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Introduction

Our goal in this paper is to introduce a variant of algebraic geometry, which we will refer to as spectral
algebraic geometry. We will take as our starting point Grothendieck’s theory of schemes. Recall that a
scheme is a pair (X, Ox), where X is a topological space, Ox is a sheaf of commutative rings on X, and
the pair (X,0x) is locally (with respect to the topology of X) isomorphic to the Zariski spectrum of a
commutative ring. We can regard a commutative ring R as a set equipped with addition and multiplication
maps

a:RxR—R m:RxR—R

which are required to satisfy certain identities. For certain applications (particularly in algebraic topology),
it is useful to consider a variation, where R is equipped with a topology. Roughly speaking, a (connective)
Eo-ring is a space X equipped with continuous addition and multiplication maps

a: X xX—-X m: X xX—X

which are required to satisfy the same identities up to (coherent) homotopy. The theory of E.-rings is
a robust generalization of commutative algebra: in particular, the basic formal constructions needed to
set up the theory of schemes (such as localization) make sense in the setting of Eoo-rings. We will use this
observation to introduce the notion of a spectral scheme: a mathematical object which is obtained by “gluing
together” a collection of (connective) Eoo-rings, just as a scheme is obtained by “gluing together” a collection
of commutative rings.

The collection of commutative rings can be organized into a category Ring. That is, to every pair of
commutative rings R and R’, we can associate a set Hompging (R, R') of ring homomorphisms from R to R'.
The analogous statement for E,.-rings is more complicated: to every pair of E.-rings R and R’, we can
associate a space Map(R, R’) of morphisms from R to R’. Moreover, these mapping spaces are equipped
with a composition products Map(R, R') x Map(R', R”) — Map(R, R"), which are associative (and unital)
up to coherent homotopy. To adequately describe this type of structure, it is convenient to use the language
of co-categories developed in [40]. The collection of all Eo-rings is naturally organized into an co-category
which we will denote by CAlg, which contains (the nerve of) the category Ring as a full subcategory.

Let us now outline the contents of this paper. Recall first that the category of schemes can be realized as a
subcategory of the category of ringed spaces, whose objects are pairs (X, Ox) where X is a topological space
and Ox is a sheaf of commutative rings on X. Our first goal will be to introduce a suitable co-categorical
version of this category. In §1, we will introduce the co-category RingTop of spectrally ringed co-topoi. The
objects of RingTop are given by pairs (X, Ox), where X is an oo-topos and Oy is a sheaf of E..-rings on X.

In §2, we will introduce the notion of a spectral scheme. The collection of spectral schemes is organized
into an oo-category, which we regard as a subcategory of the oco-category RingTop of spectrally ringed oo-
topoi. This subcategory admits a number of characterizations (see Definitions 2.2, 2.7, and 2.27) which we
will show to be equivalent. We will also explain the relationship between our theory of spectral schemes and
the classical theory of schemes (Proposition 2.37).

Let (X,0x) be a scheme. Recall that X is said to be quasi-compact if every open covering of X has a
finite subcovering, and quasi-separated if the collection of quasi-compact open subsets of X is closed under
pairwise intersections. In §3, we will generalize these conditions to our co-categorical setting by introducing
the notion of a coherent co-topos. If X is the co-topos of sheaves on a topological space X, then X is coherent
if and only if X is quasi-compact and quasi-separated. For every spectral scheme (X, Ox), the co-topos X is
locally coherent (because coherence is automatic in the affine case), and the coherence of X is an important
hypothesis for almost any nontrivial application.

Our theory of coherent co-topoi is an adaptation of the classical theory of coherent topoi (see, for example,
[28]). A theorem of Deligne asserts that every coherent topos X has enough points: that is, that there exists
a collection of geometric morphisms {f, : Set — X} such that a morphism ¢ in X is invertible if and
only if each pullback fX(¢) is a bijection of sets. In §4, we will prove an oo-categorical analogue of this
statement (Theorem 4.1). As an application, we prove a connectivity result for the geometric realization of
a hypercovering (Theorem 4.20) which is useful in §5.



To every connective Eo-ring R, one can associate a spectral scheme Spec,(R) € SpSch. Consequently,
every spectral scheme X = (X, Ox) represents a functor X on the co-category CAlg®™ of connective E,.-rings,
given by the formula X(R) = Mapg,s.,(Specz(R), X). In §5, we will show that if X is 0-localic (meaning
that the underlying oo-topos of X can be realized as the category of sheaves on a topological space), then
X is a sheaf with respect to the flat topology (Theorem 5.15). The proof makes use of the fact that the
flat topology is subcanonical on the co-category of E.-rings: that is, that every corepresentable functor is
a sheaf with respect to the flat topology. We will deduce this subcanonicality from a more general result
concerning descent for modules over E,-rings, which is proven in §6.

In classical algebraic geometry, the category of schemes can be regarded as a full subcategory of a larger
2-category of Deligne-Mumford stacks. In §8, we will introduce the notion of a spectral Deligne-Mumford
stack. Our definition involves the notion of a strictly Henselian sheaf of E.o-rings, which is generalization
of the classical theory of strictly Henselian rings; we include a brief review of the classical theory in §7. As
with spectral schemes, we can think of spectral Deligne-Mumford stacks as mathematical objects obtained
by “gluing together” connective E,.-rings. The difference lies in the nature of the gluing: in the setting of
spectral Deligne-Mumford stacks, we replace the Zariski topology by the (far more flexible) étale topology
on E,.-rings. The collection of all spectral Deligne-Mumford stacks is organized into an oo-category Stk,
and there is an evident functor SpSch — Stk. In §9, we will show that this functor is fully faithful when
restricted to the co-category of 0-localic spectral schemes.

Remark 0.1. Our theory of spectral algebraic geometry is closely related to the theory of homotopical
algebraic geometry introduced by Toén and Vezzosi, and there is substantial overlap between their work
(see [68], [69], [70], and [71]) and the ideas treated in this paper. Perhaps the primary difference in our
presentation is that we stick closely to the classical view of scheme as a kind of ringed space, while Toén and
Vezzosi make use of the “functor of points” philosophy which identifies an algebro-geometric object X with
the underlying functor R — Hom(Spec R, X).

Notation and Terminology

This paper will make extensive use of the theory of co-categories, as developed in [40]. We will also need the
theory of structured ring spectra, which is presented from an co-categorical point of view in [41]. Finally, we
will make use of the theory of geometries developed in [42], and earlier paper in this series. For convenience,
we will adopt the following reference conventions:

(T") We will indicate references to [40] using the letter T.
(A) We will indicate references to [41] using the letter A.

(V) We will indicate references to [42] using the Roman numeral V.

For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [40].

Let R be a commutative ring. We let Spec? R denote the collection of all prime ideals in R. We will refer
to Spec” R as the Zariski spectrum of R. We regard Spec? R as endowed with the Zariski topology: a set
U C Spec” R is open if and only if there exists an ideal I C R such that U = {p € Spec? R : I ¢ p}. This
topology has a basis of open sets given by U, = {p € SpecZ R:x ¢ p}, where x ranges over the collection of
elements of R.

If R is an Eo.-ring, we let Spec? R denote the Zariski spectrum Spec?(moR) of the commutative ring moR.

We will occasionally need the following result from commutative algebra:

Proposition 0.2. Let f : R — R’ be an étale map of commutative rings. Then [ induces an open map of
topological spaces Spec”(R') — Spec”(R).



Let X be an oo-topos and let Ox be a sheaf on X with values in an oo-category € (that is, a functor
X°? — € which preserves small limits). For each object U € X, we let O |U denote the composite functor

(X,0) — XP % e,

which we regard as a sheaf on X,y with values in C.

We will say that a functor f : € — D between oco-categories is left cofinal if, for every object D € D, the
oo-category € xp D, is weakly contractible (in [40], we referred to a functor with this property as cofinal;
see Theorem T.4.1.3.1). We will say that f is right cofinal if the induced map C°” — D? is left cofinal, so
that f is right cofinal if and only if the co-category € xp D, p is weakly contractible for each D € D.

Notation 0.3. If k is an Eo-ring, we let CAlg, = CAlg(Mod(Sp)) denote the oo-category of commutative
algebra objects in the co-category Mody(Sp); we will refer to the objects of CAlg, as k-algebras. If k is
connective, we let CAlg;" denote the full subcategory of CAlg, spanned by the connective k-algebras.

Notation 0.4. We let “Top denote the subcategory of éaROO whose objects are oo-topoi and whose mor-
phisms are functors f* : X — Y which preserve small colimits and finite limits. We let R*Jop ~ “Top™ denote
the full subcategory of @Roo whose objects are co-topoi and whose morphisms are functors f : X — Y which
admit left exact left adjoints.

Notation 0.5. If X is an co-topos, we let X" denote its hypercompletion: that is, the full subcategory of X
spanned by the hypercomplete objects. See §T.6.5.2 for more details.
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1 Sheaves of Spectra

Recall that a ringed space is a pair (X, Ox ), where X is a topological space and Ox is a sheaf of commutative
rings on X. The category of schemes can be regarded as a (non-full) subcategory of the category of ringed
spaces. As a starting point for our theory of spectral algebraic geometry, we will introduce an co-categorical
analogue of the notion of a ringed space. In this section, we will study pairs (X, Ox) where X is an co-topos
and Oy is a sheaf of Eo-rings on X. We begin by considering sheaves of spectra in general.

Definition 1.1. Let X be an oo-topos. A sheaf of spectra on X is a sheaf on X with values in the co-category
Sp of spectra: that is, a functor O : X°? — Sp which preserves small limits. We let 8hvg,(X) denote the full
subcategory of Fun(X°?, Sp) spanned by the sheaves of spectra on X.

Remark 1.2. For any oco-topos X, the functor 2 : Sp — § induces a forgetful functor S8hvg,(X) —
S8hvg(X) ~ X (the last equivalence being induced by the Yoneda embedding X — Fun(X°?, §), whose essential
image is Shvg(X) by Proposition T.5.5.2.2). We claim that this functor exhibits Shvg,(X) as a stabilization
of the co-category X. Writing Sp as the homotopy limit of the tower

8. 88, 8.,
we deduce that Shvg,(X) is the homotopy inverse limit of the tower
-+ — Shvs, (X) 3 Shvs. (X) 3 Shvs. (X).

It now suffices to observe that we have a canonical equivalence X, ~ 8hvg(X), ~ Shvg, (X).



Remark 1.3. For any oo-topos X, the co-category Shvg,(X) is a full subcategory of Fun(X°?, Sp). Since the
oo-category Sp is stable, we deduce that Fun(X®", Sp) is stable (Proposition A.1.1.3.1). Since S8hvgy(X) is
closed under limits and translation in Fun(X°?, Sp), we conclude that 8hvgy(X) is stable (Lemma A.1.1.3.3).

Remark 1.4. For every oco-topos X, the oo-category Shvg,(X) is presentable (Remark V.1.1.5).

Remark 1.5. Let X be an oo-topos. Composing the forgetful functor functor Shvg,(X) — Shvg(X) ~ X
with the truncation functor 7<¢ : X — X, we obtain a functor m : Shvg, (X) — 7<o X. More generally, for
any integer n, we let m, : Shvg,(X) — 7<¢ X denote the composition of the functor my with the shift functor
" : Shvg,(X) — Shvg,(X). Note that 7, can also be described as the composition

n—2

Mods, (X) 2= Mods, () — Shvs, (X) ~ X, 53 720 X.

It follows that m, can be regarded as a functor from the homotopy category h8hvg,(X) to the category of
abelian group objects in the topos of discrete objects of X.

Definition 1.6. For every integer n, the functor Q°°~" : Sp — § induces a functor Shvg,(X) — Shvg(X) ~
X, which we will also denote by Q2°°~". We will say that an object M € S8hvg,(X) is coconnective if Q°°M
is a discrete object of X. We will say that a sheaf of spectra M € Shvg,(X) is connective if the homotopy
groups m, M vanish for n < 0 (equivalently, M is connective if the object Q"M € X is m-connective for
every integer m). We let S8hvg,(X)>o denote the the full subcategory of S8hvg,(X) spanned by the connective
objects, and Shvg,(X) <o the full subcategory of Shvg,(X) spanned by the coconnective objects.

Proposition 1.7. Let X be an co-topos.

(1) The full subcategories (8hvs,(X)>0,Shvsy(X)<o) determine an accessible t-structure on Shvg,(X).

(2) The t-structure on 8hvs,(X) is compatible with filtered colimits (that is, the full subcategory
Shvgp (X)<o C Sthp(:X:)
is closed under filtered colimits).

(3) The t-structure on 8hvs,(X) is right complete.

(4) The functor my of Remark 1.5 determines an equivalence of categories from the heart of Shvg,(X) to
the category of abelian group objects in the underlying topos of X.

Warning 1.8. The t-structure on S8hvg,(X) is not left complete in general. For example, there may exist
nonzero objects M € Shvg, (X) whose homotopy groups 7, M vanish for all integers n. However, such objects
do not exist if X is hypercomplete. The oco-category Shvg,(X) is left complete if Postnikov towers in X are
convergent; for example, if X is locally of finite homotopy dimension (see §T.7.2.1).

Proof of Proposition 1.7. It follows from Proposition A.1.4.3.3 that 8hvg,(X) admits an accessible t-structure
given by the pair (€, 8hvg,(X)<p), where € is the collection of objects M € 8hvg,(X) for which the map-
ping space Mapgyg () (M, (N)) is contractible for every coconnective object N € Shvsp(X)<o. Fix
M € 8hvg,(X); using Remark 1.2 we can identify M with a sequence of pointed objects M(n) € X, and
equivalences 7, : M(n) ~ QM (n +1). Set M'(n) = 7<,—1M(n); the equivalences 7, induce equivalences
v, o M'(n) ~ QM'(n+1), so we can regard {M’(n)} as an object M’ € Shvg,(X). We have a canonical map
M — M'. If N is a coconnective object of S8hvg,(X)<o, then we have

MaPShvsp(x)(M,QN) ~ @Mapx*(M(n),QooJrl—nN)

lim Mapy. (M’ (n), Q**17"N)
Mapgpy, (x) (M, N).
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12



On the other hand, Q7'M is a coconnective object of Shvg,(X). It follows that M € € if and only if M’ ~ 0.
This is equivalent to the requirement that each M'(n) ~ 7<,_1M(n) is a final object of X,: that is, the
requirement that each M’(n) is n-connective. This proves that € = 8hvg,(X)>¢ so that assertion (1) holds.

We observe that the loop functor © : X, — X, preserves filtered colimits (Example T.7.3.4.7), so that
Qo°Fl : 8hvg,(X) — X, preserves filtered colimits for each n. It follows that the homotopy fiber of Q°°*1
(over the zero object x € X,) is closed under filtered colimits, so that (2) is satisfied. It follows easily that
8hvgp(X)<p is stable under countable coproducts. Any object M € (), Shvs,(X)<_, has the property that
Q"M € X, is final for each n, so that M is a zero object of Shvg,(X). Assertion (3) now follows from
Proposition A.1.2.1.19.

The heart of the oo-category Shvg,(X) can be identified, as a full subcategory of the homotopy inverse
of the tower

with the homotopy inverse limit of the tower
Q Q
s = EMa(X) = EMH(X) = X,

where EM,,(X) C X, denotes the full subcategory spanned by the Eilenberg-MacLane objects (that is,
objects which are both n-truncated and n-connective; see Definition T.7.2.2.1). Assertion (4) follows from
the observation that M, (X) is equivalent to the nerve of the category of abelian group objects of the
underlying topos of X for n > 2 (Proposition T.7.2.2.12). O

Remark 1.9. Let ¢g* : X — Y be a geometric morphism of co-topoi. Then g* is left exact, and therefore
induces a functor Shvg,(X) ~ Stab(X) — Stab(Y) ~ Shvg,(Y). We will abuse notation by denoting this
functor also by ¢g*. It is a left adjoint to the pushforward functor g, : Shvg,(X) — Shvgy(Y), given by
pointwise composition with g* : X — Y.

Since g* : X — Y preserves n-truncated objects and n-connective objects for every integer n, we conclude
that the functor g* : Shvg,(X) — Shvgp(Y) is t-exact: that is, it carries 8hvg,(X)>o into Shvg,(Y)>o and
Shvgy (X) <o into Shvg,(Y)<o. It follows that g. is left t-exact: that is, g. Shvgp(Y)<o € Shvsy(X)<o. The
functor g, usually fails to be right t-exact.

Our next objective is to describe a symmetric monoidal structure on the oo-category 8hvg, (X). Roughly
speaking, this symmetric monoidal structure is given by pointwise tensor product. However, this operation
does not preserve the property of being a sheaf. Consequently, it will be convenient to first discuss the
process of sheafification.

Remark 1.10. Let D and € be small co-categories, and assume that D admits finite colimits. Composition
with the Yoneda embeddings D — P(D?) and € — Ind(C€) yields functors

Fun*(P(D°P), P(C°P)) — Fun'™* (D, P(C°)) ~ Fun(€,Ind(D)) + Fun’(Ind(€), Ind(D)).

Here Fun™(P(D°?), P(C°?)) denotes the full subcategory of Fun(P(D), P(C°?)) spanned by those functors
which preserve small colimits and finite limits, Fun'® (D P(€°?)) the full subcategory of Fun(D?, P(C°P))
spanned by those functors which preserve finite limits,and Fun’(Ind(C),Ind(D)) the full subcategory of
Fun(Ind(€),Ind(D)) spanned by those functors which preserve filtered colimits. Each of these functors
is an equivalence of oo-categories (see Propositions T.6.1.5.2 and T.5.3.5.10; the middle equivalence is an
isomorphism of simplicial sets obtained by identifying both sides with a full subcategory of Fun(D? x C, 8)).

Assume that both € and D admit finite colimits, so that Ind(€) and Ind(D) are compactly generated
presentable co-categories. The presheaf co-categories P(C°?) and P(D?) are classifying oo-topoi for Ind(€)-
valued and Ind(D)-valued sheaves, respectively. The above argument shows that every geometric morphism
between classifying co-topoi arises from a functor Ind(€) — Ind(D) which preserves filtered colimits. Put
more informally, every natural operation which takes Ind(C)-valued sheaves and produces Ind(D)-valued
sheaves is determined by a functor Ind(€) — Ind(D) which preserves filtered colimits.



Suppose now that we are given oco-categories € and D which admit finite colimits, and let f : Ind(C) —
Ind(D) be a functor which preserves filtered colimits. Remark 1.10 guarantees the existence of an induced
functor 6 : Shviyg(e)(X) — 8hviyg(p)(X) for an arbitrary co-topos X, which depends functorially on X. In
the special case where X = P(U) is an co-category of presheaves on some small co-category U, we can write
down the functor 6 very explicitly: it fits into a homotopy commutative diagram

Shvnq(e) (X) ————— 8hvinq(e)(X)

i |

Fun(U%, Ind(€)) — > Fun(U?, Ind(D)),

where the vertical maps are equivalences of oo-categories given by composition with the Yoneda embedding
U — P(U). More generally, if we assume only that we are given a geometric morphism P(U) — X, then we
obtain a larger (homotopy commutative) diagram

ShVInd(C) (X) — 8hVInd('D) (x)

! |

Shvinace) (P(U)) —— Shviua(p) (P(U))

l |

Fun(U%, Ind(€)) — 2> Fun(U, Ind(D)).
The existence of this diagram immediately implies the following result:

Lemma 1.11. Let U be a small co-category and suppose we are given a geometric morphism of co-topoi
g°: P(U) — X. Let C be a small co-category which admits finite colimits, and let Te denote the functor
Fun(U,Ind(C)) ~ 8hviyqce)(P(U)) — Shvingce)(X) induced by g*. Let D be another small oo-category
which admits finite colimits, and define Tp similarly. Suppose that f : Ind(C) — Ind(D) is a functor which
preserves small filtered colimits. Then if o : M — N is a morphsim in Fun(U°?,Ind(C)) such that Te(a) is

an equivalence, then the induced map o' : (f o M) — (f o N) has the property that Tp (&) is an equivalence.

Lemma 1.12. Let X be an co-topos and C a presentable co-category. Then the inclusion i : Shve(X) C
Fun(X°, C) admits a left adjoint L.

Proof. The proof does not really require the fact that X is an co-topos, only that X is a presentable oo-
category. That is, we may assume without loss of generality that X = Ind, (Xy), where & is a regular cardinal
and Xy is a small co-category which admits x-small colimits. Then ¢ is equivalent to the composition

Shve () %8 Fun' (XS, €) C Fun(X, €) <% Fun(X7, €),

where Fun'(X¢7, €) is the full subcategory of Fun(X{?, €) spanned by those functors which preserve k-small
limits, Ge is the functor given by restriction along the Yoneda embedding j : Xo — X, and G, is given by
right Kan extension along j. The functor Ge is an equivalence of co-categories (Proposition T.5.5.1.9), and
the functor G, admits a left adjoint (given by composition with j). Consequently, it suffices to show that
the inclusion ¢/ admits a left adjoint. This follows immediately from Lemmas T.5.5.4.17, T.5.5.4.18, and
T.5.5.4.19. O

Lemma 1.13. Let X be an co-topos, and let f : € — D be a functor between compactly generated presentable
oo-categories. Assume that f preserves small filtered colimits. Let Le : Fun(X°P,€) — Shve(X) and Lo :
Fun(X°?, D) — 8hvp(X) be left adjoints to the inclusion functors. Then composition with f determines a
functor F : Fun(X°?, €) — Fun(X°?, D) which carries Le-equivalences to L -equivalences.



Remark 1.14. In the situation of Lemma 1.13, the functor F' descends to a functor Shve(X) — Shvyp (X),
given by the composition Lp o F. This is simply another avatar of the construction arising from Remark
1.10.

Proof. We use notation as in the proof of Lemma 1.12. For k sufficiently large, the full subcategory Xy C X is
stable under limits, so that (by Proposition T.6.1.5.2) we have a geometric morphism g* : P(Xy) — X. Then
the functor Le can be realized as the composition of the restriction functor 7e : Fun(X°, €) — Fun(Xg?, €)
with the functor Te : Fun(Xg?, €) ~ Shve(P(Xg)) — Shve(X) induced by g*, and we can similarly write
Lp = Tp orp. If a is a morphism in the oo-category Fun(X°?, @) such that Le(a) = Te(re(a)) is an
equivalence, then Lemma 1.11 shows that Ly (F(«)) = Tp(rop(Fa)) is an equivalence, as required. O

We will regard the oo-category Sp of spectra as endowed with the smash product monoidal structure
defined in §A.6.3.2. This symmetric monoidal structure induces a symmetric monoidal structure on the co-
category Fun(K, Sp), for any simplicial set K (Remark A.2.1.3.4); we will refer to this symmetric monoidal
structure as the pointwise smash product monoidal structure.

Proposition 1.15. Let X be an co-topos, and let L : Fun(X°?,Sp) — Shvg,(X) be a left adjoint to the
inclusion. Then L is compatible with the pointwise smash product monoidal structure, in the sense of Def-
inition A.2.2.1.6: that is, if f : M — M’ is an L-equivalence in Fun(X°?,Sp) and N € Fun(X°?,Sp), then
the induced map M @ N — M’ ® N is also an L-equivalence in Fun(X°?,Sp). Consequently, the oo-category
Shvg, (X) inherits the structure of a symmetric monoidal co-category, with respect to which L is a symmetric
monoidal functor (Proposition A.2.2.1.9).

Proof. Apply Lemma 1.13 to the tensor product functor ® : Sp x Sp — Sp. O

We will henceforth regard the co-category Shvs,(X) as endowed with the symmetric monoidal structure
of Proposition 1.15, for any co-topos X. We will abuse terminology by referring to this symmetric monoidal
structure as the smash product symmetric monoidal structure.

Proposition 1.16. Let X be an co-topos, and let L : Fun(X°?,Sp) — Shvg,(X) be a left adjoint to the
inclusion. Regard Fun(X°?,Sp) as endowed with the t-structure induced by the natural t-structure on Sp.
Then:

(1) The functor L is t-exact: that is, L carries Fun(X°”,Spsg) into 8hvgy(X)>o and Fun(X”,Sp.) into
ShVSp(X)So.

(2) The smash product symmetric monoidal structure on Shvg,(X) is compatible with the t-structure on
ShVSp(DC).

Proof. The construction of Lemma 1.12 shows that (for sufficiently large k) we can factor L as the composition
of a restriction functor Fun(X°”,Sp) — Fun(X{’,Sp) with the functor Fun(Xg”,Sp) ~ Shvg,(P(Xo)) —
Shvgp(X) induced by a geometric morphism g* : P(Xy) — X. Assertion (1) now follows from Remark 1.9.
To prove (2), we show that if we are given a finite collection of connective objects {X;}}1<i<n of Shvg,(X),
then the tensor product X; ® --- ® X, is connective. Choose fiber sequences

X! — X; = X! = X[1]

in Fun(X?, Sp), where X; € Fun(X,Sps,) and X" € Fun(X,Sp._;). It follows from (1) that LX] €
Shvg, (X)>o and LX]' € 8hvg,(X)<_1. We have fiber sequences

LX! - LX; — LX!' — LX![1]

in 8hvgp(X). Since LX; ~ X, is connective, we deduce that the map LX] — LX; ~ X, is an equivalence for
every index ¢. Using Proposition 1.15, we deduce that the tensor product X; ® - -- ® X,, in the co-category
Shvg, (X) can be written as L(X] ® - - - ® X,). By virtue of (1), it will suffice to show that X ® --- ® X is
a connective object of Fun(X°?, Sp), which follows from the fact that the smash product monoidal structure
on Sp is compatible with its t-structure (Lemma A.7.1.1.7). O



Definition 1.17. Let X be an co-topos. A sheaf of Eoo-rings on X is a functor X°? — CAlg which preserves
small limits; we will denote by S8hvcaig(X) the full subcategory of Fun(X°”, CAlg) spanned by the sheaves
of Eo-rings.

Remark 1.18. Since the forgetful functor CAlg = CAlg(Sp) — Sp is conservative and preserves small limits
(see Lemma A.3.2.2.6 and Corollary A.3.2.2.5), we have a canonical equivalence of co-categories (in fact, an
isomorphism of simplicial sets) Shvcaig(X) ~ CAlg(8hvg, (X)).

Remark 1.19. Let X be an co-topos and O : X°? — CAlg a sheaf of Eo-rings on X. Composing with the
forgetful functor CAlg — Sp, we obtain a sheaf of spectra on X; we will generally abuse notation by denoting
this sheaf of spectra also by O. In particular, we can define homotopy groups m,, O as in Remark 1.5. These
homotopy groups have a bit more structure in this case: my O is a commutative ring object in the underlying
topos of X, while each m,, O has the structure of a my O-module.

Definition 1.20. Let X be an oco-topos. We will say that a sheaf O of Eo,-rings on X is connective if it
is connective when regarded as a sheaf of spectra on X: that is, if the homotopy groups 7, O vanish for
n < 0. We let 8hvcaig(X)>o denote the full subcategory of 8hveaig(X) spanned by the connective sheaves
of Eoo-rings on X.

The following result is useful for working with connective sheaves of spectra on an co-topos X.

Proposition 1.21. Let C be a compactly generated presentable co-category. Let Co C € be a full subcategory
which is closed under the formation of colimits, and which is generated under small colimits by compact
objects of . Let X be an co-topos. Then:

(1) The oco-category Cq is presentable and compactly generated.

(2) The inclusion Cy C C admits a right adjoint g which commutes with filtered colimits.
(3) Composition with g determines a functor G : Shve(X) — Shve, (X).

(4) The functor G admits a fully faithful left adjoint F'.

Proof of Proposition 1.21. Since Cy is stable under small colimits in €, the inclusion i : €y C € preserves
small colimits so that ¢ admits a right adjoint g : € — Cy by Corollary T.5.5.2.9. Let D C €y be the
full subcategory spanned by those objects of €y which are compact in €. Any such object is automatically
compact in Cp, so we have a fully faithful embedding ¢ : Ind(D) — € (Proposition T.5.3.5.11). Since Cg
is generated under small colimits by objects of D, we deduce that ¢ is an equivalence of co-categories; this
proves (1). Moreover, it shows that the collection of compact objects in € is an idempotent completion of
D; since D is already idempotent complete, we deduce that every compact object of Cqy is also compact in
C. Assertion (2) now follows from Proposition T.5.5.7.2. Assertion (3) is obvious (since g preserves small
limits; see Proposition T.5.2.3.5).

Let L : Fun(X,€) — Shve(X) be a left adjoint to the inclusion, and define Ly similarly. We observe
that G is equivalent to the composition

Shv(€) C Fun(X, €) & Fun(X?, €y) 28 Shve, (X),

where G’ is given by composition with g. It follows that G admits a left adjoint F', which can be described
as the composition

Shv(€) & Fun(X?, €) 2 Fun(X°?, €) 2 Shve, (X).

To complete the proof, it suffices to show that F' is fully faithful. In other words, we wish to show that for
every object F € Shve,(X), the unit map F — (G o F)(¥) is an equivalence. In other words, we wish to
show that the map « : F — LJF becomes an equivalence after applying the functor G’. Since G'(F) ~ F
and G'(LJ) belong to Shve,(X), this is equivalent to the requirement that G’(«) is an Lg-equivalence
in the oo-category Fun(X°?,Cy). This follows from (3) and Lemma 1.13, since « is an L-equivalence in
Fun(X°?, @). O



Remark 1.22. In the situation of Proposition 1.21, an object F € Shve(X) belongs to the essential image
of the full faithful embedding Shve,(X) — Shve(X) if and only if the canonical map G(F) — F is an
L-equivalence in Fun(X°?, €), where L denotes a left adjoint to the inclusion 8hve(X) — Fun(X?, @).

Example 1.23. The full subcategory Spt~, C Spt of connective spectra is stable under small colimits in Spt,
and is generated under small colimits by the sphere spectrum S € Spts (which is a compact object of the oo-
category Spt). Consequently, Proposition 1.21 gives a fully faithful embedding F : Shvgpt. , (X) — Shvgpg(X)
for every oo-topos X. Let F € S8hvgp(X), so that we have an exact triangle -

TZ()SFE)?—)TS,l?% (Tzoﬁr)[l]

in the oco-category Fun(X?,Spt). Let L : Fun(X?,Spt) — Shvsy(X) be a left adjoint to the inclusion.
According to Remark 1.22, the object F belongs to the essential image of F if and only if L(¢) is an
equivalence. Since the functor L is t-exact, this is equivalent to the requirement that F € Shvgp(X)>0: that
is, the functor F" induces an equivalence Shvgyi.  (X) — Shvgpe(X)>o.

Example 1.24. Let CAlg denote the oco-category of E..-rings, and let CAlg®™ C CAlg denote the full
subcategory of CAlg spanned by the connective Eo-rings. Then CAlg. is stable under small colimits in
CAlg (it is the essential image of the colocalization functor given by passage to the connective cover; see
Proposition A.7.1.3.13). It is generated under small colimits by the compact object Sym*(.5), where S denotes
the sphere spectrum and Sym™ : Sp — CAlg denotes a left adjoint to the forgetful functor. Proposition 1.21
gives a fully faithful embedding F' : Shvcaigen (X) — Shvaig (X) for every co-topos X. Let O € 8hvaig(X) be
a sheaf of Eoo-rings on X, and let 750 O € Fun(X°?, CAlg) be the presheaf of Eo-rings obtained by pointwise
passage to the connective cover. Let O’ € Shvcalg (X) be a sheafification of the presheaf 750 O, so that the
evident map 759 O — O induces a map of sheaves o : 0" — 0. According to Remark 1.22, the sheaf O belongs
to the essential image of F' if and only if « is an equivalence. Let u : CAlg — Sp denote the forgetful functor.
Since w preserves small limits, composition with u induces a forgetful functor U : 8hvoaig(X) — Shvg, (X).
Since u is conservative, the functor U is also conservative, so that « is an equivalence if and only if U(«) is
an equivalence. Since u preserves filtered colimits, Lemma 1.13 implies that U(O) can be identified with a
sheafification of uwo 7500 ~ 7>¢(u 0 O). Example 1.23 guarantees that U(a) is an equivalence if and only
it U(O) is connective as a sheaf of spectra. Combining these observations, we deduce that O is connective
if and only if it belongs to the essential image of F. In other words, the functor F' induces an equivalence
ShVCAlgcn (X) — ShVCAlg(x)20~

We conclude this section by describing the notion of a sheaf of E.-rings using the formalism of geometries
developed in [42].

Definition 1.25. Let k € CAlg be an E,-ring. We let §5°°(k) denote the full subcategory of CAlg,
spanned by the compact objects. If A is a compact k-algebra, we let Spec A denote the corresponding
object of Sdlsc( ). If k is connective, we let S(Siic( ) denote the full subcategory of 931852( ) spanned by the
connective compact k-algebras.

We will view § dlSC( ) and § dlsc( ) as discrete geometries: that is, we will say that a morphism in
9318:2( ) is admissible if it is an equivalence, and we will say that a collection of admissible morphisms
{¢« : Spec B, — Spec A} generates a covering sieve if one of the morphsims ¢, admits a section.

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote
the geometries 93185‘2( ) and Sdm( ) by 92?5‘2 and 93{;, respectively.

Remark 1.26. Let k be an E,.-ring. For any oco-topos X, Remark V.1.1.7 furnishes equivalences of oo-
categories

‘ShVCAlgk( ) ~ Strgusp

disc

1y (X).

That is, a SnSp( k)-structure on X can be identified with a sheaf on X with values in the co-category CAlg;,

disc
of E.-algebras over k. If k is connective, the same argument gives an equivalence

ShVCAlglcc“ (DC) o~ Strgglpsc(k)(DC) :
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that is, a G5P (k) can be identified with a sheaf of connective Eno-rings on X.

Definition 1.27. Let k be an E,-ring. We let RingTop(k) denote opposite of the oco-category L‘J’op(QEi‘é(/@))
of Definition V.1.4.8. Concretely, the objects of RingTop(k) are given by pairs (X, Ox ), where X is an oco-
topos and (by Remark 1.26) Oy is a CAlg,-valued sheaf on X. A morphism f : (X,0x) — (Y,0y) in
RingTop(k) can be identified with a pair (f*, ), where f*:Y — X is a geometric morphism of co-topoi and
a: f* Oy — Oy is a morphism of CAlg,-valued sheaves on X.

If k is a connective Eo-ring, we let RingTop (k)™ denote the opposite of the co-category L‘Top(Sif;C(k)).
We can identify RingTop(k)®™ with the full subcategory of RingTop(k) spanned by those pairs (X, Ox)
where Oy is connective. The inclusion G50 (k) — G5oP (k) induces a functor RingTop(k) — RingTop(k)*™
which is right adjoint to the above identification. Concretely, this right adjoint is given by the formula
(:X:, Ox) — (:X:, T>0 Ox)

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote
RingTop(k) and RingTop(k)°™ by RingTop and RingTop®", respectively. We will refer to RingTop as the
oco-category of spectrally-ringed co-topos.

Remark 1.28. Let k be a connective E-ring. Let ‘.Tif’sc(k) denote the full subcategory of CAlg;” spanned
by those k-algebras of the form Sym™* M, where M is a free k-module of finite rank. Then ‘J’(Slf;c(k) can
(k) =

(k). When k is the sphere spectrum, we will denote

be regarded as a discrete pregeometry. Using Proposition A.7.2.5.27, we see that the inclusion ‘J'(Slf’sc
Sp

GSP (k) exhibits SEf;C(k) as a geometric envelope of TP

disc

TP (k) by TP

disc*

2 Spectral Schemes

Our goal in this section is to introduce an co-categorical generalization of the classical notion of scheme, which
we will refer to as a spectral scheme. Recall that the category of schemes can be regarded as a subcategory
(which is not full) of the category of ringed spaces. In §1, we introduced the oco-category RingTop of spectrally
ringed oo-topoi. The notion of spectrally ringed oco-topos (X, Ox) generalizes the classical notion of ringed
space in two ways:

(a) Rather than considering sheaves on topological spaces, we consider sheaves on co-topos. Every topolog-
ical space X determines an co-topos 8hv(X). Moreover, the construction X — Shv(X) is determines a
fully faithful embedding from the (nerve of the) category of sober topological spaces to the co-category
of oo-topoi (recall that a topological space X is said to be sober if every irreducible closed subset of
X contains a unique generic point: this condition is always satisfied if X is Hausdorff, or if X is the
underlying topological space of a scheme).

(b) Rather than considering sheaves with values in the ordinary category of commutative rings, we consider
sheaves with values in the oo-category CAlg of E..-rings.

Remark 2.1. Every ringed space (X,Ox) determines a spectrally ringed oo-topos (Shv(X),0) via the
following procedure:

(7) Let Ring denote the category of commutative rings. Using Proposition V.1.1.12, we see that giving a
sheaf on X with values in the category Ring is equivalent to giving a sheaf O on Shv(X) with values
in the co-category N(Ring).

(#4) According to Proposition A.7.1.3.18, we can identify N(Ring) with the full subcategory of CAlg™
spanned by the discrete Eo.-rings. Note that N(Ring) is closed under limits in CAlg™, so that O can
be identified with a sheaf of connective E-rings on Shv(X).
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(731) Using Example 1.24, we can identify O with a connective sheaf of Eo-rings on Shv(X) (beware that
this identification is not compatible with passage to global sections: when viewed as a CAlg-valued
sheaf on Shv(X) the values of O are generally not connective).

If X is sober, we can recover X as the topological space of points of the co-topos Shv(X), and its structure
sheaf Ox is given by m O.

In this section, we will define a subcategory SpSch C RingTop, which we will refer to as the oco-category
of spectral schemes. To help cement the reader’s intuition, we begin by describing some of the objects of this
oo-category:

Definition 2.2 (Spectral Schemes: Preliminary Definition). A 0-localic spectral scheme is a spectrally ringed
oo-topos (X, Ox) which satisfies the following conditions:

(1) There exists a topological space X and an equivalence of co-topos Shv(X) ~ X. We will use this
equivalence to identify my Oy with a sheaf of commutative rings Ox on X, and each higher homotopy
group 7, Ox as a sheaf of O x-modules on X.

(2) The ringed space (X, Ox) is a scheme, in the sense of classical algebraic geometry.

(3) Each m, Oy is a quasi-coherent sheaf of modules on the scheme (X,0x), in the sense of classical
algebraic geometry.

(4) The zeroth space 2°° Oy is hypercomplete (when viewed as a sheaf of spaces on X; see §T.6.5.2).

Remark 2.3. Condition (4) of Definition 2.2 plays a purely technical role, and can safely be ignored by
the reader. In most cases of interest, it is automatically satisfied. For example, if (X, Ox) is a Noetherian
scheme of finite Krull dimension, then every object of X ~ Shv(X) is hypercomplete (see §T.7.2.4). In
general, if (X, Ox) is a spectrally ringed oo-topos which satisfies conditions (1), (2), and (3) of Definition
2.2, then we can replace Oy by its hypercompletion to obtain a spectrally ringed co-topos (X, %) which
satisfies conditions (1), (2), (3) and (4) (without changing the underlying scheme).

In order to make a systematic study of the theory of spectral schemes, it will be convenient to formulate
Definition 2.2 in a different way. We would like to mimic the classical definition of scheme as closely as
possible. Recall that a ringed space (X,0x) is a scheme if and only if X can be covered by open sets
{Uq4} such that each of the ringed spaces (U, Ox |U,) is isomorphic (in the category of ringed spaces) to
the Zariski spectrum of a commutative ring. Our definition of spectral scheme will be essentially the same,
except that we will replace the category of commutative rings by the larger category of connective E.-rings.
To make this precise, we will need to understand how to generalize the definition of the Zariski spectrum to
the setting of E-rings. This will lead us to a different notion of spectral scheme (Definition 2.7), which we
will prove to be equivalent to Definition 2.2 at the end of this section (Theorem 2.40).

We begin with a review of the Zariski topology in classical algebraic geometry. Let R be a commutative
ring R. For every element r € R, we let (r) denote the ideal generated by r. If r is not a unit, then (r) # R,
so (by Zorn’s lemma) () is contained in a maximal ideal m C R. We say that R is local if R contains a unique
maximal ideal mp. The above reasoning shows that mp can be described as the collection of non-invertible
elements of R. The ring R is local if and only if the collection of non-units R — R* forms an ideal in R.
Since R — R* is clearly closed under multiplication by elements of R, this is equivalent to the requirement
that R — R* is a submonoid of R (with respect to addition). That is, R is local if and only if the following
pair of conditions is satisfied:

(a) The element 0 belongs to R — R*. In other words, 0 is not a unit in R: this is equivalent to the
requirement that R is nontrivial; that is, that 0 # 1 in R.

(b) It r,7" € R— R*, then r + 1’ € R — R*. Equivalently, if » + 7/ is a unit, then either 7 or 7’ is a unit.
This is equivalent to the following apparently weaker condition: if s € R, then either s or 1 — s is a
unit in R (to see this, take s = 747> so that s is invertible if and only if r is invertible and 1 — s ~
is invertible if and only if 7’ is invertible).

_r
r+r!
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If R and R’ are local commutative rings, then we say that a ring homomorphism f : R — R’ is local if it
carries mp into mp/: that is, if an element « € R is invertible if and only if its image f(xz) € R’ is invertible.

All of these notions admit generalizations to the setting of sheaves of commutative rings on a topological
space X. We say that a sheaf of commutative rings O on X is local if, for every point € X, the stalk O, is
a local commutative ring. Similarly, a map of local sheaves of commutative rings O — O is local if, for every
point x € X, the induced map of stalks O, — O, is a local homomorphism of local commutative rings.

We can think of a sheaf of commutative rings O on a topological space X as a commutative ring object
in the category Shvge (X) of sheaves of sets on X. The locality of O can then be formulated in terms which
are entirely internal to the topos Shvse(X). Moreover, this formulation makes sense in an arbitrary topos:

Definition 2.4. Let X be a Grothendieck topos with final object 1, and let O be a commutative ring object
of X. We will say that O is local if the following conditions are satisfied:

(a) The sheaf O is locally nontrivial. That is, if 0,1 : 1 — O denote the multiplicative and additive identity
in O, then the fiber product 1 x¢ 1 is an initial object of X.

(b) Let O denote the group object of X given by the units of O, so that we have a pullback diagram

0 ——=0x0

.

1—Y .9
where m denotes the multiplication on O, and let e : O — O denote the canonical inclusion. Then
the maps e and 1 — e determine an effective epimorphism O™ [JO* — O.

If a: O — O is a map between local commutative ring objects of X, then we say that « is local if the
diagram

OX O/X

|

0O—0
is a pullback square.
Definition 2.4 can be adapted to the co-categorical setting in a straightforward way:

Definition 2.5. Let X be an co-topos, and let O € Shvcale(X) be a sheaf of Eo-rings on X. We will say
that O is local if 7wy O is local, when viewed as a commutative ring object of the underlying topos of X (see
Definition 2.4). If a: O — O’ is a morphism between local objects of Shvoag(X), then we will say that o is
local if it induces a local morphism of commutative ring objects my O — my O'.

Let RingTop denote the co-category of spectrally ringed co-topoi. We define a subcategory RingTopy,,
as follows:

(#) A spectrally ringed co-topos (X, Ox) belongs to RingTopy, . if and only if O is a local sheaf of Eo-rings
on X.

(#1) A morphism of spectrally ringed oo-topoi f : (X,0x) — (Y, Oy) belongs to RingTopy,, if and only if
the induced map « : f* Oy — O« is a local map between sheaves of Eo,-rings.

We will refer to RingTopy,, as the oco-category of locally spectrally ringed co-topoi. We let RingTopy,, =
RingTopy,, NRingTop®™. If k is an Eo-ring, we define RingTop(k)zar to be the fiber product
RingTop(k) XRingTop RingTopy,,. C RingTop(k),

and if k is connective we let RingTop(k)7?, denote the fiber product
RingTop(k) XRringTop RingTopyz,, € RingTop(k)".
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Let (X,0x) be a spectrally ringed oco-topos. Evaluating Oy on the final object of X, we obtain an
Eoo-ring, which we will denote by I'(X; Ox). The construction (X,O0x) — T'(X;Ox) determines a functor
I : RingTop — CAlg®?, which is left adjoint to the canonical inclusion

CAIg? ~ 8hvcaig(8)°? ~ RingTop Xrge,{8} — RingTop.
The starting point for our theory of spectral algebraic geometry is the following observation:
Proposition 2.6. The functor I'| RingTopy,, : RingTopy,, — CAlg®? admit a right adjoint.

Proposition 2.6 asserts that for every E-ring R, there exists a locally spectrally ringed oco-topos (X, Ox)
and a map 6 : R — I'(X,0x) with the following universal property: for every locally spectrally ringed
oo-topos (Y, Oy), composition with 6 induces a homotopy equivalence

NIapRingTopZar ((9,0y), (X, 0x)) — Ma‘pCAlg(R’ I'(4; 0y)).

The spectrally ringed oco-topos (X, Ox) is uniquely determined up to equivalence; and we will denote it by
Spec?(R). We will refer to Spec?(R) as the spectrum of R with respect to the Zariski topology.
We now give a different version of Definition 2.2:

Definition 2.7 (Spectral Scheme: Concrete Definition). A nonconnective spectral scheme is a spectrally
ringed oo-topos (X, Ox) such that there exists a collection of objects U, € X satisfying the following condi-
tions:

1) The objects U, cover X. That is, the canonical map U, — 1 is an effective epimorphism, where 1
«
denotes the final object of X.

(i) For each index a, there exists an Eo-ring R, and an equivalence of spectrally ringed oco-topoi

(X v, Ox |Ua) =~ Spec”(Ra).

We let SpSch™ denote the full subcategory of RingTop,,, spanned by the nonconnective spectral schemes
(note that if (X, Ox) is a spectral scheme, then Oy is automatically a local sheaf of Eo-rings on X).

A spectral scheme is a nonconnective spectral scheme (X, Ox) such that O« is connective. We let SpSch
denote the full subcategory of SpSch™ spanned by the spectral schemes.

To make sense of Definition 2.7, we need to understand the functor Spec? : CAlg®” — RingTopy,,
whose existence is asserted by Proposition 2.6. This functor can be described very concretely. We will
see below that if R is an E.-ring, then SpecZ(R) can be identified with the spectrally ringed oco-topos
(Shv(Spec?(moR)), ©). Here Spec”(myR) denotes the Zariski spectrum of the commutative ring moR: that is,
the topological space whose points are prime ideals p C myR. This topological space has a basis of open sets
Us = {p € Spec? R : f ¢ p}, where f ranges over the elements of moR. The structure sheaf O is described

by the formula O(Uy) = R[%] (see Definition 2.8 below).

It is possible to verify Proposition 2.6 directly by fleshing out the description of Spch(R) given above.
However, we prefer to deduce Proposition 2.6 from the more general results of [42] (in particular, the
description of SpecZ(R) given above will be deduced from Theorem V.2.2.12). For this, we need to recast
the discussion of local sheaves of E,-rings using the language of geometries. This has the unfortunate effect
of burdening our exposition with an additional layer of abstraction. However, it will be convenient later,
when we discuss the relationship between the theory of spectral schemes and other related constructions (see

§9).

Definition 2.8. Let f: A — B be a map of E-rings. We will say that f exhibits B as a localization of A
by a € moA if the map f is étale and f induces an isomorphism of commutative rings (moA)[a~!] ~ myB. In
this case, we will denote B by Afa™!].
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Remark 2.9. Let A be an Eo-ring and a € mpA an element. Theorem A.7.5.0.6 guarantees that A[a™!]
exists and is well-defined up to equivalence (in fact, up to a contractible space of choices). The localization
map A — A[a™!] can be characterized by either of the following conditions (see Corollary A.7.5.4.6):

(1) The map A — A[a~!] induces an isomorphism of graded rings (7. A)[a"!] — (7. Ala™1]).

(2) For every Eoo-ring B, the map Mapc ), (Ala™"], B) = Mapca, (A4, B) is fully faithful, and its essential
image consists of those maps A — B which carry a € mgA to an invertible element of 7y B.

Definition 2.10. Let k£ be an E-ring. We define a geometry SHSP( k) as follows:

Zar

(1) On the level of co-categories, we have G5oF (k) = SEISJC’( ) (see Definition 1.25). That is, GooP (k) is the

opposite of the co-category of compact obJect of CAlg,. If A is a compact object of CAlg;, we let
Spec A denote the corresponding object of 9Zar( ).

(2) A morphism f : Spec A — Spec B in 9%;(/6) is admissible if and only if there exists an element b € my B
such that f carries b to an invertible element in mo A, and the induced map B[}] — A is an equivalence.

(3) A collection of admissible morphisms {Spec B[;-] — Spec B} generates a covering sieve on B if and
only if the elements b, generate the unit ideal in the commutative ring myB.

If the E,o-ring k is connective, we let 92‘;(/@) denote the full category of Qgif(k) spanned by objects of

the form Spec A, where A is a connective k-algebra; we regard 9§§r(k) as a geometry by taking the admissible

morphisms and admissible coverings in 9’2125( ). When k is the sphere spectrum (regarded as an initial object

of CAlg), we will denote GpoP (k) and G52 (k) by GyoP and GP., respectively.

Zar Zar
Remark 2.11. To check that Definition 2.10 describes a geometry, it is necessary to observe that the
collection of k-algebra morphisms of the form A — Afa~!] is stable under retracts. To prove this, let us
consider a diagram

A A" 4

N
B—— A'la”'] ——= B,

where the horizontal compositions are the identity maps. We will prove that f is admissible by showing
that f induces isomorphisms 6 : (WnA)[ﬁ] — 7, B for every integer n. Since ¢(a) clearly acts invertibly
on 7, B, it suffices to show that the action of ¢(a) is locally nilpotent on the kernel and cokernel of the map
0. Since 6 is a retract of the map ¢ : m, A" — (m, A')[1], we have surjective maps ker(6') — ker(¢) and
coker(6’) — coker(f); it therefore suffices to observe that the action of a is locally nilpotent on the abelian
groups ker(6’) and coker(6).

Notation 2.12. Let k be an E.-ring. Let Sym], denote the left adjoint to the forgetful functor CAlg, —
Mody. We will denote the algebra Symj (k™) by k{x1,...,z,}. We will say that a k-algebra A is polynomial
if it is equivalent to k{xi,...,x,} for some n > 0. We let A" denote the object Speck{xy,...,z,} of

SoP (k).

We will say that a k-algebra A is localized polynomial if it is equivalent to k{xz1,.. xn}[%} for some
f € mok{z, ..., xn} = (mok)[x1, ..., 2,]. Welet Gy, denote the object Spec k{z}[1] of Sgirp( ). Note that
the canonical map k{z} — k{m}[l] 1nduces a morphism G,, — A' in szlif( ).

Remark 2.13. Let k be an E,-ring. For any k-algebra A and any element a € myA, we have a pushout
diagram of k-algebras

k{z} — k{z}[]]

|

A Ap).
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It follows that the collection of of admissible morphisms in GhoP (k) is generated (under the formation of
pullbacks) by the admissible map G,, — Al appearing in Notation 2.12

Example 2.14. Let k be an E-ring. The pair of admissible morphisms
Spec k{x}[ ] % Spec k{z} L Spec k{az}[ ]

is an admissible covering in 9%25( ). In fact, this admissible covering, together with the empty covering of
the initial object Spec0, generates the family of admissible covermgs in Srzlif( ). To prove this, let § be
another geometry with the same underlying co-category as SZM (k) and the same admissible morphisms, such
that o and 8 generate a covering sieve on Spec k{z} € G, and the empty sieve is a covering of Spec0 € G.
We will show that Qrzlif( ) — § is a transformation of geometries.

Let R be a compact k-algebra, and let {z,}oca be a collection of elements of moR which generate the
unit ideal. We wish to show that the maps {Spec R[-- ~] — Spec R}aeca generate a G-covering sieve S on R.
Without loss of generality, we may suppose that A = {1,...,n} for some nonnegative integer n; we work
by induction on n. Write 1 = z1y1 + ... + T,¥Y, in the commutative ring moR. Replacing each x; by the
product z;y;, we may suppose that 1 = x1 + ...+ z,. If n =0, then R ~ 0 and S is a covering sieve by
hypothesis. If n = 1, then S contains an isomorphism and therefore generates a covering sieve. If n = 2,
we have a map ¢ : Spec R — Spec k{z} given by x + z1. Then S is obtained from the admissible covering
{a, B} by pullback along ¢, and therefore generates a covering sieve. Suppose finally that n > 2, and set
Yy = To + ...+ x,. The inductive hypothesis implies that the maps Spec R[%] — Spec R + Spec R[i]
generate a G-covering sieve on R. It will therefore suffice to show that S generates a covering sieve after
pullback to either Spec R[i] or Spec R[%]; in either case, this follows from the inductive hypothesis.

Remark 2.15. Let k be a connective E,-ring. Using Remark 2.13 and Example 2.14, we deduce that the

collection of admissible morphisms and admissible coverings in 9251’( ) is generated by admissible morphisms
s

zar (F) =

Xis a SZar( )-structure if and only if the restriction O | 9Zar< ) is a SZar( )-structure; a natural transfor-

mation a : O — O of GyoP(k)-structures is local if and only if the induced map O | G52 (k) — O’ | G5oP (k) is
local.

and admissible coverings in SZar( ). In particular, if X is an co-topos, then a left-exact functor O : G

Remark 2.16. Let ¢ : k — k' be a map of Eo-rings. Then the construction Spec A — Spec(A ® k')
determines a transformation of geometries 6 : Goo (k) — GyoP (k). Tt follows from Remark 2.13 and Example
2.14 that the collection of admissible morphisms and admissible morphisms in SZSp(k' ) is generated (under

the formation of pullbacks) by the images under 6 of admissible coverings and admissible pullbacks in Snsf( ).

Consequently, if X is an co-topos, then a left-exact functor O : GooP (k') — X is a GyoP (K)-structure on X if
and only if the composite map

SooP (k) & G52 (k) 3 X
nSp

is a G, 7 (k)-structure on X. Similarly, ifa«: O — ©’ is a natural transformation between §
then « is local if and only if the induced natural transformation O of — O of is local.
If k and k' are connective, then 6 restricts to a transformation of geometries 0o : Sggr( ) — 92 P (K'). The

nSp

7or (E')-structures,

same reasonmg shows that a left-exact functor O : SZar(k” )—>Xisa SZar(k" )-structure if and only if O oy

isa SZar( )-structure, and that a natural transformation a : O — O’ of QZar( ")-structures on X is local if
and only if the induced map O ofy — O of)y is local.

Remark 2.17. Let k denote the sphere spectrum, regarded as an initial obJect of the oco-category CAlg of
Eoo-rings. We will denote the geometries GooF (k) and 9Zar( ) by G25P and 9Zar, respectively. Let X be an oco-

Zar Zar

topos. According to Remark 1.26, we can identify the oco-category of left-exact functors Snsf( ) — X with the
oo-category 8hvcalg, (X). Similarly, we can identify the co-category of left-exact functors SZM( ) — X with

the oo-category of connective sheaves of E-rings Shvcalg, (X)>0. Under these identifications, the restriction
functor O +— O | Qggr(k) is given by passage to the connective cover 7>¢ : Shvcaig, (X) — Shvcalg, (X)>o-
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If k is a connective Eo-ring, then ngr(k) can be realized as the geometric envelope of a pregeometry.

Definition 2.18. Let k be a connective Eo-ring. We let ‘J'%gr(k) denote the full subcategory of 9;;(/6)

spanned by objects of the form Spec A, where A is a localized polynomial algebra over k. We regard Tz, (k)
as a pregeometry as follows:

e A morphism Spec A — Spec B is admissible if and only if the underlying map B — A exhibits A as a
localization A ~ B[}], for some b € mB.

e A collection of admissible morphisms {Spec B[;~] — Spec B} generates a covering sieve on Spec B €
‘J'%gr(k‘) if and only if the elements {b,} generate the unit ideal of 7y B.

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote
the co-category Tor (k) by ToP

Zar Zar*

Remark 2.19. As in Remark V.4.2.1, it is possible to make several variants on Definition 2.18 without
changing the underlying theory of ‘J';gr(k)—structures.

We have the following analogue of Proposition V.4.2.3:

Proposition 2.20. Let k be a connective Eoo-ring. Then the inclusion Ty (k) C GoP (k) exhibits G5 (k)
as a geometric envelope of ‘J'%Zr(k),

The proof follows the lines of the proof of Proposition V.4.2.3. Let A' denote the affine line Spec k{x}.
Note that A' has the structure of a homotopy associative monoid in the co-category ‘J’;‘;r(k’), given by the

multiplication map A' x A ~ Spec k{xo,z1} — Speck{z} ~ A determined by the map k{z} — k{zo,z1}
given by = — zgz;. Consequently, if C is any oco-category which admits finite products and f : gop (k)y—>¢

Zar
is a functor which preserves finite products, then f(A') € € inherits the structure of a homotopy associative

monoid object of C.

Lemma 2.21. Let C be an oco-category which admits finite limits, let k be a connective By -ring, and let
I ‘J';‘;r(k) — € be a functor which belongs to Funad(ﬂ'gzr(k), C) (see Definition V.3.4.1). Then the induced
map
1
o f(Speck{z}[-]) = F(A)
is a unit subobject of the homotopy associative monoid object f(A') € C (see §V.4.2).

Proof. To simplify the notation, we let X = f(A') € € and let Xo = f(Speck{z}[2]) € €. We have a
pullback diagram in T50 (k)

Zar

Spec k{z}[2] —%= Spec k{z}[1]

-

Spec k{z}[1] — Spec k{z},

where the vertical arrows are admissible. Since f belongs to Funad(ﬂ'gzr

(k), ©), the induced diagram

XO $XO

-

Xo——> X

is a pullback square in C. This proves that « is a monomorphism.
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We observe that the homotopy associative monoid structure on A' described above determines a ho-
motopy associative monoid structure on the subobject Spec k{x}[%] Moreover, this homotopy associative
monoid structure is actually a homotopy associative group structure: the inverse is given induced by the map
k{z}[1] = k{z}[1] carrying = to 1 (which is unique up to homotopy). Since f preserves finite products, we
conclude that X inherits the structure of a homotopy associative group object of €, and that « is compatible
with the homotopy associative monoid structure. It follows that if p : C' — X is a morphism in € which fac-
tors through X, up to homotopy, then p determines an invertible element of the monoid mo Mape(C, X). To
complete the proof, we need to establish the converse of this result. Let us therefore assume that p: C' — X
is a morphism in € which determines an invertible element of mo Mape(C, X ); we wish to show that p factors
(up to homotopy) through a.

Let p' : C — X represent a multiplicative inverse to p in mo Mape(C, X). We wish to show that the
product map (p,p’) : C x C — X x X factors (up to homotopy) through the monomorphism « X « :
Xy X Xog — X x X. We observe that the multiplication map A' x A' — Al fits into a pullback diagram

Spec k{z}[1] x Spec k{z}[1] —= A x A’

| |

Speck{z}[i] ———— Al

(In concrete terms, this amounts to the observation that for any E.-ring R, a product zoz; € moR is
invertible if and only if xg and x1 are both invertible). Since the horizontal morphisms are admissible and
f € Fn®(T5P (k), €), we conclude that the induced diagram

Zar

Xox Xg—=Xx X

L

Xo—— =X

is a pullback square in €, where the vertical arrows are given by multiplication. It will therefore suffice to
show that the product map pp’ : C' x C — X factors (up to homotopy) through Xy. By construction, this
product map is homotopic to the composition

CxC—le>X,

where u : 1l¢ — X is the unit map. It therefore suffices to show that u factors through «. The desired

factorization is an immediate consequence of the commutativity of the following diagram in ‘J’;’;r(k):

Speck vl Spec k{z}[1]

1 =T

Spec k{x}.

O

Proof of Proposition 2.20. Let Ty denote the full subcategory of Sggr(k) spanned by objects of the form
Speck{x1,...,z,}. It will suffice to show that the inclusion Ty C Sggr(kz) satisfies conditions (1) through
(6) of Proposition V.3.4.5. Conditions (1) and (2) are obvious, and (3) follows from Remark V.3.4.6, since
To forms a set of compact projective generators for the oo-category CAlg:" (see Proposition A.7.2.5.27).
Assertion (4) follows from the observation that every admissible morphism Spec A[1] — Spec 4 in Sggr(kz)
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fits into a pullback diagram
Spec A[%] — Spec k{x}[%]

| |

Spec A . Spec k{z},

where f is determined up to homotopy by the requirement that it carries z € mok{x} to a € 7r0A
We now prove (5). Consider an admissible covering {f; : Spec A[ ] — Spec Abi<i<p In SZar( ), where
the elements a; € mgA generate the unit ideal in mgA. We have an equatlon of the form

arbi +...+apb, =1

in the commutative ring moA. Let B = k{x1,...,zn,y1,. .- ,yn}[M] There is a morphism ¢ :
B — A carrying each x; € moB to a; € moA, and each y; € moB to b; € mpA (in fact, ¢ is uniquely determined

up to homotopy). Each map f; fits into a pullback diagram

Spec A[ai] LI Spec A
Spec B[~ -] - SpecB.

It now suffices to observe that the maps {g; : Spec B [zi] — Spec B} determine an admissible covering of
Spec B in ‘J‘Zar(k)

It remains to verify condition (6). Let € be an idempotent-complete co-category which admits finite
limits, and let o : f — f’ be a natural transformation between admissible functors f, f’ : ‘Igfu(k;) - C
such that « induces an equivalence f1To = f'|To. We wish to prove that « is an equivalence. Fix an
arbitrary object Spec R € ‘IZM(k:), where R = kx1,... ,mn[%]; here ¢ € mo(k{z1,...,2n}) = (mok)[21, ..., Ty]
is classified by some map k{y} — k{z1,...,z,}. We have a pullback diagram

Spec R Spec k{y}[%]

| |

Speck{x1,...,x,} — Speck{y}
where the vertical arrows are admissible. Since f and f’ belong to Fun® (T;gr(/ﬂ) C), the map ar will be an
equivalence provided that agpeckfas,....z,}5 XSpec k{y}> and QSpec k{y}[L] are equivalences. The first two cases
are evident, and the third follows from Lemma 2.21. O

Corollary 2.22. Let k be a connective Eo.-1ing. For each n > 0, let Sgg’rgn(k‘) denote the opposite of the

oo-category of compact objects in the co-category (CAlg)™ )<, of connective, n-truncated k-algebras. Then
the composite functor

s s T<p oSp.<
Tzzr( ) g 9Zgr( ) SZEI ”( )
exhibits SSpfn( ) as an n-truncated geometric envelope of Tzar (k).

Proof. Combine Proposition 2.20 with Lemma V.3.4.11 and the proof of Proposition V.1.5.11. O

Remark 2.23. Let X be an oo-topos, and let O € Fundd(Tigr,X) o~ Funlex(QZar,X) ~ Shvcalg(X). The
analysis of Example 2.14 shows that O is a ‘J’;gr(k)—structure on X if and only if the following conditions are

satisfied:
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(a) The object O(0) is initial in X.
(b) The map O(k{z}[2]) [TO(k{z}[{X]) = O(k{z}) is an effective epimorphism.

In other words, we can regard the theory of ‘T%gr-structures on X as providing an oco-categorical analogue of
Definition 2.4.

Sp
Zar
(k) is compatible with n-truncations, for each

Remark 2.24. Let k be a connective E.-ring. Every admissible morphism in T.,° (k) is a monomorphism.

It follows from Proposition V.3.3.5 that the pregeometry ngr
0 < n < oo. In particular, to every ‘J'%gr(k:)-structure O« on an oo-topos X we can associate an n-truncated
Tzar(k)-structure 7<,, Ox. Evaluating on k{z}, we deduce that this truncation construction is compatible

with the truncation construction on 8hvcaig(X)>o.
We are now in a position to compare the theory of 9%§f—structures with Definition 2.5.
Corollary 2.25. Let X be an oo-topos. Then:

(1) Let F': 9%‘; — X be a left exact functor, and let O € Shvcaig(X)>o be the associated connective sheaf
of Eso-rings on X (see Remark 2.17). Then O is local (in the sense of Definition 2.5) if and only if F
is a Sggr—structum on X.

(2) Let a: F — F' be a natural transformation between functors F, F’ € Strlé’scp (X), and let B: O — O be

Zar
the induced morphism between local objects of Shvcais(X)>0. Then B is local (in the sense of Definition
2.5) if and only if o is a morphism in Strlgs?p (X).
Zar

(3) Let F': Sgif — X be a left exact functor, and let O € Shvcale(X) be the associated sheaf of Eo-rings

on X. Then O is local (in the sense of Definition 2.5) if and only if F is an GUSP_stpructure on X.

Zar

(4) Let a: F — F' be a natural transformation between functors F, F’ € Strlgofsp(DC), and let B: O — O be
Zar
the induced morphism between local objects of 8hvcaig(X). Then [ is local (in the sense of Definition
2.5) if and only if « is a morphism in Strlgfsp(DC).
Zar
Proof. In view of Remark 2.15, assertions (3) and (4) will follow from (1) and (2). We first prove (1). Let
F 9%‘; — X be a left exact functor, and let Fy = F| ‘J';gr. Using Remark 2.24, we see that the sheaf of
Eso-rings 7<o O is encoded by the composition
B =

Zar

Using Remark 2.23, we see that O is local (in the sense of Definition 2.5) if and only if 7<oFp is a ‘J’ggr—
structure on X. On the other hand, Proposition 2.20 shows that F' is a 9§§r—structure on X if and only if
Fy is a T," -structure on X. To complete the proof of (1), it suffices to show that Fy is a T2,
X if and only if 7<oFp is a ‘I%ir-structure on X. The “only if” direction follows from Remark 2.24, and the
converse follows from Proposition T.7.2.1.14.

The proof of (2) is similar. Let Fy and Fj) be the restrictions of F' and F’ to ‘T;Zr,
commutative diagram

-structure on

so that we have a

FQ—Q>F6

-k

2 /
TgoFo —_— TSOFO

in the oo-category Fun(‘J'Sp X). Tt is easy to see that (3 is local if and only if ~ is local. Proposition V.3.3.3

Zar>
shows that v is local if and only if v o0 ¢ ~ ¢’ o a is local. It therefore suffices to show that ¢’ o « is local if
and only if « is local. This follows from the observation that ¢’ is local (by Proposition V.3.3.3). O
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Corollary 2.26. If k is an Eo-ring, then we have an equivalence of co-categories
RingTop(k)zar =~ ‘.Top(grzlif( ))°P.

If k is connective, then we have an equivalence of co-categories
RingTop k), = “Top(G5%, (k).

Here the subcategories RingTop(k)zar, RingTop(k)$:. C RingTop(k) are as in Definition 2.5.

Zar

Definition 2.27 (Spectral Schemes: Abstract Definition). Let k be an E-ring. A nonconnective spectral
k-scheme is a pair (X, Ox), where X is an co-topos, Ox : GuoP (k) — X is an GpoF (k)-structure on X, and the
pair (X, Ox) is an Srzlif(k:)-scheme in the sense of Definition V.2.3.9. In this case, we will often abuse notation
and identify Oy with a sheaf of Eo-rings on X (Remark 2.17), which we refer to as the structure sheaf of
(X, 0x). We let SpSch(k)™® denote the full subcategory of RingTop(k)za., spanned by the nonconnective
spectral k-schemes.

If k is connective, we define a spectral k-scheme to be a pair (X, Ox), where X is an oco-topos, Oy :
9Zar( )—>Xisa SZM( )-structure on X, and the pair (X, Ox) is a 9§§r(k)—scheme. Again, we will generally
abuse notation and identify Ox with an object of the co-category Shvcais(X)>o of connective sheaves of
Eoo-rings on X. We let SpSch(k) denote the full subcategory of RingTop(k)5? spanned by the connective
spectral k-schemes.

In the special case where k is the sphere spectrum, we will refer to a (nonconnective) spectral k-scheme
simply as a (nonconnective) spectral scheme.

Remark 2.28. It follows from Corollary 2.26 that Definitions 2.7 and 2.27 agree (when we take the E.,-ring
k in Definition 2.27 to be the sphere spectrum S). In particular, we have isomorphisms of co-categories

SpSch ~ SpSch(S) SpSch™ ~ SpSch(S)"¢
Remark 2.29. In §9, we will see that the co-category of spectral k-schemes SpSch(k) can be identified with
the co-category SpSch gyecz (i) of spectral schemes (X, Ox) equipped with a map (X, Ox) — Spec? (k).

We now discuss the relationship between the theories of spectral schemes and nonconnective spectral
schemes.

Proposition 2.30. Leti: G — G be a fully faithful transformation of geometries. Let X be an co-topos, let
0:G— X be a G-structure on X, and let O : G — X be a left Kan extension of O. Assume that:

(a) The collection of admissible morphisms in G is generated (under the formation of pullbacks) by mor-
phisms of the form i(a), where a is an admissible morphism in G.

(b) For every covering sieve (' )/X - S/X of an object X € G, there exists a morphism X — i(Y) and an

admissible covering {Vg — Y} in G, such that each of the pullback maps i(Vp) x;yy X belongs to 9’/(;)

Then O is a §'-structure on X. Moreover, the identity map (X,0) ~ (X,0"|G) ezhibits (X,0") as a relative
spectrum of (X,0) (see the discussion following Definition V.2.1.2). In particular, if (X,0) is a G-scheme,
then (X, 0) is a §'-scheme.

Proof. We first show that the functor O’ is left exact. Using Theorem T.5.1.5.6, we can assume that O
factors as a composition

55 p(g) L,
where F' is a functor which preserves small colimits. Since O’ is a left Kan extension of O, it is equivalent to
the composition

g = P9) 2 pg L o.
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Since the inclusion G’ — P(G’) is left exact (Proposition T.5.1.3.2 and composition with i obviously gives a
left exact functor from P(G") to P(G), it suffices to show that F is left exact, which follows from Proposition
T.6.1.5.2.

Conditions (a) and (b) guarantee that an arbitrary left exact functor F: ' — X is a §'-structure on X
if and only if F| G is a G-structure on X. Since o’ |G = 0 is a G-structure by assumption, we deduce that o’
is a G-structure on X.

We complete the proof by showing that (X, O') is a relative spectrum of (X, ). Let (Y, 0") be an arbitrary
object of *Top(§'). We have a diagram

MapL‘Top(S’)((xa Ol)? (%, o”)) MapL'.Top(S)((x7 O)’ (yv 0" | 9))

\ /

MapL‘Top(S) (xa H)’

and we wish to show that 6 is a homotopy equivalence. It will suffice to show that 6 induces a homotopy
equivalence after passing to the homotopy fiber over a geometric morphism f* : X — Y. Equivalently, we
wish to show that the map

0 : MapStrl(?,"(‘j)(f* Olv OH) - MapStrl‘“ (f* O” | )
is a homotopy equivalence. Using (a), we deduce that 8’ is a homotopy pullback of the restriction functor
0" : MapFun(S’,’j)(f* Olv O”) - MapF‘un(S,’j)(f* 0, 0" | 9)

To prove this, it suffices to show that f* O’ is a left Kan extension of f* . This is clear, since O’ is a left
Kan extension of O and the functor f* preserves small colimits. O

Corollary 2.31. Leti: G — G’ be a fully faithful transformation of geometries satisfying conditions (a) and
(b) of Proposition 2.30. Then composition with i induces a colocalization functor L' : LTop(S ) — XTop(9):

that is, L' admits a fully faithful left adjoint, given by the relative spectrum functor Spece .

Corollary 2.32. Let k be a connective Eo-ring. Let U denote the relative spectrum functor associated to
the inclusion of geometries Sigr( ) — Srzlif( ). Then U induces a fully faithful embedding

RingTop(k)%h, = “Top(Gy%, (k) = “Top(Gyar (k) = RingTop(k)zar
whose essential image consists of those pairs (X, Ox) where Ox is a connective sheaf of Ex-rings on X.

Let X be an oo-topos and let O be a connective sheaf of E-rings on X. Then O can be encoded in
several ways:

(i) As an object of the oo-category Shvoaig(X) C Fun(X??, CAlg).
(ii) As a left-exact functor F : GpoF — X.
(iii) As a left-exact functor F : G0 — X.

Here we can identify 3’ with the restriction F | Sggr. Moreover, the condition that O be connective translates
into the requirement that F be a left Kan extension of F'. Proposition 2.30 implies that if (X, ') is a
connective spectral scheme, then (X, ) is a spectral scheme. We have the following strong converse:

Proposition 2.33. Let k be a connective Eoo-ring, and suppose that (X,0) is a nonconnective spectral
k-scheme. Then (X, 0] QZar( )) is a spectral k-scheme.
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Corollary 2.34. Let k be a connective Eo,-ring, and let U : RingTop(k)5%, — RingTop(k)zar be the relative
spectrum functor associated to the inclusion of geometries 9;;( ) — 9%2{’( ). Then U induces a fully faithful
embedding SpSch(k) — SpSch(k)™°, whose essential image consists of those nonconnective spectral k-schemes

(X, Ox) whose structure sheaf Ox is connective.
Proof. Combine Corollary 2.32 with Proposition 2.33. O

Proof of Proposition 2.33. Let Spec : CAlg, — RingTop(k)zar denote the absolute spectrum functor associ-
ated to the geometry GoSP(k), and let Spec™ : CAlgS" — RingTop(k)S:
associated to SZar( ). The assertion is local on X, so we may assume that (X, O) is an affine nonconnective
spectral scheme of the form Spec(A), where A € CAlg;. We will prove that (X, 0| SZM( )) can be identified
with the absolute spectrum Spec®™(B), where B = 7>¢A is the connective cover of A.

Let F : X’ — CAlg, correspond to the structure sheaf O under the equivalence of co-categories
FunleX(SHSp( k), X) ~ S8hvoalg, (X?7). Similarly, we let Fo : X — (CAlg,,)>0 be the functor corresponding

Zar
to O] G52 (k), so that Fo ~ 759 0 F.

We now appeal to the construction of the absolute spectrum Spec(A) given in §V.2.2. Let C denote
the full subcategory of (CAlg,)° spanned by those A-algebras of the form A[%], where a € mpA. Using
Theorem V.2.2.12; we can identify X with 8hv(C€) (where we take sheaves with respect to the topology on €
determined by the geometry SZM (k)), and F with the sheafification of the presheaf given by the composition
C? — CAlg, — CAlg, . Then F is the sheafification of the composite functor

7. be the absolute spectrum functor

Let €y be the full subcategory of (CAlgg,)°P spanned by those B-algebras of the form BI[1], where
a € myB ~ myA. Proposition A.7.2.2.24 implies that the functor R — 7>¢R determines an equivalence of
oo-categories Gy — € (the inverse equivalence is given by the formula R +— R ®4 B). It follows that we can
identify Fy with the sheafification of the composition €7" < (CAlgg)>o < (CAlg,)>o. Invoking Theorem
V.2.2.12 again, we deduce that (X, 0| SZar( )) =~ Spec®™(B) as required. O

Remark 2.35. In the proof of Proposition 2.33, the sheafification is not needed: Theorem 5.14 guarantees
that the functors
C? — CAlg, — CAlg,

€o" — (CAlgp)>0 — (CAlgy)>o
are already sheaves with respect to the Zariski topologies on C and Cy.

Definition 2.36. Let k be an E-ring. We will say that a spectral k-scheme (X, Ox) is n-localic if the co-
topos X is n-localic (Definition T.6.4.5.8). If k is connective and (X, Ox) is a connective spectral k-scheme,
then we will say that (X, Ox) is n-truncated if Oy is n-truncated, when regarded as a sheaf of Eo.-rings on

X.

Combining Corollary 2.22 with Theorem V.2.5.16, we obtain the following relationship between classical
and spectral algebraic geometry:

Proposition 2.37. Let k be a connective Eo-ring, and let Schig(SZar( )) denote the full subcategory of

SCh(SZar( )) spanned by the 0-localic, 0-truncated connective spectral k-schemes. Then Schzg(gzdr( ) is
canonically equivalent to (the nerve of) the category of schemes over the commutative ring mok, in the sense
of classical algebraic geometry.

Remark 2.38. Let k£ be a connective Eo-ring and A a connective k-algebra, and consider the spectral k-
scheme (X, Ox) given by the spectrum of A. The underlying co-topos X can be identified with Shv(X), where
X is the Zariski spectrum of the ordinary commutative ring mgA. This follows from Proposition V.3.4.15,
but can also be deduced from the explicit construction provided by Theorem V.2.2.12, since the co-category
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of admissible A-algebras in CAlg, is equivalent to the nerve of the ordinary category of commutative (myA)-
algebras having the form (moA)[1]. In other words, the local topology of spectral schemes is no more
complicated than the local topology of ordinary schemes.

Remark 2.39. Let k be a connective Eo-ring, and let (X,0x) be a spectral k-scheme; we will abuse
notation by identify Ox with the underlying CAlg,-valued sheaf on X. It follows from Proposition 2.33
that the pair (X, 7>¢ Ox) is a connective spectral k-scheme; we will refer to (X, 7>¢ Ox) as the underlying
connective spectral k-scheme of (X, Ox). Using Proposition V.3.4.15, we conclude that each (X, 7<,7>0 Ox)
is an n-truncated connective spectral k-scheme. In particular, if X is 0-localic and we take n = 0, then
we obtain a 0O-localic, 0-truncated connective spectral k-scheme (X, 7y Ox ), which we can identify with an
ordinary (mok)-scheme (Proposition 2.37). We will refer to (X, m9 Ox) as the underlying ordinary scheme of

We conclude this section with a characterization of the class of 0-localic spectral schemes, which estab-
lishes the equivalence of Definitions 2.27 and 2.2.

Theorem 2.40. Let k be an Eo,-ring, let X be a 0-localic oco-topos, Ox be a sheaf of Eo-rings on X, which
we will identify with a SEEf—structure on X. Then (X,0x) is a nonconnective spectral scheme if and only if

the following conditions are satisfied:

(1) The truncation (X, 7 Ox) is a 0-localic, O-truncated connective spectral k-scheme, corresponding to an
ordinary scheme (X, Ox) (see Proposition 2.37).

(2) For every integer i, m; Oy determines a quasi-coherent sheaf of O x-modules on X.
(3) The Oth space of the structure sheaf Ox is hypercomplete, when viewed as an object of X (see §T.6.5.2).
Moreover, (X,0x) is affine if and only if (X,0x) is an affine scheme.

Proof. First suppose that (X, Ox) is a spectral scheme. We will prove that (1), (2), and (3) are satisfied.
Assertion (1) follows immediately from Remark 2.39. The remaining assertions are local on X (for assertion
(3), this follows from Remark T.6.5.2.22), so we may assume without loss of generality that (X, Ox) is an
affine spectral scheme, given by the spectrum of an E,,-ring A. Then X can be identified with the co-topos
8hv(X), where X is the set of prime ideals in the commutative ring mgA, with a basis of open sets given
by Ur = {p C moA : f ¢ p}, where f ranges over the collection of elements of myA (Remark 2.38). Using
Theorem V.2.2.12 and Proposition V.4.3.23, we can identify Oy with the CAlg-valued sheaf described by the
formula Uy — A[%] (Theorem 5.14 guarantees that this prescription is already a sheaf with respect to the
Zariski topology on X). In particular, m; Ox is the sheafification of the presheaf of myA-modules described
by the formula Uy — (71'2'14)[%], which is the quasi-coherent sheaf associated to the module m; A; this proves
(2). To prove (3), we are free to replace A by its connective cover (since this does not change the Oth space
of Ox). Choose a Postnikov tower
R TSQA — TSIA — TS()A,

for A, and let
= 057 = 05t = 03]

be the associated CAlgs (-valued sheaves on X. Using the formula above, we conclude that the canonical
map Ox — @{o%”} is an equivalence. To prove (3), it will therefore suffice to show that each OF" has a
hypercomplete Oth space, which is clear (since each ODSC" is n-truncated).

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X, Ox) is
a spectral scheme. The assertion is local on X, so we may assume without loss of generality that (X, 7o Ox)
is an affine scheme, given by the spectrum of a commutative ring R. We will show that (X, Ox) is an affine
spectral scheme. We begin by treating the case where the structure sheaf Oy is connective (as a sheaf of
Eoo-rings on X).
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Applying (2), we conclude that each m; O is the quasi-coherent sheaf associated to an R-module M;.
For each n > 0, let A<,, € CAlg denote the global sections I'(X; 7<,, Ox). There is a convergent spectral
sequence

EPT =HP(X;7y(1<n Ox)) = Tg—pA<n.

Since X is affine, the quasi-coherent sheaves m; Ox have no cohomology in positive degrees, and the above
spectral sequence degenerates to yield isomorphisms

A M; ifi<n
5 ~
wisn 0 otherwise.

In particular, mgA<, ~ R.

Fix n > 0, and let (X,,, Ox, ) be the spectrum of A<,. The equivalence A, ~ I'(X;7<, Ox) induces a
map ¢y, : (X, 7<, Ox) — (Xn, Ox, ) in RingTopy,,. The above argument shows that the induced geometric
morphism ¢}, : X,, = X is an equivalence of co-topoi, and that ¢,, induces an isomorphism of quasi-coherent
sheaves ¢ (m; Ox, ) ~ m; Ox for 0 < i < n. Since the structure sheaves on both sides are n-truncated, we
conclude that ¢,, is an equivalence.

Let A € CAlg be a limit of the tower

...—)AS2—>A§1—>A§0,

so that myA ~ R. We can therefore identify the spectrum of A with (X, 0%). The first part of the proof
shows that O is the inverse limit of its truncations 7<, O ~ ¢¥ Ox, ~ 7<, Ox . Passing to the inverse
limit, we obtain a map ¢ : Ox — lim{r<, Ox} ~ O% . By construction, 1) induces an isomorphism on all
(sheaves of) homotopy groups, and is therefore co-connective. Since the Oth space of 0% is hypercomplete
(being the inverse limit of truncated objects of X) and the Oth space of Ox is hypercomplete by (3), we
deduce that v is an equivalence, so that (X, Oy) ~ SpecZ(A) is an affine spectral scheme.

We now treat the general case. The pair (X, 7> Ox) satisfies conditions (1), (2), and (3), so the argument
above proves that (X, 750 Ox) =~ Spec?(A) for some connective Eq,-ring A. Let B € CAlg be the Eq-ring
of global sections of Ox. Then 7>¢B is connective cover of the algebra of global sections of 759 Ox, and is
therefore equivalent to A. In particular, we can identify Spec?(B) with (X, %), for some sheaf of E..-rings
O% on X. To complete the proof, it will suffice to show that the canonical map 6 : 9% — Oy is an equivalence.
Let F denote the fiber of the map 6, viewed as an object of Shvg,(X). Since 6 induces an equivalence on
the level of connective covers, we deduce that 7>¢ F ~ 0. We wish to prove that 3 ~ 0. Suppose otherwise.
Since Shvg,(X) is right complete (Proposition 1.7), we deduce that there exists an integer n (necessarily
positive) such that 7, F is nonzero. We will assume that n is chosen minimal with respect to this property.
We have an exact sequence of sheaves of O x-modules

Ti_n O'x =Ty Ox > 7, F—>7_, O/x — 7_pn Oy.

The homotopy groups of Oy are quasi-coherent sheaves on X by (2). Since (X, ') is a spectral scheme,
it also satisfies (2) (by the first part of the proof), so that homotopy groups of O% are also quasi-coherent.
It follows that m_,, F is a nonzero quasi-coherent sheaf on the affine scheme (X, Ox), and therefore has a
nonvanishing global section. The minimality of n guarantees that 7_,I'(X;F) ~ I'(X;7_, F), so that the
spectrum T'(X; JF) is nonzero. But I'(X;JF) can be identified with the fiber of the map of global sections
I'(X;0%) — I(X;0x), which is equivalent to the identity map on the E,.-ring B. We therefore obtain a
contradiction, which completes the proof. O

Remark 2.41. Since the assertion of Theorem 2.40 is local, it generalizes easily to the case where X is not
assumed to be 0-localic; we leave the formulation of this generalization to the reader.
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3 Coherent oco-Topoi

Let (X,0x) be a scheme. Recall that (X,0x) is said to be quasi-compact if the topological space X is
quasi-compact: that is, if every covering of X admits a finite subcovering. The scheme (X, QOx) is said to be
quasi-separated if, whenever U and V are quasi-compact open subsets of X, the intersection U NV is also
quasi-compact.

Our goal in this section is to introduce a hierarchy of compactness conditions, generalizing the notions
of quasi-compactness and quasi-separatedness to the oco-categorical setting. Although our main goal is to
apply these ideas in the setting of spectral schemes and spectral Deligne-Mumford stacks, we will begin with
a general discussion which makes sense in any co-topos.

Definition 3.1. Let X be an oco-topos. We will say that X is quasi-compact if every covering of X has a
finite subcovering: that is, for every effective epimorphism [];.; U; — 1 in X (where 1 is the final object of
X), there exists a finite subset Ig C I such that the map [[;.; U; — 1 is also an effective epimorphism. We
say that an object X € X is quasi-compact if the co-topos X,x is quasi-compact.

Let n > 0 be an integer. We will define the notion of an n-coherent co-topos by induction on n. We
say that an oo-topos X is 0-coherent if it is quasi-compact. Assume that we have defined the notion of an
n-coherent oco-topos for some n > 0. We will say that an object U € X of an co-topos X is n-coherent if the
oo-topos Xy is n-coherent. We say that X is locally n-coherent if, for every object X € X, there exists an
effective epimorphism [[, U; — X, where each U; is n-coherent. We say that X is (n + 1)-coherent if it is
locally n-coherent, and the collection of n-coherent objects of X is closed under finite products.

Remark 3.2. Let X be an co-topos. Then X is quasi-compact if and only if, for every collection of (—1)-
truncated objects {U; € X}ies such that 7<_1(J],c; U;) is a final object of X, there exists a finite subset
Iy C I such that 7<_1(][;¢;, Ui) is a final object of X. In particular, the condition that X is quasi-compact
depends only on the underlying locale 7<_; X.

Remark 3.3. Let X be an n-coherent oo-topos for n > 0. The collection of (n — 1)-coherent objects of
X is stable under finite products. In particular, the final object of X is (n — 1)-coherent, so that X is
(n — 1)-coherent. It follows that an n-coherent co-topos is also m-coherent for each m < n.

Remark 3.4. Let X be a locally n-coherent oo-topos. Then X s is locally n-coherent for any object U € X.
In this case, an object X € X is (n 4 1)-coherent if and only if it is n-coherent and, for every pullback
diagram

UxxV——U

]

|4 X

in X, if U and V are n-coherent, then U X x V is also n-coherent.

Remark 3.5. Suppose that X = [][,.,-, X; is a product of finitely many oo-topoi (corresponding to a
coproduct in the oo-category ®Top). Then X is n-coherent if and only if each X; is n-coherent. It follows
that if Y is any oco-topos, then a finite coproduct U = [[; ;.. U; in Y is n-coherent if and only if each U; is
n-coherent. -

Remark 3.6. Let X be a locally n-coherent oo-topos and let X € X be a quasi-compact object. The
assumption that X is locally n-coherent guarantees the existence of an effective epimorphism [[,.; U; — X,
where each U; is n-coherent. Since X is quasi-compact, we may assume that the index set I is finite. Then
U = [l;c; Ui is n-coherent by Remark 3.5. It follows that there exists an effective epimorphism U — X,
where U is n-coherent.

Definition 3.7. Let X be an co-topos which is locally n-coherent. We will say that a morphism f: X' — X
in X is relatively n-coherent if, for every n-coherent object U € X and every morphism U — X, the fiber
product U x x X' is also n-coherent.
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Example 3.8. Let X be a locally n-coherent oo-topos. If f : X’ — X is a morphism such that X’ is
n-coherent and X is (n + 1)-coherent, then f is relatively n-coherent.

Proposition 3.9. Let n > 0 be an integer and X an oco-topos, and let f : Xo — X be a morphism in X.
Assume that if n > 0, then X is locally (n — 1)-coherent and that f is relatively (n — 1)-coherent. Then:

(1) The map f is relatively m-coherent for each m < n.
(2) Assume that f is an effective epimorphism and that X is n-coherent. Then X is n-coherent.

Proof. The proof proceeds by induction on n. Suppose first that n = 0; we must show that if f is an
effective epimorphism and X is quasi-compact, then X is quasi-compact. Choose an effective epimorphism
Hie] X; — X. Then the induced map ]_L-GI(XZ- x x Xo) — Xo is also an effective epimorphism. Since X is
quasi-compact, there exists a finite subset Iy C I such that the map ]_LEIO (X; xx Xo) = X is an effective
epimorphism. Since f is an effective epimorphism, we conclude that the composite map

H(Xz XxXo)—>X0—>X

i€lp

is an effective epimorphism. This map factors through ¢ : [| X; — X, so that ¢ is an effective epimor-
phism as desired.

Now suppose that n > 0. We begin by proving (1). Choose a morphism U — X, where U is m-coherent;
we must show that Uy = U xx Xy is m-coherent. Remark 3.6 guarantees the existence of an effective
epimorphism g : V' — U, where V is (n — 1)-coherent. It follows from Example 3.8 that g is relatively
(m —1)-coherent. Let V) =V xx Xy and go : Vo — Uy the induced map, so that go is also relatively (m —1)-
coherent. Our assumption that f is relatively (n — 1)-coherent guarantees that Vj is (n — 1)-coherent, and
therefore m-coherent (Remark 3.3). Since gq is an effective epimorphism, the inductive hypothesis guarantees
that Uy is m-coherent, as desired.

We now prove (2). We will show that X satisfies the criterion for n-coherence described in Remark 3.4.
The inductive hypothesis guarantees that X is (n — 1)-coherent. Choose maps U — X and V' — X, where
U and V are (n — 1)-coherent; we wish to show that U xx V is (n — 1)-coherent. Let Uy = U xx X and
Vo =V xx Xp. Since f is relatively (n— 1)-coherent, Uy and V; are (n — 1)-coherent. Since X is n-coherent,
we deduce that Uy x x, Vo is (n — 1)-coherent. The map f' : Uy xx, Vo — U xx V is a pullback of f and
therefore relatively (n — 2)-coherent by (1). Since f’ is an effective epimorphism, the inductive hypothesis
guarantees that U X x V is (n — 1)-coherent, as desired. O

i€lp

Corollary 3.10. Let X be an co-topos and suppose we are given a full subcategory Xo C X with the following
properties:

(a) Every object U € Xy is an n-coherent object of X

(b) For every object X € X, there exists an effective epimorphism [[U; — X, where each U; belongs to
Xo.

Then:

(1) A morphism f: X' — X in X is relatively n-coherent if and only if, for every morphism U — X where
U € Xy, the fiber product U' = U x x X’ is n-coherent.

(2) An object X € X is (n + 1)-coherent if and only if it is quasi-compact and, for every pair of maps
U— X,V = X where U,V € Xy, the fiber product U X x V is n-coherent.

Proof. We first prove (1). The “only if” direction is obvious. For the converse, choose a map V' — X where
V is n-coherent; we wish to show that V/ = V x x X’ is n-coherent. Condition (b) and the quasi-compactness
of V' guarantee the existence of an effective epimorphism g : [[;c; Ui — V, where each U; belongs to X
and the index set I is finite. Let ¢’ : [[,.;(Ui xx X’) — V' be the induced map. Using our hypothesis
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together with Remark 3.5, we see that [ [, ;(U; x x X”) is n-coherent. The map g is relatively (n—1)-coherent
by Example 3.8, so that ¢’ is relatively (n — 1)-coherent. Applying Proposition 3.9, we deduce that V' is
n-coherent as desired.

We now prove (2) using induction on n. The “only if” direction is again obvious. Assume therefore that
X is quasi-compact and that U x x V is n-coherent whenever U,V € Xy. We note that X is n-coherent: this
follows from the inductive hypothesis if n > 0, or by assumption if n = 0. Using (1), we see that the map
U — X is relatively n-coherent whenever U € Xy. Consequently, if V' is an arbitrary n-coherent object of X
and we are given a map ¢g : V. — X, then U xx V is n-coherent for each U € Xy. Applying (1) again, we
deduce that ¢ is relatively n-coherent. It follows that the fiber product U x x V' is n-coherent whenever U
and V are n-coherent, so that X is (n + 1)-coherent by Remark 3.4. O

Corollary 3.11. Let X be a locally n-coherent oco-topos, and let f : X' — X be a morphism in X. Suppose
that there exists an effective epimorphism U — X such that the induced map [ : U — U is relatively
n-coherent, where U' = X' xx U. Then f is relatively n-coherent.

Proof. Suppose we are given a map Y — X, where Y is n-coherent. We wish to prove that Y/ = X' xx Y is
n-coherent. Replacing X by Y and U by Y x x U, we are reduced to proving that if X is n-coherent, then
X' is also n-coherent.

Since X is locally n-coherent, there exists an effective epimorphism [[,.;U; — U, where each U; is
n-coherent. The composite map [[,.;U; — U — X is also an effective epimorphism. Since X is quasi-
compact, there exists a finite subset Iy C I such that the map [, 1, Ui = X is an effective epimorphism.
The coproduct [[;c; Ui is n-coherent (Remark 3.5). Replacing U by [[; Ui, we can reduce to the case where
U is n-coherent. Since f’ is relatively n-coherent, we deduce that U’ is n-coherent. Since X is n-coherent
and U is (n — 1)-coherent, the map U — X is relatively (n — 1)-coherent (if » > 0), so the induced map
U’ — X' is an effective epimorphism which is (n — 1)-coherent (if n > 0). Proposition 3.9 now implies that
X' is n-coherent as desired. O

Definition 3.12. Let X be an oo-topos. We will say that X is coherent if it is n-coherent for every integer
n. We will say that an object U € X is coherent if the co-topos X,y is coherent. We will say that X is
locally coherent if, for every object X € X, there exists an effective epimorphism [[, U; — X where each U;
is coherent.

Example 3.13. Let X = 8 be the oco-category of spaces. Then X is coherent and locally coherent. An object
X € X is n-coherent if and only if the homotopy sets m; (X, x) are finite for every point z € X and all ¢ < n.

Remark 3.14. Let X be an co-topos. The collection of coherent objects of X is closed under the formation
of pullbacks.

Lemma 3.15. Let X be an co-topos and f* : X — Y a geometric morphism, which exhibits Y as a cotopological
localization of X (see Definition T.6.5.2.17). Let n > 0 be an integer, and assume that X is locally (n — 1)-
coherent if n > 0.

(1) An object X € X is n-coherent if and only if f*X €Y is n-coherent.
(2) An object Y €Y is n-coherent if and only if f.Y € X is n-coherent.
(3) If n > 0, the co-topos Y is locally (n — 1)-coherent.

Proof. Since f* is a localization functor, the counit map f*f.Y — Y is an equivalence for each Y € Y.
Consequently, assertion (2) follows from (1), applied to X = f.Y. We prove (1) by induction on n. We
first note that the inductive hypothesis implies (3). To see this, assume that n > 0 and let Y € Y, so that
Y ~ f*X for X = f.Y € X. Since X is locally (n — 1)-coherent, there exists an effective epimorphism
[1Vi = X where each V; is (n — 1)-coherent. This induces an effective epimorphism [[ f*V; — Y in Y, and
each f*V; is (n — 1)-coherent by the inductive hypothesis.
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We now prove (1) in the case n = 0. Suppose that X € X is quasi-compact; we wish to show that
f*X € Y is quasi-compact. Choose an effective epimorphism v : [[;c; U; — f*X in Y. For i € I, let
Vi = [Us x5, p-x X, so that u ~ f*v for some map v : [[,.; Vi — X. Since f* is a cotopological localization,
the map v is an effective epimorphism. Since X is quasi-compact, there exists a finite subset Iy C I such that
the induced map v’ : [[;c; Vi — X is an effective epimorphism. It follows that f*(v') = u' : [[;¢;, Ui = f*X
is an effective epimorphism as well.

Now suppose that f*X is quasi-compact. We wish to prove that X is quasi-compact. Choose an effective
epimorphism v : [[;.; Vi — X, so that u = f*v is an effective epimorphism Y. Since f*X is quasi-compact,
there exists a finite subset Iy C I such that the induced map ]_[l-el0 f*V; — f*X is an effective epimorphism.
Since f* is a cotopological localization, we conclude that the map [, 5, Vi Xisan effective epimorphism.

It remains to prove (1) in the case n > 0. Suppose first that X is n-coherent. Using the inductive
hypothesis, we deduce that f*X is (n— 1)-coherent; moreover, we have already seen that Y is locally (n —1)-
coherent. To show that f*X is n-coherent, it suffices to show that for every pair of maps U — f*X and
U' — f*X where U,U’ € Y are (n — 1)-coherent, the fiber product U X «x U’ is (n — 1)-coherent (Remark
34). Let V = f,U x4, p+x X and V' = f,U" Xy, -x X. It follows from the inductive hypothesis that V' and
V' are (n— 1)-coherent objects of X, so that V' x x V' is (n — 1)-coherent. Applying the inductive hypothesis
again, we conclude that U x j«x U’ ~ f*(V xx V') is (n — 1)-coherent.

For the converse, suppose that f*X is n-coherent. Using the inductive hypothesis, we conclude that X is
(n — 1)-coherent. To show that X is n-coherent, it suffices to show that if we are given morphisms V' — X
V' — X where V, V' € X are (n—1)-coherent, then V' x x V' is (n—1)-coherent. By the inductive hypothesis,
it suffices to show that f*(V xx V') ~ f* xs-x f*V’ is (n — 1)-coherent, which follows from our assumption
that f*X is n-coherent. O

i€lp

Proposition 3.16. Let X be a locally coherent co-topos, and let f* : X — Y be geometric morphism. Assume
that:

(a) The right adjoint to f* induces an equivalence of hypercompletions X" ~ Y".

(b) For every object Y € Y, there exists an object X € X and an effective epimorphism f*X — Y.
Then:

(1) An object X € X is coherent if and only if f*X €Y is coherent.

(2) The oco-topos Y is locally coherent.

(3) The co-topos X is coherent if and only if Y is coherent.

Proof. Let Z =Y” be the hypercompletion of Y and ¢* : Y — Z a left adjoint to the inclusion Y C Y. Then
g* exhibits Z as a cotopological localization of Y, and our assumption (a) guarantees that g* o f* exhibits Z
as a cotopological localization of X. Assertion (1) now follows from Lemma 3.15. Assertion (2) follows from
(1) and (b). Assertion (3) follows by applying (1) to the final object of X. O

We now produce some examples of coherent co-topoi.

Definition 3.17. Let € be an oco-category which admits finite limits. We will say that a Grothendieck
topology on C is finitary if it satisfies the following condition:

(*) For every object C' € € and every covering sieve G(/OCZ C €/, there exists a finite collection of morphisms
{C; = Chi<i<n in (‘3506), which generate a covering sieve on C.
Remark 3.18. Let C be an oo-category which admits finite limits, and suppose that € is equipped with
an arbitrary Grothendieck topology. Let D denote the same oo-category €, and let us say that a sieve
D;OD) C D/p is covering if it contains a finite collection of morphisms {D; — D} which generate a covering

sieve in C. This collection of covering sieves determines a Grothendieck topology on D. This Grothendieck
topology is the finest finitary topology on D which is coarser than the given topology on C.
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Proposition 3.19. Let C be a small co-category which admits pullbacks, which is equipped with a finitary
Grothendieck topology. Then:

(1) Let j: C — 8hv(C) denote the composition of the Yoneda embedding € — P(C) with the sheafification
function P(C) — 8hv(C). Then j carries each object C € € to a coherent object of Shv(C).

(2) The oco-topos 8hv(C) is locally coherent.
(3) If C has a final object, then 8hv(C) is coherent.

Proof. Since 8hv(€) is generated by j(€) under small colimits, assertion (2) follows immedaitely from (1).
Since j preserves finite limits, it carries final objects of € to final objects of 8hv(C), so assertion (3) also
follows from (1). We will prove the following assertions by induction on n:

(1") The functor j carries each object C' € € to an n-coherent object of Shv(C).
(2') The oco-topos 8hv(C) is locally n-coherent.

It is clear that (1) implies (2'). To prove (1’), let us first assume that n = 0. We must show that for C € C,
the object j(C) € Shv(€) is quasi-compact. Choose an effective epimorphism [[,.; U; — j(C) in 8hv(€).
It follows that there exists a covering {C, — C} in € such that each of the induced maps j(C,) — j(C)
factors through U; for some ¢. Since the topology on € is finitary, we may assume that this covering is finite;
then we may assume that all of this indices ¢ € I which are used belong to some finite subset Iy C I, so that
[Hics, Ui = 3(C) is an effective epimorphism, as desired.

Now suppose that n > 0. Using the inductive hypothesis, we may assume that Shv(C) is locally (n — 1)-
coherent and that j(C') is (n — 1)-coherent for C' € €. We wish to show that j(C) is n-coherent. Without
loss of generality, we may replace C by €, and 8hv(C) by 8hv(C)/;(c) ~ 8hv(€/c). We wish to show that
the collection of (n — 1)-coherent objects of Shv(€) is closed under finite products. Using Corollary 3.10, we
are reduced to showing that j(C’) x j(C") is (n — 1)-coherent, for every pair of objects C’,C" € €. This is
clear, since j(C") x j(C") = j(C" x C"). O

We now prove a converse to Proposition 3.19.
Theorem 3.20. Let X be an co-topos. The following conditions are equivalent:
(1) The oco-topos X is locally coherent.

(2) There exists a small co-category C which admits pullbacks, a finitary Grothendieck topology on C, and
a geometric morphism f* : 8hv(C) — X satisfying conditions (a) and (b) of Proposition 3.16.

If these conditions are satisfied, then we may assume that C admits finite coproducts and that the topology
on € is subcanonical (that is, for each C € C, the functor Mape (e, C') represented by C belongs to Shv(C)).
Moreover, if X is coherent, then we may assume that C has a final object (and therefore admits all finite
limits; see Corollary T.4.4.2.4).

Lemma 3.21. Let X be an co-topos containing a collection of objects {X;}icr. For every subset J C I, let
Xy~ 1lies Xi. If C € X is a quasi-compact object, then the canonical map

lim Mapq (€, X;) — Mapy (C, X1)
JCI

is a homotopy equivalence, where the colimit is taken over all finite subsets J C I.

Proof. Let J be any subset of I, and let ¢ : C' — X ; be a morphism in X. Since colimits in X are universal,
this morphism determines a decomposition C' ~ [[,. ; C;, where C; = C xx, X;. We define the support of
¢ to be the subset of J consisting of those indices ¢ € J such that C; is not an initial object of X.
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Let ¢ : C — X, be any morphism. Since C is quasi-compact, there is a finite subset Jy C J such
that the map [[,c 7, Ci = C'is an effective epimorphism. For i/ € J, we have an effective epimorphism
[Hicy, Ci xc Cir — Cy. 1fi" ¢ Jo, then the left hand side is an initial object of X (since coproducts in X are
disjoint), so that C; is likewise initial object of X. It follows that the support of ¢ is contained in Jp, and
is therefore finite.

For each J C I, the mapping space Map, (C, X ;) decomposes as a coproduct [[4 Map§ (C,X;), where S
ranges over finite subsets of I and Mapi(C’, X ) is the summand of Mapi(C’, X ;) given by maps ¢ : C — X
with support S (by convention, this summand is empty unless S C J). It will therefore suffice to prove that
for every finite set S, the map

lim Map§(C, X;) = Map5 (C, Xr)
JCT

is a homotopy equivalence. To prove this, we observe that Mapi(C’, Xy) ~ Map;gc(C, X;) whenever S C
J. O

Proof of Theorem 3.20. The implication (2) = (1) follows immediately from Propositions 3.19 and 3.16.
Conversely, suppose that X is locally coherent. Choose a small collection of objects {X,} which generates X
under small colimits. Since X is locally coherent, for each index o we can choose an effective epimorphism
[5 Ua,p — Xo where Uy g is coherent. Let € denote an essentially small full subcategory of X such that
each object of C is coherent in X, and each U, g belongs to €. Enlarging this collection if necessary, we may
assume that it is closed under pullbacks, finite coproducts, and that it contains the a final object of X if X
is coherent. Endow € with the canonical topology determined by the inclusion i : € < X, so that 7 induces
a geometric morphism f* : Shv(€) — X. To complete the proof, it will suffice to show that f* satisfies
conditions (a) and (b) of Proposition 3.16.

Let j : € — 8hv(C€) denote the Yoneda embedding. By construction, f* o j is equivalent to the inclusion
C — X. For every object X € X, there exists an effective epimorphism [[ X; — X where each X; belongs
to {X,}; it follows that there exists an effective epimorphism [[ C; — X where each C; belongs to €. We
therefore have an effective epimorphism f*[], j(C;) — X; this proves (b).

The proof of (a) is more elaborate. Since f* preserves oo-connective morphisms, its right adjoint f,
preserves hypercompleteness, and therefore restricts to a functor f, : X" — 8hv(€)". We wish to show that
f1 is an equivalence of co-categories. We first show that f. is conservative: that is, if ¢ : X — Y is map
between hypercomplete objects of X" such that f, (g) is an equivalence, then g is an equivalence. Since X
and Y are hypercomplete, it will suffice to show that g is n-connective for each n. We proceed by induction
on n. When n = 0, we must show that g is an effective epimorphism. Choose an object Z € Shv(€) and an
effective epimorphism v : f*Z — Y. Then v is adjoint to a map v’ € Mapgy,(e)(Z, f+Y). Since f.(u) is an
equivalence, the map v’ factors through f,X; it follows that v factors as a composition

zZ-X5%y

so that g is also an effective epimorphism. If n > 0, then (since u is an effective epimorphism) we are reduced
to proving that the induced map 5 : X — X xy X is (n — 1)-connective. This follows from the inductive
hypothesis, since f. (/) is also an equivalence. This completes the proof that f, is conservative.

We next prove:

(x) For each n > 0, the functor f, carries n-connective morphisms in X to n-connective morphisms in
Shv(C).

The proof proceeds by induction on n. We begin by treating the case n = 0. Fix an effective epimorphism
g: X — Y in X; we wish to show that f.(g) is an effective epimorphism in 8hv(€). Unwinding the definitions,
we must show that for every object C' € € and every morphism 7 : C' — Y, there exists a covering sieve on
{C; — C} such that each of the composite maps C; — C — Y factors through g. To prove this, it suffices to
choose an effective epimorphism [[C; — C xy X, where each C; € C; our assumption that g is an effective
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epimorphism guarantees that the composite map
H Ci - Cxy X —C

is also an effective epimorphism, so that the maps {C; — C} generate a covering sieve in C.

Now suppose n > 0 and that g : X — Y is an n-connective morphism in X; we wish to show that f.(g)
is an n-connective morphism in 8hv(€). The above argument shows that f.(g) is an effective epimorphism;
it will therefore suffice to show that the diagonal map f.X — f.X X v fuX = fu(X xy X) is a (n — 1)-
connective. This follows from the inductive hypothesis.

Let f : Shv(C)" — X" be a left adjoint to f!, so that f"* is given by composing f* with a left adjoint
to the inclusion X" C X. To complete the proof that f’ is an equivalence, it will suffice to show that the
unit map vy : X — fLf*X is an equivalence for each X € 8hv(€)”. This map factors as a composition

XS LXK
where u% is oo-connective by (x). It will therefore suffice to prove that ux is co-connective (then u’y will
be an oo-connective morphism between hypercomplete objects of Shv(€), and therefore an equivalence). We
will show:

(') For every object X € 8hv(€) and every n > 0, the unit map ux : X — f.f*X is n-connective.
The proof will use the following assertion:

(+") Let X € 8hv(C) be a coproduct of objects belonging to the essential image of j : € — Shv(€). Then
the unit map ux : X — f,f*X is an equivalence.

Assume (x”) for the moment. We will prove (x') using induction on n. We begin with the case n = 0.
Fix X € 8hv(C); we wish to show that the unit map ux : X — f.f*X is an effective epimorphism. Since
8hv(€) is generated under colimits by the essential image of j : € — 8hv(€), we can choose an effective
epimorphism v : X’ — X in 8hv(€), where X’ is a coproduct of objects belonging to the essential image of
7. We have a commutative diagram

X/ s f*f*X/

|

X —— f.[*X.

It will therefore suffice to show that the composite map X' — f, f*X’ — f.f*X is an effective epimorphism.
Using (*”), we are reduced to proving that f,f*(v) is an effective epimorphism. Since v is an effective
epimorphism, f*(v) is an effective epimorphism in X, so that f.f*(v) is an effective epimorphism by (x).

Now suppose n > 0. We wish to prove that ux is n-connective. The argument above shows that ux is
an effective epimorphism; it will therefore suffice to show that the diagonal map 8 : X — X Xy s-x X is
(n — 1)-connective. Let X’ be as above so that we have a pullback diagram

X' xx X' 2o X 5y ey X

L

X XXf*f*XX.

Since the vertical maps are effective epimorphisms, it will suffice to show that 8’ is (n — 1)-connective. Since
the evident map X’ Xy, p+x X' — (fu f*X') X5, p+x (f« f*X') is an equivalence by ('), it will suffice to show
that the composition

X' xx X5 X 5 pox X (Fof*X) % pext (Fuf*X') = fuf (X 5 x X)
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is (n — 1)-connective. Unwinding the definitions, we see that this composition can be identified with the unit
map ux:xyx/, and is therefore (n — 1)-connective by the inductive hypothesis.

It remains to prove (x”). Fix a collection of objects {C;};cr belonging to €, For every subset J C I, let
Xy € 8hv(C) denote the coproduct [[,.;7(C;), and let u; denote the unit map X; — f, f*X;. We wish
to show that uy is an equivalence. We first show that u; is an equivalence when J C I is finite. Write
C = I1,c Ci, so we have equivalences

Fof Xy = L TT0C) = £ (LT F73(C) = £(J] o) = d(C)

ieJ ic€J i€J

(where the last equivalence follows from the fact that our topology on € is subcanonical). Consequently, we
can identify u; with the canonical map [[,.;j(Ci) — j(C). Note that the fiber product

[T5C) x50 [T d(C)

ieJ i€J

is given by [[; ;c;7(Ci xc Cj). For i # j, the fiber product C; X Cj is an initial object () € €. The empty
sieve is a covering of C; x¢ Cj, so we have an effective epimorphism from the initial object to j(C; x¢ C;) in
8hv(€) and therefore j(C; x ¢ C;) is an initial object of Shv(C). It follows that [ [, ; 7(Ci) X oy ;e 5 7(Cs) is
equivalent to [ [, ; 1(CixcCi) ~ [1;c, 4(Cs): that is, the map u; becomes an equivalence after pullback along
uy. To complete the proof that u; is an equivalence, it suffices to show that u; is an effective epimorphism.
This follows from the observation that the collection of maps {C; — C},;c; generates a covering sieve.

To complete the proof that u; is an equivalence, it will suffice to show that the canonical map hﬂ Jop I =

uy is an equivalence in Fun(A!, 8hv(€)); here the colimit is taken over all finite subsets J C I. It is easy to
see that X ~ li—n;lJCI X in 8hv(C). We will complete the proof by showing that f,f*X; is a colimit of the

diagram {f.f*X;}scr in the co-category P(€) (and therefore also in the full subcategory Shv(€) C P(C)).
In other words, we claim that for each object C' € €, the canonical map

is a homotopy equivalence. This is a special case of Lemma 3.21. O
Corollary 3.22. Let X be an co-topos. The following conditions are equivalent:
(1) The oco-topos X is locally coherent and hypercomplete.

(2) There exists a small co-category C which admits finite limits, a finitary Grothendieck topology on C,
and an equivalence X ~ Shv(C)".

Moreover, if these conditions are satisfied, then we may assume that C admits finite coproducts and that the
topology on C is subcanonical. If X is coherent, we may assume that C admits finite limits.

4 Deligne’s Completeness Theorem

A classical result of Deligne asserts that every coherent topos has enough points. Our goal in this section
is to prove an oo-categorical version of this result. We will follow the proof of Deligne’s theorem given in
[49], with minor modifications. We then give an application (Theorem 4.20) to the theory of hypercoverings,
which we will apply in §5.

Theorem 4.1 (co-Categorical Deligne Completeness Theorem). Let X be an oco-topos which is locally coher-
ent and hypercomplete. Then X has enough points. In other words, given a morphism o : X — 'Y in X which
is not an equivalence, there exists a geometric morphism f*: X — 8 such that f*(«) is not an equivalence.
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Note that Theorem 4.1 recovers the classical version of Deligne’s completeness theorem:
Corollary 4.2 (Deligne). Let X be a coherent topos. Then X has enough points.

Proof. Choose a realization of X as the category Shvge (C) of Set-valued sheaves on a small category € which
admits finite limits, equipped with a finitary Grothendieck topology. Let X be the co-topos Shv(N(C)), so
that (the nerve of) X can be identified with the full subcategory of X spanned by the discrete objects. Let
a : X — Y be a morphism in X which is not an isomorphism. Then « can be regarded as a morphism in
X" which is not an equivalence. According to Theorem 4.1, there exists a geometric morphism ?* X" 8
such that ?*(a) is not an equivalence in 8. Restricting to discrete objects, we get a geometric morphism
f*: X — 8et such that f*(«) is not an equivalence. O

We now turn to the proof of Theorem 4.1. We begin by reformulating the condition of having enough
points.

Proposition 4.3. Let X be an oco-topos, and suppose we are given a collection of geometric morphisms
{fr:X = Xu}. The following conditions are equivalent:

(1) A monomorphism u: X —Y in X is an equivalence if and only if each f*(u) is an equivalence in X, .

(2) A morphism v : X — Y in X is an effective epimorphism if and only if each fX(u) is an effective
epimorphism in X.

(3) For eachm >0, a morphism u: X — Y in X is n-connective if and only if each fX(u) is n-connective.
(4) A morphism u: X — 'Y in X is co-connective if and only if each f%(u) is co-connective.

Proof. We will prove that (1) = (2) = (3) = (4) = (1). Suppose first that (1) is satisfied, and let u: X — Y

be a morphism in X. Then u factors as a composition X < X’ % Y, where «’ is an effective epimorphism
and u” is a monomorphism. If each fX(u) is an effective epimorphism, then each fX(u) is an equivalence,
so that (1) implies that u” is an equivalence. It follows that u ~ «’ is an effective epimorphism as desired.

Now suppose that (2) is satisfied; we prove (3) using induction on n, the case n = —1 being vacuous.
Suppose that v : X — Y is a morphism in X such that each f*(u) is n-connective. Let v : X — X xy X
be the diagonal map; then each fX(v) is (n — 1)-connective. The inductive hypothesis guarantees that v is
(n — 1)-connective, and assumption (2) guarantees that u is an effective epimorphism. It follows that u is
n-connective as desired.

The implication (3) = (4) is obvious, and the implication (4) = (1) follows from the observation that a
monomorphism v : X — Y is an equivalence if and only if it is co-connective. O

Definition 4.4. We will say that a collection of geometric morphisms of co-topoi {f* : X — X} is jointly
surjective if it satisfies the equivalent conditions of Proposition 4.3. We will say that a geometric morphism
f*: X = Y is surjective if the one-element collection {f* : X — Y} is jointly surjective.

Example 4.5. Let X be an oo-topos, and let f* : X — X" be a left adjoint to the inclusion. Then f* is
surjective.

Example 4.6. Let X be an oo-topos containing an object U. Then the étale geometric morphism f* : X —
X,u is surjective if and only if the object U is 0-connective: that is, if and only if the map U — 1 is an
effective epimorphism, where 1 denotes a final object of X. If this condition is satisfied, then we will say
that f*: X — X,y is an étale surjection.

Remark 4.7. Let X be an arbitrary oo-topos. Since the oo-topos § is hypercomplete, composition with
the localization functor X — X" induces an equivalence between the co-category of points of X" and the
oo-category of points of X. Note that X is locally coherent if and only if X" is locally coherent (Proposition
3.16). Consequently, Theorem 4.1 can be reformulated as follows: if X is a coherent co-topos, then there
exists a jointly surjective collection of points {f* : X — 8}.
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We now construct an oo-categorical analogue of the Diaconescu cover (see [49]).

Proposition 4.8. Let C be an oco-category equipped with a Grothendieck topology. Then there exists a
surjective geometric morphism f* : 8hv(€) — X, where X is a 0-localic co-topos.

Proof. Let g : D — € be a functor between small co-categories. We will say that a sieve D

/D C D/p on an
object D € D is covering if the following condition is satisfied:

(*) For every morphism « : D’ — D in D, the collection of morphisms g(8) : g(D"”) — g(D’) such that
the composition (a0 ) : D” — D belongs to D(/OD) generates a covering sieve on g(D’) € C.
It is not difficult to see that this defines a Grothendieck topology on D. Let Le : P(€) — 8hv(€) and
Ly : P(D) — S8hv(D) be left adjoints to the inclusions, and consider the composition

7 2©) 2 (D) X3 Shv(D).

It is clear that ?* is a geometric morphism.
We now suppose that the functor g has the following property:

(a) For every object D € D and every morphism 3 : C'— g(D) in D, there exists a morphism B:C—D
in D such that g = g(p).

We claim that ?* carries Le-equivalences to equivalences in Shv(D). To prove this, it suffices to show that
if we are given a collection of morphisms «; : C; — C which generate a covering sieve on C' € C, then the
induced map ¢ : [[f j(Ci) = f j(C) is an effective epimorphism in Shv(D); here j : € — P(C) denotes the
Yoneda embedding (see Proposition T.6.2.3.20).

Let e : D — 8hv(D) be the composition of the Yoneda embedding D — P(D) with the sheafification
functor Lp. Then S8hv(D) is generated under colimits by the essential image of e. Consequently, to prove
that ¢ is an effective epimorphism, it suffices to show that for every morphism u : e(D) — 7 J(C), the
induced map

du: [1(F3(Ci) x5+ 0 €(D)) = e(D)
is an effective epimorphism in 8hv(D). Passing to a covering of D, we may reduce to the case where u is
induced by a morphism in P(D), corresponding to a map @ : g(D) — C in C. Let D(/(B denote the full

subcategory of D, spanned by those morphisms Dy — D such that the induced map g(Do) — g(D) KNY®!

belongs to the sieve generated by the collection of morphisms {«;}. It is clear that @5(2 is a sieve on D.

For every morphism Do — D in fD;%7 the induced map e(Dy) — e(D) factors through ¢,,. Consequently, to

show that ¢, is an effective epimorphism, it will suffice to show that D(/(g is a covering sieve on D: that is,

that it satisfies condition (*). Choose a morphism D’ — D in D. Since the collection of covering sieves in
€ forms a Grothendieck topology, there exists a collection of morphisms 3; : C; — g(D’) which generate a
covering sieve, each of which fits into a commutative diagram

e — g(0)

!

@
C; ——

Condition (a) guarantees that each 3; can be lifted to a morphism Bj : 6;- — D’ in D, which belongs to the

pullback of the sieve D%D). It follows that D(/OL), satisfies condition (%) and is therefore a covering sieve on D,

as required.
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Since Tk carries Le-equivalences to equivalences in Shv(D), it factors up to homotopy as a composition
Le f*
P(C) =5 8hv(€) = Shv(D)

where f* is a colimit-preserving functor which (since it is equivalent to ?*| 8hv(C)) preserves finite limits.
We now make the following additional assumption:

(b) The functor g is surjective on objects.

We claim that condition (b) implies that f* is surjective in the sense of Definition 4.4. We will show
that if v : X — Y is a morphism 8hv(X) such that f*(u) is an effective epimorphism in Shv(D), then w is
an effective epimorphism in 8hv(X). Choose an object C € € and a point n € Y(C), and let (3(/062 be the
full subcategory of €, spanned by those morphisms C" — C such that the image of 7 in meY (C’) can be
lifted to mo X (C"); we wish to prove that G;Og is covering. Assumption (b) implies we can write C = g(D) for
some object D € D. Then 7 determines a point 77 € (f*Y)(D). Let ZD;% C D,p be the sieve consisting of

morphisms D’ — D such that the image of 7 in m(f*Y)(D’) lifts to mo(f*X)(D), and let DﬁlD) C D,p be
the sieve consisting of morphisms 3 : D’ — D such that the image of n in moY (g(D")) lifts to mo X (g(D’)).

The functor g carries Dﬁll)) into G(/OC),. Consequently, to prove that G;OC)V is a covering sieve on C' € C, it suffices

(0)
/D
is covering. It therefore suffices to show that for each 8 : D’ — D in @5(2, the pullback £* D;g € D/pr
is a covering sieve on D’. Replacing D by D’ (and C by g(D’)), we may assume that 77 lifts to a point

7 € (f*X)(D). Note that f*X is the sheafification of the functor D % @ X 8. Tt follows that there exists a
covering sieve ZD;QD) on D such that for each morphism D’ — D in D the image of 7’ in (f*X)(D’) belongs
to the image of X (g(D’)). We clearly have a containment P? < pM 5o that DY

/D’
/D /D> /D
We now add the following additional assumption:

to show that D;ll)) is a covering sieve on D € D. Since f*(u) is an effective epimorphism, the sieve D

is also a covering sieve.

(¢) The oo-category D is the nerve of a partially ordered set.

In this case, the co-topos 8hv(D) is 0-localic so that the geometric morphism f* : Shv(€) — Shv (D) satisfies
the requirements of Proposition 4.8.

It remains to prove that there exists a functor g : D — € satisfying conditions (a), (b), and (c). For this,
we let A denote the partially ordered set of pairs (n,c), where n > 0 and o : A™ — C is an n-simplex of
C?. We write (n,0) < (n,0') if n < n’ and o0 = o/|AL0"}H A k-simplex of the nerve N(A) consists of a
sequence T :

(no,o0) < -+ < (ng, o%).

Let g(7) denote the k-simplex of €% given by the composition
Ak 2 A T4 eP,

where v is given on vertices by the formula (i) = n;. Then the construction 7 — ¢(7) determines a map of
simplicial sets g : N(A)°? — C. It is easy to see that this map satisfies conditions (a), (b), and (c). O

Lemma 4.9. Let X be a 0-localic co-topos. Assume that X is not a contractible Kan complex. Then there
exists a nontrivial complete Boolean algebra B and a geometric morphism f* : 8hv(X) — Shv(DB).

Proof. Let U be the underlying locale of X: that is, the partially ordered set of subobjects of the unit object
1x. Then U is a complete lattice: in particular, every set of elements {U, € U} has a greatest lower bound
AaUq and a least upper bound V,U,. In particular, U has a least element (which we will denote by () and
a greatest element (which we will denote by 1). For each element U € U, we let U’ denote the least upper
bound of the set {V e U: UAV =0}. Let B={U € U: U =U"}. We will prove:
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(a) The map U +— U" determines a retraction from U onto B, which commutes with finite meets and
infinite joins.

(b) As a partially ordered set, B is a complete Boolean algebra.

Assertion (a) implies that B is a left exact localization of U, and is therefore itself a locale; moreover, the
proof of Proposition T.6.4.5.7 gives a geometric morphism f* : X — Shv(B). We begin by proving (a). Note
that the construction U — U’ is order-reversing. It follows that U < V implies that U” < V. Moreover, we
have an evident inequality U < U"” which guarantees that U’ = U’. In particular, U’ € B for each U € U.
We next claim that the construction U + U” is a left adjoint to the inclusion B C U. In other words, we
claim that for V € U, we have U <V if and only if U” < V. The “if” direction is clear (since U < U"), and
the “only if” direction follows from the implications

U<V)= WV <U)Y=s U"<V)Y=U"<V),

since V = V. It follows immediately that U — U" is a retraction onto B which preserves infinite joins.

We now show that the construction U — U” preserves finite meets (note that, since the inclusion B < U
admits a left adjoint, B is closed under meets in U). The inequality U < U” shows that 1 = 1”. It therefore
suffices to show that U +— U” preserves pairwise meets. The construction U — U’ is an order-reversing
bijection from B to itself, and therefore carries finite joins in B to finite meets in B. It will therefore
suffice to show that the construction U > U’ carries pairwise meets in U to pairwise joins in B. In other
words, we must show that for U,V € U, the element (U A V)’ is a join of U’ and V' in B. It is clear that
U, V' < (UAV); it therefore suffices to show that if W = W” is any upper bound for U’ and V' in B,
then (U A V) <W = W”. In other words, we must show that (U A V)" A W’ = (: that is, if X € U is any
object such that X AW =0 and X A(UAV) =0, then X = 0. We have X AU < V' <W"” =W, so that
(X ANU) < X AW = . This shows that X < U’ < W, so that X = X AW = () as desired. This completes
the proof of (a).

The proof of (a) shows that B is a locale; in particular, it is a distributive lattice. To prove (b), it suffices
to show that B is complemented: that is, for every U € B there exists V € B such that U AV = ) and
U VYV = 1. For this, we take V = U’, so that the equation U AV = ) is obvious. To prove U VV =1, it
suffices to show that if U and U’ are bounded by an element W € B, then W = 1. In fact, the inequalities
U< W and U' < W guarantee that W/ < U’ AU"” =0, so that W =W" =/ = 1. O

Lemma 4.10. Let X be a 0-localic co-topos. Then there exists a surjective geometric morphism fr : X —
S8hv(B), where B is a complete Boolean algebra.

Proof. Let U be the locale of equivalence classes of (—1)-truncated objects of X. For every proper inclusion
U C V in U, there exists a nontrivial complete Boolean algebra By and a left exact, join-preserving map
fuyv : U — Byy. Let B be the product of the Boolean algebras By v, and let f : U — B be the product
functor; then f induces a geometric morphism f* : X — Shv(B). We claim that this geometric morphism is
surjective.

Let u : X — Y be a monomorphism in X such that f*(u) is an equivalence; we wish to prove that w is
an equivalence. For each V' € U, let xy € 8hv(U) be the sheaf given by the formula

A fWCV

0 otherwise.

xv(W) = {

The oco-category Shv(U) is generated under colimits by the objects xy . In particular, there exists an effective
epimorphism []_ xv, — Y. It therefore suffices to show that the induced map

(HXVQ) Xy X — HXVa
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is an equivalence. This map is a coproduct of morphisms
Uaq * XV, XY X — XV, -

To complete the proof, it suffices to show that each u, is an equivalence. We may therefore replace u by u,,
and thereby reduce to the case where Y has the form yy for some object V' € U.

Since u is a monomorphism, we can identify X with xy for some U C V. We wish to show that U = V.
Suppose otherwise, so that the geometric morphism 7, : X — S8hv(B) — 8hv(By,v) is well-defined. We
note that the image of xy in S8hv(By,y) is the initial object, while the image of xy in 8hv(By ) is the
final object. Consequently, f7;y (u) is an equivalence in Shv(By,y) between the initial and final objects,
contradicting the nontriviality of By y. O

Proposition 4.11. Let B be a complete Boolean algebra. Then the co-topos Shv(B) has homotopy dimension
< 0: that is, every 0-connective object X € 8hv(B) admits a global section.

Proof. Let X € 8hv(B) be a 0-connective object which does not admit a global section. For every ordinal
a, we let (a) denote the well-ordered set of ordinals {8 : 8 < a}. We will construct a compatible sequence
of functors ¢ : N(a) = X,x with the following property:

(*) The composite functor N(«) 9 /x — X takes values in the full subcategory of X spanned by the
(—1)-truncated objects, and determines a strictly increasing map [a] — B.

This leads to a contradiction for « sufficiently large (namely, for any ordinal a such that [a] has cardinality
greater than that of B).

The construction of the maps ¢, proceeds by induction on «. If « is a limit ordinal, we let ¢, be the
amalgamation of the functors {¢s}s<o. To complete the construction, it suffices to show that every map
$a : N(a) = X, x can be extended to a map ¢11 : N(a+1) — X, x satisfying (). The colimit of ¢, can be
identified with a map ¥ : U — X in X, where U is (—1)-truncated. Let us identify U with an element of the
Boolean algebra B, and ¢ with a point of the space X (U). Since X does not admit a global section, U is not
a maximal element of B. Because B is a Boolean algebra, the object U has a complement U’ € B, which is
not a minimal element of B. Since X € Shv(B) is 0-connective, the object U’ can be written as a join \/ U]
where each X (U/) is nonempty. For some index i, the element U/ € B is nontrivial. Since U/ AU = (), the
canonical map X (U/ VU) — X(U}) — X(U) is a homotopy equivalence; it follows that ¢ can be lifted (up
to homotopy) to a point of X (U! Vv U). This point gives an extension @do+1 0f ¢n, with ¢o1+1(c) given by a
map V — X where V is a (—1)-truncated object corresponding to the element U; V U. of B. O

Corollary 4.12. Let B be a complete Boolean algebra. Then the co-topos 8hv(B) is locally of homotopy
dimension < 0.

Proof. For each U € B, let xy € Shv(B) be the sheaf given by the formula

A ifV<U
V) = -
xu(V) {(Z) otherwise.

The objects xu generate Shv(B) under colimits. Consequently, it suffices to show that each of the co-topoi
8hv(B)/y, has homotopy dimension < 0. We complete the proof by observing that Shv(B),,, is equivalent
to Shv(By ), where By denotes the complete Boolean algebra {V € B : V < U}, and therefore has homotopy
dimension < 0 by Proposition 4.11. O

Corollary 4.13. Let B be a complete Boolean algebra. Then the oco-topos Shv(B) is hypercomplete.
Proof. Combine Corollary 4.12 with Corollary T.7.2.1.12. O
Corollary 4.14. Let X be an oo-topos. Then there exists a complete Boolean algebra B and a surjective

geometric morphism f* : X — Shv(DB)
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Proof. Using Proposition T.6.5.2.19, we deduce that there exists a small oco-category € equipped with a
Grothendieck topology such that X is a cotopological localization of Shv(€). Proposition 4.8 gives a surjective
geometric morphism g* : 8hv(€C) — Y, where Y is 0-localic. Lemma 4.10 guarantees a surjective geometric
morphism h* : Y — Shv(B), where 8hv(B) is a complete Boolean algebra. Since 8hv(B) is hypercomplete
(Corollary 4.13), the functor h* o g* carries co-connective morphisms in 8hv(€) to equivalences in Shv(B),
and therefore factors as a composition

Shv(€) — X L5 Shv(B)
for some surjective geometric morphism f*. O

Let B be a Boolean algebra. An wltrafilter on B is a homomorphism of Boolean algebras f : B — [1],
where [1] denotes the linearly ordered set {0 < 1} (that is, a map f : B — [1] which preserves finite meets
and finite joins). The collection of all ultrafilters on B is called the Stone space of B, and will be denoted
by St(B). We regard St(B) as a closed subspace of the product [1]Z. A basis for the topology of St(B) is
given by the collection of open sets U, = {f € St(B) : f(b) = 1}, where b € B. The construction b — U
determines an isomorphism of B with the collection of all open-closed subsets of St(B).

Let U(St(B)) denote the collection of all open subsets of the Stone space of a Boolean algebra B. If B is
complete, there is a canonical map ¢ : U(St(B)) — B, given by the formula ¢(U) = \/;, oy U. It is easy to
see that this map preserves finite meets and arbitrary joins, and can therefore be regarded as a morphism
of locales. In particular, we get a geometric morphism of co-topoi f* : Shv(St(B)) — Shv(B).

Lemma 4.15. Let B be a complete Boolean algebra, and let f* : Shv(St(B)) — Shv(B) be the morphism
constructed above. Then:

(1) The right adjoint f. to f* is fully faithful. In other words, the composition f*f. is equivalent to the
identity on 8hv(B).

(2) For every finite collection of objects {X;}1<i<n and effective epimorphism [[X; — Y in Shv(B), the
induced map [ f+Xs = fiY is an effective epimorphsim in Shv(St(B)).

Proof. The construction b — U}, determines an injective map of partially ordered sets ¢ : B — U(St(B)).
The functor f, : Shv(B) — S8hv(St(B)) is given by right Kan extension along the inclusion ¢, and is fully
faithful by Proposition T.4.3.2.15. This proves (1). To prove (2), we note that Shv(B) is generated under
colimits by objects of the form {xv}uepn, as in the proof of Corollary 4.12; consequently, we may suppose
that Y has the form xy. Each of the maps X; — Y factors as a composition

Xi % xu, = xvs

where u; is an effective epimorphism. Applying Proposition 4.11 (to the complete Boolean algebra {V € B :
V < U;}), we deduce that u; admits a section s;. We have a commutative diagram

[ f X

= \

Hf*XUi v faxu-

Consequently, to prove (2), it suffices to show that ¢ is an effective epimorphism. For this, it suffices to
observe that for each V' € B, the functor f, carries xy to the sheaf represented by the open set i(V') C St(B),
and the map V + (V') preserves finite joins. O

Lemma 4.16. Let C be a small co-category which admits finite limits, equipped with a finitary Grothendieck
topology. Let B be a complete Boolean algebra, and let g* : Shv(€) — Shv(B) be a geometric morphism.
Then g* is homotopic to a composition

Shv(€) 5 Shv(St(B)) L shv(B),
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where f* is the geometric morphism of Lemma 4.15.

Proof. For every oco-topos Y, the oo-category of geometric morphisms from Shv(€C) to Y can be identified
with the co-category of left-exact functors u : € — Y with the following property: for every every collection
of morphisms {C; — C} which generate a covering sieve on an object C € €, the induced map [[u(C;) —
u(C) is an effective epimorphism in Y (Proposition T.6.2.3.20). In particular, g* is classified by a functor
u: € — 8hv(B). Let f. denote a right adjoint to f*, and let v’ : € — 8hv(St(B)) be the composition f; o wu.
It follows from Lemma 4.15 that ' determines a geometric morphism A* : Shv(€) — S8hv(St(B)) such that
ffoh* ~g*. O

Lemma 4.17. Let C be a small co-category which admits finite limits, equipped with a finitary Grothendieck
topology. Then there exists a surjective geometric morphism h* : Shv(C) — 8hv(X), where X is a compact,
totally disconnected Hausdorff space.

Proof. Corollary 4.14 guarantees the existence of a surjective geometric morphism g¢* : Shv(€) — Shv(B),
where B is a complete Boolean algebra. Let X be the Stone space of B. Lemma 4.16 guarantees that g*
factors through a geometric morphism A* : X — S8hv(X), which is clearly surjective. O

Proof of Theorem 4.1. We may assume without loss of generality that the co-topos X is coherent and hy-
percomplete. Using Corollary 3.22, we can assume that X = S8hv(€)” for some small co-category € which
admits finite limits and is equipped with a finitary Grothendieck topology. Choose a surjective geometric
morphism A* : 8hv(€) — 8hv(X) as in Lemma 4.17. For each point € X let f* denote the composite map

Shv(C) ™ Shv(X) — Shv({z}) ~§.

It is easy to see that the collection of geometric morphisms {f},cx is jointly surjective, so that X ~ Shv(€)"
has enough points as desired (see Remark 4.7). O

We close this section with an application of Theorem 4.1 to the theory of hypercoverings. We begin by
reviewing some definitions.

Notation 4.18. Let A, denote the subcategory of A whose objects are finite linearly ordered sets of the form
[n] = {0,...,n}, and whose morphisms are injective monotone maps [m] — [n]. Let C be an oco-category.
A semisimplicial object of € is a functor X, : N(A4)°? — €. Assume that C admits finite limits. For each
n > 0, we let M,,(X) denote the nth matching object of X,: that is, M, (X) is the limit
lim X,
(—
fi[m]—[n]

where f ranges over all injective monotone maps [m]| — [n] such that m < n.

Definition 4.19. Let X be an co-topos. We will say that a semisimplicial object Xo of X is a hypercovering
if, for each n > 0, the canonical map X, — M, (X) is an effective epimorphism.

The following result generalizes Lemma T.6.5.3.11:

Theorem 4.20. Let X be an co-topos, and let Xo : N(Ag)°P — X be a hypercovering. Then the colimit of
X,o is an co-connective object of X.

We will give a proof of Theorem 4.20 which is substantially simpler than the proof given in [40]. The
idea is to use Deligne’s completeness theorem to reduce to the case where X = 8§, where the result admits
an elementary proof using the combinatorics of simplicial sets. We need some preliminaries.

Lemma 4.21. Let X, be a semisimplicial set. Suppose that, for each n > 0, the canonical map ¢, : X,, —
M, (X) is surjective. Then Xo is the restriction of a simplicial set.
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Proof. For each n > 0, let A=™ denote the full subcategory of A spanned by the objects {[m]}m<n, let
A be the subcategory of A spanned by all objects and all injective morphisms between them, and let
AS" = AS"NA,. We regard X, as a functor A% — Set. We will construct a compatible sequence of
functors Y (n) : (AS™)% — Set extending the functors X (m) = X,|(AS")°, using induction on n. In the
case n = 0, we take Y (0) = X (0). Assume now that Y (n) has been constructed. Let LY and MY denote
the (n + 1)st latching and matching objects determined by Y (n), respectively, so that we have a canonical
map f : LY — MY. Moreover, since Y (n)|(AS™)°P ~ X(n), we can identify MY with the matching
object M,,+1(X) (see the proof of Lemma T.6.5.3.8). According to Corollary T.A.2.9.15, giving an extension
Y(n+1) of Y(n) is equivalent to giving a commutative diagram

Yn+1
V X
f
LY MY.

To guarantee that Y (n + 1) extends X (n+ 1), we choose Y41 = Xp41 and f” = ¢, 41. The existence of f
now follows from our assumption that ¢, is surjective. O]

Lemma 4.22. Let X, be a semisimplicial set. Suppose that, for each n > 0, the canonical map ¢, : X, —
M, (X) is surjective. Then the colimit of the diagram

N(A,)? X2 N(Set) C 8

is contractible.

Proof. According to Lemma 4.21, we may assume without loss of generality that X, extends to a simplicial
set Yy : A? — Set. In view of Lemma T.6.5.3.7, it suffices to show that the composite diagram

N(A)?P 225 N(Set) — 8

has contractible colimit. Example T.A.2.9.31 shows that this colimit can be identified with Y, itself. We
conclude by observing that Y, is a contractible Kan complex. O

Lemma 4.23. Let X, be a semisimplicial object of 8. Suppose that, for each n > 0, the canonical map
m0 Xy — moM,, (X) is surjective. Then the colimit of the diagram

N(A,)® X 8
18 contractible.

Proof. Using Proposition T.4.2.4.4, we may assume without loss of generality that X, is obtained from a
semisimplicial object X, in the (ordinary) category of simplicial sets. Moreover, we may assume that X, is
fibrant and cofibrant with respect to the injective model structure on (Set)2:". It follows in particular that
each of the matching objects M,,(X) is a model for the space M, (X), and that the maps ¢, : X,, — M, (X)
are Kan fibrations of simplicial sets. We may identify X, with a diagram Y : A°? — Fun(A%, Set), which
determines in turn a diagram Y : N(A)°? — Fun(N(A)°?, 8). It follows from Example T.A.2.9.31 that X
is a colimit of the diagram of the diagram Y, so that lim(X) is the geometric realization of the simplicial
space [m] — %nY( [m]). Tt will therefore suffice to show that each of the spaces lim Y ([m]) is contractible.
We claim that each of the semisimplicial sets Y ([m]) satisfies the hypotheses of Lemma 4.22. In other words,
we claim that each of the maps ¢, : X, — M, (X) is surjective on m-simplices. This is clear, since ¢, is a
Kan fibration which is surjective on connected components. O
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Proof of Theorem 4.20. Let C be an oo-category freely generated by N(Ag)°P under finite limits. More
precisely, we choose a functor Y, : N(A;)% — €, where C admits finite limits, with the following universal
property: for any oo-category D which admits finite limits, composition with Y, induces an equivalence of
oco-categories Fun'® (@, D) — Fun(N(A,)°?, D), where Fun'* (€, D) denotes the full subcategory of Fun(€, D)
spanned by those functors which preserve finite limits. The existence of f follows from Remark T.5.3.5.9.
We can regard Y, as a semisimplicial object of C. Since C admits finite limits, the matching objects
M, (Y) are well-defined. Let us regard C as endowed with the coarsest Grothendieck topology such that, for
each n > 0, the single map {Y;, — M, (Y)} generates a covering sieve on M, (Y). It follows from Remark
3.18 that this Grothendieck topology is finitary, so that Shv(C) is a locally coherent co-topos (Proposition
3.19). Using Proposition T.6.2.3.20, we deduce the existence of a geometric morphism f* : Shv(€C) — X
such that X, is equivalent to f*Y,. Consequently, to prove that lim X, is an oo-connective object of X, it
suffices to show that lim Y, is an oo-connective object of Shv(€). According to Theorem 4.1, it suffices to
show that for every geometric morphism g* : Shv(€) — 8, the space g* (h_n} Y,) ~ hﬂ(g*Y.) is contractible.
This follows immediately from Lemma 4.23. O

5 Flat Descent

In this section, we will introduce the flat topology on the co-category of E..-rings. We will then show that for
every O-localic spectral scheme X, the functor represented by X is a sheaf with respect to the flat topology
(Theorem 5.15).

We begin by introducing a general construction of Grothendieck topologies.

Proposition 5.1. Let C be an co-category and let S be a collection of morphisms in C. Assume that:

(a) The collection of morphisms S is contains all equivalences and is stable under composition (in partic-
ular, if f,g: C — D are homotopic morphisms in C, then f € S if and only if g € S).

(b) The oo-category € admits pullbacks. Moreover, the class of morphisms S is stable under pullback: for
every pullback diagram

C¢'——C

\Lf’ lf

D'——=D
such that f € S, the morphism f' also belongs to S

(¢) The oco-category C admits finite coproducts. Moreover, the collection of morphisms S is stable under
finite coproducts: if f; : C; — D; is a finite collection of morphisms in C which belong to S, then the
induced map ], C; = [, D; also belongs to S.

(d) Finite coproducts in C are universal. That is, given a diagram [],,., Ci = D < D', the canonical
map [[,<;<,(Ci xp D') = (I11<;<, Ci) xp D" is an equivalence in C.

Then there exists a Grothendieck topology on C which can be described as follows: a sieve G;OCZ CC/c on

an object C € C is covering if and only if it contains a finite collection of morphisms {C; — Cli<i<n such
that the induced map [ C; — C belongs to S.

Proof. We show that the collection of covering sieves satisfies the conditions of Definition T.6.2.2.1:

(1) For every object C' € C, the sieve €/ covers C. This is clear, since €/¢ contains the identity map
ide : C — C, which belongs to S by (a).
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(2) It (35062 is a covering sieve on an object C € € and f : C' — C'is a morphism in €, then the pullback sieve

fr G(/OC) covers C’. To prove this, we observe that there exists a finite collection of morphisms C; — C
belonging to G(/OC), such that the induced map [ [, C; — C belongs to S. Assumption (b) guarantees that

the induced map ([, C;) x¢ C" — C” also belongs to S, and assumption (d) gives an identification
(11, Ci) xc C" >~ 11,(Ci x¢ C). It now suffices to observe that each of the morphisms C; x¢ €' — C’

belongs to the sieve f* G(/(g.

(3) Let 65061 be a covering sieve on an object C' € C, and let G% be an arbitrary sieve on C. Suppose

that, for each morphism f : C’ — C belonging to (‘3(/0617 the pullback sieve f* G;lc) covers C’. We must
show that 651(,)‘ covers C. Since C‘f(/(g is a covering sieve, there exists a finite collection of morphisms
fi : C; — C belonging to e% such that the induced map [], C; — C belongs to S. Each f} (35162 is
a covering sieve on C}, so there exists a finite collection of morphisms C; ; — C; belonging to f* C%
such that the induced map [] j C;; — C; belongs to S. It follows that each of the composite maps

C;; — Cy — C belongs to the sieve G% To prove that 652 is covering, it suffices to show that the
map g : ]_[m. C;,; — C belongs to S. To prove this, we factor g as a composition

[[c, &[S e
2,7 %

The map ¢g” belongs to S by assumption, and the map ¢’ is a finite coproduct of maps belonging to
S and therefore belongs to S by virtue of (¢). It follows from (a) that g ~ ¢” o ¢’ belongs to S, as
required.

O
We now illustrate Proposition 5.1 by means of an example.

Definition 5.2. Let f : A — B be a morphism of E-rings. We will say that f is faithfully flat if it satisfies
the following conditions:

() The underlying map of commutative rings mgpA — moB is faithfully flat, in the sense of classical
commutative algebra.

(#4) For every integer n, the map TOI"goA(ﬂ'()B, m;A) = m; B is an isomorphism.

Remark 5.3. Let f : A — B be a faithfully flat morphism of E.,-rings. A morphism M — N of A-modules
is an equivalence if and only if the induced map M ®4 B — N ®4 B is an equivalence. This follows
immediately from Corollary A.7.2.1.22.

Proposition 5.4. Let Aff denote the opposite of the co-category CAlg of Eo-rings; if A is an Es-1ing,
we denote the corresponding object of C by Spec A. Let S denote the collection of all morphisms in C which
correspond to faithfully flat maps of Eo-rings (Definition 5.2). Then S satisfies the hypotheses of Proposition
5.1, and therefore determines a Grothendieck topology on Aff.

Remark 5.5. We will refer to the Grothendieck topology of Proposition 5.4 as the flat topology on Aff.

Warning 5.6. The co-category Aff is not small. Consequently, though it makes sense to consider the oo-
category Shv(Aff) C Fun(CAlg, 8) of sheaves of spaces on Aff, it is not clear that Shv(Aff) is a localization
of Fun(CAlg, 8). In concrete terms, the trouble is that the process of sheafification with respect to the flat
topology may produce spaces which are not essentially small (since there does not exist any small, cofinal
collection of flat coverings of a given E,-ring). However, this issue will not concern us in this section.
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Proof of Proposition 5.4. We consider each condition of Proposition 5.1 in turn:

(a)

(d)

The collection of faithfully flat morphisms in CAlg contains all equivalences and is stable under compo-
sition. The first assertion is obvious. To prove the second, consider a pair of faithfully flat morphisms

Al B4 C; we wish to prove that g o f is faithfully flat. The underlying map mgA — mC is a
composition of faithfully flat morphisms of commutative rings, and therefore faithfully flat. The map
TorgoA(m)C, m;A) — m;C factors as a composition

Torjo* (moC, m; A) Torj*® (O, Torj** (mo B, m; A))
Tor?*? (7 C, m; B)

7TiC.

AR 1

The map « is an isomorphism because f is faithfully flat, and the map § is an isomorphism because g
is faithfully flat.

It is clear that the oo-category € admits pullbacks (the co-category CAlg of E..-rings is presentable and
therefore admits all small limits and colimits). It therefore suffices to show that if we are given a diagram

AL Al B, where f is faithfully flat, then the induced map A" — B ® 4 A’ is faithfully flat. Since
B is flat over A, Proposition A.7.2.2.13 guarantees that the canonical maps ~; : TorgoA(woB, mA) =
mi(B®a A’) is an isomorphism. Taking ¢ = 0, we deduce that mo(B ®4 A’) is a pushout of myB and
moA’ over mgA, and therefore faithfully flat over mgA’. Moreover, the canonical map Torg"A (mo(B ®a
AN, m A" — (B @4 A') factors as a composition

—1

Torp*? (mo(B @4 A'), mA) % TorfoA (Torfo* (meA’, moB), miA)

~ Tor]**(myB,mA")

% T (B ®A A/)

and is therefore an isomorphism.

It is clear that the category € admits pushouts, which are given by products of the corresponding
Eoo-rings. We must show that if we are given a finite collection of faithfully flat morphisms A; — B;
and set A = [[, A; and B = [], B;, then the induced map A — B is also faithfully flat. We have
moA = [[, mA; and moB ~ [[, moB;. Since a product of faithfully flat morphisms of commutative rings
is faithfully flat, we deduce that the map mgA — moB is faithfully flat. For higher homotopy groups,
we have

B

1

H(?TnBi)

i

~ HTOTS—OAi' (W(]Bi,ﬂ'nAZ')

TOI‘(I)_[i oA (H ’/ToBi, H ’/TnAl)

~ Torj**(mB, 7, A)

1R

as required.

Given a finite collection of morphisms A — A; and a morphism A — B in CAlg, we must show that
the canonical map

(H A;)®a B — H(Al ®4a B)
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is an equivalence of E,-rings. We will show that this map is an equivalence in the oco-category of
B-modules. For this, it suffices to observe that the functor F': Mod 4 — Modpg given by M — M ®4 B
preserves finite limits. The functor F' evidently preserves small colimits, and therefore also finite limits
because the oco-categories Mod 4 and Modp are stable (Proposition A.1.1.4.1).

O

We wish to study sheaves with respect to the flat topology on CAlg®. To this end, it is useful to have
the following characterization of sheaves:

Proposition 5.7. Let C be an oo-category and S a collection of morphisms in C. Assume that C and S
satisfy the conditions of Proposition 5.1, together with the following additional condition:

(e) Coproducts in the oco-category C are disjoint. That is, if C and C' are objects of C, then the fiber
product C X1 C is an initial object of € (see §T.6.1.1).

Let D be an arbitrary co-category and let F : € — D be a functor. Then F is a D-valued sheaf on C if and
only if the following conditions are satisfied:

(1) The functor F preserves finite products.

(2) Let f: Uy — X be a morphism in € which belongs to S and let U, be a Cechnerve of f (see §T.6.1.2),
regarded as an augmented simplicial object of C. Then the composite map

Na)ZBer Lo

is a limit diagram. In other words, F exhibits F(X) as a totalization of the cosimplicial object [n] —
F(U,).

Proof. For every object D € D, let hp : D — § be the functor corepresented by D. Using Proposition
T.5.1.3.2, we deduce that F is a sheaf D-valued sheaf on € if and only if each composite map hp o F is a
8-valued sheaf on €, and that F satisfies conditions (1) and (2) if and only if each hp o F satisfies the same
condition. We may therefore replace ¥ by hp o F and thereby reduce to the case where D = 8.

Suppose first that F is a sheaf; we will prove that F satisfies conditions (1) and (2). We begin with (1).
Let {C;}i<i<n be a finite collection of objects in € and let C' =[], C; be their coproduct. We wish to prove
that the canonical map F(C) — [], F(C;) is an equivalence. The proof proceeds by induction on n. If n =0,
then C' is an initial object of € so that the empty sieve is a covering of C'. Since JF is a sheaf, we deduce that
F(C) is a final object of §, as required. If n = 1, there is nothing to prove. If n > 2, we let D =[], ,_,, Ci,
so that C' = DII C),. The natural map F(C) — [[, F(C;) then factors as a composition of maps

F(C) = F(D) x F(Cn) = ( [[ F(C)) xF(Cn)~ [] F(Cn),

1<i<n 1<i<n

each of which is an equivalence by the inductive hypothesis. It remains to treat the case n = 2. Let G(/Oc)’ CCse

be the sieve generated by Cy and Cy. This sieve is evidently a covering of C, so that F(C') ~ lim & |(G§OCZ)OP.
To complete the proof, it suffices to show that the canonical map @?|(G§(g)°p — F(C1) x F(Cy) is an

equivalence. Let p: A3 — 6(/(2 be the map corresponding to the pullback diagram

01 Xc 024>C1

L

Cs c
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in €. Since Cy X¢ Cs is initial in €, the above argument shows that F(Cy x¢ Cs) is final in D: that is,
F|(AZ)°P is a right Kan extension of F|{1,2}°?, so that lim F |(A3)°P ~ F(C1) x F(Cs) by Lemma T.4.3.2.7.
To complete the proof of (1), we will show that p is let%coﬁnal. According to Theorem T.4.1.3.1, it will
suffice to show that for every object (f : D — C) € (‘35(27 the co-category S = A2 Xe(/(g (C(/()C),)f/ is weakly
contractible. If D € C is initial, then the projection map S — A2 is a trivial Kan fibration and the result
is obvious. If D is not initial, then condition (d) guarantees that there do not exist any maps from D to
an initial object of €. Using (e), we deduce that there do not exist any maps from D into Cy x¢ Cy. It
follows that f factors through either the map Cy — C or Cs — C, but not both. Without loss of generality,
we may assume that f factors through C; — C. In this case, we can identify S with the simplicial set
{C1} xe,. Cp; jc, which is the homotopy fiber of the composition map ¢ : Mape(D, C1) — Mape(D, C)
over f. We wish to show that this homotopy fiber is contractible. By assumption, it is nonempty; it will
therefore suffice to show that the morphism ¢ is (—1)-truncated. To prove this, we need only verify that
C7 — C is a monomorphism; that is, that the diagonal map C; — C; x¢ Cy is an equivalence. Using (d),
we obtain equivalences

C1~Cy x¢ C=Cyxc (Cr[[Ca) = (Cr xe C) JJ(Cr xc Ca),

and the first summand maps by an equivalence to C; x¢ C7. The second summand is trivial, by virtue of

().

We now prove (2). Let f : Uy — X be a morphism of S and let f be its Cechnerve, so that f generates
a covering sieve G;gz C €/x. We can regard U, as determining a simplicial object V : N(A)? — G%)(. Our
assumption that F is a sheaf guarantees that F(X) ~ ]&13"|(6(0) )°P. To prove (2), it suffices to prove that
the map V' is left cofinal. According to Theorem T.4.1.3.1, it suffices to show that for every map f: X' — X
belonging to el y X, the oco-category X = N(A)°P xc;o}g (G;g)() #, is weakly contractible. The projection map
X — N(A)P is a left fibration, classified by a functor x : N(A)°? — 8. According to Proposition T.3.3.4.5,
it will suffice to show that li I%m( X) is contractible. Note that x can be identified with the underlying simplicial
object of the Cechnerve of the map of spaces  : Mape/x (X', Uy) — A, Since f belongs to the sieve G/X,
the space Mape /X(X Uy) is nonempty so that ¢ is an effective epimorphism. Since 8 is an co-topos, we

conclude that hgl(x) ~ A as required.
Now suppose that F satisfies (1) and (2); we will show that F is a sheaf on €. Choose an object X € €

and a covering sieve (‘35}2, we wish to prove that F(X) ~ Hm F |(C’(O) )°P. We first treat the case where G'(X is

generated by a single morphism f : Uy — X which belongs to S. Let U, be a Cechnerve of f, so that F(X)
can be identified with the totalization of the cosimplicial space [n] — F(U,) by virtue of (2). To complete

the proof, we invoke the fact (established above) that U, determines a left cofinal map N(A)%P — (35%)(
Now suppose that G%z is generated by a finite collection of morphisms {C; — X }1<i<, such that the
induced map [[ C; — X belongs to S. Let C' =[], C; and let (‘3(1) denote the sieve generated by the induced
map C — X. Then (‘351 contains G(/ + and is therefore a covering sieve; the above argument shows that
F(X) ~ Jim fr"|((°,’(1) )°P. To complete the proof in this case, it will suffice to show that £T|(G( ))Op is a right
Kan extension of F \( ©) ).
Fix an object f : U — X of the sieve G/X7 and let € denote the full subcategory of (G/X)/U ~ €y
spanned by those objects whose image in C,x belongs to e J X. We wish to prove that the canonical map

FU) — im F | £°P is an equivalence. By construction, the map f factors through some map fo : U — C.
Invoking (b), we have U ~ U x¢ C ~ [[, U x¢ Cj, so that U can be obtained as a coproduct of objects U;

belonging to G%)(. Let T C {1,...,n} denote the collection of indices for which U; is not initial. We let
&' C €& denote the full subcategory spanned by morphisms U’ — U which factor through some U; and such
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that U’ € C is not initial. For ¢ # j, the fiber product U; xy U; is initial (by (e)) and therefore receives no
morphisms from non-initial objects of € (by (d)); it follows that & can be decomposed as a disjoint union
[Licr &! where each & denotes the full subcategory of & spanned by those morphisms U’ — U which factor
through U;. Since the map U; — U is a monomorphism, each &, contains the map U; — U as a final object,
so that the inclusion {U;}ier — &' is left cofinal. Condition (1) implies that F(U) ~ [].. F(U;), so that
F(U) is a limit of the diagram F |(€")°P. We will prove that F| € is a right Kan extension of J|(€')°P, so
that ]glfﬂ &% ~ ]'glff"\(&')"p ~ F(U) by Lemma T.4.3.2.7. To see this, choose an object U" — U in &;
we wish to show that F(U’) is a limit of the diagram ?\(El/U,)"p. Let U] = U’ xy U;, and let T” be the
collection of indices 4 for which U is not initial. Then 8//U, decomposes as a disjoint union HieT'(gl/U')iv
each of which has a final object (given by the map U/ — U’). It follows that Jim F |(8//U,)°p is equivalent to
[Licr F(U;), which is equivalent to F(U’) by virtue of (1).

We now treat the case of a general covering sieve G(/gz C C/x. By definition, there exists a finite collection

of morphisms f; : C; — X belonging to G(/g)( such that the induced map [], C; — X belongs to S. Let

651)2 - G;gz be the sieve generated by the maps f;. The above argument shows that F(X) ~ @5|(6}§)°P.
0)

To prove that F(X) ~ yin((‘f(o))/x)ol’7 it will suffice to show that 3"|(€§X)Op is a right Kan extension of
F |(G§1))()°p (Lemma T.4.3.2.7). Unwinding the definitions, we must show that for every f : U — X belonging

to the sieve 6%)(, we have F(U) ~ Lin[ﬂ(f* (?%)() This is clear, since f* G(/l)z is generated by the pullback

maps C; xx U — U, and the induced map [],(C; xx U) — U factors as a composition

[T xx )% (o) xxU B v,

K3
where « is an equivalence by assumption (d) and the map S belongs to S by assumption (b). O

Example 5.8. Let Aff = CAlg® and let S be the collection of faithfully flat morphisms in Aff. Then
(Aff, S) satisfies the hypotheses of Proposition 5.7. To prove (e), we must show that if A and B are Eq.-
rings, then the fiber product A X axp B is trivial. To prove this, we observe that the identity element of
mo(A x B) ~ mgA X moB can be written as a sum e + ¢/, where e = (1,0) and €’ = (0,1). The image of e is
trivial in moB, and the image of €’ is trivial in mgA. It follows that e and e’ both have trivial image in the
commutative ring R = mp(A Xaxp B), so that 1 = 0 in R. Since every homotopy group of A X 4xp B is a
module over R, each of these groups is trivial.

Here is a more classical example of a sheaf with respect to the flat topology:

Proposition 5.9. For every Eo-ring A, let Spec? A be the Zariski spectrum of the commutative ring moA,
and let U(A) be the collection set of open subsets of Spec” A. Then U determines a functor U : CAlg — N(Set)
satisfying the hypotheses of Proposition 5.7 (with respect to the flat topology), and can therefore be regarded
as a sheaf (of sets) on Aff = CAlg®P.

Remark 5.10. The sheaf U : CAlg — N(Set) of Proposition 5.9 can be regarded as a discrete object in the
oo-category of 8-valued sheaves on CAlg®?. As such, it is automatically hypercomplete.

Proof of Proposition 5.9. To verify (1), we must show that for every finite collection of E.-rings A;, the
map U(]], A;) — ], U(A;) is bijective. This follows from the observation that there is a canonical homeo-
morphism Spec?(T], 4;) =~ [, Spec” A;.

We now prove (2). Let f: A — B be a faithfully flat morphism of E-rings; we wish to prove that

U(A) — U(B) —=U(B ®4 B)

is an equalizer diagram in the category of sets. We can divide this assertion into two parts:
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(a) The map U(A) — U(B) is injective. To prove this, we must show that an open subset U C Spec” A
is determined by its inverse image in Spec? B. This is clear, since the assumption that A — B is
faithfully flat guarantees that ¢ : Spec” B — Spec? A is a surjection.

(b) Let ¢, o1 : SpecZ(B ®a B) = Spec? B be the two projection maps. We claim that if Z C Spec? B is
a closed subset with ¢51Z = (bl_lZ, then Z = ¢~V for some closed subset V C Spec? A. Choose an
ideal I C moB such that Z = {p CmoB: I Cp},andlet J = f~11 CmoA. Set V ={qCmAd:JCq}.
Then ¢~V = {p C moB : f(J)moB C p}. To prove that ¢~V = Z, it suffices to show that f(J)moB
and I have the same nilradical. Let R denote the commutative ring m9A/J and R’ the commutative
ring moB/JmoB, and let I’ denote the image of I in R’. Then R — R’ is faithfully flat and the
composite map R — R’ — R’/I’ is injective; we wish to prove that I’ is a radical ideal. In other words,
we wish to show that every element x € I’ is nilpotent. Since ¢, lz = qSl_lZ , we deduce that the ideals
I'®r R and R’ @ I’ have the same radical in R’ ® g R'. Consequently, since x ® 1 belongs to I' @ R’,
some power z" ® 1 belongs to R’ @ I’. It follows that the image of 2™ is trivial in R’ ®g R’/I’. Since
R’ is flat over R, the injection R — R’/I’ induces an injection " — R'®pr R'/I’; it follows that 2™ = 0
in R, as desired.

O

There is an analogue of Proposition 5.7 which describes the class of hypercomplete sheaves on an oo-
category C. To state it, we first need to introduce a variation on Definition 4.19.

Definition 5.11. Let A, be the subcategory of A, whose morphisms are injective maps of linearly
ordered sets [m] — [n]. If € is an co-category, we will refer to a functor X, : N(A,; 1)°? — C as an
augmented semisimplicial object of C. If C admits finite limits, then for each n > 0 we can associate to X,
an nth matching object M, (X) = I'&n[m]_)[n] X, where the limit is taken over all injective maps [m] — [n]
such that m < n.

Let S be a collection of morphisms in €. We will say that an augmented semisimplicial object X, :
N(A; +)°? — € is an S-hypercovering if, for each n > 0, the canonical map X,, — M, (X)) belongs to S.

Proposition 5.12. Let C be an oo-category and S a collection of morphisms in C. Assume that C and S
satisfy the conditions of Proposition 5.1 and condition (€) of Proposition 5.7. Let D be an arbitrary oco-
category and F : € — D a functor. Then F is a hypercomplete D-valued sheaf on C if and only if the
following conditions are satisfied:

(1) The functor F preserves finite products.

(2) Let Xo : N(A;, 1) — C be an S-hypercovering. Then the composite map
N(A, ) Xy er L

is a limit diagram.

Proof. As in the proof of Proposition 5.7, we may assume without loss of generality that D = 8. We first
prove the “only if” direction. Assume that F is a hypercomplete sheaf. Condition (1) follows from Proposition
5.7. To prove (2), let F: € — S8hv(€) denote the composition of the Yoneda embedding € — P(C) with the
sheafification functor P(€) — 8hv(€), and let L : Shv(€) — 8hv(C)" be a left adjoint to the inclusion. It will
suffice to show that L o F o X, is a colimit diagram in Shv(€)": in other words, that X, exhibits F(X_1) as
a colimit of the diagram {FX,,},>0. This follows immediately from Theorem 4.20, applied in the co-topos
ShV(e)/FX71 .

Now suppose that (1) and (2) are satisfied. Proposition 5.7 guarantees that F is a sheaf on C; we wish
to prove that C is hypercomplete. Choose an oo-connective morphism « : F — G in 8hv(C), where § is
hypercomplete (and therefore satisfies conditions (1) and (2)). We wish to show that « is an equivalence.
To prove this, it will suffice to verify the following:

48



(*) Let @ : F — G be an co-connective morphism in 8hv(C), where F and G both satisfy (2). Then « is an
equivalence.

To prove (*), we will show that for every object C' € € and each n > 0, the map of spaces a¢ : F(C) — §(C)
is n-connective. The proof proceeds by induction on n. If n > 0, then the inductive hypothesis guarantees
that ac is O-connective; it therefore suffices to show that the diagonal map F(C) — F(C) xg(c) F(C) is
(n — 1)-connective, which also follows from the inductive hypothesis. It therefore suffices to treat the case
n = 0: that is, we must show that the map F(C) — G(C) is surjective on connected components. Replacing
€ by €/¢, we may assume that C' is a final object of C, so that a point n € §(C') determines a map 1 — G,
where 1 denotes the final object of Shv(€). Replacing F by F xg1, we are reduced to proving the following:

(*) Let F be an oo-connective object of Shv(€) satisfying condition (2), and let C' € € be a final object.
Then F(C') is nonempty.

To prove ('), let € — € be the right fibration classified by the functor F : €7 — 8. We wish to show that
e xe {C} is nonempty. We will construct an S-hypercovering Xo : N(A; 1) — € with X_; = C together
with a lifting Ys : N(A4)% — € of X,|N(A,)°P. Condition (2) and Corollary T.3.3.3.3 guarantee that Y,
extends (in an essentially unique fashion) to a map Y, : N(A )P — € lifting X., so that Y _; is the
required point of € x¢ {C}.

The construction of X, and Y, proceeds in stages: we define X5 : N(ASS,T)OP — € and Y&
N(AS™)°P — € by induction on m, the case m = —1 being trivial. Assuming that X=™ ! has been defined,
we can define the matching object M, (X) € C. The lifting Y="""" determines a map § A™ — F(M,,(X)).
Since J is co-connective, there exists a collection of morphisms {D; — M, (X)} which generate a covering
sieve, such that each composite map 0 A™ — F(M, (X)) — F(D;) is nullhomotopic. Without loss of
generality, we may assume that the set of indices D; is finite, and that the map [[ D; — M,,(X) belongs to
S. Let D = [[ D;. Using condition (1), we see that the composite map v : 0 A™ — F(M,, (X)) — F(D) is
nullhomotopic. We can now define the extension X+ by setting X,, = D, and the extension Y= using
the nullhomotopy 7. O

Lemma 5.13. Let R* : N(A; 1) — CAlg be a flat hypercovering. Then R® is a limit diagram in CAlg.
Proof. This is an immediate consequence of Corollary 6.14, which will be proven in §6. O

Theorem 5.14. The identity functor CAlg — CAlg is a hypercomplete CAlg-valued sheaf on CAlg® (with
respect to the flat topology).

Proof. Combine Proposition 5.12 with Lemma 5.13. O

We next show that if (X, Oy) is a 0-localic spectral scheme, then the functor that it represents is a
(hypercomplete) sheaf with respect to the flat topology on the category Aff = CAlg®”. This is a special case
of the following more general result:

Theorem 5.15. Let X be a 0-localic co-topos and let O be a local sheaf of Eo-rings on X. Let Spec :
CAlg’” — RingTopy,, denote the spectrum functor associated to the geometry Slzlif, and let X : CAlg — §
be the functor represented by (X, Ox), given by Mapg;,grop, (Spec R, (X, 0x)). Then X is a hypercomplete
sheaf with respect to the flat topology on Aff = CAlg®?.

Let RingTop%a?r denote the full subcategory of RingTop,,, spanned by those pairs (X, Ox) where X is
0-localic. Theorem 5.15 is an immediate consequence of Proposition 5.12 together with the following result:

Proposition 5.16. Let Spec : CAlg®” — RingTopy,, be the spectrum functor associated to the geometry
GUSP - Then:

Zar *

(1) For every Ex-ring R, the underlying co-topos of Spec R is 0-localic. Consequently, Spec can be viewed
as a functor from CAlg® into the full subcategory RingTop%a?r C RingTopy,,-
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(2) The functor Spec : CAlg®” — RingTopy,, preserves finite coproducts.

(3) Let R® : N(A, 4+)°? — CAlg be a flat hypercovering. Then Spec R® : N(A, 1) — RingTopi?r is a
colimit diagram.

To prove Proposition 5.16, we need a criterion for verifying the descent properties of a Cat,.-valued
functor.

Lemma 5.17. Let € be an oo-category and x : ¥ — Cato, a functor, classified by a coCartesian fibration
q:D — C°. Then x is a limit diagram if and only if the following conditions are satisfied:

(a) Let v denote the cone point of C%, and for each object C € C let ec : D, — D¢ be the functor induced
by the unique morphism fc :v — C in C°. Then the functors ec are jointly conservative: that is, if
is a morphism in D, such that each ec () is an equivalence in D¢, then a is an equivalence in D,,.

(b) Let X € Fune«(C, D) be a functor which carries each morphism in C to a q-coCartesian morphism in
D. Then X can be extended to a g-limit diagram X € Fune<(C*, D). Moreover, X carries each fc to
a q-coCartesian morphism in D.

Moreover, if these conditions are satisfied, then a diagram X € Fune<(CY,D) is a q-limit diagram, provided
that it carries each morphism in C° to a g-coCartesian morphism in D.

Proof. Let € denote the full subcategory of Fune«(C, D) spanned by those functors which carry each mor-
phism in € to a g-coCartesian morphism in D, let € be the full subcategory of Fune«(C*, D) spanned by
those functors which carry each morphism in €9 to a g-coCartesian morphism in D, and let & be the full
subcategory of Fune« (€, D) spanned by those functors X which are ¢-limit diagrams having the property
that X| € belongs to €. Using Proposition T.3.3.3.1, we see that x is a limit diagram if and only if the
restriction functor r : € — € is an equivalence of co-categories. Suppose first that this condition is satisfied.
Assertion (a) is then obvious (it is equivalent to the requirement that the functor r is conservative). We will
show that the last assertion is satisfied: that is, we have an inclusion & C €. It follows that every X € &
can be extended to a ¢-limit diagram, so that (by Proposition T.4.3.2.15) the restriction functor g seis
a trivial Kan fibration. A two-out-of-three argument then shows that the inclusion & C € is an equivalence
of co-categories, so that & = €', This proves (d).

To prove that & C gl, consider an arbitrary diagram X € € and let X = X| C. To show that X is a g-limit
diagram, it suffices to show that for every object D € D,, the canonical map ¢ : {D} xp Dx— {D}xpD,x
is a homotopy equivalence of Kan complexes. Choose a diagram Y € & with Y (v) = D (such a diagram
exists and is essentially unique, by virtue of Proposition T.4.3.2.15), and let Y = Y| C. Then ¢ is equivalent
to the restriction map

Mapz(Y, X) — Mapg (Y, X),
which is a homotopy equivalence by virtue of our assumption that the functor r is fully faithful.

Now suppose that conditions (a) and (b) are satisfied; we wish to prove that r is an equivalence of co-
categories. Condition (b) guarantees that g C € and, by virtue of Proposition T.4.3.2.15, that r|gl is a
trivial Kan fibration. To complete the proof, it suffices to show that the reverse inclusion & C € holds. Fix
X €&, let X = X|C, and let X €€ bea g-limit of the diagram X. We have a canonical map a : X — X
which induces the identity map idx : X — X in €. To complete the proof, it suffices to show that « is an
equivalence; that is, that the map «, : X (v) — Y/(v) is an equivalence in the oco-category D,. This is an
immediate consequence of assumption (a). O]

We conclude this section with the proof of Proposition 5.16.

Proof of Proposition 5.16. Assertion (1) follows from the observation that for every Eo-ring R, the under-

lying co-topos of Spec R can be identified with Shv(Spec? R) (Remark 2.38). Let R‘J'opgo denote the oo-
category whose objects are 0-localic oo-topoi, and whose morphisms are geometric morphisms f, : X — Y.
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Let RingTop=C denote the full subcategory of RingTop spanned by those pairs (X, Ox) where X is 0-localic.
Consider the functors ) <0
RingTop%a?r EN RingTop=’ N Ryop~ .

Here j is the inclusion of a subcategory.
In view of Proposition T.4.3.1.5, assertion (2) will follow from the following three claims:

(2') The functor g o j o Spec : CAlg”? — R‘.Topgo preserves finite coproducts.
(2"") The functor j o Spec : CAlg®” — RingTop=" carries finite coproducts to g-coproducts.
(2"") The functor Spec : CAlg®? — RingTop%fr carries finite coproducts to j-coproducts.

To prove these claims, let {R;}1<i<n be a finite collection of E.-rings having product R. Let X, =
Spec” R; and let X = Spec” R, so that we have identifications Spec R; = (Shv(X;),©;) and Spec R =
(8hv(X),0). For each index i, let ¢; : X; — X denote the map induced by the projection R — R;.
Assertion (2') follows from the observation that the maps ¢; induce a homeomorphism [[X; — X. In
view of Proposition T.4.3.1.9, assertion (2”) is equivalent to the requirement that the canonical map O —
[L;(#i)« O; is an equivalence of sheaves of E-rings on X. Note that X has a basis of open sets of the form
Ur={p CmoR: f ¢p}, where f = (f1,..., fn) ranges over the elements of 7R ~ myR1 X - - - X moR,,. Since
this basis is stable under finite intersections, it suffices to observe that the canonical map

| =

K3

RlZ] =~ 0(Uy) = ([J(¢0). 0)(U) = [[0:(Uf xx Xi) = HRi[%]

is an equivalence of E..-rings.

Unwinding the definitions, we can formulate assertion (2'’) as follows: a morphism « : (X, 0) — (Y, Oy)
in RingTop=" belongs to RingTop%)r if and only if, for 1 < ¢ < n, the induced map «; : (X;,0;) — (Y, Oy)
belongs to RingTop%Sr. This follows immediately from Corollary 2.25, since a map of sheaves of local
commutative rings on X is local if and only if it is local when restricted to each X;.

We now prove (3). Let R®* : N(A, ) — CAlg be a flat hypercovering. Reasoning as above, we are
reduced to proving the following three assertions:

The same reasoning reduces us to the following trio of assertions:

(3") The composition g o j o SpecoR® is a colimit diagram in the co-category R‘J’opgo.
(3"") The composition j o SpecoR® is a g-colimit diagram in the co-category RingTop='.
(3"") The composition SpecoR® is a j-colimit diagram in the co-category RingTop%fr.

In view of (2') and Proposition 5.12, assertion (3") will follow if we know that that g o j o Spec : CAlg —

LrJ'opSO is a hypercomplete sheaf with respect to the flat topology. Since the co-category LTopSO is equivalent
to the nerve of an ordinary category, we need only show that g o j o Spec is a sheaf with respect to the flat
topology, which follows from Proposition 5.9 (it is here that we use in an essential way the fact that we
consider only 0-localic co-topoi).

We now prove (3”). Let X = Spec” R™!, so that Spec R~ can be identified with a pair (Shv(X),).
For every nonnegative integer n let X,, = Spec? R", so we have an equivalence Spec R" = (8hv(X,), 0n); let
F" denote the pushforward of O,, along the evident map X,, — X. The construction [n] — F" determines
a cosemisimplicial object in the co-category of sheaves of E.-rings on X. In view of Proposition T.4.3.1.9,
condition (3") is equivalent to the requirement that the canonical map « : O — limJF" is an equivalence.
We again note that X has a basis of open sets of the form Uy = {p C moR™! : f ¢ p}. Since this collection
is stable under finite intersection, to prove that « is an equivalence it suffices to show that « induces an
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equivalence of Ee-rings O(Uy) — lim 5" (Uy), for each f € mR™*. Replacing R~ by R™'[%], we can reduce
to the case where Uy = X. In this case, we need to show that the map
-1 . ) . . n
R~ 0(X) = lim " (X) ~ lim O, (X;,) ~ lim R
is an equivalence of E,-rings, which follows from Theorem 5.14.

It remains to prove (3"’). Unwinding the definitions, we must show that if (Y,Oy) is an object of
RingTop=’, then a map « : Spec R~! — (Y,0y) in RingTop=’ belongs to RingTop%fr if and only if the
induced map 3 : (Y,0y) — Spec R° belongs to RingTop%a?r. Let f* : Y — Shv(X) be the underlying
geometric morphism and let O’ = f* Qy. In view of Corollary 2.25, we are reduced to proving the following:
a map between sheaves of local rings my O" — 79 O on X is local if and only if the composite map ¢jmo O —
P5m0 O — mr Qg is a local map (between sheaves of local rings on Xg). This follows immediately from
the observation that the map ¢¢ : Xog — X is surjective (since the underlying map of commutative rings
moR™Y — moR is assumed to be faithfully flat). O

6 Flat Descent for Modules

Let f: A — B be a faithfully flat map of commutative rings. A classical theorem of Grothendieck asserts
that the category of A-modules is equivalent to the category € whose objects are pairs (M, n), where M is a
B-module and 7 is a “descent datum” for M: that is, an automorphism of B ® 4 M which is compatible with
the evident involution on B® 4 B and satisfies a suitable cocycle condition. More abstractly, Grothendieck’s
theorem asserts that the category of pairs (A, M), where A is a commutative ring and M a (discrete) A-
module, is a stack with respect to the flat topology on the category of commutative rings. Our goal in this
section is to prove the following co-categorical analogue of Grothendieck’s result:

Theorem 6.1. The construction A — Moda(Sp) determines a functor CAlg — @oo which is a hypercom-
plete sheaf with respect to the flat topology on CAlg®? (see §5).

For later use, it will be convenient to prove a somewhat more general form of this result. Let us restrict
our attention to the oco-category CAlgp of E-algebras over R, where R is some fixed E,-ring. Rather
than than assigning to each object A € CAlgy the co-category Mod4 = Mod 4(Sp) of A-module spectra, we
can assign to A the oco-category Mod 4(€) where C is an arbitrary R-linear oo-category (see Definition 6.2).
Under some mild assumptions on €, we will show that the construction A — Mod 4(C) satisfies descent with
respect to the flat topology (Theorem 6.27). We begin by introducing some definitions.

Definition 6.2. Let R be an Es-ring, so that the co-category LModg of left A-modules is equipped with
a monoidal structure. An R-linear co-category is a presentable co-category € which is tensored over the
monoidal co-category LModpg of left R-modules, such that the tensor product ® : LModgr ® € — C preserves
small colimits separately in each variable.

Let Pr™ denote the co-category of presentable co-categories and colimit-preserving functors, endowed with
the symmetric monoidal structure described in §A.6.3.1. Then LModpg can be identified with an associative
algebra object of Pr*. We let LinCatp = LModLMOdR(fPrL). We will refer to LinCatg as the co-category of
R-linear co-categories.

Example 6.3. Let S denote the sphere spectrum, regarded as an initial object of the co-category Alg(2)
of Eo-rings. Then the forgetful functor LMods = LModg(Sp) — Sp is an equivalence of oo-categories. It
follows that LinCatg can be identified with the oo-category LModg,(Pr"). Using Example A.6.3.1.22, we
can identify LinCatg with the full subcategory of Pr* spanned by the presentable stable co-categories.

Remark 6.4. If R is a discrete commutative ring, then our theory of R-linear co-categories is closely related
to the theory of differential graded categories over R.
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Remark 6.5. Let f : R" — R be a map of Eo-rings. Then f induces a monoidal functor LModg: — LModg.
We may therefore view any R-linear oo-category as an R’-linear oco-category. In particular, every R-linear
oo-category C can be regarded as an S-linear co-category, and is therefore stable (Example 6.3).

Remark 6.6. Let R be an Ey-ring, and let € and €’ be R-linear co-categories. We will refer to the morphisms
from € to € in LinCaty as R-linear functors from C to €. Every R-linear functor from € to € determines
a colimit-preserving functor between the underlying (presentable) co-categories of € and €', which therefore
admits a right adjoint G' (Corollary T.5.5.2.9). For every R-module M and every object C’ € €, the counit
map (F o G)(C") — C’ induces a map

FIM®GIC) - M@ ((FoG)(C')— Ml

which is adjoint to a morphism 6y, : M ® G(C’') - G(M ® C") in €. The left R-modules M for which 6,
is an equivalence span a stable subcategory X C LModpg which contains R. If G commutes with filtered
colimits, then X is closed under filtered colimits and therefore coincides with LModg: that is, 8, is an
equivalence for every left R-module M (and every object C’ € €). It then follows from Remark A.7.3.2.9
that we can regard G’ as an R-linear functor from €’ to C.

In this paper, we will confine our attention to the study of linear co-categories over E-rings. If R € CAlg
is an E..-ring, we will generally abuse notation by identifying R with its image in the co-category Alg(z) of
Eo-rings, and we let LinCatgr denote the oco-category of linear co-categories over the underlying Eo-ring of
R.

Remark 6.7. Let CAlg denote the co-category of E,.-rings. In §5, we introduced the flat topology on the
oo-category CAlg®. If A is an E.-ring, then a sieve on A is covering with respect to the flat topology if
and only if it contains a finite collection of maps {¢, : A — A,} which induces a faithfully flat morphism
A—=T], Aa.

For every E,.-ring R, the flat topology on CAlg®® determines a Grothendieck topology on the oco-category
CAlg} of Eo-algebras over R. If R is connective, we also obtain a Grothendieck topology on the co-category
(CAlg®')°P of connective Eo-algebras over R. We will refer to both of these topologies as the flat topology.

Definition 6.8. Fix an E,,-ring R and an R-linear oo-category €. We let Mod(€) denote the fiber product
LMod(€) X alg(Mod4) CAlg(Modr) whose objects are pairs (A’, M), where A" € CAlg(Mod4) ~ CAlg, is an
Eoo-algebra over A and M is a left A’-module object of €. We will denote the fiber of Mod(€) over an object
A € CAlgp by Mod4(C).

The coCartesian fibration ¢ : Mod(C) — CAlg(Mody) is classified by a functor y : CAlg, — @00. We
will say that C satisfies flat descent if the functor y is a sheaf with respect to the flat topology on CAlg®’.
We will say that C satisfies flat hyperdescent if C is a hypercomplete sheaf with respect to the flat topology.

We now study some examples of linear co-categories which satisfy flat descent.

Definition 6.9. Let C be a stable co-category. We will say that a t-structure on € is excellent if the following
conditions are satisfied:

(1) The oco-category C is presentable.

(2) The t-structure on € is compatible with filtered colimits: that is, the full subcategory €< C € is closed
under filtered colimits (in particular, the t-structure on € is accessible: see Proposition A.1.4.5.13).

(3) The t-structure on € is both right and left complete.

Example 6.10. If A is a connective E,-ring, then the usual t-structure on Mod 4 is excellent. In particular,
the usual t-structure on the oo-category Sp of spectra is excellent.

Remark 6.11. Let {C(i)} be a finite collection of presentable stable co-categories, having product € =
L, €(i). Giving a t-structure (€>o,C<p) on € is equivalent to giving a t-structure (C(i)>0, C(i)<o) on each
C(4). Moreover, the t-structure (C>0,C<p) is excellent if and only if each (C(¢)>0,C(7)<o) is excellent.
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Theorem 6.1 is an immediate consequence of Example 6.10 and the following result, which we will prove
at the end of this section:

Theorem 6.12. Let A be a connective Eq,-ring and let C be an A-linear oco-category. If C admits an excellent
t-structure, then C satisfies flat hyperdescent.

Corollary 6.13. Let A be an E.-ring. Then the A-linear co-category Mod 4 satisfies flat hyperdescent.

Proof. Without loss of generality, we may assume that A is the sphere spectrum. In particular, A is connec-
tive; the desired result now follows from Example 6.10 and Theorem 6.12. O

Before stating the next consequence of Theorem 6.12, let us introduce a bit of terminology. Let R® be an
augmented cosemisimplicial object of CAlg. We will say that R® is a flat hypercovering if it determines an S-
hypercovering in the oo-category CAlg®” in the sense of Definition 2.5, where S is the collection of faithfully
flat morphisms in CAlg. In other words, R® is a flat hypercovering if each of the maps L,(R*) — R"
is faithfully flat, where L, (R®) denotes the nth latching object of R®*. We will say that an augmented
cosemisimplicial commutative ring R® is a flat hypercovering if it determines a flat hypercovering when
regarded as an augmented cosemisimplicial object of CAlg.

Corollary 6.14. Let R® : N(A; ) — CAlg be a flat hypercovering of an Eoo-ring R = R, let M be an
R-module spectrum, and let M*® be the cosemisimplicial (R*|N(Ayg))-module spectrum given informally by
the formula M™ = M ®g R™. Then the canonical map M — @M' is an equivalence.

Proof. Combine Proposition 5.12, Lemma 5.17, and Corollary 6.13. O

As a first step towards a proof of Theorem 6.27, we observe that it suffices to restrict our attention to
the study of modules over connective E-rings.

Lemma 6.15. Let C be a symmetric monoidal oo-category, let M be an oco-category left-tensored over C,
and suppose we are given a pushout diagram of commutative algebra objects of € :

A<——B

]

A<~— DB
Then the diagram of co-categories

LMOdA(M) —— LModp (M)

| |

LMod 4/ (M) — LModp- (M)

is right adjointable.
Proof. This follows immediately from Proposition A.4.3.7.14. O

Lemma 6.16. Let R be an Es-ring and let C be an R-linear co-category. Then the construction A —
LModa(C) commutes with finite products (when regarded as a functor Algg) — Cateo ).

Proof. Let {A;}1<i<n be a finite collection of Ei-algebras over R and let A =], _,., A;. We wish to show
that the canonical functor T
0:LModa(€) » [] LMody,(C)

1<i<n

is an equivalence of co-categories. In view of Lemma 5.17, it will suffice to verify the following assertions:
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(a) The functor 0 is conservative. That is, if & : M — N is a morphism in LMod 4(C€) is such that each of
the induced maps «; : A; ®4 M — A; ® 4 M is an equivalence, then « is an equivalence. It suffices to
show that the image of « is an equivalence in the oo-category C. This is clear, since « is equivalent to
the product of the morphisms «; in the oco-category C.

(b) Suppose we are given objects M; € LMody,(C), and let M ~ [],.,.,, M; (regarded as an A-module).
Then the canonical map ¢ : A; ®4 M — M; is an equivalence for 1 < i < n. To prove this, we see that
the domain of ¢ is given by the product [],;, (4i ®4 A;) ®a; M;. To prove that ¢ is an equivalence,
it suffices to show that A; ®4 A; ~ 0 for ¢ # j, and that the canonical map A4; = A; ®4 A; is an
equivalence. Since each A; is flat as a left A-module, we have

Te(Ai ®a Aj) > (T A;) @r, 4 T A,
so the desired result follows from a simple algebraic calculation.
O

Lemma 6.17. Let A be a connective Ex-ring, let C be an A-linear co-category, and let x : CAlg, — éz;oo
be as in Definition 6.8. Then:

1) The A-linear co-category C has flat descent if and only if the restriction x| CAlgS%' is a sheaf with
A
respect to the flat topology.

2) The A-linear co-category C has flat hyperdescent if and only if the restriction x| CAlg$%' is a hypercom-
A
plete sheaf with respect to the flat topology.

Proof. We will prove (1); the proof of (2) is similar. The “only if” direction is obvious. Conversely, suppose
that x| CAlg%' is a sheaf with respect to the flat topology on CAlg%'. We wish to show that y is a sheaf
with respect to the flat topology. Using Proposition 5.7 and Lemma 6.16, we are reduced to proving the
following:

(x) Let f : B — BY be a faithfully flat morphism of A-algebras, and let B® : N(A,) — CAlg, be the
Cechnerve of f (regarded as a morphism in (CAlg,)°). Then x(B®) is a limit diagram in Cat.

According to Lemma 5.17, it will suffice to verify the following:

(a) The functor ¢ : Modg(€) — Modpo(€) is conservative. To prove this, we let 7>9B and 750B° be the
connective covers of B and B, respectively. Since f is flat, the canonical map B ®,.,5 7>0B" — B°
is an equivalence. It follows from Lemma 6.15 that ¢ fits into a homotopy commutative diagram of
oo-categories

Modp(€) —2— > Mod(€)

| |

Mod,, 5 (€) —2> Mod,_, o (€).

Here the vertical maps are the evident forgetful functors (and therefore conservative). Consequently, to
show that ¢ is conservative it suffices to show that ¢q is conservative, which follows from our assumption
that x| CAlg%' is a sheaf with respect to the flat topology.

(b) Let M* be a cosimplicial object of € which is a module over the underlying cosimplicial algebra of
B*® such that each of the maps BP ®gs M9 — MP is an equivalence. Let M = lim M*®, regarded as a
B-module object of €. Then we must show that the canonical map B? ® g M — MP is an equivalence
for each p > 0. To prove this, we note that since f is flat, the map 7>9B? ®, ,p« BY — BP is an
equivalence for every morphism [p] — [¢] in A,. Let us regard M* as a cosimplicial module over
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the underlying cosimplicial algebra of 7>9B°®. Using Lemma 6.15, we conclude that each of the maps
T>0BP®;.,pa M1 — MP is an equivalence. Using our assumption that x| CAlg}’ is a sheaf with respect
to the flat topology and Lemma 5.17, we conclude that each of the maps T>0B? ®+.,8 M — MP is an
equivalence for p > 0. The desired result now follows from Lemma 6.15. -

O
Using the Barr-Beck theorem, we can obtain a very concrete criterion for flat descent.

Proposition 6.18. Let A be an Ey.-ring and let C be an A-linear co-category. Then C satisfies flat descent
if and only if, for every faithfully flat map of A-algebras B — B, the induced functor F : Modg(€) —
Modpo(C) has the following property:

(x) The functor F' is conservative, and preserves totalizations of F-split cosimplicial objects.

Moreover, if A is connective, then it is sufficient to verify this condition in the case where B and B° are
connective.

Proof. Using Proposition 5.7 and Lemma 6.16, we see that € satisfies descent if and only if, for every faithfully
flat morphism of A-algebras f : B — BY, the following condition is satisfied:

(¥') Let B* : N(A,) — CAlg, be the Cechnerve of f (regarded as a morphism in CAlg?%’, and let €°
be the augmented cosimplicial oco-category given by the formula C* = Modpgs(€). Then C°® is a limit

diagram in @Rm.

Moreover, if A is connective, Lemma 6.17 shows that it suffices to verify (') in the case where B — B is a
faithfully flat map of connective A-algebras.
For every morphism [m] — [n] in A, the induced diagram

B™ . Bm+1

L

Bn Bn+1
is a pushout square of E.-rings. It follows from Lemma 6.15 that the diagram of oco-categories

em em-‘rl

|

is right adjointable (that is, after passing to opposite oo-categories, it gives a commutative diagram which is
left adjointable in the sense of §A.6.2.4). The equivalence of () and (') now follows from Theorem A.6.2.4.2
and Corollary A.6.2.4.3. O

The proof of Theorem 6.27 will require some permanence properties of the class of excellent t-structures.
We begin with a general observation.

Remark 6.19. Let € be an co-category, let €y C €, and suppose that the inclusion €y — € admits a left ad-
joint L. Let T be a monad on €, and assume that T" carries L-equivalences to L-equivalences. Let Fung(C, C)
be the full subcategory of Fun(€, C) spanned by those functors U such that U carries L-equivalences to
L-equivalences. Then Fung(C, C) is stable under composition, and therefore inherits a monoidal structure
from the monoidal structure on Fun(C, €) (see §A.2.2.1). The left action of Fung(C, C) on € is encoded by
a coCartesian fibration of oo-operads €% — LM® (see §A.4.2.1). Applying Proposition A.2.2.1.9 to the full
subcategories
Fung (€, €) C Funy(C, C) Cy CC,

56



we obtain a full subcategory €5 C €% for which the restriction £§ — LM® is a coCartesian fibration of
oo-operads, which exhibits €y as left tensored over Fung(C, €). This action is classified by a monoidal functor
Funy(C,€) — Fun(Cy, Cp), so that T" determines a monad on Cy which we will denote by Ty. Unwinding
the definitions, we can identify Modr, (Cy) with the full subcategory €y x ¢ Modz(C) C Modr(C). It follows
from Proposition A.2.2.1.9 that the inclusion 868’ C €% admits an LM-monoidal left adjoint. It follows that
the inclusion Modr(Co) € Modr, (€) admits a left adjoint L', and that the diagram

Modz(€) —'> Mod(€p)

l l

C Co

commutes up to canonical homotopy.

Proposition 6.20. Let C be a stable co-category equipped with a t-structure and let T be a monad on C.
Assume that the underlying functor € — C is exact and carries C>¢ into C>o. Then:

(1) The co-category LModr(C) is stable and the forgetful functor 6 : LModr(C) — € is exact.

(2) Let LModr(€)>0, LModr(€)<o € LModr(C) be the inverse images of the full subcategories C>¢, C<o C
C under the functor 6. Then (LModr(C)>o, LModr(€)<o) determines a t-structure on LModr(C).

(3) If C is left complete, then LModr(C) is also left complete.

(4) Assume that C is presentable and that the functor T preserves small colimits. Then LMody(C) is
presentable and the forgetful functor 6 preserves small colimits. Moreover, if the t-structure on C is
accessible, then the t-structure on LModr(C) is accessible.

(5) Assume that € is presentable, that the t-structure on C is excellent, and that the functor T preserves
small colimits. Then the t-structure on LModr (@) is also excellent.

(6) Assume that T carries C<o into C<o. If C is right complete, then LModr(C) is also right complete.

Proof. Note that T can be regarded as a monad on the oco-category Cs,, for every integer n. According to
Example A.7.3.2.10, each of the inclusions LMody(€>,,) < LMody(€) admits a right adjoint TZTn such that
0o Tgn >~ T>p 0 0. We next claim the following:

(*) If f: X - Y is a morphism in € which induces an equivalence 7<, X — 7<, Y, then the induced map
TX — TY has the same property.

To prove (x), we let Z = 7<, Y. We have a commutative diagram

TSnTX 2 TSnTY

N

TSnTZ.

To prove that « is an equivalence, it suffices to show that 5 and ~ are equivalences. In other words, it will
suffice to prove (*) in the special case where f : X — Y exhibits Y as an n-truncation of X. To show
that the map 7<,, T'(f) is an equivalence, it suffices to show that fib T'(f) ~ T'(fib(f)) belongs to C>,+1; this
follows from the right t-exactness of T, since fib(f) € C>p41.

Combining assertion (x) with Proposition 6.19, we deduce that T' determines a monad T™ on the oo-
category C<,, (characterized informally by the formula T"(7<, X ) ~ 7<, T(X)) such that LMody=(C<,,) can
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be identified with LModr(€)<,. Moreover, the inclusion LMody(€)<, < LMody(€C) admits a left adjoint
7L such that 0o 7L ~ 1<, 00.

~ Assertion (1) is a special case of Proposition A.4.2.3.4. We now prove (2). We first show that for
every object X € LModz(C)>1 and every object Y € LModr(C€)<o, the mapping space Mapy,yoa,(e)(X;Y)
is contractible. This is clear, since Mapyyiody ey (X, Y) = Mappyoare) (720X, Y) and 72X ~ 0 (since
T<08(X) ~0).

To complete the proof of (2), it suffices to show that for every object X € LModr(€), there exists a fiber

sequence

X' x & x"
with X’ € LModz(€)>1 and X” € LModr(€)<p. Set X' = 72, X and X” = 7, X, with f and g defined in

the obvious way. The preceding argument shows that g o f is nullhomotopic, so that we get a commutative
diagram o :

x - ox

|k

OHXII

in LModr(€). Note that () is a pullback square in €. Since 6 is an exact, conservative functor, we conclude
that o is a pullback square in LModz(€), thereby completing the proof of (2).

We next prove (3). Assume that € is left complete. Let Y be an object of @n LModr(€)<p, correspond-
ing to a compatible sequence of objects Y,, € LModz(C)<y. Since € is left complete, the diagram

=2 0(Y,) =5 0(Y1) - 6(Yy) — -
admits a limit in €. Using Proposition A.4.2.3.1, we conclude that the diagram
=Y =Y Yy — -

admits a limit in LModz(€); let us denote this limit by G(Y"). The construction Y — G(Y) is a right adjoint
to the evident functor F' : LModp(C) — T&nLModT(G)Sn. We claim that for ¥ € lim LModr(C) <y, is
as above, the counit map v : (F o G)(Y) — Y is an equivalence. To prove this, it suffices to show that v
induces an equivalence v, : 72, (F o G)(Y) — Y, for every integer n. This follows from from the fact that 6
is conservative, since 6(v,) can be identified with the map

T I 0(Y,y) = 0(Y,,)

which is an equivalence by virtue of our assumption that € is left complete. This proves that G is fully
faithful; to show that G is an equivalence, it will suffice to show that the functor F' is conservative. This
is clear: if f : X — Y is a morphism in LMody(€) such that F(f) is an equivalence, then f induces an
equivalence 7<,0(X) = 7<,0(Y) for every integer n. Since C is left complete, this implies that 6(f) is an
equivalence, so that f is an equivalence as desired.

We now prove (4). Assume that € is presentable and that T preserves small colimits. It follows from
Proposition A.4.2.3.4 that LModr(C) is presentable and that  preserves small colimits. If the t-structure on
C is accessible, then Proposition T.5.5.3.12 implies that LModr(€)>¢ =~ LModz(€) X ¢ C>¢ is presentable, so
that the t-structure on LModr(C) is accessible. Suppose, in addition, that the t-structure on C is excellent.
It follows from (3) that LModr(C) is left complete. Since § preserves small filtered colimits and C<g is closed
under small filtered colimits, the full subcategory LModz(C)<o = 67! €<y C LModr(€) is closed under
small filtered colimits. In particular, LMods(€)<¢ is closed under countable coproducts. Since € is right
complete, the intersection (), C<_, consists only of zero objects of €. Because § is conservative, we deduce
that 67, C<—n = (,, LModr(€)<_,, consists only of zero objects of LModr(€). Applying Proposition
A.1.2.1.19, we conclude that LModr(C) is right complete. This proves (5).
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It remains to prove (6). Let € be the full subcategory of Fun(C, €) spanned by exact functors which are
t-exact. Since € is closed under composition, it is a monoidal subcategory of Fun(€, €). We have a diagram
of oo-categories

T>1 T>0
~'~*>(‘32_2 - 62_1 — 620

of co-categories acted on by &. If € is right complete, then it can be identified with the limit of this tower; it
follows that LModp(C) ~ I'&nLModT(GZ,n) ~ @LModT(G)Z,n so that LMody(C) is right complete. [

Definition 6.21. Let C be a presentable stable co-category equipped with an t-structure. We say that a
monad T on C is faithfully flat if the underlying functor 7' : € — C is right t-exact and preserves small
colimits, and for every X € C<g, the cofiber of the unit map X — T'X also belongs to C<.

Lemma 6.22. Let f: A — B be a morphism of connective Eo,-rings. The following conditions are equiva-
lent:

(1) The map f is faithfully flat.
(2) The cofiber cofib(f) is flat when regarded as an A-module.

Proof. Suppose first that (2) is satisfied. We have a fiber sequence of A-modules
A — B — cofib(f).

Since A and cofib(f) are flat over A, Theorem A.7.2.2.15 implies that B is flat over A. To prove that f
is faithfully flat, we must show that if M is a discrete mgA-module such that TorgoA(m)B, moM) ~ 0, then
M ~ 0. We can identify TorgoA(ﬁoB,ﬂ'oM) with the discrete B-module B ® 4 M, which fits into a fiber
sequence

M — B®a M — cofib(f) ®4 .

Condition (2) implies that cofib(f)®4 M is discrete, so we get a short exact sequence of discrete 7y A-modules
0—>M—B®aM — cofib(f) @a M — 0

which proves that M ~ 0.

Now suppose that (1) is satisfied. Since A and B are connective, cofib(f) is connective. According to
Theorem A.7.2.2.15, it will suffice to show that for every discrete A-module M, the relative tensor product
cofib(f) ®4 M is discrete. We have a fiber sequence

M — B®a M — cofib(f) ®4 M.

Since B is flat over A, B®4 M is discrete. Consequently, to prove that cofib(f) ®4 M is discrete, it suffices
to show that the map 0 : moM — mo(B ®4 M) ~ Torg“A(ﬂ'oB,ﬂ'oM) is a monomorphism. Let K C moM
denote the kernel of §. Since mB is flat over moA, we can identify Torg°?(moB, K) with a submodule of
Torj** (9B, moM). This submodule is generated by #(K) = 0, and therefore vanishes. Since 7B is faithfully
flat over mgA, we conclude that K ~ 0 so that 6 is injective as desired. O

Remark 6.23. Let A be an E,.-ring and let € be an A-linear oco-category. For every A-algebra B, we have
a pair of adjoint functors

F
C?ModB(G)
which determines a monad T' ~ G o F' on C. In concrete terms, this monad is given by the formula

M +— B®a M. Since the functor G is conservative and preserves small colimits, Theorem A.6.2.2.5 implies
that Modp(€) can be identified with the oo-category Modr(€) of T-modules in C.

Lemma 6.24. Let A be a connective Eo-ring and C an A-linear oo-category equipped with an excellent
t-structure. Let B be a faithfully flat A-algebra. Then the monad T of Remark 6.23 is faithfully flat.
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Proof. Since B is connective, the functor M — TM ~ B ® 4 M is right t-exact. Let B/A denote the cofiber
of the map of A-modules A — B, so that the cofiber of the map M — T'M can be identified with B/A® 4 M.
Suppose that M € C<g, and let let X be the full subcategory of Mod4 spanned by those A-modules N for
which N ®4 M € C<o. We wish to prove that B/A € X. By virtue of Lemma 6.22, it will suffice to show
that X contains all flat A-modules. Since the t-structure on € is excellent, we see that X is stable under
filtered colimits in Mod 4. Using Theorem A.7.2.2.15, we are reduced to proving that M contains all free
A-modules of finite rank, which is clear. O

Proposition 6.25. Let C be a presentable stable co-category equipped with an excellent t-structure, and
let T be a faithfully flat monad on C. Let F : € — Modr(C) be a left adjoint to the forgetful functor
G : Modr (@) — C. Then F is conservative and preserves totalizations of F-split cosimplicial objects of C.

Remark 6.26. According to Theorem A.6.2.2.5, Proposition 6.25 is equivalent to the assertion that € can
be recovered as the oo-category of algebras over the comonad F o G on Modr(C).

Proof of Proposition 6.25. We first show that I is conservative. Let a : X — Y be a morphism in € such
that F(«) is an equivalence. Then T cofib(«) ~ GF(cofib(e)) ~ G cofib(F(«)) ~ 0. Our assumption that T
is faithfully flat guarantees the existence of a monomorphism

; cofib(a) — ;T (cofib(ar)) ~ 0

in the abelian category €Y, which proves that m; cofib(a) ~ 0. Since the t-structure on C is right and left
complete, we deduce that cofib(a) ~ 0 so that « is an equivalence.

Now suppose that X*® is an F-split cosimplicial object of €, having a limit X € €. We wish to prove
that the canonical map F X — l<£1F X* is an equivalence in Mod7(C), or equivalently that the map TX —
@TX ¢ is an equivalence in C.

Since the monad T is faithfully flat, T defines an exact functor T} from the abelian category C to itself.
Moreover, the unit of 7" induces a monomorphism of functors id Y To, so that Tj is conservative. For
every object Y € €, we have canonical isomorphisms w,TY ~ Tymw,Y. Since X°® is F-split, it follows that
for every integer n, Tym,X*® is a split cosimplicial object of CY. Let

An)® M A(m) — A(n)? —> -

be the unnormalized chain complex (in €%) associated to 7, X*. It follows that Tp(A(n)®) is split exact: in
particular, we have an exact sequence

0— K — TyA(n)? = ToA(n)' — -

Since Ty is exact, we can write K = ker(Tpd(n)) ~ Tpkerd(n). Since Tj is exact and conservative, the
exactness of the sequence
0 = Tokerd(n) — ToA(n)® — TyA(n)! — ---

implies the exactness of the sequence
0 — kerd(n) — A(n)? — A(n)! — -

Using Corollary A.1.2.4.10, we deduce that the map X — X induces an isomorphism 7, X ~ kerd(n) for
every integer n. Using the exactness of Ty and the identification Tym, X ~ 7,TX, we see that the map
a:TX — yLnTX *® induces an exact sequence

0 — m,TX — ToA(n)? — ToA(n)t — ---
which implies that « is an equivalence (Corollary A.1.2.4.10). O

We are now ready to prove a weaker version Theorem 6.12.
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Theorem 6.27. Let A be a connective Eo-ring and let C be an A-linear oo-category which admits an
excellent t-structure. Then C satisfies flat descent.

Proof. According to Proposition 6.18, it will suffice to show that for every faithfully flat morphism B — B’
of connective A-algebras, the induced functor F : Modp(€) — Modp/ (@) is conservative and preserves
totalizations of F-split cosimplicial objects. Using Proposition 6.20, we can replace € by Modg(C) and
thereby reduce to the case where B = A. The desired result now follows from Lemma 6.24 and Proposition
6.25. 0

We would like to use Theorem 6.27 to prove Theorem 6.12. The first step is to observe that, in the
situation of Theorem 6.27, the excellent t-structure on € also satisfies flat descent:

Lemma 6.28. Let A be a connective E,-ring, let C be an A-linear co-category equipped with an excellent
t-structure, let f : B — B’ be a map of connective A-algebras, and let F' : Modg(C) — Modpg/ (C) be the
induced functor. Then:

(1) The functor F carries Modg(C)>o into Modpg:(€)>o.
(2) If f is flat, then F carries Modg(€)<o into Mod g/ (C)<o.
(3) If f is faithfully flat, then we have

MOdB(G)ZQ = F‘_1 MOdBI(G)ZQ ModB(G)go = F_1 MOdB/(e)So.

Proof. To prove (1), we let D denote the full subcategory of Mod g spanned by those B-modules N for which
the functor N ®p e carries Modg(€)>o to C>9. We wish to show that B’ € D. Since B’ is connective, it will
suffice to show that D contains all connective B-modules. This is clear, since B € D and D is closed under
small colimits.

We now prove (2). Let D’ be the full subcategory of Modp spanned by those B-modules N for which the
functor N ®p e carries Modp(€)<p into C<o; we wish to show that B’ € D'. Since the t-structure on € is
excellent, it is clear that D’ is closed under filtered colimits. Theorem A.7.2.2.15 implies that B’ is a filtered
colimit of B-modules of the form B¥; it therefore suffices to show that each B* € D’ which is obvious.

We now prove (3). We will prove that F~! Modp/ (€)>o = Modp(€)>o; the proof that

F! MOdB/(G)So = MOdB(e)go

is similar. Let M € Modg(C) be such that B'®@p M € Modp/(€)>¢; we wish to prove that M € Modg(€)>o.
Since Modp(€) is right complete (Proposition 6.20), it will suffice to show that 7 M ~ 0 for k < 0. Since the
functor B’ ® e is t-exact (by (1) and (2)), we have B’ ® g m, M ~ 1, (B’ @ g M) ~ 0. The faithful flatness
of B — B’ implies that the cofiber B’/B is a flat B-module, so the proof of (2) gives B'/B ®@p mM € C<o.
It follows that the cofiber sequence

M — B' ®@p mpM — (B//B) ®p T M

induces a monomorphism m M ~ 7y(B’ ®p 7 M) ~ 0 in the abelian category (i’@, so that mp,M ~ 0 as
desired. O]

Construction 6.29. Fix a connective E,.-ring A and an A-linear co-category C equipped with an excellent
t-structure. Given —oo < m,n < oo, we let N>, denote the full subcategory of

Mod(€) = LMod(€) X a1, CAlgS

spanned by those pairs (B, M) where B is a connective E-algebra over A, and M € Modg(€)>y,. Let
E:; C N>y, the full subcategory spanned by those pairs (B, M) € N>, such that M € Modg(C)<,. It

is easy to see that the forgetful functor p : N>, — CAlg}' is a coCartesian fibration. For each connective
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A-algebra B, the fiber (NEZL) B € (N>.,)p is a the essential image of a localization functor Lp = 7<j,.
If f: B — B'is a map of connective A-algebras, the base change functor M +— B’ ®g M carries Lp-
equivalences to Lp-equivalences. It follows that the forgetful functor g : N;"m — CAlg(Mod}") is also a
coCartesian fibration (Lemma A.2.2.4.11). Moreover, if f : B — B’ is flat, then the base change functor
M — B’ ®p M is t-exact and therefore carries (NEZ)B into (NEZ)B/ (Lemma 6.28), so that a morphism in

NE:; lifting f is g-coCartesian if and only if it is p-coCartesian.

Proposition 6.30. Let A be a connective By -1ing, let C be an A-linear co-category equipped with an excellent
t-structure. Let —oo < m,n < oo, and let q : Ngzl — CAlg%" be defined as in Construction 6.29. Then, as
a coCartesian fibration, q is classified by a functor x : CAlgy' — @t: which is a sheaf with respect to the
flat topology.

Proof. We first show that x preserves finite products. In view of Lemma 6.16, it suffices to observe the
following: given a finite collection of connective A-algebras B; with product B = [], B; and module objects
M; € Modg, (€), the product M =[], M; belongs to Modz(€)<,, if and only if each M; € Modp, (€C)<y, and
M € Modp(€)>, if and only if each M; € Modpg, (C)>m.

According to Proposition 5.7, it remains to show that if B — B is a faithfully flat morphism of connective
A-algebras having Cechnerve B® in CAlg?, then the composite diagram

N(AL) 2 CAlgD X Cates

is a limit diagram. Since the inclusion N(A;) < N(A) is right cofinal (Lemma T.6.5.3.7), it will suffice to
show that

N(A,4) = N(AL) 2 CAlgD S Catoy
is a limit diagram. By virtue of Theorem 6.27, this reduces to the following concrete assertion: an object

M € Modg(€) belongs to Mod g (€)>mNModp(C) <y, if and only if BP®g M € LModgr (€)>,,»NLModgr (€C)<y
for all integers p. This assertion is a special case of Lemma 6.28. O

Lemma 6.31. Let A be a connective Eo-ring and C an A-linear oo-category equipped with an excellent
t-structure. Let B® be an augmented cosemisimplicial of CAlgy which is a flat hypercovering of B = B~1.
Let M*® be a coCartesian cosemisimplicial discrete (B*|N(Aj))-module object of C: that is, M® supplies an
object MP € Mod s (€)¥ for eachp > 0, and an equivalence B? @ g MP — M?" for each injection [p] — [p'].
Then:

(1) The unnormalized cochain complex
MO A MY M
is acyclic in positive degrees (in the abelian category Go).
(2) The canonical map B® ®p ker(¢) — MO is an isomorphism in the abelian category C° .

Proof. Fixn >0, and let ¢ : N;gn — CAlg%' and p : N;goo — CAlg$' be defined as in Construction 6.29.
We regard B*® as a diagram N(A; ;) — CAlgy', and M*® as a diagram N(A;) — N;gn lifting B*| N(Ajy).
Let M denote a p-limit of the diagram M?* (lying over B®). Let M’ denote a g-limit of the diagram M*®
(also lying over B*®), so that M’ ~ 7-_,, M as objects of Modg(C). It follows from Example A.1.2.4.8 that

the homotopy groups of M are given (as objects of the abelian category GO) by the cohomology groups of
the unnormalized cochain complex

MO — MY - M? — ..
and M’ ~ 7>_,, M. Proposition 5.12 implies that the pullback map ¢ : Ng‘in xneey N(A, 1) = N(A, ;) is
classified by limit diagram x : N(As 1) — éa\too. Combining this observation with Lemma 5.17, we conclude
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that the natural map B° ® g M’ — M? is an equivalence. It follows from Lemma 6.28 that M’ is discrete,
so that the homotopy groups m; M vanish for every nonzero k > —n. Moreover, we have

M° ~ 1oM° ~ 710(B° @ M) ~ B’ @ (moM’) ~ B® ®@p ker(¢),
which proves (2). Assertion (1) follows, since n can be chosen arbitrarily large. O

Proof of Theorem 6.12. Let x : CAlg, — @OO classify the coCartesian fibration ¢ : Mod(C) — CAlg,.
According to Lemma 6.17, it will suffice to show that the restriction x| CAlg$' is a hypercomplete sheaf with
respect to the flat topology. Using Proposition 5.12 and Lemma 6.16, we are reduced to proving the following;:
for every flat hypercovering B® : N(A; ;) — CAlg, of a connective A-algebra B = B~!, the coCartesian
fibration ¢’ : Mod(C) xcalg, N(As ) = N(A, ;) is classified by a limit diagram N(A, ) — Catee. To
prove this, we will verify that ¢’ satisfies the hypotheses of Lemma 5.17:

(a) Let a : M — N be amorphism of B-module objects of €, and suppose that the induced map B°®@ g M —
B%®p N is an equivalence. We wish to prove that « is an equivalence. This follows immediately from
Lemma 6.28.

(b) Let M* : N(A;) — Mod(C) be a g-coCartesian lifting of B*| N(A;), and let M € LModz(€) be a ¢-limit
of M* (lying over B*®). We wish to prove that, for every p > 0, the canonical map « : B? @ g M — MP
is an equivalence. It clearly suffices to treat the case p = 0. For every integer ¢, the cosemisimplicial
object my M*® of @Y satisfies the hypotheses of Lemma 6.31. Using Lemma 6.31 and Corollary A.1.2.4.10,
we deduce that the canonical map B®@pm,M — m,M° is an equivalence. Combining this with Lemma
6.28, we deduce that the map « induces an equivalence m,(B® @5 M) — m,M° for every integer q.
Since € is right and left complete, it follows that « is an equivalence.

O

Remark 6.32. Let A be a connective Eo,-ring, € an A-linear oo-category equipped with an excellent t-
structure, and fix —oco < m,n < oo. Let ¢ : Néz — CAlg, be defined as in Construction 6.29, and let

x : CAlgy' — @oo classify the coCartesian fibration g. Then x is a hypercomplete sheaf with respect to
the flat topology on CAlg 4. This follows immediately from Theorem 6.12 and Lemma 6.28, as in the proof
of Proposition 6.30.

7 Digression: Henselian Rings

In this section, we will review some basic facts about Henselian rings which will be needed in the study of
spectral algebraic geometry. For a more detailed exposition, we refer the reader to [56].

Definition 7.1. Let R be a commutative ring. We will say that R is Henselian if it is a local ring with
maximal ideal m which satisfies the following condition: for every étale R-algebra R’, every map of R-algebras
R’ — R/m can be lifted to a map of R-algebras R’ — R.

Warning 7.2. Our terminology is not completely standard; some authors do not require locality in the
definition of a Henselian ring.

Notation 7.3. If R is a commutative ring and we are given a pair of commutative R-algebras A and B, we
let Homp (A, B) denote the set of R-algebra homomorphisms from A to B.

Proposition 7.4. Let R be a Henselian local ring with mazimal ideal m and let R’ be an étale R-algebra.
Then the reduction map 0 : Hompg(R', R) — Hompg(R', R/m) is bijective.

63



Proof. The definition of a Henselian local ring guarantees that fgs is surjective. For injectivity, suppose we
are given two R-algebra maps f,g: R’ — R with 6(f) = 6(g). Since R’ is étale over R, the multiplication
map m : R @z R' — R’ induces an isomorphism (R’ @z R')[1] ~ R’ for some idempotent element e €
R’ ®g R'. The maps f and g determine a map v : R’ ® g R’ — R. Since 6(f) = 6(g), the composite map
v : R"®r R’ — R — R/m factors through m, so that «’(e) is invertible in R/m. Since R is local, we conclude
that u(e) € R is invertible, so that u also factors through m; this proves that f = g. O

Proposition 7.5. Let R — A be a finite étale map between local commutative rings. If R is Henselian, then
A is also Henselian.

Remark 7.6. Proposition 7.11 can be generalized: if R is a Henselian local ring and A is a local R-algebra
which is finitely generated as an R-module, then A is also Henselian. We refer the reader to [56] for a proof.

Lemma 7.7. Let f : R — R’ be an étale map of commutative rings which exhibits R’ as a projective R-
module of rank n. Then there exists a faithfully flat finite étale morphism R — A such that R’ ®p A ~ A™.

Proof. We proceed by induction on n. If n = 0, we can take A = R. Assume n > 0. Then f is faithfully
flat. Replacing R by R’, we can assume that f admits a left inverse g : R* — R. Since f is étale , the map g
determines a decomposition R’ ~ R x R"”. Then R" is finite étale of rank (n — 1) over R. By the inductive
hypothesis, we can choose a faithfully flat finite étale map R — A such that R’ ®p A ~ A™~!. It follows
that R’ ®p A ~ A" as desired. O

Lemma 7.8. Let R — A be a finite étale map of commutative rings, and let ¢ : A — A’ be a ring
homomorphism. Then there exists a ring homomorphism R — R’ and a map ¢ : A — R Qg A with the
following universal property: for every commutative R-algebra B, composition with 1 induces a bijection

HomR(R’, B) — HomA(A’, B®pg A)
Moreover, if A’ is étale over A, then R’ is étale over R.

Proof. The assertion is local on R (with respect to the étale topology, say). We may therefore reduce to
the case where the finite étale map R — A splits, so that A ~ R"™ (Lemma 7.7). Then A’ is isomorphic to
a product A} x --- x Al of R-algebras. Let R’ = A] ®---® A}, and let ¢ : A’ - R' ®r A ~ R'™ be the

product of the evident maps A; — R’. It is easy to see that 1) has the desired property. If A’ is étale over
A, then each A is étale over R, so that R’ is also étale over R. O

Proof of Proposition 7.11. Let m denote the maximal ideal of R; since A is local, mA is the unique maximal
ideal of A. Choose an étale map A — A’ and an A-algebra map ¢y : A’ — A/mA. We wish to prove that
¢o lifts to a map A’ — A. Choose an étale map R — R’ as in Lemma 7.8. Then ¢q is classified by a
map g : R — R/m. Since R is Henselian, we can lift ¢y to a map ¢ : R’ — R, which classifies a lifting
¢: A" — Aof ¢g. O

Corollary 7.9. Let R be a Henselian commutative ring. Suppose we are given a faithfully flat étale map
R — R'. Then there exists an idempotent element e € R’ such that R'[1] is local, faithfully flat over R, and
finitely generated as an R-module.

Proof. Let m denote the maximal ideal of R and set k = R/m. Since R’ is faithfully flat over R, the quotient
R’'/mR’ is a nontrivial étale k-algebra. We can therefore choose a finite separable extension k' of k and a
surjective k-algebra map ¢ : R'/mR’ — k’. Choose a filtration

k=ko—k — - —=k,=Fk

where each k;11 has the form k;[z;]/(f;(x;)) for some monic polynomial f; (in fact, we may assume that
n = 1, by the primitive element theorem, but we will not need to know this). We lift this to a sequence of
algebra extensions

R=A4 = A —---—= A,
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where A;11 = A;[x;]/(f;(x;)) for some monic polynomial f, lifting f;. Since k' is separable over k, each

derivative 2L 13(;: i) is invertible in kiy1. It follows that 87, izl) is invertible in A;11, so that each A;y; is a

finite étale extension of A;. Set A = A,,, so that A is a ﬁnlte étale extension of R. Note that A is a local
ring with maximal ideal mA and residue field A/mA = k’. The map ¢ together with the quotient map
A — A/mA amalgamate to give an A-algebra map ¢ : AQr R’ — A/mA. Since A is Henselian (Proposition
7.11), the map g lifts to an A-algebra map ¢ : AQr R’ — A, which we can identify with a map ¢ : R' — A
lifting ¢¢. Since ¢ is surjective, the map ¢ is surjective modulo m and therefore surjective by Nakayama’s
lemma (since A is a finitely generated R-module). Since R’ and A are both étale over R, the map ¢ is an
étale surjection. It follows that A ~ R'[1] for some idempotent element e € R’ O

Definition 7.10. Let ¢ : R — A be a map of commutative rings. We will say that ¢ is quasi-finite if it
exhibits A as a finitely generated R-algebra and, for every map R — k where k is a field, Tor(l)% (A, k) is a
finite-dimensional vector space over k.

We will need the following nontrivial fact about quasi-finite morphisms of commutative rings (for a proof,
we refer the reader to [56]):

Theorem 7.11 (Zariski’s Main Theorem). Let ¢ : R — A be a quasi-finite map of commutative rings. Then

¢ factors as a composition R % BY% A, where ¢’ exhibits B as a finitely generated R-module and ¢"' induces
an open immersion of schemes Spec” A — Spec? B.

Proposition 7.12. Let ¢ : R — A be a map of commutative rings which exhibits A as a finitely generated
R-module. Let r be the residue field of R at some point p € Spec” R, let Ay = TOYOR(H7A), and suppose
we are given a decomposition of commutative rings Ay = A{, X Aj. Then the map R — & factors as a
composition

RY R —x
where Ry is an étale R-algebra and a decomposition of Ay = Tory(Ry, A) as a product Ay = A} x AY with
Al ~ Torl! (k, A}) and AY ~ Tor{ (k, AY).

Proof. Since A is a finitely generated R-module, Ag is a finite-dimensional vector space over k, and therefore
admits a basis {Z1,...,Z,}. Replacing R by a localization if necessary, we may assume that each Z; lifts to
an element z; € A. Using Nakayama’s lemma, we may assume (after replacing R by a suitable localization)
that the elements x; generate A as an R-module. Consequently, we have

= Zrﬁjxk
k
for some elements {rﬁj}1§i7j,k§n. Let R = Rly1,..-,Yn]/(f1,-., fn) with
Se(yise o yn) = yk — er,jyiyj,
%,
df;

and let A € R’ be the image of the determinant of the Jacobian matrix [7%].

For every k-algebra B, the set of k-algebra homomorphisms Torg” (k, R') = B can be identified with the
collection of elements with the set of elements e =), <i<n b;T; in B ®, Ag such that

2 _ koo o=
e‘ = E rm»bzbjmkfe.
,J

If I C B is a nilpotent ideal, then the Zariski spectra of B ®, Ap and (B/I) ®, Ap are homeomorphic, so
that reduction moduli I induces a bijection between idempotent elements of B ®, Ag and (B/I) ®, Ap. It
follows that Tor{!(k, R') is an étale s-algebra, so that the image of A is invertible in Torg (s, R').
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The decomposition Ay = A} x A{ is determined by an idempotent element ey € Ag, which is classified
by a map of R-algebras ¢ : R’ — . The above argument shows that this map factors through R; = R’ [%]
By construction, R; is étale over R. Let A; = Ry ®g A. By construction, e = > y; ® z; is an idempotent
element of A, which determines a decomposition A; ~ A} x A having the desired properties. O

Corollary 7.13. Let R be a Henselian local ring with mazimal ideal m and let A be a commutative R-algebra
which is finitely generated as an R-module. Then every decomposition of A/mA as a product of two rings
(A/mA)o x (A/mA); can be lifted to a product decomposition A ~ Ay x Aj.

Proposition 7.14. Let ¢ : R — A be a quasi-finite map of commutative rings and let k denote a residue
field of R at some point p € Spec? R. Then the canonical map R —  factors as a composition R — Ry — k
where Ry is an étale R-algebra, and Ay = Ry ®gr A factors as a product A} x AY, where A is a finitely
generated Ry-module and Tori" (r, A)) ~ 0.

Proof. Using Theorem 7.11, we deduce that the map ¢ : R — A factors as a composition R % B% A
where ¢’ exhibits B as a finitely generated R-module and ¢” induces an open immersion of schemes. Let
By = Torl(k, B) and Ay = Torf(k, A). Since By is a finite dimensional algebra over &, its spectrum Spec? By
is discrete. It follows that the open subscheme Spec? A is a union of components of Spec? By: that is, we have
a decomposition By ~ Ay x B{. Using Proposition 7.12, we deduce that there is a factorization R — Ry — &
where R; is étale over R and By = R, ®p B factors as a product B} x B, with Ay = Tort (x, B})
and Bl = Tor{*(k, B}). This factorization determines a prime ideal q € Spec” Ry lying over the prime
p € Spec? R.

Let A} = A®p B} and AY = A®p BY. It is clear that Toré:‘:1 (k, AY) ~ 0. The map Spec? Al — Spec? Bj
is an open immersion, and the compement of its image is a closed subset K C Spec? Bj. Since Bj is a
direct factor of By, it is finitely generated as an R;-module, so that the image of K in Spec? Ry is closed.
By construction, this image does not contain q. Replacing R; by a localization if necessary, we may assume
that K = () so that A} ~ B/ is a finitely generated R;-module. O

Corollary 7.15. Let R be a Henselian ring with mazimal ideal m and let ¢ : R — A be a quasi-finite
morphism of commutative rings. Then there is a decomposition A ~ A’ x A" where A’ is a finitely generated
R-module and A" /[mA” ~ 0.

Proposition 7.16 (Hensel’s Lemma). Let R be a local Noetherian ring which is complete with respect to its
maximal ideal m. Then R is Henselian.

Proof. Let R be an étale R-algebra. The structure theory of étale morphisms implies that we can write
R = R[z1,...,2,)/(f1,- -, fn)[A71], where A denotes the determinant of the Jacobian matrix [%]1§i,j§n
(see Proposition 8.10). We wish to show that every R-algebra homomorphism ¢q : R’ — R/m can be lifted
to a ring homomorphism ¢ : R’ — R. Since R is complete, it will suffice to construct a compatible sequence
of R-algebra homomorphisms ¢, : ' — R/m?*!. Assume that ¢, has already been constructed, and choose

elements {y; € R}1<j<n such that ¢,(z;) = y; modulo m**!. Since ¢, is a ring homomorphism, we have
fi(y) € m®! for 1 < i < n. Let A[Z] denote the determinant of the Jacobian matrix M (%) = [%]Ki,ﬂn.
S 11<ing<

Then A[y] is invertible modulo m®™! and therefore invertible (since R is local). It follows that M (%) is an

invertible matrix over R, so we can define i/ = 7 + M (¢)~! _’(17) A simple calculation gives shows that
fi(7) € m?(@+D) 5o that the assignment z; +— y, determines a ring homomorphism ¢,,1 : R — R/a®+?
compatible with ¢,. O

Definition 7.17. Let R be a commutative ring. We say that R is strictly Henselian if R is Henselian and
the residue field R/m is separably closed.

Proposition 7.18. Let R be a commutative ring. The following conditions are equivalent:

(1) The ring R is strictly Henselian.
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(2) For every finite collection of étale maps {¢po : R — Ra} such that the induced map R — [], Ra is
faithfully flat, one of the maps ¢, admits a left inverse.

Proof. Suppose first that condition (1) is satisfied, and let m denote the maximal ideal of R. Let {¢, : R —
R.} be as in (2). Since the map R — [], R is faithfully flat, there exists an index « such that R,/mR,, is
nonzero. Since R, is étale over R, R, /mR,, is a product of separable field extensions of k = R/m. Since k is
separably closed, we can choose a map of R-algebras 6 : R,/m — R/m. The assumption that R is Henselian
implies that 6 lifts to a map of R-algebras R, — R, which is left inverse to ¢,.

Now suppose that (2) is satisfied; we wish to prove that R is strictly Henselian. We first observe that R
is nonzero (otherwise the map from R to an empty product is faithfully flat, contradicting (2)). For every
element = € R, the map R — R[] x R[{1-] is faithfully flat, so condition (2) implies that either z or 1 —
is invertible in R: that is, R is a local ring.

We now claim that R is Henselian. Let R’ be an étale R-algebra and choose a map of R-algebras
6 : R — R/m. We wish to prove that 6 can be lifted to an R-algebra map R’ — R. Let k = R/m, so
that R'/mR’ is a product of finite separable extensions of k. We proceed by induction on the dimension n
of R'/mR’ as a k-vector space. Note that n > 0, since # induces a surjection R'/mR’ — k. It follows that
R’ is faithfully flat over R, so condition (2) implies that there is a map of R-algebras ¢ : R’ — R. Since R’
is étale over R, the kernel of the map ¢ is generated by an idempotent element e € R’. If 6(e) = 0, then

0 factors as a composition R’ %R R/m so that ¢ is the desired lifting of 6. Assume otherwise. Then
f(e) =1 (since e is idempotent and k is a field), so that § factors through the quotient R” = R'/(1 — e) of
R’. The inductive hypothesis then implies that the induced map R” — R/m lifts to a map of R-algebras
R"” — R, so that the composite map R’ — R” — R is the desired lifting of 6.

To complete the proof, we must show that the field k = R/m is separably closed. Assume otherwise.
Then we can choose a nontrivial finite separable extension field k' of k. Without loss of generality, &k’ is
generated by a single element; we may therefore write ¥ = k[z]/(f(x)) for some monic polynomial f with
coefficients in k. Let f(z) be a monic polynomial with coefficients in R which lifts f (and has the same
degree as f), and let R’ = R[x]/(f(z)). Then R’ is finite as an R-module. The derivative of f(z) is invertible
in R'/mR/, and therefore (by Nakayama’s lemma) invertible in R’. It follows that R’ is faithfully flat and
étale over R. Using condition (2), we deduce that there is a map of R-algebras R’ — R. Reducing modulo
m, we obtain a map of k-algebras k' — k, contradicting our assumption that &’ is a proper extension of
k. O

Corollary 7.19. Let ¢ : R — A be a map of commutative rings. The following conditions are equivalent:
(1) The commutative ring A is strictly Henselian.

(2) For every finitely presented R-algebra R’ and every finite collection of étale maps {R' — R.} which
induce a faithfully flat map R’ — ], R.,, every R-algebra map R’ — A factors through some R, .

'’

Proof. Assume that (1) is satisfied, and let {R’ — R/} be as in (2). For any map R’ — A, we obtain a
finite collection of étale maps {¢, : A = R, ®r A} which induce a faithfully flat map A — []_ (Rl ®r A).
Proposition 7.18 implies that one of the maps ¢, admits a left inverse, which determines a map of R’-algebras
from R), into A.

Now suppose that (2) is satisfied. We will show that A satisfies the criterion of Proposition 7.18. Choose a
finite collection of étale maps {A — A, } which induce a faithfully flat map A — []_, Aa. Using the structure
theory for étale morphisms (see Proposition 8.10 below), we may assume that there exists a finitely presented
R-algebra R’ and étale maps R’ — R/, such that A, ~ R, ®r A. Replacing R’ by a product of localizations
if necessary, we may suppose that the map R’ — ] R\, is faithfully flat. Condition (2) then guarantees the
existence of a map of R’-algebras O
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8 Spectral Deligne-Mumford Stacks

In §2 we introduced the definition of a spectral scheme: that is, a spectrally ringed oo-topos (X, Ox) which
is locally equivalent to the spectrum of a connective E,,-ring. Here the definition of spectrum is taken with
respect to the Zariski topology, which is formally encoded in the geometry Sggr of Definition 2.18. In this
section, we will introduce a variation on the theory of spectral schemes: the theory of spectral Deligne-
Mumford stacks.

We begin by generalizing the theory of strictly Henselian rings to an arbitrary topos.

Definition 8.1. Let X be a topos and let Oy be a commutative ring object of X. For every finitely generated
commutative ring R, let Solg(Ox) € X be an object having the following universal property: for every object
U € X, there is a canonical bijection

Homy (U, 80l (0x)) ~ Hompging (R, Homx (U, Ox)).
We will say that Oy is strictly Henselian if the following condition is satisfied:

(*) For every finitely generated commutative ring R and every finite collection of étale maps R — R,
which induce a faithfully flat map R — []_, Ra, the induced map

I 801z, (0x) = Solr(0x)

is an effective epimorphism.

Example 8.2. If X is the topos of sets, then we can identify commutative ring objects of X with commutative
rings. Under this identification, a commutative ring object of X is strictly Henselian in the sense of Definition
8.1 if and only if it is strictly Henselian in the sense of Definition 7.17 (the equivalence follows from Corollary
7.19).

Definition 8.3. Let X be an oo-topos and let Oy be a sheaf of E,-rings on X. We will say that Oy is
strictly Henselian if my Oy is a strictly Henselian commutative ring object of the topos of discrete objects of
X. Note that if Ox is strictly Henselian, then it is local (in the sense of Definition 2.5). We let RingTop,
denote the full subcategory of RingTop,,, spanned by the locally spectrally ringed co-topos (X, Q) such
that O is strictly Henselian. We will say that a spectrally ringed co-topos (X, Ox) is strictly Henselian if it
belongs to RingTopy,.

The starting point for our definition of spectral Deligne-Mumford stacks is the following analogue of
Proposition 2.6:

Proposition 8.4. The functor I'| RingTop,, : RingTop,, — CAlg® admits a right adjoint.

Proposition 8.4 asserts that for every E.-ring R, there exists a strictly Henselian spectrally ringed oo-
topos (X, Ox) and amap 6 : R — I'(X, Ox) with the following universal property: for every strictly Henselian
spectrally ringed co-topos (Y, Oy), composition with € induces a homotopy equivalence

1\/‘[apRingTopZar ((y7 O‘d)’ (x> Ox)) - MapCAlg(R’ F(%ﬂ O"J))

The spectrally ringed oo-topos (DC7 O«) is uniquely determined up to equivalence; and we will denote it by
Spec®(R). We will refer to Spec®(R) as the spectrum of R with respect to the étale topology.

Definition 8.5 (Spectral Deligne-Mumford Stack: Concrete Definition). A nonconnective spectral Deligne-
Mumford stack is a spectrally ringed oco-topos (X, Ox) such that there exists a collection of objects U, € X
satisfying the following conditions:

1) The objects U, cover X. That is, the canonical map U, — 1 is an effective epimorphism, where 1
(6%
denotes the final object of X.
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(7i) For each index «, there exists an E..-ring R, and an equivalence of spectrally ringed oco-topoi

(X0, Ox |Ua) ~ Spec™(Ra).

We let Stk™ denote the full subcategory of RingTopy,, spanned by the nonconnective spectral Deligne-
Mumford stacks.

A spectral Deligne-Mumford stack is a nonconnective spectral Deligne-Mumford stack (X, Ox) such that
O« is connective. We let Stk denote the full subcategory of Stk™° spanned by the spectral Deligne-Mumford
stacks.

In order to process Definition 8.5, we need to understand the functor Spec®® : CAlg® — RingTop,, whose
existence is asserted by Proposition 8.4. As in §2, we will construct this functor by appealing to the general
results of [42]. For this, we will introduce a geometry 9;8 P which “controls” the theory of strictly Henselian
sheaves of E.-rings. This will require a few preliminary concerning étale morphisms between E,-rings.

Recall that a morphism f: A — B of E-rings is said to be étale if the underlying map of commutative
rings moA — moB is étale, and the canonical map (m;A) @, 4 (m0B) — m; B is an isomorphism for every
integer 1. We refer the reader to §A.7.5 for an extensive discussion of the theory of étale maps between
Eoo-rings.

If f: A — Bis an étale map between E-rings, then the relative cotangent complex Lp,4 vanishes
(Corollary A.7.5.4.5). We now establish some partial converses.

Lemma 8.6. Let f: A — B be a map of connective Eo,-rings. The following conditions are equivalent:
(1) The abelian group moLp,a vanishes, and moB is finitely generated as an algebra over moA.

(2) There exist finitely many elements x1,...,x, € moB which generate the unit ideal, such that each of
the induced maps A — B[X] factors as a composition

€T
where f' is étale and [ induces a surjection moA; — moB[--].

Proof. Suppose first that (2) is satisfied. Each of the commutative rings WOB[I%] is a quotient of an étale mgA-
algebra, and therefore finitely generated over mgA. Let By C mgB be a finitely generated mgA-subalgebra
containing each x;, such that BO[I%] — mB [Ii] is surjective for each i. Since the z; generate the unit ideal
in B, we deduce that mgB = By is finitely generated over myA.

It remains to prove that moLp,4 ~ 0. Since the elements x; generate the unit ideal, it will suffice to show
that (moLp/a)[2] ~ mo(Lp/a ®p B[%}) ~ moLp[ 1,4 vanishes for each index i. Choose a factorization

K3 3

T
as in (2). We have a short exact sequence of abelian groups

1
FO(B[;] ®ar La,sa) = WOLB[T%]/A — WOLB[é]/Ai'

2

Here L4, 4 vanishes since f’ is étale (Corollary A.7.5.4.5) and moLg1]/4, can be identified with the rel-
ative Kahler differentials Q. g1}/ 4, (Proposition A.7.4.3.9), which vanishes because f” is surjective on
connected components. It follows that moLppiy/a = 0 as desired.

Now suppose that (1) is satisfied. Let R = moB. Since R is finitely generated over mgA, we can
choose a presentation R ~ (moA)[z1,...,2,]/I for some ideal I C (moA)[x1,...,2,]. Then moLp/4 is the
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module of Kahler differentials of R over moA (Proposition A.7.4.3.9). That is, oL p,4 is the quotient of the
free R-module generated by elements {dz;}i1<i<n by the submodule generated by elements {df };c;. Since
moLp/a ~ 0, we can choose a finite collection of elements {f; € I}1<j<m such that the Jacobian matrix

M = {g;: 21 has rank n. Let {ax} be the collection of determinants of n-by-n submatrices of the matrix
M, so that the elements ay generate the unit ideal in R. We will prove that each of the composite maps
A— B[i] factors as a composition
) 1 " 1
At a5 B,
a
where f’ is étale and f” is surjective on connected components. Reordering the f; if necessary, we may

suppose that m > n and that x is the determinant of the matrix {%}gmgn- Set

R = (roR)[x1,. .., an, i]/(fl,...,fm),

so that R is an étale algebra over myA. It follows from Theorem A.7.5.0.6 that R’ can be lifted (in an
essentially unique fashion) to an étale A-algebra Ay. Moreover, Corollary A.7.5.4.6 implies that the surjective
map R — R[i] = WOB[G%] lifts to a map Ay — B[i], thereby giving us the desired factorization. O
Lemma 8.7. Let f: A — B be a map of connective E..-rings. Assume that:

(1) The map f induces a surjection fo: mgA — woB.

(2) The commutative ring moB is finitely presented over mg A (that is, the kernel of fo is a finitely generated
ideal in moA).

(3) The abelian group w1 Lg,a vanishes.
Then there exists an element D € mgA such that moB =~ (mA)[5].

Proof. Let I denote the kernel of f, and let R = (moA)/I?. Tt follows from Corollary A.7.4.1.27 that, in the
oo-category CAlg 4, we have a commutative diagram

R 7TOB

| |

0B — (m9)B @ (I/1?)[1].

Since m;Lp,4 == 0 for # < 1, the canonical map
Mapgayg , (B, m0B) = Mapcy, , (B, 7B @ (I/1%)[1])

is a homotopy equivalence, so that Mapcay, . (B, R) — Mapg Alg,, (B, mB) is also a homotopy equivalence. In
particular, the truncation map B — 7o B lifts (in an essentially unique fashion) to a map B — R. Passing to
connected components, we deduce that the quotient map of commutative algebras ¢ : (mgA)/I1? — (moA)/I
admits a section as a map of myA-algebras. This implies that ¢ is an isomorphism: that is, that I = I2.
Because 7B is finitely presented over mg A, the ideal I is generated by finitely elements ¥, . . ., ym,. Since
I =17, we can write y; = ), 2 jy; for some elements z; ; € I. Let Z denote the matrix {2; j}1<i j<m. Then
id —Z annihilates the vector (y1,...,¥ym) € (m0A)P. Let D € mpA denote the determinant of id —Z. Since
the entries of Z belong to I, D is congruent to 1 modulo I and is therefore invertible in moB. It follows that
we have a canonical map g : A[%] — B. We claim that ¢ is an isomorphism on connected components. The
surjectivity of g is clear, and the injectivity follows from the observation that multiplication by D annihilates
every element of . O
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Lemma 8.8. Let f: A — B be a morphism of connective Eyo-rings and let 1 < n < oo be an integer. The
following conditions are equivalent:

(1) The commutative ring moB is finitely presented over moA, and w;Lp/a ~ 0 fori < n.

(2) The map f factors as a composition
AL alp
where f' is étale, " induces an isomorphism m;A — B for i < n, and f” induces a surjection
TA — m,B.

Proof. Suppose first that (2) is satisfied. Then mgB =~ mp A’ is étale over 1y A, and therefore finitely presented
as a moA-algebra. We have a fiber sequence

B ®a4 LA’/A — LB/A — LB/A"

Since A’ is étale over A, we deduce that L4/ 4 ~ 0. Since f” is n-connective, Corollary A.7.4.3.2 implies
that Lg,a ~ Lp s is (n + 1)-connective, thereby completing the proof of (1).

Now assume that condition (1) holds. We first prove that 7o B is étale over mpA. Using Lemma 8.6, we
can choose a finite collection of elements x; € myB generating the unit ideal such that each of the induced
maps A — B [wi] factors as a composition

g, 9" 1
A= A= B[—]
Lq
where ¢’ is étale and g” is surjective on connected components. Note that m Lpp1y,,, ~ (wlLB/A)[z%} ~ 0.
Using Lemma 8.7, we deduce that ﬂ'OB[x%] is étale over myA; and therefore over mgA, from which it follows
that mgB is étale over myA.

Using Theorem A.7.5.0.6, we can choose an étale A-algebra A’ and an isomorphism of myA-algebras
a : mgA" ~ meB. Theorem A.7.5.4.2 implies that we can lift o to a map of A-algebras f” : A — B. To
complete the proof, it will suffice to show that f” is n-connective; this follows from Corollary A.7.4.3.2. [

Lemma 8.9. Let A — B be a morphism of connective Eo-rings, and assume that the relative cotangent
complex L4 vanishes. The following conditions are equivalent:

1) The commutative algebra moB is finitely presented over moA.

2) The algebra B is of finite presentation over A.

(
(2)
(3) The algebra B is almost of finite presentation over A.
(4)

4) The map A — B is étale.

Proof. The implication (4) = (1) is obvious, the equivalences (1) < (2) < (3) follow from Theorem
A.7.4.3.18, and the implication (1) = (4) is a special case of Lemma 8.8. O

Using Lemma 8.9, we can prove an analogue of the usual structure theorem for étale morphisms between
commutative rings.

Proposition 8.10. Let k be a connective Eo-ring, and let ¢ : A — B be a morphism between connective
k-algebras. The following conditions are equivalent:

(1) The map ¢ is étale.

71



(2) There exists a pushout diagram of k-algebras

k{z, ... a0} —> A

i(bo lsﬁ
k{y1, - yn}lx] — B,

where ¢po(x;) = fi(y1,. .., Yn) € (mok)[Y1, ..., yn] and A € (mok)[y1,...,yn] denotes the determinant of
the Jacobian matriz [Ty;]lﬁi,jﬁn'

Proof. To prove that (2) implies (1), it suffices to observe that the map ¢y appearing in the diagram is étale.
Note that the relative cotangent complex of ¢ can be identified with the cofiber of the map

1
Lk{zl,...,mn}/k ®k{$1,...,xn} k{ylv oo ayn}[Z] — Lk{yl’m,yn}[%]/k'

This is a map of free modules of rank n, which is given on 7y by the Jacobian matrix [%hgi, j<n. Since this
matrix is invertible in mok{y1, ... ,yn}[%], we deduce that the relative cotangent complex of ¢q vanishes, so
that ¢ is étale by Lemma 8.9.

We now prove that (1) = (2). Suppose that ¢ is étale. The structure theorem for étale morphisms of

ordinary commutative rings implies the existence of an isomorphism

7TOB ~ (WoA)[yl,. 7ym]/(f1, .,fm),

such that the determinant of the Jacobian matrix [%}19,5171 is invertible in moB. Let {a; € moAti<i<k

be the nonzero coefficients appearing in the polynomials f;. Choose a commutative diagram

S TR e —' |
i s
k{xlﬂ"'7xkvy17"'7ym}$3

where gg carries each z; to a; € mgA. For each 1 < i < m, choose a polynomial

?i S (W0k>[y17"'7ym7m17"~wrkr]

lifting f;, so that 91(f;) =0€ mB. Let A € (mok)[y1,-- - Ym, L1, - - ., Tk be the determinant of the Jacobian

matrix [g—zjjf]l<17j<n. It follows that there exists a commutative diagram Using Corollary A.7.5.4.6, we deduce
;1<

the existence of a commutative diagram

Kz, ... 2p, 21,y 2m)t ——=k{z1, ... 28} —= A
i I

1 91
k{xh"'7mkay17"‘7ym7}[Z] B

where h(z;) = f; and e(z;) = 0 for 1 < i < m. We claim that the outer square appearing in this diagram is
a pushout. To see this, form a pushout diagram

E{lxy, ..., 25,21, 2m} ——> A
| |
k{xh oy Ty Y1y e e 7ym}[%] HB/
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so that we have a canonical map 1 : B’ — B; we wish to show that 1 is an equivalence. By construction,
1 : B’ — B induces an isomorphism on connected components. The first part of the proof shows that B’ is
étale over A, so that Lp/ 4 ~ 0. Since L4 ~ 0, we conclude that Ly, ~ 0, so that B ~ B’ by Corollary
A.7.4.3.2. O

We are now ready to introduce the analogues of the geometries 9;‘; and Srzlif of §2.
Definition 8.11. Let k be an E, -ring. We define a geometry GiP (k) as follows:

(1) On the level of co-categories, we have GoP (k) = GooP(k) = Gu2P(k): that is, G2 (k) is the opposite

of the oo-category of compact k-algebras. If A is a compact k-algebra, we let Spec A denote the
corresponding object of G27P (k).

(2) A morphism f : Spec A — Spec B in QEtSp(k) is admissible if the underlying map of E..-rings B — A
is étale.

(3) A collection of admissible morphisms {Spec A, — Spec A} generates a covering sieve on Spec A if and
only if, for every prime ideal p C my A, there exists an index « such that p(mpAs) # ToAa-

If k£ is the sphere spectrum (regarded as an initial object of CAlg), then we will denote the geometry
9nSp( ) by 9nSp'

Remark 8.12. The condition appearing in (3) of Definition 8.11 is equivalent to the requirement that the
map [ [ Spec(moAn) — [ Spec(moA) is a surjection of topological spaces (endowed with the Zariski topology).
It is also equivalent to the requirement that there exist a finite collection of indices {ay, ..., ay} such that
the product map moA — [[;<;<,, T0Aa, is a faithfully flat map of commutative rings.

The role of the geometry Sgts P is summarized by the following result, which we will prove at the end of
this section:

Proposition 8.13. Let X be an co-topos and let
6 : Fun'™(G%P (k), X) =~ Shvcalg, (X)

be the equivalence of Remark 2.17. A left exact functor O : 9nSp( k) = X is a 9nSp( k)-structure on X if
and only if the underlying sheaf of B -rings of 6(0) is strictly Henselian, in the sense of Definition 8.1.
A natural transformation o : O — O’ in Funlcx(SreftSp(k),DC) is local if and only if 8(a)) determines a local
map between sheaves of Eo-rings, in the sense of Definition 2.5. In particular, we have an equivalence of
00-categories

RingTop; ~ “Top(§5; )

Proposition 8.13 implies that if O is a sheaf of E.-rings on an co-topos X, then the condition that the
corresponding left exact functor SHSP — X be a SnSp—structure depends only on the underlying sheaf of
commutative rings mo O. In particular, it is insensitive to operations like replacing O by its connective cover,
and by replacing that connective cover by its truncations. To study these operations, we introduce a variant
of the geometry 92ts P,

Definition 8.14. Let k be a connective E-ring. We let 955’(/{) denote the full category of Sré’tSp(k) spanned

by objects of the form Spec A, where A is a connective compact k-algebra. We regard 925 (k) as a geometry,
where a morphism Spec A — Spec B is admissible if the underlying map of E..-algebras B — A is étale, and
a collection of admissible morphisms {Spec A, — Spec A} generates a covering sieve on Spec A in Sgtp (k) if

and only if it generates a covering sieve in 92ts P(k). If k is the sphere spectrum (regarded as an initial object
of CAlg), then we will denote the geometry Sip(k) by Sgtp.
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Remark 8.15. Let k be an E,,-ring. Every admissible morphism (admissible cover) in SZM( ) is also an
admissible morphism (admissible cover) in §5°° (k). In other words, the identity map Sgif( ) = GEP(k ) is a

transformation of geometries. If k is connective, then the analogous assertions hold for SZM( ) and Sét (k).

Remark 8.16. Let k be a connective E.-ring, and let Sg (mok) be the geometry introduced in §V.2.6. The
truncation functor A — mpA determines a transformation of geometries 92) (k) = Gt (mok), which exhibits
Get (mok) as a O-stub of GEP ().

We now compare the geometries G5 (k) and G5P (k).

Proposition 8.17. Let ¢ : k — k' be a map of Eoo-rings, where k is connective, so that base change along

¢ induces a transformation of geometries Sif(k) — SZtSp(k’). Then:

nS . . .. . . S
(1) Every admissible morphism in G;° (k") is a pullback of the image of an admissible morphism in G20 (k).

(2) The Grothendieck topology on Sgtp(k’) 1s generated by the Grothendieck topology on ng(kz) (for a more
precise statement, see the proof below).

Proof. Assertion (1) follows immediately from Proposition 8.10. To prove (2), let § denote the oco-category
G25P(k’), endowed with an arbitrary Grothendieck topology. Suppose that every admissible covering in G5 (k)
determines a covering sieve in §. We wish to show that every admissible covering { f, : Spec A, — Spec A}
generates a covering sieve in §. We may assume without loss of generality that the set of indices « is finite.

Using (1), we deduce that each of the maps f, fits into a pullback diagram

Spec A, LN Spec A

|k

Spec B/, L Spec By,

where f! is an admissible morphism in 925 (k). Replacing each B, with the tensor product B = ®,B,
(taken over the E-ring k), we may assume that the underlying map g, : B, — A is independent of «. Let
go : moB — mp A be the induced map of commutative rings.

Let X = Spec? B. Each of the maps moB — moBY, is étale, so that Spec? B!, has open image U, C X
(Proposition 0.2). Since the maps f,, cover A, we deduce that the Zariski spectrum of A has image contained
in {J, Us. It follows that there exists a finite collection of elements by, ...,b, € mB with the following
properties:

(i) The images a; = go(b;) generate the unit ideal in mgA.

(i) For 1 < i < n, there exists an index «; such that the basic open set V; = {p C noB : b; ¢ p} is
contained in U,,.

Condition (i) implies that the morphisms {Spec A[-- -] — Spec A} form an admissible covering with respect
to the geometry Srzlaf(k’ ), and therefore generate a covering sieve with respect to the topology on G (see
Remarks 2.15 and 2.16). Consequently7 it will suffice to show that, for each index 1 < i < n, the pullback
maps {f% : Spec Aa[a%_] — Spec A[-L -]} generate a G-covering sieve on Spec Al -] (here we abuse notation
by identifying a; € oA with its image in moAa). Let a; be as in (ii). We claim that the single morphism
fL, : Spec A, | 1] — Spec A[- -] generates a §-covering sieve. To prove this, we observe that f&, is a pullback

of the map Spec B/, [-] — Spec B[], which is a Sét (k)-covering by construction. O

Corollary 8.18. Let k be a connective E-ring, and let X be an co-topos. Then:

(1) A left-exact functor O : SnSp( k) =X isa 9nSp( k)-structure on X if and only if O] Sif(k) is a 9§f(kz)—
structure on X.
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(2) Let 0,0": GP(k) — X be SnSp( k)-structures on X. A natural transformation o : O — O is local if
and only if the induced map O | Sét (k) = 0] Sif(k) is local.

Corollary 8.19. Let k be an Ey-ring, and let f : SnSp SHSP( k) be the transformation of geometries
induced by the map S — k, where S denotes the sphere spectrum. Then:

(1) A left-ezact functor O : SgtSp(kJ) —Xisa SEtSp(k)—structure on X if and only if Oof is a ngp—structure
on X.

(2) Let 0,0 QnSp( k) — X be SnSp( k)-structures on X. A natural transformation o : O — O’ is local if
and only zf the induced map O of — O' of is local.

Remark 8.20. If k is connective, then f restricts to a transformation of geometries fo : GoF — 9 P(k). We
have the following analogous results:

(1) A left-exact functor O : GP(k) — X is a GooP (k)-structure on X if and only if O of is a GiP-structure
on X.

(2') Let 0,0": Sftp(k:) — X be Sgtp(k)—s‘cructures on X. A natural transformation o : O — O’ is local if and
only if the induced map O ofy — O of is local.

Our next goal is to show that when k is connective, the geometry Sgtp (k) can be obtained as the geometric

envelope of a pregeometry TStp (k). To define this pregeometry, we need a few remarks about the notion of a
smooth morphism between E.-rings.

Definition 8.21. Let k be a connective E-ring. Let ¢ : B— Bbea map of connective k-algebras. We
will say that ¢ is a nilpotent thickening if the underlying map of commutative rings (mg®) : 7B — moB is
surjective, and the ideal I = ker(mp¢) is nilpotent.

Let F : CAlg" — 8 be a (space-valued) functor on the co-category of connective k-algebras. We will
say that F' is formally smooth if, for every nilpotent thickening B — B, the induced map F(E) — F(B) is
surjective.

Proposition 8.22. Let k — A be a morphism of connective Eo.-algebras, and let F : CAlgy" — 8 be
the functor corepresented by A (given informally by B +— Mapc g, (A, B). The following conditions are
equivalent:

(1) The functor F' is formally smooth, in the sense of Definition 8.21.
(2) The relative cotangent complex L 4y, is a projective A-module (see Definition A.7.2.2.4).

Proof. Assume first that F' is formally smooth; we wish to show that L 4, is projective. In view of Proposi-
tion A.7.2.2.6, it will suffice to show that for every cofiber sequence N’ — N — N of connective A-modules,
the induced map ¢ : Mapyoq, (Lask, N) = Mapyoq, (Lask, N”) is surjective on connected components: in
other words, we wish to show that the homotopy fibers of ¢ are nonempty. Fix a map L4/, — N”, corre-
sponding to a section of s the projection map A® N” — A. Invoking the definition of L Ak, we see that the
homotopy fiber of ¢ over s can be identified with the homotopy fiber of the map ¢’ : F(A®&N) — F(A®&N").
We now observe that the map A@® N — A® N” is a nilpotent thickening, so that the homotopy fibers of ¢’
are nonempty by virtue of (1).

Now suppose that L,/ is projective. We wish to prove that F' is formally smooth. Let B = Bbea
nilpotent thickening and let 1 € F(B); we wish to show that 7 can be lifted to a point in F(B). We define

a tower of E—algebras
.= B(2)—= B(1) —» B(0)=B
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Assume that B(i) has been constructed, and let M (i) = Ly 5- By construction, we have a derivation
d: B(i) — B(i) ® M(i), fitting into a commutative diagram

B—— > B(i)
L,
B(i) —= B(i) ® M(i);
here dy denotes the trivial derivation. We now define B(i 4 1) to be the fiber product B(i) X p(ye (i) B(4).

Let I C 7T0§ be the kernel of the surjection 7r0§ — mpB. We next claim:

() For every integer n > 0, the algebra B(n) is connective. Moreover, the map moB — moB(n) is a
surjection, whose kernel is the ideal 1?".

The proof of (%) proceeds by induction on n. Assume that () holds for B(n), and let K denote the
fiber of the map B — B(n). Condition (*) guarantees that K is connective, and that the image of the map
7oK — moB is the ideal J = I?". We have a map of fiber sequences

T

M(n)[-1] — B(n+1) — B(n),

so the fiber K’ of the map B — B(n + 1) can be identified with the fiber of the composition
K5 K5 Bn) S Mn)[-1].

To prove (x), it will suffice to show that K’ is connective and the image of the map mo K’ — moB is J2. We
have a fiber sequence
fib(B) = K' — fib(a).

Since K is connective, Theorem A.7.4.3.1 guarantees that fib(a) is 1-connective. It follows that the maps
m; fib(B) — m K’ are surjective for ¢ < 0. To complete the proof, it will therefore suffice to show that
fib(8) is connective and the map m fib(3) — mB has image J?. This follows from the observation that
fib(8) ~ K x 5 K, so that 7 fib(5) ~ Tor*? (oK, mo K). Under this identification, the map 7o fib(3) — ToB
corresponds to the bilinear multiplication map

oK x moK — J x J — 1B,

whose image generates the ideal J2 C 7r0§ .

Choose any map of k-algebras A — B(n). Since L,y is projective, the space Mapyjoq, (La/k, M(n))
is connected. It follows that the homotopy fibers of the projection map F(B(n) ® M(n)) — F(B(n)) are
connected. Consequently, for any derivation d : B(n) — B(n) & M (n), the homotopy fibers of the induced
section F(B(n)) — F(B(n)® M(n)) are nonempty. It follows that the homotopy fibers of the pullback map
F(B(n+ 1)) — F(B(n)) are also nonempty: in other words, every point of 7, € F(B(n)) can be lifted
to a point 1,41 € F(B(n+ 1)). Consequently, we are free to replace the pair (B,n) with (B(n),n,) for
any n > 0. Since I is nilpotent, condition (*) implies that the map 0B — moB(n) is bijective for n > 0.
Replacing B by B(n), we can reduce to the case where 7T0§ — mo B is an isomorphism.

Let M = TSlLB/E, let d: B — B @® M be the canonical derivation, and form a pullback diagram

B ———B

L,k

B—"sBoM
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Repeating the above arguments, we deduce that M is 1-connective, so that F(B’) — F(B) is surjective. We
claim that the canonical map B — B’ is 1-connective. Let N denote the kernel of the projection B — B, so
that we have a map of fiber sequences
N B B
M- B.

1]4>34>

<

To show that B — B’ is 1-connective, it will suffice to show that f is 1-connective; that is, f induces a
bijection mgN — m M and a surjection m; N — moM. The second assertion is clear, since moM ~ 0 by
construction. For the first, we factor 7 f as a composition

7TON£> 7TQ(N ®§ B) ~ 1N ®ﬂ_0§ (770B) E>7T'1L B B—>7T1M.

B/

The map [ is an isomorphism because WQE ~ moB, the map /' is an isomorphism by Theorem A.7.4.3.1,
and the map " is an isomorphism by construction. Replacing B by B’, we can assume that B — B is
1-connective.

We now repeat the original construction of the tower

...— B(2) —» B(1) — B(0)
and prove the following strengthening of (x):
(') For n > 0, the map B — B(n) is 2"-connective.

The proof of (+') proceeds by induction on n, the case n = 1 being obvious. Assume therefore that B — B(n)
is 2"-connective, and let K and K’ be as in the proof of (*). We wish to prove that K’ is 2"*!-connective.
As before, we have a fiber sequence

fib(a) = K’ — fib(B).

Here fib(8) ~ K®3 K, and is therefore 2"+ 1_connective since K is 2"-connective by the inductive hypothesis.
The map a is (2" + 1)-connective by Theorem A.7.4.3.1.

As before, each of the maps F(B(n + 1)) — F(B(n)) is surjective on connected components, so we can
lift i to a point of Jim F(B(n)) ~ F(l&n B(n)). To complete, the proof, it suffices to show that the canonical

map B — I&H B(n) is an equivalence. This follows from (%), since Postnikov towers of connective k-algebras
are convergent (Proposition A.7.1.3.19). O

Proposition 8.23. Let k — A be a morphism of connective By -rings. Assume that mgA is a finitely
generated algebra over mok. The following conditions are equivalent:

(1) The functor CAlg)" — 8 corepresented by A is formally smooth.

(2) The relative cotangent complex L 4y, is a projective A-module.
(3) The relative cotangent complex Ly, is a finitely generated projective A-module.
(1)

There exist elements aq,...,a, € m9A which generate the unit ideal and a collection of étale maps
E{x1,....,2m,} — A[a%]

Moreover, if these conditions are satisfied, then A satisfies the following:

(5) The algebra A is locally of finite presentation over k.
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(6) The underlying commutative ring woA is a smooth algebra over mok, in the sense of classical commu-
tative algebra.

Proof. The implication (3) = (2) is obvious; the converse follows from the observation that moL 4, is the
module of Kéhler differentials of mpA over mpk (Proposition A.7.4.3.9) and therefore finitely presented over
moA. The equivalence (1) < (2) follows from Proposition 8.22. The implication (1) = (6) is obvious, and
the implication (3) = (5) follows from Theorem A.7.4.3.18. We will complete the proof by showing that
4) < (3).

Assume first that (4) is satisfied. Note that L4, is a finitely generated projective A-module if and only
if moL 4/ is a finitely generated projective module over moA, and each of the induced maps

TorgoA(m)LA/k, WjA) — WjLA/k

is an isomorphism. Since the elements a; € myA generate the unit ideal, it will suffice to show that each

(WoLA/k)[a%] is a finitely generated projective module over (moA)[-- -], and that the induced maps
(moA)[ ] 1 1 1
Tory  “((m moALask)—~ ] (mg A1) = (miLasw)[—]-

Each of the algebras A[X- -] is étale over A, so that L1 1 ~ Lak®aAl- -]. Consequently, we may replace

Aby AL -] and thereby reduce to proving (3) in the case where we have an étale map k{z1,...,zn} — A.
In this case we have

Lajk >~ Lifay, . am}/k Okfay,...zmy A =A™
and the result is obvious.

Converely, suppose that (3) is satisfied; we will prove (4) The module 7oL 4,4, is projective and of finite
rank over myA. Consequently, there exist elements aq,...,a, generating the unit ideal in 719 A such that
each of the modules (’/T()LA/k)[j] is a free module of some rank m; over (moA)[- -]. Replacing A by Al -],
we may suppose that moL 4/ is a free module of some rank m. Proposition A.7. 4.3.9 allows us to 1dent1fy
7oL o with the module of Kéhler differentials of moA over mok. In particular, moL 4 is generated (as an
A-module) by finitely many differentials {dz}}1<p<4. The identification moL 45, =~ (10 A)™ allows us to view
the differentials {dz4}1<p<q as an m-by-¢ matrix M. Let {b;} be the collection of all determinants of m-by-m
square submatrices appearing in M. Since the elements {dz,}1<p<q generate (mpA)™, the matrix M has
rank m so that the elements b; generate the unit ideal in A. It therefore suffices to prove that (4) is satisfied
by each of the algebras A[bij}. We may therefore assume (after discarding some of the elements ;) that
q = m and that moL 4/, is freely generated by the elements dx;. The choice of elements x1,...,z,, € mA
determines a map k{z1,...,xmnm} — A. The fiber sequence

Lictar, o wmy/k Okfar,zm) A= Lask = Lajk{ar,...zm}

shows that the relative cotangent complex L 4/p(s, ... 2,,} vanishes, so that A is étale over k{x1,..., 2} by
Lemma 8.9. 0

Definition 8.24. Let k be a connective E-ring. We will say that a k-algebra A is smooth over k if it
satisfies the equivalent conditions of Proposition 8.23: that is, if A is connective, formally smooth over k,
and 7oA is finitely generated over myk.

Warning 8.25. A smooth morphism of connective Eo-rings & — A need not be flat (in contrast with the
situation in classical algebraic geometry).

We now organize the smooth k-algebras into a pregeometry.

Definition 8.26. Let k be a connective E-ring. We let TStp(k) denote the full subcategory of Qgtp(k)
spanned by the objects of the form Spec A for which there exists an étale morphism of k-algebras

k{z1,...,z,} = A,

for some n > 0. We regard ‘J'Stp (k) as a pregeometry as follows:
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(1) A morphism Spec A — Spec B in ’Igtp (k) is admissible if and only if the corresponding map of k-algebras
B — A is étale.

(2) A collection of admissible morphisms {Spec A, — Spec A} in ‘J'Sf (k) generates a covering sieve on
Spec A if and only if it generates a covering sieve in SStp (k): that is, if and only if there exists a finite
set of indices {a;}1<i<n such that the induced map A — [],_,,, Aq, is faithfully flat.

If k is the sphere spectrum (regarded as an initial object of CAlg), then we will denote the pregeometry
Sp Sp
Tot (k) by T2

Variant 8.27. If k is a connective Eq.-ring, we let ‘J'éts P(k) denote the full subcategory of SZP (k) spanned
by those objects of the form Spec A where A is a smooth k-algebra. We regard ‘J'éts P(k) as a pregeometry,
using the admissible morphisms and admissible coverings in 9§tp (k), as in Definition 8.26. Using condition
(4) of Proposition 8.23 and Proposition V.3.2.8, we deduce that the inclusion Tff(k) - ‘J'gtSp(k‘) is a Morita
equivalence of pregeometries. In particular, for any co-topos X, the restriction map

StrZfsn ) (X) = Strgs, ) (X)

is an equivalence of co-categories.
Proposition 8.28. Let k be a connective Eoo-ring. The inclusion T30 (k) C 5P (k) exhibits S50 (k) as a

geometric envelope of ‘J’Ef(k)

Proof. As in the proof of Proposition 2.20, we let Ty denote the full subcategory of 93’ (k) spanned by objects
of the form k{z1,...,2,}; we will show that the inclusion Ty C Sgtp(k) satisfies conditions (1) through (6)
of Proposition V.3.4.5. Conditions (1), (2) and (3) follow as in the proof of Proposition 2.20, and assertions
(4) and (5) are proven as in Proposition 8.17. To verify (6), let us suppose that € is an idempotent complete
oo-category which admits finite limits and that « : f — f’ is a natural transformation between admissible
functors f, f' : ‘J‘Stp (k) — € which induces an equivalence f|Ty =~ f/'|To. We wish to prove that « is an
equivalence.

Fix an object of Spec A € ‘J'ftp (k) corresponding to a smooth k-algebra A for which there exists an

étale map k{z1,...,2zm} — A. Using Proposition 8.10, we deduce the existence of a pushout diagram of
k-algebras
E{zy,...,en} ——k{z1,...,2m}
| |
Kyt ynda] ——— A
where ¢(z;) = fi(y1,...,yn) and A is the determinant of the Jacobian matrix [g—;}]l<i7j<". We wish to
1< <

show that « is an equivalence on A. Since f, f' : T¢; (k) both preserve pullbacks by étale morphisms, it will
suffice to show that « is an equivalence on k{z1,...,z,}, k{z1,...,2n}, and k{y1,...,y,}[£]. In the first
two cases, this is clear (since f| & = f'| €); in the third case, it follows from the proof of Proposition 2.20. O

Corollary 8.29. Let k be a connective Eo-ring. For each n > 0, let Sif(k)gn denote the opposite of the
oo-category of compact objects in the oco-category 7<, CAlgi" of connective, n-truncated Ex -algebras over k.
The composite functor
S S T<n oS
Ter (k) € GF (k) = Gaf (k)="
exhibits 9(8;(/6)3” as an n-truncated geometric envelope of Te(k). In particular, the functor A — moA
exhibits Gg(mok) as a O-truncated geometric envelope of ‘J'Ef(k)

Proof. Combine Proposition 8.28, Lemma V.3.4.11, and Remark 8.16. O
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Remark 8.30. Let k be a connective Eo-ring and X an oo-topos. The proofs of Propositions 2.20 and 8.28
imply that the restriction functors

Funlex(ggtp(k)7 X) — FU.nad (Tgf(k), x)
— Funad (TStp(k)a x)
—  Fun™ (T, X)

are equivalences of co-categories (here Ty denotes the full subcategory of ‘J'Stp (k) spanned by those objects
of the form Speck{x1,...,2,}, and Fun" (Tp, X) the full subcategory of Fun(Ty,X) spanned by those func-
tors which preserve finite products). Remarks V.1.1.5 and V.1.1.6 allow us to identify the oo-category
Fun'® (5P (k), X) with the oo-category Shvc Alger (X) of sheaves of connective k-algebras on X. In particular,
for each n > 0, we have a truncation functor 7<,, : Funlex(Sgtp(k),fX) — Funlex(gstp(k),f)C). This induces
truncation functors

T<n : Fun®(T5P(k), X) — Fun®d(T5P(k), X)

T<p t Fun®™ (T30 (k), X) — Fun® (T30 (k), X)

T<pn : Fun™(To, X) — Fun™ (T, X).

We claim that each of these truncation functors is simply given by composition with the truncation functor

Tgn on X. Unwinding the definitions, this amounts to the following assertion:

(*) Let O : 9§tp(k) — X be a left exact functor, and O its n-truncation in Funlex(SStp(k),f)C). Then, for
every A € T5P(k), the induced map O(A) — O'(A) exhibits O'(A) as an n-truncation of O(A) in X.
Note that if 7% : Y — X is a geometric morphism and O € Funlex(Szf(k),H) satisfies (), then 7* O also
satisfies (%) (because the induced map Funlcx(ggtp (k),Y) — Funlcx(Sgtp (k),X) commutes with n-truncation,
by Proposition T.5.5.6.28).

Without loss of generality, we may suppose that X arises as a left-exact localization of a presheaf oco-
category P(C). Let n* : P(€) — X be the localization functor, and 7, : X — P(C) its right adjoint. Then,
for each O € Funlex(QStp (k),X), the counit map 7*m. O — O is an equivalence. In view of the above remark,
it will suffice to prove that (P(C), m. O) satisfies (). In particular, we may assume that X has enough points
(given by evaluation at objects of C), and can therefore reduce to the case X = 8. In this case, we can
identify O with a connective k-algebra R, and assertion (%) can be reformulated as follows:

(#') Let R be a connective k-algebra and let A be a smooth k-algebra. Then the map
Mapcag, (A, R) — Mapcayg, (A, 7<nR)
exhibits Mapgya),, (4, 7<nR) as an n-truncation of the mapping space Mapc g, (4, R).

Assertion (+) is equivalent to the requirement that the diagram {Mapcy,, (4, 7<nR?)} is a Postnikov
tower for Mapcyy,, (A, R). Since R is the limit of its Postnikov tower (Proposition A.7.1.3.19), we de-
duce that Mapcyay, (4, R) is the limit of {Mapgy,, (4, 7<nR)}; it therefore suffices to show that the
tower {Mapcay,, (4, 7<n?)} is a Postnikov tower. In other words, it suffices to show that each of the
maps ¢ : Mapgayg, (A, T<nt1R) — Mapcyy,, (A, 7<nR) exhibits Mapcy, (A, 7<nR) as an n-truncation of
Mapcag, (A, T<nt1R). Since Mape g, (4, 7<n ) is evidently n-truncated, it suffices to show that the ho-
motopy fibers of ¢ are (n + 1)-connective. According to Theorem A.7.4.1.26, there is a pullback diagram of
k-algebras

T§n+1R TgnR

| |

TgnR (TSnR) D (7Tn+1R) [n + 2].
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Consequently, it suffices to show that the homotopy fibers of the map

¢/ : Mapeagg, (A 7<nR) = Mapcay, (A, (r<nR) & (a1 R)n + 2]).
The map ¢’ is a section of the projection map

¥ : Mapcagg, (4, (T<nR) ® (1 R)[n + 2]) = Mapcyy,, (4, 7<nR).

To complete the proof, we show that ¢ has (n + 2)-connective homotopy fibers. Note that the homotopy
fiber of 1) over an algebra map A — 7<,R is given by the mapping space Mapy;,q, (La/k, (Tnr1R)[n + 2]),
which is (n + 2)-connective because L 4 /k is a projective A-module.

We are now ready to give the proof of Proposition 8.13.
Proof of Proposition 8.13. Let X be an oo-topos and k an E.-ring. We must prove two assertions:

(a) Let O : ngp(k) — X be a left exact functor, and Op the corresponding sheaf of E..-rings on X. Then

Oisa Sgts P_structure on X if and only if Oy is strictly Henselian.

(b) Let a: O — O’ be amap of §5° (k)-structures on X, and ag : Og — O} the corresponding map between

sheaves of E-rings. Then « is a local transformation of 9;8 P(k)-structures if and only if g is a local
map of sheaves of E-rings (in the sense of Definition 2.5).

Let us first prove (a). Using Corollary 8.19, we can reduce to the case where k is the sphere spectrum.
In particular, k is connective. Using Corollary 8.18, we can replace Qg by its connective cover and O by its
restriction to 9§tp - Szts P Using Proposition 8.28 and Remark 8.30, we can replace Qg by its 0-truncation
7o Oo, in which case the desired result follows immediately from the definitions. The proof of (b) is similar:
using the same arguments, we can replace O and Oy by my Oy and 7y Op, in which case the desired result

follows from Proposition V.2.6.16. O

Remark 8.31. Let (X, Ox) be a spectrally ringed oo-topos. If the underlying topos X of discrete objects of
X has enough points, then we can give an even more concrete criterion: the sheaf of Eo-rings O« is strictly
Henselian if and only if, for every point x of the topos X, the stalk (moOx), is a strictly Henselian local
ring. Moreover, a map of strictly Henselian E,.-rings Oy — O is local if and only if, for each point z € X,
the induced map (mp Ox), — (7o le)g; is a local homomorphism between local commutative rings.

Using Proposition 8.13, we see that Proposition 8.4 is a special case of Theorem V.2.1.1. We can also
recast Definition 8.5 in the language of geometries:

Definition 8.32 (Spectral Deligne-Mumford Stack: Abstract Definition). Let k be an Eo-ring. A noncon-
nective spectral Deligne-Mumford stack over k is a ngp(k)—scheme (see Definition V.2.3.9), where SEtSp(k) is
the geometry of Definition 8.11.

If k is connective, a spectral Deligne-Mumford stack over k is a Sgtp(k)—scheme, where Sztp is the geometry
of Definition 8.14.

Remark 8.33. In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), the
notion of (nonconnective) spectral Deligne-Mumford stack over k reduces to the notion of (nonconnective)
spectral Deligne-Mumford stack introduced in Definition 2.7.

Let (X, Ox) be a nonconnective spectral Deligne-Mumford stack over an Eo-ring k. We can think of Oy
either as a sheaf of E..-algebras over k, or as a left exact functor 92§ P(k) — X. We will generally abuse
notation by not distinguishing between these two avatars of Oy: we will whichever point of view is more
convenient for the problem at hand.

Definition 8.34. Let k be a connective E-ring, and let n > 0. We will say that a connective spectral
Deligne-Mumford stack (X, Ox) is n-truncated if Oy is n-truncated, when regarded as a sheaf of spectra on

X.
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Equivalently, (X, Ox) is n-truncated if the restriction O | ‘J’Stp (k) takes values in the full subcategory of
X spanned by the n-truncated objects.

Definition 8.35. Let k be an E.-ring, and let n > 0. We will say that a spectral Deligne-Mumford stack
(X, Ox) is n-localic if the oo-topos X is n-localic, in the sense of Definition T.6.4.5.8.

The following result shows that the theory of derived Deligne-Mumford stacks really does generalize the
classical theory of Deligne-Mumford stacks:

Proposition 8.36. Let k be a connective Eyo-ring, and let Sché?(gif(k)) denote the full subcategory of

Sch(S?f(k)) spanned by those Sif(k‘)-schemes which are O-truncated and 1-localic. Then Sché?(ggf(kz)) is
canonically equivalent to the co-category of Deligne-Mumford stacks over the commutative ring mok (see
Definition V.2.6.9).

Proof. Combine Corollary 8.29 with Theorem V.2.6.18. O

Our next goal is to compare the theories of connective and nonconnective spectral Deligne-Mumford
stacks. The following assertion is an immediate consequence of Proposition 2.30:

Proposition 8.37. Let k be a connective Eoo-ring, and let U : L‘J’op(giif(k)) — LTop( ZtSp(k)) be the

relative spectrum functor associated to the inclusion of geometries Sif(k) — SreftSp(k‘). Then U is a fully

faithful embedding, whose essential image consists of those pairs (X, Ox) where O determines a connective
sheaf of Eoo-1ings on X.

The proof of Proposition 2.33 immediately yields the following analogue for the étale topology:

Proposition 8.38. Let k be a connective B -ring, and let (X,0) be a nonconnective spectral Deligne-
Mumford stack over k. Then (X, 0 | 92?(14:)) is a spectral Deligne-Mumford stack over k.

Combining Propositions 8.37 and 8.38, we obtain the following result:

Corollary 8.39. Let k be a connective E-ring and let U be as in Proposition 8.37. Then U induces a fully
faithful embedding Sch(SEf(k)) — Sch(ggfp(k)), whose essential image consists of those spectral Deligne-
Mumford stacks (X,0) such that O determines a connective sheaf of Eoo-rings on X.

We now discuss the operation of truncation for structure sheaves of spectral Deligne-Mumford stacks.

Proposition 8.40. Let k be a connective By -ring. For each n > 0, the pregeometry Tif(kj) is compatible
with n-truncations.

Proof. This is a consequence of the corresponding result for the Nisnevich topology which we will prove in
a sequel to this paper. O

Remark 8.41. Let (X, Ox) be a nonconnective spectral Deligne-Mumford stack. We will abuse notation
by identifying Oy with the underlying CAlg-valued sheaf on X. It follows from Proposition 8.38 that the
pair (X, >0 Ox) is a spectral Deligne-Mumford stack; we will refer to (X, 7>¢ Ox) as the underlying spectral
Deligne-Mumford stack of (X, Q). Using Propositions 8.40 and V.3.4.15, we conclude that for each n > 0,
the pair (X, 7<,7<o Ox) is an n-truncated spectral Deligne-Mumford stack. In particular, if X is 1-localic
and we take n = 0, then we obtain a 1-localic, O-truncated Deligne-Mumford stack (X, 7w Ox), which we
can identify with an ordinary Deligne-Mumford stack (Proposition 8.36). We will refer to (X, mo Ox) as the
underlying ordinary Deligne-Mumford stack of (X, Ox).

We conclude this section with a concrete characterization of the class of spectral Deligne-Mumford stacks,
analogous the the description of spectral schemes given in Definition 2.2.

Theorem 8.42. Let X an oo-topos, and Oy a sheaf of Eoo-algebras on X. Then (X, 0x) is a nonconnective
spectral Deligne-Mumford stack if and only if the following conditions are satisfied:
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(1) Let ¢y : X — X' be a geometric morphism of co-topoi, where X' is 1-localic and ¢, is an equivalence
on discrete objects (so that ¢, exhibits X' as the 1-localic reflection of X). Let O be the commutative
ring object in the underlying topos of X' corresponding to mo Ox.. Then (X', Ox/) is a spectral Deligne-
Mumford stack over k (which is 1-localic and O-truncated, and can therefore be identified with an
ordinary Deligne-Mumford stack X by Proposition 8.36).

(2) For every integer i, m; Oy is a quasi-coherent sheaf on X.

(3) The object Q> Ox € X is hypercomplete.

Proof. The proof follows the same lines as that of Theorem 2.40, but is slightly more complicated (because
assertions (1) and (2) are not local on X). In what follows, we will abuse notation by identifying Ox with the
corresponding left exact functor 9;8 P — X. Suppose first that (X, Ox) is a nonconnective spectral Deligne-
Mumford stack. We will prove that (1), (2), and (3) are satisfied. Remark 8.41 implies that (X, m Ox) is
a spectral Deligne-Mumford stack, and Corollary 8.29 allows us to identify my Ox with a G -structure on
X. Let ¢, : X — X' be the 1-localic reflection of X; then Theorem V.2.3.13 implies that (X', Oy/) is again a
spectral Deligne-Mumford stack, and that the map (X, 7o Ox) — (X',x ) is étale. This proves (1).

Assertion (3) is local on the oco-topos X. Consequently, to prove that (3) holds, we may assume that
(X, Ox) is affine; the proof then proceeds exactly as in the proof of Theorem 2.40. To prove (2), we consider
a collection of objects {U, € X} such that [[U, — 1x is an effective epimorphism, and each of the SEEP(IC)—
schemes (X,y,,0x |Uy) is affine, equivalent to Spec® A, for some A, € CAlg;. The composite geometric
morphisms

Xy, X=X

are étale and cover X'. Since assertion (2) is local on X', it is sufficient to show that the restriction of each
7; Ox to Xy, is a quasi-coherent sheaf on the ordinary Deligne-Mumford stack given by (X,y_, mo(Ox |Ua))
(in other words, the affine scheme Spec(mpAy). This follows immediately from Theorem V.2.2.12: the
restriction of 7; O« is the quasi-coherent sheaf associated to m; A, viewed as a module over the commutative
ring moAq.-

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X, Ox) is a
nonconnective spectral Deligne-Mumford stack. The assertion is local on X’. The étale geometric morphism
X — X' determines an equivalence X ~ f)C//U7 for some 2-connective object U in X’. Passing to a cover of X,
we may assume without loss of generality that U admits a global section s : 10 — U; since U is 1-connective,
this map is an effective epimorphism. This section determines a geometric morphism of co-topoi s, : X' — X.
In view of Proposition V.2.3.10, it will suffice to show that (X', s* Ox) is a spectral Deligne-Mumford stack
over k. Replacing X by X', we are reduced to the case where X is I-localic and (X, 7 Ox) is a spectral
Deligne-Mumford stack. Passing to a cover of X again if necessary, we may suppose that (X, w9 Ox) is the
spectrum of a (discrete) commutative ring R.

We now proceed as in the proof of Theorem 2.40. Assume first that the structure sheaf Oy is connective
(as a sheaf of Ey-rings on X). Applying (2), we conclude that each m; Oy is the quasi-coherent sheaf
associated to an R-module M;. We have isomorphisms

0 otherwise.

H"™(X;7; Ox) =~ {

(see §T.7.2.2 for a discussion of the cohomology of an oo-topos, and Remark T.7.2.2.17 for a comparison
with the usual theory of sheaf cohomology.) For each n > 0, let A<, € CAlg denote the Eo-ring of global
section I'(X; 7<,, Ox). There is a convergent spectral sequence

Eg’q = HP(X; 7Tq(TSn Ox)) = Tg—pA<n.

It follows that this spectral sequence degenerates to yield isomorphisms

M, if0<i<n
T A<y ™ .
- 0 otherwise.
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In particular, mgA<, ~ R.

Fix n > 0, and let (X,,, Ox,) be the spectrum of A<,. The equivalence A, ~ I'(X;7<,, Ox) induces a
map ¢ : (Xn, O, ) = (X, 7<p Ox) in “Top(GLP). Since 19 A, ~ R, the geometric morphism ¢, : X,, — X is
an equivalence of co-topoi, and ¢,, induces an isomorphism of quasi-coherent sheaves ¢ (m; Ox, ) ~ m; Ox for
0 <1 < n. Since the structure sheaves on both sides are n-truncated, we conclude that ¢,, is an equivalence.

Let A denote the inverse limit of the tower of E.,-rings

...—)AS2—>A§1—>A§0,

so that mpA ~ R. We can therefore identify the spectrum of A with (X, 0%). As in the proof of Theorem
2.40, we see that O’ is the inverse limit of its truncations

T<n le ~ (25:; Oxn =~ T<n Ox .
Passing to the inverse limit, we obtain a map
’(/J 10y — lim{TSn Ox} ~ O/X .

By construction, ¢ induces an isomorphism on all (sheaves of) homotopy groups, and is therefore oco-
connective. The Oth space of 0% is a hypercomplete object of X (since it is an inverse limit of truncated
objects of X), and the 0th space of Ox is hypercomplete by assumption (3). It follows that ¢ is an equivalence,
so that (X, Ox) ~ Spec® A is a spectral Deligne-Mumford stack as desired..

We now treat the case where the structure sheaf Oy is not assumed to be connective. The pair (X, 7> Ox)
satisfies conditions (1), (2), and (3), so the argument above proves that (X, 70 Ox) =~ Spec®®(A) for some
connective Eq-ring A. Let B € CAlg be the E-ring of global sections of Ox. Then 7>¢B is connective
cover of the algebra of global sections of 7> Ox, and is therefore equivalent to A. In particular, we can
identify Spec®® (B) with (X, %), for some sheaf of E..-rings O’ on X. To complete the proof, it will suffice
to show that the canonical map 6 : O’ — Oy is an equivalence. Let F denote the fiber of the map 6, viewed
as an object of 8hvg,(X). Since 6 induces an equivalence on the level of connective covers, we deduce that
T>0 F ~ 0. We wish to prove that F ~ 0. Suppose otherwise. Since Shvg,(X) is right complete (Proposition
1.7), we deduce that there exists an integer n (necessarily positive) such that m,, F is nonzero. We will assume
that n is chosen minimal with respect to this property. We have an exact sequence of sheaves of O x-modules

Ton Oy =m0y Ox =57 F =7, 0% — 7, Ox .

The homotopy groups of Oy are quasi-coherent sheaves on X by (2). Since (X, %) is a spectral Deligne-
Mumford stack, it also satisfies (2) (by the first part of the proof), so that homotopy groups of O are also
quasi-coherent sheaves on the ordinary Deligne-Mumford stack X. It follows that 7_,, F is a nonzero quasi-
coherent sheaf on the ordinary Deligne-Mumford stack X. Since X is the spectrum of the commutative
ring R, we conclude that m_, F has a nonvanishing global section. The minimality of n guarantees that
7 o L(X;F) = T(X;7m_,, F), so that the spectrum I'(X;F) is nonzero. But I'(X; F) can be identified with
the fiber of the map of global sections T'(X; 0%) — I'(X; Ox), which is equivalent to the identity map on the
Eso-ring B. We therefore obtain a contradiction, which completes the proof. O

Remark 8.43. In the situation of Theorem 8.42; the spectral Deligne-Mumford stack (X, Ox) is affine if and
only if X ~ X" and the Deligne-Mumford stack (X', ¢.mo Ox) is affine. The “if” direction follows immediately
from the proof of Theorem 8.42. To prove the “only if” direction, we may assume that (X, Ox) ~ Specét(A)
for some E,-ring A. Then the results of §V.2.2 show that X can be identified with the oco-category of
sheaves on the co-category of étale A-algebras, which is equivalent (by Theorem A.7.5.0.6) to the co-category
of sheaves on the ordinary category of étale myA, and therefore 1-localic. It follows that (X', ¢.mo Ox) ~
(X, mo Ox) which can be identified with the spectrum of the discrete commutative ring 7oA.
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9 Comparison Results

In this section, we will discuss how some of the definitions given earlier in this paper are related to one
another, and to some of the ideas introduced in [42]. We can summarize our main results as follows:

(A) In §2, we introduced the notion of a (nonconnective) spectral scheme, which can be interpreted as
a scheme with respect to the geometry 9;?‘;, which encodes the Zariski topology on the oco-category
CAlg of E-rings (see Definition 2.10). Replacing the Zariski topology by the étale topology, we

nSp

ét

obtain another geometry G.°P whose schemes are the (nonconnective) spectral Deligne-Mumgford stacks

of §8. There is an evident transformation of geometries Sgif — gusp

¢t » which is the identity functor
at the level of underlying co-categories. This transformation determines a relative spectrum functor
Spec’%t : SpSch™ — Stk". We will show that this functor is fully faithful when restricted to 0-localic
spectral schemes (Theorem 9.1).

(B) Let k be an Eq-ring. The geometries GyoP and GaP have relative versions Gy-F (k) and 5P (k), which
control the Zariski and étale topologies on the oco-category of E.-algebras over k. However, the role
of k is inessential. For example, the co-category of (nonconnective) spectral k-schemes is equivalent to
the oo-category of (nonconnective) spectral schemes X equipped with a map X — Spec? (k). We will
deduce this from a general relativization statement (Proposition 9.17).

(C) Let k be an ordinary commutative ring, regarded as a discrete Ey-ring. The theory of spectral k-
schemes is closely related to the theory of derived k-schemes introduced in [42]. More precisely, there
is a forgetful functor from derived k-schemes to spectral k-schemes, which an equivalence when k
contains the field Q of rational numbers (Corollary 9.28).

We begin by giving a precise formulation of (A):

Theorem 9.1. Let Specy’ : RingTop,,, — RingTopy, be the relative spectrum functor associated to the
transformation of geometries 922? — SEtSp. Then Specy' induces a fully faithful functor from the co-category
SpSch¥|, of 0-localic nonconnective spectral schemes to the oo-category StkY; of 1-localic nonconnective

spectral Deligne-Mumford stacks.
We will prove Theorem 9.1 at the end of this section.

Remark 9.2. Since the relative spectrum functor Speci, carries Spec?(R) into Spec® (R) for any E..-ring
R, it preserves various local properties of sheaves of E.-rings, such as the property of being connective or
n-truncated. In particular, Spec‘%t determines a fully faithful embedding from the oco-category of 0-localic,
O-truncated connective spectral schemes into the oo-category of 1-localic, O-truncated connective Deligne-
Mumford stacks. This fully faithful embedding can be identified with the usual embedding of the category
of schemes into the 2-category of Deligne-Mumford stacks (see Propositions 2.37 and 8.36).

Warning 9.3. The relative spectrum functor Spec%t is not fully faithful in general. This is a reflection of
the fact that the theory of spectral schemes (X, Ox) is ill-behaved if we do not require X to be 0-localic.

Definition 9.4. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack. We will say that X
is schematic if it belongs to the essential image of the fully faithful functor of Theorem 9.1. That is, X is
schematic if it has the form Specs, 2) for some O-localic nonconnective spectral scheme ).

It is not difficult to characterize the class of schematic spectral Deligne-Mumford stacks. For this, we
need to introduce a bit of terminology.

Definition 9.5. Suppose that j : & — X = (X, Ox) is a map of nonconnective spectral Deligne-Mumford
stacks (nonconnective spectral schemes). We will say that j is an open immersion if it factors as a composition

"

UL (X0, 0x |U) L (2, 0x)
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where j' is an equivalence and j” is the étale morphism associated to a (—1)-truncated object U € X. In
this case, we will also say that il is an open substack (open subscheme) of X.

Proposition 9.6. Let X = (X,0x) be a nonconnective spectral Deligne-Mumford stack. The following
conditions are equivalent:

(1) There exists a collection of open immersions {jq : #o — X} which determine a covering of X, where
each i, is affine.

(2) Let fi : X =Y be a geometric morphism of oo-topoi which exhibits Y as a 0-localic reflection of X (so
that Y can be identified with the co-topos of sheaves on the underlying locale of (—1)-truncated objects
of X). Then the pair ) = (Y, f« Ox) is a nonconnective spectral scheme, and the geometric morphism

f« induces an equivalence X ~ Specg, Q).
(3) The nonconnective spectral Deligne-Mumford stack X is schematic.

Lemma 9.7. Let (X,0x) be a nonconnective spectral scheme, let (Y, 9y) = Specg’ (X, Ox) be the noncon-
nective associated spectral Deligne-Mumford stack, and let f* : X — Y be the associated geometric morphism.
Then f* induces an equivalence T<_1 X — 7<_1Y between the underlying locales of X and Y.

Proof. The assertion is local on X; we may therefore assume without loss of generality that (X,0yx) =~
Spec”™ A is the affine nonconnective spectral scheme associated to an Eq-ring A. Then X ~ 8hv(X), where
X is the Zariski spectrum of the commutative ring mpA (see Lemma V.2.5.18). That is, X is the collection
of prime ideals p C mgA. As a topological space, X has a basis of open sets given by U, = {p € X : a ¢ p},
where a ranges over elements of the commutative ring myA. The oo-category 7<_; X is equivalent to the
nerve of the partially ordered set U(X) of open subsets of X.

Let C = (CAlgit/)”p denote the opposite of the co-category of étale A-algebras. As explained in §V.2.2,
we can identify Y with the co-category Shv(C). In particular, 7<_1 Y is equivalent to the nerve of the partially
ordered set P consisting of sieves e©® C € which are saturated in the following sense: if A’ is an étale A-
algebra, and there exists a covering family {A’ — A’} such that each A} belongs to € then A’ belongs to
e,

The pullback functor f* : 7<_1 X — 7<_1 Y determines a map of partially ordered sets A : U(X) — P.
Unwinding the definitions, we see that A carries an open subset U C X to the smallest saturated sieve
€ C € which contains A[a~!] whenever U, C U. To complete the proof, it will suffice to show that A is an
isomorphism of partially ordered sets.

For every open set U C X, let X' (U) denote the full subcategory of € spanned by those étale A-algebras A’
such that the map Spec? A’ — Spec? A = X factors through U, where Spec? denotes the Zariski spectrum.
We claim that X'(U) = A\(U). Since X (U) is a saturated sieve which contains Ala~!] whenever U, C U,
we immediately deduce that A(U) C X(U). Conversely, suppose that A’ is an étale A-algebra belonging
to N(U). We wish to prove that A’ € A(U). The map Spec” A’ — Spec” A is open (Proposition 0.2), so
its image is a quasi-compact open subset V' C U C X. We can therefore write V' = (J,,~,, Ua, for some
finite sequence of elements a1,...,a, € mpA. For 1 < i < n, let a} denote the image of a; in mpA’. Since
the inverse images of the open subsets U, C X cover Spec” A’, the map A" — [],;<, A’ [a';"] is étale and
faithfully flat. Since A(U) is saturated, it will suffice to show that A’[a; '] € A(U); this follows immediately,
since Afa; '] € A(U) by construction.

We next claim that if U and V are open subsets of X such that A(U) C A(V), then U C V. Since
U is the union of basic open sets of the form U,, we may assume that U = U, for some a € mgA. Then
Ala= € M(U) € M(V) = X(V), so that V contains the image of the map Spec? A[a~'] — Spec” A = X.

The above argument shows that A is an isomorphism of U(X) onto a partially ordered subset of P.
To complete the proof, it will suffice to show that A is surjective. To this end, choose a saturated sieve
e ¢ C; we wish to show that € lies in the image of A. Let U be the smallest open subset of X which
contains the (open) image Uas of the map Spec? A’ — Spec? A whenever A’ € e, By construction, we
have €% C N(U) = A(U). To complete the proof, it suffices to show that this inclusion is an equality. That
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is, we must show that if B is an étale A-algebra such that the image of the map 6 : Spec? B — Spec? A = X
is contained in U, then B € € Since the image of # is quasi-compact, it is contained in a finite union of
Uj<s<n Ua,, where each A; € C©. 1t follows that the map B — [Ti<;<,(Ai ®4 B) is étale and faithfully

flat. Since €? is a saturated sieve containing each A;, it must also contain B. O

Remark 9.8. In the situation of Lemma 9.7, if (X, Ox) is a O-localic spectral scheme, then the geometric
morphism f* : X — Y exhibits X as the 0-localic co-topos associated to Y; see §T.6.4.5.

Proof of Proposition 9.6. The implication (2) = (3) is obvious. We next prove that (3) = (1). If (3) is
satisfied, then X ~ Spec%tar ) for some 0-localic nonconnective spectral scheme ). The proof of Theorem 2.40
shows that ) admits a covering by open immersions {0, — %)}, where each U,, is an affine nonconnective
spectral scheme. It follows that X admits a covering by open immersions {Spec‘%t U, — X}, and each
Specézt 0., is an affine nonconnective spectral Deligne-Mumford stack.

We complete the proof by showing that (1) = (2). The content of assertion (2) is local on ). We are
therefore free to replace X by one of the open substacks i, (note that since Y is the 0-localic reflection of X, the
pullback functor f* : Y — X induces an equivalence on (—1)-truncated objects) and thereby reduce to the case
where X = Spec®® R is affine. Using Lemma 9.7, we can identify ) with the co-topos ShV(SpecZ R) of sheaves
on the topological space Spec” R. Unwinding the definitions, we obtain an identification ) ~ Spec? R, from
which assertion (2) follows immediately. O

Corollary 9.9. Let X = (X, Ox) be a nonconnective spectral Deligne-Mumford stack. Then X is schematic
if and only if the O-truncated spectral Deligne-Mumford stack (X, 7o Ox) is schematic.

Proof. This follows from the criterion of Proposition 9.6, since a nonconnective spectral Deligne-Mumford
stack (U, Oy) is affine if and only if (U, o Oy) is affine (see the proof of Theorem 2.40). O

The proof of Theorem 9.1 involves some formal arguments which require a bit of a digression. Let §
be a geometry and let (X, Ox) be a G-scheme. Then (X, Ox) represents a functor X : Ind(§°?) — 8, given
informally by the formula R +— 1\/Iapsch(9)(Spec9 R, (X,0x)). According to Theorem V.2.4.1, the G-scheme

(X, Ox) is determined up to canonical equivalence by the functor X. In particular, for any co-topos Y and
loc

any G-structure Oy € Strg“(Y), the mapping space Mapry,,g)((X, Ox), (4, Oy)) can be recovered from the
functor X. Our first goal is to make this recovery somewhat explicit. To this end, let us identify Oy with
an Ind(G°?)-valued sheaf on Y. Then the composition

yor A 1d(g7) X 8.

can be regarded as a presheaf of spaces on Y. The main technical ingredient in the proof of Theorem 9.1 is
the following:

Theorem 9.10. Let G be a geometry, let (X, Ox) be a G-scheme representing the functor X : Ind(S°?) — 8,
and let (Y,0y) be an arbitrary object of “Top(G). Then the functor

(U € ‘H) — MapLU’op(S)((xv ODC)a (y/Ua OH |U))

can be identified with the sheafification of the presheaf given by the composition Y°P 9y Ind(G°P) Xs.

Remark 9.11. Theorem 9.10 plays an important role in mediating between two different pictures of a
G-scheme:

(i) A G-scheme can be thought of as a pair (Y, Oy), where Y is an oco-topos and Oy is a G-structure on Y.

(i1) A G-scheme can be thought of as representing a functor X : Ind(5°?) — 8.
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Both of these points of view are valuable, because they suggest two different generalizations of the notion of
a G-scheme. In case (i), we can consider arbitrary G-structures on oco-topoi (instead of considering only those
which are locally of the form Spec” R), and in case (ii) one can consider arbitrary functors X : Ind(G%) — 8
(not only representable functors). However, these two generalizations can be related as follows: given a G-
structured oo-topos (Y, Oy) and a functor X : Ind(G°?) — 8, one can define a mapping space Map((Y, Oy), X)
to be the global sections of the sheafification of the presheaf given by (U € Y) — X (Oy(U)). Theorem 9.10
asserts that this definition is sensible: that is, it recovers the usual mapping spaces in “TJop(G)°? in cases
where X is representable by a scheme (a somewhat easier argument shows that it also recovers the usual
mapping spaces in Fun(Ind(G°?), 8) in cases where (Y, Qy) is a G-scheme).

Before giving the proof of Theorem 9.10, let us record some consequences.

Corollary 9.12. Let o : G — G’ be a transformation of geometries which determines an equivalence between
the underlying oo-categories, and let C = Ind(G°?) ~ Ind(G'?). Let (X,0x) be a G-scheme representing a
functor X : € = 8, and let X' : € — 8 be the functor represented by the G -scheme Specg/(fx, Ox). Regard
@ as endowed with the Grothendieck topology determined by the geometry G'. Assume that

(¥) The topology on C°P is subcanonical: that is, the identity functor C — € is a C-valued sheaf on C°P.

Then the evident map X — X' exhibits X' as a sheafification of X (with respect to the Grothendieck topology
on C).

Proof. The functor X' is given informally by the formulas
X'(R) = Mapggr)(Spec? R, Spec (X, 0x)) 2 Mapryop(s) (X, 0x), Spec? R).

Fix an object R € C, and let D denote the full subcategory of (Cx,)°? spanned by those morphisms R — R’
in € which are pushouts of admissible morphisms in G, endowed with the Grothendieck topology determined
by the geometry G'. The results of §V.2.2 show that we can identify Specgl R with the pair (8hv(D), 0),
where O can be identified with the sheafification of the C-valued presheaf on D given by the composition
0" : D C Cry — C. Let Y : D — § be the sheafification of the presheaf X o O. Theorem 9.10 gives
an identification X’(R) ~ Y (R). Assumption (%) implies that O ~ O', so that Y is the sheafification of the
presheaf X o ©'. Tt follows that X’ is the sheafification of X (see the proof of Proposition V.2.4.4). O

Proof of Theorem 9.1. Let (X, Ox) be a 0-localic spectral scheme. We will prove that for every spectral
scheme (Y, Oy), the map

Py : N[apSpSch“c ((13, O’zﬂ)v (x7 Ox)) — Mapgjne (SpeC%t (%’ O’Zi)v SpeC%t(x, Ox))

is a homotopy equivalence. Using Lemma V.2.3.11, we can reduce to the case where (Y,Oy) is affine. Let
X : CAlg — 8 be the functor represented by (X,0x), and let X’ : CAlg — 8 be the functor represented
by Specs’ (X, Ox). We wish to prove that the evident natural transformation « : X — X’ is an equivalence.
The étale topology on the co-category CAlg is subcanonical (Theorem 5.14), so Corollary 9.12 implies that
« exhibits X’ as a sheafification of X with respect to the étale topology on CAlg. To complete the proof, it
suffices to observe that Theorem 5.15 guarantees that X is already a sheaf with respect to the étale topology
on CAlg. O

We now turn to the proof of Theorem 9.10. The proof relies on the following:

Lemma 9.13. Let G be a geometry, and suppose we are given a pair of objects (X, Ox), (Y, Oy) € “Top(9).
Let F : YP x X — 8 be the functor given informally by the formula

F(U7 V) = Ma‘pL'.Top(S)((x/Vv ODC |V)7 (yU/v Oy |U))

Then F determines a colimit-preserving functor X — Shvg(Y).
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Proof. Proposition V.2.3.5 shows that F' preserves limits in the first variable, and can therefore be identified
with a functor f : X — Shvg(Y). We wish to show that f preserves small colimits. Fix a small diagram {V,, }
in X having colimit V' € X; we need to prove that the canonical map hgl f(Vo) = f(V) is an equivalence

in 8hvg(Y). For each object U € Y, let ey : Shvg(Y) C Fun(ljo”,g) be the functor represented by U. The
objects ey generate Shvg(Y) under (non-small) colimits. It therefore suffices to prove that for every map of
the form « : ey — f(V), the pullback map

(lim f (Vo)) X pvy ev = 1m(f (Vo) X pv) ev) = ev

is an equivalence. We can identify « with a point n € F(U, V), which determines a geometry morphism
a* : Xy — Y,u. Remark V.2.3.4 gives canonical identifications f(Va) X vy ev =~ eq-v, . Since the functor
a* preserves small colimits, we are reduced to proving that the Yoneda embedding e preserves small colimits.
Note that e can be identified with the inclusion X ~ 8hvg(X) C 8hvg(X), which preserves small colimits. [

Proof of Theorem 9.10. Let (X,0x) be a G-scheme. For each V € X, let Xy : “Top(G) — S denote the
functor corepresented by (X, Ox |[V), so that Xy oSpec? can be identified with the functor Xy : Ind(§°?) —
8 determined by the S-scheme (X,y,Ox [V). Let (Y,0y) be an arbitrary G-structured oo-topos, and let
X : YY — “Top(9)°” denote the functor given informally by the formula U +— (Y,i, Oy |U). Let Q be a
left adjoint to the inclusion of the co-category of affine G-schemes into “Top(G)°P, given informally by the
formula (Z,02) — Spec’ T'(Oz). We will prove that, for every object V € X, the natural transformation

Oy : Xy oOy~XyoQoyxy — Xyoyx

exhibits Xy o x as a sheafification of the presheaf Xy o Oy : Y¥ — 8.

Let L : Fun(Y”,8) — 8hvg(Y) be a left adjoint to the inclusion. Let XY denote the full subcategory of X
spanned by those objects for which L(fy) is an equivalence; we wish to prove that X° C X. If (X/v,0x |V)
is affine, then 6y is an equivalence of presheaves so that V € X°. In view of Lemma V.2.3.11, it will suffice to
show that X° is stable under small colimits. Lemma 9.13 shows that the functor V — Xy ox preserves small
colimits (as a functor from X to Shvg(Y)). To complete the proof, it will suffice to show that the functor
V = L(Xv o Oy) also preserves small colimits. In other words, we must show that if V € X is a colimit of a
diagram {V,} in X and F: Y? — $ is a sheaf, then the canonical map

Mapg,,,yor 5)(Xv 0 Oy, F) — lim Mapy, o 5)(Xv, 0 Oy, F)

is a homotopy equivalence.

Let € denote the full subcategory of the fiber product Y X pun({o},macger)) Fun(Al, Ind(G°?)) spanned
by pairs (U, f : Oy(U) — A), where U € Y and f is an admissible morphism in Ind(§°"). Let Cy denote
the full subcategory of € spanned by those objects (U, f : Oy(U) — A) where f is an equivalence, so that
the projection map Cq — Y°P is an equivalence. Note that the inclusion i : Cg C € admits a left adjoint
f. Let 7 : € — Ind(G°”) be the functor given by the formula (U, f : Oy(U) — A) — A. Let F' denote the
composition € EN Co — Yo EX g, so that ' is a right Kan extension of its restriction F' | Cy. It follows that,
for every object V € X, we have a canonical homotopy equivalence

Mapp,e) (Xv 01 F) = Mappy, g, g)(Xv om0 i, T 0i) & Mapp, yor 5)(Xv © 0y, ).
We are thereby reduced to proving that if V' is the colimit of a diagram {V,,} in X, then the canonical map
Mapg, e ) (Xv o m F) = lim Mapy,, ¢ g)(Xv,, o7, ')

is a homotopy equivalence.
For each object U € Y, let Cy denote the fiber product € xyor{U}: that is, the full subcategory of
Ind(G°?)9¥(U)/ spanned by the admissible morphisms Oy(U) — A. Let & denote the full subcategory
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of Fun((i’,g) spanned by those functors F : € — $ with the property that each restriction F|Cp is a
sheaf (with respect to the Grothendieck topology determined by the collection of admissible coverings in
9). Using Lemma V.2.4.9, we deduce that the inclusion & C Fun(&g) admits a left adjoint L/, which is
characterized by the requirement (L'F)|Cy is a sheafification of F|Cy for each V' € Y. We observe that
F’ € €. It therefore suffices to show that if V is the colimit of a diagram {V,,} in X, then the canonical map
L’lig(XVa om) = L'(Xy o) is an equivalence. In other words, we must show that for each U € Y, the
presheaves li%mX v..| Cu and Xy | Cy have the same sheafification. This follows from Lemma 9.13, applied to

the affine G-scheme Spec? Oy (U). O

We now discuss the dependence of the theory of spectral k-schemes on the choice of Eo-ring k. We begin
with some general remarks.

Proposition 9.14. Let C be a compactly generated presentable co-category, and let G be the full subcategory
of C°? spanned by the compact objects. Suppose that G is equipped with the structure of a finitary geometry
(Definition V.1.2.5 and Remark V.2.2.8). Then:

(a) For each object X € C, the oo-category Cx, is compactly generated; we let G(X) denote the full
subcategory of (Cx/)°? spanned by the compact objects of Cx,.

Given an object Z € G(X), we will say that a sieve S(X)ﬁoz) C 9(X),z is covering if there erists a

morphism Z — Zy in C°F where Zy € G, and an admissible covering {Yo, — Zo} of Zy such that each of the

induced maps Yo Xz, Z — Z belongs to the sieve S(X)goz).

(b) For each object X € C, the collection of covering sieves determines a Grothendieck topology on the
oo-category G(X).

We will say that a morphism f:Y — Z in C°P is admissible if there exists a pullback diagram

Y4f>Z

L,

Yo —= 2

i C°P, where fy is an admissible morphism in G. Suppose that the collection of admissible morphisms in
C? is stable under retracts. Then:

(¢) For each object X € C, the collection of admissible morphisms together with the Grothendieck topology
on §(X) exhibit §(X) as a finitary geometry.

Proof. We first prove (a). Proposition T.5.5.3.11 guarantees that Cx, is presentable. Let G(X) denote the
full subcategory of (€, x )P spanned by those objects which are compact in €, x. The inclusion (X)) C C,x
extends to a fully faithful embedding F": Ind(G(X)°?) — C,x (Proposition T.5.3.5.11) which preserves small
colimits (Proposition T.5.5.1.9). It follows that F' admits a right adjoint G (Corollary T.5.5.2.9). To complete
the proof of (a), it will suffice to show that F' is essentially surjective; equivalently, we must show that G is
conservative. To this end, let o : Y — Z be a morphism in Cx, such that G(«) is an equivalence. We wish to
show that « is an equivalence. Since € is compactly generated, this is equivalent to the requirement that that
for every compact object K € €, composition with « induces a homotopy equivalence 6 : Mape(K,Y) —
Mape (K, Z). Let u : € — Cx, denote a left adjoint to the forgetful functor, given informally by the formula
u(C) ~ C]X. We can identify 0 with the map Mape (u(K),Y) — Mape (u(K), Z). Since G(«) is an
equivalence by assumption, it will suffice to show that u(K) is a compact object of Cx /- We now complete
the proof by observing that because the forgetful functor €x, — € preserves filtered colimits (Proposition
T.4.4.2.9), the functor u preserves compact objects (Proposition T.5.5.7.2).

We now prove (b). It will suffice to show that the collection of covering sieves in §(X) satisfies conditions
(1), (2), and (3) of Definition T.6.2.2.1:
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(1) If Z is an object of §(X), then §(X),7 is a covering sieve on Z. This is clear, since §(X),, contains
the pullback of the admissible covering sieve {1 — 1} in G, where 1 denotes the final object of §.
(2) If f:Y — Z is a morphism in §(X) and 9(X)§OZ) is a covering sieve on Z, then the pullback sieve

fre(x )(/(2 C 9(X),y is a covering sieve on Y. This follows immediately from the definition.
(3) Let Z € G(X) be an object, let 9(X)§OZ)

be another sieve on Z. Suppose that, for every morphism f : Y — Z belonging to §(X )50Z)7 the pullback

C 9(X),z be a covering sieve on Z, and let 9(X)§IZ) CS(X)/z

sieve f* G(X )512) is a covering sieve on Y. We must show that (X )(/12) is a covering sieve on Z. Invoking
our assumption that G(X )502) is covering, we deduce the existence of a map Z — Z; for Z; € G and
an admissible covering {Y, — Zp}taca in G such that each of the maps f, : Y, Xz, Z — Z belongs to
9(X )50Z) Since G is finitary, we may assume that the collection of indices A is finite. For each o € A,
there exists a morphism Y, Xz, Z — W,, where W, € G, and an admissible covering {Vog — Wy}
such that each of the pullback maps Vag Xw, (Yo Xz, Z) = (Yo Xz, Z) belongs to f* S(X)(/lz) Let
Zy = Zo x [[,Wa € G, so that the collection of products {Y, x Vo — Zy} forms an admissible
covering of Z. We observe that each of the pullback maps (Yo x Vag) Xz, Z — Z belongs to 9512), SO

that 9512) is covering as desired.
We now prove (¢). We first claim that the collection of admissible morphisms in §(X) is stable under
composition (note that this collection clearly contains all equivalences in §(X)). Suppose we are given

admissible morphisms f: U — V and g : V — W in §(X). We wish to prove that g o f is an admissible
morphism. Since f and g are admissible, there exist a pullback diagrams

f

U———V V—W
UOLVO Vi —2-w,

in C°?, where fy and gg are admissible morphisms in §G. Write W as a filtered limit ]gl{Wa} of compact
objects of (Cy, /), so that V ~ V} xy, W is the limit of the filtered diagram {Vi xw, Wy}. Since Vj is a
compact object of €, the projection V' — Vj factors as a composition

V*)Vl XWlwa%‘/O

for some index a. Replacing Wy by W, (and Vi by Vi xw, W), we may suppose that the map V — 1}
factors through V3. Replacing Vj by Vi (and Uy by Uy xv,, V1), we may suppose that Vo = V4 (as objects of
€/v). Then go f is a pullback of gg o fo, and therefore admissible as desired.

It is clear that the Grothendieck topology on G(X) is generated by a Grothendieck topology on the
subcategory of G(X) spanned by the admissible morphisms, and that this Grothendieck topology is finitary.
To complete the proof of (¢), it will suffice to show that the collection of admissible morphisms satisfies
conditions (7) through (éi7) of Definition V.1.2.1. Condition (%) is obvious, and condition (i) follows from
our assumption that the class of admissible morphisms is stable under retracts. To prove (ii), suppose we

are given a diagram
VN

h

U 14
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in §(X), where g and h are admissible. We must show that f is admissible. As above, we can choose pullback
diagrams

U—lsw Ve w
A
UOHWO V1*>W1

in C°?, where gg and hg are admissible morphisms in §. Replacing Wy and W; by the product Wy x Wr,
we can assume that Wy = W;. Write W as a filtered limit h%m{Wa} of compact objects of (Cyy,,)°?. Then

the map l'gl{Uo Xw, Wa} = U Hy V1 factors through Uy Xy, W, for some index a. Replacing Wy by
Wa, we reduce to the case where there exists a map fo : Uyp — V7 such that f is a pullback of fy. Since gqg
and hg are admissible, the map fy is admissible (since § is assumed to be a geometry); it follows that f is
an admissible morphism in §(X). O

Remark 9.15. In the situation of Proposition 9.14, suppose that we are given a morphism f: X — Y in
the oco-category €. Then the left adjoint to the forgetful functor €,x — €,y preserves compact objects,
and therefore induces a functor f*: §(X) — G(Y). It is easy to see that this functor is a transformation of
geometries.

Remark 9.16. Let C be as in Proposition 9.14, let f : A — B be a morphism in €, and let f* : §(A) — §(B)
be the transformation of geometries of Remark 9.15. Let X be an oo-topos, and let Oy : §(B) — X be a
left-exact functor, which we will identify with a €p/-valued sheaf 3 on X. Then f*oOx is a left-exact functor
from G(A) to Xj which we can identify with the C,/-valued sheaf on X obtained by the composition

X % ep — €.

Note that the collection of admissible morphisms and admissible coverings in G(B) is generated by the f*-
images of admissible morphisms and admissible coverings in §(A). Consequently, the sheaf O is G(B)-local
if and only if f* Oy is G(A)-local. Similarly, a morphism a : Ox — O% between G(B)-local sheaves is
G(B)-local if and only if it induces a G(A)-local morphism f* o Ox — f* 0 O'..

Proposition 9.17. Let C be as in Proposition 9.14, let f : A — B be a morphism in C, and let 0 :

LTop(G(B)) — “Top(S(A)) be the functor given by composition with induced transformation of geometries
f*:5(4) = §(B). Then:

(1) For every object R € Cp; ~ Ind(G(B)), the functor  carries Spec?®) R to Spec™ R (here we
abuse notation by identifying R with its image in C4, ~ Ind(G(A)°P)).

(2) The functor 0 induces an equivalence of co-categories
LTOP(S(B)) = LTOP(S(B))spec9<B> B/ L(IOP(g(A))e(specﬁ’(B) B)) = LTOp(g(A))SpeCS(A) B/
(3) The functor 0 carries G(B)-schemes to G(A)-schemes, and induces an equivalence of co-categories
Sch(G(B)) — Sch(G(A))/ specs (4)B-

In particular, for every object B € € we have a categorical equivalence Sch(§(B)) =~ Sch(S5), specs B-

Proof. We first prove (1). Let D denote the full subcategory of (Cr,)°? spanned by the admissible morphisms
R’ — R in €°? endowed with the Grothendieck topology determined by the geometry structure on G(R).
Using the explicit construction of spectra described in §V.2.2; we see that Specg(A) R can be identified with
the pair (X, Ox), where X = 8hv(D) and Ox corresponds to the €4 /-valued sheaf given by sheafifying the
presheaf given by the composition

Fa:DPC Cry — Cyuy -
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Similarly, Spec?®) R can be identified with the pair (X, O%), where O’ is obtained by sheafifying the presheaf

given by the composition
?B:DOP%GR/ _>8B/~

If : Cp; — €4, denotes the forgetful functor, then we have an equivalence ¥4 >~ ¢ Fp, so that
(X, 0%) = (X, ¢ %) ~ (X, Ox)

as required.
We now prove (2). Replacing € by €4/, we are reduced to proving that 6 induces an equivalence
¢ : “Top(5(B)) = “Top(9)specs p/- The map ¢ fits into a commutative diagram

LTop(5(B)) d LTop(S)specs 5,

~.,

LTop

where the vertical maps are coCartesian fibrations, and the map ¢ preserves coCartesian morphisms. It
therefore suffices to show that ¢ induces an equivalence of co-categories after passing to the fiber over any
object X € Top (Corollary T.2.4.4.4). Unwinding the definitions, we are reduced to proving that homotopy
coherent diagram

Strip) (X) — Strg°(X)

| |

Cp) ——C

is a homotopy pullback square, where the vertical maps are given by the formation of global sections. Using
Remark 9.16, we can reduce to proving the analogous assertion in the case where G is a discrete geometry.
In this case, the above square is equivalent to the diagram

Shven/ (X) —— Shve(X)

| l

eBl — e,

where the vertical maps are given by evaluation on the final object of X. Since horizontal maps in this
diagram are left fibrations, we can reduce (using Corollary T.2.4.4.4 again) to proving that the left vertical
map induces a homotopy equivalence

X : Mapgyy(xor, ¢)(F, 5) = Mape(B, §(1)).

Here F denotes the constant functor X° — € taking the value B, G denotes an arbitrary C-valued sheaf on X,

and x is given by evaluation on the final object 1 in X. The desired result now follows from the observation

that J is a left Kan extension of the constant functor {1} — {B} < € along the inclusion {1} < X7,
Assertion (3) follows immediately from (1) and (2). O

Example 9.18. Let € denote the oo-category CAlg of E.-rings, and let us identify the full subcategory
G C @° with the geometry Srzlif of Definition 2.10. We note that this example satisfies the hypothesis of
Proposition 9.14: namely, the admissible morphisms in € are precisely those maps of E.-algebras of the

form A — A[1], where a € m4; this collection is stable under retracts by virtue of Remark 2.11. For every

Eoo-ring k, the geometry G(k) described in Proposition 9.14 agrees with the geometry Srzlif(k) of Definition
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2.10: this follows immediately from Remark 2.16. Proposition 9.17 then provides a justification for the
terminology of Definition 2.27: the oo-category of nonconnective spectral k-schemes is equivalent to the
oo-category of nonconnective spectral schemes lying over Spec” k. Similar reasoning applies if we replace
the geometry 9%25 by SZtS P (using Proposition 8.17 in place of Remark 2.16; in this case, the admissible
morphisms in € are precisely the étale morphisms of Ey-rings).

Example 9.19. Let € denote the co-category CAlg®™ of connective Eo.-rings, and let us identify the full
subcategory G C C° with the geometry 9;; of Definition 2.10. This example also satisfies the hypothesis of
Proposition 9.14. For every connective E-ring k, the geometry G(k) described in Proposition 9.14 agrees
with the geometry Sigr(kz) of Definition 2.10: this follows again from Remark 2.16. It follows that the oco-
category of spectral k-schemes is equivalent to the oo-category of spectral schemes lying over Spec? k. The
same reasoning applies to spectral Deligne-Mumford stacks (using Proposition 8.17 again).

We can also apply Proposition 9.17 to the theory of derived schemes introduced in [42]. First, we need
to recall a bit of notation. Let SCR denote the oo-category of simplicial commutative rings, so that full
subcategory SCR<¢ € SCR spanned by the discrete objects can be identified with the nerve of the category
of ordinary commutative rings. For every commutative ring k, we let Poly, denote the category of polynomial
algebras k[z1,...,z,], regarded as a full subcategory of the category of commutative k-algebras. There is
an evident fully faithful embedding

f: N(Polyk) — (SCRgo)k/ — SCRk/ .

Using Proposition T.5.5.8.15, we deduce that this inclusion can be extended (in an essentially unique fashion)
to a functor F': SCRy, = Px(N(Poly,)) — SCRy, which preserves sifted colimits.

Proposition 9.20. For every commutative ring k, the functor F' : SCRy, — SCRy, defined above is an
equivalence of oco-categories.

Proof. We first show that f preserves finite coproducts. Since F' clearly preserves initial objects, it suffices to
show that F' preserves pairwise coproducts: in other words, we must show that for every pair of nonnegative
integers m and n, the diagram

k———————k[r1,..., 2]

| |

k[ylv"'ayn] Hl{:[ajla"'axﬁhyla"'?yn]

is a pushout square in the oco-category SCR. In view of Proposition V.4.1.11, it suffices to show that the
image of this diagram is a pushout square in the oco-category CAlg of E.-rings. In other words, we must
show that the canonical map

k[zla"'vxm] Ok k[yh)yn] %k['xlv-'wxmaylw'wyn]

is an equivalence of k-module spectra; this follows from Proposition A.7.2.2.13.

Using Proposition T.5.5.8.15, we deduce that the functor F' : SCRx — SCRy, preserves small colimits.
We next claim that F' is fully faithful. In view of Proposition T.5.5.8.22, it suffices to show that every
polynomial ring R : k[z1,...,2,] is a compact projective object of SCRy,. Let e : SCRy, be the functor
corepresented by R; we wish to show that e preserves sifted colimits. Since R is the coproduct of k with
Z[zy,...,z,) in SCR, we can identify e with the composition

SCR;,, % SCR % 8,

where ¢’ is the functor corepresented by Z[z1,...,z,] and 6 is the evident forgetful functor. The functor 6
preserves all contractible colimits (Proposition T.4.4.2.9) and Z[z1,...,z,] is a compact projective object of
SCR (Proposition T.5.5.8.22), we conclude that e preserves sifted colimits as desired.
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Corollary T.5.5.2.9 guarantees that the functor F' admits a right adjoint G. To complete the proof that
the fully faithful functor F' is an equivalence of co-categories, it will suffice to show that G is conservative.
In other words, we must show that if o : R — R’ is a morphism in SCRy,, such that G(«) is an equivalence,
then « is an equivalence. This follows from the existence of a commutative diagram

Mapgcg (Z[r], R) ——— Mapgcg (Z[z], R')

| |

Mapgcg, (k[z], G(R)) —— Mapgcg  (k[7], R')

where the vertical maps are homotopy equivalences. O

Example 9.21. Let G denote the full subcategory of SCR°? spanned by those objects which are compact
in SCR, and let us identify § with the geometry 9%2; introduced in §V.4.2. The hypothesis of Proposition
9.14 are satisfied, so that for every object k € SCR we get an induced geometry G(k). If k is a discrete
commutative ring, then we can identify (k) with the geometry G5 (k) of §V.4.2. It follows from Proposition
9.17 that the oco-category of derived k-schemes is equivalent to the co-category of derived schemes lying over
Specg%e;f(k). Similarly reasoning shows that the co-category of derived Deligne-Mumford stacks over k is

equivalent to the co-category of derived Deligne-Mumford stacks lying over Specggf (k:)

Our final goal in this section is to explain the connection between the theory of spectral algebraic geometry
developed in this paper with the theory of derived algebraic geometry introduced in [42]. Fix a commutative
ring k; we will abuse notation by identifying k& with a discrete Eoo-ring (see Proposition A.7.1.3.18). Let
SCRy, denote the co-category of simplicial commutative k-algebras (see §V.4.1) and CAlg;" the oo-category
of connective E.-algebras over k. Proposition V.4.1.11 furnishes a forgetful functor 6 : SCR;, — CAlg",
which admits both right and left adjoints. We let ¥ : CAlgi" — SCRy, denote a left adjoint to 6.

Example 9.22. The functor ¥ carries free E.-algebras to polynomial algebras; that is, we have canonical
equivalences U (k{xz1,...,x,}) = k[z1,..., 2]

Since the forgetful functor 6 preserves small colimits (Proposition V.4.1.11), the functor ¥ preserves
compact objects (Proposition T.5.5.7.2), and therefore induces left-exact functors

Wzar - Gy (k) = Sgn (k) Wau s 57 (k) = 9™ (k).
Our first goal in this section is to prove the following;:

Proposition 9.23. The functors Uz, : Sggr(k) — G0 (k) and U : Sif(k) — 97 (k) are transformations
of geometries.

To prove Proposition 9.23, we need to understand the functor ¥ a bit better. Note that the forgetful
functor 6 : SCRy — CAlg}"” is compatible with the formation of the underlying spaces. In particular, for
every object A € SCRy, we have a canonical isomorphism mpA ~ mo0(A) of commutative k-algebras.

Lemma 9.24. Let A be a connective By -algebra over k. Then the unit map A — 6(V(A)) induces an
isomorphism of commutative rings

¢ mgA — meh(TU(A)) ~ mo U(A).

Proof. Let R be a (discrete) commutative k-algebra. We wish to show that composition with ¢ induces
a bijection 9 : Hom(my U(A), R) — Hom(mpA, R). Regard R as a discrete object of SCRy, (so that 8(R)
is a discrete object of SCRy), we can identify ¢ with the homotopy equivalence Mapgcg, (¥(A), R) —
Mapgaigen (4, 0(R)) resulting from the adjunction between ¢ and V. O
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Lemma 9.25. Let f: A — B be an étale morphism in CAlg;". Then the induced map ¥(A) — U(B) is an
étale morphism in SCRy.

Proof. The morphism f induces an étale map of commutative rings mgA — myB. Using Lemma 9.24, we
can identify moB with an étale algebra over the commutative ring 7o W(A). Corollary V.4.3.12 ensures the
existence of an (essentially unique) étale morphism f’: U(A) — B’ in SCRy, with moB’ ~ moB. The map [’
is adjoint to a map of E.-algebras g : A — 6(B’), and mog : mgA — mo8(B’) ~ mo B’ lifts to an isomorphism
moB ~ myB’. Applying Corollary A.7.5.4.6, we deduce that g factors as a composition A RN RN 0(B’), so
that f’ factors as a composition

v(a) "L w(B) L B
Since f’ is étale, it will suffice to show that 7 is an equivalence. To this end, choose an arbitrary morphism
U(A) — R in SCRy; we will show that composition with  induces a homotopy equivalence

Map(SCRk)q,(A>/(B/7R) - Ma‘p(SCRk)\p(A)/(\IJ(B)vR) = MapCAlgA/(B76(R))'

This is clear, since Propositions A.7.5.4.6 and V.4.3.11 allow us to identify both sides with the discrete space
Homﬂ-oA(ﬂ'oB,ﬂ'oR). O

Example 9.26. Let A be a connective k-algebra, and let a € mgA ~ 7y U(A). Lemmas 9.24 and 9.25 imply
that the functor W carries A[1] to an étale W(A)-algebra R with moR ~ (moA)[%]. In other words, the functor
¥ commutes with localization of algebras: we have canonical equivalences W(A[1]) ~ W(A4)[1].

Proof of Proposition 9.23. Lemma 9.25 shows that W carries admissible morphisms in Sgtp (k) to admissi-
ble morphisms in G5 (k), and Example 9.26 shows that Uz, carries admissible morphisms in 9§§r(l€) to
admissible morphisms in 9%er( k). For each of the geometries under consideration, a collection of admis-
sible morphisms {Spec 4, — Spec A} is a covering if and only if there exists a finite collection of indices
{a1,...,ap} such that the underlying map of commutative rings m9A — [[,.,<,, T0Aa,. Using Lemma 9.24,
we deduce that the functors ¥z, and W¢ preserve admissible coverings. O

Using Proposition 9.23, we deduce that composition with Wy, and W¢; yields functors
Ozar : “Top(Sipen(k)) = “Top(S50. (k) Oa : “Top(S&™ (k) — “Top(SZP (k).

These functors can be described concretely as follows. Let X be an co-topos and Oy a sheaf on X with values
in SCRg. Composition with the forgetful functor 6 : SCR; — CAlg;" determines a sheaf of connective
E-algebras on X. If Ox is local or strictly Henselian, then 8(O«) has the same property; the functors ©z,,
and O are both given by the construction

(DC, Ox) — (DC, 0 Ox).

Proposition 9.27. The functor Oz, carries derived schemes over k to spectral schemes over k, and the
functor © 4 carries derived Deligne-Mumford stacks over k to spectral Deligne-Mumford stacks over k.

Proof. The assertion is local. It therefore suffices to show that for every object A € SCRy, we have
Ozar Specsczlzrf(k) A~ Specsigr(k) 0(A) and Og SpecJetr(k) A ~ Specsztp(k) 6(A). Since the forgetful functor 6
induces an equivalence from the co-category of étale A-algebras in SCRy to the oco-category of étale 6(A)-
algebras in CAlg, (both are equivalent to the nerve of the ordinary category of étale myA-algebras), this
follows from the explicit construction of spectra given in §V.2.2. Alternatively, one can deduce the first as-
sertion by combining Theorems 2.40 and V.4.2.15 (after reducing to the affine case), and the second assertion
by combining Theorems 8.42 and V.4.3.32. O

In what follows, we let z Specspr and g Specder denote the relative spectrum functors associated to the
transformations of geometries

Gob (k) = Ggo(k)  GEP(k) — Gt (k).
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Corollary 9.28. The adjoint functors ©za, : “Top(G9 (k) — L’J’op(ngr(kj)) and

2 Specas : LTop(G5P, (k) — “Top(Saet (k)

restrict to determine an adjunction

Sch(G15L (k) ===Sch(G5, (k).

The adjoint functors
O - “Top(95" (k) — “Top(S3 (k)

and
et Specd” - LTop(G3P (k) — “Top(GE" (k)

restrict to determine an adjunction

Sch (G457 (k) =—=Sch (G5 (k).

If k is an algebra over the ring Q of natural numbers, then each of these functors is an equivalence of
oo-categories.

Proof. The first two assertions follow from Proposition 9.27 (note that a relative spectrum functor Specgl
always carries G-schemes to 9/—Schemes). The final assertion follows from the observation that if k is a
Q-algebra, then the forgetful functor 6 : SCRy — CAlg)"” is an equivalence of oco-categories (Proposition
V.4.1.11). O

We conclude this section by giving an explicit description of the relative spectrum functors Specder

and g SpecSp]r appearing in the statement of Corollary 9.28. Fix an oco-topos X. Let Oy be a connective
sheaf of E-algebras over k on X, which we view as a functor X°” — CAlg;". The composite functor
oy :XP — SCR;€ need not be a SCRy-valued sheaf on X. However, it admits a sheafification, which we
will denote by Oy (see Lemma 1.12).

Proposition 9.29. Let (X, Ox) be an object of L’J’op(SZM( )). Then the canonical map

¢ Ox — (000) Ox — 0(OF)
determines an equivalence

(DC ODC) >~z Spec r(DC Ox)

If O« is strictly Henselian, then ¢ determines an equivalence (X, O‘%) ~ g Specg;r(x, Ox).
Proof. Using Lemma 9.24, we deduce that the canonical map my Ox — g O% is an isomorphism. Using
Corollary 2.25 and Remark V.4.2.13, we deduce that O is local (and can therefore be identified with a
9%;( k)-structure on X); similarly, if Ox is strictly Henselian, then Remark V.4.3.18 guarantees that O;I’C

is strictly Henselian (and can therefore be identified with a Sder( k)-structure on X). Let Y be any other
oo-topos and Oy any SCRy-valued sheaf on Y. It is easy to see that ¢ induces a homotopy equivalence

1\/['3‘pL‘J’op(Sd‘“r ((x OI)C) (y’ Oy)) — Mapoyop(giipsc(k))((x7 Ox), (9, 0 Oy))

di: <c
To complete the proof, it will suffice to show the following:

is local an : X — Y is a geometric morphism, then a morphism « : x — in

1) If Oy is local and f* : X Yi i hi th hi 0 00y i
ShVCAlgk (Y)>0 is local (with respect to the geometry Sgar( )) if and only if the adjoint morphism
B: f5(0%) = Oy is local (with respect to the geometry G5 (k)).
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(2) If Oy is strictly Henselian, then « is local (with respect to the geometry Sgtp (k)) if and only if 8 is local
(with respect to the geometry G5 (k)).

To prove (1), we observe that both conditions are equivalent to the locality of the induced map mo f* Oy ~

Sp

Tof* OF — mo Oy ~ mf Oy, since the pregeometries ToP (k) and Tyz.. (k) are compatible with O-truncations

Zar

(Corollary 2.24 and Remark V.4.2.11). Similarly, assertion (2) follows since the pregeometries ‘Tgtp (k) and
Tt (k) are compatible with O-truncations (Propositions V.4.3.28 and 8.40). O

Remark 9.30. Proposition 9.29 asserts that if O is a local sheaf of E,-algebras over k on an oo-topos X,
then its relative spectrum has the same underlying oo-topos, with structure sheaf given by the sheafification
of the presheaf (U € X) — W Ox(U). If (X,0x) is a connective spectral scheme over k (or a connective
spectral Deligne-Mumford stack over k), then we can be even more explicit. If (X, Ox) is the spectrum of
a connective k-algebra A, then the results of §V.2.2 show that X ~ 8hv(C), where € is the opposite of the
oo-category of étale A-algebras. Similarly, the spectrum of W(A) has the form (X', O/, where X' = Shv(€’)
for €' the opposite of the co-category of étale W(A)-algebras in SCRy. Lemmas 9.24 and 9.25 show that
the functor ¥ determines an equivalence from € to @, thereby giving an identification of X with X’. The
composition of Oy with the canonical map ¢ : €7 — P(C)? — 8hv(C)°? can be identified with the
composition C” C CAlg,, — CAlgy, and the restriction O% | €"°P admits a similar description. It follows
that the canonical map ¥ Oy (U) — 0% (U) is an equivalence whenever U lies in the essential image of ¢.
Extrapolating to the non-affine case, we arrive at the following conclusion: the sheafification of the presheaf
formulate our observation as follows: the sheafification of the presheaf (U € X) — ¥ Oy (U) does not change
the values of that presheaf on any object U € X for which (X7, Ox |U) is affine.
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