THE METASTABIE HOMOTOFY OF S®
by
Mark Mahowald
Northwestern University

CHAPTER I
INTRODUCT ION

1. The Adams spectral sequence [1] (see Chapter 2, section 1 for a sumary)
is the most powerful tool presently available for studying the stable homo-
topy of spheres. The Adams theory is essentially a stable one, in its present
. form, and so gives information about ﬂj(Sn) only for j < 2n-1.

- The next block of n~-1 groups, i.e., for 2n-1< j < 3n=-2, is called the
netastable range and it too has many regular properties. But stable arguments
do not in general apply. The main result now available for this range of
groups is the following theorem of Toda.

. THEOREM I [25;11.7]. The following sequence is exact for j < 2n-2 and is

‘exact on the two component for j < 3n-3:

1.1 Syn

- nj_'_n(sn) _— . (Sn+k) I—k-’% n

13
zn—anﬂ:-l k,n n
jtktn ( n ) 2 “3_1(5 3>

j=1*n
where P2+k-l = pP-1/p=1 3 P” i3 the real n-dimensional projective space.
| +k ~1n+k=1
Note that if X >n+1 and j < n=-2 then ﬂj,,,k(sn ) and "j—l(zn oL
are stable groups.
Our cbject is to bring to Toda's theorem the power of stable methods
~ developed by Adams. One main result is
. THEOREM A. Assume k > n+1. There is a map between Adams spectral sequences

- wWhich on the E, level gives
! 2

I 8=1,t 2, pRthk-1
ExtSr¥(2,,2,) B> mxti I U (E(E, T ),2,)

for t-s < 2n~-2 and projects in E_, to the same map to which Ik,n of Toda's
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theorem projects for the same range. In addition if we restrict t-s to e
- +* ¥*,

greater then n-1, Ik"";n is & mapping of H¥(A) modules. (H¥(A)=Ext}(1,2))

(Note that , .3 ; Ext§?™(5y,2,) is an H¥(4) module.)

One can think of I‘k,n in theorem I as a generalized Hopf homomorphism
and our primary interest will always center on the case where k > n+1, i.e,,
where we map the cokermel of the suspension from an unstable group to a
stable group. The map Pk,n in theorem I is a generalized Whitehead product
and there have been several efforts to get general results about it[10],[11],
and [19]. Theorem A gives a quick proof of all the results of [19] and sub-
stantial generalizations.

2. It is quite clear from theorem I that a detailed study of the homotopy
of stunted projective spaces is central in the metastable homotopy of il
second major object of this paper 1s to develop a technique which renders
this a comparatively easy job if one knows Ext for a sphere. The details
of the computation of m +p(Pk) for p £ 29 are given in Chapter III, The use
of a large computer was importent in this work; compere III section 8.*
Table 4.l tabulates these results. Detailed tables are given in Chapter III
section 8.

Together with a proof of theorem A, Chapter II introduces a map between
stable objects, A: P, —> s, (P:f1 = RP/RP™™L yhere RPX is a real k-dimen-
sional projective space.) It is conjectured that this map is onto in homo-
topy (II.4.2) and this conjecture is verified as far as we have gone (Chep-
ter IV).

In [4], Adams defines a collection of direct sumands in certein stable
stems. Table 1 gives a listing of them with names for the generators.

L OE R -1 0 1k 2 3
S
As d
ummand of wy ZA(.'I) 22 22+ Z, 22 Z8
2
Neme of generator Pj 'qu** Mepky MRy EJ
Table 1.

*Dr. D. MacLaren did the programming using Cogent, a programming lan-

guage developed by John Reynolds. Ar d
the machine time; compare EB]. gonne National Laboratories supplie

*le actually will work with an element which is npy modulo 2,,8:]5',
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) et 2(3) be defined by 83 = 2P(I-VR(D)) | 1 gy 1 Ay = oKD,
We will give particular representations of these elemn’c.s in Chapter IV,
our representations are defined in such a way that 'T Pj€imJ for all
j> 1 and some multiple of psisin imJ if j = 2P for each p. The second
statement 1s not proved here btut will be discnseed in another place and is

not used here. It is believed that Py npj, n ;:t.1 and Ej generate the real
image of J. In particular we will prove

THEOREM B. It is possible to choose generators P (j >0)y p, and E (for

§20) in stems given in table 1 so that they have the following propert.iea.
i) pg has filtration > 4j - p(j).

! i) n Py bas filtration 2 4] for j > 1.
1i1) Rj has filtration > 43 +1.

3

iv) &4 bas filtration > 4j+ 1.
v) slpy) = 27P(3)-1 (g 27 P(3)y,
) &(py) # 0.
= s
vi1) e '(z,) = §(mod ).

We will also investigate the Whitehead product structure for all these.
THEOREM C. Iet a be an element in table 1. Suppose [1,,a,] 1s in m (s?)
and k < /n=-3. Then the order of [1,,a,] is given by table 2 except if i =
€py n=pj; i=8p-2, a =Ry i=8p~-3,a =npy and 1 = 8p-4, a = E4. For
these cases we require

i= l 8p [ 8p -2 | 8p-3 | 8p-4

8§< | sp-év+2 | Bp-bv-2  l. Sp-tw=5 | ep-6v-7
were v is defined by 8(p+j) = 2V(2"1).

Before we state theorem D we need some notation. Let n be an integer
w16t o and b Bedsrined by S A B, 0 SD £ 30 Iavigln)=daaat
let

Pn = Pa+1 B
=Ea b 2
b = 0.

=npg



a= Py P TPy Py MRy Ej
150 | Acgy [P smf » R 55 ool
1. | 2 2 2 2 2 Lo
L) SR o iy s (.
O 0 0 0 0| x
2
it B¢ | e % - 1a % o
5 2 2 x 2 2 0
6 A(j) x 0 2 0 4
e 0 0 0 o' i
Table 2.

S

Notice that ﬁn E ﬂcp(n)-»l'
1

THEOREM D. If n+g(m)+1 = 2 (2™1), where 3 < m! < m, then (1,080 = 0.
If n+9(m)+1 = 0 (mod 22*1), then [tn,ﬂm] is either zero or of order 2.
Conjecture, [In’ﬁm] £0 if n+op(m)+1 =0 (mod Zmﬂ') but n+o(m) +1 # z"’"l,
and [Ln,ﬂm] =0, ntp(m)+1 = 2m+1, iff {%2} is a permanent cycle in the
Adams spectral sequence. In particular, we conjecture that if hm2 projects

to a non-zero homotopy class a in the Adems spectral sequence then in the
diagram

I
11"3'2:.1+1_2 Fhy) W1 o 4 (z“‘an)
i

*
Tt g, (877
where I, is as in theorem I, iis a generator and n = 2% L o(m) -1,
Ih(am) = i*Bm'
Partial results supporting this conjecture are known but they will not
be discussed here. In particular the conjecture is true for m £ 4o
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3. In addition to the above information we get detailed results on the first
tventy or so unstable stems. In particular we give a table 4e2 which gives
11j(s“) for < J <40 if n> (j+3)/3. These results follow easily from the
collected calculations, and no detailed proof is given. We also can get
rather gta:ong statements about what the homomorphisms look 1like if J > 40,
282 Jj-n2 -l. These are collected in tables 4.3 and 4eke Propositions
vhich make this explicit are given in Chapter V. The results there are suf-
ticlent to compute [1_,a] for most a € nj(So), Jj < 21. The results would
really be quite satisfying if e specific conjecture about ExtS?¥(z,,2,)
could be verified, V.2.4. This conjecture is almost certainly true and it
seems within range of present techniques. When verified the Whitehead
product question for any element in m.(S®) < 29 with the exception of {eq}
would be settled in the sense that mfzk,n) could be given.

4+ This section contains the tables which collect the calculations made in
the paper. The first table gives m, (Pn) o~ nm(vnm’m) form > k+1. By
(8] ve see that m, (BOS(n)) x m,,(BSO)(n+m) @ meyy(Vyyy o) for m > k+1,
n>13, k<n=1l. Thus table 1 also gives a table of the unstable homotopy
groups of BOS(n).
in element in table 1 consists of some powers of some integers. For

example, for n = 1, k = 19 we have 8,2 as the entry. This means that
Ts19(By) = lg®Z, if n=1 (mod 16). In addition some entries contain the

syibol A or B or C. If for a given k and n valus the table lists C,2° this
meens that the group is C(k,n) @ 2, ® Z,, where C(k,n) (and A and B) are given
by the following result.
PROPSTTION 4.1, a) Let m(n,k) be defined by n+k+1 = 2%mod 2%'1). Let q
te defined by ¢(q) < k < p(a+1). Let i(n,k) = max(q~-m(n,k),0). Then
Alkyn) is & cyclic group of order 21(n,k) | 1
b) B(k,n) = B(k,n) @ Z, if m(n,k) = 4 and B(k,n) = B(kx,n) if m = 4. B(k,n)
is a cyclic group of order 79 ie q -n(nyk) > 0 and the order of 1, in
tables ITT.8.4, 1 = 2y..4,16.
¢) Clkyn) = Z, if m(n,k) > 4 and C = 0 If n(n,k) = 4.

Tables 2, 3 and 4 are quite clear. The xernel of the unstable J-homo-
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morphism can be easily detected. In particular if the unstable group in ope
of these tables does not contain m(P ) then the unstable J-homomorphism bes
a kernel. Comparison with table 1 gives the kermel. The groups in paren
theses in table 3 refer to undeeided cases. Conjecture V.2.,4 if true would
decide in favor of the group not in parentheses. In addition the reader
should be warned that not all the group extensions have been settled. This
applies particularly to table 4.1.

5. The author would 1ike to express his thanks to A. Luilevicius for many
profitable conversations on the material of this paper.
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CHAPTER II
THE ADAMS SPECTRAL SEQUENCE

. INTRODUCTION. The purpose of this chapter is to summarize the Adams
spectral sequencs, aec‘h:l.on 2; to prove theorem A, section 3; and to introduce
the map A: Pl - S s section 4.

2, THE ADAMS SPECTRAL SEQUENCE. (See also [1].)

Suppose X is an n-1 comnected space. By a resolution of X we will
nesn a system of fiber spaces

P P
33 e —>P, B ... —>p —2)P1-—>X
? -
Ay 4, A
together with the system induced by 2.1 over a point
2.2 ‘..%BB_—?.II _9B2 ""‘>A1_'9*
t 1
As A2

Each space of 2.3 is the fiber of a composite map of 2.1, i.e.

Bs e Ps e
is a fiber space. The Puppe sequence gives a map fs: OX = Bs' 1t 48
clear that the system 2.2 together with the maps fs define 2.1. Because of
this we frequently will call 2.2 together with {fs} a resolution.

Associated with a resolution is a spectral sequence defined by the exact
couple

2.3 Zu (p)——+2n (2)

e

;‘.’ﬂ*( A )

Of course in this generality nothing much can come from 2.3. There are
several useful specializations. The first leads to
DEFINITION 2.4. A resolution (mod p) is called admissible through dimension
T<2n-1 if
1) Each A  is a product of Eilenberg Maclene spaces (K(Z4q) or K(Zp,q)) of
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dimensions less than T;
2) ker(f *: n(2X) = n(B)) is strictly monotonically decreasing,

The most important resolution has this
DEFINITION 2.5. A resolution is called an Adams resolutiop mod p if
1) it is admissible through dimension 2n-1; and
2) each A  is a product of K(Zp,q)'s;
3) p* is zero for each s with Zp for coefficients through dimension T (in
(2.1).

Because of 2.4.2 the spectral sequence associated with an admissible
resolution of & n-1 commected space with finitely generated homotopy con-
verges to a graded group associated with ,12<:T ﬂJ(X), filtered by 2.1. Using

both the s filtration and the q filtration of Ay we see that 2.3 is alwyps
begraded. In the case of an Adams resclution the E5?* = Ext®~Lo(ix(x) )
for t=-8 < T=1; for details see [1].

Related to the above is another notion which will be useful. ILet
D CH*(Xizp) such that D is a vector space over Zp'
DEFINITION 2.6. We say X represents D if
1) Xp 18 a product of Eilenberg MacLane spaces;
2) there is a 1-1 correspondence with fundamental classes {a} of Xpendea
homogenecus basis of D such that if a € D N BI(X) then a, & BI"X(xp).
3) there is a map f: X —> X such that £*(a,) = a.

Given a subspace D < H*(X) there is always a fiber space
247 XD =Y -
with 'c(a.a) =a for each a € D. For more details see [2; chapter 3].

3. THE CONSTRUCTION. ILet Q-Y n be the fiber of the 2n-2 comnected fiber
n
space over S That is, there is a map f: S™ > ¥ % such that 5 “j(sn) =
J(Y ") is an isamorphism for Jj<Zn-landn (xn) 0 for j 2 2n-1, Since
" has homotopy only through tha stable ra.nga we can define an ()-spectrm
ba.sed on Y, i.e., .C)_Yk+1 = k for all k > n. Let ¥ial Jk be the fiber for
the following map:
n

R 29" >yl N
Note that n is & fixed integer and Y2, depends on n. We will keep n fixed
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throughout the remainder of this section and thus suppress the superscript n.
It will be understood throughout this section.

PROPOSITION 3.1. There is a homotopy equivalence through the 3n+k =2
+ F
skeleton between Fn+k,k and =% kPnn k-1,
Proof. Consider
1
QU > 5, > 1.
This fibration has & cross-section o: Y, —> o5 ZkIn given by cp(y)(sl,...,s )
n
= (y,al,...,sn) where (y,sl,...,sn) is a point in z‘kxn in the standard represen-
tation. We can make @ into a fiber map giving
Ve > T, = Q_kzkrn

where Q is defined as the fiber. In any fibration F —> E —> B the boundary
homomorphism in homotopy can be realized by a map f: Q0B —> F. Using this
map we have

k+ & k+ I
Q J’Fn+k,k 4> oy L> Lo i

Since nj(In) =0for j 2 2n-1, fi induces an isomorphism in homotopy for
all dimension. Thus Q*'IF, ., o 1s homotopicably equivalent to Qg kv
Now consider the following diagram of fibrations:

n nt+k
Chy 28 >as

3.1 |4 liz {4y
Q

Lol 7 T {8

n
k=1 James [14] showed that Q,, ; = s20-1 tyrough hamotopy dimension
2 2 = g2n+2
3n-3. While Barcus and Meyer [6] showed that Fp4y 3 = Y, %Y, =
through dimension 3n. Since Qn*‘l,l = _Q_an+l,1 and il corresponds to
gt = .‘2122252'1_1 we see that i, is a homotopy equivalence through 3n-3.
We now proceed by induction. Consider

Qn+l,1 Xy QI

\ lgky
Qe x 7 Tar e
! .
DG e T, = e

and
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.O.ZS
Qn'*‘l,l —>Sn -

i "
Qn'+k L —>8, —> Q_kaS

-1.n+l
nqn+k oy S o_k}:k o et
The natural maps between the two diagrams give

m5(Qay 1) > Qi) > T Cpneka) > "G d)

Izi* TJQ* ']‘33* Tsl*
M@l 1) = Qg ) " Qe 1) > "5 (Gn,0)

By hypothesis jl* and 33* are isomorphisms for j < 3n-3 and J < 3n-2 re-
spectively. Hence ;]2* will be an isomorphism too for j < 3n=-3. Theoren I
completes the proof.

COROLLARY 3.2. nj(zh:n) = (T )+ nj(z“+kP§+k‘1) for § < 3n+k-3.

Note that either one or the other group is zero in the range of interest.
Let A: mi(2) > my(37*kpI*%"1) ve the projection map. Of course it is de-
fined only for j < 3n+k -3 and is not generated by any geometric map.

The following is an important corollary of the proof of 3.l.
PROPOSITION 3.3. The composite

ny(s™E) > (2T ) 2> n (T

is just
-1 a1y 2L +k ntk-1
T 2 W

where I is the Toda map of theorem 1.

Proof. The proof is immediate from diagram 3.1.1.

Proposition 3.3 is the key to the proof of theorem A. The only thing
left is to construct a suitable resolution of the cohomology of Z.J‘I 80 as to

be able to identify the copy of Zn+k¥"1+k'l which is present there.
Let

I
“j(sn"'k) Xy g

DO 4 N, e =
k 85k Ps,k —>X pzkxlk

be an Adams resolution of Y, through dimension 2n+k-1 (Def. 2.5). We re-
quire that 'Q-X's,k-i'l = xs,k'

—— > x(})
P1,x
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The rest of this section will be devoted to proving the existence of the
following diagram with the properties we will require (and show) it to have.

ZEJ_,YI‘ > e > zk’is,n e zkxs_l’n e s z“‘xl,n — T%(2,n)

H s
xDa —>AS+1 = eee = isﬂ'
s s-1
XDs_l-—>As — ass '—>As -AAB

Iy Sh =S Al S

v
iy

! ! l L d
5

Ipy>h >4 a3l ~> a0

l y | y

In"'k _> LY _"> Is’n_'_kéxs_l’n_}k "}oo- _>' Kl,n,._k—) K(Z,n-l-k)
Disgram 3.4

The resolution of ZkIn, which will give a proof of theorem A, is the
diagonal one in this diagram, i.e.,
8 1
A T T e (I

Hence the tower induced by the left hand column over a point must be an Adams
resolution of Fn+k,k' We will describe in detail the lower right cormer and
the general case involving the parameters s and s-1l. In everything that
follows we will only consider cohomology through dimension 3n+k-1. H*(X)

Al ey i "I(X).
0<j<3n+k

First we need a lemma.

B0 3.4.1. et Ff, o be the fiber of Z%g > Xg,pvi 20d 1ot

. s *
£ Fn+k,k = Fn"'k,k be the natural map. For each s f_* is surjective in
dimension less than 3n + k.

Proof. We proceed by induction. We need only show it for F°. We have

the following diagram:



5 Pl o
-1 _0 a s o > F
= an"'l,l F o,k ntk,k-1

]
Ty, T8
~1p LW
g n+l,1 Fn+k,k ntk,k-1"

Since FO,, ; = K(Z,n) xK(2,n) [6] £'* 1s surjective. The bottom cohomology
n+l,

sequence splits into a short sequence. By induction suppose f '* is surjec-
tive. Then (pzfo')* is surjective in dimension for which p,* is. Since

2n +k connected il* is surjective in dimension 2n+Xk, which con-

Pk, k-1 18
pletes the proof.
First the lower right corner. Consider the following diagram:
i
F 2 2 =T,

ntk,k

P

o 1, H(k(2,n)) = K(Z,0%%).
Let H*(F:+k,k) = ker £ + D where D is defined by this equation (although
not uniquely). First observe that
3.5 T: Dy > B*(K(Z,n*k))

is a monomorphism. Indeed if a & D, satisfies 0¥%a = O, then there is an a!
such that il*a' = a. But then iz*g*a' = f*a # 0 but g* is clearly zero in
dimension # n+k. Let XDO be a product of Eilenberg MacLane spaces which

represents D (2.6). We can form the fiber space
6 < *
3 Xpy, > 4 K(Z,n+k)

where the image of Dy under transgression is given by 3.5.
The second row of 3.4 is induced by 3.6.

Now consider
gy 3w
N
b
i:kYn —7\"19 Z?l’n —-A? ZkK(Z,n)
X”o"”il ¥ At “}T:[l-> 3
v

Tork Ko X100 Rgr K(Zsntk).






