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CHAPTER I 

INTRODUCTION    

    

    
   

     

    
   

     

   

‘1. The Adams spectral sequence [1] (see Chapter 2, section 1 for a summary) 
_is the most powerful tool presently available for studying the stable homo- 

- topy of spheres. The Adams theory is essentially a stable one, in its present 

form, and so gives information about 1,(S") only for j < 2n-1. 
_ The next block of n-1 groups, i.e., for 2n-1< j < 3n-2, is called the 

metastable range and it too has many regular properties. But stable arguments 

do not in general apply. The main result now available for this range of 

groups is the following theorem of Toda. 

‘THEOREM I [25;11.7]. The following sequence is exact for j < 2n-2 and is 

exact on the two component for j < 3n-3: 
Paol skyn a - P 

ee). Bae! (ertpetiel Jon, , 18) > "5-1 

here Sela = potk-ljpo-l ona PF” is the real n-dimensional projective space. 
4 —! +k: Note that if k >n+1 and j <n-2 then 15,,(S™"*) and m4 (2 apn et) 
are stable groups. 

Our object is to bring to Toda's theorem the power of stable methods 

developed by Adams. One main result is 

THEOREM A. Assume k > n+l. There is a map between Adams spectral sequences 

which on the E, level gives 
F 2 

z 8-1, t/q, patk-1 Ext§?*(z,,2,) Ke > Ext? *(i(RD ) 25) 
t 

for t-s < 2n-2 and projects in E,, to the same map to which Ton of Toda's 

  

j This work was supported by a grant from the U.S. Army Research Office 
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theorem projects for the same range. In addition if we restrict t-s tot 

greater than n-1, Ty is a mapping of H*(A) modules. (H(A) =Exts)"(Z,,2))) 

(ote that , ,.2_, Extg?"(Z2,Z,) is an H¥(A) module.) 

One can think of Tign in theorem I as a generalized Hopf homomorphisn 

and our primary interest will always center on the case where k > ntl, i 280, 

where we map the cokernel of the suspension from an unstable group to a 

stable group. The map PB kn in theorem I is a generalized Whitehead product 

and there have been several efforts to get general results about it[10],[1], 

and [19]. Theorem A gives a quick proof of all the results of [19] and sub- 

stantial generalizations. 

2. It is quite clear from theorem I that a detailed study of the homotopy 

of stunted projective spaces is central in the metastable homotopy of seek 

second major object of this paper is to develop a technique which renders 

this a comparatively easy job if one knows Ext for a sphere. The details 

of the computation of Tp Pe ) for p < 29 are given in Chapter III. Th use 

of a large computer was importent in this work; compare III section 8.” 

Table 4.1 tabulates these results. Detailed tables are given in Chapter III 

section 8. 

Together with a proof of theorem A, Chapter II introduces a map betwen 

stable objects, A: P, > 8°. (PK = RPK/ppMl vere RPK is 2 real k-dinon- 
sional projective space.) It is conjectured that this map is onto in homo- 

topy (II.4.2) and this conjecture is verified as far as we have gone (Chap 
ter IV). 

In [4], Adams defines a collection of direct summands in certein stetle 
stems. Table 1 gives a listing of them with names for the generators. 

i 3305 -1 ° a 2 2 
s A summand of Ty 245) 2 2+ 25 25 2 

2 Name of generator P5 np n P52P; 1B; 5 

Table 1. 

  

“Dr. D. MacLeren did the programming using Cogent, a programming Jan- guage developed by Jolm Reynolds. Ar; Ni a 
ene co fests gonne National Laboratories supplie 

**We actually will work oe an element which is 1p; modulo amas 6
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let (3) be defined by 83 = 2P(5)-1(2P(3)), an tepte 1, ACj) = 2003), 
We will give particuler representations of these perenents in Chapter IV. 

dur representations are defined in such a way that n* Pz e imJ for all 
j> land some miltiple of p; is in imJ if j= 2P for each p. The second 
statement is not proved here but will be asnaesd in another place and is 
not used here. It is believed that P3 "Ps n ys and 55 generate the real 
image of J. In particular we will prove 

THOREM B. It is possible to choose generators P5 (j > 0), p, and 5 (for 
j2 0) in stems given in table 1 so that they have the following scaae 

4) py has filtration > 4j - p(j). 
ii) tho; has filtration > 4j for j>1. 

444) py has filtration > 4j+1. 

2 

iv) §; has filtration > 4j+1. 

) e(p3) = o-P(5)-1 (aoa 2P(3)), 

vi) 4,(p5) # 0. 

= 2 vid) ep'(E,) = R(moa 2). 

We will also investigate the Whitehead product structure for all these. 

THROREM C. Let a be an element in table 1. Suppose [1,,a,] is in 1,(S") 
andk < 4n=3. Then the order of [2,,a,] is given by table 2 except if i = 

8p, a= p35 i=8p-2,a= B55 i= 8p-3,4 = "Rp; and i = 8p-4, a = 3. For 

these cases we require 

i= | 8p | Sp =-2 8p-3 | 8p-4 
  

  83< | 8p-6v+2 | ép-6r-2 Sev 5u) | epee 7 

viere vy is defined by &(p+j) = 2%(2%"7). 
Before we state theorem D we need some notation. Let n be an integer 

mi let a and b be defined ty H’= lath, 0<b <3. let q(n) = Ba +2". 
let 

Bn = Pat1 Diz 

= be b=2 

=np, bp=1 

b=0.



  

  

  

  

  

  

                
  

a= P; 1P; Tas Bs IPs gy 

L=0 C5) 2 2 2 2 8 

4, 2 2 2 2 2 0 

0 Shall: GG) fo tn : 
3 2 ° 0 ° 0 x 

2 2 2 8 tet 
5 2 2 x 2 2 0 

6 As) x oO 2 0 4 

71x oO 0 0 o%| #0 

Table 2. 

Notice that B, & SL tau 

THEOREM D. If n+o(m)+1= 2"'(2™1), where 3 <m! <u, then LtysB,] = 0- 
If n+9(m)+1= 0 (mod 2*1), then (t,,,8,,] is either zero or of order 2. 

Conjecture. [1,58] #0 if nto(m)+1 = 0 (moa 27) wut ntg(m) +122", 
and [1,58,] = 0, n+(m) +1 = ae aff {au a} is a permanent cycle in the 
Adams spectral sequence. In particular, we conjecture that if h,” Projects 
to a non-zero homotopy class a, in the Adams spectral sequence then in the 
diagram 

TSntl_p ms Tmt (oP) 

i, 

Tal 54, (8) 
where 1, is as in theorem I, iis a generator and n = pete 9(m) -1, r,(a,) = i,8,- 

Partial results supporting this conjecture are know but they will not 
be discussed here. In particular the conjecture is true for m< 4.
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3, In addition to the above information we get detailed results on the first 
twenty or so unstable stems. In particular we give a table 4.2 which gives 
(8) for 23 < J < 40 if n> (j+3)/3. These results follow easily from the 
cae calculations, and no detailed proof is given. We also can get 
rather strong statements about what the homomorphisms look like if j > 40, 
%2j-n2-1. These are collected in tables 4.3 and 4.4. Propositions 
which make this explicit are given in Chapter V. The results there are suf- 

ficient to compute [1 nl for most a € 1; (s° ), J <2]. The results would 
really be quite satisfying if a case conjecture about Ext??*(Z5,2) 
could be verified, V.2.4. This conjecture is almost certainly true and it 

seems within range of present techniques. When verified the Whitehead 

product question for any element in 1,(S°) < 29 with the exception of {ey} 
would be settled in the sense that ant, could be given. 

4. This section contains the tables which collect the calculations made in 

the paper. The first table gives ny (2) 2 Than (V ao =) form>ktl. By 

[8] we see that Then (BOS (nn) ) 2 Th +n (BSO) (n + m) ® Mein Vaan) for m>k+1, 

n>13,k<n-1. Tims table 1 also gives a table of the unstable homotopy 

groups of BOS(n). 
4n element in table 1 consists of some powers of some integers. For 

example, forn = 1, k = 19 we have 8,2 as the entry. This means that 

Ty19(Py )= Ze ©2, if n=l (mod 16). In addition some entries contain the 

symbol A or B or GC. If for a given k and n value the table lists Ce this 

mans that the group is C(k,n) © Z, © Z, where C(k,n) (and A and B) are given 

by the following result. 

PROPOSITION 4e1. a) Let m(n,k) be defined by n+k+1 = 2%(mod 27), Leta 
be defined by 9(a) $k < p(at1). Let i(n,k) = max(q-m(n,k),0). Then 

A(kyn) is a cyclic group of order gila,k x), 

>) B(kyn) = B(kyn) © Z, if m(n,k) = 4 and B(iyn) = Bk,n) if m= 4. B(k,n) 

is a cyclic group of ia aul sp q-m(n,k) 2 0 and the order of 1, in 

tables III.8.4, 1 = 2).00,16. 

e) G(kyn) = 2, 4f m(n,k) > 4 and C = 0 1f m(n,k) = 4e 

Tables 2, > and 4 are quite clear. The kernel of the unstable J-homo-
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morphism can be easily detected. In particuler if the unstable group in on 

of these tables does not contain (P,) then the unstable J-homomorphisn hag 

a kernel. Comparison with table 1 gives the kernel. The groups in paren. 

theses in table 3 refer to undeeided cases. Conjecture V.2.4 if true would 

decide in favor of the group not in parentheses. In addition the reader 

should be warned that not all the group extensions have been settled. This 

applies particularly to table 4.1. 

De The author would like to express his thanks to A. Luilevicius for many 
profitable conversations on the material of this paper.
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CHAPTER II 

THE ADAMS SPECTRAL SEQUENCE 

- INTRODUCTION. The purpose of this chapter is to summarize the Adams 
eee sequence, Bectilan 23 to prove theorem A, section 33 and to introduce 

the map A: Pj) > 3° > Section 4. 

2, THE ADAMS SPECTRAL SEQUENCE. (See also [1].) 
Suppose X is an n-1 connected space. By a resolution of X we will 

mean a system of fiber spaces 

P. Pp. 201. tee > PL E>... > P, —2> Px 
f fos esnait 
ae AS aa 

together with the system induced by 2.1 over a point 

202 soe > BL > «ses B => hp 

t ' 
AS A, 

Each space of 2.3 is the fiber of a composite map of 2.1, i.e. 

Be —> Po —— > x 

is a fiber space. The Puppe sequence gives a map £5: OXY > Bo. It is 

clear that the system 2.2 together with the maps iss define 2.1. Because of 

this we frequently will call 2.2 together with {f,} a resolution. 

Associated with a resolution is a spectral sequence defined by the exact 

couple 

243 2m. (,) > on, (P.) 

oe wide 
2m, (45) 

Of course in this generality nothing mich can come from 2.3. There are 

several useful specializations. The first leads to 

DEFINITION 2.4. A resolution (mod p) is called admissible through dimension 

T<m-1 if 

1) Each A, is a product of Eilenberg MacLane spaces (K(Z,q) or K(Z,,4)) of
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dimensions less than Tj 

2) ker(f£,*2 1, (Qk) > m,(B,)) is strictly monotonically decreasing. 

The most important resolution has this 

DEFINITION 2.5. A resolution is called an Adams resolution mod p if 

1) it is admissible through dimension 2n-15 and 

2) each A, is a product of K(Z,49) '85 

3) p,* is zero for each 5 with Zz, for coefficients through dimension T (in 

(2.1). 

Because of 2.4.2 the spectral sequence associated with an admissible 

resolution of a n-1 connected space with finitely generated homotopy con- 

verges to a graded group associated with Zz * 75%), filtered by 2.1. Using 

both the s filtration and the q filtration of A, we see that 2.3 is alwys 

begraded. In the case of an Adams resolution the £5?* = mxtf4¥%(fix(x),z,) 
for t-s <T-1; for details see [1]. 

Related to the above is another notion which will be useful. let 

D c H*(X52,) such that D is a vector space over Z, 

DEFINITION 2.6. We say Xp represents D if 

1) Xp is a product of Eilenberg MacLane spaces; 

2) there is a 1-1 correspondence with fundamental classes {a} of Xp anda 

homogeneous basis of D such that if ae Dn H(x) then a, e W(x), 
3) there is a map f: X > Xp such that f£*(a,) = a. 

Given a subspace D C H*(X) there is always a fiber space 

207 He>YrSx 

with t(a,) =a for eachaeD. For more details see [2; chapter 3]. 

3. THE CONSTRUCTION. Let 2X, be the fiber of the 2n-2 connected fiber 

space over S", That is, there is a map f: S2 > Y," such that f,: 1, (5") > 
OW *) is an isomorphism for j < 2n- ~1 and 9,(¥,") = 0 for j 2 an- 1, Since 

* has homotopy only through Ate stable range we can define an (-spectrm 
based on Yq dees, OYA, =¥7 for alk >n. let Fray,yc b2 the fiber for 
the following map: 

Fatk, ik = = ex, Te 
Note that n is a fixed integer and Y5,, depends on n. We will keep n fixed
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throughout the remainder of this section and thus suppress the superscript n. 
It will be understood throughout this section. 
PROPOSITION 3.1. There is a homotopy equivalence through the 3n+k~=-2 
skeleton between F c,k and oa SP? n*k-1, 

Proof. Consider 

WF 2> HY > x, 
This fibration has a cross-section 9: ¥, > 2 i ey given by (y)(s, 28,,) 
= (¥,8,)-+-)8,,) where (y98z 500058, ) is a point in =a in the standard represen- 
tation. We can make p into a fiber map giving 

Rg ee oot. 

where Q is defined as the fiber. In any fibration F > E +B the boundary 

homomorphism in homotopy can be realized by amap f: QB —>F, Using this 

map we have 
kt a eee ay ge Set 

Since ms (x, ) =O for j > M-1, fi induces an isomorphism in homotopy for 

all ieee Thus Q: ee , is homotopicably equivalent to Qntk, ke 

Now consider the following diagram of fibrations: 

n ntk 
Srngk ats 

3eiat Ae Je 1a 
Que, x — ty oar ESE. n* 

Ifk=1 James [14] showed that rt 1 = s20-l through homotopy dimension 

3n-3. While Barcus and Meyer [6] ahd that Fatt, po ye gente 

through dimension 3n. Since Qq+3,1 = 2Fp+1,1 and = r Svea te 

stl _, 9?5@590-] ve see that i, is a homotopy equivalence through 3n-3. 

We now proceed by induction. Consider 

Ree scott’ “a > 2, 

a. > y, > US, 

26,51 > iy > PE ae 
and
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Ba 
gene Se oye 

J 4 ¥ a 
Gitte State ia 

+ relga, 2 ae > Spe > Yue 

The natural maps between the two diagrams give 

7;(Qi43,2) —_ 15 (Qraie ie) ma T51Qnate xen) aoa 1%, +1, p 

Pir fat on 2 Pt a alee 
my(Qtey 1) > 75 Rta) > Ty (Qtr cea) > "5-26Sea, a) 

By hypothesis j,* and j3* are isomorphisms for j < 3n-3 and j < 3n-2 re- 

spectively. Hence jp* will be an isomorphism too for j < 3n-3. Theorem I 

completes the proof. 

COROLLARY 342. m4(2'Y,) = my(Layy) + Wy(2"MPD*E)) for J < Jat k-3. 

Note that either one or the other group is zero in the range of interest, 

Let A: 1 (22,) > 1,(20*Kpn*k-1) be the projection map. Of course it is de- 
fined only for j < 3n+k-3 and is not generated by any geometric map. 

The following is an important corollary of the proof of 3.1. 

PROPOSITION 3.3. The composite 

nj(SP"*) > nT) AS a (Brae 

is just 
+) I, —. +e +1 +) —, ea ed a ce 

where I, is the Toda map of theorem 1. 

Proof. The proof is immediate from diagram 3.1.1. 

Proposition 3.3 is the key to the proof of theorem A. The only thing 

left is to construct a suitable resolution of the cohomology of a so as to 

be able to identify the copy of Na oie which is present there. 
let 

Yi. 2 oS CT ——- 
k Syk Psyk ee Pay yk 

be an Adams resolution of XY, through dimension 2n+k-1 (Def. 2.5). We re- 
quire that OXs 441 = Xp x. 

——> K(Z,k) 
Pik
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The rest of this section will be devoted to proving the existence of the 

following diagram with the properties we will require (and show) it to have. 

2, Po PE is, as Pu ae 2% —> 2K(z,n) 
+ 

Xp > Age Pree DA 

a1 Lye eS ee iain S98 
Deo S 

ee a at lS 8 

l L, ie ty Bp A ee A! ee ay et 

1 t { 1 { 
Tae > tt > Xp nse Sea ate Pees > Sy pea > KZ nr) 

Diagram 3.4 

The resolution of 2, which will give a proof of theorem A, is the 

diagonal one in this diagram, i.e., 

s ae BY, Do. Sal >... Sanz). 

Hence the tower induced by the left hand colum over a point mst be an Adams 

resolution of Fatk,k* We will describe in detail the lower right corner and 

the general case involving the parameters s and s-1. In everything that 

follows we will only consider cohomology through dimension 3n+k-1. H*(X) 

vill man I(x). 
0<j<3ntk 

First we need a lemma. 

8 IMA 3.4.14 Let Fy y be the fiber of 2g in > X5,n4, ond let 
: 8 * fy: Fitk,k => Favicyie be the natural map. For eachs f,* is surjective in 

dimension less than 3n+k. 

Proof, We proceed by induction. We need only show it for F°, We have 

the following diagram:
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- PL ° -1,0 1 ° >F 
= deer 7 ae Patk,k ntk,k-1 

t ee tees P2 
2 

Since F,, , = K(Zyn) *K(Z,n) [6] £,"* 4s surjective. The bottom cohomology 
nt: 9 

sequence splits into a short sequence. By induction suppose LS is surjec- 

tive. Then (pit')* is surjective in dimension for which p,* is. Since 

Ae eal 4s 2n+k connected i\* is surjective in dimension 2n+k, which co 

pletes the proof. 

First the lower right corner. Consider the following diagram: 

4 
F => SY Tay ntk,k 

geo i te 
Fat 3y x(x(2,n)) > K(Z,n*k). 

Let HCE rc 1) = ker £* + D, where D, is defined by this equation (although 

not uniquely). First observe that 

3.5 tT? Dy > H*(K(Z,n*k)) 

is a monomorphism. Indeed if ae Do satisfies 5%a = 0, then there is ana! 

such that ij*a! =a. But then ip*g*at = f*a 4 O but g* is clearly zero in 

dimension #n+k. Let =, be a product of Eilenberg MacLane spaces which 

represents Dy (2.6). We can form the fiber space 

26 0 + 3 Xp, PAL > K(Z,ntk) 

where the image of Dy under transgression is given by 3.5. 

The second row of 3.4 is induced by 3.6. 

Now consider 
a 2S rt 
ese ae aie = ak(Z,n) 

4 J “ 

tle TEP ayn Tee? Be ymte.
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le let H¥(F") = ker £* + D where D, is defined by this equation. Let Xp, bea 

a representation of Dy and define Xp, -> A, > a, ty requiring the trans~ 
gression on Dy to be the same as for the fibration FY —> , -> a}. the 
third row of 3.4 is induced by this fibration. In order to show that Xp is 
the correct fiber for the second stage of a resolution of Frat, We must show 

f* is onto. First observe that i* is zero. To see this conbdase the follow- 

ing diagram: 

ee eat 
Futk,k : By, oD 2, 1,n 

1 yr) wee ie 
XD, 3 . Daa 

ees Yak X) atk 
Since g* is onto (because £,* is onto according to 3.4.1), q* is zero 

and thus i* is zero. Now consider the diagram 

£, zy fi, pl a 

Pine ak see Fien,k 

at oe 
Xp, 

where Fa, and Pon yk are the fibers of ee n 7? Xa nex 204 =k(Z,n) > 

K(Z,n+k) respectively. Now ker j,* = ker we Indeed, EMEP se is 

composed of the cohomology of shx(Z,n) which is not in im reine +k), 

(ie. suspension of cup product terms) together with the kernel of the map 

H(K(Z,n+k)) —> H*(2*K(Zyn)), iee-, those classes with an excess of greater 

thn n in the Cartan basis representation [23]. Clearly j,* maps to zero all 

cup product terms and all classes which transgress to classes with excess 

greater than n except those classes which transgress to Sqi, i>n. But 

these classes which transgress to Sat are also mapped nontrivially by j*5,*-


