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We explain a fundamental additivity theorem for Euler characteristics and gen-
eralized trace maps in triangulated categories. The proof depends on a refined
axiomatization of symmetric monoidal categories with a compatible triangulation.
The refinement consists of several new axioms relating products and distinguished
triangles. The axioms hold in the examples and shed light on generalized homology
and cohomology theories.  © 2001 Academic Press
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Let € be a closed symmetric monoidal category with a compatible
triangulation. We shall give a precise definition that explains what we mean
by this in Section 4. We write S for the unit object of €, A for the product,
F for the internal hom functor, and DX = F(X, S) for the dual object of
X. The reader so inclined should read ® for A and Hom for F. For any
object X, we have an evaluation map ¢: DX AX — X. As recalled in [11,
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THE ADDITIVITY OF TRACES 35

Sect. 2], when X is dualizable we also have a coevaluation map #: S —
X ADX. The Euler characteristic y(X) is then the composite

S—1 XADX L DXAX - S,

where y is the commutativity isomorphism. We shall prove the following
theorem.

THEOREM 0.1. Assume given a distinguished triangle
0.2) x-Ly-=%z 4 sy,

If X, Y, and therefore Z are dualizable, then y(Y) = y(X)+ x(2).

Some of the significance of this basic result is discussed in [11]. In fact,
we shall prove a more general additivity theorem of the same nature. We
discuss generalized trace maps and state the generalization in Section 1.

Philosophically, we view our additivity “theorems” as basic results that
must hold in any closed symmetric monoidal category with a “compatible”
triangulation. That is, our aim is less to prove the theorems than to explain
the proper meaning of the word “compatible.”

In Sections 2 and 3, we define triangulated categories and briefly discuss
homotopy pushouts and pullbacks in such categories. We make heavy use
of Verdier’s axiom in our work, and we take the opportunity to show that
the axiom in the definition of a triangulated category that is usually
regarded as the most substantive one is in fact redundant: it is implied by
Verdier’s axiom and the remaining, less substantial, axioms. Strangely,
since triangulated categories have been in common use for over 30 years,
this observation seems to be new.

We explain our new axioms for the definition of a compatible triangula-
tion on a symmetric monoidal category and show how they imply Theorem
0.1 in Section 4. The new axioms relate the product A and duality to
distinguished triangles. The need for the new axioms is not so strange, since
the first published formulation of compatibility conditions that I know of is
only a few years old [6] and the new axioms are considerably less trans-
parent than the others in this theory.

The axioms are folklore results in the stable homotopy category. They
can also be verified in the usual derived categories in algebraic geometry
and homological algebra and in the Morel-Voevodsky A'-stable homotopy
categories. We shall explain both intuitively and model theoretically what is
involved in the verifications in Sections 5-7. The model theoretical material
in those sections is the technical heart of the paper. A disclaimer may be in
order. In view of what is involved in the verification of the axioms, they are
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unlikely to be satisfied except in triangulated categories that arise as the
homotopy categories of suitable model categories. Nevertheless, we shall
see that, despite their complicated formulations, the axioms record infor-
mation that is intuitively transparent. We show how to prove the general-
ization Theorem 1.9 of Theorem 0.1 in Section 8.

The axioms give information that has been used in stable homotopy
theory for decades. Adams’ 1971 Chicago lectures [1, III, Sect. 9] gave a
systematic account of products in homology and cohomology theories that
implicitly used one version of these axioms, and I first formulated some of
the axioms in forms similar to those given here in unpublished notes written
soon after. In Section 9, I will briefly indicate the role the axioms play in
generalized homology and cohomology theories. The discussion applies to
any symmetric monoidal category with a compatible triangulation.

One moral of this paper is that the types of structured categories we
consider are still not well understood, despite their ubiquitous appearance
in algebraic topology, homological algebra, and algebraic geometry. We
will leave several problems about them unresolved.

1. GENERALIZED TRACE MAPS

We recall the following definition from [8, III.7.1]. We do not need the
triangulation of % here, just the closed symmetric monoidal structure.

DreriniTION 1.1, Let X be a dualizable object of € with a self-map
f: X — X. Let C be any object of ¥ and suppose given a map 4=
Ay: X — X AC. Define the trace of f with respect to A, denoted t( f), to
be the composite

S XADX -5 DXAX 2L DX AX 24, DY AX AC 224 SAC xC.
Since (fAid)op=({dADf)on and eo (idA f) =€ o (Df Aid), easy dia-

gram chases show that the same map 7( f) is obtained if we insert any of
the following four composites between y o # and ¢ Aid:

idaf .
DXAX —= DXAX 24, DX AXAC

Df Aid
. idA faid
DXAX 224, DYAXAC——= DX AXAC.
Df Aid aid

If C=S and 4 is the unit isomorphism X =~ X' A S, then 7(f) is denoted
x(f) and is called the trace or Lefschetz constant of f. The trace of the
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identity map is the Euler characteristic of X. If C = X, then 4 is thought of
as a diagonal map and 7(id): S — X is called the transfer map of X with
respect to A.

The definition includes a variety of familiar maps in algebra, algebraic
geometry, and algebraic topology. If € is the category of vector spaces over
a field and X is a finite dimensional vector space, then y( f) is just the
classical trace of the linear transformation f. If X is graded, then y(X) is
just the classical Euler characteristic. The classical (reduced) Euler charac-
teristics and Lefschetz numbers in algebraic topology are also special cases.
The essential point in the verification of assertions such as these is the
additivity theorem that we prove in this paper.

In the most interesting situations, C is a comonoid (or coalgebra) with
coproduct 4:C — CAC and counit &:C— S and 4: X —> X AC is a
coaction of C on X, meaning that the following diagrams commute:

AJY lld/\A and Al\
X/\CW)X/\C/\C X/\CWX

The second diagram implies the commutativity of the diagram
x(f)

7\
S e C ras S,
which is familiar and important in a variety of contexts. We recall the
following further formal properties of generalized trace maps from [8, 11,
Sect. 7]. The proofs are easy diagram chases, some of which use the alter-
native descriptions of 7( f) given in Definition 1.1. Assume that X and Y
are dualizable.

LemmA 1.2 (Unit Property). For any map f: S — S, x(f)=f.

Lemma 1.3 (Fixed Point Property). If h: C — C is a map such that the
following diagram commutes, then h o ©(f)=1(f):

X —25 xaC

fl JM

X—A)X/\C.
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For example, when C = X and 4 is a diagonal of the usual sort, we have
(fAf)od=A4o f and can take A= f. This property is closely related to
the Lefschetz fixed point theorem.

LemMMA 1.4 (Invariance under Retraction). Leti: X —Y andr:Y — X
be aretraction,roi=1id. Let Ay: X — X AC, 4y: Y - Y AD,and h. C — D
be maps such that the following diagram commutes:

X2, xAC

Y —— YAD.
Ay

Thenhot(f)=7t(io for)foranymap f: X — X.

For example, we can take C = D and 4, = (i Aid) o 4y o r. When i is an
isomorphism with inverse 7, this gives invariance under isomorphism.

Duality and traces are natural with respect to (lax) symmetric monoidal
functors, by [8, III.1.9, II1.7.7].

ProrosiTION 1.5. Let F: € — 9 be a symmetric monoidal functor such
that the unit map A: T — FS is an isomorphism, where T is the unit object of
9. Let X be a dualizable object of € such that the product map

¢: FX A\FD(X) — F(X ADX)

is an isomorphism. Then FX is dualizable in 9, the natural map FDX —
DFX is an isomorphism, and

0. FXANFZ —>F(XAZ)

is an isomorphism for every object Z of €. Given Ay: X — X AC, define
Apy =@ ' o FAy: FX — FX AFC. Then, regarding ) as an identification,
W(Ff)=F1(f): T — FC foranymap - X — X.

Returning to the algebraic properties of trace maps, we first record their
behavior with respect to A -products, coproducts, and suspension, and then
formulate our additivity theorem.

LemMa 1.6 (Commutation with A-Products). Given maps Ay: X —
XAC and Ay: Y — Y A D, define

Ay .y =({dAyAid) o (Axy Ady): X AY > (X AC)A(Y AD)
— (XAY)A(CAD).
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Thent(fag)=t(f)At(g):S—>CADforany [ X —>Xandg:Y —Y.

Now assume that € is additive with coproduct v; it follows that A is
bilinear.

LemMma 1.7 (Commutation with Sums). Given maps Ay: X — X AC and
Ay: Y —> Y AC, define

Ay y =AxvAa4y: X VY > (X AC) V(Y AC)= (X VY)AC.

Then t(h)=t(f)+1(g):S— C for any map h: XVvY — X VY, where
f:X—>Xandg:Y — Y are obtained from h by restriction and retraction.

That is, as one would expect of a trace, the cross terms X — Y and
Y — X of & make no contribution. Now assume our original hypothesis
that € has a triangulation compatible with its symmetric monoidal struc-
ture. A diagram chase from (TC1) of Definition 4.1 gives the following
generalization of [ 11, 4.7].

LemMma 1.8 (Anticommutation with Suspension). Given A4y: X — X AC,
define Asy: 2X — (XX)AC by suspending Ay and using the canonical
isomorphism X(X AC)=(ZX)AC. Then ©(Xf)=—1(f) for any map
[ X—-X

The following result is our generalization of Theorem 0.1. For reasons
that will become clear in Section 8, we now assume that € is the homotopy
category of a closed symmetric monoidal model category # that satisfies
the usual properties that lead to a triangulation on % that is compatible
with its smash product. These properties are made precise at the start of
Sections 5 and 6.

THEOREM 1.9 (Additivity on Distinguished Triangles). Let X, Y, and
therefore Z be dualizable in the distinguished triangle (0.2). Assume given
maps ¢: X — X and .Y —>Y and maps Ay: X - XAC and 4y:Y —
Y AC such that the left squares commute in the following two diagrams:

¥y, z7z_",yx

BN

X Y Z X
s g h

x — L, v =2 z L,y X

XAC —> YAC ——> ZAC — X(X AQ).
faid gnid hnid
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Then there are maps w: Z — Z and Ay: Z — Z AC such that these diagrams
commute and the additivity relation t(}y) = t(w)+t(¢) holds.

A result like this was first formulated in [8, IIL.7.6], in the context of
equivariant stable homotopy theory. It has important calculational conse-
quences in that subject, and it should be of comparable significance in
other areas.

Remark 1.10. 1 do not know whether or not the conclusion holds for
every choice of @ and 4, that make the displayed diagrams commute, but I
would expect not. This was claimed to hold in [8, III.7.6], but even in that
special context the proof is incomplete. The question is related to Neeman’s
work in [12], where it is emphasized that some fill-ins in diagrams such as
these are better than others. The theorem has a slight caveat in the gener-
ality of traces, as opposed to Lefschetz constants; see Remark 8.3.

2. TRIANGULATED CATEGORIES

We recall the definition of a triangulated category from [17]; see also
[2, 6, 10]. Actually, one of the axioms in all of these treatments is redun-
dant, namely the one used to construct the maps w and 4 on Z in the
additivity theorem just stated. The most fundamental axiom is called
Verdier’s axiom, or the octahedral axiom after one of its possible dia-
grammatic shapes. However, the shape that I find most convenient, a
braid, does not appear in the literature of triangulated categories. It does
appear in Adams [1, p. 212], who used the term “‘sine wave diagram” for
it. We call a diagram (0.2) a ““triangle” and use the notation ( f, g, /) for it.

DreriNiTION 2.1, A triangulation on an additive category € is an addi-
tive self-equivalence 2: ¥ — % together with a collection of triangles, called
the distinguished triangles, such that the following axioms hold.

Axiom (T1). Let X be any object and f: X — Y be any map in %.

(a) The triangle X =% X — x — XX is distinguished.
(b) Themap f: X — Y is part of a distinguished triangle ( f, g, h).
(¢) Any triangle isomorphic to a distinguished triangle is distinguished.

Axiom (T2). If (f, g, h) is distinguished, then so is (g, &, —2'f).
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Axiom (T3) (Verdier’s Axiom). Consider the following diagram.

h

X zZ w XU
AN ’ .1 « "
9 \h ) 9
\f\‘ / \ ] p v Efl
Y | %4 Y
¢
., N I
!\A s g b 4 A'
U XX
!ll

Assume that h=go f, j"=2f"0og", and (f, f', f") and (g, g, g") are
distinguished. If 4’ and A" are given such that (A, /', A") is distinguished,
then there are maps j and j' such that the diagram commutes and (j, j’, j*)
is distinguished. We call the diagram a braid of distinguished triangles
generated by h= g o f or a braid cogenerated by j" =X f" o g".

We have labeled our axioms (T?), and we will compare them with
Verdier’s original axioms (TR?). Our (T1) is Verdier’s (TR1) [17], our (T2)
is a weak form of Verdier’s (TR2), and our (T3) is Verdier’s (TR4). We
have omitted Verdier’s (TR3), since it is exactly the conclusion of the
following result.

LemMma 2.2 (TR3). If the rows are distinguished and the left square
commutes in the following diagram, then there is a map k that makes the
remaining squares commute.

¥y _ft,z7_"',5x

J | P | - J,ﬁ

7 Y
X’ Y 572",y x

Proof. This is part of the 3 x 3 lemma, which we state and prove below.
The point is that the construction of the commutative diagram in that
proof requires only (T1), (T2), and (T3), not the conclusion of the present
lemma; compare [2, 1.1.11]. |

Verdier’s (TR2) includes the converse, (T2') say, of (T2). That too is a
consequence of our (T1), (T2), and (T3). A standard argument using only
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(T1), (T2), (TR3), and the fact that 2 is an equivalence of categories shows
that, for any object 4, a distinguished triangle ( f, g, #) induces a long
exact sequence upon application of the functor €(4, —). Here we do not
need the converse of (T2) because we are free to replace 4 by 2 'A4. In
turn, by the five lemma and the Yoneda lemma, this implies the following
addendum to the previous lemma.

LemMma 2.3. Ifi and j in (TR3) are isomorphisms, then so is k.

Lemma 24 (T2'). If (g, h, —2'f) is distinguished, then so is (f, g, h).

Proof. Choose a distinguished triangle X Ly Lz 5 sy, By
(T2), the triangles (—Xf, —Xg', —Xh") and (—2Xf, —Xg, —X'h) are distin-
guished. By Lemmas 2.2 and 2.3, they are isomorphic. By desuspension,
(f, g, h) is isomorphic to ( f’, g’, '). By (T1), it is distinguished. ||

Similarly, we can derive the converse version, (T3’) say, of Verdier’s
axiom (T3).

LemMma 2.5 (T3'). In the diagram of (T3), if j and j' are given such that
(j, ', j") is distinguished, then there are maps h' and h" such that the diagram
commutes and (h, ', h") is distinguished.

Proof. Desuspend a braid of distinguished triangles generated by
j”=2f, Og”‘ I

LemMA 2.6 (The 3x3 Lemma). Assume that jo f = f'oi and the two
top rows and two left columns are distinguished in the following diagram.
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Then there is an object Z" and there are dotted arrow maps f", g", h", k, k',
k" such that the diagram is commutative except for its bottom right square,
which commutes up to the sign —1, and all four rows and columns are
distinguished.

Proof. The bottom row is isomorphic to the triangle (—Xf, —2Xg,
—2'h) and is thus distinguished by (T2); similarly the right column is
distinguished. Applying (T1), we construct a distinguished triangle

XLy Ly 4 »x.

Applying (T3), we obtain braids of distinguished triangles generated by
jo fand f' oi. These give distinguished triangles
Zgoj"

Zy Ly =, 5y
X//L) V_t') z' Zi'o W X"

such that

pej=seg, tep=j,  qos=h  jot=Xfoq
pOf’=s’0i’, tlongl, qOS,Zi,,, h'Ol,=Zl.0q.
Define k=t 0s5:Z—Z'. Then kog=g'oj and h' o k=2io h, which

already completes the promised proof of Lemma 2.2. Define f” =¢ o s’ and
apply (T1) to construct a distinguished triangle

Xlli) Y"i”) Z"i) X"
Applying (T3), we obtain a braid of distinguished triangles generated by
f"=tos'. Here we start with the distinguished triangles (s, ¢', 2i' o ')
and (¢, X'g o j”, —2's), where the second is obtained by use of (T2). This
gives a distinguished triangle

75z 5y =557

such that the squares left of and above the bottom right square commute
and

glot=k'ot and —2sok"=25oh".
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The commutativity (and anti-commutativity of the bottom right square) of
the diagram follow immediately. It also follows immediately that ( /", g”,
h") and (k', k", —2'k) are distinguished. Lemma 2.4 implies that (k, k', k")

is distinguished. ||

Remark 2.7. Conversely, Verdier’s axiom is implied by (T1), (T2), and
the 3x 3 lemma. To see this, apply the 3 x 3 lemma starting with the top
left square

3. WEAK PUSHOUTS AND WEAK PULLBACKS

In any category, weak limits and weak colimits satisfy the existence but
not necessarily the uniqueness in the defining universal properties. They
need not be unique and need not exist. When constructed in particularly
sensible ways, they are called homotopy limits and colimits and are often
unique up to non-canonical isomorphism. As we recall here, there are such
homotopy pushouts and pullbacks in triangulated categories. Homotopy
colimits and limits of sequences of maps in triangulated categories are
studied in [3, 13], but a complete theory of homotopy limits and colimits
in triangulated categories is not yet available. The material in this section is
meant to clarify ideas and will not be used in the proofs of the additivity
theorems. However, it seems to me that there should be better proofs that
do make use of this material, although I have not been able to find them.

DEerINITION 3.1. A homotopy pushout of maps f: X — Y and g: X — Z
is a distinguished triangle

i

x LB yyz 90w L,

2X.

A homotopy pullback of maps j: Y — W and k: Z — W is a distinguished
triangle

=1 .
> -2 X (f.8) YVZ G, —k) w.
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The sign is conventional and ensures that in the isomorphism of extended

triangles
X
X

the top row displays a homotopy pushout if and only if the bottom row
displays a homotopy pullback.

>-w -zl X (f>—2) YVZ U, k) w1t

H l( )
Y , j, —k
E_IW z X (f, 8 YVZ (j, —k) W

At this point we introduce a generalization of the distinguished triangles.

DermviTION 3.2. A triangle (f, g, h) is exact if it induces long exact
sequences upon application of the functors ¢(—, W) and ¥(W, —) for
every object W of €.

The following is a standard result in the theory of triangulated categories

[17].

Lemma 3.3.  Every distinguished triangle is exact.

If (f, g, h) is distinguished, then ( f, g, —/) is exact but generally not
distinguished. These exact triangles ( f, g, —/) give a second triangulation
of €, which we call the negative of the original triangulation.

Problem 3.4. The relationship between distinguished and exact triangles
has not been adequately explored in the literature. Can a triangulated
category ¥ admit a triangulation with a given functor X' that differs from
both the original triangulation and its negative? Consideration of auto-
morphisms of objects shows that there usually are exact triangles in % that
are in neither the original triangulation nor its negative. Nevertheless, it
seems possible that the answer is no.

The fact that the triangles in Definition 3.1 give rise to weak pushouts and
weak pullbacks depends only on the fact that they are exact, not on the
assumption that they are distinguished. This motivates the following definition.

DerintTION 3.5.  For exact triangles of the form displayed in Definition
3.1, we say that the following commutative diagram, which displays both a
weak pushout and a weak pullback, is a pushpull square.

X257z
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LeEMMA 3.6. The central squares in any braid of distinguished triangles

generated by h=g o f are pushpull squares. More precisely, with the nota-
tions of (T3), the following triangles are exact.

2 W e
Y(fg) UVZ(J) v g" o j Y

Yy 2Ly OOy sy 20, sy

Proof. Although rather lengthy, this is an elementary diagram chase. ||

Remark 3.7. We would like to conclude that the triangles displayed in
the lemma are distinguished and not just exact. Examples in [12] imply
that this is not true for all choices of j and j'. The braid in (T3) gives rise
to a braid of distinguished triangles that is cogenerated by —g” o j' or,
equivalently, generated by X ~'(j” o g'). Here Z~!(j" o g') =0 since j" =
2 f" o g". This implies that the central term in the braid splits as Uv Z.
Application of (T3) gives a distinguished triangle

Y- Uvz-t v =20, sy,

Inspecting the relevant braid, we see that a=(f’,g) and B=(j, k).
However, we cannot always replace f’ and 4’ by f” and 4’ and still have a
distinguished triangle.

This leaves open the possibility that the triangles displayed in Lemma 3.6
are distinguished for some choices of j and j'. It was stated without proof
in [2, 1.1.13] that j and j' can be so chosen in the main examples, and we
shall explain why that is true in Section 5. It was suggested in [2, 1.1.13]
that this conclusion should be incorporated in Verdier’s axiom if the
conclusion were needed in applications. This course was taken in [10], and
we believe it to be a sensible one. However, rather than try to change
established terminology, we offer the following modified definition.

DreriniTION 3.8. A triangulation of € is strong if the maps j and j'
asserted to exist in (T3) can be so chosen that the two exact triangles
displayed in Lemma 3.6 are distinguished.

Remark 3.9. Neeman has given an alternative definition of a trian-
gulated category that is closely related to our notion of a strong trian-
gulated category; compare [12, 1.8; 13, Sect. 1.4]. It is based on the
existence of particularly good choices of the map k in (TR3).
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4. THE COMPATIBILITY AXIOMS

In the rest of the paper, we return to our standing hypothesis that € is a
closed symmetric monoidal category with a “compatible” triangulation. In
this section, we state and explain the compatibility axioms. Let S” = X"S
for any integer n, where X" is the n-fold iterate of X if » is positive or the
(—n)-fold interate of X! if n is negative. Of course, S™ is isomorphic to
DS"[11,2.9].

DermniTION 4.1. The triangulation on € is compatible with its closed
symmetric monoidal structure if axioms (TC1)—(TCS5) are satisfied.

Axiom (TC1). There is a natural isomorphism a: X AS' — XX such
that the composite

2= 38155 SIAS L STAS' -5 ST =82
is multiplication by —1.

Axiom (TC2). For a distinguished triangle X -5 ¥ % Z -1 xX
and an object W, each of the following triangles is distinguished.

faid gaid

ZAW L2, S(XAW)

idag idah

XAW L2y aw 221,
WAX 2L, WAy 225, wAZ 2222 (W AX)
FW,X) 22D, row, v) 229, row, 2) 292, sFW, X)
SFx,w) 289, pz,wy L&D Fy, w) 2290 Fox, w).

idaf

Remark 4.2. In (TC2) and in later axioms, we implicitly use isomor-
phisms such as

CXANY 2 X(XAY)=XA(2Y)
and F(Z'X,Y)~ZF(X,Y)>F(X,ZY)

that are implied by (TC1). We often write 2 DX where the canonically
isomorphic object D(X~'X) might seem more natural. We can deduce from
(TC1) that &: D(Z'X)AX'X — S agrees with & DX AX — S under the
canonical isomorphism of sources, and similarly for # when X is dualizable.
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The first triangle displayed in (TC2) is isomorphic to the second, by appli-
cation of y to all terms, so that the second one is redundant.

Remark 4.3. Our (TC1) and (TC2) are equivalent to the compatibility
conditions specified by Hovey et al. [6, A.2]. Indeed, using associativity
isomorphisms implicitly, we have the composite natural isomorphism

(ZX)AY 224, X AS'AY 2, X AY AS' =5 S(X AY).

Calling this map ey, y, we see that the conditions prescribed in [6, A.2] are
satisfied. Conversely, isomorphisms ey y as prescribed there are determined
by the eg y via the diagram on [6, p. 105], and the eg , determine and are
determined by the maps

ap: Y AST 5 STAY 25, Z(SAY) = XY.

These maps give a natural isomorphism a that satisfies (TC1) and (TC2).

The need for the axioms (TC1) and (TC2) is clear, and we view them as
analogues of the elementary axioms (T1) and (T2) for a triangulated
category. The new axioms (TC3)—-(TC5) encode information about the
A-product of distinguished triangles that holds in the examples but is not
implied by (TC1) and (TC2). The reader may recoil in horror at first sight
of the diagram in the following axiom but, as we shall explain shortly, it is
really quite natural.

Axiom (TC3) (The Braid Axiom for Products of Triangles). Suppose
given distinguished triangles

xLys&z M5y
and
x Ly £ z% sx.
Then there are distinguished triangles

/\

YAX' 2 VIS xaz 225 sy aXY)

ENZAZ) BV Y AY 2255 ZAZ!
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XAY BV 25 ZAXx' 20, (X AY)

such that the following diagram commutes.

TH(Y AZ) XAX' 2-Y{ZAY')
faid

—1y: ' -1 .
T AR £-1(gnid) T-!(idAg’ =77 (hnid)
YAX' v YZAZ) XAY'
idAf’ fAid
gAid id Ag’
£-1(id Ah’) -1 (hAid)

ZANX'
idAf’ fAid
ZAY' (X AX') YANZ

There are several ways to understand (TC3). In concrete terms, one can
pretend that X and X' are subobjects of ¥ and Y’ with quotient objects Z
and Z' and that V' is the pushout

@.4) V= AX) Uy y (XAY).

Then the map j,: ¥V — Y AY' corresponds to the evident inclusion, while
jiiV—>XAZ and j;:V — ZAX' correspond to the maps obtained by
quotienting out Y AX' and X AY’. The diagram then corresponds to a
folklore diagram in classical algebraic topology. Starting from this idea, we
shall explain how to use standard cofiber sequences to verify the axiom in
Section 6.

In axiomatic terms, it is more instructive to explain (TC3) in terms of
Verdier’s axiom. Consider the canonical 3 x 3 diagram
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faid

y _
XAX YAX' £ ZAX — 2 L S(XAX)
idaf” idAaf” idaf’ ZGdAf7)

id id i
XAY — Iy Ay — 2 ZAy M S (X AYY)
(4.5) idrg idag' idag' Z(idAg')
y y _
XAZ — I8 yaz 8 gz (X AZ)
idak idah idak —Z(dAR)

Z(gaid)
_

ZXAX) 2D, Sy aX) Z(ZAX') =208, 520y A X,

All squares except the bottom right one commute, and that square commutes
up to the sign — 1. To see this, observe that we have implicitly used the identifi-
cation

(EX)AZ 2 (XASYAZ 2 (XAZ)AS' 2 Z(X AZ)).

It is the anticommutativity of this square that forces the sign in the
diagram of (TC3). By (TC2) and (T2), the rows and columns are distin-
guished. The signs are inserted in the bottom right square to ensure this.
Each square gives two composites to which Verdier’s axiom can be applied.

The diagram in (TC3) arranges in a single picture parts of braids gener-
ated by desuspending the composites

(gnid) o (idAg')=gng' =(1dAg') o (gAid)
GAdAR) o (fAid) = f AR = (f Aid) o (dAK')
GdA f7) o (haid) = hA £ = (h Aid) o (ild A £7).

By expanding the relevant diagrams (T3) slightly, we see that pairs of these
six composites appear in each of three distinct Verdier braids. To avoid
expanding an already complicated diagram, we have omitted from the
diagram in (TC3) the generating and cogenerating triangles from the three
relevant braids as displayed in (T3), thus including only those subdiagrams
from (T3) that involve at least one dotted arrow.

The point of (TC3) is that the cited three braids are duplicative. If we
start with a given distinguished triangle ( p,, j,, —gAg’), then applications
of Verdier’s axiom to the two composite descriptions of the desuspension
of gng' construct distinguished triangles ( p,, j;, f AA") and (ps, ji, AN f).
On the other hand, application of Verdier’s axiom to the desuspension of
the composite (f Aid) o (—idAK") constructs (p,, ji, AAf') from (py, ji,
fAh). The axiom (TC3) says that we can use the same maps in these
a priori different ways of generating braids with the same objects. This
discussion leads to the following addendum. Compare Definition 3.8.
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LemMMmA 4.6.  In the diagram of Axiom TC3, the six squares that have V
as a vertex are pushpull squares.

Proof. Three of the squares have side arrows (p;, p,), (p1, P3), (P2, P3)
with target V, three have side arrows (ji, j,), (ji, j3), (Ja2, j3) With source V.
These squares pair up as the central squares in the three braids cited in the
paragraph above, and the conclusion is immediate from Lemma 3.6. ||

Applying (TC3) to the distinguished triangles (—X 4, f, g) and (=2 '/,
f', g'), we obtain the following equivalent form of that axiom.

LemMma 4.7 (TC3'). For the distinguished triangles ( f, g, hyand (f', g', I")
displayed in (TC3), there are distinguished triangles

hng'

XAZ B w2 ZAYy 2255 3(X AZ)
YAY -2 W2 3(X A X)) 2S00, S(Y AYY)

gnl

ZAX B w2 YAz 2 S(ZAX)

such that the following diagram commutes.

XAY' =-YZAZ) YAX
£-1(hAid) —Z~1(id AR")

idAg’ Aid gAid
XNZ' YAY' ZANX'
fAid idAf’
YAZ ZXAX') ZAY'
gAid idAg’
Z(fAid)  Z(idAf')
id AR/ hAid

(Y A X') ZAZ (X AY')
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For intuition, pretending that we have inclusions of X in ¥ and X’ in Y’
with quotient objects Z and Z’, we can think of W as the quotient object

4.8) W= AY)/(XAX"),
with k, being the quotient map and k; and k; being the inclusions of

XANZ =(XAY)/(XAX') and ZAX =2 (YAX)/(XAX).

LemmA 4.9.  In the diagram of Axiom TC3', the six squares that have W
as a vertex are pushpull squares.

The following obvious remark is quite useful.

Remark 4.10. We can reverse the order of our given triangles (f, g, h)
and (f', g', k') and apply (TC3) and (TC3'). We agree to write ¥/, W, and
similarly for maps in such resulting dlagrams By (TR3), we can obtain
equivalences y: ¥V — ¥V and y: W — W such that j, oy =70 p,, joy = Vjas
kyoy= Yo k,, and g,y = yq,. We can then redefine the remaining maps 7
(F= p;» ji» ki, @, i=1 and 3) by taking 7=y o r o p~'. It follows from the
axioms that the new diagrams still satisfy the propertles specified in (TC3)
and (TC3') for the interchanged triangles. We say that the new diagrams
are involutions of the original diagrams for ( f, g, h) and (', g', /).

The heart of our work concerns the interplay between (TC3) and (TC3');
we retain their notations.

Axiom (TC4) (The Additivity Axiom). The maps j; and k; can be so
chosen that the following diagram is a pushpull square.

V— 2 L YAY

G, fs)l sz

XAZYWVEZAX)— W

(K, k3)
In particular, k, o j, =k, o j,+k; o js.

We will show how to use (4.4) and (4.8) to derive this axiom in
Section 6. In fact, we will see that, in practice, the square comes from a
distinguished triangle; compare Remark 3.7 and Definition 3.8. This
suggests the following strengthened alternative to the concept of compati-
bility that we are in the process of defining.
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DEerFINITION 4.11. A strong triangulation of & is strongly compatible
with its symmetric monoidal structure if the maps of (TC3) and (TC3’) can
be so chosen that the pushpull squares of Lemmas 4.4 and 4.6 and of (TC4)
all arise from distinguished triangles.

To see the plausibility of (TC4), observe that there is yet another Verdier
braid in sight, coming from the relation

(1> j3) o pr = (Z'haid, Z7HidAR).
We have a given distinguished triangle
ENZAZ) L V2 YAY =255 Z A7
If the triangulation is strong, we also have distinguished triangles

Gd Ak, haid)
_—

Z(X/\X’) 2(p3 > (idAS") SV

(k1, k3) (gnid) g3

XAZY)YV(EZAX)—>W ZNZ'.

LB (X AZYVV(ZAX)

> haid, Z " Yid Ak
SN ZAz) L 2dZ W,

Taking these three triangles as input in Verdier’s axiom and noting that

Zjp o 2(p; o (dAf)==2(frf),

(TC4) states that the maps asserted to exist by Verdier’s axiom can be
taken to be the maps &, and ¢, of the given distinguished triangle

YAY 22 W2 S(XAX) 2D, 5(Y AY).

Finally, we need an axiom that relates duality to A-products of distin-
guished triangles. Keeping the original distinguished triangle ( f, g, &), we
specialize the distinguished triangle ( ', g’, #') to

Dg

Dz 2 py 2L px 2= D, 5yp7.

We can construct diagrams as in (TC3) and (TC3’) for both this pair of
distinguished triangles and for the same pair of distinguished triangles in
the reverse order. We adopt the notations of Remark 4.10 for the relevant
objects and maps. Observe that we have a natural map p: X — DDX and a
natural composite

(4.12) & X ADX 2% DDX ADX - D(DX A X),
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both of which are isomorphisms when X is dualizable. We have the
following pleasant observation. The duals of the diagrams in (TC3) and
(TC3), if flipped over (or read from bottom to top), give further diagrams
of the same shape. This is not an accident.

LemMma 4.13. Let X, Y, and therefore Z be dualizable. Then, using
isomorphisms &, the dual of a diagram as in (TC3) for the triangles (f, g, h)
and (Dg, Df, DX7'h) is a diagram as in (TC3') for the same triangles in the
reverse order.

That is, taking W = DV with V as in (TC3) and taking

(E17E2ak3)=(Dj39Dj25Djl) and (q_la qZ’ q3)=(Dp39Dp27 Dpl)a

we obtain a diagram as in (TC3’) for (Dg, Df, DX ~'h) and (f, g, h). We
can now formulate our last compatibility axiom. Despite considerable
effort, I have not been able to deduce it from the others. Recall Remark 4.10.

Axiom (TC5) (The Braid Duality Axiom). There is a diagram as in
(TC3’) for the triangles (Dg, Df, DX~'h) and ( f, g, ) which satisfies the
following properties.

(a) There is a map & W — S such that the following diagram
commutes.

(DZAZ)v (DX AX) &Y e 2 py Ay

S

(b) If X, Y, and Z are dualizable, then the chosen diagram as in
(TC3’) is isomorphic to the dual of a diagram as in (TC3) for the triangles
(f,g h) and (Dg, Df, DX~'h) and satisfies the additivity axiom (TC4)
with respect to an involution of the latter (TC3) type diagram.

Here (b) ensures that the dual of (a) also holds. A diagram chase
[8, 1I1.1.47] shows that the coevaluation map #: S — X ADX of a dualiz-
able object X is

De: S~ DS —» D(DX AX) =~ X ADX.

Therefore, via isomorphisms p and &, the dual of the commutative diagram
in (a) gives the commutative diagram in the following result.
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LemmA 4.14 (TC5a'). With the diagram (TC3) for (f,g, h) and
(Dg, Df, DX7'h) taken as in (TC5b), there is a map 1. S — V such that the
following diagram commutes.

s
n
(ZADZ)v(X ADX) &My 2 Ly DY

This reduces the proof of Theorem 0.1 to quotation of the axioms.

Proof of Theorem 0.1. We are assuming Axioms (TC1)—~(TCS5), and we
have the following commutative diagram. The desired formula y(Y) = y(X) +
x(2Z) follows by traversing its outer edge.

U

(nm)

(ZADZ)V (X ADX) <023 .Y ADY

~—

<

e
2

() Vv
(DZAZ)V(DXAX)—FF) o B o

————
o

Here the top and bottom pairs of triangles are given by (TC5a) and
(TC5a'), the trapezoids involving maps y are given by (TC5b) and Remark
4.10, and the remaining trapezoid is given by (TC5b) and (TC4). ||

W

5. HOW TO PROVE VERDIER’S AXIOM

To prepare for the proofs of the compatibility axioms, we first recall the
standard procedure for proving Verdier’s axiom (T3).

We assume that our given category % is the ‘“‘derived category” or
“homotopy category” obtained from some Quillen model category 4. One
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can give general formal proofs of our axioms that apply to the homo-
topy categories associated to “simplicial”’, “topological”, or “homological”
model categories that are enriched over based simplicial sets, based spaces,
or chain complexes, respectively. We shall be informal, but we shall give
arguments in forms that should make it apparent that they apply equally
well to any of these contexts. An essential point is to be careful about the
passage from arguments in the point-set level model category %, which is
complete and cocomplete, to conclusions in its homotopy category %,
which generally does not have limits and colimits.

We assume that 4 is tensored and cotensored over the category in which
it is enriched. We then have canonical cylinders, cones, and suspensions,
together with their Eckmann—Hilton duals. The duals of cylinders are
usually called “path objects” in the model theoretic literature (although in
based contexts that term might more sensibly be reserved for the duals of
cones). When we speak of homotopies, we are thinking in terms of the
canonical cylinder X ® I or path object Y, and we need not concern our-
selves with left versus right homotopies in view of the adjunction

BXRLY)=ABX,Y").

Hovey [5] gives an exposition of much of the relevant background
material on simplicial model categories. Discussions of topological model
categories appear in [4, 9]. Homological model categories appear implicitly
in [5; 7, III, Sect. 1]. Of course, we must assume that the functor 2 on %
induces a self-equivalence of . This is enough for the verification of most
of the axioms but, to verify parts of (TC2) and (TC5), we assume more
precisely that the adjunction between X: 4 — % and its right adjoint Q is a
Quillen equivalence of model categories. (See, e.g., [5, 1.3.3] for a discus-
sion of this notion.)

The distinguished triangles in € are the triangles that are isomorphic in
% to a canonical distinguished triangle of the form

(5.1) x Ly YD, cr 0, 5y

in 4. Here Cf =Y u, CX, where CX is the cone on X, and i(f) and
p(f) are the evident canonical maps. Then (T1) is clear and (T2) is a
standard argument with cofiber sequences. One uses formal comparison
arguments (as in [17, 11.1.3.2]) to reduce the verification of (T3) in ¥ to
consideration of canonical cofiber sequences in %. In %, one writes down
the following version of the braid in (T3).
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h i(g) 3"
Cg Cf
.(h) i, (9)
Pad Ti(f)
' Y
), \ P(h)
(52) 'm . 7 Ny N 4
cf \-/ZX
p(f)

Here h=g o f, j and j' are evident canonical induced maps, j" = 2i(f) o
p(g), and the diagram commutes in 4. One proves (T3) by writing down
explicit inverse homotopy equivalences

& Cg—Cj and v:Cj— Cg

such that j'=v o i(j) and j” = p(j) o &. Details of the algebraic argument
are in [17, pp. 75-77], and the analogous topological argument is an illu-
minating exercise.

We could go on to use these Verdier braids to prove (TC3) and (TC4),
but there are simpler proofs that give more information. To see this, we
need a reformulation of the original triangulation.

Assuming, as can be arranged by cofibrant approximation, that f is a
cofibration between cofibrant objects, the quotient Y /X is cofibrant. Let
M f be the mapping cylinder of f. Passage to pushouts from the evident
commutative diagram

xe—— X — Mf

L

*<—X—>Y

gives a quotient map ¢( f): Cf — Y /X. By [5, 5.2.6], we have the follow-
ing standard result. It is central to our way of thinking about triangulated
categories.

LemMmA 5.3. Let f: X — Y be a cofibration between cofibrant objects.
Then the quotient map q(f): Cf — Y /X is a weak equivalence.
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Now define
of)Y/X—>2ZX
to be the map in ¥ represented by the formal “connecting map”
(5.4) v/x & cf 2D, sy

in 4. Observe that (5.4) gives a functor from cofibrations in 4 to diagrams
in 8. The composite g(f) o i(f):Y — Y /X is the evident quotient map,
which we denote by n( f). Therefore, when we pass to €, our canonical
distinguished triangle (5.1) is isomorphic to the triangle represented by the
diagram

(5.5) x Ly yx 22, 5y

in 4, and our triangulation consists of all triangles in ¥ that are iso-
morphic to one of this alternative canonical form. This reformulation has
distinct advantages.

Returning to Verdier’s axiom, we can replace the given maps f, g, and
thus =g o f by cofibrations between cofibrant objects, and then the
quotient objects Y /X, Z/X and Z/Y are cofibrant. The point of Verdier’s
axiom now reduces to just the observation that Z/Y is canonically
isomorphic in £ to (Z/X)/(Y/X). Using our new canonical cofibrations
(5.5) starting from f, g, h, and the cofibration j: Y /X — Z/X, we obtain
the following braid.

h T é

/\/\/’\W
NN N4
\/ /

\_6/

Expanding the arrows ¢ as in (5.4), we find that this braid in % is repre-
sented by an actual commutative diagram in %, but of course with some
wrong way arrows. With this proof of Verdier’s axiom, there is no need
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to introduce the explicit homotopies ¢ and v of our first proof. Modulo
equivalences, the two central braids in (5.7) are as follows. Here and later,
we generally write C(Y, X) instead of C f for a given cofibration f: X — Y.

Y ——Z7 C(Z,X)— C(Z,7)
Y/X—Z/X X — XY

These are both pushouts in which the horizontal arrows are cofibrations
and all objects are cofibrant. By the following lemma, this implies that, in
%, these two squares give pushpull diagrams that arise from distinguished
triangles. We conclude that € is strongly triangulated in the sense of
Definition 3.8.

LemMma 5.7. Suppose given a pushout diagram in 4,
x—~L-y
gl lj
Z % W,

in which f and therefore k are cofibrations and all objects are cofibrant. Then
there is a distinguished triangle

xHOyvz U0 w_5x

in €. Thus the original square gives rise to a pushpull square in €.

Proof. Standard topological arguments work model theoretically to
give a weak pushout (double mapping cylinder) M( f, g) in # which fits
into a canonical triangle

XvY - L pm(f,e) 5 EX -5 TX VY

as in (5.5). It is easy to check that 6 = ( f, —g) in ¥ and that there is a weak
equivalence M( f, g) — W under Y v Z in 4. The conclusion follows. ||

6. HOW TO PROVE THE BRAID AND ADDITIVITY AXIOMS

We now consider axioms (TC1)—-(TC4). Here, in addition to the assump-
tions of the previous section, we assume that the closed symmetric monoidal
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structure on the homotopy category € is induced from a closed symmetric
monoidal structure on #. There are model theoretic axioms, specified in
[5, 15], that codify the relationship between products A and cofibrations
in reasonable monoidal model categories, and we assume that such stan-
dard properties hold in 4. They are known to hold in the usual examples.
The most important axiom, which is called the pushout-product axiom in
[15], asserts that, for cofibrations f: X — Y and f': X' — Y, the evident
induced map

V=(XAY)Uy.xy YAX") > YAY'

is a cofibration which is acyclic if either f or g is acyclic. It follows that,
for any object 7', the dual induced map

F(YAY',T)—F(V,T)2F(XAY',T)Xpxrx.1y FOAX',T)

is a fibration. Some equivalent conditions are given in [5, 4.2.2].

The verification of (TC1) is trivial, and the verification of (TC2) is stan-
dard; see Hovey [5, 6.41., 6.6.3]. For the cofiber sequences of (TC2) that
involve A, one uses the triangulation by cofibrations. For the cofiber
sequences of (TC2) that involve the internal hom functor F, one verifies
that the negative of the triangulation by cofiber sequences is the triangula-
tion given by fiber sequences in %, which are Eckmann-Hilton dual to
cofiber sequences and whose development is word-for-word dual to that
described in Section 5. For a given map f with fiber Ff and cofiber Cf,
there is a map #: F f — QC f that is suitably related to the unit and counit
of the (2, Q) adjunction. This can be used in a direct verification of (TC2),
as in [8, III, Sect. 2]; see also [4, I11.6.4]. The argument in the homological
context is easier.

We consider the new axiom (TC3). We may assume without loss of gen-
erality that the given distinguished triangles are of the form (5.5). We write
them as

xLySzNsxy ad x- Ly oz sy

Thus all objects are cofibrant, f and f’ are cofibrations, Z=Y /X and
Z'=Y'/X', g and g’ are quotient maps, and & and /4’ are connecting maps
J. We are thinking of these as diagrams in %, the arrows /# and 4’ being
shorthand for pairs of arrows as displayed in (5.4).

As in (4.4) and (4.8), we set

V=(AX)Ugp (XAY) and W=TAY)/(XAX).
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‘We have many canonical isomorphisms of quotients, such as

XANZ =(XAY)/(XAX"),

XACY', X)=C(XAY', XAX"),

V/IXAX)=Z(ZAX)V(XAZ),
(YAY')V=ZAZ.

These are used heavily in verifying the claims that we are about to make.

By the cited axioms for a monoidal model category, or standard verifi-
cations in the usual examples, we have the following canonical triangles as
in (5.5). Thus, in each case, the first map is a cofibration, the second map is
a quotient map, and the third map is a connecting map as in (5.4). Note
that j, is a cofibration by the pushout-product axiom. The maps p, and ¢,
are defined in terms of displayed connecting maps, and the symbol ~
indicates an identification of the class of a given map J in €; each such
identification can be verified by an elementary diagram chase.

YAX 2H v XAZ’M

V2 YAY 28 ZAZ

(Y AX")
o=2p) ZV

XAY BV 5 ZAax 0, 5 (X AY)
XAZ 2wl Zay 22, 5(X A ZY)
XAX L YAy B w22, 5(x A X))
ZAX' 5w YAz 22 5(ZAX)

Note that there are no signs here. The sign inserted in one of the corre-
sponding distinguished triangles listed in each of (TC3) and (TC3’) is
dictated by (T2). Straightforward diagram chases, using commutative
diagrams in 4%, show that the diagrams displayed in (TC3) and (TC3’)
commute in ¥. Each of these diagrams has one arrow whose label is given
with a minus sign. Without the sign, the square of which the arrow is one
side would anticommute for the same reason that the bottom right square
of (4.5) anticommutes.

This completes the verification of (TC3) and (TC3’). While (TC3’) also
follows formally from (TC3), its present proof makes (TC4) obvious.
Indeed, the following square is a pushout in 4 to which Lemma 5.7 applies.

V—— 2  ,yaAY

(jh]é)l lkz

XAZY)YV(ZAX) —

(K1, k3)
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Reinterpreting the squares of (TC3) and (TC3') in terms of equivalent
Verdier braids, we conclude that the strong form of the axioms (TC3) and
(TC4) specified in Definition 4.11 holds.

7. HOW TO PROVE THE BRAID DUALITY AXIOM

We must still verify (TC5). We retain the assumptions of the previous
two sections. We will use the following elementary observation.

LemMma 7.1.  Suppose given a commutative diagram

Y
N
X/A h*Y{A —Z/A

xf; e

in B in which the maps f, g, f', and g’ are cofibrations between cofibrant
objects, the maps p, k,, and q are quotient maps, and the maps k, and k; are
induced by g' and f'. Let &Y /A — T be the map induced by passage to
quotients from ¢,. Then o k, =¢, and & o k; = &;.

As in Section 4, replace ( f', g’, #') by the distinguished triangle

Dg D(="'n)

DY -2, px >DZ.

(7.2) DZ
A priori, this lies in €. As we discuss in more detail shortly, we can repre-
sent it in 4 by a canonical triangle of the form displayed in (5.5). We can
then define

V=ADZ)Uy,pz; (XADY) and W= ADY)/(XADZ)
as in Section 6, with canonical maps j;, p;, ¢;, and k;. We can also define

V=(DYAX)Upzx (DZAY) and W =(DYAY)/(DZAX)

with canonical maps j;, p,, g;, and k;. The commutativity isomorphism y
for A in % induces isomorphisms y: V' —V and y: W — W under which
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yor,oy'=F for r=j, p, q, k, as in Remark 4.10. Thus, with these
choices, the involution condition of (TC5b) is immediate. We must verify
(TC5a) and the rest of (TC5b). For (TC5a), the idea is to apply Lemma 7.1
to the diagram

DZAX
(7.3) idaf DgAid

DgAid idAf
DZANY — DY AY~<~——DY AX

id /\gl z,l R 1Df/\id

DZAZ z W/_ DX ANX

The problem is that, a priori, the solid arrow part of the diagram only
commutes in ¥. We must show that we can arrange representative objects
and maps in % so that the diagram is already defined and commutative
there.

We have internal hom objects F(X, Y) in 4. When X is cofibrant and Y
is fibrant, F(X, Y) is fibrant. We need the following small observation.

Remark 7.4. In topological examples, S is fibrant, but in cases where
that is not so we must use a fibrant approximation A: S — 7. Here A is an
acyclic cofibration. Since a pushout of an acyclic cofibration is an acyclic
cofibration, it follows from the pushout-product axiom that we have a
composite of acyclic cofibrations

T=SAT— (TAS)Ug,s (SAT)— T AT.

Since T is fibrant, there is a retraction r: T AT — T, and r is clearly a weak
equivalence.

For a cofibrant object X, a cofibrant approximation ¢: DX — F(X,T)
gives a fibrant and cofibrant representative DX in 4 for the dual of X in %.
Moreover, the composite

DXAX YU F(X, T)ANX - T

in & represents the evaluation map & DX AX — Sin 4.
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We have the cofibration f: X — Y and the quotient map g: Y — Z. The
composite

F(g,id)

F(Z,T) 29 Fy, ) 229 F(x, T)

is the trivial map, and F( f, id) is a fibration. Choose a cofibrant approx-
imation Y: DZ — F(Z,T) as above and factor F(g,id) o ¢ as the compo-
site of a cofibration Dg: DZ — DY and an acyclic fibration y: DY —
F(Y,T). Define DX =DY/DZ and let Df: DY — DX be the quotient
map. Since the composite F(f,id)e y: DY — F(X,T) is trivial when
restricted to DZ, it factors as ¢ o Df for a map ¢: DX =DY/DZ —
F(X,T). Clearly y is a cofibrant approximation, and it is implicit in the
verification of (TC2) by use of fiber sequences that ¢ is a weak equivalence
and thus a cofibrant approximation. Setting

D(X7'h)=6: DX — EDZ,

we have the required canonical triangle (7.2). Moreover, we have the
following commutative diagram in 4. It represents the diagram (7.3) in ¥
and allows us to apply Lemma 7.1 to construct a map & W — T in % that
represents the map £ in € that is required to verify (TC5a).

(1.5) DZAX
D id i
DZAY " DY AY ans DY A X

wAid .
xAid xAid

idng FEZ, AV ey Ty Ay &L Py, Ty A X Dfnd

DZANZ idAg € F(f,id)Aid DX AX

YAid ¢Aid
F(ZT)nz— T L F(X,TYAX

To complete the verification of (TCS5b), it remains to show that the
diagram of (TC3’) centered around W is isomorphic in & to the dual of the
diagram of (TC3) centered around V. We need a standard observation that
can be verified by comparing cofiber and fiber sequences as in [5, 6.3; or
8, I11.2.3].
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Remark 7.6. Let p: E — B be a fibration in 4 with fiber i: F — E, so
that F is the pullback of p along * — B. We have a fiber sequence in
canonical form

QB F S E- 2, B

This is Eckmann—Hilton dual to (5.5). Shifting to the right, it gives rise to a
distinguished triangle

(7.7) F-LE-Z B2 5F

in ¥. We have an explicit comparison of this triangle with the canonical
distinguished triangle

F- E—C(i)— XF.

In fact, the canonical composite ¢q: Ci — E/F — B in 4 is a weak equiva-
lence that restricts to p on E and makes the following diagram commute in
-

C@i)— 2F

1]

B —JF.
=5

We use isomorphisms & DX AY — D(X ADY) in € of (4.12) to identify
all entries other than DV and W in our diagrams (TC3’) and (TC3), but we
must again distinguish between # and ¥. We use the duals and cofibrant
approximations in 4 discussed above. In %, we have a map

p: X > F(DX,T),

namely the adjoint of the composite

&nid

DXAX —>FX,T)AX —>T.

Using this and the map r: T AT — T of Remark 7.4, we obtain a map

F(id, r)o A
_—

DZAX Y25 F(Z, T)AF(DX,T) F(ZADX,T).

We write & for this map and for other similarly defined maps. They are
representatives in 4 for maps & as in (4.12), hence they are weak equiva-
lences. Observe that this depends on arguments in % that are based on the
assumption that X, Y, and Z are dualizable.
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Let us write D'(—) for the functor F(—,7) on 4. We define
& W — D'(V) as follows. The composite of the map

(idag, Df Aid): DY AY — (DY AZ) Xpx .z (DX AY)

and the cofibration DgAa f: DZAX — DY AY is the trivial map, hence
(idA g, Df Aid) factors through a map

W — (DY AZ) Xpy .z (DX AY).

The maps & for DYAZ, DX AZ, and DX AY are compatible, hence they
induce a map

(DY AZ) X pyrz (DX AY) — D'(Y ADZ) Xy npz) D'(X ADY).
Since the functor D' converts pushouts to pullbacks, the target here is
isomorphic to D'(V'). The composite of the last two maps is the desired
map

EW — D(V).

Immediate diagram chases from the definitions give that the following
diagrams commute in 4.

1 DXAY

Lo

) D'(X ADY)

D'(p3)

DXAX —5 W 7 DY AZ

T

D'(XADX) —— D'(V) —— D'(Y ADZ)
D'(j1) D'(p1)

Now consider the following diagram.

)

DZAX — 27 DY AY W—"_ ,>DZAX

T

D'(ZADX) ——— D'(Y ADY) D'(V) ED'(ZADX)
D'(gADf) D(

j2) D'(p2)
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The left square clearly commutes in 4, and another immediate diagram
chase from the definitions shows that the middle square commutes in %.
We must prove that & W — D'(V) is a weak equivalence and that the right
hand square, which is the only one in sight that involves connecting maps,
commutes in ¥. This will give that our cofibrant version in # of the
diagram of (TC3’) centering around W is essentially a cofibrant approxi-
mation of a fibrant version in # of the dual of the diagram of (TC3)
centering around V.

In the bottom row of the last diagram, D’'(j,) is a fibration, D'(gADf")
is its fiber, and, by inspection of duality, D’( p,) can be identified in € with
a map of the form X6 as in (7.7). Since the left square commutes in % and
its vertical arrows are weak equivalences, there results a weak equivalence
EC(Dgnf)—CD'(ganDf) that fits into a comparison of canonical
distinguished triangles

DgAf

DZAX DYANY ——> C(Dgnf) —— XDZAX

T

D'(ZADX) —;——> D'(Y ADY) —— CD'(gADf) — ZD(ZADX).

"(enDf)

Moreover, the following diagram commutes in %, where the bottom arrow
q is as in Remark 7.6:

C(DgAf) —+— W

gl lf

CD'(gADf)—— D'(V).

Since both maps ¢ and the left map ¢ are weak equivalences, so is & W —
D'(V). Moreover, a diagram chase from the two diagrams above and the
diagram in Remark 7.6 shows that the right hand square in the third
diagram above commutes in . This completes the proof of (TC5b).

8. THE PROOF OF THE ADDITIVITY THEOREM FOR TRACES

We adopt the methods of the previous section to prove Theorem 1.9. We
retain the assumptions and notations there. The idea is to construct a
commutative diagram as follows in €.
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s
n
(ZADZ)V (X ADX) Gau1) v 7 Y ADY
s
(r) v _ i
y . J2
(DZ A Z)V (DX A X) Cuks) W ks DY AY
|
(id Aw,id Ag) I id Ay
(k1,k3) Y k2
(DZAZ)V (DX AX) W DY AY
|
(id AAid AA) | idAaA
oy o
(DZAZAC)V (DX AX pc) EhGRNd) o B e Y aG
m\ 5%

C

Traversing the outer edge of (8.1), we read off the additivity relation of
Theorem 1.9. In view of the diagram in the proof of Theorem 0.1 at the
end of Section 4, it remains only to construct dotted arrows that make (8.1)
commute.

We first concentrate on the upper dotted arrow. We are given the solid
arrow portion of the following diagram in €.

b
~
h.<
N
M
b

-
—

b
~
M
b

faid gnid haid

As in the previous section, we may take this to be a diagram in 4, where f
is a cofibration between cofibrant objects, Z =Y /X, g is the quotient map,
and 4 is the canonical connecting map of (5.4). We may as well assume
further that X and Y are fibrant, although Z need not be.

Since maps in ¥ between fibrant and cofibrant objects are homotopy
classes of maps, the left square is homotopy commutative. We may apply
the homotopy extension property [ 14, p. 1.7] to a homotopy o f ~ f o ¢
to obtain a homotopy from ¥ to a map ¥’ such that ' o f = f o ¢.
Replacing ¥ by /', we may as well assume that the left square commutes. It
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then induces a map w: Z — Z by passage to quotients. With this choice of
w, the middle square commutes and the right square induces a commuta-
tive diagram in . Now the solid arrow portion of the following diagram is
easily checked to commute, and Lemma 7.1 applies to give the required
dotted arrow.

DZAX
DgAid i
DZAY — 29 by Ay 4 DY A X

idAg ;,1 \d " DfAid
DzZnZ = w = DX AX
’Cl t k3

| \

|

|

!

|

\j

id Aw

DY AY idAg

DZAZ = w p- DX AX
ky k3
In the case of Lefschetz constants of maps, where C =S, this completes the
proof of Theorem 1.9.
Now consider the lower dotted arrow in (8.1). We are given the solid
arrow portion of the following diagram, which we take as above as a
diagram in %:

x—L sy ¢ .7 h X

o L o

XACWY/\C ZANC—— X (X AC).

gnid haid

We may as well assume that C is fibrant and cofibrant. However, there is a
slight catch to applying the argument just given to arrange that the left
square commutes on the nose rather than just up to homotopy.

Remark 8.3. The object Y A C need not be fibrant, hence p,: (Y AC)! —
Y AC need not be a fibration and the model theoretic version of the
homotopy extension property may not apply; see [14, p. 1.6, 1.7]. In topo-
logical situations, all objects are fibrant and the problem disappears.
Moreover, in the applications to natural diagonal maps that I have in
mind, C=Y and 4 for X is the composite of idA f and the diagonal
X — X AX. In such cases, the left square does commute in 4. It seems that
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a fairly elaborate diagram chase using functorial fibrant approximation can
circumvent this problem, but I will leave the details to the interested reader.

Once we have that the left square commutes in (8.2), we can define 4 on
Z by passage to quotients. Then the solid arrow portion of the following
diagram is easily checked to commute, and Lemma 7.1 applies to give the
required dotted arrow.

DZnX
DgAi i
DZAY —222 L py Ay ans DY AX
id Ag ‘,1 dAA D fAaid
DZANZ — w — DXAX
kl | k3
I \
I
idAa’ ] DY AY ANC idAA
|
I
Y A
DZANZAC — WAC — DXAXAC
kiAid kanid

9. HOMOLOGY AND COHOMOLOGY THEORIES

When ¥ is the stable homotopy category, one can give a general treat-
ment of the products in homology and cohomology theories that is based
solely on the structure of ¥ as a symmetric monoidal category with a
compatible triangulation. There are four basic products here, two of which
are called “slant products.” A systematic exposition is given by Adams
[1, IIIL, Sect. 9] and followed by Switzer [16, pp. 270-284]. We warn the
reader that the treatment of slant products in the literature is chaotic. No
other two sources seem to give the same signs, and some standard refer-
ences actually confuse the slant product \ with a product that differs only
by a sign from the slant product /. We run through a version of Adams’
definitions and pinpoint the role played by the new axioms. If we were
starting from scratch, our preferred version of slant products would differ
by signs from those below, but the logical advantage of writing variables in
their most natural order is outweighed by the need for consistency in the
literature. Adams and Switzer make no use of function spectra F(X,Y),
which were only obtainable by use of Brown’s representability theorem at
the time they were writing, and this obscures the formal nature of their
definitions of the products.
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For an object X of & and an integer », define
7,(X) =%4(S", X).

When % is the stable homotopy category, 7,(X) is the nth homotopy group
of the spectrum X. When ¥ is the derived category of chain complexes over
a commutative ring R, S” is the trivial chain complex given by R in degree
n and 7,(X) is the nth homology group of the chain complex X. Applying
the product A (® in algebraic settings), we obtain a natural pairing

(CRY) Tp(X) ® 7,(Y) = 7,1, (X AY).
For objects X and E, algebraic topologists define
E(X)=n,(EArX) and E'(X)=n_,F(X,E).

Equivalently, E*(X) ~ ¢ (X, 2"E). The four products referred to above are

9.2) A:Dy(X)® E(Y) — (DAE),,, (X AY),
9.3) U: DX(X) ® EAY) — (DAE)"* (X AY),
9.4) /: D"(X AY) ® E,(Y) — (DAE)"™ (X),

©.5) \: D’(X) ® E(XAY) — (DAE),_, (Y).

The naturality of slant products is better seen by rewriting them in adjoint
form

(9.6) /: D’(X AY) — Hom(E,(X), (D A E)?~* (X)),
©9.7) \: E,(X AY) — Hom(D?(X), (DAE),_, (Y)).

The four products are obtained by passing to n, and applying the pairing
(9.1) and functoriality, starting from formally defined canonical maps

9.9) DAXAEAY > DAEAXAY,
9.9 F(X,D)AF(Y,E)—> F(XAY,DAE),
(9.10) F(XAY,D)AEAY — F(X,DAE),

9.11) F(X,D)NAEAXAY > DAEAY.
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Here (9.10) is obtained by permuting £ and Y and using the natural
isomorphism

F(XAY,D)~F(Y, F(X, D)),
the evaluation map ¢: F(Y, F(X, D))AY — F(X, D), and the natural map
v: F(X, D)AE — F(X, DAE),

while (9.11) is obtained by permuting £ and X and using the evaluation
map &: F(X,D)AX — D.

Of course, when D = E is a monoid in € (ring spectrum in the algebraic
topology setting), we can compose the given external products with maps
induced by the product EA E — E to obtain internal products. Similarly,
when X =Y has a coproduct X — X AX or product X AX — X, we can
obtain internal products by composition. In topology, we are thinking of
reduced cohomology and the diagonal map 4, — (AxA), ~ A4, AA, on
spaces A. The internalization of the product \ is the cap product.

There are many unit, associativity, and commutativity relations relating
the four products, and these are catalogued in [1, 16]. Without exception,
these formulas are direct consequences of our axioms for a symmetric
monoidal category with a compatible triangulation. In particular, Adams
[1, pp. 235-244] and Switzer [16, pp. 276-283] catalogue many formulas
and commutative diagrams that relate the four products to the connecting
homomorphisms in the homology and cohomology of pairs (X, 4) and
(Y, B), the crucial point being the correct handling of signs. Modulo
change of notation, they are considering the behavior of smash products
and function spectra with respect to pairs of distinguished triangles in the
stable homotopy category. Our compatibility axioms give what is needed to
make the derivations of these formulas and diagrams formal consequences
of the axioms.

REFERENCES

1. J. F. Adams, “Stable Homotopy and Generalized Homology,” Univ. of Chicago Press,
Chicago, 1974.

2. A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Astérisque 100 (1982),
5-171.

3. M. Bokstedt and A. Neeman, Homotopy limits in triangulated categories, Compositio
Math. 86 (1993), 209-234.

4. A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, “Rings, Modules, and Algebras in
Stable Homotopy Theory,” Mathematical Surveys and Monographs, Vol. 47, Amer.
Math. Soc., Providence, 1997.



10.
11.

12.
13.

14.

15.

16.

17.

THE ADDITIVITY OF TRACES 73

. M. Hovey, “Model Categories,” Mathematical Surveys and Monographs, Vol. 63, Amer.
Math. Soc., Providence, 1999.

. M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic stable homotopy theory, Mem.
Amer. Math. Soc. 610 (1997).

. L. Kriz and J. P. May, Operads, algebras, modules, and motives, Astérisque 233 (1995).

. L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure),
“Equivariant Stable Homotopy Theory,” Lecture Notes in Mathematics, Vol. 1213,
Springer-Verlag, New York/Berlin, 1986.

. M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram

spectra, Proc. London Math. Soc. 82 (2001), 441-512.

H. Margolis, “Spectra and the Steenrod Algebra,” North-Holland, Amsterdam, 1983.

J. P. May, Picard groups, Grothendieck rings, and Burnside rings of categories, Adv.

Math., in press.

A. Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1991), 221-255.

A. Neeman, ‘“Triangulated Categories,” Annals of Mathematics Studies, Vol. 148,

Princeton Univ. Press, Princeton, NJ, 2001.

D. G. Quillen, “Homotopical Algebra,” Lecture Notes in Mathematics, Vol. 43, Springer-

Verlag, New York/Berlin, 1967.

S. Schwede and B. Shipley, Algebras and modules in monoidal model categories, Proc.

London Math. Soc. 80 (2000), 491-511.

R. M. Switzer, “Algebraic Topology—Homotopy and Homology,” Springer-Verlag, New

York/Berlin, 1975.

J. L. Verdier, Catégories dérivées, Lecture Notes in Mathematics, Vol. 569, pp. 262-311,

Springer-Verlag, New York/Berlin, 1971.



	1. GENERALIZED TRACE MAPS
	2. TRIANGULATED CATEGORIES
	3. WEAK PUSHOUTS AND WEAK PULLBACKS
	4. THE COMPATIBILITY AXIOMS
	5. HOW TO PROVE VERDIER'S AXIOM
	6. HOW TO PROVE THE BRAID AND ADDITIVITY AXIOMS
	7. HOW TO PROVE THE BRAID DUALITY AXIOM
	8. THE PROOF OF THE ADDITIVITY THEOREM FOR TRACES
	9. HOMOLOGY AND COHOMOLOGY THEORIES
	REFERENCES

