition of the map to the

étale K-group Két
2i−1(F;Z|�ν) followed by the edge map in the Atiyah-Hirzebruch

spectral sequence for étale K-theory [14]. For i = 1 it is the Kummer isomorphism
from K1(F;Z|�ν) = F×|F×�ν

to H1
ét(F, µ�ν ).

For each i and ν, we can construct a splitting of the first étale Chern class, at
least if � is odd (or � = 2 and F is non-exceptional). Let Fν denote the smallest field
extension of F over which the Galois module µ⊗i−1

�ν is trivial, and let Γν denote the
Galois group of Fν over F. Kahn proved in [26] that the transfer map induces an

isomorphism H1
ét(Fν, µ⊗i

�ν )Γν

=̃→ H1
ét(F, µ⊗i

�ν ). Note that because H1
ét(Fν, µ�ν ) =̃ F×

ν |�ν

we have an isomorphism of Γν-modules H1
ét(Fν, µ⊗i

�ν ) =̃ (F×
ν ) ⊗ µ⊗i−1

�ν .

32Definition 32 The Kahn map H1
ét(F, µ⊗i

�ν ) → K2i−1(F;Z|�ν) is the composition

H1
ét(F, µ⊗i

�ν )
=̃← H1

ét(Fν, µ⊗i
�ν )Γν =

[

F×
ν ⊗ µ⊗i−1

�ν

]

Γν

Harris–Segal

[

(F×
ν ) ⊗ K2i−2(Fν;Z|�ν)

]

Γν

∪→ K2i−1(Fν;Z|�ν)Γν

transfer
K2i−1(F;Z|�ν) .

33Compatibility 33 Let F be the quotient field of a discrete valuation ring whose
residue field k contains 1|�. Then the Kahn map is compatible with the Harris–Segal
map in the sense that for m = �ν the diagram commutes.

H1
ét(F, µ⊗i

m ) ��

∂

��

Kahn

H0
ét(k, µ⊗i−1

m )

��

Harris–Segal

K2i−1(F;Z|m) ��

∂

K2i−2(k;Z|m) .
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To see this, one immediately reduces to the case F = Fν . In this case, the Kahn map
is the Harris–Segal map, tensored with the identification H1

ét(F, µm) =̃ F×|m, and
both maps ∂ amount to the reduction mod m of the valuation map F× → Z.

34 Theorem 34 Let F be a field containing 1|�. If � = 2 we suppose that F is non-
exceptional. Then for each i the Kahn map H1

ét(F, µ⊗i
�ν ) → K2i−1(F;Z|�ν) is an

injection, split by the first étale Chern class.
The Kahn map is compatible with change of coefficients. Hence it induces maps

H1
ét(F,Z�(i)) → K2i−1(F;Z�) and H1

ét(F,Z|�∞(i)) → K2i−1(F;Z|�∞).

Proof When � is odd (or � = 2 and
√

−1 ∈ F), the proof that the Kahn map splits
the étale Chern class is given in [27], and is essentially a reorganization of Soulé’s
proof in [58] that the first étale Chern class is a surjection up to factorials (cf. [14]).
When � = 2 and F is non-exceptional, Kahn proves in [28] that this map is a split
injection.

35 Corollary 35 Let OS be a ring of S-integers in a number field F, with 1|� ∈ OS.
If � = 2, assume that F is non-exceptional. Then the Kahn maps for F induce
injections H1

ét(OS, µ⊗i
�ν ) → K2i−1(OS;Z|�ν), split by the first étale Chern class.

Proof Since H1
ét(OS, µ⊗i

�ν ) is the kernel of H1
ét(F, µ⊗i

�ν ) → ⊕℘H0
ét(k(℘), µ⊗i−1

m ), and
K2i−1(OS;Z|�ν) is the kernel of K2i−1(F;Z|�ν) → ⊕℘K2i−2(k(℘);Z|�ν) by 7, this
follows formally from 33.

Example 36. If F is a number field, the first étale Chern class detects the torsion-
free part of K2i−1(OF) = K2i−1(F) described in 6. In fact, it induces

isomorphisms K2i−1(OS) ⊗Q� =̃ Két
2i−1(OS;Q�) =̃ H1

ét(OS,Q�(i)).
To see this, choose S to contain all places over some odd prime �. Then 1|� ∈ OS,

and K2i−1(OS) =̃ K2i−1(F). A theorem of Tate states that

rank H1
ét(OS,Q�(i)) − rank H2

ét(OS,Q�(i)) =






r2, i even ;

r1 + r2, i odd .

We will see in 42 below that H2
ét(OS,Q�(i)) = 0. Comparing with 6, we see that the

source and target of the first étale Chern class

K2i−1(OS) ⊗ Z� → Két
2i−1(OS;Z�) =̃ H1

ét(OS,Z�(i))
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have the same rank. By 34, this map is a split surjection (split by the Kahn map),
whence the claim.

The second étale Chern class is constructed in a similar fashion. Assuming that �

is odd, or that � = 2 and F is non-exceptional, so that the e-invariant splits by 16,
then for i ≥ 1 there is also a canonical map

K2i(F;Z|�ν) → H2
ét(F, µ⊗i+1

�ν ) ,

called the second étale Chern class. It is the composition of the map to the étale
K-group Két

2i (F;Z|�ν), or rather to the kernel of the edge map Két
2i (F;Z|�ν) →

H0
ét(F, µ⊗i

�ν ), followed by the secondary edge map in the Atiyah-Hirzebruch spectral
sequence for étale K-theory [14].

Even if � = 2 and F is exceptional, this composition will define a family of second
étale Chern classes K2i(F) → H2

ét(F, µ⊗i+1
�ν ) and hence K2i(F) → H2

ét(F,Z�(i +
1)). This is because the e-invariant (5.7) factors through the map K2i(F;Z|�ν) →
K2i−1(F).

For i = 1, the second étale Chern class K2(F)|m → H2
ét(F, µ⊗2

m ) is just Tate’s map,
described in 4; it is an isomorphism for all F by the Merkurjev-Suslin theorem.

Using this case, Kahn proved in [26] that the transfer always induces an iso-

morphism H2
ét(Fν, µ⊗i

�ν )Γν

=̃→ H2
ét(F, µ⊗i

�ν ). Here Fν and Γν = Gal(Fν|F) are as in 32
above, and if � = 2 we assume that F is non-exceptional. As before, we have an
isomorphism of Γν-modules H2

ét(Fν, µ⊗i+1
�ν ) =̃ K2(Fν) ⊗ µ⊗i−1

�ν .

37Definition 37 The Kahn map H2
ét(F, µ⊗i+1

�ν ) → K2i(F;Z|�ν) is the composition

H2
ét(F, µ⊗i+1

�ν )
=̃← H2

ét(Fν, µ⊗i+1
�ν )Γν =

[

K2(Fν) ⊗ µ⊗i−1
�ν

]

Γν

Harris–Segal

[

K2(Fν) ⊗ K2i−2(Fν;Z|�ν)

]

Γν

∪→ K2i(Fν;Z|�ν)Γν

transfer
K2i(F;Z|�ν) .

38Compatibility 38 Let F be the quotient field of a discrete valuation ring whose
residue field k contains 1|�. Then the first and second Kahn maps are compatible
with the maps ∂, from H2

ét(F) to H1
ét(k) and from K2i(F;Z|m) to K2i−1(k;Z|m). The

argument here is the same as for 33.

As with 34, the following theorem was proven in [27, 28].

39Theorem 39 Let F be a field containing 1|�. If � = 2 we suppose that F is non-
exceptional. Then for each i ≥ 1 the Kahn map H2

ét(F, µ⊗i+1
�ν ) → K2i(F;Z|�ν) is an

injection, split by the second étale Chern class.
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The Kahn map is compatible with change of coefficients. Hence it induces maps
H2

ét(F,Z�(i + 1)) → K2i(F;Z�) and H2
ét(F,Z|�∞(i + 1)) → K2i(F;Z|�∞).

40 Corollary 40 Let OS be a ring of S-integers in a number field F, with 1|� ∈ OS. If
� = 2, assume that F is non-exceptional. Then for each i > 0, the Kahn maps induce
injections H2

ét(OS,Z�(i + 1)) → K2i(OS;Z�), split by the second étale Chern class.

Proof Since H2
ét(OS,Z�(i + 1)) is the kernel of

H2
ét

(
F,Z�(i + 1)

) → ⊕℘H1
ét

(
k(℘),Z�(i)

)
,

and K2i(OS;Z�) is the kernel of K2i(F;Z�) → ⊕℘K2i−1(k(℘);Z�), this follows
formally from 38.

41 Remark 41 For each ν, H2
ét(OS, µ⊗i+1

�ν ) → K2i(OS;Z|�ν) is also a split surjection,
essentially because the map H2

ét(OS,Z�(i + 1)) → H2
ét(OS, µ⊗i+1

�ν ) is onto; see [27,
5.2].

The summand H2
ét(OS,Z�(i)) is finite by the following calculation.

42 Proposition 42 Let OS be a ring of S-integers in a number field F with 1|� ∈ OS.
Then for all i ≥ 2, H2

ét(OS,Z�(i)) is a finite group, and H2
ét(OS,Q�(i)) = 0.

Finally, H2
ét(OS,Z|�∞(i)) = 0 if � is odd, or if � = 2 and F is totally imaginary.

Proof If � is odd or if � = 2 and F is totally imaginary, then H3
ét(OS,Z�(i)) = 0 by

Serre [55], so H2
ét(OS,Z|�∞(i)) is a quotient of H2

ét(OS,Q�(i)). Since H2
ét(R,Q�(i)) =

H2
ét(R,Z�(i)) ⊗Q, it suffices to prove the first assertion for i > 0. But H2

ét(OS,Z�(i))
is a summand of K2i−2(OS)⊗Z� for i ≥ 2 by 40, which is a finite group by Theorem 6.

If � = 2 and F is exceptional, the usual transfer argument for OS ⊂ OS′ ⊂
F(

√
−1) shows that the kernel A of H2

ét(OS,Z2(i)) → H2
ét(OS′ ,Z2(i)) has exponent 2.

Since A must inject into the finite group H2
ét(OS, µ2), A must also be finite. Hence

H2
ét(OS,Z2(i)) is also finite, and H2

ét(R,Q�(i)) = H2
ét(R,Z�(i)) ⊗Q = 0.

Taking the direct limit over all finite S yields:

43 Corollary 43 Let F be a number field. Then H2
ét(F,Z|�∞(i)) = 0 for all odd primes �

and all i ≥ 2.
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Example 44. The Main Conjecture of Iwasawa Theory, proved by Mazur and
Wiles [36], implies that (for odd �) the order of the finite group

H2
ét(Z[1|�],Z�(2k)) is the �-primary part of the numerator of ζQ (1 − 2k). See [51,

Appendix A] or [29, 4.2 and 6.3], for example. Note that by Euler’s formula 25 this
is also the �-primary part of the numerator of Bk|2k, where Bk is the Bernoulli
number discussed in 24.

45Remark 45: (Real number fields.) If � = 2, the vanishing conclusion of corol-
lary 43 still holds when F is totally imaginary. However, it fails when F has r1 > 0
embeddings into R:

H2
(
OS;Z|2∞(i)

)
=̃ H2

(
F;Z|2∞(i)

)
=̃






(Z|2)r1 , i ≥ 3 odd

0, i ≥ 2 even .

One way to do this computation is to observe that, by 42, H2(OS;Z|2∞(i)) has
exponent 2. Hence the Kummer sequence is:

0 → H2
(
OS;Z|2∞(i)

) → H3(OS;Z|2) → H3(OS;Z|2∞(i)) → 0 .

Now plug in the values of the right two groups, which are known by Tate-Poitou
duality: H3(OS;Z|2) =̃ (Z|2)r1 , while H3(OS;Z|2∞(i)) is: (Z|2)r1 for i even, and 0
for i odd.

46Remark 46 Suppose that F is totally real (r2 = 0), and set wi = w(�)
i (F). If i > 0 is

even then H1(OS,Z�(i)) =̃ Z|wi; this group is finite. If i is odd then H1(OS,Z�(i)) =̃
Z

r1
� ⊕ Z|wi; this is infinite. These facts may be obtained by combining the rank

calculations of 36 and 42 with (5.7) and universal coefficients.

47Theorem 47 For every number field F, and all i, the Adams operation ψk acts on
K2i−1(F) ⊗Q as multiplication by ki.

Proof The case i = 1 is well known, so we assume that i ≥ 2. If S contains all
places over some odd prime � we saw in 36 that K2i−1(OS) ⊗Q� =̃ Két

2i−1(OS;Q�) =̃
H1

ét(OS,Q�(i)). Since this isomorphism commutes with the Adams operations, and
Soulé has shown in [59] the ψk = ki on H1

ét(OS,Q�(i)), the same must be true on
K2i−1(OS) ⊗Q� = K2i−1(F) ⊗Q�.
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Global Fields of Finite Characteristic5.5

A global field of finite characteristic p is a finitely generated field F of transcendence
degree one over Fp; the algebraic closure of Fp in F is a finite field Fq of character-
istic p. It is classical (see [24], I.6) that there is a unique smooth projective curve X
over Fq whose function field is F. If S is a nonempty set of closed points of X, then
X − S is affine; we call the coordinate ring R of X − S the ring of S-integers in F. In
this section, we discuss the K-theory of F, of X and of the rings of S-integers of F.

The group K0(X) = Z⊕ Pic(X) is finitely generated of rank two, by a theorem
of Weil. In fact, there is a finite group J(X) such that Pic(X) =̃ Z⊕ J(X). For K1(X)
and K2(X), the localization sequence of Quillen [49] implies that there is an exact
sequence

0 → K2(X) → K2(F)
∂→ ⊕x∈Xk(x)× → K1(X) → F

×
q → 0 .

By classical Weil reciprocity, the cokernel of ∂ is F×
q , so K1(X) =̃ F×

q × F×
q . Bass

and Tate proved in [4] that the kernel K2(X) of ∂ is finite of order prime to p. This
establishes the low dimensional cases of the following theorem, first proven by
Harder [22], using the method pioneered by Borel [7].

48 Theorem 48 Let X be a smooth projective curve over a finite field of characteristic p.
For n ≥ 1, the group Kn(X) is finite of order prime to p.

Proof Tate proved that KM
n (F) = 0 for all n ≥ 3. By Geisser and Levine’s theo-

rem [19], the Quillen groups Kn(F) are uniquely p-divisible for n ≥ 3. For every
closed point x ∈ X, the groups Kn(x) are finite of order prime to p (n > 0) because
k(x) is a finite field extension of Fq. From the localization sequence

⊕x∈XKn(x) → Kn(X) → Kn(F) → ⊕x∈XKn−1(x)

and a diagram chase, it follows that Kn(X) is uniquely p-divisible. Now Quillen
proved in [20] that the groups Kn(X) are finitely generated abelian groups. A second
diagram chase shows that the groups Kn(X) must be finite.

49 Corollary 49 If R is the ring of S-integers in F = Fq(X) (and S ≠ ∅) then:
a) K1(R) =̃ R× =̃ F×

q × Zs, |S| = s + 1;
b) For n ≥ 2, Kn(R) is a finite group of order prime to p.

Proof Classically, K1(R) = R× ⊕ SK1(R) and the units of R are well known. The
computation that SK1(R) = 0 is proven in [3]. The rest follows from the localization
sequence Kn(X) → Kn(X′) → ⊕x∈SKn−1(x).
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Example 50. (The e-invariant.) The targets of the e-invariant of X and F are the
same groups as for Fq, because every root of unity is algebraic over

Fq. Hence the inclusions of K2i−1(Fq) =̃ Z|(qi − 1) in K2i−1(X) and K2i−1(F) are split
by the e-invariant, and this group is the Harris–Segal summand.

The inverse limit of the finite curves Xν = X × Spec(Fqν ) is the curve X = X ⊗Fq Fq

over the algebraic closure Fq. To understand Kn(X) for n > 1, it is useful to know
not only what the groups Kn(X) are, but how the (geometric) Frobenius ϕ : x 
→ xq

acts on them.
Classically, K0(X) = Z ⊕ Z ⊕ J(X), where J(X) is the group of points on the

Jacobian variety over Fq; it is a divisible torsion group. If � ≠ p, the �-primary
torsion subgroup J(X)� of J(X) is isomorphic to the abelian group (Z|�∞)2g . The
group J(X) may or may not have p-torsion. For example, if X is an elliptic curve
then the p-torsion in J(X) is either 0 or Z|p∞, depending on whether or not X
is supersingular (see [24], Ex. IV.4.15). Note that the localization J(X)[1|p] is the
direct sum over all � ≠ p of the �-primary groups J(X)�.

Next, recall that the group of units F
×
q may be identified with the group µ of

all roots of unity in Fq; its underlying abelian group is isomorphic to Q|Z[1|p].
Passing to the direct limit of the K1(Xν) yields K1(X) =̃ µ ⊕ µ.

For n ≥ 1, the groups Kn(X) are all torsion groups, of order prime to p, because
this is true of each Kn(Xν) by 48. The following theorem determines the abelian
group structure of the Kn(X) as well as the action of the Galois group on them.
It depends upon Suslin’s theorem (see [63]) that for i ≥ 1 and � ≠ p the groups
Hn

M(X,Z|�∞(i)) equal the groups Hn
ét(X,Z|�∞(i)).

51Theorem 51 Let X be a smooth projective curve over Fq. Then for all n ≥ 0 we
have isomorphisms of Gal(Fq|Fq)-modules:

Kn(X) =̃






Z⊕ Z⊕ J(X), n = 0

µ(i) ⊕ µ(i), n = 2i − 1 > 0

J(X)[1|p](i), n = 2i > 0 .

For � ≠ p, the �-primary subgroup of Kn−1(X) is isomorphic to Kn(X;Z|�∞), n > 0,
whose Galois module structure is given by:

Kn(X;Z|�∞) =̃






Z|�∞(i) ⊕ Z|�∞(i), n = 2i ≥ 0

J(X)�(i − 1), n = 2i − 1 > 0 .

Proof Since the groups Kn(X) are torsion for all n > 0, the universal coefficient
theorem shows that Kn(X;Z|�∞) is isomorphic to the �-primary subgroup of
Kn−1(X). Thus we only need to determine the Galois modules Kn(X;Z|�∞). For



160 Charles Weibel

n = 0, 1, 2 they may be read off from the above discussion. For n > 2 we consider
the motivic spectral sequence (5.3); by Suslin’s theorem, the terms E

p,q
2 vanish

for q < 0 unless p = q, q + 1, q + 2. There is no room for differentials, so the
spectral sequence degenerates at E2 to yield the groups Kn(X;Z|�∞). There are
no extension issues because the edge maps are the e-invariants K2i(X;Z|�∞) →
H0

ét(X,Z|�∞(i)) = Z|�∞(i) of 50, and are therefore split surjections. Finally, we note
that as Galois modules we have H1

ét(X,Z|�∞(i)) =̃ J(X)�(i − 1), and (by Poincaré
Duality [39, V.2]) H2

ét(X,Z|�∞(i + 1)) =̃ Z|�∞(i).

Passing to invariants under the group G = Gal(Fq|Fq), there is a natural map
from Kn(X) to Kn(X)G. For odd n, we see from Theorem 51 and Example 15 that
K2i−1(X)G =̃ Z|(qi − 1)⊕Z|(qi − 1); for even n, we have the less concrete description
K2i(X)G =̃ J(X)[1|p](i)G. One way of studying this group is to consider the action
of the algebraic Frobenius ϕ∗ (induced by ϕ−1) on cohomology.

Example 52. ϕ∗ acts trivially on H0
ét(X,Q�) = Q� and H2

ét(X,Q�(1)) = Q�. It acts
as q−i on the twisted groups H0

ét(X,Q�(i)) and H2
ét(X,Q�(i + 1)).

Weil’s proof in 1948 of the Riemann Hypothesis for Curves implies that the
eigenvalues of ϕ∗ acting on H1

ét(X,Q�(i)) have absolute value q1|2−i.
Since Hn

ét(X,Q�(i)) =̃ Hn
ét(X,Q�(i))G, a perusal of these cases shows that we have

Hn
ét(X,Q�(i)) = 0 except when (n, i) is (0, 0) or (2, 1).

For any G-module M, we have an exact sequence [75, 6.1.4]

0 → MG → M
ϕ∗−1

M → H1(G, M) → 0 . (5.8)

The case i = 1 of the following result reproduces Weil’s theorem that the �-primary
torsion part of the Picard group of X is J(X)G

� .

53 Lemma 53 For a smooth projective curve X over Fq, � � q and i ≥ 2, we have:

1. Hn+1
ét (X,Z�(i)) =̃ Hn

ét(X,Z|�∞(i)) =̃ Hn
ét(X,Z|�∞(i))G for all n;

2. H0
ét(X,Z|�∞(i)) =̃ Z|w(�)

i (F);

3. H1
ét(X,Z|�∞(i)) =̃ J(X)�(i − 1)G;

4. H2
ét(X,Z|�∞(i)) =̃ Z|w(�)

i−1(F); and

5. Hn
ét(X,Z|�∞(i)) = 0 for all n ≥ 3.

Proof Since i ≥ 2, we see from 52 that Hn
ét(X,Q�(i)) = 0. SinceQ�|Z� = Z|�∞, this

yields Hn
ét(X,Z|�∞(i)) =̃ Hn+1

ét (X,Z�(i)) for all n.
Since each Hn = Hn

ét(X,Z|�∞(i)) is a quotient of Hn
ét(X,Q�(i)), ϕ∗ − 1 is a surjec-

tion, i.e., H1(G, Hn) = 0. Since Hn(G, −) = 0 for n > 1, the Leray spectral sequence
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for X → X collapses for i > 1 to yield exact sequences

0 → Hn
ét

(
X,Z|�∞(i)

) → Hn
ét

(
X,Z|�∞(i)

) ϕ∗−1→ Hn
ét

(
X,Z|�∞(i)

) → 0 . (5.9)

In particular, Hn
ét(X,Z|�∞(i)) = 0 for n > 2. Since H2

ét(X,Z|�∞(i)) =̃ Z|�∞(i−1) this
yields H2

ét(X,Z|�∞(i)) =̃ Z|�∞(i − 1)G = Z|wi−1. We also see that H1
ét(X,Z|�∞(i))

is the group of invariants of the Frobenius, i.e., J(X)�(i − 1)ϕ∗
.

Given the calculation of Kn(X)G in 51 and that of Hn
ét(X,Z|�∞(i)) in 53, we see

that the natural map Kn(X) → Kn(X)G is a surjection, split by the Kahn maps 34
and 39. Thus the real content of the following theorem is that Kn(X) → Kn(X)G is
an isomorphism.

54Theorem 54 Let X be the smooth projective curve corresponding to a global
field F over Fq. Then K0(X) = Z ⊕ Pic(X), and the finite groups Kn(X) for n > 0
are given by:

Kn(X) =̃ Kn(X)G =̃






Kn(Fq) ⊕ Kn(Fq), n odd ,
⊕

�≠p J(X)�(i)G, n = 2i even .

Proof We may assume that n ≠ 0, so that the groups Kn(X) are finite by 48. It
suffices to calculate the �-primary part Kn+1(X;Z|�∞) of Kn(X). But this follows
from the motivic spectral sequence (5.3), which degenerates by 53.

The Zeta Function of a Curve
We can relate the orders of the K-groups of the curve X to values of the zeta function
ζX(s). By definition, ζX(s) = Z(X, q−s), where

Z(X, t) = exp

( ∞∑

n=1

∣
∣X(Fqn )

∣
∣

tn

n

)

.

Weil proved that Z(X, t) = P(t)|(1 − t)(1 − qt) for every smooth projective curve X,
where P(t) ∈ Z[t] is a polynomial of degree 2 · genus(X) with all roots of absolute
value 1|√q. This formula is a restatement of Weil’s proof of the Riemann Hypothesis
for X (52 above), given Grothendieck’s formula P(t) = det(1 − ϕ∗t), where ϕ∗
is regarded as an endomorphism of H1

ét(X;Q�). Note that by 52 the action of
ϕ∗ on H0

ét(X;Q�) has det(1 − ϕ∗t) = (1 − t), and the action on H2
ét(X;Q�) has

det(1 − ϕ∗t) = (1 − qt).
Here is application of Theorem 54, which goes back to Thomason (see [67, (4.7)]

and [35]). Let#A denote the order of a finite abelian group A.
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55 Corollary 55 If X is a smooth projective curve over Fq then for all i ≥ 2,

#K2i−2(X) ·#K2i−3(Fq)

#K2i−1(Fq) ·#K2i−3(X)

=
∏

�

#H2
ét(X;Z�(i))

#H1
ét(X;Z�(i)) ·#H3

ét(X;Z�(i))
=

∣
∣ζX(1 − i)

∣
∣ .

Proof We have seen that all the groups appearing in this formula are finite. The
first equality follows from 53 and 54. The second equality follows by the Weil-
Grothendieck formula for ζX(1 − i) mentioned a few lines above.

Iwasawa modules
The group H1

ét(X,Z|�∞(i)) is the (finite) group of invariants M#(i)ϕ∗
of the i-th

twist of the Pontrjagin dual M# of the Iwasawa module M = MX . By definition MX

is the Galois group of X̂ over X∞ = X ⊗Fq Fq(∞), where the field Fq(∞) is obtained
from Fq by adding all �-primary roots of unity, and X̂ is the maximal unramified
pro-� abelian cover of X∞. It is known that the Iwasawa module MX is a finitely
generated free Z�-module, and that its dual M# is a finite direct sum of copies
of Z|�∞ [12, 3.22]. This viewpoint was developed in [13], and the corresponding
discussion of Iwasawa modules for number fields is in [42].

Local Fields5.6

Let E be a local field of residue characteristic p, with (discrete) valuation ring V
and residue field Fq. It is well known that K0(V) = K0(E) = Z and K1(V) = V×,
K1(E) = E× =̃ (V×) × Z, where the factor Z is identified with the powers {πm} of
a parameter π of V . It is well known that V× =̃ µ(E) × U1, where µ(E) is the group
of roots of unity in E (or V), and where U1 is a free Zp-module.

In the equi-characteristic case, where char(E) = p, it is well known that V =̃
Fq[[π]] and E = Fq((π)) [55], so µ(E) = F×

q , and U1 = W(Fq) has rank [Fq : Fp]
over Zp = W(Fp). The decomposition of K1(V) = V× is evident here. Here is
a description of the abelian group structure on Kn(V) for n > 1.

56 Theorem 56 Let V = Fq[[π]] be the ring of integers in the local field E = Fq((π)).
For n ≥ 2 there are uncountable, uniquely divisible abelian groups Un so that

Kn(V) =̃ Kn(Fq) ⊕ Un, Kn(E) =̃ Kn(V) ⊕ Kn−1(Fq) .
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Proof The map Kn−1(Fq) → Kn(E) sending x to {x, π} splits the localization
sequence, yielding the decomposition of Kn(E). If Un denotes the kernel of the
canonical map Kn(V) → Kn(Fq), then naturality yields Kn(V) = Un ⊕ Kn(Fq). By
Gabber’s rigidity theorem [17], Un is uniquely �-divisible for � ≠ p and n > 0. It
suffices to show that Un is uncountable and uniquely p-divisible when n ≥ 2.

Tate showed that the Milnor groups KM
n (E) are uncountable, uniquely divisible

for n ≥ 3, and that the same is true for the kernel U2 of the norm residue map
K2(E) → µ(E); see [66]. If n ≥ 2 then KM

n (E) is a summand of the Quillen K-
group Kn(E) by [61]. On the other hand, Geisser and Levine proved in [19] that the
complementary summand is uniquely p-divisible.

In the mixed characteristic case, when char(E) = 0, even the structure of V× is
quite interesting. The torsion free part U1 is a free Zp-module of rank [E : Qp];
it is contained in (1 + πV)× and injects into E by the convergent power series for
x 
→ ln(x).

The group µ(E) of roots of unity in E (or V) is identified with (F∗
q) × µp∞(E),

where the first factor arises from Teichmüller’s theorem that V× → F
×
q =̃ Z|(q − 1)

has a unique splitting, and µp∞(E) denotes the finite group of p-primary roots of
unity in E. There seems to be no simple formula for the order of the cyclic p-group
µp∞(E).

For K2, there is a norm residue symbol K2(E) → µ(E) and we have the following
result; see [75, III.6.6].

57Theorem 57: (Moore’s Theorem.) The group K2(E) is the product of a finite
group, isomorphic to µ(E), and an uncountable, uniquely divisible abelian group
U2. In addition,

K2(V) =̃ µp∞(E) × U2 .

Proof The fact that the kernel U2 of the norm residue map is divisible is due to
C. Moore, and is given in the Appendix to [40]. The fact that U2 is torsion free
(hence uniquely divisible) was proven by Tate [66] when char(F) = p, and by
Merkurjev [37] when char(F) = 0.

Since the transcendence degree of E overQ is uncountable, it follows from Moore’s
theorem and the arguments in [40] that the Milnor K-groups KM

n (E) are uncount-
able, uniquely divisible abelian groups for n ≥ 3. By [61], this is a summand of
the Quillen K-group Kn(E). As in the equicharacteristic case, Kn(E) will contain an
uncountable uniquely divisible summand about which we can say very little.

To understand the other factor, we typically proceed a prime at a time. This
has the advantage of picking up the torsion subgroups of Kn(E), and detecting the
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groups Kn(V)|�. For p-adic fields, the following calculation reduces the problem to
the prime p.

58 Proposition 58 If i > 0 there is a summand of K2i−1(V) =̃ K2i−1(E) isomorphic to
K2i−1(Fq) =̃ Z|(qi − 1), detected by the e-invariant. The complementary summand
is uniquely �-divisible for every prime � ≠ p, i.e., a Z(p)-module.

There is also a decomposition K2i(E) =̃ K2i(V)⊕K2i−1(Fq), and the group K2i(V)
is uniquely �-divisible for every prime � ≠ p, i.e., a Z(p)-module.

Proof Pick a prime �. We see from Gabber’s rigidity theorem [17] that the groups
Kn(V ;Z|�ν) are isomorphic to Kn(Fq;Z|�ν) for n > 0. Since the Bockstein spectral
sequences are isomorphic, and detect all finite cyclic �-primary summands of
Kn(V) and Kn(Fq) [72, 5.9.12], it follows that K2i−1(V) has a cyclic summand
isomorphic to Z|w(�)

i (E), and that the complement is uniquely �-divisible. Since
Kn(V ;Z|�) =̃ Z|�, we also see that K2i(V) is uniquely �-divisible. As � varies, we get
a cyclic summand of order wi(E) in K2i−1(V) whose complement is a Z(p)-module.

If x ∈ K2i−1(V), the product {x, π} ∈ K2i(E) maps to the image of x in K2i−1(Fq)
under the boundary map ∂ in the localization sequence. Hence the summand
of K2i−1(V) isomorphic to K2i−1(Fq) lifts to a summand of K2i(E). This breaks
the localization sequence up into the split short exact sequences 0 → Kn(V) →
Kn(E) → Kn−1(Fq) → 0.

59 Completed K-theory 59 It will be convenient to fix a prime � and pass to the
�-adic completion K̂(R) of the K-theory space K(R), where R is any ring. We
also write Kn(R;Z�) for πnK̂(R). Information about these groups tells us about
the groups Kn(R,Z|�ν) = πn(K(R);Z|�ν), because these groups are isomorphic
to πn(K̂(R);Z|�ν) for all ν.

If the groups Kn(R;Z|�ν) are finite, then Kn(R;Z�) is an extension of the Tate
module of Kn−1(R) by the �-adic completion of Kn(R). (The Tate module of an
abelian group A is the inverse limit of the groups Hom(Z|�ν, A).) For example,
Kn(C;Z�) vanishes for odd n and for even n equals the Tate module Z� of Kn−1(C).
If in addition the abelian groups Kn(R) are finitely generated, there can be no Tate
module and we have Kn(R;Z�) =̃ Kn(R) ⊗Z Z� =̃ lim← Kn(R;Z|�ν).

60 Warning 60 Even if we know Kn(R;Z�) for all primes, we may not still be able to
determine the underlying abelian group Kn(R) exactly from this information. For
example, consider the case n = 1, R = Zp. We know that K1(R;Zp) =̃ (1+pR)× =̃ Zp,
p ≠ 2, but this information does not even tell us that K1(R)⊗Z(p) =̃ Zp. To see why,
note that the extension 0 → Z(p) → Zp → Zp|Z(p) → 0 doesn’t split; there are
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no p-divisible elements in Zp, yet Zp|Z(p) =̃ Qp|Q is a uniquely divisible abelian
group.

We now consider the p-adic completion of K(E). By 58, it suffices to consider the
p-adic completion of K(V).

Write wi for the numbers wi = w
(p)
i (E), which were described in 23. For all i, and

�ν > wi, the étale cohomology group H1(E, µ⊗i
pν ) is isomorphic to (Z|pν)d ⊕Z|wi ⊕

Z|wi−1, d = [E : Qp]. By duality, the group H2(E, µ⊗i+1
pν ) is also isomorphic to Z|wi.

61Theorem 61 Let E be a local field, of degree d over Qp, with ring of integers V .
Then for n ≥ 2 we have:

Kn(V ;Zp) =̃ Kn(E;Zp) =̃

{

Z|w(p)
i (E), n = 2i,

(Zp)d ⊕ Z|w(p)
i (E), n = 2i − 1 .

}

Moreover, the first étale Chern classes K2i−1(E;Z|pν) =̃ H1(E, µ⊗i
pν ) are natural

isomorphisms for all i and ν.
Finally, each K2i(V) is the direct sum of a uniquely divisible group, a divisible

p-group and a subgroup isomorphic to Z|w(p)
i (E).

Proof If p > 2 the first part is proven in [6] (see [25]). (It also follows from the
spectral sequence (5.1) for E, using the Voevodsky-Rost theorem.) In this case,
Theorem 34 and a count shows that the étale Chern classes K2i−1(E;Z|pν) →
H1

ét(E; µ⊗i
pν ) are isomorphisms. If p = 2 this is proven in [51, (1.12)]; surprisingly,

this implies that the Harris–Segal maps and Kahn maps are even defined when E
is an exceptional 2-adic field.

Now fix i and set wi = w
(p)
i (E). Since the Tate module of any abelian group is

torsion free, and K2i(E;Zp) is finite, we see that the Tate module of K2i−1(E) vanishes
and the p-adic completion of K2i(E) is Z|wi. Since this is also the completion of
the Z(p)-module K2i(V) by 58, the decomposition follows from the structure of
Z(p)-modules. (This decomposition was first observed in [27, 6.2].)

62Remark 62 The fact that these groups were finitely generated Zp-modules of
rank d was first obtained by Wagoner in [70], modulo the identification in [46] of
Wagoner’s continuous K-groups with K∗(E;Z|p).

Unfortunately, I do not know how to reconstruct the “integral” homotopy groups
Kn(V) from the information in 61. Any of theZp’s in K2i−1(V ;Zp) could come from
either a Z(p) in K2i−1(V) or a Z|p∞ in K2i−2(V). Here are some cases when I can
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show that they come from torsion free elements; I do not know any example where
a Z|p∞ appears.

63 Corollary 63 K3(V) contains a torsion free subgroup isomorphic to Zd
(p), whose

p-adic completion is isomorphic to the torsion free part of K3(V ;Zp) =̃ (Zp)d ⊕
Z|w(p)

2 .

Proof Combine 61 with Moore’s Theorem 57 and 58.

I doubt that the extension 0 → Z
d
(p) → K3(V) → U3 → 0 splits (see Warning 60).

Example 64. If k > 0, K4k+1(Z2) contains a subgroup Tk isomorphic toZ(2) ×Z|wi,
and the quotient K4k+1(Z2)|Tk is uniquely divisible. (By 23, wi =

2(22k+1 − 1).)
This follows from Rognes’ theorem [52, 4.13] that the map from K4k+1(Z)⊗Z2 =̃

Z2 ⊕(Z|2) to K4k+1(Z2;Z2) is an isomorphism for all k > 1. (The information about
the torsion subgroups, missing in [52], follows from [51].) Since this map factors
through K4k+1(Z2), the assertion follows.

Example 65. Let F be a totally imaginary number field of degree d = 2r2 over
Q, and let E1, …, Es be the completions of F at the prime ideals

over p. There is a subgroup of K2i−1(F) isomorphic to Zr2 by Theorem 6; its im-
age in ⊕K2i−1(Ej) is a subgroup of rank at most r2, while ⊕K2i−1(Ej;Zp) has rank
d =

∑
[Ej : Qp]. So these subgroups of K2i−1(Ej) can account for at most half of the

torsion free part of ⊕K2i−1(Ej;Zp).

Example 66. Suppose that F is a totally real number field, of degree d = r1 over
Q, and let E1, …, Es be the completions of F at the prime ideals over

p. For k > 0, there is a subgroup of K4k+1(F) isomorphic to Zd by Theorem 6;
its image in ⊕K4k+1(Ej) is a subgroup of rank d, while ⊕K4k+1(Ej;Zp) has rank
d =

∑
[Ej : Qp]. However, this does not imply that the p-adic completion Zd

p of the
subgroup injects into ⊕K4k+1(Ej;Zp). Implications like this are related to Leopoldt’s
conjecture.

Leopoldt’s conjecture states that the torsion free partZd−1
p of (OF)× ⊗Zp injects

into the torsion free part Zd
p of

∏s
j=1 O×

Ej
; (see [71, 5.31]). This conjecture has been

proven when F is an abelian extension ofQ; (see [71, 5.32]).
When F is a totally real abelian extension of Q, and p is a regular prime, Soulé

shows in [59, 3.1, 3.7] that the torsion free part Zd
p of K4k+1(F) ⊗ Zp injects into

⊕K4k+1(Ej;Zp) =̃ (Zp)d, because the cokernel is determined by the Leopoldt p-adic
L-function Lp(F, ω2k, 2k + 1), which is a p-adic unit in this favorable scenario.
Therefore in this case we also have a subgroup Zd

(p) in each of the groups K4k+1(Ej).



Algebraic K-Theory of Rings of Integers in Local and Global Fields 167

We conclude with a description of the topological type of K̂(V) and K̂(E), when
p is odd. Recall that FΨk denotes the homotopy fiber of Ψk − 1: Z × BU → BU .
Since Ψk = ki on π2i(BU) = Z for i > 0, and the other homotopy groups of BU
vanish, we see that π2i−1FΨk =̃ Z|(ki − 1), and that all even homotopy groups of
FΨk vanish, except for π0(FΨk) = Z.

67Theorem 67: (Thm. D of [25].) Let E be a local field, of degree d over Qp, with p
odd. Then after p-completion, there is a number k (given below) so that

K̂(V) � SU × Ud−1 × FΨk × BFΨk, K̂(E) � Ud × FΨk × BFΨk .

The number k is defined as follows. Set r = [E(µp) : E], and let pa be the number
of p-primary roots of unity in E(µp). If r is a topological generator of Z×

p , then
k = rn, n = pa−1(p − 1)|r. It is an easy exercise, left to the reader, to check that
π2i−1FΨk =̃ Zp|(ki − 1) is Z|wi for all i.

Number Fields at Primes Where cd = 2 5.7

In this section we quickly obtain a cohomological description of the odd torsion
in the K-groups of a number field, and also the 2-primary torsion in the K-groups
of a totally imaginary number field. These are the cases where cd�(OS) = 2, which
forces the motivic spectral sequence (5.3) to degenerate completely.

The following trick allows us to describe the torsion subgroup of the groups
Kn(R). Recall that the notation A{�} denotes the �-primary subgroup of an abelian
group A.

68Lemma 68 For a given prime �, ring R and integer n, suppose that Kn(R) is a finite
group, and that Kn−1(R) is a finitely generated group. Then Kn(R){�} =̃ Kn(R;Z�)
and Kn−1(R){�} =̃ Kn(R;Z|�∞).

Proof For large values of ν, the finite group Kn(R;Z|�ν) is the sum of Kn(R){�} and
Kn−1(R){�}. The transition from coefficientsZ|�ν toZ|�ν−1 (resp., toZ|�ν+1) is mul-
tiplication by 1 and � (resp., by � and 1) on the two summands. Taking the inverse
limit, (resp., direct limit) yields the groups Kn(R;Z�) and Kn(R;Z|�∞), respectively.

Example 69. By 7, the lemma applies to a ring OS of integers in a number
field F, with n even. For example, Theorem 4 says that K2(OS){�} =

K2(OS;Z�) =̃ H2
ét(OF[1|�],Z�(2)), and of course K1(OS){�} = K2(OS;Z|�∞) is the

group Z|w(�)
1 (F) of �-primary roots of unity in F.
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We now turn to the odd torsion in the K-groups of a number field. The �-primary
torsion is described by the following result, which is based on [51] and uses the
Voevodsky-Rost theorem. The notation A(�) will denote the localization of an
abelian group A at the prime �.

70 Theorem 70 Fix an odd prime �. Let F be a number field, and let OS be a ring of
integers in F. If R = OS[1|�], then for all n ≥ 2:

Kn(OS)(�) =̃






H2
ét

(
R;Z�(i + 1)

)
for n = 2i > 0 ;

Z
r2
(�) ⊕ Z|w(�)

i (F) for n = 2i − 1, i even ;

Z
r2+r1
(�) ⊕ Z|w(�)

i (F) for n = 2i − 1, i odd .

Proof By 7 we may replace OS by R without changing the �-primary torsion. By 68
and 6, it suffices to show that K2i(R;Z�) =̃ H2

ét(R;Z�(i + 1)) and K2i(R;Z|�∞) =̃
Z|w(�)

i (F). Note that the formulas for K0(OS) and K1(OS) are different; see (5.5).
If F is a number field and � ≠ 2, the étale �-cohomological dimension of F (and

of R) is 2. Since H2
ét(R;Z|�∞(i)) = 0 by 43, the Voevodsky-Rost theorem implies

that the motivic spectral sequence (5.3) has only two nonzero diagonals, except in
total degree zero, and collapses at E2. This gives

Kn(OS;Z|�∞) =̃






H0
(
R;Z|�∞(i)

)
= Z|w(�)

i (F) for n = 2i ≥ 2 ,

H1
(
R;Z|�∞(i)

)
for n = 2i − 1 ≥ 1 .

The description of K2i−1(OS){�} follows from 68 and 6.
The same argument works for coefficients Z�. For i > 0 we see that

Hn
ét(R,Z�(i)) = 0 for n ≠ 1, 2, so the spectral sequence degenerates to yield

K2i(R;Z�) =̃ H2
ét(R,Z�(i)). (This is a finite group by 42.) The description of

K2i(R){�} follows from 68 and 6.

Because H2
ét(R,Z�(i + 1))|� =̃ H2

ét(R, µ⊗i+1
� ), we immediately deduce:

71 Corollary 71 For all odd � and i > 0, K2i(OS)|� =̃ H2
ét(OS[1|�], µ⊗i+1

� ).

72 Remark 72 Similarly, the mod-� spectral sequence (5.1) collapses to yield the K-
theory ofOS with coefficientsZ|�,�odd. For example, ifOS contains a primitive�-th
root of unity and 1|� then H1(OS; µ⊗i

� ) =̃ O×
S |O×�

S ⊕ �Pic(OS) and H2(OS; µ⊗i
� ) =̃

Pic(OS)|� ⊕ �Br(OS) for all i, so
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Kn(OS;Z|�) =̃






Z|� ⊕ Pic(OS)|� for n = 0 ,

O×
S |O×�

S ⊕ �Pic(OS) for n = 2i − 1 ≥ 1 ,

Z|� ⊕ Pic(OS)|� ⊕ �Br(OS) for n = 2i ≥ 2 .

TheZ|� summands in degrees 2i are generated by the powers βi of the Bott element
β ∈ K2(OS;Z|�) (see 17). In fact, K∗(OS;Z|�) is free as a graded Z[β]-module on
K0(OS;Z|�), K1(OS;Z|�) and �Br(OS) ∈ K2(OS;Z|�); this is immediate from the
multiplicative properties of (5.1).

When F is totally imaginary, we have a complete description of K∗(OS). The 2-
primary torsion was first calculated in [51]; the odd torsion comes from Theo-
rem 70. Write wi for wi(F).

73Theorem 73 Let F be a totally imaginary number field, and let OS be the ring of
S-integers in F for some set S of finite places. Then for all n ≥ 2:

Kn(OS) =̃






Z⊕ Pic(OS) for n = 0 ;

Z
r2+|S|−1 ⊕ Z|w1 for n = 1 ;

⊕�H2
ét

(
OS[1|�];Z�(i + 1)

)
for n = 2i ≥ 2 ;

Z
r2 ⊕ Z|wi for n = 2i − 1 ≥ 3 .

Proof The case n = 1 comes from (5.5), and the odd torsion comes from 70, so it
suffices to check the 2-primary torsion. This does not change if we replace OS by
R = OS[1|2], by 7. By 68 and 6, it suffices to show that K2i(R;Z2) =̃ H2

ét(R;Z2(i + 1))
and K2i(R;Z|2∞) =̃ Z|w(2)

i (F).
Consider the mod 2∞ motivic spectral sequence (5.3) for the ring R, converging

to K∗(R;Z|2∞). It is known that cd2(R) = 2, and H2
ét(R;Z|2∞(i)) = 0 by 43.

Hence the spectral sequence collapses; except in total degree zero, the E2-terms
are concentrated on the two diagonal lines where p = q, p = q + 1. This gives

Kn(R;Z|2∞) =̃






H0
(
R;Z|2∞(i)

)
= Z|w(2)

i (F) for n = 2i ≥ 0 ,

H1
(
R;Z|2∞(i)

)
for n = 2i − 1 ≥ 1 .

The description of K2i−1(R){2} follows from 68 and 6.
The same argument works for coefficients Z2; for i > 0 and n ≠ 1, 2 we have

Hn
ét(R,Z2(i)) = 0, so (5.3) degenerates to yield K2i(R;Z2) =̃ H2

ét(R,Z2(i)). (This is
a finite group by 42). The description of K2i(R){2} follows from 68 and 6.
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Example 74. Let F be a number field containing a primitive �-th root of unity, and
let S be the set of primes over � in OF . If t is the rank of Pic(R)|�,

then H2
ét(R,Z�(i))|� =̃ H2

ét(R, µ⊗i
� ) =̃ H2

ét(R, µ�) ⊗ µ⊗i−1
� has rank t + |S| − 1 by (5.6).

By 73, the �-primary subgroup of K2i(OS) has t + |S| − 1 nonzero summands for
each i ≥ 2.

Example 75. If � ≠ 2 is a regular prime, we claim that K2i(Z[ζ�]) has no �-torsion.
(The case K0 is tautological by 3, and the classical case K2 is 5.)

Note that the group K2i−1(Z[ζ�]) =̃ Zr2 ⊕ Z|wi(F) always has �-torsion, because
w(�)

i (F) ≥ � for all i by 20(a). Setting R = Z[ζ�, 1|�], then by 73,

K2i

(
Z[ζ�]

)
=̃ H2

ét

(
R,Z�(i + 1)

) ⊕ (finite group without �-torsion) .

Since � is regular, we have Pic(R)|� = 0, and we saw in 5 that Br(R) = 0 and |S| = 1.
By 74, H2

ét(R,Z�(i + 1)) = 0 and the claim now follows.

We conclude with a comparison to the odd part of ζF(1 − 2k), generalizing the
Birch–Tate Conjecture 31. If F is not totally real, ζF(s) has a pole of order r2 at
s = 1 − 2k. We need to invoke the following deep result of Wiles [77], which is often
called the “Main Conjecture” of Iwasawa Theory.

76 Theorem 76 (Wiles) Let F be a totally real number field. If� is odd andOS = OF[1|�]
then for all even i = 2k > 0:

ζF(1 − i) =

∣
∣H2

ét(OS,Z�(i)
∣
∣

∣
∣H1

ét(OS,Z�(i)
∣
∣
ui ,

where ui is a rational number prime to �.

The numerator and denominator on the right side are finite by 36. Lichtenbaum’s
conjecture follows, up to a power of 2, by setting i = 2k:

77 Theorem 77 If F is totally real, then

ζF(1 − 2k) = (−1)kr1
|K4k−2(OF)|
|K4k−1(OF)| up to factors of 2 .

Proof By the functional equation, the sign of ζF(1 − 2k) is (−1)kr1 . It suffices to
show that the left and right sides of 77 have the same power of each odd prime �.
The group H2

ét(OF[1|�],Z�(i)) is the �-primary part of K2i−2(OF) by 70. The group
H1

ét(OF[1|�],Z�(i)) on the bottom of 76 is Z|w(�)
i (F) by 46, and this is isomorphic

to the �-primary subgroup of K2i−1(OF) by Theorem 70.



Algebraic K-Theory of Rings of Integers in Local and Global Fields 171

Real Number Fields at the Prime 2 5.8

Let F be a real number field, i.e., F has r1 > 0 embeddings intoR. The calculation of
the algebraic K-theory of F at the prime 2 is somewhat different from the calculation
at odd primes, for many reasons. One reason is that a real number field has infinite
cohomological dimension, which complicates descent methods. A second reason
is that the Galois group of a cyclotomic extension need not be cyclic, so that the
e-invariant may not split (see 29). A final reason is that the groups K∗(F;Z|2) do
not have a natural multiplication, because of the structure of the mod 2 Moore
space RP2.

For the real numbersR, the mod 2 motivic spectral sequence has E
p,q
2 = Z|2 for

all p, q in the octant q ≤ p ≤ 0. In order to distinguish between the groups E
p,q
2 ,

it is useful to label the nonzero elements of H0
ét(R,Z|2(i)) as βi, writing 1 for β0.

Using the multiplicative pairing with (say) the spectral sequence ′E∗,∗
2 converging

to K∗(R;Z|16), multiplication by the element η ∈ ′E0,−1
2 allows us to write the

nonzero elements in the −i-th column as ηjβi (see Table 5.2 below).
From Suslin’s calculation of Kn(R) in [62], we know that the groups Kn(R;Z|2)

are cyclic and 8-periodic (for n ≥ 0) with orders 2, 2, 4, 2, 2, 0, 0, 0 (for n =
0, 1, …, 7).

78Theorem 78 In the spectral sequence converging to K∗(R;Z|2), all the d2 differen-
tials with nonzero source on the lines p ≡ 1, 2 (mod 4) are isomorphisms. Hence
the spectral sequence degenerates at E3. The only extensions are the nontrivial
extensions Z|4 in K8a+2(R;Z|2).

Table 5.2. The mod 2 spectral sequence for R

1

β1 η
β2 ηβ1 η2

β3 ηβ2 η2β1 η3

ηβ3 η2β2 η3β1 η4

The first 4 columns of E2

1

β1 η
0 ηβ1 η2

0 0 η2β1 0

0 0 0 0

The first 4 columns of E3
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Proof Recall from Remark 2 that the mod 2 spectral sequence has periodicity
isomorphisms E

p,q
r =̃ E

p−4,q−4
r , p ≤ 0. Therefore it suffices to work with the columns

−3 ≤ p ≤ 0.
Because K3(R;Z|2) =̃ Z|2, the differential closest to the origin, from β2 to η3,

must be nonzero. Since the pairing with ′E2 is multiplicative and d2(η) = 0, we
must have d2(ηjβ2) = ηj+3 for all j ≥ 0. Thus the column p = −2 of E3 is zero, and
every term in the column p = 0 of E3 is zero except for {1, η, η2}.

Similarly, we must have d2(β3) = η3β1 because K5(R;Z|2) = 0. By multiplica-
tivity, this yields d2(ηjβ3) = ηj+3β1 for all j ≥ 0. Thus the column p = −3 of E3 is
zero, and every term in the column p = −1 of E3 is zero except for {β1, ηβ1, η2β1}.

79 Variant 79 The analysis with coefficients Z|2∞ is very similar, except that when
p > q, E

p,q
2 = H

p−q
ét (R;Z|2∞(−q)) is: 0 for p even; Z|2 for p odd. If p is odd, the

coefficient map Z|2 → Z|2∞ induces isomorphisms on the E
p,q
2 terms, so by 78 all

the d2 differentials with nonzero source in the columns p ≡ 1 (mod 4) are iso-
morphisms. Again, the spectral sequence converging to K∗(R;Z|2∞) degenerates
at E3 = E∞. The only extensions are the nontrivial extensions of Z|2∞ by Z|2 in
K8a+4(R;Z|2∞) =̃ Z|2∞.

80 Variant 80 The analysis with 2-adic coefficients is very similar, except that
(a) H0(R;Z2(i)) is: Z2 for i even; 0 for i odd and (b) (for p > q) E

p,q
2 = H

p−q
ét (R;

Z|2∞(−q)) is: Z|2 for p even; 0 for p odd. All differentials with nonzero source in
the column p ≡ 2 (mod 4) are onto. Since there are no extensions to worry about,
we omit the details.

In order to state the Theorem 82 below for a ring OS of integers in a number field F,
we consider the natural maps (for n > 0) induced by the r1 real embeddings of F,

αn
S(i) : Hn(OS;Z|2∞(i)) →

r1⊕

Hn(R;Z|2∞(i)) =̃






(Z|2)r1 , i − n odd

0, i − n even .
(5.10)

This map is an isomorphism for all n ≥ 3 by Tate-Poitou duality; by 45, it is also
an isomorphism for n = 2 and i ≥ 2. Write H̃1(OS;Z|2∞(i)) for the kernel of α1

S(i).

81 Lemma 81 The map H1(F;Z|2∞(i))
α1(i)→ (Z|2)r1 is a split surjection for all even i.

Hence H1(OS;Z|2∞(i)) =̃ (Z|2)r1 ⊕ H̃1(OS;Z|2∞(i)) for sufficiently large S.
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Proof By the strong approximation theorem for units of F, the left map vertical
map is a split surjection in the diagram:

Since F×|F×2 is the direct limit (over S) of the groups O×
S |O×2

S , we may replace F
by OS for sufficiently large S.

We also write A� B for an abelian group extension of B by A.

82Theorem 82 ([51, 6.9]) Let F be a real number field, and let R = OS be a ring of
S-integers in F containing OF[ 1

2 ]. Then α1
S(i) is onto when i = 4k > 0, and:

Kn(OS;Z|2∞) =̃






Z|w4k(F) for n = 8a ,

H1(OS;Z|2∞(4k + 1)) for n = 8a + 1 ,

Z|2 for n = 8a + 2 ,

H1(OS;Z|2∞(4k + 2)) for n = 8a + 3 ,

Z|2w4k+2 ⊕ (Z|2)r1−1 for n = 8a + 4 ,

(Z|2)r1−1
�H1(OS;Z|2∞(4k + 3)) for n = 8a + 5 ,

0 for n = 8a + 6 ,

H̃1(OS;Z|2∞(4k + 4)) for n = 8a + 7 .

Proof The morphism of spectral sequences (5.3), from that for OS to the sum of r1

copies of that forR, is an isomorphism on E
p,q
2 except on the diagonal p = q (where

it is an injection) and p = q + 1 (where we must show it is a surjection). When
p ≡ +1 (mod 4), it follows from 79 that we may identify d

p,q
2 with αp−q

S . Hence d
p,q
2

is an isomorphism if p ≥ 2 + q, and an injection if p = q. As in 79, the spectral
sequence degenerates at E3, yielding Kn(OS;Z|2∞) as proclaimed, except for two
points: (a) the extension ofZ|w4a+2 byZ|2r1 when n = 8a+4 is seen to be nontrivial
by comparison with the extension for R, and (b) when n = 8a + 6 it only shows
that Kn(OS;Z|2∞) is the cokernel of α1

S(4a + 4).
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To resolve (b) we must show that α1
S(4a+4) is onto when a > 0. Set n = 8a+6. Since

Kn(OS) is finite, Kn(OS;Z|2∞) must equal the 2-primary subgroup of Kn−1(OS),
which is independent of S by Theorem 7. But for sufficiently large S, the map
α1(4a + 4) is a surjection by 81, and hence Kn(OS;Z|2∞) = 0.

Proof of Theorem 1.
Let n > 0 be odd. By 6 and 7, it suffices to determine the torsion subgroup of
Kn(OS) = Kn(F). Since Kn+1(OS) is finite, it follows that Kn+1(OS;Z|�∞) is the
�-primary subgroup of Kn(OS). By 73, we may assume F has a real embedding.
By 70, we need only worry about the 2-primary torsion, which we can read off
from 82, recalling from 22(b) that w(2)

i (F) = 2 for odd i.

To proceed further, we need to introduce the narrow Picard group and the signature
defect of the ring OS.

83 Definition 83: (Narrow Picard group.) Each real embedding σi : F → R deter-
mines a map F× → R

× → Z|2, detecting the sign of units of F under that
embedding. The sum of these maps is the sign map σ : F× → (Z|2)r1 . The approx-
imation theorem for F implies that σ is surjective. The group F×

+ of totally positive
units in F is defined to be the kernel of σ.

Now let R = OS be a ring of integers in F. The kernel of σ|R : R× → F× → (Z|2)r1

is the subgroup R×
+ of totally positive units in R. Since the sign map σ|R factors

through F×|2 = H1(F,Z|2), it also factors through α1 : H1(R,Z|2) → (Z|2)r1 . The
signature defect j(R) of R is defined to be the dimension of the cokernel of α1;
0 ≤ j(R) < r1 because σ(−1) ≠ 0. Note that j(F) = 0, and that j(R) ≤ j(OF).

By definition, the narrow Picard group Pic+(R) is the cokernel of the the re-
stricted divisor map F×

+ → ⊕

℘�∈S Z. (See [10, 5.2.7]. This definition is due to
Weber; Pic+(OS) is also called the ray class group ClSF ; see [45, VI.1].) The kernel of
the restricted divisor map is clearly R×

+ , and it is easy to see from this that there is
an exact sequence

0 → R×
+ → R× σ→ (Z|2)r1 → Pic+(R) → Pic(R) → 0 .

A diagram chase (performed in [51, 7.6]) shows that there is an exact sequence

0 → H̃1(R;Z|2) → H1(R;Z|2)
α1→ (Z|2)r1 → Pic+(R)|2 → Pic(R)|2 → 0 .

(5.11)

(H̃1(R;Z|2) is defined as the kernel of α1.) Thus the signature defect j(R) is also
the dimension of the kernel of Pic+(R)|2 → Pic(R)|2. If we let t and u denote the
dimensions of Pic(R)|2 and Pic+(R)|2, respectively, then this means that u = t+j(R).
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If s denotes the number of finite places of R = OS, then dim H1(R;Z|2) =
r1 + r2 + s + t and dim H2(R;Z|2) = r1 + s + t − 1. This follows from (5.5) and (5.6),
using Kummer theory. As in (5.10) and (5.11), define H̃n(R;Z|2) to be the kernel
of αn : Hn(R;Z|2) → Hn(R;Z|2)r1 =̃ (Z|2)r1 .

84Lemma 84 Suppose that 1
2 ∈ R. Then dim H̃1(R,Z|2) = r2 + s + u. Moreover, the

map α2 : H2(R,Z|2) → (Z|2)r1 is onto, and dim H̃2(R,Z|2) = t + s − 1.

Proof The first assertion is immediate from (5.11). Since H2(R;Z|2∞(3)) =̃ (Z|2)r1

by 45, the coefficient sequence for Z|2 ⊂ Z|2∞(3) shows that H2(R;Z|2) →
H2(R;Z|2∞(3)) is onto. The final two assertions follow.

85Theorem 85 Let F be a real number field, and OS a ring of integers containing 1
2 .

If j = j(OS) is the signature defect, then the mod 2 algebraic K-groups of OS are
given (up to extensions) for n > 0 as follows:

Kn(OS;Z|2) =̃






H̃2(OS;Z|2) ⊕ Z|2 for n = 8a ,

H1(OS;Z|2) for n = 8a + 1 ,

H2(OS;Z|2)� Z|2 for n = 8a + 2 ,

(Z|2)r1−1
�H1(OS;Z|2) for n = 8a + 3 ,

(Z|2)j
�H2(OS;Z|2) for n = 8a + 4 ,

(Z|2)r1−1
� H̃1(OS;Z|2) for n = 8a + 5 ,

(Z|2)j ⊕ H̃2(OS;Z|2) for n = 8a + 6 ,

H̃1(OS;Z|2) for n = 8a + 7 .

Table 5.3. The mod 2 spectral sequence for OS

1

β1 H1

0 H1 H2

0 H̃1 H2 (Z|2)r1−1

H̃1 H̃2 (Z|2)r1−1 (Z|2)j

H̃2 0 (Z|2)j 0

0 0 0 0

The first 4 columns (−3 ≤ p ≤ 0) of E3 = E∞
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Proof (cf. [51, 7.8]) As in the proof of Theorem 82, we compare the spectral
sequence for R = OS with the sum of r1 copies of the spectral sequence for R. For
n ≥ 3 we have Hn(R;Z|2) =̃ (Z|2)r1 . It is not hard to see that we may identify
the differentials d2 : Hn(R,Z|2) → Hn+3(R,Z|2) with the maps αn. Since these
maps are described in 84, we see from Remark 2 that the columns p ≤ 0 of E3

are 4-periodic, and all nonzero entries are described by Table 5.3. (By the spectral
sequence (5.3), there is only one nonzero entry for p > 0, E+1,−1

3 = Pic(R)|2, and
it is only important for n = 0.) By inspection, E3 = E∞, yielding the desired
description of the groups Kn(R,Z|2) in terms of extensions. We omit the proof that
the extensions split if n ≡ 0, 6 (mod 8).

The case F = Qhas historical importance, because of its connection with the image
of J (see Example 29 or [50]) and classical number theory. The following result was
first established in [76]; the groups are not truly periodic only because the order
of K8a−1(Z) depends upon a.

86 Corollary 86 For n ≥ 0, the 2-primary subgroups of Kn(Z) and K2(Z[1|2]) are
essentially periodic, of period eight, and are given by the following table. (When
n ≡ 7 (mod 8), we set a = (n + 1)|8.)

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z){2} Z|2 Z|2 Z|16 0 0 0 Z|16a 0

In particular, Kn(Z) and Kn(Z[1|2]) have odd order for all n ≡ 4, 6, 8 (mod 8),
and the finite group K8a+2(Z) is the sum of Z|2 and a finite group of odd order. We
will say more about the odd torsion in the next section.

Proof When n is odd, this is Theorem 1; w(2)
4a is the 2-primary part of 16a by 22(c).

Since s = 1 and t = u = 0, we see from 84 that dim H̃1(Z[1|2];Z|2) = 1 and
that H̃2(Z[1|2];Z|2) = 0. By 85, the groups Kn(Z[1|2];Z|2) are periodic of orders
2, 4, 4, 4, 2, 2, 1, 2 for n ≡ 0, 1, …, 7 respectively. The groups Kn(Z[1|2]) for n odd,
given in Theorem 1, together with the Z|2 summand in K8a+2(Z) provided by
topology (see 29), account for all of Kn(Z[1|2];Z|2), and hence must contain all of
the 2-primary torsion in Kn(Z[1|2]).

Recall that the 2-rank of an abelian group A is the dimension of the vector space
Hom(Z|2, A). We have already seen (in either Theorem 1 or 82) that for n ≡ 1, 3, 5, 7
(mod 8) the 2-ranks of Kn(OS) are: 1, r1, 0 and 1, respectively.

87 Corollary 87 For n ≡ 2, 4, 6, 8 (mod 8), n > 0, the respective 2-ranks of the finite
groups Kn(OS) are: r1 + s + t − 1, j + s + t − 1, j + s + t − 1 and s + t − 1.
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Proof (cf. [51, 0.7]) Since Kn(R;Z|2) is an extension of Hom(Z|2, Kn−1R) by Kn(R)|2,
and the dimensions of the odd groups are known, we can read this off from the list
given in Theorem 85.

Example 88. Consider F = Q(
√

p), where p is prime. When p ≡ 1 (mod 8), it is
well known that t = j = 0 but s = 2. It follows that K8a+2(OF) has

2-rank 3, while the two-primary summand of Kn(OF) is nonzero and cyclic when
n ≡ 4, 6, 8 (mod 8).

When p ≡ 7 (mod 8), we have j = 1 for both OF and R = OF[1|2]. Since r1 = 2
and s = 1, the 2-ranks of the finite groups Kn(R) are: t + 2, t + 1, t + 1 and t for
n ≡ 2, 4, 6, 8 (mod 8) by 87. For example, if t = 0 (Pic(R)|2 = 0) then Kn(R) has
odd order for n ≡ 8 (mod 8), but the 2-primary summand of Kn(R) is (Z|2)2 when
n ≡ 2 and is cyclic when n ≡ 4, 6.

Example 89. (2–regular fields.) A number field F is said to be 2–regular if there
is only one prime over 2 and the narrow Picard group Pic+(OF[ 1

2 ])
is odd (i.e., t = u = 0 and s = 1). In this case, we see from 87 that K8a+2(OF) is the
sum of (Z|2)r1 and a finite odd group, while Kn(OF) has odd order for all n ≡ 4, 6, 8
(mod 8) (n > 0). In particular, the map KM

4 (F) → K4(F) must be zero, since it
factors through the odd order group K4(OF), and KM

4 (F) =̃ (Z|2)r1 .
Browkin and Schinzel [8] and Rognes and Østvær [54] have studied this case.

For example, when F = Q(
√

m) and m > 0 (r1 = 2), the field F is 2-regular exactly
when m = 2, or m = p or m = 2p with p ≡ 3, 5 (mod 8) prime. (See [8].)

A useful example is F = Q(
√

2). Note that the Steinberg symbols {−1, −1, −1, −1}
and {−1, −1, −1, 1+

√
2}generating KM

4 (F) =̃ (Z|2)2 must both vanish in K4(Z[
√

2]),
which we have seen has odd order. This is the case j = ρ = 0 of the following result.

90Corollary 90 Let F be a real number field. Then the rank ρ of the image of
KM

4 (F) =̃ (Z|2)r1 in K4(F) satisfies j(OF[1|2]) ≤ ρ ≤ r1 − 1. The image (Z|2)ρ lies
in the subgroup K4(OF) of K4(F), and its image in K4(OS)|2 has rank j(OS) for all
OS containing 1|2. In particular, the image (Z|2)ρ lies in 2 · K4(F).

Proof By 10, we have ρ < r1 = rank KM
4 (F). The assertion that KM

4 (F) → K4(F)
factors through K4(OF) follows from 8, by multiplying KM

3 (F) and K3(OF) =̃ K3(F)
by [−1] ∈ K1(Z). It is known [16, 15.5] that the edge map Hn(F,Z(n)) → Kn(F)
in the motivic spectral sequence agrees with the usual map KM

n (F) → Kn(F). By
Voevodsky’s theorem, KM

n (F)|2ν =̃ Hn(F,Z(n))|2ν =̃ Hn(F,Z|2ν(n)). For n = 4, the
image of the edge map H4(OS,Z|2ν(4)) =̃ H4(F,Z|2ν(4)) → K4(OS;Z|2) has rank
j by table 5.3; this implies the assertion that the image in K4(OS)|2 ⊂ K4(OS;Z|2)
has rank j(OS). Finally, taking OS = OF[1|2] yields the inequality j(OS) ≤ ρ.
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Example 91. (ρ = 1) Consider F = Q(
√

7), OF = Z[
√

7] and R = OF[1|2]; here
s = 1, t = 0 and j(R) = ρ = 1 (the fundamental unit u = 8 + 3

√
7 is

totally positive). Hence the image of KM
4 (F) =̃ (Z|2)2 in K4(Z[

√
7]) is Z|2 on the

symbol σ = {−1, −1, −1,
√

7}, and this is all of the 2-primary torsion in K4(Z[
√

7])
by 87.

On the other hand, OS = Z[
√

7, 1|7] still has ρ = 1, but now j = 0, and the
2-rank of K4(OS) is still one by 87. Hence the extension 0 → K4(OF) → K4(OS) →
Z|48 → 0 of Theorem 7 cannot be split, implying that the 2-primary subgroup of
K4(OS) must then be Z|32.

In fact, the nonzero element σ is divisible in K4(F). This follows from the fact
that if p ≡ 3 (mod 28) then there is an irreducible q = a + b

√
7 whose norm

is −p = qq. Hence R′ = Z[
√

7, 1|2q] has j(R′) = 0 but ρ = 1, and the extension
0 → K4(OF) → K4(OS) → Z|(p2 − 1) → 0 of Theorem 7 is not split. If in addition
p ≡ −1 (mod 2ν) – there are infinitely many such p for each ν – then there is an
element v of K4(R′) such that 2ν+1v = σ. See [73] for details.

92 Question 92 Can ρ be less than the minimum of r1 − 1 and j + s + t − 1?

As in (5.10), when i is even we define H̃2(R;Z2(i)) to be the kernel of α2(i) :
H2(R;Z2(i)) → H2(R;Z2(i))r1 =̃ (Z|2)r1 . By 84, H̃2(R;Z2(i)) has 2-rank s + t − 1.

93 Theorem 93 ([51, 0.6]) Let F be a number field with at least one real embedding,
and let R = OS denote a ring of integers in F containing 1|2. Let j be the signature
defect of R, and write wi for w(2)

i (F).
Then there is an integer ρ, j ≤ ρ < r1, such that, for all n ≥ 2, the two-primary

subgroup Kn(OS){2} of Kn(OS) is isomorphic to:

Kn(OS){2} =̃






H2
ét(R;Z2(4a + 1)) for n = 8a ,

Z|2 for n = 8a + 1 ,

H2
ét(R;Z2(4a + 2)) for n = 8a + 2 ,

(Z|2)r1−1 ⊕ Z|2w4a+2 for n = 8a + 3 ,

(Z|2)ρ
�H2

ét(R;Z2(4a + 3)) for n = 8a + 4 ,

0 for n = 8a + 5 ,

H̃2
ét(R;Z2(4a + 4)) for n = 8a + 6 ,

Z|w4a+4 for n = 8a + 7 .

Proof When n = 2i − 1 is odd, this is Theorem 1, since w(2)
i (F) = 2 when n ≡ 1

(mod 4) by 22(b). When n = 2 it is Theorem 4. To determine the two-primary
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subgroup Kn(OS){2} of the finite group K2i+2(OS) when n = 2i + 2, we use the
universal coefficient sequence

0 → (Z|2∞)r → K2i+3(OS;Z|2∞) → K2i+2(OS){2} → 0 ,

where r is the rank of K2i+3(OS) and is given by Theorem 6 (r = r1 + r2 or r2). To
compare this with Theorem 82, we note that H1(OS,Z|2∞(i)) is the direct sum of
(Z|2∞)r and a finite group, which must be H2(OS,Z2(i)) by universal coefficients;
(see [51, 2.4(b)]). Since α1

S(i) : H1(R;Z|2∞(i)) → (Z|2)r1 must vanish on the
divisible subgroup (Z|2∞)r, it induces the natural map α2

S(i) : H2
ét(OS;Z2(i)) →

(Z|2)r1 and

H̃1(OS,Z|2∞(i)) =̃ (Z|2∞)r ⊕ H̃2(OS,Z2(i)) .

This proves all of the theorem, except for the description of Kn(OS), n = 8a + 4. By
mod 2 periodicity (Remark 2) the integer ρ of Corollary 90 equals the rank of the
image of H4(OS,Z|2(4)) =̃ H4(OS,Z|2(4k + 4)) =̃ (Z|2)r1 in Hom(Z|2, Kn(OS)),
considered as a quotient of Kn+1(OS;Z|2).

We can combine the 2-primary information in 93 with the odd torsion information
in 70 and 77 to relate the orders of K-groups to the orders of étale cohomology
groups. Up to a factor of 2r1 , they were conjectured by Lichtenbaum in [34]. Let |A|
denote the order of a finite abelian group A.

94Theorem 94 Let F be a totally real number field, with r1 real embeddings, and let
OS be a ring of integers in F. Then for all even i > 0

2r1 · |K2i−2(OS)|
|K2i−1(OS)| =

∏

�

∣
∣H2

ét(OS[1|�];Z�(i))
∣
∣

∏

�

∣
∣H1

ét(OS[1|�];Z�(i))
∣
∣

.

Proof (cf. proof of 77) Since 2i − 1 ≡ 3 (mod 4), all groups involved are finite
(see 6, 42 and 46.) Write hn,i(�) for the order of Hn

ét(OS[1|�];Z�(i)). By 46, h1,i(�) =
w(�)

i (F). By 1, the �-primary subgroup of K2i−1(OS) has order h1,i(�) for all odd �

and all even i > 0, and also for � = 2 with the exception that when 2i − 1 ≡ 3
(mod 8) then the order is 2r1 h1,i(2).

By 70 and 93, the �-primary subgroup of K2i−2(OS) has order h2,i(�) for all �,
except when � = 2 and 2i − 2 ≡ 6 (mod 8) when it is h1,i(2)|2r1 . Combining these
cases yields the formula asserted by the theorem.

95Corollary 95 For R = Z, the formula conjectured by Lichtenbaum in [34] holds up
to exactly one factor of 2. That is, for k ≥ 1,

|K4k−2(Z)|
|K4k−1(Z)| =

Bk

4k
=

(−1)k

2
ζ(1 − 2k) .
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Moreover, if ck denotes the numerator of Bk|4k, then

|K4k−2(Z)| =






ck, k even

2 ck, k odd .

Proof The equality Bk|4k = (−1)kζ(1 − 2k)|2 comes from 25. By 77, the formula
holds up to a factor of 2. By 27, the two-primary part of Bk|4k is 1|w(2)

2k . By 22(c), this
is also the two-primary part of 1|8k. By 86, the two-primary part of the left-hand
side of 95 is 2|16 when k is odd, and the two-primary part of 1|8k when k = 2a is
even.

Example 96. (K4k−2(Z)) The group K4k−2(Z) is cyclic of order ck or 2ck for all
k ≤ 5000. For small k we need only consult Example 24 to see

that the groups K2(Z), K10(Z), K18(Z) and K26(Z) are isomorphic to Z|2. We also
have K6(Z) = K14(Z) = 0. (The calculation of K6(Z) up to 3-torsion was given
in [15].) However, c6 = 691, c8 = 3617, c9 = 43 867 and c13 = 657 931 are all
prime, so we have K22(Z) =̃ Z|691, K30(Z) =̃ Z|3617, K34(Z) =̃ Z|2 ⊕Z|43 867 and
K50 =̃ Z|2 ⊕ Z|657 931.

The next hundred values of ck are squarefree: c10 = 283 · 617, c11 = 131 · 593,
c12 = 103 · 2 294 797, c14 = 9349 · 362 903 and c15 = 1721 · 1 001 259 881 are
all products of two primes, while c16 = 37 · 683 · 305 065 927 is a product of 3
primes. Hence K38(Z) = Z|c10, K42(Z) = Z|2c11, K46 = Z|c12, K54(Z) = Z|c14,
K58(Z) = Z|2c15 and K62(Z) = Z|c16 = Z|37 ⊕ Z|683 ⊕ Z|305 065 927.

Thus the first occurrence of the smallest irregular prime (37) is in K62(Z); it
also appears as a Z|37 summand in K134(Z), K206(Z), …, K494(Z). In fact, there is
37-torsion in every group K72a+62(Z) (see 105 below).

For k < 5000, only seven of the ck are not square-free; see [56], A090943. The nu-
merator ck is divisible by �2 only for the following pairs (k, �): (114, 103), (142, 37),
(457, 59), (717, 271), (1646, 67) and (2884, 101). However, K4k−2(Z) is still cyclic
with one Z|�2 summand in these cases. To see this, we note that Pic(R)|� =̃ Z|� for
these �, where R = Z[ζ�]. Hence K4k−2(R)|� =̃ H2(R,Z�(2k))|� =̃ H2(R,Z|�(2k)) =̃
Pic(R) =̃ Z|�. The usual transfer argument now shows that K4k−2(Z)|� is either zero
or Z|� for all k.

The Odd Torsion in K∗(Z)5.9

We now turn to the �-primary torsion in the K-theory of Z, where � is an odd
prime. By 27 and 70, the odd-indexed groups K2i−1(Z) have �-torsion exactly when
i ≡ 0 (mod � − 1). Thus we may restrict attention to the groups K2i(Z), whose
�-primary subgroups are H2

ét(Z[1|�];Z�(i + 1)) by 70.



Algebraic K-Theory of Rings of Integers in Local and Global Fields 181

Our method is to consider the cyclotomic extension Z[ζ] of Z, ζ = e2πi|�.
Because the Galois group G = Gal(Q(ζ)|Q) is cyclic of order � − 1, prime to �, the
usual transfer argument shows that K∗(Z) → K∗(Z[ζ]) identifies Kn(Z) ⊗Z� with
Kn(Z[ζ]))G ⊗ Z� for all n. Because Kn(Z) and Kn(Z[1|�]) have the same �-torsion
(by the localization sequence), it suffices to work with Z[1|�].

97Proposition 97 When � is an odd regular prime there is no �-torsion in K2i(Z).

Proof Since � is regular, we saw in Example 75 that the finite group K2i(Z[ζ])
has no �-torsion. Hence the same is true for its G-invariant subgroup, and also
for K2i(Z).

It follows from this and 27 that K2i(Z;Z|�) contains only the Bockstein represen-
tatives of the Harris–Segal summands in K2i−1(Z), and this only when 2i ≡ 0
(mod 2� − 2).

We can also describe the algebra structure of K∗(Z;Z|�) using the action of
the cyclic group G = Gal(Q(ζ)|Q) on the ring K∗(Z[ζ];Z|�). For simplicity, let us
assume that � is a regular prime. It is useful to set R = Z[ζ, 1|�] and recall from 72
that K∗ = K∗(R;Z|�) is a free graded Z|�[β]-module on the (� + 1)|2 generators of
R×|� ∈ K1(R;Z|�), together with 1 ∈ K0(R;Z|�).

By Maschke’s theorem, Z|�[G] =̃
∏�−2

i=0 Z|� is a simple ring; every Z|�[G]-
module has a unique decomposition as a sum of irreducible modules. Since µ�

is an irreducible G-module, it is easy to see that the irreducible G-modules are µ⊗i
� ,

i = 0, 1, …, � − 2. The “trivial” G-module is µ⊗�−1
� = µ⊗0

� = Z|�. By convention,
µ⊗−i

� = µ⊗�−1−i
� .

For example, the G-module 〈βi〉 of K2i(Z[ζ];Z|�) generated by βi is isomorphic
to µ⊗i

� . It is a trivial G-module only when (� − 1)|i.
If A is any Z|�[G]-module, it is traditional to decompose A = ⊕A[i], where A[i]

denotes the sum of all G-submodules isomorphic to µ⊗i
� .

Example 98. Set R = Z[ζ�, 1|�]. It is known that the torsion free part R×|µ� =̃
Z

(�−1)|2 of the units of R is isomorphic as a G-module toZ[G]⊗Z [c]Z,
where c is complex conjugation. (This is sometimes included as part of Dirichlet’s
theorem on units.) It follows that as a G-module,

H1
ét(R, µ�) = R×|R×� =̃ µ� ⊕ (Z|�) ⊕ µ⊗2

� ⊕ · · · ⊕ µ⊗�−3
� .

The root of unity ζ generates the G-submodule µ�, and the class of the unit � of R
generates the trivial submodule of R×|R×�.

Tensoring with µ⊗i−1
� yields the G-module decomposition of R× ⊗ µ⊗i−1

� . If � is
regular this is K2i−1(R;Z|�) =̃ H1

ét(R, µ⊗i
� ) by 72. If i is odd, exactly one term is Z|�;

if i is even, Z|� occurs only when i ≡ 0 (mod � − 1).
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Notation Set R = Z[ζ�, 1|�], For i = 0, …, (� − 3)|2, pick a generator xi of the G-
submodule of R×|R×� isomorphic to µ⊗−2i

� . The indexing is set up so that yi = β2ixi

is a G-invariant element of K4i+1(R;Z|�) =̃ H1
ét(R, µ⊗2i+1

� ). We may arrange that
x0 = y0 is the unit [�] in K1(R;Z|�).

The elements β�−1 of H0
ét(R, µ⊗�−1

� ) and v = β�−2[ζ] of H1
ét(R, µ⊗�−1

� ) are also
G-invariant. By abuse of notation, we shall also write β�−1 and v, respectively, for
the corresponding elements of K2�−2(Z[1|�];Z|�) and K2�−3(Z[1|�];Z|�).

99 Theorem 99 If � is an odd regular prime then K∗ = K∗(Z[1|�];Z|�) is a free graded
module over the polynomial ring Z|�[β�−1]. It has (� + 3)|2 generators: 1 ∈ K0,
v ∈ K2�−3, and yi ∈ K4i+1 (i = 0, …, (� − 3)|2).

Similarly, K∗(Z;Z|�) is a free graded module over Z|�[β�−1]; a generating set is
obtained from the generators of K∗ by replacing y0 by y0β�−1.

The submodule generated by v and β�−1 comes from the Harris–Segal summands
of K2�−3(Z). The submodule generated by the y’s comes from the Z summands in
K4i+1(Z).

Proof K∗(Z[1|�];Z|�) is the G-invariant subalgebra of K∗(R;Z|�). Given 98, it is
not very hard to check that this is just the subalgebra described in the theorem.

Example 100. When � = 3, the groups K∗ = K∗(Z[1|3];Z|3) are 4-periodic of
ranks 1, 1, 0, 1, generated by an appropriate power of β2 times one

of {1, [3], v}.
When � = 5, the groups K∗ = K∗(Z[1|5];Z|5) are 8-periodic, with respective

ranks 1, 1, 0, 0, 0, 1, 0, 1 (∗ = 0, …, 7), generated by an appropriate power of β4

times one of {1, [5], y1, v}.

Now suppose that � is an irregular prime, so that Pic(R) has �-torsion for R =
Z[ζ, 1|�]. Then H1

ét(R, µ�) is R×|� ⊕ �Pic(R) and H2
ét(R, µ�) =̃ Pic(R)|� by Kummer

theory. This yields K∗(R;Z|�) by 72.

Example 101. Set R = Z[ζ�, 1|�] and P = Pic(R)|�. If � is regular then P = 0 by
definition; see 3. When � is irregular, the G-module structure of P is

not fully understood; see Vandiver’s conjecture 102 below. However, the following
arguments show that P[i] = 0, i.e., P contains no summands isomorphic to µ⊗i

� , for
i = 0, −1, −2, −3.

The usual transfer argument shows that PG =̃ Pic(Z[1|�])|� = 0. Hence P
contains no summands isomorphic toZ|�. By 5, we have a G-module isomorphism
(P ⊗ µ�) =̃ K2(R)|�. Since K2(R)|� G =̃ K2(Z[1|�])|� = 0, (P ⊗ µ�) has no Z|�
summands – and hence P contains no summands isomorphic to µ⊗−1

� .
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Finally, we have (P ⊗ µ⊗2
� ) =̃ K4(R)|� and (P ⊗ µ⊗3

� ) =̃ K6(R)|� by 73. Again,
the transfer argument shows that Kn(R)|� G =̃ Kn(Z[1|�])|� for n = 4, 6. These
groups are known to be zero by [53] and [15]; see 11. It follows that P contains no
summands isomorphic to µ⊗−2

� or µ⊗−3
� .

102Conjecture 102: (Vandiver’s Conjecture.) If � is an irregular prime number, then
the group Pic(Z[ζ�+ζ−1

� ]) has no �-torsion. Equivalently, the natural representation
of G = Gal(Q(ζ�)|Q) on Pic(Z[ζ�])|� is a sum of G-modules µ⊗i

� with i odd.
This means that complex conjugation c acts as multiplication by −1 on the

�-primary subgroup of Pic(Z[ζ�]), because c is the unique element of G of order 2.

As partial evidence for this conjecture, we mention that Vandiver’s conjecture has
been verified for all primes up to 12 million; see [9]. We also known from 101 that
µ⊗i

� does not occur as a summand of Pic(R)|� for i = 0, −2.

103Remark 103 The Herbrand-Ribet theorem [71, 6.17–18] states that �|Bk if and only
if Pic(R)|�[�−2k] ≠ 0. Among irregular primes < 4000, this happens for at most 3
values of k. For example, 37|c16 (see 96), so Pic(R)|�[5] = Z|37 and Pic(R)|�[k] = 0
for k ≠ 5.

104Historical Remark 104 What we now call ‘Vandiver’s conjecture’ was actually dis-
cussed by Kummer and Kronecker in 1849–1853; Harry Vandiver was not born
until 1882 and made his conjecture no earlier than circa 1920. In 1849, Kronecker
asked if Kummer conjectured that a certain lemma [71, 5.36] held for all p, and
that therefore p never divided h+ (i.e., Vandiver’s conjecture holds). Kummer’s
reply [30, pp. 114–115] pointed out that the Lemma could not hold for irregular p,
and then called the assertion [Vandiver’s conjecture] “a theorem still to be proven.”
Kummer also pointed out some of its consequences. In an 1853 letter (see [30],
p. 23), Kummer wrote to Kronecker that in spite of months of effort, the assertion
[Vandiver’s conjecture] was still unproven.

For the rest of this paper, we set R = Z[ζ�, 1|�], where ζ� = 1.

105Theorem 105 (Kurihara [31]) Let � be an irregular prime number. Then the
following are equivalent for every k between 1 and (� − 1)|2:
1. Pic(Z[ζ])|�[−2k] = 0.
2. K4k(Z) has no �-torsion;
3. K2a(�−1)+4k(Z) has no �-torsion for all a ≥ 0;
4. H2(Z[1|�], µ⊗2k+1

� ) = 0.
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In particular, Vandiver’s conjecture for � is equivalent to the assertion that K4k(Z)
has no �-torsion for all k < (� − 1)|2, and implies that K4k(Z) has no �-torsion for
all k.

Proof Set P = Pic(R)|�. By Kummer theory (see 5), P =̃ H2(R, µ�) and hence
P ⊗ µ⊗2k

� =̃ H2(R, µ⊗2k+1
� ) as G-modules. Taking G-invariant subgroups shows that

H2(Z[1|�], µ⊗2k+1
� ) =̃ (P ⊗ µ⊗2k

� )G =̃ P[−2k]. Hence (1) and (4) are equivalent.
By 71, K4k(Z)|� =̃ H2(Z[1|�], µ⊗2k+1

� ) for all k > 0. Since µ⊗b
� = µ⊗a(�−1)+b

� for all
a and b, this shows that (2) and (3) are separately equivalent to (4).

106 Theorem 106 If Vandiver’s conjecture holds for � then the �-primary torsion
subgroup of K4k−2(Z) is cyclic for all k.

If Vandiver’s conjecture holds for all �, the groups K4k−2(Z) are cyclic for all k.

(We know that the groups K4k−2(Z) are cyclic for all k < 500, by 96.)

Proof Set P = Pic(R)|�. Vandiver’s conjecture also implies that each of the “odd”
summands P[1−2k] = P[�−2k] of P is cyclic, and isomorphic toZ�|ck; (see [71, 10.15])
and 44 above. Since Pic(R) ⊗ µ⊗2k−1

� =̃ H2(R, µ⊗2k
� ), taking G-invariant subgroups

shows that P[1−2k] =̃ H2(Z[1|�], µ⊗2k
� ). By Theorem 70, this group is the �-primary

torsion in K4k−2(Z[1|�]).

Using 24 and 27 we may write the Bernoulli number Bk|4k as ck|w2k in reduced
terms, with ck odd. The following result, which follows from Theorems 1, 105
and 106, was observed independently by Kurihara [31] and Mitchell [44].

107 Corollary 107 If Vandiver’s conjecture holds, then Kn(Z) is given by Table 5.4, for
all n ≥ 2. Here k is the integer part of 1 + n

4 .

Table 5.4. The K-theory of Z, assuming Vandiver’s Conjecture

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z) Z⊕ Z|2 Z|2ck Z|2w2k 0 Z Z|ck Z|w2k 0

108 Remark 108 The elements of K2i(Z) of odd order become divisible in the larger
group K2i(Q). (The assertion that an element a is divisible in A means that for
every m there is an element b so that a = mb.) This was proven by Banaszak and
Kolster for i odd (see [1], thm. 2), and for i even by Banaszak and Gajda [2, proof
of prop. 8].
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For example, recall from 96 that K22(Z) = Z|691 and K30(Z) =̃ Z|3617. Banaszak
observed [1] that these groups are divisible in K22(Q) and K30(Q), i.e., that the
inclusions K22(Z) ⊂ K22(Q) and K30(Z) ⊂ K30(Q) do not split.

There are no divisible elements of even order in K2i(Q), because by 29 and 86
the only elements of exponent 2 in K2i(Z) are the Adams elements when 2i ≡ 2
(mod 8). Divisible elements in K2i(F) do exist for other number fields, as we saw
in 91, and are described in [73].

Let tj and sj be respective generators of the summand of Pic(R)|� and K1(R;Z|�)

isomorphic to µ⊗−j
� . The following result follows easily from 72 and 98, using the

proof of 99, 105 and 106. It was originally proven in [44]; another proof is given in
the article [42] in this Handbook. (The generators sjβj were left out in [43, 6.13].)

109Theorem 109 If � is an irregular prime for which Vandiver’s conjecture holds,
then K∗ = K∗(Z;Z|�) is a free module over Z|�[β�−1] on the (� − 3)|2 generators yi

described in 99, together with the generators tjβj ∈ K2j and sjβj ∈ K2j+1.
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