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Introduction

Our goal in this paper is to introduce a variant of algebraic geometry, which we will refer to as spectral
algebraic geometry. We will take as our starting point Grothendieck’s theory of schemes. Recall that a
scheme is a pair (X,OX), where X is a topological space, OX is a sheaf of commutative rings on X, and
the pair (X,OX) is locally (with respect to the topology of X) isomorphic to the Zariski spectrum of a
commutative ring. We can regard a commutative ring R as a set equipped with addition and multiplication
maps

a : R×R→ R m : R×R→ R

which are required to satisfy certain identities. For certain applications (particularly in algebraic topology),
it is useful to consider a variation, where R is equipped with a topology. Roughly speaking, a (connective)
E∞-ring is a space X equipped with continuous addition and multiplication maps

a : X ×X → X m : X ×X → X

which are required to satisfy the same identities up to (coherent) homotopy. The theory of E∞-rings is
a robust generalization of commutative algebra: in particular, the basic formal constructions needed to
set up the theory of schemes (such as localization) make sense in the setting of E∞-rings. We will use this
observation to introduce the notion of a spectral scheme: a mathematical object which is obtained by “gluing
together” a collection of (connective) E∞-rings, just as a scheme is obtained by “gluing together” a collection
of commutative rings.

The collection of commutative rings can be organized into a category Ring. That is, to every pair of
commutative rings R and R′, we can associate a set HomRing(R,R′) of ring homomorphisms from R to R′.
The analogous statement for E∞-rings is more complicated: to every pair of E∞-rings R and R′, we can
associate a space Map(R,R′) of morphisms from R to R′. Moreover, these mapping spaces are equipped
with a composition products Map(R,R′)×Map(R′, R′′)→ Map(R,R′′), which are associative (and unital)
up to coherent homotopy. To adequately describe this type of structure, it is convenient to use the language
of ∞-categories developed in [40]. The collection of all E∞-rings is naturally organized into an ∞-category
which we will denote by CAlg, which contains (the nerve of) the category Ring as a full subcategory.

Let us now outline the contents of this paper. Recall first that the category of schemes can be realized as a
subcategory of the category of ringed spaces, whose objects are pairs (X,OX) where X is a topological space
and OX is a sheaf of commutative rings on X. Our first goal will be to introduce a suitable ∞-categorical
version of this category. In §1, we will introduce the ∞-category RingTop of spectrally ringed ∞-topoi. The
objects of RingTop are given by pairs (X,OX), where X is an ∞-topos and OX is a sheaf of E∞-rings on X.

In §2, we will introduce the notion of a spectral scheme. The collection of spectral schemes is organized
into an ∞-category, which we regard as a subcategory of the ∞-category RingTop of spectrally ringed ∞-
topoi. This subcategory admits a number of characterizations (see Definitions 2.2, 2.7, and 2.27) which we
will show to be equivalent. We will also explain the relationship between our theory of spectral schemes and
the classical theory of schemes (Proposition 2.37).

Let (X,OX) be a scheme. Recall that X is said to be quasi-compact if every open covering of X has a
finite subcovering, and quasi-separated if the collection of quasi-compact open subsets of X is closed under
pairwise intersections. In §3, we will generalize these conditions to our ∞-categorical setting by introducing
the notion of a coherent ∞-topos. If X is the∞-topos of sheaves on a topological space X, then X is coherent
if and only if X is quasi-compact and quasi-separated. For every spectral scheme (X,OX), the ∞-topos X is
locally coherent (because coherence is automatic in the affine case), and the coherence of X is an important
hypothesis for almost any nontrivial application.

Our theory of coherent∞-topoi is an adaptation of the classical theory of coherent topoi (see, for example,
[28]). A theorem of Deligne asserts that every coherent topos X has enough points: that is, that there exists
a collection of geometric morphisms {fα : Set → X} such that a morphism φ in X is invertible if and
only if each pullback f∗α(φ) is a bijection of sets. In §4, we will prove an ∞-categorical analogue of this
statement (Theorem 4.1). As an application, we prove a connectivity result for the geometric realization of
a hypercovering (Theorem 4.20) which is useful in §5.
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To every connective E∞-ring R, one can associate a spectral scheme SpecZ(R) ∈ SpSch. Consequently,
every spectral scheme X = (X,OX) represents a functor X on the∞-category CAlgcn of connective E∞-rings,
given by the formula X(R) = MapSpSch(SpecZ(R),X). In §5, we will show that if X is 0-localic (meaning
that the underlying ∞-topos of X can be realized as the category of sheaves on a topological space), then
X is a sheaf with respect to the flat topology (Theorem 5.15). The proof makes use of the fact that the
flat topology is subcanonical on the ∞-category of E∞-rings: that is, that every corepresentable functor is
a sheaf with respect to the flat topology. We will deduce this subcanonicality from a more general result
concerning descent for modules over E∞-rings, which is proven in §6.

In classical algebraic geometry, the category of schemes can be regarded as a full subcategory of a larger
2-category of Deligne-Mumford stacks. In §8, we will introduce the notion of a spectral Deligne-Mumford
stack. Our definition involves the notion of a strictly Henselian sheaf of E∞-rings, which is generalization
of the classical theory of strictly Henselian rings; we include a brief review of the classical theory in §7. As
with spectral schemes, we can think of spectral Deligne-Mumford stacks as mathematical objects obtained
by “gluing together” connective E∞-rings. The difference lies in the nature of the gluing: in the setting of
spectral Deligne-Mumford stacks, we replace the Zariski topology by the (far more flexible) étale topology
on E∞-rings. The collection of all spectral Deligne-Mumford stacks is organized into an ∞-category Stk,
and there is an evident functor SpSch → Stk. In §9, we will show that this functor is fully faithful when
restricted to the ∞-category of 0-localic spectral schemes.

Remark 0.1. Our theory of spectral algebraic geometry is closely related to the theory of homotopical
algebraic geometry introduced by Toën and Vezzosi, and there is substantial overlap between their work
(see [68], [69], [70], and [71]) and the ideas treated in this paper. Perhaps the primary difference in our
presentation is that we stick closely to the classical view of scheme as a kind of ringed space, while Toën and
Vezzosi make use of the “functor of points” philosophy which identifies an algebro-geometric object X with
the underlying functor R 7→ Hom(SpecR,X).

Notation and Terminology

This paper will make extensive use of the theory of∞-categories, as developed in [40]. We will also need the
theory of structured ring spectra, which is presented from an∞-categorical point of view in [41]. Finally, we
will make use of the theory of geometries developed in [42], and earlier paper in this series. For convenience,
we will adopt the following reference conventions:

(T ) We will indicate references to [40] using the letter T.

(A) We will indicate references to [41] using the letter A.

(V ) We will indicate references to [42] using the Roman numeral V.

For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [40].
Let R be a commutative ring. We let SpecZR denote the collection of all prime ideals in R. We will refer

to SpecZR as the Zariski spectrum of R. We regard SpecZR as endowed with the Zariski topology: a set
U ⊆ SpecZR is open if and only if there exists an ideal I ⊆ R such that U = {p ∈ SpecZR : I * p}. This

topology has a basis of open sets given by Ux = {p ∈ SpecZR : x /∈ p}, where x ranges over the collection of
elements of R.

If R is an E∞-ring, we let SpecZR denote the Zariski spectrum SpecZ(π0R) of the commutative ring π0R.
We will occasionally need the following result from commutative algebra:

Proposition 0.2. Let f : R → R′ be an étale map of commutative rings. Then f induces an open map of
topological spaces SpecZ(R′)→ SpecZ(R).
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Let X be an ∞-topos and let OX be a sheaf on X with values in an ∞-category C (that is, a functor
Xop → C which preserves small limits). For each object U ∈ X, we let OX |U denote the composite functor

(X/U )op → Xop
OX→ C,

which we regard as a sheaf on X/U with values in C.
We will say that a functor f : C→ D between ∞-categories is left cofinal if, for every object D ∈ D, the

∞-category C×D DD/ is weakly contractible (in [40], we referred to a functor with this property as cofinal;
see Theorem T.4.1.3.1). We will say that f is right cofinal if the induced map Cop → Dop is left cofinal, so
that f is right cofinal if and only if the ∞-category C×D D/D is weakly contractible for each D ∈ D.

Notation 0.3. If k is an E∞-ring, we let CAlgk = CAlg(Modk(Sp)) denote the∞-category of commutative
algebra objects in the ∞-category Modk(Sp); we will refer to the objects of CAlgk as k-algebras. If k is
connective, we let CAlgcn

k denote the full subcategory of CAlgk spanned by the connective k-algebras.

Notation 0.4. We let LTop denote the subcategory of Ĉat∞ whose objects are ∞-topoi and whose mor-
phisms are functors f∗ : X→ Y which preserve small colimits and finite limits. We let RTop ' LTop

op
denote

the full subcategory of Ĉat∞ whose objects are∞-topoi and whose morphisms are functors f∗ : X→ Y which
admit left exact left adjoints.

Notation 0.5. If X is an ∞-topos, we let X∧ denote its hypercompletion: that is, the full subcategory of X
spanned by the hypercomplete objects. See §T.6.5.2 for more details.

Acknowledgements

The material of §3 evolved out of a conversation with Dustin Clausen. I thank him for correcting some of
my misconceptions about the theory of coherent topoi. This paper also owes a lot to conversations with
Bertrand Toën and Gabrielle Vezzosi, and from studying their own writings on the subject ([68], [69], [70],
and [71]).

1 Sheaves of Spectra

Recall that a ringed space is a pair (X,OX), where X is a topological space and OX is a sheaf of commutative
rings on X. The category of schemes can be regarded as a (non-full) subcategory of the category of ringed
spaces. As a starting point for our theory of spectral algebraic geometry, we will introduce an ∞-categorical
analogue of the notion of a ringed space. In this section, we will study pairs (X,OX) where X is an ∞-topos
and OX is a sheaf of E∞-rings on X. We begin by considering sheaves of spectra in general.

Definition 1.1. Let X be an∞-topos. A sheaf of spectra on X is a sheaf on X with values in the∞-category
Sp of spectra: that is, a functor O : Xop → Sp which preserves small limits. We let ShvSp(X) denote the full
subcategory of Fun(Xop,Sp) spanned by the sheaves of spectra on X.

Remark 1.2. For any ∞-topos X, the functor Ω∞ : Sp → S induces a forgetful functor ShvSp(X) →
ShvS(X) ' X (the last equivalence being induced by the Yoneda embedding X→ Fun(Xop, S), whose essential
image is ShvS(X) by Proposition T.5.5.2.2). We claim that this functor exhibits ShvSp(X) as a stabilization
of the ∞-category X. Writing Sp as the homotopy limit of the tower

· · · → S∗
Ω→ S∗

Ω→ S∗,

we deduce that ShvSp(X) is the homotopy inverse limit of the tower

· · · → ShvS∗(X)
Ω→ ShvS∗(X)

Ω→ ShvS∗(X).

It now suffices to observe that we have a canonical equivalence X∗ ' ShvS(X)∗ ' ShvS∗(X).
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Remark 1.3. For any∞-topos X, the∞-category ShvSp(X) is a full subcategory of Fun(Xop,Sp). Since the
∞-category Sp is stable, we deduce that Fun(Xop,Sp) is stable (Proposition A.1.1.3.1). Since ShvSp(X) is
closed under limits and translation in Fun(Xop,Sp), we conclude that ShvSp(X) is stable (Lemma A.1.1.3.3).

Remark 1.4. For every ∞-topos X, the ∞-category ShvSp(X) is presentable (Remark V.1.1.5).

Remark 1.5. Let X be an ∞-topos. Composing the forgetful functor functor ShvSp(X) → ShvS(X) ' X

with the truncation functor τ≤0 : X → X, we obtain a functor π0 : ShvSp(X) → τ≤0 X. More generally, for
any integer n, we let πn : ShvSp(X)→ τ≤0 X denote the composition of the functor π0 with the shift functor
Ωn : ShvSp(X)→ ShvSp(X). Note that πn can also be described as the composition

ModSp(X)
Ωn−2

−→ ModSp(X)→ ShvS∗(X) ' X∗
π2→ τ≤0 X .

It follows that πn can be regarded as a functor from the homotopy category hShvSp(X) to the category of
abelian group objects in the topos of discrete objects of X.

Definition 1.6. For every integer n, the functor Ω∞−n : Sp→ S induces a functor ShvSp(X)→ ShvS(X) '
X, which we will also denote by Ω∞−n. We will say that an object M ∈ ShvSp(X) is coconnective if Ω∞M
is a discrete object of X. We will say that a sheaf of spectra M ∈ ShvSp(X) is connective if the homotopy
groups πnM vanish for n < 0 (equivalently, M is connective if the object Ω∞−mM ∈ X is m-connective for
every integer m). We let ShvSp(X)≥0 denote the the full subcategory of ShvSp(X) spanned by the connective
objects, and ShvSp(X)≤0 the full subcategory of ShvSp(X) spanned by the coconnective objects.

Proposition 1.7. Let X be an ∞-topos.

(1) The full subcategories (ShvSp(X)≥0, ShvSp(X)≤0) determine an accessible t-structure on ShvSp(X).

(2) The t-structure on ShvSp(X) is compatible with filtered colimits (that is, the full subcategory

ShvSp(X)≤0 ⊆ ShvSp(X)

is closed under filtered colimits).

(3) The t-structure on ShvSp(X) is right complete.

(4) The functor π0 of Remark 1.5 determines an equivalence of categories from the heart of ShvSp(X) to
the category of abelian group objects in the underlying topos of X.

Warning 1.8. The t-structure on ShvSp(X) is not left complete in general. For example, there may exist
nonzero objects M ∈ ShvSp(X) whose homotopy groups πnM vanish for all integers n. However, such objects
do not exist if X is hypercomplete. The ∞-category ShvSp(X) is left complete if Postnikov towers in X are
convergent; for example, if X is locally of finite homotopy dimension (see §T.7.2.1).

Proof of Proposition 1.7. It follows from Proposition A.1.4.3.3 that ShvSp(X) admits an accessible t-structure
given by the pair (C, ShvSp(X)≤0), where C is the collection of objects M ∈ ShvSp(X) for which the map-
ping space MapShvSp(X)(M,Ω(N)) is contractible for every coconnective object N ∈ ShvSp(X)≤0. Fix
M ∈ ShvSp(X); using Remark 1.2 we can identify M with a sequence of pointed objects M(n) ∈ X∗ and
equivalences γn : M(n) ' ΩM(n + 1). Set M ′(n) = τ≤n−1M(n); the equivalences γn induce equivalences
γ′n : M ′(n) ' ΩM ′(n+ 1), so we can regard {M ′(n)} as an object M ′ ∈ ShvSp(X). We have a canonical map
M →M ′. If N is a coconnective object of ShvSp(X)≤0, then we have

MapShvSp(X)(M,ΩN) ' lim←−MapX∗
(M(n),Ω∞+1−nN)

' lim←−MapX∗
(M ′(n),Ω∞+1−nN)

' MapShvSp(X)(M
′, N).
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On the other hand, Ω−1M ′ is a coconnective object of ShvSp(X). It follows that M ∈ C if and only if M ′ ' 0.
This is equivalent to the requirement that each M ′(n) ' τ≤n−1M(n) is a final object of X∗: that is, the
requirement that each M ′(n) is n-connective. This proves that C = ShvSp(X)≥0 so that assertion (1) holds.

We observe that the loop functor Ω : X∗ → X∗ preserves filtered colimits (Example T.7.3.4.7), so that
Ω∞+1 : ShvSp(X) → X∗ preserves filtered colimits for each n. It follows that the homotopy fiber of Ω∞+1

(over the zero object ∗ ∈ X∗) is closed under filtered colimits, so that (2) is satisfied. It follows easily that
ShvSp(X)≤0 is stable under countable coproducts. Any object M ∈

⋂
n ShvSp(X)≤−n has the property that

Ω∞−nM ∈ X∗ is final for each n, so that M is a zero object of ShvSp(X). Assertion (3) now follows from
Proposition A.1.2.1.19.

The heart of the ∞-category ShvSp(X) can be identified, as a full subcategory of the homotopy inverse
of the tower

· · · → X∗
Ω∗→ X∗

Ω∗→ X∗,

with the homotopy inverse limit of the tower

· · · → EM2(X)
Ω→ EM1(X)

Ω→ X,

where EMn(X) ⊆ X∗ denotes the full subcategory spanned by the Eilenberg-MacLane objects (that is,
objects which are both n-truncated and n-connective; see Definition T.7.2.2.1). Assertion (4) follows from
the observation that EMn(X) is equivalent to the nerve of the category of abelian group objects of the
underlying topos of X for n ≥ 2 (Proposition T.7.2.2.12).

Remark 1.9. Let g∗ : X → Y be a geometric morphism of ∞-topoi. Then g∗ is left exact, and therefore
induces a functor ShvSp(X) ' Stab(X) → Stab(Y) ' ShvSp(Y). We will abuse notation by denoting this
functor also by g∗. It is a left adjoint to the pushforward functor g∗ : ShvSp(X) → ShvSp(Y), given by
pointwise composition with g∗ : X→ Y.

Since g∗ : X→ Y preserves n-truncated objects and n-connective objects for every integer n, we conclude
that the functor g∗ : ShvSp(X) → ShvSp(Y) is t-exact: that is, it carries ShvSp(X)≥0 into ShvSp(Y)≥0 and
ShvSp(X)≤0 into ShvSp(Y)≤0. It follows that g∗ is left t-exact: that is, g∗ ShvSp(Y)≤0 ⊆ ShvSp(X)≤0. The
functor g∗ usually fails to be right t-exact.

Our next objective is to describe a symmetric monoidal structure on the ∞-category ShvSp(X). Roughly
speaking, this symmetric monoidal structure is given by pointwise tensor product. However, this operation
does not preserve the property of being a sheaf. Consequently, it will be convenient to first discuss the
process of sheafification.

Remark 1.10. Let D and C be small∞-categories, and assume that D admits finite colimits. Composition
with the Yoneda embeddings Dop → P(Dop) and C→ Ind(C) yields functors

Fun∗(P(Dop),P(Cop))→ Funlex(Dop,P(Cop)) ' Fun(C, Ind(D))← Fun′(Ind(C), Ind(D)).

Here Fun∗(P(Dop),P(Cop)) denotes the full subcategory of Fun(P(Dop),P(Cop)) spanned by those functors
which preserve small colimits and finite limits, Funlex(Dop,P(Cop)) the full subcategory of Fun(Dop,P(Cop))
spanned by those functors which preserve finite limits,and Fun′(Ind(C), Ind(D)) the full subcategory of
Fun(Ind(C), Ind(D)) spanned by those functors which preserve filtered colimits. Each of these functors
is an equivalence of ∞-categories (see Propositions T.6.1.5.2 and T.5.3.5.10; the middle equivalence is an
isomorphism of simplicial sets obtained by identifying both sides with a full subcategory of Fun(Dop×C, S)).

Assume that both C and D admit finite colimits, so that Ind(C) and Ind(D) are compactly generated
presentable ∞-categories. The presheaf ∞-categories P(Cop) and P(Dop) are classifying ∞-topoi for Ind(C)-
valued and Ind(D)-valued sheaves, respectively. The above argument shows that every geometric morphism
between classifying ∞-topoi arises from a functor Ind(C) → Ind(D) which preserves filtered colimits. Put
more informally, every natural operation which takes Ind(C)-valued sheaves and produces Ind(D)-valued
sheaves is determined by a functor Ind(C)→ Ind(D) which preserves filtered colimits.
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Suppose now that we are given ∞-categories C and D which admit finite colimits, and let f : Ind(C) →
Ind(D) be a functor which preserves filtered colimits. Remark 1.10 guarantees the existence of an induced
functor θ : ShvInd(C)(X) → ShvInd(D)(X) for an arbitrary ∞-topos X, which depends functorially on X. In
the special case where X = P(U) is an ∞-category of presheaves on some small ∞-category U, we can write
down the functor θ very explicitly: it fits into a homotopy commutative diagram

ShvInd(C)(X) //

��

ShvInd(C)(X)

��
Fun(Uop, Ind(C))

◦f // Fun(Uop, Ind(D)),

where the vertical maps are equivalences of ∞-categories given by composition with the Yoneda embedding
U→ P(U). More generally, if we assume only that we are given a geometric morphism P(U)→ X, then we
obtain a larger (homotopy commutative) diagram

ShvInd(C)(X) // ShvInd(D)(X)

ShvInd(C)(P(U))

OO

//

��

ShvInd(D)(P(U))

OO

��
Fun(Uop, Ind(C))

◦f // Fun(Uop, Ind(D)).

The existence of this diagram immediately implies the following result:

Lemma 1.11. Let U be a small ∞-category and suppose we are given a geometric morphism of ∞-topoi
g∗ : P(U) → X. Let C be a small ∞-category which admits finite colimits, and let TC denote the functor
Fun(Uop, Ind(C)) ' ShvInd(C)(P(U)) → ShvInd(C)(X) induced by g∗. Let D be another small ∞-category
which admits finite colimits, and define TD similarly. Suppose that f : Ind(C)→ Ind(D) is a functor which
preserves small filtered colimits. Then if α : M → N is a morphsim in Fun(Uop, Ind(C)) such that TC(α) is
an equivalence, then the induced map α′ : (f ◦M)→ (f ◦N) has the property that TD(α′) is an equivalence.

Lemma 1.12. Let X be an ∞-topos and C a presentable ∞-category. Then the inclusion i : ShvC(X) ⊆
Fun(Xop,C) admits a left adjoint L.

Proof. The proof does not really require the fact that X is an ∞-topos, only that X is a presentable ∞-
category. That is, we may assume without loss of generality that X = Indκ(X0), where κ is a regular cardinal
and X0 is a small ∞-category which admits κ-small colimits. Then i is equivalent to the composition

ShvC(X)
GC→ Fun′(Xop0 ,C)

i′

⊆ Fun(Xop0 ,C)
G′C→ Fun(Xop,C),

where Fun′(Xop0 ,C) is the full subcategory of Fun(Xop0 ,C) spanned by those functors which preserve κ-small
limits, GC is the functor given by restriction along the Yoneda embedding j : X0 → X, and G′C is given by
right Kan extension along j. The functor GC is an equivalence of ∞-categories (Proposition T.5.5.1.9), and
the functor G′C admits a left adjoint (given by composition with j). Consequently, it suffices to show that
the inclusion i′ admits a left adjoint. This follows immediately from Lemmas T.5.5.4.17, T.5.5.4.18, and
T.5.5.4.19.

Lemma 1.13. Let X be an ∞-topos, and let f : C→ D be a functor between compactly generated presentable
∞-categories. Assume that f preserves small filtered colimits. Let LC : Fun(Xop,C) → ShvC(X) and LD :
Fun(Xop,D) → ShvD(X) be left adjoints to the inclusion functors. Then composition with f determines a
functor F : Fun(Xop,C)→ Fun(Xop,D) which carries LC-equivalences to LD-equivalences.
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Remark 1.14. In the situation of Lemma 1.13, the functor F descends to a functor ShvC(X)→ ShvD(X),
given by the composition LD ◦ F . This is simply another avatar of the construction arising from Remark
1.10.

Proof. We use notation as in the proof of Lemma 1.12. For κ sufficiently large, the full subcategory X0 ⊆ X is
stable under limits, so that (by Proposition T.6.1.5.2) we have a geometric morphism g∗ : P(X0)→ X. Then
the functor LC can be realized as the composition of the restriction functor rC : Fun(Xop,C)→ Fun(Xop0 ,C)
with the functor TC : Fun(Xop0 ,C) ' ShvC(P(X0)) → ShvC(X) induced by g∗, and we can similarly write
LD = TD ◦ rD. If α is a morphism in the ∞-category Fun(Xop,C) such that LC(α) = TC(rC(α)) is an
equivalence, then Lemma 1.11 shows that LD(F (α)) = TD(rD(Fα)) is an equivalence, as required.

We will regard the ∞-category Sp of spectra as endowed with the smash product monoidal structure
defined in §A.6.3.2. This symmetric monoidal structure induces a symmetric monoidal structure on the ∞-
category Fun(K,Sp), for any simplicial set K (Remark A.2.1.3.4); we will refer to this symmetric monoidal
structure as the pointwise smash product monoidal structure.

Proposition 1.15. Let X be an ∞-topos, and let L : Fun(Xop,Sp) → ShvSp(X) be a left adjoint to the
inclusion. Then L is compatible with the pointwise smash product monoidal structure, in the sense of Def-
inition A.2.2.1.6: that is, if f : M → M ′ is an L-equivalence in Fun(Xop,Sp) and N ∈ Fun(Xop,Sp), then
the induced map M ⊗N →M ′⊗N is also an L-equivalence in Fun(Xop,Sp). Consequently, the ∞-category
ShvSp(X) inherits the structure of a symmetric monoidal ∞-category, with respect to which L is a symmetric
monoidal functor (Proposition A.2.2.1.9).

Proof. Apply Lemma 1.13 to the tensor product functor ⊗ : Sp×Sp→ Sp.

We will henceforth regard the ∞-category ShvSp(X) as endowed with the symmetric monoidal structure
of Proposition 1.15, for any ∞-topos X. We will abuse terminology by referring to this symmetric monoidal
structure as the smash product symmetric monoidal structure.

Proposition 1.16. Let X be an ∞-topos, and let L : Fun(Xop,Sp) → ShvSp(X) be a left adjoint to the
inclusion. Regard Fun(Xop,Sp) as endowed with the t-structure induced by the natural t-structure on Sp.
Then:

(1) The functor L is t-exact: that is, L carries Fun(Xop,Sp≥0) into ShvSp(X)≥0 and Fun(Xop,Sp≤0) into
ShvSp(X)≤0.

(2) The smash product symmetric monoidal structure on ShvSp(X) is compatible with the t-structure on
ShvSp(X).

Proof. The construction of Lemma 1.12 shows that (for sufficiently large κ) we can factor L as the composition
of a restriction functor Fun(Xop,Sp) → Fun(Xop0 ,Sp) with the functor Fun(Xop0 ,Sp) ' ShvSp(P(X0)) →
ShvSp(X) induced by a geometric morphism g∗ : P(X0) → X. Assertion (1) now follows from Remark 1.9.
To prove (2), we show that if we are given a finite collection of connective objects {Xi}1≤i≤n of ShvSp(X),
then the tensor product X1 ⊗ · · · ⊗Xn is connective. Choose fiber sequences

X ′i → Xi → X ′′i → X ′i[1]

in Fun(Xop,Sp), where X ′i ∈ Fun(Xop,Sp≥0) and X ′′i ∈ Fun(Xop,Sp≤−1). It follows from (1) that LX ′i ∈
ShvSp(X)≥0 and LX ′′i ∈ ShvSp(X)≤−1. We have fiber sequences

LX ′i → LXi → LX ′′i → LX ′i[1]

in ShvSp(X). Since LXi ' Xi is connective, we deduce that the map LX ′i → LXi ' Xi is an equivalence for
every index i. Using Proposition 1.15, we deduce that the tensor product X1 ⊗ · · · ⊗Xn in the ∞-category
ShvSp(X) can be written as L(X ′1 ⊗ · · · ⊗X ′n). By virtue of (1), it will suffice to show that X ′1 ⊗ · · · ⊗X ′n is
a connective object of Fun(Xop,Sp), which follows from the fact that the smash product monoidal structure
on Sp is compatible with its t-structure (Lemma A.7.1.1.7).
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Definition 1.17. Let X be an∞-topos. A sheaf of E∞-rings on X is a functor Xop → CAlg which preserves
small limits; we will denote by ShvCAlg(X) the full subcategory of Fun(Xop,CAlg) spanned by the sheaves
of E∞-rings.

Remark 1.18. Since the forgetful functor CAlg = CAlg(Sp)→ Sp is conservative and preserves small limits
(see Lemma A.3.2.2.6 and Corollary A.3.2.2.5), we have a canonical equivalence of ∞-categories (in fact, an
isomorphism of simplicial sets) ShvCAlg(X) ' CAlg(ShvSp(X)).

Remark 1.19. Let X be an ∞-topos and O : Xop → CAlg a sheaf of E∞-rings on X. Composing with the
forgetful functor CAlg→ Sp, we obtain a sheaf of spectra on X; we will generally abuse notation by denoting
this sheaf of spectra also by O. In particular, we can define homotopy groups πn O as in Remark 1.5. These
homotopy groups have a bit more structure in this case: π0 O is a commutative ring object in the underlying
topos of X, while each πn O has the structure of a π0 O-module.

Definition 1.20. Let X be an ∞-topos. We will say that a sheaf O of E∞-rings on X is connective if it
is connective when regarded as a sheaf of spectra on X: that is, if the homotopy groups πn O vanish for
n < 0. We let ShvCAlg(X)≥0 denote the full subcategory of ShvCAlg(X) spanned by the connective sheaves
of E∞-rings on X.

The following result is useful for working with connective sheaves of spectra on an ∞-topos X.

Proposition 1.21. Let C be a compactly generated presentable ∞-category. Let C0 ⊆ C be a full subcategory
which is closed under the formation of colimits, and which is generated under small colimits by compact
objects of C. Let X be an ∞-topos. Then:

(1) The ∞-category C0 is presentable and compactly generated.

(2) The inclusion C0 ⊆ C admits a right adjoint g which commutes with filtered colimits.

(3) Composition with g determines a functor G : ShvC(X)→ ShvC0
(X).

(4) The functor G admits a fully faithful left adjoint F .

Proof of Proposition 1.21. Since C0 is stable under small colimits in C, the inclusion i : C0 ⊆ C preserves
small colimits so that i admits a right adjoint g : C → C0 by Corollary T.5.5.2.9. Let D ⊆ C0 be the
full subcategory spanned by those objects of C0 which are compact in C. Any such object is automatically
compact in C0, so we have a fully faithful embedding q : Ind(D) → C0 (Proposition T.5.3.5.11). Since C0

is generated under small colimits by objects of D, we deduce that q is an equivalence of ∞-categories; this
proves (1). Moreover, it shows that the collection of compact objects in C0 is an idempotent completion of
D; since D is already idempotent complete, we deduce that every compact object of C0 is also compact in
C. Assertion (2) now follows from Proposition T.5.5.7.2. Assertion (3) is obvious (since g preserves small
limits; see Proposition T.5.2.3.5).

Let L : Fun(Xop,C) → ShvC(X) be a left adjoint to the inclusion, and define L0 similarly. We observe
that G is equivalent to the composition

Shv(C) ⊆ Fun(Xop,C)
G′→ Fun(Xop,C0)

L0→ ShvC0
(X),

where G′ is given by composition with g. It follows that G admits a left adjoint F , which can be described
as the composition

Shv(C)
L← Fun(Xop,C) ⊇ Fun(Xop,C0) ⊇ ShvC0

(X).

To complete the proof, it suffices to show that F is fully faithful. In other words, we wish to show that for
every object F ∈ ShvC0

(X), the unit map F → (G ◦ F )(F) is an equivalence. In other words, we wish to
show that the map α : F → LF becomes an equivalence after applying the functor G′. Since G′(F) ' F

and G′(LF) belong to ShvC0(X), this is equivalent to the requirement that G′(α) is an L0-equivalence
in the ∞-category Fun(Xop,C0). This follows from (3) and Lemma 1.13, since α is an L-equivalence in
Fun(Xop,C).
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Remark 1.22. In the situation of Proposition 1.21, an object F ∈ ShvC(X) belongs to the essential image
of the full faithful embedding ShvC0(X) → ShvC(X) if and only if the canonical map G(F) → F is an
L-equivalence in Fun(Xop,C), where L denotes a left adjoint to the inclusion ShvC(X) ↪→ Fun(Xop,C).

Example 1.23. The full subcategory Spt≥0 ⊆ Spt of connective spectra is stable under small colimits in Spt,
and is generated under small colimits by the sphere spectrum S ∈ Spt≥0 (which is a compact object of the∞-
category Spt). Consequently, Proposition 1.21 gives a fully faithful embedding F : ShvSpt≥0

(X)→ ShvSpt(X)
for every ∞-topos X. Let F ∈ ShvSpt(X), so that we have an exact triangle

τ≥0 F
φ→ F → τ≤−1 F → (τ≥0 F)[1]

in the ∞-category Fun(Xop,Spt). Let L : Fun(Xop,Spt) → ShvSpt(X) be a left adjoint to the inclusion.
According to Remark 1.22, the object F belongs to the essential image of F if and only if L(φ) is an
equivalence. Since the functor L is t-exact, this is equivalent to the requirement that F ∈ ShvSpt(X)≥0: that
is, the functor F induces an equivalence ShvSpt≥0

(X)→ ShvSpt(X)≥0.

Example 1.24. Let CAlg denote the ∞-category of E∞-rings, and let CAlgcn ⊆ CAlg denote the full
subcategory of CAlg spanned by the connective E∞-rings. Then CAlg≥0 is stable under small colimits in
CAlg (it is the essential image of the colocalization functor given by passage to the connective cover; see
Proposition A.7.1.3.13). It is generated under small colimits by the compact object Sym∗(S), where S denotes
the sphere spectrum and Sym∗ : Sp→ CAlg denotes a left adjoint to the forgetful functor. Proposition 1.21
gives a fully faithful embedding F : ShvCAlgcn(X)→ ShvCAlg(X) for every∞-topos X. Let O ∈ ShvCAlg(X) be
a sheaf of E∞-rings on X, and let τ≥0 O ∈ Fun(Xop,CAlg) be the presheaf of E∞-rings obtained by pointwise
passage to the connective cover. Let O′ ∈ ShvCAlg(X) be a sheafification of the presheaf τ≥0 O, so that the
evident map τ≥0 O→ O induces a map of sheaves α : O′ → O. According to Remark 1.22, the sheaf O belongs
to the essential image of F if and only if α is an equivalence. Let u : CAlg→ Sp denote the forgetful functor.
Since u preserves small limits, composition with u induces a forgetful functor U : ShvCAlg(X) → ShvSp(X).
Since u is conservative, the functor U is also conservative, so that α is an equivalence if and only if U(α) is
an equivalence. Since u preserves filtered colimits, Lemma 1.13 implies that U(O′) can be identified with a
sheafification of u ◦ τ≥0 O ' τ≥0(u ◦ O). Example 1.23 guarantees that U(α) is an equivalence if and only
if U(O) is connective as a sheaf of spectra. Combining these observations, we deduce that O is connective
if and only if it belongs to the essential image of F. In other words, the functor F induces an equivalence
ShvCAlgcn(X)→ ShvCAlg(X)≥0.

We conclude this section by describing the notion of a sheaf of E∞-rings using the formalism of geometries
developed in [42].

Definition 1.25. Let k ∈ CAlg be an E∞-ring. We let G
nSp
disc(k) denote the full subcategory of CAlgk

spanned by the compact objects. If A is a compact k-algebra, we let SpecA denote the corresponding
object of GSp

disc(k). If k is connective, we let G
Sp
disc(k) denote the full subcategory of GnSp

disc(k) spanned by the
connective compact k-algebras.

We will view G
nSp
disc(k) and G

Sp
disc(k) as discrete geometries: that is, we will say that a morphism in

G
nSp
disc(k) is admissible if it is an equivalence, and we will say that a collection of admissible morphisms
{φα : SpecBα → SpecA} generates a covering sieve if one of the morphsims φα admits a section.

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote

the geometries G
nSp
disc(k) and G

Sp
disc(k) by G

nSp
disc and G

Sp
disc, respectively.

Remark 1.26. Let k be an E∞-ring. For any ∞-topos X, Remark V.1.1.7 furnishes equivalences of ∞-
categories

ShvCAlgk(X) ' Str
G

nSp
disc(k)(X).

That is, a G
nSp
disc(k)-structure on X can be identified with a sheaf on X with values in the ∞-category CAlgk

of E∞-algebras over k. If k is connective, the same argument gives an equivalence

ShvCAlgcn
k

(X) ' Str
G

Sp
disc(k)(X) :
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that is, a G
Sp
disc(k) can be identified with a sheaf of connective E∞-rings on X.

Definition 1.27. Let k be an E∞-ring. We let RingTop(k) denote opposite of the∞-category LTop(GnSp
disc(k))

of Definition V.1.4.8. Concretely, the objects of RingTop(k) are given by pairs (X,OX), where X is an ∞-
topos and (by Remark 1.26) OX is a CAlgk-valued sheaf on X. A morphism f : (X,OX) → (Y,OY) in
RingTop(k) can be identified with a pair (f∗, α), where f∗ : Y→ X is a geometric morphism of ∞-topoi and
α : f∗ OY → OX is a morphism of CAlgk-valued sheaves on X.

If k is a connective E∞-ring, we let RingTop(k)cn denote the opposite of the ∞-category LTop(GSp
disc(k)).

We can identify RingTop(k)cn with the full subcategory of RingTop(k) spanned by those pairs (X,OX)

where OX is connective. The inclusion G
Sp
disc(k) → G

nSp
disc(k) induces a functor RingTop(k) → RingTop(k)cn

which is right adjoint to the above identification. Concretely, this right adjoint is given by the formula
(X,OX) 7→ (X, τ≥0 OX).

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote
RingTop(k) and RingTop(k)cn by RingTop and RingTopcn, respectively. We will refer to RingTop as the
∞-category of spectrally-ringed ∞-topoi.

Remark 1.28. Let k be a connective E∞-ring. Let T
Sp
disc(k) denote the full subcategory of CAlgopk spanned

by those k-algebras of the form Sym∗M , where M is a free k-module of finite rank. Then T
Sp
disc(k) can

be regarded as a discrete pregeometry. Using Proposition A.7.2.5.27, we see that the inclusion T
Sp
disc(k) ↪→

G
Sp
disc(k) exhibits G

Sp
disc(k) as a geometric envelope of TSp

disc(k). When k is the sphere spectrum, we will denote

T
Sp
disc(k) by T

Sp
disc.

2 Spectral Schemes

Our goal in this section is to introduce an∞-categorical generalization of the classical notion of scheme, which
we will refer to as a spectral scheme. Recall that the category of schemes can be regarded as a subcategory
(which is not full) of the category of ringed spaces. In §1, we introduced the∞-category RingTop of spectrally
ringed ∞-topoi. The notion of spectrally ringed ∞-topos (X,OX) generalizes the classical notion of ringed
space in two ways:

(a) Rather than considering sheaves on topological spaces, we consider sheaves on∞-topos. Every topolog-
ical space X determines an∞-topos Shv(X). Moreover, the construction X 7→ Shv(X) is determines a
fully faithful embedding from the (nerve of the) category of sober topological spaces to the∞-category
of ∞-topoi (recall that a topological space X is said to be sober if every irreducible closed subset of
X contains a unique generic point: this condition is always satisfied if X is Hausdorff, or if X is the
underlying topological space of a scheme).

(b) Rather than considering sheaves with values in the ordinary category of commutative rings, we consider
sheaves with values in the ∞-category CAlg of E∞-rings.

Remark 2.1. Every ringed space (X,OX) determines a spectrally ringed ∞-topos (Shv(X),O) via the
following procedure:

(i) Let Ring denote the category of commutative rings. Using Proposition V.1.1.12, we see that giving a
sheaf on X with values in the category Ring is equivalent to giving a sheaf O on Shv(X) with values
in the ∞-category N(Ring).

(ii) According to Proposition A.7.1.3.18, we can identify N(Ring) with the full subcategory of CAlgcn

spanned by the discrete E∞-rings. Note that N(Ring) is closed under limits in CAlgcn, so that O can
be identified with a sheaf of connective E∞-rings on Shv(X).
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(iii) Using Example 1.24, we can identify O with a connective sheaf of E∞-rings on Shv(X) (beware that
this identification is not compatible with passage to global sections: when viewed as a CAlg-valued
sheaf on Shv(X) the values of O are generally not connective).

If X is sober, we can recover X as the topological space of points of the ∞-topos Shv(X), and its structure
sheaf OX is given by π0 O.

In this section, we will define a subcategory SpSch ⊆ RingTop, which we will refer to as the ∞-category
of spectral schemes. To help cement the reader’s intuition, we begin by describing some of the objects of this
∞-category:

Definition 2.2 (Spectral Schemes: Preliminary Definition). A 0-localic spectral scheme is a spectrally ringed
∞-topos (X,OX) which satisfies the following conditions:

(1) There exists a topological space X and an equivalence of ∞-topos Shv(X) ' X. We will use this
equivalence to identify π0 OX with a sheaf of commutative rings OX on X, and each higher homotopy
group πn OX as a sheaf of OX -modules on X.

(2) The ringed space (X,OX) is a scheme, in the sense of classical algebraic geometry.

(3) Each πn OX is a quasi-coherent sheaf of modules on the scheme (X,OX), in the sense of classical
algebraic geometry.

(4) The zeroth space Ω∞ OX is hypercomplete (when viewed as a sheaf of spaces on X; see §T.6.5.2).

Remark 2.3. Condition (4) of Definition 2.2 plays a purely technical role, and can safely be ignored by
the reader. In most cases of interest, it is automatically satisfied. For example, if (X,OX) is a Noetherian
scheme of finite Krull dimension, then every object of X ' Shv(X) is hypercomplete (see §T.7.2.4). In
general, if (X,OX) is a spectrally ringed ∞-topos which satisfies conditions (1), (2), and (3) of Definition
2.2, then we can replace OX by its hypercompletion to obtain a spectrally ringed ∞-topos (X,O′X) which
satisfies conditions (1), (2), (3) and (4) (without changing the underlying scheme).

In order to make a systematic study of the theory of spectral schemes, it will be convenient to formulate
Definition 2.2 in a different way. We would like to mimic the classical definition of scheme as closely as
possible. Recall that a ringed space (X,OX) is a scheme if and only if X can be covered by open sets
{Uα} such that each of the ringed spaces (Uα,OX |Uα) is isomorphic (in the category of ringed spaces) to
the Zariski spectrum of a commutative ring. Our definition of spectral scheme will be essentially the same,
except that we will replace the category of commutative rings by the larger category of connective E∞-rings.
To make this precise, we will need to understand how to generalize the definition of the Zariski spectrum to
the setting of E∞-rings. This will lead us to a different notion of spectral scheme (Definition 2.7), which we
will prove to be equivalent to Definition 2.2 at the end of this section (Theorem 2.40).

We begin with a review of the Zariski topology in classical algebraic geometry. Let R be a commutative
ring R. For every element r ∈ R, we let (r) denote the ideal generated by r. If r is not a unit, then (r) 6= R,
so (by Zorn’s lemma) (r) is contained in a maximal ideal m ⊂ R. We say that R is local if R contains a unique
maximal ideal mR. The above reasoning shows that mR can be described as the collection of non-invertible
elements of R. The ring R is local if and only if the collection of non-units R − R× forms an ideal in R.
Since R − R× is clearly closed under multiplication by elements of R, this is equivalent to the requirement
that R−R× is a submonoid of R (with respect to addition). That is, R is local if and only if the following
pair of conditions is satisfied:

(a) The element 0 belongs to R − R×. In other words, 0 is not a unit in R: this is equivalent to the
requirement that R is nontrivial; that is, that 0 6= 1 in R.

(b) If r, r′ ∈ R − R×, then r + r′ ∈ R − R×. Equivalently, if r + r′ is a unit, then either r or r′ is a unit.
This is equivalent to the following apparently weaker condition: if s ∈ R, then either s or 1 − s is a
unit in R (to see this, take s = r

r+r′ , so that s is invertible if and only if r is invertible and 1−s ' r′

r+r′

is invertible if and only if r′ is invertible).
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If R and R′ are local commutative rings, then we say that a ring homomorphism f : R→ R′ is local if it
carries mR into mR′ : that is, if an element x ∈ R is invertible if and only if its image f(x) ∈ R′ is invertible.

All of these notions admit generalizations to the setting of sheaves of commutative rings on a topological
space X. We say that a sheaf of commutative rings O on X is local if, for every point x ∈ X, the stalk Ox is
a local commutative ring. Similarly, a map of local sheaves of commutative rings O→ O′ is local if, for every
point x ∈ X, the induced map of stalks Ox → O′x is a local homomorphism of local commutative rings.

We can think of a sheaf of commutative rings O on a topological space X as a commutative ring object
in the category ShvSet(X) of sheaves of sets on X. The locality of O can then be formulated in terms which
are entirely internal to the topos ShvSet(X). Moreover, this formulation makes sense in an arbitrary topos:

Definition 2.4. Let X be a Grothendieck topos with final object 1, and let O be a commutative ring object
of X. We will say that O is local if the following conditions are satisfied:

(a) The sheaf O is locally nontrivial. That is, if 0, 1 : 1→ O denote the multiplicative and additive identity
in O, then the fiber product 1×O 1 is an initial object of X.

(b) Let O× denote the group object of X given by the units of O, so that we have a pullback diagram

O× //

��

O×O

m

��
1

1 // O

where m denotes the multiplication on O, and let e : O× → O denote the canonical inclusion. Then
the maps e and 1− e determine an effective epimorphism O×

∐
O× → O.

If α : O → O′ is a map between local commutative ring objects of X, then we say that α is local if the
diagram

O× //

��

O′×

��
O // O′

is a pullback square.

Definition 2.4 can be adapted to the ∞-categorical setting in a straightforward way:

Definition 2.5. Let X be an ∞-topos, and let O ∈ ShvCAlg(X) be a sheaf of E∞-rings on X. We will say
that O is local if π0 O is local, when viewed as a commutative ring object of the underlying topos of X (see
Definition 2.4). If α : O→ O′ is a morphism between local objects of ShvCAlg(X), then we will say that α is
local if it induces a local morphism of commutative ring objects π0 O→ π0 O

′.
Let RingTop denote the ∞-category of spectrally ringed ∞-topoi. We define a subcategory RingTopZar

as follows:

(i) A spectrally ringed∞-topos (X,OX) belongs to RingTopZar if and only if OX is a local sheaf of E∞-rings
on X.

(ii) A morphism of spectrally ringed ∞-topoi f : (X,OX) → (Y,OY) belongs to RingTopZar if and only if
the induced map α : f∗ OY → OX is a local map between sheaves of E∞-rings.

We will refer to RingTopZar as the ∞-category of locally spectrally ringed ∞-topoi. We let RingTopcn
Zar =

RingTopZar ∩RingTopcn. If k is an E∞-ring, we define RingTop(k)Zar to be the fiber product

RingTop(k)×RingTop RingTopZar ⊆ RingTop(k),

and if k is connective we let RingTop(k)cn
Zar denote the fiber product

RingTop(k)×RingTop RingTopcn
Zar ⊆ RingTop(k)cn.
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Let (X,OX) be a spectrally ringed ∞-topos. Evaluating OX on the final object of X, we obtain an
E∞-ring, which we will denote by Γ(X;OX). The construction (X,OX) 7→ Γ(X;OX) determines a functor
Γ : RingTop→ CAlgop, which is left adjoint to the canonical inclusion

CAlgop ' ShvCAlg(S)op ' RingTop×RTop{S} ↪→ RingTop .

The starting point for our theory of spectral algebraic geometry is the following observation:

Proposition 2.6. The functor Γ|RingTopZar : RingTopZar → CAlgop admit a right adjoint.

Proposition 2.6 asserts that for every E∞-ring R, there exists a locally spectrally ringed∞-topos (X,OX)
and a map θ : R → Γ(X,OX) with the following universal property: for every locally spectrally ringed
∞-topos (Y,OY), composition with θ induces a homotopy equivalence

MapRingTopZar
((Y,OY), (X,OX))→ MapCAlg(R,Γ(Y;OY)).

The spectrally ringed ∞-topos (X,OX) is uniquely determined up to equivalence; and we will denote it by
SpecZ(R). We will refer to SpecZ(R) as the spectrum of R with respect to the Zariski topology.

We now give a different version of Definition 2.2:

Definition 2.7 (Spectral Scheme: Concrete Definition). A nonconnective spectral scheme is a spectrally
ringed ∞-topos (X,OX) such that there exists a collection of objects Uα ∈ X satisfying the following condi-
tions:

(i) The objects Uα cover X. That is, the canonical map
∐
α Uα → 1 is an effective epimorphism, where 1

denotes the final object of X.

(ii) For each index α, there exists an E∞-ring Rα and an equivalence of spectrally ringed ∞-topoi

(X/Uα ,OX |Uα) ' SpecZ(Rα).

We let SpSchnc denote the full subcategory of RingTopZar spanned by the nonconnective spectral schemes
(note that if (X,OX) is a spectral scheme, then OX is automatically a local sheaf of E∞-rings on X).

A spectral scheme is a nonconnective spectral scheme (X,OX) such that OX is connective. We let SpSch
denote the full subcategory of SpSchnc spanned by the spectral schemes.

To make sense of Definition 2.7, we need to understand the functor SpecZ : CAlgop → RingTopZar

whose existence is asserted by Proposition 2.6. This functor can be described very concretely. We will
see below that if R is an E∞-ring, then SpecZ(R) can be identified with the spectrally ringed ∞-topos
(Shv(SpecZ(π0R)),O). Here SpecZ(π0R) denotes the Zariski spectrum of the commutative ring π0R: that is,
the topological space whose points are prime ideals p ⊆ π0R. This topological space has a basis of open sets
Uf = {p ∈ SpecZR : f /∈ p}, where f ranges over the elements of π0R. The structure sheaf O is described
by the formula O(Uf ) = R[ 1

f ] (see Definition 2.8 below).

It is possible to verify Proposition 2.6 directly by fleshing out the description of SpecZ(R) given above.
However, we prefer to deduce Proposition 2.6 from the more general results of [42] (in particular, the
description of SpecZ(R) given above will be deduced from Theorem V.2.2.12). For this, we need to recast
the discussion of local sheaves of E∞-rings using the language of geometries. This has the unfortunate effect
of burdening our exposition with an additional layer of abstraction. However, it will be convenient later,
when we discuss the relationship between the theory of spectral schemes and other related constructions (see
§9).

Definition 2.8. Let f : A→ B be a map of E∞-rings. We will say that f exhibits B as a localization of A
by a ∈ π0A if the map f is étale and f induces an isomorphism of commutative rings (π0A)[a−1] ' π0B. In
this case, we will denote B by A[a−1].
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Remark 2.9. Let A be an E∞-ring and a ∈ π0A an element. Theorem A.7.5.0.6 guarantees that A[a−1]
exists and is well-defined up to equivalence (in fact, up to a contractible space of choices). The localization
map A→ A[a−1] can be characterized by either of the following conditions (see Corollary A.7.5.4.6):

(1) The map A→ A[a−1] induces an isomorphism of graded rings (π∗A)[a−1]→ (π∗A[a−1]).

(2) For every E∞-ring B, the map MapCAlg(A[a−1], B)→ MapCAlg(A,B) is fully faithful, and its essential
image consists of those maps A→ B which carry a ∈ π0A to an invertible element of π0B.

Definition 2.10. Let k be an E∞-ring. We define a geometry G
nSp
Zar (k) as follows:

(1) On the level of ∞-categories, we have G
nSp
Zar (k) = G

nSp
disc(k) (see Definition 1.25). That is, GnSp

Zar (k) is the
opposite of the ∞-category of compact object of CAlgk. If A is a compact object of CAlgk, we let

SpecA denote the corresponding object of GnSp
Zar (k).

(2) A morphism f : SpecA→ SpecB in G
nSp
Zar (k) is admissible if and only if there exists an element b ∈ π0B

such that f carries b to an invertible element in π0A, and the induced map B[ 1
b ]→ A is an equivalence.

(3) A collection of admissible morphisms {SpecB[ 1
bα

] → SpecB} generates a covering sieve on B if and
only if the elements bα generate the unit ideal in the commutative ring π0B.

If the E∞-ring k is connective, we let G
Sp
Zar(k) denote the full category of GnSp

Zar (k) spanned by objects of

the form SpecA, where A is a connective k-algebra; we regard G
Sp
Zar(k) as a geometry by taking the admissible

morphisms and admissible coverings in G
nSp
Zar (k). When k is the sphere spectrum (regarded as an initial object

of CAlg), we will denote G
nSp
Zar (k) and G

Sp
Zar(k) by G

nSp
Zar and G

Sp
Zar, respectively.

Remark 2.11. To check that Definition 2.10 describes a geometry, it is necessary to observe that the
collection of k-algebra morphisms of the form A 7→ A[a−1] is stable under retracts. To prove this, let us
consider a diagram

A //

f

��

A′

f ′

��

φ // A

f

��
B // A′[a−1] // B,

where the horizontal compositions are the identity maps. We will prove that f is admissible by showing
that f induces isomorphisms θ : (πnA)[ 1

φ(a) ] → πnB for every integer n. Since φ(a) clearly acts invertibly

on πnB, it suffices to show that the action of φ(a) is locally nilpotent on the kernel and cokernel of the map
θ. Since θ is a retract of the map θ′ : πnA

′ → (πnA
′)[ 1

a ], we have surjective maps ker(θ′) → ker(θ) and
coker(θ′) → coker(θ); it therefore suffices to observe that the action of a is locally nilpotent on the abelian
groups ker(θ′) and coker(θ′).

Notation 2.12. Let k be an E∞-ring. Let Sym∗k denote the left adjoint to the forgetful functor CAlgk →
Modk. We will denote the algebra Sym∗k(kn) by k{x1, . . . , xn}. We will say that a k-algebra A is polynomial
if it is equivalent to k{x1, . . . , xn} for some n ≥ 0. We let An denote the object Spec k{x1, . . . , xn} of

G
nSp
Zar (k).

We will say that a k-algebra A is localized polynomial if it is equivalent to k{x1, . . . , xn}[ 1
f ] for some

f ∈ π0k{x1, . . . , xn} ' (π0k)[x1, . . . , xn]. We let Gm denote the object Spec k{x}[ 1
x ] of GnSp

Zar (k). Note that

the canonical map k{x} → k{x}[ 1
x ] induces a morphism Gm → A1 in G

nSp
Zar (k).

Remark 2.13. Let k be an E∞-ring. For any k-algebra A and any element a ∈ π0A, we have a pushout
diagram of k-algebras

k{x} //

��

k{x}[ 1
x ]

��
A // A[ 1

a ].

15



It follows that the collection of of admissible morphisms in G
nSp
Zar (k) is generated (under the formation of

pullbacks) by the admissible map Gm → A1 appearing in Notation 2.12

Example 2.14. Let k be an E∞-ring. The pair of admissible morphisms

Spec k{x}[ 1

1− x
]
α→ Spec k{x} β← Spec k{x}[ 1

x
]

is an admissible covering in G
nSp
Zar (k). In fact, this admissible covering, together with the empty covering of

the initial object Spec 0, generates the family of admissible coverings in G
nSp
Zar (k). To prove this, let G be

another geometry with the same underlying∞-category as GnSp
Zar (k) and the same admissible morphisms, such

that α and β generate a covering sieve on Spec k{x} ∈ G, and the empty sieve is a covering of Spec 0 ∈ G.

We will show that G
nSp
Zar (k)→ G is a transformation of geometries.

Let R be a compact k-algebra, and let {xα}α∈A be a collection of elements of π0R which generate the
unit ideal. We wish to show that the maps {SpecR[ 1

xα
]→ SpecR}α∈A generate a G-covering sieve S on R.

Without loss of generality, we may suppose that A = {1, . . . , n} for some nonnegative integer n; we work
by induction on n. Write 1 = x1y1 + . . . + xnyn in the commutative ring π0R. Replacing each xi by the
product xiyi, we may suppose that 1 = x1 + . . . + xn. If n = 0, then R ' 0 and S is a covering sieve by
hypothesis. If n = 1, then S contains an isomorphism and therefore generates a covering sieve. If n = 2,
we have a map φ : SpecR → Spec k{x} given by x 7→ x1. Then S is obtained from the admissible covering
{α, β} by pullback along φ, and therefore generates a covering sieve. Suppose finally that n > 2, and set
y = x2 + . . . + xn. The inductive hypothesis implies that the maps SpecR[ 1

y ] → SpecR ← SpecR[ 1
x1

]
generate a G-covering sieve on R. It will therefore suffice to show that S generates a covering sieve after
pullback to either SpecR[ 1

y ] or SpecR[ 1
x1

]; in either case, this follows from the inductive hypothesis.

Remark 2.15. Let k be a connective E∞-ring. Using Remark 2.13 and Example 2.14, we deduce that the
collection of admissible morphisms and admissible coverings in G

nSp
Zar (k) is generated by admissible morphisms

and admissible coverings in G
Sp
Zar(k). In particular, if X is an∞-topos, then a left-exact functor O : GnSp

Zar (k)→
X is a G

nSp
Zar (k)-structure if and only if the restriction O |GSp

Zar(k) is a G
Sp
Zar(k)-structure; a natural transfor-

mation α : O→ O′ of GnSp
Zar (k)-structures is local if and only if the induced map O |GSp

Zar(k)→ O′ |GnSp
Zar (k) is

local.

Remark 2.16. Let φ : k → k′ be a map of E∞-rings. Then the construction SpecA 7→ Spec(A ⊗k k′)
determines a transformation of geometries θ : GnSp

Zar (k)→ G
nSp
Zar (k′). It follows from Remark 2.13 and Example

2.14 that the collection of admissible morphisms and admissible morphisms in G
nSp
Zar (k′) is generated (under

the formation of pullbacks) by the images under θ of admissible coverings and admissible pullbacks in G
nSp
Zar (k).

Consequently, if X is an ∞-topos, then a left-exact functor O : GnSp
Zar (k′)→ X is a G

nSp
Zar (k′)-structure on X if

and only if the composite map

G
nSp
Zar (k)

θ→ G
Sp
Zar(k)

O→ X

is a G
nSp
Zar (k)-structure on X. Similarly, if α : O→ O′ is a natural transformation between G

nSp
Zar (k′)-structures,

then α is local if and only if the induced natural transformation O ◦θ → O′ ◦θ is local.
If k and k′ are connective, then θ restricts to a transformation of geometries θ0 : GSp

Zar(k)→ G
Sp
Zar(k

′). The

same reasoning shows that a left-exact functor O : GSp
Zar(k

′) → X is a G
Sp
Zar(k

′)-structure if and only if O ◦θ0

is a G
Sp
Zar(k)-structure, and that a natural transformation α : O → O′ of GSp

Zar(k
′)-structures on X is local if

and only if the induced map O ◦θ0 → O′ ◦θ0 is local.

Remark 2.17. Let k denote the sphere spectrum, regarded as an initial object of the ∞-category CAlg of
E∞-rings. We will denote the geometries GnSp

Zar (k) and G
Sp
Zar(k) by G

nSp
Zar and G

Sp
Zar, respectively. Let X be an∞-

topos. According to Remark 1.26, we can identify the∞-category of left-exact functors GnSp
Zar (k)→ X with the

∞-category ShvCAlgk(X). Similarly, we can identify the ∞-category of left-exact functors G
Sp
Zar(k)→ X with

the∞-category of connective sheaves of E∞-rings ShvCAlgk(X)≥0. Under these identifications, the restriction

functor O 7→ O |GSp
Zar(k) is given by passage to the connective cover τ≥0 : ShvCAlgk(X)→ ShvCAlgk(X)≥0.
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If k is a connective E∞-ring, then G
Sp
Zar(k) can be realized as the geometric envelope of a pregeometry.

Definition 2.18. Let k be a connective E∞-ring. We let T
Sp
Zar(k) denote the full subcategory of G

Sp
Zar(k)

spanned by objects of the form SpecA, where A is a localized polynomial algebra over k. We regard TZar(k)
as a pregeometry as follows:

• A morphism SpecA→ SpecB is admissible if and only if the underlying map B → A exhibits A as a
localization A ' B[ 1

b ], for some b ∈ π0B.

• A collection of admissible morphisms {SpecB[ 1
bα

] → SpecB} generates a covering sieve on SpecB ∈
T

Sp
Zar(k) if and only if the elements {bα} generate the unit ideal of π0B.

In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), we will denote

the ∞-category T
Sp
Zar(k) by T

Sp
Zar.

Remark 2.19. As in Remark V.4.2.1, it is possible to make several variants on Definition 2.18 without
changing the underlying theory of TSp

Zar(k)-structures.

We have the following analogue of Proposition V.4.2.3:

Proposition 2.20. Let k be a connective E∞-ring. Then the inclusion T
Sp
Zar(k) ⊆ G

Sp
Zar(k) exhibits G

Sp
Zar(k)

as a geometric envelope of TSp
Zar(k).

The proof follows the lines of the proof of Proposition V.4.2.3. Let A1 denote the affine line Spec k{x}.
Note that A1 has the structure of a homotopy associative monoid in the ∞-category T

Sp
Zar(k), given by the

multiplication map A1×A1 ' Spec k{x0, x1} → Spec k{x} ' A1 determined by the map k{x} → k{x0, x1}
given by x 7→ x0x1. Consequently, if C is any ∞-category which admits finite products and f : TSp

Zar(k)→ C

is a functor which preserves finite products, then f(A1) ∈ C inherits the structure of a homotopy associative
monoid object of C.

Lemma 2.21. Let C be an ∞-category which admits finite limits, let k be a connective E∞-ring, and let
f : TSp

Zar(k)→ C be a functor which belongs to Funad(TSp
Zar(k),C) (see Definition V.3.4.1). Then the induced

map

α : f(Spec k{x}[ 1

x
])→ f(A1)

is a unit subobject of the homotopy associative monoid object f(A1) ∈ C (see §V.4.2).

Proof. To simplify the notation, we let X = f(A1) ∈ C and let X0 = f(Spec k{x}[ 1
x ]) ∈ C. We have a

pullback diagram in T
Sp
Zar(k)

Spec k{x}[ 1
x ]

id //

id

��

Spec k{x}[ 1
x ]

��
Spec k{x}[ 1

x ] // Spec k{x},

where the vertical arrows are admissible. Since f belongs to Funad(TSp
Zar(k),C), the induced diagram

X0
id //

id

��

X0

��
X0

// X

is a pullback square in C. This proves that α is a monomorphism.
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We observe that the homotopy associative monoid structure on A1 described above determines a ho-
motopy associative monoid structure on the subobject Spec k{x}[ 1

x ]. Moreover, this homotopy associative
monoid structure is actually a homotopy associative group structure: the inverse is given induced by the map
k{x}[ 1

x ] 7→ k{x}[ 1
x ] carrying x to 1

x (which is unique up to homotopy). Since f preserves finite products, we
conclude that X0 inherits the structure of a homotopy associative group object of C, and that α is compatible
with the homotopy associative monoid structure. It follows that if p : C → X is a morphism in C which fac-
tors through X0 up to homotopy, then p determines an invertible element of the monoid π0 MapC(C,X). To
complete the proof, we need to establish the converse of this result. Let us therefore assume that p : C → X
is a morphism in C which determines an invertible element of π0 MapC(C,X); we wish to show that p factors
(up to homotopy) through α.

Let p′ : C → X represent a multiplicative inverse to p in π0 MapC(C,X). We wish to show that the
product map (p, p′) : C × C → X × X factors (up to homotopy) through the monomorphism α × α :
X0 ×X0 → X ×X. We observe that the multiplication map A1×A1 → A1 fits into a pullback diagram

Spec k{x}[ 1
x ]× Spec k{x}[ 1

x ] //

��

A1×A1

��
Spec k{x}[ 1

x ] // A1 .

(In concrete terms, this amounts to the observation that for any E∞-ring R, a product x0x1 ∈ π0R is
invertible if and only if x0 and x1 are both invertible). Since the horizontal morphisms are admissible and

f ∈ Funad(TSp
Zar(k),C), we conclude that the induced diagram

X0 ×X0
//

��

X ×X

��
X0

// X

is a pullback square in C, where the vertical arrows are given by multiplication. It will therefore suffice to
show that the product map pp′ : C × C → X factors (up to homotopy) through X0. By construction, this
product map is homotopic to the composition

C × C → 1C
u→ X,

where u : 1C → X is the unit map. It therefore suffices to show that u factors through α. The desired
factorization is an immediate consequence of the commutativity of the following diagram in T

Sp
Zar(k):

Spec k
x 7→1 //

x 7→1 %%

Spec k{x}[ 1
x ]

x 7→x
ww

Spec k{x}.

Proof of Proposition 2.20. Let T0 denote the full subcategory of G
Sp
Zar(k) spanned by objects of the form

Spec k{x1, . . . , xn}. It will suffice to show that the inclusion T0 ⊆ G
Sp
Zar(k) satisfies conditions (1) through

(6) of Proposition V.3.4.5. Conditions (1) and (2) are obvious, and (3) follows from Remark V.3.4.6, since
T0 forms a set of compact projective generators for the ∞-category CAlgcn

k (see Proposition A.7.2.5.27).

Assertion (4) follows from the observation that every admissible morphism SpecA[ 1
a ] → SpecA in G

Sp
Zar(k)
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fits into a pullback diagram

SpecA[ 1
a ] //

��

Spec k{x}[ 1
x ]

��
SpecA

f // Spec k{x},

where f is determined up to homotopy by the requirement that it carries x ∈ π0k{x} to a ∈ π0A.

We now prove (5). Consider an admissible covering {fi : SpecA[ 1
ai

] → SpecA}1≤i≤n in G
Sp
Zar(k), where

the elements ai ∈ π0A generate the unit ideal in π0A. We have an equation of the form

a1b1 + . . .+ anbn = 1

in the commutative ring π0A. Let B = k{x1, . . . , xn, y1, . . . , yn}[ 1
x1y1+...+xnyn

]. There is a morphism φ :

B → A carrying each xi ∈ π0B to ai ∈ π0A, and each yi ∈ π0B to bi ∈ π0A (in fact, φ is uniquely determined
up to homotopy). Each map fi fits into a pullback diagram

SpecA[ 1
ai

]
fi //

��

SpecA

��
SpecB[ 1

xi
]

gi // SpecB.

It now suffices to observe that the maps {gi : SpecB[ 1
xi

] → SpecB} determine an admissible covering of

SpecB in T
Sp
Zar(k).

It remains to verify condition (6). Let C be an idempotent-complete ∞-category which admits finite

limits, and let α : f → f ′ be a natural transformation between admissible functors f, f ′ : T
Sp
Zar(k) → C

such that α induces an equivalence f |T0 ' f ′|T0. We wish to prove that α is an equivalence. Fix an

arbitrary object SpecR ∈ T
Sp
Zar(k), where R = kx1, . . . , xn[ 1

q ]; here q ∈ π0(k{x1, . . . , xn}) ' (π0k)[x1, . . . , xn]

is classified by some map k{y} → k{x1, . . . , xn}. We have a pullback diagram

SpecR //

��

Spec k{y}[ 1
y ]

��
Spec k{x1, . . . , xn} // Spec k{y}

where the vertical arrows are admissible. Since f and f ′ belong to Funad(TSp
Zar(k),C), the map αR will be an

equivalence provided that αSpec k{x1,...,xn}, αSpec k{y}, and αSpec k{y}[ 1
y ] are equivalences. The first two cases

are evident, and the third follows from Lemma 2.21.

Corollary 2.22. Let k be a connective E∞-ring. For each n ≥ 0, let G
Sp,≤n
Zar (k) denote the opposite of the

∞-category of compact objects in the ∞-category (CAlgcn
k )≤n of connective, n-truncated k-algebras. Then

the composite functor

T
Sp
Zar(k) ⊆ G

Sp
Zar(k)

τ≤n→ G
Sp,≤n
Zar (k)

exhibits G
Sp,≤n
Zar (k) as an n-truncated geometric envelope of TZar(k).

Proof. Combine Proposition 2.20 with Lemma V.3.4.11 and the proof of Proposition V.1.5.11.

Remark 2.23. Let X be an ∞-topos, and let O ∈ Funad(TSp
Zar,X) ' Funlex(GSp

Zar,X) ' ShvCAlg(X). The

analysis of Example 2.14 shows that O is a T
Sp
Zar(k)-structure on X if and only if the following conditions are

satisfied:
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(a) The object O(0) is initial in X.

(b) The map O(k{x}[ 1
x ])

∐
O(k{x}[ 1

1−x ])→ O(k{x}) is an effective epimorphism.

In other words, we can regard the theory of TSp
Zar-structures on X as providing an ∞-categorical analogue of

Definition 2.4.

Remark 2.24. Let k be a connective E∞-ring. Every admissible morphism in T
Sp
Zar(k) is a monomorphism.

It follows from Proposition V.3.3.5 that the pregeometry T
Sp
Zar(k) is compatible with n-truncations, for each

0 ≤ n ≤ ∞. In particular, to every T
Sp
Zar(k)-structure OX on an ∞-topos X we can associate an n-truncated

TZar(k)-structure τ≤n OX. Evaluating on k{x}, we deduce that this truncation construction is compatible
with the truncation construction on ShvCAlg(X)≥0.

We are now in a position to compare the theory of GnSp
Zar -structures with Definition 2.5.

Corollary 2.25. Let X be an ∞-topos. Then:

(1) Let F : GSp
Zar → X be a left exact functor, and let O ∈ ShvCAlg(X)≥0 be the associated connective sheaf

of E∞-rings on X (see Remark 2.17). Then O is local (in the sense of Definition 2.5) if and only if F

is a G
Sp
Zar-structure on X.

(2) Let α : F → F ′ be a natural transformation between functors F, F ′ ∈ Strloc
G

Sp
Zar

(X), and let β : O→ O′ be

the induced morphism between local objects of ShvCAlg(X)≥0. Then β is local (in the sense of Definition

2.5) if and only if α is a morphism in Strloc
G

Sp
Zar

(X).

(3) Let F : GnSp
Zar → X be a left exact functor, and let O ∈ ShvCAlg(X) be the associated sheaf of E∞-rings

on X. Then O is local (in the sense of Definition 2.5) if and only if F is an G
nSp
Zar -structure on X.

(4) Let α : F → F ′ be a natural transformation between functors F, F ′ ∈ Strloc
G

nSp
Zar

(X), and let β : O→ O′ be

the induced morphism between local objects of ShvCAlg(X). Then β is local (in the sense of Definition

2.5) if and only if α is a morphism in Strloc
G

nSp
Zar

(X).

Proof. In view of Remark 2.15, assertions (3) and (4) will follow from (1) and (2). We first prove (1). Let

F : GSp
Zar → X be a left exact functor, and let F0 = F |TSp

Zar. Using Remark 2.24, we see that the sheaf of
E∞-rings τ≤0 O is encoded by the composition

T
Sp
Zar

F0→ X
τ≤0→ X .

Using Remark 2.23, we see that O is local (in the sense of Definition 2.5) if and only if τ≤0F0 is a T
Sp
Zar-

structure on X. On the other hand, Proposition 2.20 shows that F is a G
Sp
Zar-structure on X if and only if

F0 is a T
Sp
Zar-structure on X. To complete the proof of (1), it suffices to show that F0 is a T

Sp
Zar-structure on

X if and only if τ≤0F0 is a T
Sp
Zar-structure on X. The “only if” direction follows from Remark 2.24, and the

converse follows from Proposition T.7.2.1.14.
The proof of (2) is similar. Let F0 and F ′0 be the restrictions of F and F ′ to T

Sp
Zar, so that we have a

commutative diagram

F0
α //

φ

��

F ′0

φ′

��
τ≤0F0

γ // τ≤0F
′
0

in the ∞-category Fun(TSp
Zar,X). It is easy to see that β is local if and only if γ is local. Proposition V.3.3.3

shows that γ is local if and only if γ ◦ φ ' φ′ ◦ α is local. It therefore suffices to show that φ′ ◦ α is local if
and only if α is local. This follows from the observation that φ′ is local (by Proposition V.3.3.3).
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Corollary 2.26. If k is an E∞-ring, then we have an equivalence of ∞-categories

RingTop(k)Zar ' LTop(GnSp
Zar (k))op.

If k is connective, then we have an equivalence of ∞-categories

RingTop(k)cn
Zar ' LTop(GSp

Zar(k))op.

Here the subcategories RingTop(k)Zar,RingTop(k)cn
Zar ⊆ RingTop(k) are as in Definition 2.5.

Definition 2.27 (Spectral Schemes: Abstract Definition). Let k be an E∞-ring. A nonconnective spectral

k-scheme is a pair (X,OX), where X is an ∞-topos, OX : GnSp
Zar (k)→ X is an G

nSp
Zar (k)-structure on X, and the

pair (X,OX) is an G
nSp
Zar (k)-scheme in the sense of Definition V.2.3.9. In this case, we will often abuse notation

and identify OX with a sheaf of E∞-rings on X (Remark 2.17), which we refer to as the structure sheaf of
(X,OX). We let SpSch(k)nc denote the full subcategory of RingTop(k)Zar spanned by the nonconnective
spectral k-schemes.

If k is connective, we define a spectral k-scheme to be a pair (X,OX), where X is an ∞-topos, OX :

G
Sp
Zar(k)→ X is a G

Sp
Zar(k)-structure on X, and the pair (X,OX) is a G

Sp
Zar(k)-scheme. Again, we will generally

abuse notation and identify OX with an object of the ∞-category ShvCAlg(X)≥0 of connective sheaves of
E∞-rings on X. We let SpSch(k) denote the full subcategory of RingTop(k)cn

Zar spanned by the connective
spectral k-schemes.

In the special case where k is the sphere spectrum, we will refer to a (nonconnective) spectral k-scheme
simply as a (nonconnective) spectral scheme.

Remark 2.28. It follows from Corollary 2.26 that Definitions 2.7 and 2.27 agree (when we take the E∞-ring
k in Definition 2.27 to be the sphere spectrum S). In particular, we have isomorphisms of ∞-categories

SpSch ' SpSch(S) SpSchnc ' SpSch(S)nc.

Remark 2.29. In §9, we will see that the∞-category of spectral k-schemes SpSch(k) can be identified with
the ∞-category SpSch/ SpecZ(k) of spectral schemes (X,OX) equipped with a map (X,OX)→ SpecZ(k).

We now discuss the relationship between the theories of spectral schemes and nonconnective spectral
schemes.

Proposition 2.30. Let i : G→ G′ be a fully faithful transformation of geometries. Let X be an ∞-topos, let
O : G→ X be a G-structure on X, and let O′ : G′ → X be a left Kan extension of O. Assume that:

(a) The collection of admissible morphisms in G′ is generated (under the formation of pullbacks) by mor-
phisms of the form i(α), where α is an admissible morphism in G.

(b) For every covering sieve (G′)
(0)
/X ⊆ G′/X of an object X ∈ G′, there exists a morphism X → i(Y ) and an

admissible covering {Vβ → Y } in G, such that each of the pullback maps i(Vβ)×i(Y )X belongs to G
′(0)
/X .

Then O′ is a G′-structure on X. Moreover, the identity map (X,O) ' (X,O′ |G) exhibits (X,O′) as a relative
spectrum of (X,O) (see the discussion following Definition V.2.1.2). In particular, if (X,O) is a G-scheme,
then (X,O′) is a G′-scheme.

Proof. We first show that the functor O′ is left exact. Using Theorem T.5.1.5.6, we can assume that O

factors as a composition

G
j→ P(G)

F→ X,

where F is a functor which preserves small colimits. Since O′ is a left Kan extension of O, it is equivalent to
the composition

G′ → P(G′)
◦i→ P(G)

F→ O .
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Since the inclusion G′ → P(G′) is left exact (Proposition T.5.1.3.2 and composition with i obviously gives a
left exact functor from P(G′) to P(G), it suffices to show that F is left exact, which follows from Proposition
T.6.1.5.2.

Conditions (a) and (b) guarantee that an arbitrary left exact functor F : G′ → X is a G′-structure on X

if and only if F |G is a G-structure on X. Since O′ |G = O is a G-structure by assumption, we deduce that O′

is a G-structure on X.
We complete the proof by showing that (X,O′) is a relative spectrum of (X,O). Let (Y,O′′) be an arbitrary

object of LTop(G′). We have a diagram

MapLTop(G′)((X,O
′), (Y,O′′))

θ //

**

MapLTop(G)((X,O), (Y,O′′ |G))

tt
MapLTop(G)(X,Y),

and we wish to show that θ is a homotopy equivalence. It will suffice to show that θ induces a homotopy
equivalence after passing to the homotopy fiber over a geometric morphism f∗ : X → Y. Equivalently, we
wish to show that the map

θ′ : MapStrloc
G′ (Y)(f

∗ O′,O′′)→ MapStrloc
G

(Y)(f
∗ O,O′′ |G)

is a homotopy equivalence. Using (a), we deduce that θ′ is a homotopy pullback of the restriction functor

θ′′ : MapFun(G′,Y)(f
∗ O′,O′′)→ MapFun(G,Y)(f

∗ O,O′′ |G).

To prove this, it suffices to show that f∗ O′ is a left Kan extension of f∗ O. This is clear, since O′ is a left
Kan extension of O and the functor f∗ preserves small colimits.

Corollary 2.31. Let i : G→ G′ be a fully faithful transformation of geometries satisfying conditions (a) and
(b) of Proposition 2.30. Then composition with i induces a colocalization functor L′ : LTop(G′)→ LTop(G):

that is, L′ admits a fully faithful left adjoint, given by the relative spectrum functor SpecG
′

G .

Corollary 2.32. Let k be a connective E∞-ring. Let U denote the relative spectrum functor associated to
the inclusion of geometries G

Sp
Zar(k)→ G

nSp
Zar (k). Then U induces a fully faithful embedding

RingTop(k)cn
Zar ' LTop(GSp

Zar(k))→ LTop(GnSp
Zar (k)) ' RingTop(k)Zar

whose essential image consists of those pairs (X,OX) where OX is a connective sheaf of E∞-rings on X.

Let X be an ∞-topos and let O be a connective sheaf of E∞-rings on X. Then O can be encoded in
several ways:

(i) As an object of the ∞-category ShvCAlg(X) ⊆ Fun(Xop,CAlg).

(ii) As a left-exact functor F : GnSp
Zar → X.

(iii) As a left-exact functor F′ : GSp
Zar → X.

Here we can identify F′ with the restriction F |GSp
Zar. Moreover, the condition that O be connective translates

into the requirement that F be a left Kan extension of F′. Proposition 2.30 implies that if (X,F′) is a
connective spectral scheme, then (X,F) is a spectral scheme. We have the following strong converse:

Proposition 2.33. Let k be a connective E∞-ring, and suppose that (X,O) is a nonconnective spectral

k-scheme. Then (X,O |GSp
Zar(k)) is a spectral k-scheme.
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Corollary 2.34. Let k be a connective E∞-ring, and let U : RingTop(k)cn
Zar → RingTop(k)Zar be the relative

spectrum functor associated to the inclusion of geometries GSp
Zar(k) ↪→ G

nSp
Zar (k). Then U induces a fully faithful

embedding SpSch(k)→ SpSch(k)nc, whose essential image consists of those nonconnective spectral k-schemes
(X,OX) whose structure sheaf OX is connective.

Proof. Combine Corollary 2.32 with Proposition 2.33.

Proof of Proposition 2.33. Let Spec : CAlgk → RingTop(k)Zar denote the absolute spectrum functor associ-

ated to the geometry G
nSp
Zar (k), and let Speccn : CAlgcn

k → RingTop(k)cn
Zar be the absolute spectrum functor

associated to G
Sp
Zar(k). The assertion is local on X, so we may assume that (X,O) is an affine nonconnective

spectral scheme of the form Spec(A), where A ∈ CAlgk. We will prove that (X,O |GSp
Zar(k)) can be identified

with the absolute spectrum Speccn(B), where B = τ≥0A is the connective cover of A.
Let F : Xop → CAlgk correspond to the structure sheaf O under the equivalence of ∞-categories

Funlex(GnSp
Zar (k),X) ' ShvCAlgk(Xop). Similarly, we let F0 : Xop → (CAlgk)≥0 be the functor corresponding

to O |GSp
Zar(k), so that F0 ' τ≥0 ◦ F.

We now appeal to the construction of the absolute spectrum Spec(A) given in §V.2.2. Let C denote
the full subcategory of (CAlgA)op spanned by those A-algebras of the form A[ 1

a ], where a ∈ π0A. Using
Theorem V.2.2.12, we can identify X with Shv(C) (where we take sheaves with respect to the topology on C

determined by the geometry G
nSp
Zar (k)), and F with the sheafification of the presheaf given by the composition

Cop ↪→ CAlgA → CAlgk . Then F0 is the sheafification of the composite functor

Cop ↪→ CAlgA → CAlgk
τ≥0→ (CAlgk)≥0.

Let C0 be the full subcategory of (CAlgB/)
op spanned by those B-algebras of the form B[ 1

a ], where
a ∈ π0B ' π0A. Proposition A.7.2.2.24 implies that the functor R 7→ τ≥0R determines an equivalence of
∞-categories C0 → C (the inverse equivalence is given by the formula R 7→ R⊗A B). It follows that we can
identify F0 with the sheafification of the composition C

op
0 ↪→ (CAlgB)≥0 ↪→ (CAlgk)≥0. Invoking Theorem

V.2.2.12 again, we deduce that (X,O |GSp
Zar(k)) ' Speccn(B) as required.

Remark 2.35. In the proof of Proposition 2.33, the sheafification is not needed: Theorem 5.14 guarantees
that the functors

Cop ↪→ CAlgA → CAlgk

C
op
0 ↪→ (CAlgB)≥0 → (CAlgk)≥0

are already sheaves with respect to the Zariski topologies on C and C0.

Definition 2.36. Let k be an E∞-ring. We will say that a spectral k-scheme (X,OX) is n-localic if the ∞-
topos X is n-localic (Definition T.6.4.5.8). If k is connective and (X,OX) is a connective spectral k-scheme,
then we will say that (X,OX) is n-truncated if OX is n-truncated, when regarded as a sheaf of E∞-rings on
X.

Combining Corollary 2.22 with Theorem V.2.5.16, we obtain the following relationship between classical
and spectral algebraic geometry:

Proposition 2.37. Let k be a connective E∞-ring, and let Sch≤0
≤0(GSp

Zar(k)) denote the full subcategory of

Sch(GSp
Zar(k)) spanned by the 0-localic, 0-truncated connective spectral k-schemes. Then Sch≤0

≤0(GSp
Zar(k)) is

canonically equivalent to (the nerve of) the category of schemes over the commutative ring π0k, in the sense
of classical algebraic geometry.

Remark 2.38. Let k be a connective E∞-ring and A a connective k-algebra, and consider the spectral k-
scheme (X,OX) given by the spectrum of A. The underlying∞-topos X can be identified with Shv(X), where
X is the Zariski spectrum of the ordinary commutative ring π0A. This follows from Proposition V.3.4.15,
but can also be deduced from the explicit construction provided by Theorem V.2.2.12, since the ∞-category
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of admissible A-algebras in CAlgk is equivalent to the nerve of the ordinary category of commutative (π0A)-
algebras having the form (π0A)[ 1

a ]. In other words, the local topology of spectral schemes is no more
complicated than the local topology of ordinary schemes.

Remark 2.39. Let k be a connective E∞-ring, and let (X,OX) be a spectral k-scheme; we will abuse
notation by identify OX with the underlying CAlgk-valued sheaf on X. It follows from Proposition 2.33
that the pair (X, τ≥0 OX) is a connective spectral k-scheme; we will refer to (X, τ≥0 OX) as the underlying
connective spectral k-scheme of (X,OX). Using Proposition V.3.4.15, we conclude that each (X, τ≤nτ≥0 OX)
is an n-truncated connective spectral k-scheme. In particular, if X is 0-localic and we take n = 0, then
we obtain a 0-localic, 0-truncated connective spectral k-scheme (X, π0 OX), which we can identify with an
ordinary (π0k)-scheme (Proposition 2.37). We will refer to (X, π0 OX) as the underlying ordinary scheme of
(X,OX).

We conclude this section with a characterization of the class of 0-localic spectral schemes, which estab-
lishes the equivalence of Definitions 2.27 and 2.2.

Theorem 2.40. Let k be an E∞-ring, let X be a 0-localic ∞-topos, OX be a sheaf of E∞-rings on X, which
we will identify with a G

nSp
Zar -structure on X. Then (X,OX) is a nonconnective spectral scheme if and only if

the following conditions are satisfied:

(1) The truncation (X, π0 OX) is a 0-localic, 0-truncated connective spectral k-scheme, corresponding to an
ordinary scheme (X,OX) (see Proposition 2.37).

(2) For every integer i, πi OX determines a quasi-coherent sheaf of OX-modules on X.

(3) The 0th space of the structure sheaf OX is hypercomplete, when viewed as an object of X (see §T.6.5.2).

Moreover, (X,OX) is affine if and only if (X,OX) is an affine scheme.

Proof. First suppose that (X,OX) is a spectral scheme. We will prove that (1), (2), and (3) are satisfied.
Assertion (1) follows immediately from Remark 2.39. The remaining assertions are local on X (for assertion
(3), this follows from Remark T.6.5.2.22), so we may assume without loss of generality that (X,OX) is an
affine spectral scheme, given by the spectrum of an E∞-ring A. Then X can be identified with the ∞-topos
Shv(X), where X is the set of prime ideals in the commutative ring π0A, with a basis of open sets given
by Uf = {p ⊆ π0A : f /∈ p}, where f ranges over the collection of elements of π0A (Remark 2.38). Using
Theorem V.2.2.12 and Proposition V.4.3.23, we can identify OX with the CAlg-valued sheaf described by the
formula Uf 7→ A[ 1

f ] (Theorem 5.14 guarantees that this prescription is already a sheaf with respect to the

Zariski topology on X). In particular, πi OX is the sheafification of the presheaf of π0A-modules described
by the formula Uf 7→ (πiA)[ 1

f ], which is the quasi-coherent sheaf associated to the module πiA; this proves

(2). To prove (3), we are free to replace A by its connective cover (since this does not change the 0th space
of OX). Choose a Postnikov tower

. . .→ τ≤2A→ τ≤1A→ τ≤0A,

for A, and let
. . .→ O

≤2
X → O

≤1
X → O

≤0
X

be the associated CAlg≥0-valued sheaves on X. Using the formula above, we conclude that the canonical

map OX → lim←−{O
≤n
X } is an equivalence. To prove (3), it will therefore suffice to show that each O

≤n
X has a

hypercomplete 0th space, which is clear (since each O
≤n
X is n-truncated).

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X,OX) is
a spectral scheme. The assertion is local on X, so we may assume without loss of generality that (X,π0 OX)
is an affine scheme, given by the spectrum of a commutative ring R. We will show that (X,OX) is an affine
spectral scheme. We begin by treating the case where the structure sheaf OX is connective (as a sheaf of
E∞-rings on X).
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Applying (2), we conclude that each πi OX is the quasi-coherent sheaf associated to an R-module Mi.
For each n ≥ 0, let A≤n ∈ CAlg denote the global sections Γ(X; τ≤n OX). There is a convergent spectral
sequence

Ep,q2 = Hp(X;πq(τ≤n OX))⇒ πq−pA≤n.

Since X is affine, the quasi-coherent sheaves πi OX have no cohomology in positive degrees, and the above
spectral sequence degenerates to yield isomorphisms

πiA≤n '

{
Mi if i ≤ n
0 otherwise.

In particular, π0A≤n ' R.
Fix n ≥ 0, and let (Xn,OXn) be the spectrum of A≤n. The equivalence An ' Γ(X; τ≤n OX) induces a

map φn : (X, τ≤n OX) → (Xn,OXn) in RingTopZar. The above argument shows that the induced geometric
morphism φ∗n : Xn → X is an equivalence of ∞-topoi, and that φn induces an isomorphism of quasi-coherent
sheaves φ∗n(πi OXn) ' πi OX for 0 ≤ i ≤ n. Since the structure sheaves on both sides are n-truncated, we
conclude that φn is an equivalence.

Let A ∈ CAlg be a limit of the tower

. . .→ A≤2 → A≤1 → A≤0,

so that π0A ' R. We can therefore identify the spectrum of A with (X,O′X). The first part of the proof
shows that O′X is the inverse limit of its truncations τ≤n O

′
X ' φ∗n OXn ' τ≤n OX . Passing to the inverse

limit, we obtain a map ψ : OX → lim{τ≤n OX} ' O′X . By construction, ψ induces an isomorphism on all
(sheaves of) homotopy groups, and is therefore ∞-connective. Since the 0th space of O′X is hypercomplete
(being the inverse limit of truncated objects of X) and the 0th space of OX is hypercomplete by (3), we
deduce that ψ is an equivalence, so that (X,OX) ' SpecZ(A) is an affine spectral scheme.

We now treat the general case. The pair (X, τ≥0 OX) satisfies conditions (1), (2), and (3), so the argument
above proves that (X, τ≥0 OX) ' SpecZ(A) for some connective E∞-ring A. Let B ∈ CAlg be the E∞-ring
of global sections of OX. Then τ≥0B is connective cover of the algebra of global sections of τ≥0 OX, and is
therefore equivalent to A. In particular, we can identify SpecZ(B) with (X,O′X), for some sheaf of E∞-rings
O′X on X. To complete the proof, it will suffice to show that the canonical map θ : O′X → OX is an equivalence.
Let F denote the fiber of the map θ, viewed as an object of ShvSp(X). Since θ induces an equivalence on
the level of connective covers, we deduce that τ≥0 F ' 0. We wish to prove that F ' 0. Suppose otherwise.
Since ShvSp(X) is right complete (Proposition 1.7), we deduce that there exists an integer n (necessarily
positive) such that πn F is nonzero. We will assume that n is chosen minimal with respect to this property.
We have an exact sequence of sheaves of OX -modules

π1−n O
′
X → π1−n OX → π−n F → π−n O

′
X → π−n OX .

The homotopy groups of OX are quasi-coherent sheaves on X by (2). Since (X,O′X) is a spectral scheme,
it also satisfies (2) (by the first part of the proof), so that homotopy groups of O′X are also quasi-coherent.
It follows that π−n F is a nonzero quasi-coherent sheaf on the affine scheme (X,OX), and therefore has a
nonvanishing global section. The minimality of n guarantees that π−nΓ(X;F) ' Γ(X;π−n F), so that the
spectrum Γ(X;F) is nonzero. But Γ(X;F) can be identified with the fiber of the map of global sections
Γ(X;O′X) → Γ(X;OX), which is equivalent to the identity map on the E∞-ring B. We therefore obtain a
contradiction, which completes the proof.

Remark 2.41. Since the assertion of Theorem 2.40 is local, it generalizes easily to the case where X is not
assumed to be 0-localic; we leave the formulation of this generalization to the reader.
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3 Coherent ∞-Topoi

Let (X,OX) be a scheme. Recall that (X,OX) is said to be quasi-compact if the topological space X is
quasi-compact: that is, if every covering of X admits a finite subcovering. The scheme (X,OX) is said to be
quasi-separated if, whenever U and V are quasi-compact open subsets of X, the intersection U ∩ V is also
quasi-compact.

Our goal in this section is to introduce a hierarchy of compactness conditions, generalizing the notions
of quasi-compactness and quasi-separatedness to the ∞-categorical setting. Although our main goal is to
apply these ideas in the setting of spectral schemes and spectral Deligne-Mumford stacks, we will begin with
a general discussion which makes sense in any ∞-topos.

Definition 3.1. Let X be an ∞-topos. We will say that X is quasi-compact if every covering of X has a
finite subcovering: that is, for every effective epimorphism

∐
i∈I Ui → 1 in X (where 1 is the final object of

X), there exists a finite subset I0 ⊆ I such that the map
∐
i∈I Ui → 1 is also an effective epimorphism. We

say that an object X ∈ X is quasi-compact if the ∞-topos X/X is quasi-compact.
Let n ≥ 0 be an integer. We will define the notion of an n-coherent ∞-topos by induction on n. We

say that an ∞-topos X is 0-coherent if it is quasi-compact. Assume that we have defined the notion of an
n-coherent ∞-topos for some n ≥ 0. We will say that an object U ∈ X of an ∞-topos X is n-coherent if the
∞-topos X/U is n-coherent. We say that X is locally n-coherent if, for every object X ∈ X, there exists an
effective epimorphism

∐
i Ui → X, where each Ui is n-coherent. We say that X is (n + 1)-coherent if it is

locally n-coherent, and the collection of n-coherent objects of X is closed under finite products.

Remark 3.2. Let X be an ∞-topos. Then X is quasi-compact if and only if, for every collection of (−1)-
truncated objects {Ui ∈ X}i∈I such that τ≤−1(

∐
i∈I Ui) is a final object of X, there exists a finite subset

I0 ⊆ I such that τ≤−1(
∐
i∈I0 Ui) is a final object of X. In particular, the condition that X is quasi-compact

depends only on the underlying locale τ≤−1 X.

Remark 3.3. Let X be an n-coherent ∞-topos for n > 0. The collection of (n − 1)-coherent objects of
X is stable under finite products. In particular, the final object of X is (n − 1)-coherent, so that X is
(n− 1)-coherent. It follows that an n-coherent ∞-topos is also m-coherent for each m ≤ n.

Remark 3.4. Let X be a locally n-coherent∞-topos. Then X/U is locally n-coherent for any object U ∈ X.
In this case, an object X ∈ X is (n + 1)-coherent if and only if it is n-coherent and, for every pullback
diagram

U ×X V //

��

U

��
V // X

in X, if U and V are n-coherent, then U ×X V is also n-coherent.

Remark 3.5. Suppose that X =
∏

1≤i≤k Xi is a product of finitely many ∞-topoi (corresponding to a

coproduct in the ∞-category RTop). Then X is n-coherent if and only if each Xi is n-coherent. It follows
that if Y is any ∞-topos, then a finite coproduct U =

∐
1≤i≤k Ui in Y is n-coherent if and only if each Ui is

n-coherent.

Remark 3.6. Let X be a locally n-coherent ∞-topos and let X ∈ X be a quasi-compact object. The
assumption that X is locally n-coherent guarantees the existence of an effective epimorphism

∐
i∈I Ui → X,

where each Ui is n-coherent. Since X is quasi-compact, we may assume that the index set I is finite. Then
U =

∐
i∈I Ui is n-coherent by Remark 3.5. It follows that there exists an effective epimorphism U → X,

where U is n-coherent.

Definition 3.7. Let X be an∞-topos which is locally n-coherent. We will say that a morphism f : X ′ → X
in X is relatively n-coherent if, for every n-coherent object U ∈ X and every morphism U → X, the fiber
product U ×X X ′ is also n-coherent.
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Example 3.8. Let X be a locally n-coherent ∞-topos. If f : X ′ → X is a morphism such that X ′ is
n-coherent and X is (n+ 1)-coherent, then f is relatively n-coherent.

Proposition 3.9. Let n ≥ 0 be an integer and X an ∞-topos, and let f : X0 → X be a morphism in X.
Assume that if n > 0, then X is locally (n− 1)-coherent and that f is relatively (n− 1)-coherent. Then:

(1) The map f is relatively m-coherent for each m < n.

(2) Assume that f is an effective epimorphism and that X0 is n-coherent. Then X is n-coherent.

Proof. The proof proceeds by induction on n. Suppose first that n = 0; we must show that if f is an
effective epimorphism and X0 is quasi-compact, then X is quasi-compact. Choose an effective epimorphism∐
i∈I Xi → X. Then the induced map

∐
i∈I(Xi ×X X0)→ X0 is also an effective epimorphism. Since X0 is

quasi-compact, there exists a finite subset I0 ⊆ I such that the map
∐
i∈I0(Xi ×X X0)→ X0 is an effective

epimorphism. Since f is an effective epimorphism, we conclude that the composite map∐
i∈I0

(Xi ×X X0)→ X0 → X

is an effective epimorphism. This map factors through φ :
∐
i∈I0 Xi → X, so that φ is an effective epimor-

phism as desired.
Now suppose that n > 0. We begin by proving (1). Choose a morphism U → X, where U is m-coherent;

we must show that U0 = U ×X X0 is m-coherent. Remark 3.6 guarantees the existence of an effective
epimorphism g : V → U , where V is (n − 1)-coherent. It follows from Example 3.8 that g is relatively
(m−1)-coherent. Let V0 = V ×XX0 and g0 : V0 → U0 the induced map, so that g0 is also relatively (m−1)-
coherent. Our assumption that f is relatively (n − 1)-coherent guarantees that V0 is (n − 1)-coherent, and
therefore m-coherent (Remark 3.3). Since g0 is an effective epimorphism, the inductive hypothesis guarantees
that U0 is m-coherent, as desired.

We now prove (2). We will show that X satisfies the criterion for n-coherence described in Remark 3.4.
The inductive hypothesis guarantees that X is (n− 1)-coherent. Choose maps U → X and V → X, where
U and V are (n − 1)-coherent; we wish to show that U ×X V is (n − 1)-coherent. Let U0 = U ×X X0 and
V0 = V ×XX0. Since f is relatively (n−1)-coherent, U0 and V0 are (n−1)-coherent. Since X0 is n-coherent,
we deduce that U0 ×X0 V0 is (n − 1)-coherent. The map f ′ : U0 ×X0 V0 → U ×X V is a pullback of f and
therefore relatively (n − 2)-coherent by (1). Since f ′ is an effective epimorphism, the inductive hypothesis
guarantees that U ×X V is (n− 1)-coherent, as desired.

Corollary 3.10. Let X be an ∞-topos and suppose we are given a full subcategory X0 ⊆ X with the following
properties:

(a) Every object U ∈ X0 is an n-coherent object of X

(b) For every object X ∈ X, there exists an effective epimorphism
∐
Ui → X, where each Ui belongs to

X0.

Then:

(1) A morphism f : X ′ → X in X is relatively n-coherent if and only if, for every morphism U → X where
U ∈ X0, the fiber product U ′ = U ×X X ′ is n-coherent.

(2) An object X ∈ X is (n + 1)-coherent if and only if it is quasi-compact and, for every pair of maps
U → X, V → X where U, V ∈ X0, the fiber product U ×X V is n-coherent.

Proof. We first prove (1). The “only if” direction is obvious. For the converse, choose a map V → X where
V is n-coherent; we wish to show that V ′ = V ×XX ′ is n-coherent. Condition (b) and the quasi-compactness
of V guarantee the existence of an effective epimorphism g :

∐
i∈I Ui → V , where each Ui belongs to X0

and the index set I is finite. Let g′ :
∐
i∈I(Ui ×X X ′) → V ′ be the induced map. Using our hypothesis
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together with Remark 3.5, we see that
∐
i∈I(Ui×XX ′) is n-coherent. The map g is relatively (n−1)-coherent

by Example 3.8, so that g′ is relatively (n − 1)-coherent. Applying Proposition 3.9, we deduce that V ′ is
n-coherent as desired.

We now prove (2) using induction on n. The “only if” direction is again obvious. Assume therefore that
X is quasi-compact and that U ×X V is n-coherent whenever U, V ∈ X0. We note that X is n-coherent: this
follows from the inductive hypothesis if n > 0, or by assumption if n = 0. Using (1), we see that the map
U → X is relatively n-coherent whenever U ∈ X0. Consequently, if V is an arbitrary n-coherent object of X
and we are given a map g : V → X, then U ×X V is n-coherent for each U ∈ X0. Applying (1) again, we
deduce that g is relatively n-coherent. It follows that the fiber product U ×X V is n-coherent whenever U
and V are n-coherent, so that X is (n+ 1)-coherent by Remark 3.4.

Corollary 3.11. Let X be a locally n-coherent ∞-topos, and let f : X ′ → X be a morphism in X. Suppose
that there exists an effective epimorphism U → X such that the induced map f ′ : U ′ → U is relatively
n-coherent, where U ′ = X ′ ×X U . Then f is relatively n-coherent.

Proof. Suppose we are given a map Y → X, where Y is n-coherent. We wish to prove that Y ′ = X ′×X Y is
n-coherent. Replacing X by Y and U by Y ×X U , we are reduced to proving that if X is n-coherent, then
X ′ is also n-coherent.

Since X is locally n-coherent, there exists an effective epimorphism
∐
i∈I Ui → U , where each Ui is

n-coherent. The composite map
∐
i∈I Ui → U → X is also an effective epimorphism. Since X is quasi-

compact, there exists a finite subset I0 ⊆ I such that the map
∐
i∈I0 Ui → X is an effective epimorphism.

The coproduct
∐
i∈I0 Ui is n-coherent (Remark 3.5). Replacing U by

∐
i Ui, we can reduce to the case where

U is n-coherent. Since f ′ is relatively n-coherent, we deduce that U ′ is n-coherent. Since X is n-coherent
and U is (n − 1)-coherent, the map U → X is relatively (n − 1)-coherent (if n > 0), so the induced map
U ′ → X ′ is an effective epimorphism which is (n− 1)-coherent (if n > 0). Proposition 3.9 now implies that
X ′ is n-coherent as desired.

Definition 3.12. Let X be an ∞-topos. We will say that X is coherent if it is n-coherent for every integer
n. We will say that an object U ∈ X is coherent if the ∞-topos X/U is coherent. We will say that X is
locally coherent if, for every object X ∈ X, there exists an effective epimorphism

∐
i Ui → X where each Ui

is coherent.

Example 3.13. Let X = S be the∞-category of spaces. Then X is coherent and locally coherent. An object
X ∈ X is n-coherent if and only if the homotopy sets πi(X,x) are finite for every point x ∈ X and all i ≤ n.

Remark 3.14. Let X be an ∞-topos. The collection of coherent objects of X is closed under the formation
of pullbacks.

Lemma 3.15. Let X be an∞-topos and f∗ : X→ Y a geometric morphism, which exhibits Y as a cotopological
localization of X (see Definition T.6.5.2.17). Let n ≥ 0 be an integer, and assume that X is locally (n− 1)-
coherent if n > 0.

(1) An object X ∈ X is n-coherent if and only if f∗X ∈ Y is n-coherent.

(2) An object Y ∈ Y is n-coherent if and only if f∗Y ∈ X is n-coherent.

(3) If n > 0, the ∞-topos Y is locally (n− 1)-coherent.

Proof. Since f∗ is a localization functor, the counit map f∗f∗Y → Y is an equivalence for each Y ∈ Y.
Consequently, assertion (2) follows from (1), applied to X = f∗Y . We prove (1) by induction on n. We
first note that the inductive hypothesis implies (3). To see this, assume that n > 0 and let Y ∈ Y, so that
Y ' f∗X for X = f∗Y ∈ X. Since X is locally (n − 1)-coherent, there exists an effective epimorphism∐
Vi → X where each Vi is (n− 1)-coherent. This induces an effective epimorphism

∐
f∗Vi → Y in Y, and

each f∗Vi is (n− 1)-coherent by the inductive hypothesis.
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We now prove (1) in the case n = 0. Suppose that X ∈ X is quasi-compact; we wish to show that
f∗X ∈ Y is quasi-compact. Choose an effective epimorphism u :

∐
i∈I Ui → f∗X in Y. For i ∈ I, let

Vi = f∗Ui×f∗f∗XX, so that u ' f∗v for some map v :
∐
i∈I Vi → X. Since f∗ is a cotopological localization,

the map v is an effective epimorphism. Since X is quasi-compact, there exists a finite subset I0 ⊆ I such that
the induced map v′ :

∐
i∈I0 Vi → X is an effective epimorphism. It follows that f∗(v′) = u′ :

∐
i∈I0 Ui → f∗X

is an effective epimorphism as well.
Now suppose that f∗X is quasi-compact. We wish to prove that X is quasi-compact. Choose an effective

epimorphism v :
∐
i∈I Vi → X, so that u = f∗v is an effective epimorphism Y. Since f∗X is quasi-compact,

there exists a finite subset I0 ⊆ I such that the induced map
∐
i∈I0 f

∗Vi → f∗X is an effective epimorphism.
Since f∗ is a cotopological localization, we conclude that the map

∐
i∈I0 Vi → X is an effective epimorphism.

It remains to prove (1) in the case n > 0. Suppose first that X is n-coherent. Using the inductive
hypothesis, we deduce that f∗X is (n−1)-coherent; moreover, we have already seen that Y is locally (n−1)-
coherent. To show that f∗X is n-coherent, it suffices to show that for every pair of maps U → f∗X and
U ′ → f∗X where U,U ′ ∈ Y are (n− 1)-coherent, the fiber product U ×f∗X U ′ is (n− 1)-coherent (Remark
3.4). Let V = f∗U ×f∗f∗X X and V ′ = f∗U

′ ×f∗f∗X X. It follows from the inductive hypothesis that V and
V ′ are (n−1)-coherent objects of X, so that V ×X V ′ is (n−1)-coherent. Applying the inductive hypothesis
again, we conclude that U ×f∗X U ′ ' f∗(V ×X V ′) is (n− 1)-coherent.

For the converse, suppose that f∗X is n-coherent. Using the inductive hypothesis, we conclude that X is
(n− 1)-coherent. To show that X is n-coherent, it suffices to show that if we are given morphisms V → X,
V ′ → X where V, V ′ ∈ X are (n−1)-coherent, then V ×X V ′ is (n−1)-coherent. By the inductive hypothesis,
it suffices to show that f∗(V ×X V ′) ' f∗×f∗X f∗V ′ is (n− 1)-coherent, which follows from our assumption
that f∗X is n-coherent.

Proposition 3.16. Let X be a locally coherent∞-topos, and let f∗ : X→ Y be geometric morphism. Assume
that:

(a) The right adjoint to f∗ induces an equivalence of hypercompletions X∧ ' Y∧.

(b) For every object Y ∈ Y, there exists an object X ∈ X and an effective epimorphism f∗X → Y .

Then:

(1) An object X ∈ X is coherent if and only if f∗X ∈ Y is coherent.

(2) The ∞-topos Y is locally coherent.

(3) The ∞-topos X is coherent if and only if Y is coherent.

Proof. Let Z = Y∧ be the hypercompletion of Y and g∗ : Y→ Z a left adjoint to the inclusion Y∧ ⊆ Y. Then
g∗ exhibits Z as a cotopological localization of Y, and our assumption (a) guarantees that g∗ ◦ f∗ exhibits Z

as a cotopological localization of X. Assertion (1) now follows from Lemma 3.15. Assertion (2) follows from
(1) and (b). Assertion (3) follows by applying (1) to the final object of X.

We now produce some examples of coherent ∞-topoi.

Definition 3.17. Let C be an ∞-category which admits finite limits. We will say that a Grothendieck
topology on C is finitary if it satisfies the following condition:

(∗) For every object C ∈ C and every covering sieve C
(0)
/C ⊆ C/C , there exists a finite collection of morphisms

{Ci → C}1≤i≤n in C
(0)
/C which generate a covering sieve on C.

Remark 3.18. Let C be an ∞-category which admits finite limits, and suppose that C is equipped with
an arbitrary Grothendieck topology. Let D denote the same ∞-category C, and let us say that a sieve

D
(0)
/D ⊆ D/D is covering if it contains a finite collection of morphisms {Di → D} which generate a covering

sieve in C. This collection of covering sieves determines a Grothendieck topology on D. This Grothendieck
topology is the finest finitary topology on D which is coarser than the given topology on C.
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Proposition 3.19. Let C be a small ∞-category which admits pullbacks, which is equipped with a finitary
Grothendieck topology. Then:

(1) Let j : C → Shv(C) denote the composition of the Yoneda embedding C → P(C) with the sheafification
function P(C)→ Shv(C). Then j carries each object C ∈ C to a coherent object of Shv(C).

(2) The ∞-topos Shv(C) is locally coherent.

(3) If C has a final object, then Shv(C) is coherent.

Proof. Since Shv(C) is generated by j(C) under small colimits, assertion (2) follows immedaitely from (1).
Since j preserves finite limits, it carries final objects of C to final objects of Shv(C), so assertion (3) also
follows from (1). We will prove the following assertions by induction on n:

(1′) The functor j carries each object C ∈ C to an n-coherent object of Shv(C).

(2′) The ∞-topos Shv(C) is locally n-coherent.

It is clear that (1′) implies (2′). To prove (1′), let us first assume that n = 0. We must show that for C ∈ C,
the object j(C) ∈ Shv(C) is quasi-compact. Choose an effective epimorphism

∐
i∈I Ui → j(C) in Shv(C).

It follows that there exists a covering {Cα → C} in C such that each of the induced maps j(Cα) → j(C)
factors through Ui for some i. Since the topology on C is finitary, we may assume that this covering is finite;
then we may assume that all of this indices i ∈ I which are used belong to some finite subset I0 ⊆ I, so that∐
i∈I0 Ui → j(C) is an effective epimorphism, as desired.
Now suppose that n > 0. Using the inductive hypothesis, we may assume that Shv(C) is locally (n− 1)-

coherent and that j(C) is (n − 1)-coherent for C ∈ C. We wish to show that j(C) is n-coherent. Without
loss of generality, we may replace C by C/C and Shv(C) by Shv(C)/j(C) ' Shv(C/C). We wish to show that
the collection of (n− 1)-coherent objects of Shv(C) is closed under finite products. Using Corollary 3.10, we
are reduced to showing that j(C ′)× j(C ′′) is (n− 1)-coherent, for every pair of objects C ′, C ′′ ∈ C. This is
clear, since j(C ′)× j(C ′′) = j(C ′ × C ′′).

We now prove a converse to Proposition 3.19.

Theorem 3.20. Let X be an ∞-topos. The following conditions are equivalent:

(1) The ∞-topos X is locally coherent.

(2) There exists a small ∞-category C which admits pullbacks, a finitary Grothendieck topology on C, and
a geometric morphism f∗ : Shv(C)→ X satisfying conditions (a) and (b) of Proposition 3.16.

If these conditions are satisfied, then we may assume that C admits finite coproducts and that the topology
on C is subcanonical (that is, for each C ∈ C, the functor MapC(•, C) represented by C belongs to Shv(C)).
Moreover, if X is coherent, then we may assume that C has a final object (and therefore admits all finite
limits; see Corollary T.4.4.2.4).

Lemma 3.21. Let X be an ∞-topos containing a collection of objects {Xi}i∈I . For every subset J ⊆ I, let
XJ '

∐
i∈J Xi. If C ∈ X is a quasi-compact object, then the canonical map

lim−→
J⊆I

MapX(C,XJ)→ MapX(C,XI)

is a homotopy equivalence, where the colimit is taken over all finite subsets J ⊆ I.

Proof. Let J be any subset of I, and let φ : C → XJ be a morphism in X. Since colimits in X are universal,
this morphism determines a decomposition C '

∐
i∈J Ci, where Ci = C ×XJ Xi. We define the support of

φ to be the subset of J consisting of those indices i ∈ J such that Ci is not an initial object of X.
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Let φ : C → XJ be any morphism. Since C is quasi-compact, there is a finite subset J0 ⊆ J such
that the map

∐
i∈J0

Ci → C is an effective epimorphism. For i′ ∈ J , we have an effective epimorphism∐
i∈J0

Ci ×C Ci′ → Ci′ . If i′ /∈ J0, then the left hand side is an initial object of X (since coproducts in X are
disjoint), so that Ci′ is likewise initial object of X. It follows that the support of φ is contained in J0, and
is therefore finite.

For each J ⊆ I, the mapping space MapX(C,XJ) decomposes as a coproduct
∐
S MapSX(C,XJ), where S

ranges over finite subsets of I and MapSX(C,XJ) is the summand of MapSX(C,XJ) given by maps φ : C → XJ

with support S (by convention, this summand is empty unless S ⊆ J). It will therefore suffice to prove that
for every finite set S, the map

lim−→
J⊆I

MapSX(C,XJ)→ MapSX(C,XI)

is a homotopy equivalence. To prove this, we observe that MapSX(C,XJ) ' MapSX(C,XI) whenever S ⊆
J .

Proof of Theorem 3.20. The implication (2) ⇒ (1) follows immediately from Propositions 3.19 and 3.16.
Conversely, suppose that X is locally coherent. Choose a small collection of objects {Xα} which generates X

under small colimits. Since X is locally coherent, for each index α we can choose an effective epimorphism∐
β Uα,β → Xα where Uα,β is coherent. Let C denote an essentially small full subcategory of X such that

each object of C is coherent in X, and each Uα,β belongs to C. Enlarging this collection if necessary, we may
assume that it is closed under pullbacks, finite coproducts, and that it contains the a final object of X if X
is coherent. Endow C with the canonical topology determined by the inclusion i : C ↪→ X, so that i induces
a geometric morphism f∗ : Shv(C) → X. To complete the proof, it will suffice to show that f∗ satisfies
conditions (a) and (b) of Proposition 3.16.

Let j : C→ Shv(C) denote the Yoneda embedding. By construction, f∗ ◦ j is equivalent to the inclusion
C ↪→ X. For every object X ∈ X, there exists an effective epimorphism

∐
Xi → X where each Xi belongs

to {Xα}; it follows that there exists an effective epimorphism
∐
Ci → X where each Ci belongs to C. We

therefore have an effective epimorphism f∗
∐
i j(Ci)→ X; this proves (b).

The proof of (a) is more elaborate. Since f∗ preserves ∞-connective morphisms, its right adjoint f∗
preserves hypercompleteness, and therefore restricts to a functor f ′∗ : X∧ → Shv(C)∧. We wish to show that
f ′∗ is an equivalence of ∞-categories. We first show that f ′∗ is conservative: that is, if g : X → Y is map
between hypercomplete objects of X∧ such that f∗(g) is an equivalence, then g is an equivalence. Since X
and Y are hypercomplete, it will suffice to show that g is n-connective for each n. We proceed by induction
on n. When n = 0, we must show that g is an effective epimorphism. Choose an object Z ∈ Shv(C) and an
effective epimorphism v : f∗Z → Y . Then v is adjoint to a map v′ ∈ MapShv(C)(Z, f∗Y ). Since f∗(u) is an
equivalence, the map v′ factors through f∗X; it follows that v factors as a composition

f∗Z → X
g→ Y

so that g is also an effective epimorphism. If n > 0, then (since u is an effective epimorphism) we are reduced
to proving that the induced map β : X → X ×Y X is (n − 1)-connective. This follows from the inductive
hypothesis, since f∗(β) is also an equivalence. This completes the proof that f ′∗ is conservative.

We next prove:

(∗) For each n ≥ 0, the functor f∗ carries n-connective morphisms in X to n-connective morphisms in
Shv(C).

The proof proceeds by induction on n. We begin by treating the case n = 0. Fix an effective epimorphism
g : X → Y in X; we wish to show that f∗(g) is an effective epimorphism in Shv(C). Unwinding the definitions,
we must show that for every object C ∈ C and every morphism η : C → Y , there exists a covering sieve on
{Ci → C} such that each of the composite maps Ci → C → Y factors through g. To prove this, it suffices to
choose an effective epimorphism

∐
Ci → C ×Y X, where each Ci ∈ C; our assumption that g is an effective
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epimorphism guarantees that the composite map∐
Ci → C ×Y X → C

is also an effective epimorphism, so that the maps {Ci → C} generate a covering sieve in C.
Now suppose n > 0 and that g : X → Y is an n-connective morphism in X; we wish to show that f∗(g)

is an n-connective morphism in Shv(C). The above argument shows that f∗(g) is an effective epimorphism;
it will therefore suffice to show that the diagonal map f∗X → f∗X ×f∗Y f∗X = f∗(X ×Y X) is a (n − 1)-
connective. This follows from the inductive hypothesis.

Let f ′∗ : Shv(C)∧ → X∧ be a left adjoint to f ′∗, so that f ′∗ is given by composing f∗ with a left adjoint
to the inclusion X∧ ⊆ X. To complete the proof that f ′∗ is an equivalence, it will suffice to show that the
unit map u′X : X → f ′∗f

′∗X is an equivalence for each X ∈ Shv(C)∧. This map factors as a composition

X
uX→ f∗f

∗X
u′′X→ f ′∗f

′∗X,

where u′′X is ∞-connective by (∗). It will therefore suffice to prove that uX is ∞-connective (then u′X will
be an ∞-connective morphism between hypercomplete objects of Shv(C), and therefore an equivalence). We
will show:

(∗′) For every object X ∈ Shv(C) and every n ≥ 0, the unit map uX : X → f∗f
∗X is n-connective.

The proof will use the following assertion:

(∗′′) Let X ∈ Shv(C) be a coproduct of objects belonging to the essential image of j : C → Shv(C). Then
the unit map uX : X → f∗f

∗X is an equivalence.

Assume (∗′′) for the moment. We will prove (∗′) using induction on n. We begin with the case n = 0.
Fix X ∈ Shv(C); we wish to show that the unit map uX : X → f∗f

∗X is an effective epimorphism. Since
Shv(C) is generated under colimits by the essential image of j : C → Shv(C), we can choose an effective
epimorphism v : X ′ → X in Shv(C), where X ′ is a coproduct of objects belonging to the essential image of
j. We have a commutative diagram

X ′ //

��

f∗f
∗X ′

��
X // f∗f∗X.

It will therefore suffice to show that the composite map X ′ → f∗f
∗X ′ → f∗f

∗X is an effective epimorphism.
Using (∗′′), we are reduced to proving that f∗f

∗(v) is an effective epimorphism. Since v is an effective
epimorphism, f∗(v) is an effective epimorphism in X, so that f∗f

∗(v) is an effective epimorphism by (∗).
Now suppose n > 0. We wish to prove that uX is n-connective. The argument above shows that uX is

an effective epimorphism; it will therefore suffice to show that the diagonal map β : X → X ×f∗f∗X X is
(n− 1)-connective. Let X ′ be as above so that we have a pullback diagram

X ′ ×X X ′
β′ //

��

X ′ ×f∗f∗X X ′

��
X

β // X ×f∗f∗X X.

Since the vertical maps are effective epimorphisms, it will suffice to show that β′ is (n− 1)-connective. Since
the evident map X ′×f∗f∗X X ′ → (f∗f

∗X ′)×f∗f∗X (f∗f
∗X ′) is an equivalence by (∗′′), it will suffice to show

that the composition

X ′ ×X X ′
β′→ X ′ ×f∗f∗X X ′ → (f∗f

∗X ′)×f∗f∗X (f∗f
∗X ′) ' f∗f∗(X ′ ×X X ′)
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is (n−1)-connective. Unwinding the definitions, we see that this composition can be identified with the unit
map uX′×XX′ , and is therefore (n− 1)-connective by the inductive hypothesis.

It remains to prove (∗′′). Fix a collection of objects {Ci}i∈I belonging to C, For every subset J ⊆ I, let
XJ ∈ Shv(C) denote the coproduct

∐
i∈J j(Ci), and let uJ denote the unit map XJ → f∗f

∗XJ . We wish
to show that uI is an equivalence. We first show that uJ is an equivalence when J ⊆ I is finite. Write
C =

∐
i∈J Ci, so we have equivalences

f∗f
∗XJ ' f∗(f∗

∐
i∈J

j(Ci)) ' f∗(
∐
i∈J

f∗j(Ci)) ' f∗(
∐
i∈J

Ci) ' j(C)

(where the last equivalence follows from the fact that our topology on C is subcanonical). Consequently, we
can identify uJ with the canonical map

∐
i∈J j(Ci)→ j(C). Note that the fiber product∐
i∈J

j(Ci)×j(C)

∐
i∈J

j(Ci)

is given by
∐
i,j∈J j(Ci ×C Cj). For i 6= j, the fiber product Ci ×C Cj is an initial object ∅ ∈ C. The empty

sieve is a covering of Ci×C Cj , so we have an effective epimorphism from the initial object to j(Ci×C Cj) in
Shv(C) and therefore j(Ci×CCj) is an initial object of Shv(C). It follows that

∐
i∈J j(Ci)×j(C)

∐
i∈J j(Ci) is

equivalent to
∐
i∈J j(Ci×CCi) '

∐
i∈J j(Ci): that is, the map uJ becomes an equivalence after pullback along

uJ . To complete the proof that uJ is an equivalence, it suffices to show that uJ is an effective epimorphism.
This follows from the observation that the collection of maps {Ci → C}i∈J generates a covering sieve.

To complete the proof that uI is an equivalence, it will suffice to show that the canonical map lim−→J⊆I uJ →
uI is an equivalence in Fun(∆1, Shv(C)); here the colimit is taken over all finite subsets J ⊆ I. It is easy to
see that XI ' lim−→J⊆I XJ in Shv(C). We will complete the proof by showing that f∗f

∗XI is a colimit of the

diagram {f∗f∗XJ}J⊆I in the ∞-category P(C) (and therefore also in the full subcategory Shv(C) ⊆ P(C)).
In other words, we claim that for each object C ∈ C, the canonical map

lim−→
J⊆I

MapX(C,
∐
i∈J

Ci)→ MapX(C,
∐
i∈I

Ci)

is a homotopy equivalence. This is a special case of Lemma 3.21.

Corollary 3.22. Let X be an ∞-topos. The following conditions are equivalent:

(1) The ∞-topos X is locally coherent and hypercomplete.

(2) There exists a small ∞-category C which admits finite limits, a finitary Grothendieck topology on C,
and an equivalence X ' Shv(C)∧.

Moreover, if these conditions are satisfied, then we may assume that C admits finite coproducts and that the
topology on C is subcanonical. If X is coherent, we may assume that C admits finite limits.

4 Deligne’s Completeness Theorem

A classical result of Deligne asserts that every coherent topos has enough points. Our goal in this section
is to prove an ∞-categorical version of this result. We will follow the proof of Deligne’s theorem given in
[49], with minor modifications. We then give an application (Theorem 4.20) to the theory of hypercoverings,
which we will apply in §5.

Theorem 4.1 (∞-Categorical Deligne Completeness Theorem). Let X be an ∞-topos which is locally coher-
ent and hypercomplete. Then X has enough points. In other words, given a morphism α : X → Y in X which
is not an equivalence, there exists a geometric morphism f∗ : X→ S such that f∗(α) is not an equivalence.
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Note that Theorem 4.1 recovers the classical version of Deligne’s completeness theorem:

Corollary 4.2 (Deligne). Let X be a coherent topos. Then X has enough points.

Proof. Choose a realization of X as the category ShvSet(C) of Set-valued sheaves on a small category C which
admits finite limits, equipped with a finitary Grothendieck topology. Let X be the ∞-topos Shv(N(C)), so
that (the nerve of) X can be identified with the full subcategory of X spanned by the discrete objects. Let
α : X → Y be a morphism in X which is not an isomorphism. Then α can be regarded as a morphism in

X
∧

which is not an equivalence. According to Theorem 4.1, there exists a geometric morphism f
∗

: X
∧ → S

such that f
∗
(α) is not an equivalence in S. Restricting to discrete objects, we get a geometric morphism

f∗ : X→ Set such that f∗(α) is not an equivalence.

We now turn to the proof of Theorem 4.1. We begin by reformulating the condition of having enough
points.

Proposition 4.3. Let X be an ∞-topos, and suppose we are given a collection of geometric morphisms
{f∗α : X→ Xα}. The following conditions are equivalent:

(1) A monomorphism u : X → Y in X is an equivalence if and only if each f∗α(u) is an equivalence in Xα.

(2) A morphism u : X → Y in X is an effective epimorphism if and only if each f∗α(u) is an effective
epimorphism in Xα.

(3) For each n ≥ 0, a morphism u : X → Y in X is n-connective if and only if each f∗α(u) is n-connective.

(4) A morphism u : X → Y in X is ∞-connective if and only if each f∗α(u) is ∞-connective.

Proof. We will prove that (1)⇒ (2)⇒ (3)⇒ (4)⇒ (1). Suppose first that (1) is satisfied, and let u : X → Y

be a morphism in X. Then u factors as a composition X
u′→ X ′

u′′→ Y , where u′ is an effective epimorphism
and u′′ is a monomorphism. If each f∗α(u) is an effective epimorphism, then each f∗α(u′′) is an equivalence,
so that (1) implies that u′′ is an equivalence. It follows that u ' u′ is an effective epimorphism as desired.

Now suppose that (2) is satisfied; we prove (3) using induction on n, the case n = −1 being vacuous.
Suppose that u : X → Y is a morphism in X such that each f∗α(u) is n-connective. Let v : X → X ×Y X
be the diagonal map; then each f∗α(v) is (n − 1)-connective. The inductive hypothesis guarantees that v is
(n − 1)-connective, and assumption (2) guarantees that u is an effective epimorphism. It follows that u is
n-connective as desired.

The implication (3)⇒ (4) is obvious, and the implication (4)⇒ (1) follows from the observation that a
monomorphism u : X → Y is an equivalence if and only if it is ∞-connective.

Definition 4.4. We will say that a collection of geometric morphisms of ∞-topoi {f∗α : X→ Xα} is jointly
surjective if it satisfies the equivalent conditions of Proposition 4.3. We will say that a geometric morphism
f∗ : X→ Y is surjective if the one-element collection {f∗ : X→ Y} is jointly surjective.

Example 4.5. Let X be an ∞-topos, and let f∗ : X → X∧ be a left adjoint to the inclusion. Then f∗ is
surjective.

Example 4.6. Let X be an ∞-topos containing an object U . Then the étale geometric morphism f∗ : X→
X/U is surjective if and only if the object U is 0-connective: that is, if and only if the map U → 1 is an
effective epimorphism, where 1 denotes a final object of X. If this condition is satisfied, then we will say
that f∗ : X→ X/U is an étale surjection.

Remark 4.7. Let X be an arbitrary ∞-topos. Since the ∞-topos S is hypercomplete, composition with
the localization functor X → X∧ induces an equivalence between the ∞-category of points of X∧ and the
∞-category of points of X. Note that X is locally coherent if and only if X∧ is locally coherent (Proposition
3.16). Consequently, Theorem 4.1 can be reformulated as follows: if X is a coherent ∞-topos, then there
exists a jointly surjective collection of points {f∗α : X→ S}.
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We now construct an ∞-categorical analogue of the Diaconescu cover (see [49]).

Proposition 4.8. Let C be an ∞-category equipped with a Grothendieck topology. Then there exists a
surjective geometric morphism f∗ : Shv(C)→ X, where X is a 0-localic ∞-topos.

Proof. Let g : D→ C be a functor between small ∞-categories. We will say that a sieve D
(0)
/D ⊆ D/D on an

object D ∈ D is covering if the following condition is satisfied:

(∗) For every morphism α : D′ → D in D, the collection of morphisms g(β) : g(D′′) → g(D′) such that

the composition (α ◦ β) : D′′ → D belongs to D
(0)
/D generates a covering sieve on g(D′) ∈ C.

It is not difficult to see that this defines a Grothendieck topology on D. Let LC : P(C) → Shv(C) and
LD : P(D)→ Shv(D) be left adjoints to the inclusions, and consider the composition

f
∗

: P(C)
◦g→ P(D)

LD→ Shv(D).

It is clear that f
∗

is a geometric morphism.
We now suppose that the functor g has the following property:

(a) For every object D ∈ D and every morphism β : C → g(D) in D, there exists a morphism β : C → D
in D such that β = g(β).

We claim that f
∗

carries LC-equivalences to equivalences in Shv(D). To prove this, it suffices to show that
if we are given a collection of morphisms αi : Ci → C which generate a covering sieve on C ∈ C, then the
induced map φ :

∐
f
∗
j(Ci)→ f

∗
j(C) is an effective epimorphism in Shv(D); here j : C→ P(C) denotes the

Yoneda embedding (see Proposition T.6.2.3.20).
Let e : D → Shv(D) be the composition of the Yoneda embedding D → P(D) with the sheafification

functor LD. Then Shv(D) is generated under colimits by the essential image of e. Consequently, to prove

that φ is an effective epimorphism, it suffices to show that for every morphism u : e(D) → f
∗
j(C), the

induced map

φu :
∐

(f
∗
j(Ci)×f∗j(C) e(D))→ e(D)

is an effective epimorphism in Shv(D). Passing to a covering of D, we may reduce to the case where u is

induced by a morphism in P(D), corresponding to a map u : g(D) → C in C. Let D
(0)
/D denote the full

subcategory of D/D spanned by those morphisms D0 → D such that the induced map g(D0)→ g(D)
u→ C

belongs to the sieve generated by the collection of morphisms {αi}. It is clear that D
(0)
/D is a sieve on D.

For every morphism D0 → D in D
(0)
/D, the induced map e(D0)→ e(D) factors through φu. Consequently, to

show that φu is an effective epimorphism, it will suffice to show that D
(0)
/D is a covering sieve on D: that is,

that it satisfies condition (∗). Choose a morphism D′ → D in D. Since the collection of covering sieves in
C forms a Grothendieck topology, there exists a collection of morphisms βj : C ′j → g(D′) which generate a
covering sieve, each of which fits into a commutative diagram

C ′j
βj //

��

g(D′)

��
Ci

αi // C.

Condition (a) guarantees that each βj can be lifted to a morphism βj : C
′
j → D′ in D, which belongs to the

pullback of the sieve D
(0)
/D. It follows that D

(0)
/D satisfies condition (∗) and is therefore a covering sieve on D,

as required.
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Since f
∗

carries LC-equivalences to equivalences in Shv(D), it factors up to homotopy as a composition

P(C)
LC→ Shv(C)

f∗→ Shv(D)

where f∗ is a colimit-preserving functor which (since it is equivalent to f
∗| Shv(C)) preserves finite limits.

We now make the following additional assumption:

(b) The functor g is surjective on objects.

We claim that condition (b) implies that f∗ is surjective in the sense of Definition 4.4. We will show
that if u : X → Y is a morphism Shv(X) such that f∗(u) is an effective epimorphism in Shv(D), then u is

an effective epimorphism in Shv(X). Choose an object C ∈ C and a point η ∈ Y (C), and let C
(0)
/C be the

full subcategory of C/C spanned by those morphisms C ′ → C such that the image of η in π0Y (C ′) can be

lifted to π0X(C ′); we wish to prove that C
(0)
/C is covering. Assumption (b) implies we can write C = g(D) for

some object D ∈ D. Then η determines a point η ∈ (f∗Y )(D). Let D
(0)
/D ⊆ D/D be the sieve consisting of

morphisms D′ → D such that the image of η in π0(f∗Y )(D′) lifts to π0(f∗X)(D), and let D
(1)
/D ⊆ D/D be

the sieve consisting of morphisms β : D′ → D such that the image of η in π0Y (g(D′)) lifts to π0X(g(D′)).

The functor g carries D
(1)
/D into C

(0)
/C . Consequently, to prove that C

(0)
/C is a covering sieve on C ∈ C, it suffices

to show that D
(1)
/D is a covering sieve on D ∈ D. Since f∗(u) is an effective epimorphism, the sieve D

(0)
/D

is covering. It therefore suffices to show that for each β : D′ → D in D
(0)
/D, the pullback β∗D

(1)
/D ⊆ D/D′

is a covering sieve on D′. Replacing D by D′ (and C by g(D′)), we may assume that η lifts to a point

η′ ∈ (f∗X)(D). Note that f∗X is the sheafification of the functor D
g→ C

X→ S. It follows that there exists a

covering sieve D
(2)
/D on D such that for each morphism D′ → D in D

(2)
/D, the image of η′ in (f∗X)(D′) belongs

to the image of X(g(D′)). We clearly have a containment D
(2)
/D ⊆ D

(1)
/D, so that D

(1)
/D is also a covering sieve.

We now add the following additional assumption:

(c) The ∞-category D is the nerve of a partially ordered set.

In this case, the∞-topos Shv(D) is 0-localic so that the geometric morphism f∗ : Shv(C)→ Shv(D) satisfies
the requirements of Proposition 4.8.

It remains to prove that there exists a functor g : D→ C satisfying conditions (a), (b), and (c). For this,
we let A denote the partially ordered set of pairs (n, σ), where n ≥ 0 and σ : ∆n → Cop is an n-simplex of
Cop. We write (n, σ) ≤ (n′, σ′) if n ≤ n′ and σ = σ′|∆{0,...,n}. A k-simplex of the nerve N(A) consists of a
sequence τ :

(n0, σ0) ≤ · · · ≤ (nk, σk).

Let g(τ) denote the k-simplex of Cop given by the composition

∆k γ→ ∆nk σk→ Cop,

where γ is given on vertices by the formula γ(i) = ni. Then the construction τ 7→ g(τ) determines a map of
simplicial sets g : N(A)op → C. It is easy to see that this map satisfies conditions (a), (b), and (c).

Lemma 4.9. Let X be a 0-localic ∞-topos. Assume that X is not a contractible Kan complex. Then there
exists a nontrivial complete Boolean algebra B and a geometric morphism f∗ : Shv(X)→ Shv(B).

Proof. Let U be the underlying locale of X: that is, the partially ordered set of subobjects of the unit object
1X . Then U is a complete lattice: in particular, every set of elements {Uα ∈ U} has a greatest lower bound
∧αUα and a least upper bound ∨αUα. In particular, U has a least element (which we will denote by ∅) and
a greatest element (which we will denote by 1). For each element U ∈ U, we let U ′ denote the least upper
bound of the set {V ∈ U : U ∧ V = ∅}. Let B = {U ∈ U : U = U ′′}. We will prove:
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(a) The map U 7→ U ′′ determines a retraction from U onto B, which commutes with finite meets and
infinite joins.

(b) As a partially ordered set, B is a complete Boolean algebra.

Assertion (a) implies that B is a left exact localization of U, and is therefore itself a locale; moreover, the
proof of Proposition T.6.4.5.7 gives a geometric morphism f∗ : X→ Shv(B). We begin by proving (a). Note
that the construction U 7→ U ′ is order-reversing. It follows that U ≤ V implies that U ′′ ≤ V ′′. Moreover, we
have an evident inequality U ≤ U ′′ which guarantees that U ′′′ = U ′. In particular, U ′ ∈ B for each U ∈ U.
We next claim that the construction U 7→ U ′′ is a left adjoint to the inclusion B ⊆ U. In other words, we
claim that for V ∈ U, we have U ≤ V if and only if U ′′ ≤ V . The “if” direction is clear (since U ≤ U ′′), and
the “only if” direction follows from the implications

(U ≤ V )⇒ (V ′ ≤ U ′)⇒ (U ′′ ≤ V ′′)⇒ (U ′′ ≤ V ),

since V = V ′′. It follows immediately that U 7→ U ′′ is a retraction onto B which preserves infinite joins.
We now show that the construction U 7→ U ′′ preserves finite meets (note that, since the inclusion B ↪→ U

admits a left adjoint, B is closed under meets in U). The inequality U ≤ U ′′ shows that 1 = 1′′. It therefore
suffices to show that U 7→ U ′′ preserves pairwise meets. The construction U 7→ U ′ is an order-reversing
bijection from B to itself, and therefore carries finite joins in B to finite meets in B. It will therefore
suffice to show that the construction U 7→ U ′ carries pairwise meets in U to pairwise joins in B. In other
words, we must show that for U, V ∈ U, the element (U ∧ V )′ is a join of U ′ and V ′ in B. It is clear that
U ′, V ′ ≤ (U ∧ V )′; it therefore suffices to show that if W = W ′′ is any upper bound for U ′ and V ′ in B,
then (U ∧ V )′ ≤ W = W ′′. In other words, we must show that (U ∧ V )′ ∧W ′ = ∅: that is, if X ∈ U is any
object such that X ∧W = ∅ and X ∧ (U ∧ V ) = ∅, then X = ∅. We have X ∧ U ≤ V ′ ≤ W ′′ = W , so that
(X ∧ U) ≤ X ∧W = ∅. This shows that X ≤ U ′ ≤ W , so that X = X ∧W = ∅ as desired. This completes
the proof of (a).

The proof of (a) shows that B is a locale; in particular, it is a distributive lattice. To prove (b), it suffices
to show that B is complemented: that is, for every U ∈ B there exists V ∈ B such that U ∧ V = ∅ and
U ∨ V = 1. For this, we take V = U ′, so that the equation U ∧ V = ∅ is obvious. To prove U ∨ V = 1, it
suffices to show that if U and U ′ are bounded by an element W ∈ B, then W = 1. In fact, the inequalities
U ≤W and U ′ ≤W guarantee that W ′ ≤ U ′ ∧ U ′′ = ∅, so that W = W ′′ = ∅′ = 1.

Lemma 4.10. Let X be a 0-localic ∞-topos. Then there exists a surjective geometric morphism f∗α : X →
Shv(B), where B is a complete Boolean algebra.

Proof. Let U be the locale of equivalence classes of (−1)-truncated objects of X. For every proper inclusion
U ⊂ V in U, there exists a nontrivial complete Boolean algebra BU,V and a left exact, join-preserving map
fU,V : U → BU,V . Let B be the product of the Boolean algebras BU,V , and let f : U → B be the product
functor; then f induces a geometric morphism f∗ : X→ Shv(B). We claim that this geometric morphism is
surjective.

Let u : X → Y be a monomorphism in X such that f∗(u) is an equivalence; we wish to prove that u is
an equivalence. For each V ∈ U, let χV ∈ Shv(U) be the sheaf given by the formula

χV (W ) =

{
∆0 if W ⊆ V
∅ otherwise.

The∞-category Shv(U) is generated under colimits by the objects χV . In particular, there exists an effective
epimorphism

∐
α χVα → Y . It therefore suffices to show that the induced map

(
∐
α

χVα)×Y X →
∐
α

χVα
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is an equivalence. This map is a coproduct of morphisms

uα : χVα ×Y X → χVα .

To complete the proof, it suffices to show that each uα is an equivalence. We may therefore replace u by uα,
and thereby reduce to the case where Y has the form χV for some object V ∈ U.

Since u is a monomorphism, we can identify X with χU for some U ⊆ V . We wish to show that U = V .
Suppose otherwise, so that the geometric morphism f∗U,V : X → Shv(B) → Shv(BU,V ) is well-defined. We
note that the image of χU in Shv(BU,V ) is the initial object, while the image of χV in Shv(BU,V ) is the
final object. Consequently, f∗U,V (u) is an equivalence in Shv(BU,V ) between the initial and final objects,
contradicting the nontriviality of BU,V .

Proposition 4.11. Let B be a complete Boolean algebra. Then the∞-topos Shv(B) has homotopy dimension
≤ 0: that is, every 0-connective object X ∈ Shv(B) admits a global section.

Proof. Let X ∈ Shv(B) be a 0-connective object which does not admit a global section. For every ordinal
α, we let (α) denote the well-ordered set of ordinals {β : β < α}. We will construct a compatible sequence
of functors φα : N(α)→ X/X with the following property:

(∗) The composite functor N(α)
φα→ X/X → X takes values in the full subcategory of X spanned by the

(−1)-truncated objects, and determines a strictly increasing map [α]→ B.

This leads to a contradiction for α sufficiently large (namely, for any ordinal α such that [α] has cardinality
greater than that of B).

The construction of the maps φα proceeds by induction on α. If α is a limit ordinal, we let φα be the
amalgamation of the functors {φβ}β<α. To complete the construction, it suffices to show that every map
φα : N(α)→ X/X can be extended to a map φα+1 : N(α+ 1)→ X/X satisfying (∗). The colimit of φα can be
identified with a map ψ : U → X in X, where U is (−1)-truncated. Let us identify U with an element of the
Boolean algebra B, and ψ with a point of the space X(U). Since X does not admit a global section, U is not
a maximal element of B. Because B is a Boolean algebra, the object U has a complement U ′ ∈ B, which is
not a minimal element of B. Since X ∈ Shv(B) is 0-connective, the object U ′ can be written as a join

∨
U ′i

where each X(U ′i) is nonempty. For some index i, the element U ′i ∈ B is nontrivial. Since U ′i ∧ U = ∅, the
canonical map X(U ′i ∨ U)→ X(U ′i)→ X(U) is a homotopy equivalence; it follows that ψ can be lifted (up
to homotopy) to a point of X(U ′i ∨ U). This point gives an extension φα+1 of φα, with φα+1(α) given by a
map V → X where V is a (−1)-truncated object corresponding to the element U ′i ∨ U . of B.

Corollary 4.12. Let B be a complete Boolean algebra. Then the ∞-topos Shv(B) is locally of homotopy
dimension ≤ 0.

Proof. For each U ∈ B, let χU ∈ Shv(B) be the sheaf given by the formula

χU (V ) =

{
∆0 if V ≤ U
∅ otherwise.

The objects χU generate Shv(B) under colimits. Consequently, it suffices to show that each of the ∞-topoi
Shv(B)/χU has homotopy dimension ≤ 0. We complete the proof by observing that Shv(B)/χU is equivalent
to Shv(BU ), where BU denotes the complete Boolean algebra {V ∈ B : V ≤ U}, and therefore has homotopy
dimension ≤ 0 by Proposition 4.11.

Corollary 4.13. Let B be a complete Boolean algebra. Then the ∞-topos Shv(B) is hypercomplete.

Proof. Combine Corollary 4.12 with Corollary T.7.2.1.12.

Corollary 4.14. Let X be an ∞-topos. Then there exists a complete Boolean algebra B and a surjective
geometric morphism f∗ : X→ Shv(B)

38



Proof. Using Proposition T.6.5.2.19, we deduce that there exists a small ∞-category C equipped with a
Grothendieck topology such that X is a cotopological localization of Shv(C). Proposition 4.8 gives a surjective
geometric morphism g∗ : Shv(C) → Y, where Y is 0-localic. Lemma 4.10 guarantees a surjective geometric
morphism h∗ : Y → Shv(B), where Shv(B) is a complete Boolean algebra. Since Shv(B) is hypercomplete
(Corollary 4.13), the functor h∗ ◦ g∗ carries ∞-connective morphisms in Shv(C) to equivalences in Shv(B),
and therefore factors as a composition

Shv(C)→ X
f∗→ Shv(B)

for some surjective geometric morphism f∗.

Let B be a Boolean algebra. An ultrafilter on B is a homomorphism of Boolean algebras f : B → [1],
where [1] denotes the linearly ordered set {0 < 1} (that is, a map f : B → [1] which preserves finite meets
and finite joins). The collection of all ultrafilters on B is called the Stone space of B, and will be denoted
by St(B). We regard St(B) as a closed subspace of the product [1]B . A basis for the topology of St(B) is
given by the collection of open sets Ub = {f ∈ St(B) : f(b) = 1}, where b ∈ B. The construction b 7→ Ub
determines an isomorphism of B with the collection of all open-closed subsets of St(B).

Let U(St(B)) denote the collection of all open subsets of the Stone space of a Boolean algebra B. If B is
complete, there is a canonical map φ : U(St(B))→ B, given by the formula φ(U) =

∨
Ub⊆U U . It is easy to

see that this map preserves finite meets and arbitrary joins, and can therefore be regarded as a morphism
of locales. In particular, we get a geometric morphism of ∞-topoi f∗ : Shv(St(B))→ Shv(B).

Lemma 4.15. Let B be a complete Boolean algebra, and let f∗ : Shv(St(B)) → Shv(B) be the morphism
constructed above. Then:

(1) The right adjoint f∗ to f∗ is fully faithful. In other words, the composition f∗f∗ is equivalent to the
identity on Shv(B).

(2) For every finite collection of objects {Xi}1≤i≤n and effective epimorphism
∐
Xi → Y in Shv(B), the

induced map
∐
f∗Xi → f∗Y is an effective epimorphsim in Shv(St(B)).

Proof. The construction b 7→ Ub determines an injective map of partially ordered sets i : B → U(St(B)).
The functor f∗ : Shv(B) → Shv(St(B)) is given by right Kan extension along the inclusion i, and is fully
faithful by Proposition T.4.3.2.15. This proves (1). To prove (2), we note that Shv(B) is generated under
colimits by objects of the form {χU}U∈B , as in the proof of Corollary 4.12; consequently, we may suppose
that Y has the form χU . Each of the maps Xi → Y factors as a composition

Xi
ui→ χUi → χU ,

where ui is an effective epimorphism. Applying Proposition 4.11 (to the complete Boolean algebra {V ∈ B :
V ≤ Ui}), we deduce that ui admits a section si. We have a commutative diagram∐

f∗Xi

$$∐
f∗χUi

∐
si

99

ψ // f∗χU .

Consequently, to prove (2), it suffices to show that ψ is an effective epimorphism. For this, it suffices to
observe that for each V ∈ B, the functor f∗ carries χV to the sheaf represented by the open set i(V ) ⊆ St(B),
and the map V 7→ i(V ) preserves finite joins.

Lemma 4.16. Let C be a small ∞-category which admits finite limits, equipped with a finitary Grothendieck
topology. Let B be a complete Boolean algebra, and let g∗ : Shv(C) → Shv(B) be a geometric morphism.
Then g∗ is homotopic to a composition

Shv(C)
h∗→ Shv(St(B))

f∗→ Shv(B),
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where f∗ is the geometric morphism of Lemma 4.15.

Proof. For every ∞-topos Y, the ∞-category of geometric morphisms from Shv(C) to Y can be identified
with the ∞-category of left-exact functors u : C→ Y with the following property: for every every collection
of morphisms {Ci → C} which generate a covering sieve on an object C ∈ C, the induced map

∐
u(Ci) →

u(C) is an effective epimorphism in Y (Proposition T.6.2.3.20). In particular, g∗ is classified by a functor
u : C→ Shv(B). Let f∗ denote a right adjoint to f∗, and let u′ : C→ Shv(St(B)) be the composition f∗ ◦ u.
It follows from Lemma 4.15 that u′ determines a geometric morphism h∗ : Shv(C)→ Shv(St(B)) such that
f∗ ◦ h∗ ' g∗.

Lemma 4.17. Let C be a small ∞-category which admits finite limits, equipped with a finitary Grothendieck
topology. Then there exists a surjective geometric morphism h∗ : Shv(C)→ Shv(X), where X is a compact,
totally disconnected Hausdorff space.

Proof. Corollary 4.14 guarantees the existence of a surjective geometric morphism g∗ : Shv(C) → Shv(B),
where B is a complete Boolean algebra. Let X be the Stone space of B. Lemma 4.16 guarantees that g∗

factors through a geometric morphism h∗ : X→ Shv(X), which is clearly surjective.

Proof of Theorem 4.1. We may assume without loss of generality that the ∞-topos X is coherent and hy-
percomplete. Using Corollary 3.22, we can assume that X = Shv(C)∧ for some small ∞-category C which
admits finite limits and is equipped with a finitary Grothendieck topology. Choose a surjective geometric
morphism h∗ : Shv(C)→ Shv(X) as in Lemma 4.17. For each point x ∈ X, let f∗x denote the composite map

Shv(C)
h∗→ Shv(X)→ Shv({x}) ' S .

It is easy to see that the collection of geometric morphisms {f∗x}x∈X is jointly surjective, so that X ' Shv(C)∧

has enough points as desired (see Remark 4.7).

We close this section with an application of Theorem 4.1 to the theory of hypercoverings. We begin by
reviewing some definitions.

Notation 4.18. Let ∆s denote the subcategory of ∆ whose objects are finite linearly ordered sets of the form
[n] = {0, . . . , n}, and whose morphisms are injective monotone maps [m] → [n]. Let C be an ∞-category.
A semisimplicial object of C is a functor X• : N(∆s)

op → C. Assume that C admits finite limits. For each
n ≥ 0, we let Mn(X) denote the nth matching object of X•: that is, Mn(X) is the limit

lim←−
f :[m]→[n]

Xm,

where f ranges over all injective monotone maps [m]→ [n] such that m < n.

Definition 4.19. Let X be an ∞-topos. We will say that a semisimplicial object X• of X is a hypercovering
if, for each n ≥ 0, the canonical map Xn →Mn(X) is an effective epimorphism.

The following result generalizes Lemma T.6.5.3.11:

Theorem 4.20. Let X be an ∞-topos, and let X• : N(∆s)
op → X be a hypercovering. Then the colimit of

X• is an ∞-connective object of X.

We will give a proof of Theorem 4.20 which is substantially simpler than the proof given in [40]. The
idea is to use Deligne’s completeness theorem to reduce to the case where X = S, where the result admits
an elementary proof using the combinatorics of simplicial sets. We need some preliminaries.

Lemma 4.21. Let X• be a semisimplicial set. Suppose that, for each n ≥ 0, the canonical map φn : Xn →
Mn(X) is surjective. Then X• is the restriction of a simplicial set.
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Proof. For each n ≥ 0, let ∆≤n denote the full subcategory of ∆ spanned by the objects {[m]}m≤n, let
∆s be the subcategory of ∆ spanned by all objects and all injective morphisms between them, and let
∆≤ns = ∆≤n ∩∆s. We regard X• as a functor ∆op

s → Set. We will construct a compatible sequence of
functors Y (n) : (∆≤n)op → Set extending the functors X(m) = X•|(∆≤ns )op, using induction on n. In the
case n = 0, we take Y (0) = X(0). Assume now that Y (n) has been constructed. Let LY and MY denote
the (n + 1)st latching and matching objects determined by Y (n), respectively, so that we have a canonical
map f : LY → MY . Moreover, since Y (n)|(∆≤ns )op ' X(n), we can identify MY with the matching
object Mn+1(X) (see the proof of Lemma T.6.5.3.8). According to Corollary T.A.2.9.15, giving an extension
Y (n+ 1) of Y (n) is equivalent to giving a commutative diagram

Yn+1

f ′′

##
LY

f ′
<<

f // MY.

To guarantee that Y (n+ 1) extends X(n+ 1), we choose Yn+1 = Xn+1 and f ′′ = φn+1. The existence of f ′

now follows from our assumption that φn+1 is surjective.

Lemma 4.22. Let X• be a semisimplicial set. Suppose that, for each n ≥ 0, the canonical map φn : Xn →
Mn(X) is surjective. Then the colimit of the diagram

N(∆s)
op X•−→ N(Set) ⊆ S

is contractible.

Proof. According to Lemma 4.21, we may assume without loss of generality that X• extends to a simplicial
set Y• : ∆op → Set. In view of Lemma T.6.5.3.7, it suffices to show that the composite diagram

N(∆)op
Y•−→ N(Set)→ S

has contractible colimit. Example T.A.2.9.31 shows that this colimit can be identified with Y• itself. We
conclude by observing that Y• is a contractible Kan complex.

Lemma 4.23. Let X• be a semisimplicial object of S. Suppose that, for each n ≥ 0, the canonical map
π0Xn → π0Mn(X) is surjective. Then the colimit of the diagram

N(∆s)
op X•−→ S

is contractible.

Proof. Using Proposition T.4.2.4.4, we may assume without loss of generality that X• is obtained from a
semisimplicial object X• in the (ordinary) category of simplicial sets. Moreover, we may assume that X• is
fibrant and cofibrant with respect to the injective model structure on (Set∆)∆

op
s . It follows in particular that

each of the matching objects Mn(X) is a model for the space Mn(X), and that the maps φn : Xn →Mn(X)
are Kan fibrations of simplicial sets. We may identify X• with a diagram Y : ∆op → Fun(∆op

s , Set), which
determines in turn a diagram Y : N(∆)op → Fun(N(∆s)

op, S). It follows from Example T.A.2.9.31 that X
is a colimit of the diagram of the diagram Y , so that lim−→(X) is the geometric realization of the simplicial
space [m] 7→ lim−→Y ([m]). It will therefore suffice to show that each of the spaces lim−→Y ([m]) is contractible.
We claim that each of the semisimplicial sets Y ([m]) satisfies the hypotheses of Lemma 4.22. In other words,
we claim that each of the maps φn : Xn → Mn(X) is surjective on m-simplices. This is clear, since φn is a
Kan fibration which is surjective on connected components.
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Proof of Theorem 4.20. Let C be an ∞-category freely generated by N(∆s)
op under finite limits. More

precisely, we choose a functor Y• : N(∆s)
op → C, where C admits finite limits, with the following universal

property: for any ∞-category D which admits finite limits, composition with Y• induces an equivalence of
∞-categories Funlex(C,D)→ Fun(N(∆s)

op,D), where Funlex(C,D) denotes the full subcategory of Fun(C,D)
spanned by those functors which preserve finite limits. The existence of f follows from Remark T.5.3.5.9.

We can regard Y• as a semisimplicial object of C. Since C admits finite limits, the matching objects
Mn(Y ) are well-defined. Let us regard C as endowed with the coarsest Grothendieck topology such that, for
each n ≥ 0, the single map {Yn → Mn(Y )} generates a covering sieve on Mn(Y ). It follows from Remark
3.18 that this Grothendieck topology is finitary, so that Shv(C) is a locally coherent ∞-topos (Proposition
3.19). Using Proposition T.6.2.3.20, we deduce the existence of a geometric morphism f∗ : Shv(C) → X

such that X• is equivalent to f∗Y•. Consequently, to prove that lim−→X• is an ∞-connective object of X, it
suffices to show that lim−→Y• is an ∞-connective object of Shv(C). According to Theorem 4.1, it suffices to
show that for every geometric morphism g∗ : Shv(C) → S, the space g∗(lim−→Y•) ' lim−→(g∗Y•) is contractible.
This follows immediately from Lemma 4.23.

5 Flat Descent

In this section, we will introduce the flat topology on the∞-category of E∞-rings. We will then show that for
every 0-localic spectral scheme X, the functor represented by X is a sheaf with respect to the flat topology
(Theorem 5.15).

We begin by introducing a general construction of Grothendieck topologies.

Proposition 5.1. Let C be an ∞-category and let S be a collection of morphisms in C. Assume that:

(a) The collection of morphisms S is contains all equivalences and is stable under composition (in partic-
ular, if f, g : C → D are homotopic morphisms in C, then f ∈ S if and only if g ∈ S).

(b) The ∞-category C admits pullbacks. Moreover, the class of morphisms S is stable under pullback: for
every pullback diagram

C ′

f ′

��

// C

f

��
D′ // D

such that f ∈ S, the morphism f ′ also belongs to S

(c) The ∞-category C admits finite coproducts. Moreover, the collection of morphisms S is stable under
finite coproducts: if fi : Ci → Di is a finite collection of morphisms in C which belong to S, then the
induced map

∐
i Ci →

∐
iDi also belongs to S.

(d) Finite coproducts in C are universal. That is, given a diagram
∐

1≤i≤n Ci → D ← D′, the canonical
map

∐
1≤i≤n(Ci ×D D′)→ (

∐
1≤i≤n Ci)×D D′ is an equivalence in C.

Then there exists a Grothendieck topology on C which can be described as follows: a sieve C
(0)
/C ⊆ C/C on

an object C ∈ C is covering if and only if it contains a finite collection of morphisms {Ci → C}1≤i≤n such
that the induced map

∐
Ci → C belongs to S.

Proof. We show that the collection of covering sieves satisfies the conditions of Definition T.6.2.2.1:

(1) For every object C ∈ C, the sieve C/C covers C. This is clear, since C/C contains the identity map
idC : C → C, which belongs to S by (a).
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(2) If C
(0)
/C is a covering sieve on an object C ∈ C and f : C ′ → C is a morphism in C, then the pullback sieve

f∗ C
(0)
/C covers C ′. To prove this, we observe that there exists a finite collection of morphisms Ci → C

belonging to C
(0)
/C such that the induced map

∐
i Ci → C belongs to S. Assumption (b) guarantees that

the induced map (
∐
i Ci) ×C C ′ → C ′ also belongs to S, and assumption (d) gives an identification

(
∐
i Ci)×C C ′ '

∐
i(Ci ×C C ′). It now suffices to observe that each of the morphisms Ci ×C C ′ → C ′

belongs to the sieve f∗ C
(0)
/C .

(3) Let C
(0)
/C be a covering sieve on an object C ∈ C, and let C

(1)
/C be an arbitrary sieve on C. Suppose

that, for each morphism f : C ′ → C belonging to C
(0)
/C , the pullback sieve f∗ C

(1)
/C covers C ′. We must

show that C
(1)
/C covers C. Since C

(0)
/C is a covering sieve, there exists a finite collection of morphisms

fi : Ci → C belonging to C
(0)
/C such that the induced map

∐
i Ci → C belongs to S. Each f∗i C

(1)
/C is

a covering sieve on Ci, so there exists a finite collection of morphisms Ci,j → Ci belonging to f∗ C
(1)
/C

such that the induced map
∐
j Ci,j → Ci belongs to S. It follows that each of the composite maps

Ci,j → Ci → C belongs to the sieve C
(1)
/C . To prove that C

(1)
/C is covering, it suffices to show that the

map g :
∐
i,j Ci,j → C belongs to S. To prove this, we factor g as a composition∐

i,j

Ci,j
g′→

∐
i

Ci
g′′→ C.

The map g′′ belongs to S by assumption, and the map g′ is a finite coproduct of maps belonging to
S and therefore belongs to S by virtue of (c). It follows from (a) that g ' g′′ ◦ g′ belongs to S, as
required.

We now illustrate Proposition 5.1 by means of an example.

Definition 5.2. Let f : A→ B be a morphism of E∞-rings. We will say that f is faithfully flat if it satisfies
the following conditions:

(i) The underlying map of commutative rings π0A → π0B is faithfully flat, in the sense of classical
commutative algebra.

(ii) For every integer n, the map Torπ0A
0 (π0B, πiA)→ πiB is an isomorphism.

Remark 5.3. Let f : A→ B be a faithfully flat morphism of E∞-rings. A morphism M → N of A-modules
is an equivalence if and only if the induced map M ⊗A B → N ⊗A B is an equivalence. This follows
immediately from Corollary A.7.2.1.22.

Proposition 5.4. Let Aff denote the opposite of the ∞-category CAlg of E∞-rings; if A is an E∞-ring,
we denote the corresponding object of C by SpecA. Let S denote the collection of all morphisms in C which
correspond to faithfully flat maps of E∞-rings (Definition 5.2). Then S satisfies the hypotheses of Proposition
5.1, and therefore determines a Grothendieck topology on Aff.

Remark 5.5. We will refer to the Grothendieck topology of Proposition 5.4 as the flat topology on Aff.

Warning 5.6. The ∞-category Aff is not small. Consequently, though it makes sense to consider the ∞-
category Shv(Aff) ⊆ Fun(CAlg, S) of sheaves of spaces on Aff, it is not clear that Shv(Aff) is a localization
of Fun(CAlg, S). In concrete terms, the trouble is that the process of sheafification with respect to the flat
topology may produce spaces which are not essentially small (since there does not exist any small, cofinal
collection of flat coverings of a given E∞-ring). However, this issue will not concern us in this section.

43



Proof of Proposition 5.4. We consider each condition of Proposition 5.1 in turn:

(a) The collection of faithfully flat morphisms in CAlg contains all equivalences and is stable under compo-
sition. The first assertion is obvious. To prove the second, consider a pair of faithfully flat morphisms

A
f→ B

g→ C; we wish to prove that g ◦ f is faithfully flat. The underlying map π0A → π0C is a
composition of faithfully flat morphisms of commutative rings, and therefore faithfully flat. The map
Torπ0A

0 (π0C, πiA)→ πiC factors as a composition

Torπ0A
0 (π0C, πiA) ' Torπ0B

0 (π0C,Torπ0A
0 (π0B, πiA))

α→ Torπ0B
0 (π0C, πiB)

β→ πiC.

The map α is an isomorphism because f is faithfully flat, and the map β is an isomorphism because g
is faithfully flat.

(b) It is clear that the∞-category C admits pullbacks (the∞-category CAlg of E∞-rings is presentable and
therefore admits all small limits and colimits). It therefore suffices to show that if we are given a diagram

A′
g← A

f→ B, where f is faithfully flat, then the induced map A′ → B ⊗A A′ is faithfully flat. Since
B is flat over A, Proposition A.7.2.2.13 guarantees that the canonical maps γi : Torπ0A

0 (π0B, πiA
′)→

πi(B ⊗A A′) is an isomorphism. Taking i = 0, we deduce that π0(B ⊗A A′) is a pushout of π0B and

π0A
′ over π0A, and therefore faithfully flat over π0A

′. Moreover, the canonical map Torπ0A
′

0 (π0(B ⊗A
A′), πiA

′)→ πi(B ⊗A A′) factors as a composition

Torπ0A
′

0 (π0(B ⊗A A′), πiA′)
γ−1

0' Torπ0A
′

0 (Torπ0A
0 (π0A

′, π0B), πiA
′)

' Torπ0A
0 (π0B, πiA

′)
γi→ πi(B ⊗A A′).

and is therefore an isomorphism.

(c) It is clear that the category C admits pushouts, which are given by products of the corresponding
E∞-rings. We must show that if we are given a finite collection of faithfully flat morphisms Ai → Bi
and set A =

∏
iAi and B =

∏
iBi, then the induced map A → B is also faithfully flat. We have

π0A =
∏
i π0Ai and π0B '

∏
i π0Bi. Since a product of faithfully flat morphisms of commutative rings

is faithfully flat, we deduce that the map π0A → π0B is faithfully flat. For higher homotopy groups,
we have

πnB '
∏
i

(πnBi)

'
∏
i

Torπ0Ai
0 (π0Bi, πnAi)

' Tor
∏
i π0Ai

0 (
∏
i

π0Bi,
∏
i

πnAi)

' Torπ0A
0 (π0B, πnA)

as required.

(d) Given a finite collection of morphisms A → Ai and a morphism A → B in CAlg, we must show that
the canonical map

(
∏
i

Ai)⊗A B →
∏
i

(Ai ⊗A B)
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is an equivalence of E∞-rings. We will show that this map is an equivalence in the ∞-category of
B-modules. For this, it suffices to observe that the functor F : ModA → ModB given by M 7→M ⊗AB
preserves finite limits. The functor F evidently preserves small colimits, and therefore also finite limits
because the ∞-categories ModA and ModB are stable (Proposition A.1.1.4.1).

We wish to study sheaves with respect to the flat topology on CAlgop. To this end, it is useful to have
the following characterization of sheaves:

Proposition 5.7. Let C be an ∞-category and S a collection of morphisms in C. Assume that C and S
satisfy the conditions of Proposition 5.1, together with the following additional condition:

(e) Coproducts in the ∞-category C are disjoint. That is, if C and C ′ are objects of C, then the fiber
product C ×C∐

C′ C
′ is an initial object of C (see §T.6.1.1).

Let D be an arbitrary ∞-category and let F : Cop → D be a functor. Then F is a D-valued sheaf on C if and
only if the following conditions are satisfied:

(1) The functor F preserves finite products.

(2) Let f : U0 → X be a morphism in C which belongs to S and let U• be a Čech nerve of f (see §T.6.1.2),
regarded as an augmented simplicial object of C. Then the composite map

N(∆+)
U•→ Cop

F→ D

is a limit diagram. In other words, F exhibits F(X) as a totalization of the cosimplicial object [n] 7→
F(Un).

Proof. For every object D ∈ D, let hD : D → S be the functor corepresented by D. Using Proposition
T.5.1.3.2, we deduce that F is a sheaf D-valued sheaf on C if and only if each composite map hD ◦ F is a
S-valued sheaf on C, and that F satisfies conditions (1) and (2) if and only if each hD ◦ F satisfies the same
condition. We may therefore replace F by hD ◦ F and thereby reduce to the case where D = S.

Suppose first that F is a sheaf; we will prove that F satisfies conditions (1) and (2). We begin with (1).
Let {Ci}1≤i≤n be a finite collection of objects in C and let C =

∐
i Ci be their coproduct. We wish to prove

that the canonical map F(C)→
∏
i F(Ci) is an equivalence. The proof proceeds by induction on n. If n = 0,

then C is an initial object of C so that the empty sieve is a covering of C. Since F is a sheaf, we deduce that
F(C) is a final object of S, as required. If n = 1, there is nothing to prove. If n > 2, we let D =

∐
1≤i<n Ci,

so that C = D q Cn. The natural map F(C)→
∏
i F(Ci) then factors as a composition of maps

F(C)→ F(D)× F(Cn)→ (
∏

1≤i<n

F(Ci))× F(Cn) '
∏

1≤i≤n

F(Cn),

each of which is an equivalence by the inductive hypothesis. It remains to treat the case n = 2. Let C
(0)
/C ⊆ C/C

be the sieve generated by C1 and C2. This sieve is evidently a covering of C, so that F(C) ' lim←−F |(C(0)
/C)op.

To complete the proof, it suffices to show that the canonical map lim←−F |(C(0)
/C)op → F(C1) × F(C2) is an

equivalence. Let p : Λ2
0 → C

(0)
/C be the map corresponding to the pullback diagram

C1 ×C C2
//

��

C1

��
C2

// C
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in C. Since C1 ×C C2 is initial in C, the above argument shows that F(C1 ×C C2) is final in D: that is,
F |(Λ2

0)op is a right Kan extension of F |{1, 2}op, so that lim←−F |(Λ2
0)op ' F(C1)×F(C2) by Lemma T.4.3.2.7.

To complete the proof of (1), we will show that p is left cofinal. According to Theorem T.4.1.3.1, it will

suffice to show that for every object (f : D → C) ∈ C
(0)
/C , the ∞-category S = Λ2

0 ×C
(0)

/C

(C
(0)
/C)f/ is weakly

contractible. If D ∈ C is initial, then the projection map S → Λ2
0 is a trivial Kan fibration and the result

is obvious. If D is not initial, then condition (d) guarantees that there do not exist any maps from D to
an initial object of C. Using (e), we deduce that there do not exist any maps from D into C1 ×C C2. It
follows that f factors through either the map C1 → C or C2 → C, but not both. Without loss of generality,
we may assume that f factors through C1 → C. In this case, we can identify S with the simplicial set
{C1} ×C/C CD//C , which is the homotopy fiber of the composition map q : MapC(D,C1) → MapC(D,C)
over f . We wish to show that this homotopy fiber is contractible. By assumption, it is nonempty; it will
therefore suffice to show that the morphism q is (−1)-truncated. To prove this, we need only verify that
C1 → C is a monomorphism; that is, that the diagonal map C1 → C1 ×C C1 is an equivalence. Using (d),
we obtain equivalences

C1 ' C1 ×C C ' C1 ×C (C1

∐
C2) ' (C1 ×C C1)

∐
(C1 ×C C2),

and the first summand maps by an equivalence to C1 ×C C1. The second summand is trivial, by virtue of
(e).

We now prove (2). Let f : U0 → X be a morphism of S and let f be its Čech nerve, so that f generates

a covering sieve C
(0)
/X ⊆ C/X . We can regard U• as determining a simplicial object V : N(∆)op → C

(0)
/X . Our

assumption that F is a sheaf guarantees that F(X) ' lim←−F |(C(0)
/X)op. To prove (2), it suffices to prove that

the map V is left cofinal. According to Theorem T.4.1.3.1, it suffices to show that for every map f : X ′ → X

belonging to C
(0)
/X , the ∞-category X = N(∆)op ×

C
(0)

/X

(C
(0)
/X)f/ is weakly contractible. The projection map

X→ N(∆)op is a left fibration, classified by a functor χ : N(∆)op → S. According to Proposition T.3.3.4.5,
it will suffice to show that lim−→(χ) is contractible. Note that χ can be identified with the underlying simplicial

object of the Čech nerve of the map of spaces q : MapC/X
(X ′, U0) → ∆0. Since f belongs to the sieve C

(0)
/X ,

the space MapC/X
(X ′, U0) is nonempty so that q is an effective epimorphism. Since S is an ∞-topos, we

conclude that lim−→(χ) ' ∆0 as required.
Now suppose that F satisfies (1) and (2); we will show that F is a sheaf on C. Choose an object X ∈ C

and a covering sieve C
(0)
/X ; we wish to prove that F(X) ' lim←−F |(C(0)

/X)op. We first treat the case where C
(0)
/X is

generated by a single morphism f : U0 → X which belongs to S. Let U• be a Čech nerve of f , so that F(X)
can be identified with the totalization of the cosimplicial space [n] 7→ F(Un) by virtue of (2). To complete

the proof, we invoke the fact (established above) that U• determines a left cofinal map N(∆)op → C
(0)
/X .

Now suppose that C
(0)
/X is generated by a finite collection of morphisms {Ci → X}1≤i≤n such that the

induced map
∐
Ci → X belongs to S. Let C =

∐
i Ci and let C

(1)
/X denote the sieve generated by the induced

map C → X. Then C
(1)
/X contains C

(0)
/X and is therefore a covering sieve; the above argument shows that

F(X) ' lim←−F |(C(1)
/X)op. To complete the proof in this case, it will suffice to show that F |(C(1)

/X)op is a right

Kan extension of F |(C(0)
/X)op.

Fix an object f : U → X of the sieve C
(1)
/X , and let E denote the full subcategory of (C

(1)
/X)/U ' C/U

spanned by those objects whose image in C/X belongs to C
(0)
/X . We wish to prove that the canonical map

F(U) → lim←−F |Eop is an equivalence. By construction, the map f factors through some map f0 : U → C.
Invoking (b), we have U ' U ×C C '

∐
i U ×C Ci, so that U can be obtained as a coproduct of objects Ui

belonging to C
(0)
/X . Let T ⊆ {1, . . . , n} denote the collection of indices for which Ui is not initial. We let

E′ ⊆ E denote the full subcategory spanned by morphisms U ′ → U which factor through some Ui and such
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that U ′ ∈ C is not initial. For i 6= j, the fiber product Ui ×U Uj is initial (by (e)) and therefore receives no
morphisms from non-initial objects of C (by (d)); it follows that E′ can be decomposed as a disjoint union∐
i∈T E′i where each E′i denotes the full subcategory of E′ spanned by those morphisms U ′ → U which factor

through Ui. Since the map Ui → U is a monomorphism, each E′i contains the map Ui → U as a final object,
so that the inclusion {Ui}i∈T → E′ is left cofinal. Condition (1) implies that F(U) '

∏
i∈T F(Ui), so that

F(U) is a limit of the diagram F |(E′)op. We will prove that F |Eop is a right Kan extension of F |(E′)op, so
that lim←−F |Eop ' lim←−F |(E′)op ' F(U) by Lemma T.4.3.2.7. To see this, choose an object U ′ → U in E;

we wish to show that F(U ′) is a limit of the diagram F |(E′/U ′)op. Let U ′i = U ′ ×U Ui, and let T ′ be the

collection of indices i for which U ′i is not initial. Then E′/U ′ decomposes as a disjoint union
∐
i∈T ′(E

′
/U ′)i,

each of which has a final object (given by the map U ′i → U ′). It follows that lim←−F |(E′/U ′)op is equivalent to∏
i∈T ′ F(U ′i), which is equivalent to F(U ′) by virtue of (1).

We now treat the case of a general covering sieve C
(0)
/X ⊆ C/X . By definition, there exists a finite collection

of morphisms fi : Ci → X belonging to C
(0)
/X such that the induced map

∐
i Ci → X belongs to S. Let

C
(1)
/X ⊆ C

(0)
/X be the sieve generated by the maps fi. The above argument shows that F(X) ' lim←−F |(C(1)

/X)op.

To prove that F(X) ' lim←−(C(0))/X)op, it will suffice to show that F |(C(0)
/X)op is a right Kan extension of

F |(C(1)
/X)op (Lemma T.4.3.2.7). Unwinding the definitions, we must show that for every f : U → X belonging

to the sieve C
(0)
/X , we have F(U) ' lim←−F |(f∗ C(1)

/X). This is clear, since f∗ C
(1)
/X is generated by the pullback

maps Ci ×X U → U , and the induced map
∐
i(Ci ×X U)→ U factors as a composition∐

i

(Ci ×X U)
α→ (

∐
i

Ci)×X U
β→ U,

where α is an equivalence by assumption (d) and the map β belongs to S by assumption (b).

Example 5.8. Let Aff = CAlgop and let S be the collection of faithfully flat morphisms in Aff. Then
(Aff, S) satisfies the hypotheses of Proposition 5.7. To prove (e), we must show that if A and B are E∞-
rings, then the fiber product A ×A×B B is trivial. To prove this, we observe that the identity element of
π0(A×B) ' π0A× π0B can be written as a sum e+ e′, where e = (1, 0) and e′ = (0, 1). The image of e is
trivial in π0B, and the image of e′ is trivial in π0A. It follows that e and e′ both have trivial image in the
commutative ring R = π0(A ×A×B B), so that 1 = 0 in R. Since every homotopy group of A ×A×B B is a
module over R, each of these groups is trivial.

Here is a more classical example of a sheaf with respect to the flat topology:

Proposition 5.9. For every E∞-ring A, let SpecZA be the Zariski spectrum of the commutative ring π0A,
and let U(A) be the collection set of open subsets of SpecZA. Then U determines a functor U : CAlg→ N(Set)
satisfying the hypotheses of Proposition 5.7 (with respect to the flat topology), and can therefore be regarded
as a sheaf (of sets) on Aff = CAlgop.

Remark 5.10. The sheaf U : CAlg→ N(Set) of Proposition 5.9 can be regarded as a discrete object in the
∞-category of S-valued sheaves on CAlgop. As such, it is automatically hypercomplete.

Proof of Proposition 5.9. To verify (1), we must show that for every finite collection of E∞-rings Ai, the
map U(

∏
iAi) →

∏
i U(Ai) is bijective. This follows from the observation that there is a canonical homeo-

morphism SpecZ(
∏
iAi) '

∐
i SpecZAi.

We now prove (2). Let f : A→ B be a faithfully flat morphism of E∞-rings; we wish to prove that

U(A) // U(B) //// U(B ⊗A B)

is an equalizer diagram in the category of sets. We can divide this assertion into two parts:
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(a) The map U(A) → U(B) is injective. To prove this, we must show that an open subset U ⊆ SpecZA
is determined by its inverse image in SpecZB. This is clear, since the assumption that A → B is
faithfully flat guarantees that ψ : SpecZB → SpecZA is a surjection.

(b) Let φ0, φ1 : SpecZ(B ⊗A B)→ SpecZB be the two projection maps. We claim that if Z ⊆ SpecZB is
a closed subset with φ−1

0 Z = φ−1
1 Z, then Z = φ−1V for some closed subset V ⊆ SpecZA. Choose an

ideal I ⊆ π0B such that Z = {p ⊆ π0B : I ⊆ p}, and let J = f−1I ⊆ π0A. Set V = {q ⊆ π0A : J ⊆ q}.
Then φ−1V = {p ⊆ π0B : f(J)π0B ⊆ p}. To prove that φ−1V = Z, it suffices to show that f(J)π0B
and I have the same nilradical. Let R denote the commutative ring π0A/J and R′ the commutative
ring π0B/Jπ0B, and let I ′ denote the image of I in R′. Then R → R′ is faithfully flat and the
composite map R→ R′ → R′/I ′ is injective; we wish to prove that I ′ is a radical ideal. In other words,
we wish to show that every element x ∈ I ′ is nilpotent. Since φ−1

0 Z = φ−1
1 Z, we deduce that the ideals

I ′⊗RR′ and R′⊗R I ′ have the same radical in R′⊗RR′. Consequently, since x⊗1 belongs to I ′⊗RR′,
some power xn ⊗ 1 belongs to R′ ⊗R I ′. It follows that the image of xn is trivial in R′ ⊗R R′/I ′. Since
R′ is flat over R, the injection R→ R′/I ′ induces an injection R′ → R′⊗RR′/I ′; it follows that xn = 0
in R′, as desired.

There is an analogue of Proposition 5.7 which describes the class of hypercomplete sheaves on an ∞-
category C. To state it, we first need to introduce a variation on Definition 4.19.

Definition 5.11. Let ∆s,+ be the subcategory of ∆+ whose morphisms are injective maps of linearly
ordered sets [m] → [n]. If C is an ∞-category, we will refer to a functor X• : N(∆s,+)op → C as an
augmented semisimplicial object of C. If C admits finite limits, then for each n ≥ 0 we can associate to X•
an nth matching object Mn(X) = lim←−[m]→[n]

Xm, where the limit is taken over all injective maps [m]→ [n]

such that m < n.
Let S be a collection of morphisms in C. We will say that an augmented semisimplicial object X• :

N(∆s,+)op → C is an S-hypercovering if, for each n ≥ 0, the canonical map Xn →Mn(X) belongs to S.

Proposition 5.12. Let C be an ∞-category and S a collection of morphisms in C. Assume that C and S
satisfy the conditions of Proposition 5.1 and condition (e) of Proposition 5.7. Let D be an arbitrary ∞-
category and F : Cop → D a functor. Then F is a hypercomplete D-valued sheaf on C if and only if the
following conditions are satisfied:

(1) The functor F preserves finite products.

(2) Let X• : N(∆s,+)op → C be an S-hypercovering. Then the composite map

N(∆s,+)
X•−→ Cop

F−→ D

is a limit diagram.

Proof. As in the proof of Proposition 5.7, we may assume without loss of generality that D = S. We first
prove the “only if” direction. Assume that F is a hypercomplete sheaf. Condition (1) follows from Proposition
5.7. To prove (2), let F : C→ Shv(C) denote the composition of the Yoneda embedding C→ P(C) with the
sheafification functor P(C)→ Shv(C), and let L : Shv(C)→ Shv(C)∧ be a left adjoint to the inclusion. It will
suffice to show that L ◦F ◦X• is a colimit diagram in Shv(C)∧: in other words, that X• exhibits F (X−1) as
a colimit of the diagram {FXn}n≥0. This follows immediately from Theorem 4.20, applied in the ∞-topos
Shv(C)/FX−1

.
Now suppose that (1) and (2) are satisfied. Proposition 5.7 guarantees that F is a sheaf on C; we wish

to prove that C is hypercomplete. Choose an ∞-connective morphism α : F → G in Shv(C), where G is
hypercomplete (and therefore satisfies conditions (1) and (2)). We wish to show that α is an equivalence.
To prove this, it will suffice to verify the following:
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(∗) Let α : F → G be an ∞-connective morphism in Shv(C), where F and G both satisfy (2). Then α is an
equivalence.

To prove (∗), we will show that for every object C ∈ C and each n ≥ 0, the map of spaces αC : F(C)→ G(C)
is n-connective. The proof proceeds by induction on n. If n > 0, then the inductive hypothesis guarantees
that αC is 0-connective; it therefore suffices to show that the diagonal map F(C) → F(C) ×G(C) F(C) is
(n − 1)-connective, which also follows from the inductive hypothesis. It therefore suffices to treat the case
n = 0: that is, we must show that the map F(C)→ G(C) is surjective on connected components. Replacing
C by C/C , we may assume that C is a final object of C, so that a point η ∈ G(C) determines a map 1→ G,
where 1 denotes the final object of Shv(C). Replacing F by F×G1, we are reduced to proving the following:

(∗′) Let F be an ∞-connective object of Shv(C) satisfying condition (2), and let C ∈ C be a final object.
Then F(C) is nonempty.

To prove (∗′), let C̃ → C be the right fibration classified by the functor F : Cop → S. We wish to show that

C̃×C {C} is nonempty. We will construct an S-hypercovering X• : N(∆s,+)op → C with X−1 = C together

with a lifting Y• : N(∆s)
op → C̃ of X•|N(∆s)

op. Condition (2) and Corollary T.3.3.3.3 guarantee that Y•
extends (in an essentially unique fashion) to a map Y • : N(∆s,+)op → C̃ lifting X•, so that Y −1 is the

required point of C̃×C {C}.
The construction of X• and Y• proceeds in stages: we define X≤m• : N(∆≤ms,+ )op → C and Y ≤m• :

N(∆≤ms )op → C̃ by induction on m, the case m = −1 being trivial. Assuming that X≤m−1
• has been defined,

we can define the matching object Mn(X) ∈ C. The lifting Y ≤m−1
• determines a map ∂∆m → F(Mn(X)).

Since F is ∞-connective, there exists a collection of morphisms {Di → Mn(X)} which generate a covering
sieve, such that each composite map ∂∆m → F(Mn(X)) → F(Di) is nullhomotopic. Without loss of
generality, we may assume that the set of indices Di is finite, and that the map

∐
Di →Mn(X) belongs to

S. Let D =
∐
Di. Using condition (1), we see that the composite map γ : ∂∆m → F(Mn(X)) → F(D) is

nullhomotopic. We can now define the extension X≤m• by setting Xm = D, and the extension Y ≤m• using
the nullhomotopy γ.

Lemma 5.13. Let R• : N(∆s,+)→ CAlg be a flat hypercovering. Then R• is a limit diagram in CAlg.

Proof. This is an immediate consequence of Corollary 6.14, which will be proven in §6.

Theorem 5.14. The identity functor CAlg→ CAlg is a hypercomplete CAlg-valued sheaf on CAlgop (with
respect to the flat topology).

Proof. Combine Proposition 5.12 with Lemma 5.13.

We next show that if (X,OX) is a 0-localic spectral scheme, then the functor that it represents is a
(hypercomplete) sheaf with respect to the flat topology on the category Aff = CAlgop. This is a special case
of the following more general result:

Theorem 5.15. Let X be a 0-localic ∞-topos and let OX be a local sheaf of E∞-rings on X. Let Spec :
CAlgop → RingTopZar denote the spectrum functor associated to the geometry G

nSp
Zar , and let X : CAlg → S

be the functor represented by (X,OX), given by MapRingTopZar
(SpecR, (X,OX)). Then X is a hypercomplete

sheaf with respect to the flat topology on Aff = CAlgop.

Let RingTop≤0
Zar denote the full subcategory of RingTopZar spanned by those pairs (X,OX) where X is

0-localic. Theorem 5.15 is an immediate consequence of Proposition 5.12 together with the following result:

Proposition 5.16. Let Spec : CAlgop → RingTopZar be the spectrum functor associated to the geometry

G
nSp
Zar . Then:

(1) For every E∞-ring R, the underlying ∞-topos of SpecR is 0-localic. Consequently, Spec can be viewed

as a functor from CAlgop into the full subcategory RingTop≤0
Zar ⊆ RingTopZar.
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(2) The functor Spec : CAlgop → RingTopZar preserves finite coproducts.

(3) Let R• : N(∆s,+)op → CAlg be a flat hypercovering. Then SpecR• : N(∆s,+) → RingTop≤0
Zar is a

colimit diagram.

To prove Proposition 5.16, we need a criterion for verifying the descent properties of a Cat∞-valued
functor.

Lemma 5.17. Let C be an ∞-category and χ : C/ → Cat∞ a functor, classified by a coCartesian fibration
q : D→ C/. Then χ is a limit diagram if and only if the following conditions are satisfied:

(a) Let v denote the cone point of C/, and for each object C ∈ C let eC : Dv → DC be the functor induced
by the unique morphism fC : v → C in C/. Then the functors eC are jointly conservative: that is, if α
is a morphism in Dv such that each eC(α) is an equivalence in DC , then α is an equivalence in Dv.

(b) Let X ∈ FunC/(C,D) be a functor which carries each morphism in C to a q-coCartesian morphism in
D. Then X can be extended to a q-limit diagram X ∈ FunC/(C/,D). Moreover, X carries each fC to
a q-coCartesian morphism in D.

Moreover, if these conditions are satisfied, then a diagram X ∈ FunC/(C/,D) is a q-limit diagram, provided
that it carries each morphism in C/ to a q-coCartesian morphism in D.

Proof. Let E denote the full subcategory of FunC/(C,D) spanned by those functors which carry each mor-
phism in C to a q-coCartesian morphism in D, let E be the full subcategory of FunC/(C/,D) spanned by

those functors which carry each morphism in C/ to a q-coCartesian morphism in D, and let E
′

be the full
subcategory of FunC/(C/,D) spanned by those functors X which are q-limit diagrams having the property
that X|C belongs to E. Using Proposition T.3.3.3.1, we see that χ is a limit diagram if and only if the
restriction functor r : E→ E is an equivalence of ∞-categories. Suppose first that this condition is satisfied.
Assertion (a) is then obvious (it is equivalent to the requirement that the functor r is conservative). We will

show that the last assertion is satisfied: that is, we have an inclusion E ⊆ E
′
. It follows that every X ∈ E

can be extended to a q-limit diagram, so that (by Proposition T.4.3.2.15) the restriction functor E
′ → E is

a trivial Kan fibration. A two-out-of-three argument then shows that the inclusion E ⊆ E
′

is an equivalence

of ∞-categories, so that E = E
′
. This proves (b).

To prove that E ⊆ E
′
, consider an arbitrary diagram X ∈ E and let X = X|C. To show that X is a q-limit

diagram, it suffices to show that for every object D ∈ Dv the canonical map φ : {D}×DD/X → {D}×DD/X

is a homotopy equivalence of Kan complexes. Choose a diagram Y ∈ E with Y (v) = D (such a diagram
exists and is essentially unique, by virtue of Proposition T.4.3.2.15), and let Y = Y |C. Then φ is equivalent
to the restriction map

MapE(Y ,X)→ MapE(Y,X),

which is a homotopy equivalence by virtue of our assumption that the functor r is fully faithful.
Now suppose that conditions (a) and (b) are satisfied; we wish to prove that r is an equivalence of ∞-

categories. Condition (b) guarantees that E
′ ⊆ E and, by virtue of Proposition T.4.3.2.15, that r|E′ is a

trivial Kan fibration. To complete the proof, it suffices to show that the reverse inclusion E ⊆ E
′

holds. Fix

X ∈ E, let X = X|C, and let X
′ ∈ E

′
be a q-limit of the diagram X. We have a canonical map α : X → X

′

which induces the identity map idX : X → X in E. To complete the proof, it suffices to show that α is an

equivalence; that is, that the map αv : X(v) → X
′
(v) is an equivalence in the ∞-category Dv. This is an

immediate consequence of assumption (a).

We conclude this section with the proof of Proposition 5.16.

Proof of Proposition 5.16. Assertion (1) follows from the observation that for every E∞-ring R, the under-

lying ∞-topos of SpecR can be identified with Shv(SpecZR) (Remark 2.38). Let RTop
≤0

denote the ∞-
category whose objects are 0-localic ∞-topoi, and whose morphisms are geometric morphisms f∗ : X → Y.

50



Let RingTop≤0 denote the full subcategory of RingTop spanned by those pairs (X,OX) where X is 0-localic.
Consider the functors

RingTop≤0
Zar

j→ RingTop≤0 q→ RTop
≤0
.

Here j is the inclusion of a subcategory.
In view of Proposition T.4.3.1.5, assertion (2) will follow from the following three claims:

(2′) The functor q ◦ j ◦ Spec : CAlgop → RTop
≤0

preserves finite coproducts.

(2′′) The functor j ◦ Spec : CAlgop → RingTop≤0 carries finite coproducts to q-coproducts.

(2′′′) The functor Spec : CAlgop → RingTop≤0
Zar carries finite coproducts to j-coproducts.

To prove these claims, let {Ri}1≤i≤n be a finite collection of E∞-rings having product R. Let Xi =
SpecZRi and let X = SpecZR, so that we have identifications SpecRi = (Shv(Xi),Oi) and SpecR =
(Shv(X),O). For each index i, let φi : Xi → X denote the map induced by the projection R → Ri.
Assertion (2′) follows from the observation that the maps φi induce a homeomorphism

∐
Xi → X. In

view of Proposition T.4.3.1.9, assertion (2′′) is equivalent to the requirement that the canonical map O →∏
i(φi)∗ Oi is an equivalence of sheaves of E∞-rings on X. Note that X has a basis of open sets of the form

Uf = {p ⊂ π0R : f /∈ p}, where f = (f1, . . . , fn) ranges over the elements of π0R ' π0R1×· · ·×π0Rn. Since
this basis is stable under finite intersections, it suffices to observe that the canonical map

R[
1

f
] ' O(Uf )→ (

∏
i

(φi)∗ Oi)(Uf ) '
∏
i

Oi(Uf ×X Xi) '
∏
i

Ri[
1

fi
]

is an equivalence of E∞-rings.
Unwinding the definitions, we can formulate assertion (2′′′) as follows: a morphism α : (X,O)→ (Y,OY)

in RingTop≤0 belongs to RingTop≤0
Zar if and only if, for 1 ≤ i ≤ n, the induced map αi : (Xi,Oi) → (Y,OY)

belongs to RingTop≤0
Zar. This follows immediately from Corollary 2.25, since a map of sheaves of local

commutative rings on X is local if and only if it is local when restricted to each Xi.
We now prove (3). Let R• : N(∆s,+) → CAlg be a flat hypercovering. Reasoning as above, we are

reduced to proving the following three assertions:
The same reasoning reduces us to the following trio of assertions:

(3′) The composition q ◦ j ◦ Spec ◦R• is a colimit diagram in the ∞-category RTop
≤0

.

(3′′) The composition j ◦ Spec ◦R• is a q-colimit diagram in the ∞-category RingTop≤0.

(3′′′) The composition Spec ◦R• is a j-colimit diagram in the ∞-category RingTop≤0
Zar.

In view of (2′) and Proposition 5.12, assertion (3′) will follow if we know that that q ◦ j ◦ Spec : CAlg→
LTop

≤0
is a hypercomplete sheaf with respect to the flat topology. Since the∞-category LTop

≤0
is equivalent

to the nerve of an ordinary category, we need only show that q ◦ j ◦ Spec is a sheaf with respect to the flat
topology, which follows from Proposition 5.9 (it is here that we use in an essential way the fact that we
consider only 0-localic ∞-topoi).

We now prove (3′′). Let X = SpecZR−1, so that SpecR−1 can be identified with a pair (Shv(X),O).
For every nonnegative integer n let Xn = SpecZRn, so we have an equivalence SpecRn = (Shv(Xn),On); let
Fn denote the pushforward of On along the evident map Xn → X. The construction [n] 7→ Fn determines
a cosemisimplicial object in the ∞-category of sheaves of E∞-rings on X. In view of Proposition T.4.3.1.9,
condition (3′′) is equivalent to the requirement that the canonical map α : O → lim←−Fn is an equivalence.

We again note that X has a basis of open sets of the form Uf = {p ⊂ π0R
−1 : f /∈ p}. Since this collection

is stable under finite intersection, to prove that α is an equivalence it suffices to show that α induces an
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equivalence of E∞-rings O(Uf )→ lim←−Fn(Uf ), for each f ∈ π0R
−1. Replacing R−1 by R−1[ 1

f ], we can reduce
to the case where Uf = X. In this case, we need to show that the map

R−1 ' O(X)→ lim←−Fn(X) ' lim←−On(Xn) ' lim←−R
n

is an equivalence of E∞-rings, which follows from Theorem 5.14.
It remains to prove (3′′′). Unwinding the definitions, we must show that if (Y,OY) is an object of

RingTop≤0, then a map α : SpecR−1 → (Y,OY) in RingTop≤0 belongs to RingTop≤0
Zar if and only if the

induced map β : (Y,OY) → SpecR0 belongs to RingTop≤0
Zar. Let f∗ : Y → Shv(X) be the underlying

geometric morphism and let O′ = f∗ OY. In view of Corollary 2.25, we are reduced to proving the following:
a map between sheaves of local rings π0 O

′ → π0 O on X is local if and only if the composite map φ∗0π0 O
′ →

φ∗0π0 O → π0 O0 is a local map (between sheaves of local rings on X0). This follows immediately from
the observation that the map φ0 : X0 → X is surjective (since the underlying map of commutative rings
π0R

−1 → π0R
0 is assumed to be faithfully flat).

6 Flat Descent for Modules

Let f : A → B be a faithfully flat map of commutative rings. A classical theorem of Grothendieck asserts
that the category of A-modules is equivalent to the category C whose objects are pairs (M,η), where M is a
B-module and η is a “descent datum” for M : that is, an automorphism of B⊗AM which is compatible with
the evident involution on B⊗AB and satisfies a suitable cocycle condition. More abstractly, Grothendieck’s
theorem asserts that the category of pairs (A,M), where A is a commutative ring and M a (discrete) A-
module, is a stack with respect to the flat topology on the category of commutative rings. Our goal in this
section is to prove the following ∞-categorical analogue of Grothendieck’s result:

Theorem 6.1. The construction A 7→ ModA(Sp) determines a functor CAlg→ Ĉat∞ which is a hypercom-
plete sheaf with respect to the flat topology on CAlgop (see §5).

For later use, it will be convenient to prove a somewhat more general form of this result. Let us restrict
our attention to the ∞-category CAlgR of E∞-algebras over R, where R is some fixed E∞-ring. Rather
than than assigning to each object A ∈ CAlgR the ∞-category ModA = ModA(Sp) of A-module spectra, we
can assign to A the ∞-category ModA(C) where C is an arbitrary R-linear ∞-category (see Definition 6.2).
Under some mild assumptions on C, we will show that the construction A 7→ ModA(C) satisfies descent with
respect to the flat topology (Theorem 6.27). We begin by introducing some definitions.

Definition 6.2. Let R be an E2-ring, so that the ∞-category LModR of left A-modules is equipped with
a monoidal structure. An R-linear ∞-category is a presentable ∞-category C which is tensored over the
monoidal∞-category LModR of left R-modules, such that the tensor product ⊗ : LModR⊗C→ C preserves
small colimits separately in each variable.

Let PrL denote the∞-category of presentable∞-categories and colimit-preserving functors, endowed with
the symmetric monoidal structure described in §A.6.3.1. Then LModR can be identified with an associative
algebra object of PrL. We let LinCatR = LModLModR(PrL). We will refer to LinCatR as the ∞-category of
R-linear ∞-categories.

Example 6.3. Let S denote the sphere spectrum, regarded as an initial object of the ∞-category Alg(2)

of E2-rings. Then the forgetful functor LModS = LModS(Sp) → Sp is an equivalence of ∞-categories. It
follows that LinCatS can be identified with the ∞-category LModSp(PrL). Using Example A.6.3.1.22, we
can identify LinCatS with the full subcategory of PrL spanned by the presentable stable ∞-categories.

Remark 6.4. If R is a discrete commutative ring, then our theory of R-linear∞-categories is closely related
to the theory of differential graded categories over R.

52



Remark 6.5. Let f : R′ → R be a map of E2-rings. Then f induces a monoidal functor LModR′ → LModR.
We may therefore view any R-linear ∞-category as an R′-linear ∞-category. In particular, every R-linear
∞-category C can be regarded as an S-linear ∞-category, and is therefore stable (Example 6.3).

Remark 6.6. Let R be an E2-ring, and let C and C′ be R-linear∞-categories. We will refer to the morphisms
from C to C′ in LinCatR as R-linear functors from C to C′. Every R-linear functor from C to C′ determines
a colimit-preserving functor between the underlying (presentable) ∞-categories of C and C′, which therefore
admits a right adjoint G (Corollary T.5.5.2.9). For every R-module M and every object C ′ ∈ C′, the counit
map (F ◦G)(C ′)→ C ′ induces a map

F (M ⊗G(C ′))→M ⊗ (F ◦G)(C ′)→M ⊗ C ′,

which is adjoint to a morphism θM : M ⊗ G(C ′) → G(M ⊗ C ′) in C. The left R-modules M for which θM
is an equivalence span a stable subcategory X ⊆ LModR which contains R. If G commutes with filtered
colimits, then X is closed under filtered colimits and therefore coincides with LModR: that is, θM is an
equivalence for every left R-module M (and every object C ′ ∈ C). It then follows from Remark A.7.3.2.9
that we can regard G as an R-linear functor from C′ to C.

In this paper, we will confine our attention to the study of linear∞-categories over E∞-rings. If R ∈ CAlg
is an E∞-ring, we will generally abuse notation by identifying R with its image in the ∞-category Alg(2) of
E2-rings, and we let LinCatR denote the ∞-category of linear ∞-categories over the underlying E2-ring of
R.

Remark 6.7. Let CAlg denote the ∞-category of E∞-rings. In §5, we introduced the flat topology on the
∞-category CAlgop. If A is an E∞-ring, then a sieve on A is covering with respect to the flat topology if
and only if it contains a finite collection of maps {φα : A → Aα} which induces a faithfully flat morphism
A→

∏
αAα.

For every E∞-ring R, the flat topology on CAlgop determines a Grothendieck topology on the∞-category
CAlgopR of E∞-algebras over R. If R is connective, we also obtain a Grothendieck topology on the∞-category
(CAlgcn

R )op of connective E∞-algebras over R. We will refer to both of these topologies as the flat topology.

Definition 6.8. Fix an E∞-ring R and an R-linear ∞-category C. We let Mod(C) denote the fiber product
LMod(C)×Alg(ModA) CAlg(ModR) whose objects are pairs (A′,M), where A′ ∈ CAlg(ModA) ' CAlgA is an
E∞-algebra over A and M is a left A′-module object of C. We will denote the fiber of Mod(C) over an object
A ∈ CAlgR by ModA(C).

The coCartesian fibration q : Mod(C) → CAlg(ModA) is classified by a functor χ : CAlgA → Ĉat∞. We
will say that C satisfies flat descent if the functor χ is a sheaf with respect to the flat topology on CAlgopA .
We will say that C satisfies flat hyperdescent if C is a hypercomplete sheaf with respect to the flat topology.

We now study some examples of linear ∞-categories which satisfy flat descent.

Definition 6.9. Let C be a stable∞-category. We will say that a t-structure on C is excellent if the following
conditions are satisfied:

(1) The ∞-category C is presentable.

(2) The t-structure on C is compatible with filtered colimits: that is, the full subcategory C≤0 ⊆ C is closed
under filtered colimits (in particular, the t-structure on C is accessible: see Proposition A.1.4.5.13).

(3) The t-structure on C is both right and left complete.

Example 6.10. If A is a connective E∞-ring, then the usual t-structure on ModA is excellent. In particular,
the usual t-structure on the ∞-category Sp of spectra is excellent.

Remark 6.11. Let {C(i)} be a finite collection of presentable stable ∞-categories, having product C =∏
i C(i). Giving a t-structure (C≥0,C≤0) on C is equivalent to giving a t-structure (C(i)≥0,C(i)≤0) on each

C(i). Moreover, the t-structure (C≥0,C≤0) is excellent if and only if each (C(i)≥0,C(i)≤0) is excellent.
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Theorem 6.1 is an immediate consequence of Example 6.10 and the following result, which we will prove
at the end of this section:

Theorem 6.12. Let A be a connective E∞-ring and let C be an A-linear∞-category. If C admits an excellent
t-structure, then C satisfies flat hyperdescent.

Corollary 6.13. Let A be an E∞-ring. Then the A-linear ∞-category ModA satisfies flat hyperdescent.

Proof. Without loss of generality, we may assume that A is the sphere spectrum. In particular, A is connec-
tive; the desired result now follows from Example 6.10 and Theorem 6.12.

Before stating the next consequence of Theorem 6.12, let us introduce a bit of terminology. Let R• be an
augmented cosemisimplicial object of CAlg. We will say that R• is a flat hypercovering if it determines an S-
hypercovering in the ∞-category CAlgop in the sense of Definition 2.5, where S is the collection of faithfully
flat morphisms in CAlg. In other words, R• is a flat hypercovering if each of the maps Ln(R•) → Rn

is faithfully flat, where Ln(R•) denotes the nth latching object of R•. We will say that an augmented
cosemisimplicial commutative ring R• is a flat hypercovering if it determines a flat hypercovering when
regarded as an augmented cosemisimplicial object of CAlg.

Corollary 6.14. Let R• : N(∆s,+) → CAlg be a flat hypercovering of an E∞-ring R = R−1, let M be an
R-module spectrum, and let M• be the cosemisimplicial (R•|N(∆s))-module spectrum given informally by
the formula Mn = M ⊗R Rn. Then the canonical map M → lim←−M

• is an equivalence.

Proof. Combine Proposition 5.12, Lemma 5.17, and Corollary 6.13.

As a first step towards a proof of Theorem 6.27, we observe that it suffices to restrict our attention to
the study of modules over connective E∞-rings.

Lemma 6.15. Let C be a symmetric monoidal ∞-category, let M be an ∞-category left-tensored over C,
and suppose we are given a pushout diagram of commutative algebra objects of C :

A Boo

A′

OO

B′

OO

oo

Then the diagram of ∞-categories

LModA(M) //

��

LModB(M)

��
LModA′(M) // LModB′(M)

is right adjointable.

Proof. This follows immediately from Proposition A.4.3.7.14.

Lemma 6.16. Let R be an E2-ring and let C be an R-linear ∞-category. Then the construction A 7→
LModA(C) commutes with finite products (when regarded as a functor Alg

(1)
R → Ĉat∞).

Proof. Let {Ai}1≤i≤n be a finite collection of E1-algebras over R and let A =
∏

1≤i≤nAi. We wish to show
that the canonical functor

θ : LModA(C)→
∏

1≤i≤n

LModAi(C)

is an equivalence of ∞-categories. In view of Lemma 5.17, it will suffice to verify the following assertions:
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(a) The functor θ is conservative. That is, if α : M → N is a morphism in LModA(C) is such that each of
the induced maps αi : Ai ⊗AM → Ai ⊗AM is an equivalence, then α is an equivalence. It suffices to
show that the image of α is an equivalence in the ∞-category C. This is clear, since α is equivalent to
the product of the morphisms αi in the ∞-category C.

(b) Suppose we are given objects Mi ∈ LModAi(C), and let M '
∏

1≤i≤nMi (regarded as an A-module).
Then the canonical map φ : Ai⊗AM →Mi is an equivalence for 1 ≤ i ≤ n. To prove this, we see that
the domain of φ is given by the product

∏
1≤j≤n(Ai⊗AAj)⊗AjMj . To prove that φ is an equivalence,

it suffices to show that Ai ⊗A Aj ' 0 for i 6= j, and that the canonical map Ai → Ai ⊗A Ai is an
equivalence. Since each Aj is flat as a left A-module, we have

π∗(Ai ⊗A Aj) ' (π∗Ai)⊗π∗A π∗Aj ,

so the desired result follows from a simple algebraic calculation.

Lemma 6.17. Let A be a connective E∞-ring, let C be an A-linear ∞-category, and let χ : CAlgA → Ĉat∞
be as in Definition 6.8. Then:

(1) The A-linear ∞-category C has flat descent if and only if the restriction χ|CAlgcn
A is a sheaf with

respect to the flat topology.

(2) The A-linear ∞-category C has flat hyperdescent if and only if the restriction χ|CAlgcn
A is a hypercom-

plete sheaf with respect to the flat topology.

Proof. We will prove (1); the proof of (2) is similar. The “only if” direction is obvious. Conversely, suppose
that χ|CAlgcn

A is a sheaf with respect to the flat topology on CAlgcn
A . We wish to show that χ is a sheaf

with respect to the flat topology. Using Proposition 5.7 and Lemma 6.16, we are reduced to proving the
following:

(∗) Let f : B → B0 be a faithfully flat morphism of A-algebras, and let B• : N(∆+) → CAlgA be the

Čech nerve of f (regarded as a morphism in (CAlgA)op). Then χ(B•) is a limit diagram in Ĉat∞.

According to Lemma 5.17, it will suffice to verify the following:

(a) The functor φ : ModB(C)→ ModB0(C) is conservative. To prove this, we let τ≥0B and τ≥0B
0 be the

connective covers of B and B0, respectively. Since f is flat, the canonical map B ⊗τ≥0B τ≥0B
0 → B0

is an equivalence. It follows from Lemma 6.15 that φ fits into a homotopy commutative diagram of
∞-categories

ModB(C)
φ //

��

ModB(C)

��
Modτ≥0B(C)

φ0 // Modτ≥0B0(C).

Here the vertical maps are the evident forgetful functors (and therefore conservative). Consequently, to
show that φ is conservative it suffices to show that φ0 is conservative, which follows from our assumption
that χ|CAlgcn

A is a sheaf with respect to the flat topology.

(b) Let M• be a cosimplicial object of C which is a module over the underlying cosimplicial algebra of
B• such that each of the maps Bp ⊗Bq Mq → Mp is an equivalence. Let M = lim←−M

•, regarded as a
B-module object of C. Then we must show that the canonical map Bp ⊗BM →Mp is an equivalence
for each p ≥ 0. To prove this, we note that since f is flat, the map τ≥0B

p ⊗τ≥0Bq B
q → Bp is an

equivalence for every morphism [p] → [q] in ∆+. Let us regard M• as a cosimplicial module over
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the underlying cosimplicial algebra of τ≥0B
•. Using Lemma 6.15, we conclude that each of the maps

τ≥0B
p⊗τ≥0BqM

q →Mp is an equivalence. Using our assumption that χ|CAlgcn
A is a sheaf with respect

to the flat topology and Lemma 5.17, we conclude that each of the maps τ≥0B
p ⊗τ≥0BM →Mp is an

equivalence for p ≥ 0. The desired result now follows from Lemma 6.15.

Using the Barr-Beck theorem, we can obtain a very concrete criterion for flat descent.

Proposition 6.18. Let A be an E∞-ring and let C be an A-linear ∞-category. Then C satisfies flat descent
if and only if, for every faithfully flat map of A-algebras B → B0, the induced functor F : ModB(C) →
ModB0(C) has the following property:

(∗) The functor F is conservative, and preserves totalizations of F -split cosimplicial objects.

Moreover, if A is connective, then it is sufficient to verify this condition in the case where B and B0 are
connective.

Proof. Using Proposition 5.7 and Lemma 6.16, we see that C satisfies descent if and only if, for every faithfully
flat morphism of A-algebras f : B → B0, the following condition is satisfied:

(∗′) Let B• : N(∆+) → CAlgA be the Čech nerve of f (regarded as a morphism in CAlgopA , and let C•

be the augmented cosimplicial ∞-category given by the formula C• = ModB•(C). Then C• is a limit

diagram in Ĉat∞.

Moreover, if A is connective, Lemma 6.17 shows that it suffices to verify (∗′) in the case where B → B0 is a
faithfully flat map of connective A-algebras.

For every morphism [m]→ [n] in ∆+, the induced diagram

Bm //

��

Bm+1

��
Bn // Bn+1

is a pushout square of E∞-rings. It follows from Lemma 6.15 that the diagram of ∞-categories

Cm //

��

Cm+1

��
Cn // Cn+1

is right adjointable (that is, after passing to opposite ∞-categories, it gives a commutative diagram which is
left adjointable in the sense of §A.6.2.4). The equivalence of (∗) and (∗′) now follows from Theorem A.6.2.4.2
and Corollary A.6.2.4.3.

The proof of Theorem 6.27 will require some permanence properties of the class of excellent t-structures.
We begin with a general observation.

Remark 6.19. Let C be an∞-category, let C0 ⊆ C, and suppose that the inclusion C0 → C admits a left ad-
joint L. Let T be a monad on C, and assume that T carries L-equivalences to L-equivalences. Let Fun0(C,C)
be the full subcategory of Fun(C,C) spanned by those functors U such that U carries L-equivalences to
L-equivalences. Then Fun0(C,C) is stable under composition, and therefore inherits a monoidal structure
from the monoidal structure on Fun(C,C) (see §A.2.2.1). The left action of Fun0(C,C) on C is encoded by
a coCartesian fibration of ∞-operads E⊗ → LM⊗ (see §A.4.2.1). Applying Proposition A.2.2.1.9 to the full
subcategories

Fun0(C,C) ⊆ Fun0(C,C) C0 ⊆ C,
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we obtain a full subcategory E⊗0 ⊆ E⊗ for which the restriction E⊗0 → LM⊗ is a coCartesian fibration of
∞-operads, which exhibits C0 as left tensored over Fun0(C,C). This action is classified by a monoidal functor
Fun0(C,C) → Fun(C0,C0), so that T determines a monad on C0 which we will denote by T0. Unwinding
the definitions, we can identify ModT0

(C0) with the full subcategory C0×C ModT (C) ⊆ ModT (C). It follows
from Proposition A.2.2.1.9 that the inclusion E⊗0 ⊆ E⊗ admits an LM-monoidal left adjoint. It follows that
the inclusion ModT (C0) ⊆ ModT0

(C) admits a left adjoint L′, and that the diagram

ModT (C)
L′ //

��

ModT (C0)

��
C

L // C0

commutes up to canonical homotopy.

Proposition 6.20. Let C be a stable ∞-category equipped with a t-structure and let T be a monad on C.
Assume that the underlying functor C→ C is exact and carries C≥0 into C≥0. Then:

(1) The ∞-category LModT (C) is stable and the forgetful functor θ : LModT (C)→ C is exact.

(2) Let LModT (C)≥0,LModT (C)≤0 ⊆ LModT (C) be the inverse images of the full subcategories C≥0,C≤0 ⊆
C under the functor θ. Then (LModT (C)≥0,LModT (C)≤0) determines a t-structure on LModT (C).

(3) If C is left complete, then LModT (C) is also left complete.

(4) Assume that C is presentable and that the functor T preserves small colimits. Then LModT (C) is
presentable and the forgetful functor θ preserves small colimits. Moreover, if the t-structure on C is
accessible, then the t-structure on LModT (C) is accessible.

(5) Assume that C is presentable, that the t-structure on C is excellent, and that the functor T preserves
small colimits. Then the t-structure on LModT (C) is also excellent.

(6) Assume that T carries C≤0 into C≤0. If C is right complete, then LModT (C) is also right complete.

Proof. Note that T can be regarded as a monad on the ∞-category C≥n for every integer n. According to
Example A.7.3.2.10, each of the inclusions LModT (C≥n) ↪→ LModT (C) admits a right adjoint τT≥n such that

θ ◦ τT≥n ' τ≥n ◦ θ. We next claim the following:

(∗) If f : X → Y is a morphism in C which induces an equivalence τ≤nX → τ≤nY , then the induced map
TX → TY has the same property.

To prove (∗), we let Z = τ≤nY . We have a commutative diagram

τ≤nTX
α //

γ
%%

τ≤nTY

βyy
τ≤nTZ.

To prove that α is an equivalence, it suffices to show that β and γ are equivalences. In other words, it will
suffice to prove (∗) in the special case where f : X → Y exhibits Y as an n-truncation of X. To show
that the map τ≤nT (f) is an equivalence, it suffices to show that fibT (f) ' T (fib(f)) belongs to C≥n+1; this
follows from the right t-exactness of T , since fib(f) ∈ C≥n+1.

Combining assertion (∗) with Proposition 6.19, we deduce that T determines a monad Tn on the ∞-
category C≤n (characterized informally by the formula Tn(τ≤nX) ' τ≤nT (X)) such that LModTn(C≤n) can
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be identified with LModT (C)≤n. Moreover, the inclusion LModT (C)≤n ↪→ LModT (C) admits a left adjoint
τT≤n such that θ ◦ τT≤n ' τ≤n ◦ θ.

Assertion (1) is a special case of Proposition A.4.2.3.4. We now prove (2). We first show that for
every object X ∈ LModT (C)≥1 and every object Y ∈ LModT (C)≤0, the mapping space MapLModT (C)(X,Y )

is contractible. This is clear, since MapLModT (C)(X,Y ) ' MapLModT (C)(τ
T
≤0X,Y ) and τT≤0X ' 0 (since

τ≤0θ(X) ' 0).
To complete the proof of (2), it suffices to show that for every object X ∈ LModT (C), there exists a fiber

sequence

X ′
f→ X

g→ X ′′

with X ′ ∈ LModT (C)≥1 and X ′′ ∈ LModT (C)≤0. Set X ′ = τT≥1X and X ′′ = τT≤0X, with f and g defined in
the obvious way. The preceding argument shows that g ◦ f is nullhomotopic, so that we get a commutative
diagram σ :

X ′

��

f // X

g

��
0 // X ′′

in LModT (C). Note that θ(σ) is a pullback square in C. Since θ is an exact, conservative functor, we conclude
that σ is a pullback square in LModT (C), thereby completing the proof of (2).

We next prove (3). Assume that C is left complete. Let Y be an object of lim←−n LModT (C)≤n, correspond-

ing to a compatible sequence of objects Yn ∈ LModT (C)≤n. Since C is left complete, the diagram

· · · → θ(Y2)→ θ(Y1)→ θ(Y0)→ · · ·

admits a limit in C. Using Proposition A.4.2.3.1, we conclude that the diagram

· · · → Y2 → Y1 → Y0 → · · ·

admits a limit in LModT (C); let us denote this limit by G(Y ). The construction Y 7→ G(Y ) is a right adjoint
to the evident functor F : LModT (C) → lim←−LModT (C)≤n. We claim that for Y ∈ lim←−n LModT (C)≤n is

as above, the counit map v : (F ◦ G)(Y ) → Y is an equivalence. To prove this, it suffices to show that v
induces an equivalence vn : τT≤n(F ◦G)(Y )→ Yn for every integer n. This follows from from the fact that θ
is conservative, since θ(vn) can be identified with the map

τ≤n lim←−
m

θ(Ym)→ θ(Yn)

which is an equivalence by virtue of our assumption that C is left complete. This proves that G is fully
faithful; to show that G is an equivalence, it will suffice to show that the functor F is conservative. This
is clear: if f : X → Y is a morphism in LModT (C) such that F (f) is an equivalence, then f induces an
equivalence τ≤nθ(X) → τ≤nθ(Y ) for every integer n. Since C is left complete, this implies that θ(f) is an
equivalence, so that f is an equivalence as desired.

We now prove (4). Assume that C is presentable and that T preserves small colimits. It follows from
Proposition A.4.2.3.4 that LModT (C) is presentable and that θ preserves small colimits. If the t-structure on
C is accessible, then Proposition T.5.5.3.12 implies that LModT (C)≥0 ' LModT (C)×C C≥0 is presentable, so
that the t-structure on LModT (C) is accessible. Suppose, in addition, that the t-structure on C is excellent.
It follows from (3) that LModT (C) is left complete. Since θ preserves small filtered colimits and C≤0 is closed
under small filtered colimits, the full subcategory LModT (C)≤0 = θ−1 C≤0 ⊆ LModT (C) is closed under
small filtered colimits. In particular, LModT (C)≤0 is closed under countable coproducts. Since C is right
complete, the intersection

⋂
n C≤−n consists only of zero objects of C. Because θ is conservative, we deduce

that θ−1
⋂
n C≤−n =

⋂
n LModT (C)≤−n consists only of zero objects of LModT (C). Applying Proposition

A.1.2.1.19, we conclude that LModT (C) is right complete. This proves (5).
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It remains to prove (6). Let E be the full subcategory of Fun(C,C) spanned by exact functors which are
t-exact. Since E is closed under composition, it is a monoidal subcategory of Fun(C,C). We have a diagram
of ∞-categories

· · · → C≥−2
τ≥1→ C≥−1

τ≥0→ C≥0

of∞-categories acted on by E. If C is right complete, then it can be identified with the limit of this tower; it
follows that LModT (C) ' lim←−LModT (C≥−n) ' lim←−LModT (C)≥−n so that LModT (C) is right complete.

Definition 6.21. Let C be a presentable stable ∞-category equipped with an t-structure. We say that a
monad T on C is faithfully flat if the underlying functor T : C → C is right t-exact and preserves small
colimits, and for every X ∈ C≤0, the cofiber of the unit map X → TX also belongs to C≤0.

Lemma 6.22. Let f : A→ B be a morphism of connective E∞-rings. The following conditions are equiva-
lent:

(1) The map f is faithfully flat.

(2) The cofiber cofib(f) is flat when regarded as an A-module.

Proof. Suppose first that (2) is satisfied. We have a fiber sequence of A-modules

A→ B → cofib(f).

Since A and cofib(f) are flat over A, Theorem A.7.2.2.15 implies that B is flat over A. To prove that f
is faithfully flat, we must show that if M is a discrete π0A-module such that Torπ0A

0 (π0B, π0M) ' 0, then
M ' 0. We can identify Torπ0A

0 (π0B, π0M) with the discrete B-module B ⊗A M , which fits into a fiber
sequence

M → B ⊗AM → cofib(f)⊗A .

Condition (2) implies that cofib(f)⊗AM is discrete, so we get a short exact sequence of discrete π0A-modules

0→M → B ⊗AM → cofib(f)⊗AM → 0

which proves that M ' 0.
Now suppose that (1) is satisfied. Since A and B are connective, cofib(f) is connective. According to

Theorem A.7.2.2.15, it will suffice to show that for every discrete A-module M , the relative tensor product
cofib(f)⊗AM is discrete. We have a fiber sequence

M → B ⊗AM → cofib(f)⊗AM.

Since B is flat over A, B ⊗AM is discrete. Consequently, to prove that cofib(f)⊗AM is discrete, it suffices
to show that the map θ : π0M → π0(B ⊗A M) ' Torπ0A

0 (π0B, π0M) is a monomorphism. Let K ⊆ π0M
denote the kernel of θ. Since π0B is flat over π0A, we can identify Torπ0A

0 (π0B,K) with a submodule of
Torπ0A

0 (π0B, π0M). This submodule is generated by θ(K) = 0, and therefore vanishes. Since π0B is faithfully
flat over π0A, we conclude that K ' 0 so that θ is injective as desired.

Remark 6.23. Let A be an E∞-ring and let C be an A-linear ∞-category. For every A-algebra B, we have
a pair of adjoint functors

C
F //ModB(C)
G
oo

which determines a monad T ' G ◦ F on C. In concrete terms, this monad is given by the formula
M 7→ B ⊗AM . Since the functor G is conservative and preserves small colimits, Theorem A.6.2.2.5 implies
that ModB(C) can be identified with the ∞-category ModT (C) of T -modules in C.

Lemma 6.24. Let A be a connective E∞-ring and C an A-linear ∞-category equipped with an excellent
t-structure. Let B be a faithfully flat A-algebra. Then the monad T of Remark 6.23 is faithfully flat.

59



Proof. Since B is connective, the functor M 7→ TM ' B ⊗AM is right t-exact. Let B/A denote the cofiber
of the map of A-modules A→ B, so that the cofiber of the map M → TM can be identified with B/A⊗AM .
Suppose that M ∈ C≤0, and let let X be the full subcategory of ModA spanned by those A-modules N for
which N ⊗A M ∈ C≤0. We wish to prove that B/A ∈ X. By virtue of Lemma 6.22, it will suffice to show
that X contains all flat A-modules. Since the t-structure on C is excellent, we see that X is stable under
filtered colimits in ModA. Using Theorem A.7.2.2.15, we are reduced to proving that M contains all free
A-modules of finite rank, which is clear.

Proposition 6.25. Let C be a presentable stable ∞-category equipped with an excellent t-structure, and
let T be a faithfully flat monad on C. Let F : C → ModT (C) be a left adjoint to the forgetful functor
G : ModT (C)→ C. Then F is conservative and preserves totalizations of F -split cosimplicial objects of C.

Remark 6.26. According to Theorem A.6.2.2.5, Proposition 6.25 is equivalent to the assertion that C can
be recovered as the ∞-category of algebras over the comonad F ◦G on ModT (C).

Proof of Proposition 6.25. We first show that F is conservative. Let α : X → Y be a morphism in C such
that F (α) is an equivalence. Then T cofib(α) ' GF (cofib(α)) ' G cofib(F (α)) ' 0. Our assumption that T
is faithfully flat guarantees the existence of a monomorphism

πi cofib(α)→ πiT (cofib(α)) ' 0

in the abelian category C♥, which proves that πi cofib(α) ' 0. Since the t-structure on C is right and left
complete, we deduce that cofib(α) ' 0 so that α is an equivalence.

Now suppose that X• is an F -split cosimplicial object of C, having a limit X ∈ C. We wish to prove
that the canonical map FX → lim←−FX

• is an equivalence in ModT (C), or equivalently that the map TX →
lim←−TX

• is an equivalence in C.

Since the monad T is faithfully flat, T defines an exact functor T0 from the abelian category C♥ to itself.
Moreover, the unit of T induces a monomorphism of functors idC♥ ↪→ T0, so that T0 is conservative. For
every object Y ∈ C, we have canonical isomorphisms πnTY ' T0πnY . Since X• is F -split, it follows that
for every integer n, T0πnX

• is a split cosimplicial object of C♥. Let

A(n)0 d(n)−→ A(n)1 −→ A(n)2 −→ · · ·

be the unnormalized chain complex (in C♥) associated to πnX
•. It follows that T0(A(n)•) is split exact: in

particular, we have an exact sequence

0→ K → T0A(n)0 → T0A(n)1 → · · · .

Since T0 is exact, we can write K = ker(T0d(n)) ' T0 ker d(n). Since T0 is exact and conservative, the
exactness of the sequence

0→ T0 ker d(n)→ T0A(n)0 → T0A(n)1 → · · ·

implies the exactness of the sequence

0→ ker d(n)→ A(n)0 → A(n)1 → · · · .

Using Corollary A.1.2.4.10, we deduce that the map X → X0 induces an isomorphism πnX ' ker d(n) for
every integer n. Using the exactness of T0 and the identification T0πnX ' πnTX, we see that the map
α : TX → lim←−TX

• induces an exact sequence

0→ πnTX → T0A(n)0 → T0A(n)1 → · · ·

which implies that α is an equivalence (Corollary A.1.2.4.10).

We are now ready to prove a weaker version Theorem 6.12.
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Theorem 6.27. Let A be a connective E∞-ring and let C be an A-linear ∞-category which admits an
excellent t-structure. Then C satisfies flat descent.

Proof. According to Proposition 6.18, it will suffice to show that for every faithfully flat morphism B → B′

of connective A-algebras, the induced functor F : ModB(C) → ModB′(C) is conservative and preserves
totalizations of F -split cosimplicial objects. Using Proposition 6.20, we can replace C by ModB(C) and
thereby reduce to the case where B = A. The desired result now follows from Lemma 6.24 and Proposition
6.25.

We would like to use Theorem 6.27 to prove Theorem 6.12. The first step is to observe that, in the
situation of Theorem 6.27, the excellent t-structure on C also satisfies flat descent:

Lemma 6.28. Let A be a connective E∞-ring, let C be an A-linear ∞-category equipped with an excellent
t-structure, let f : B → B′ be a map of connective A-algebras, and let F : ModB(C) → ModB′(C) be the
induced functor. Then:

(1) The functor F carries ModB(C)≥0 into ModB′(C)≥0.

(2) If f is flat, then F carries ModB(C)≤0 into ModB′(C)≤0.

(3) If f is faithfully flat, then we have

ModB(C)≥0 = F−1 ModB′(C)≥0 ModB(C)≤0 = F−1 ModB′(C)≤0.

Proof. To prove (1), we let D denote the full subcategory of ModB spanned by those B-modules N for which
the functor N ⊗B • carries ModB(C)≥0 to C≥0. We wish to show that B′ ∈ D. Since B′ is connective, it will
suffice to show that D contains all connective B-modules. This is clear, since B ∈ D and D is closed under
small colimits.

We now prove (2). Let D′ be the full subcategory of ModB spanned by those B-modules N for which the
functor N ⊗B • carries ModB(C)≤0 into C≤0; we wish to show that B′ ∈ D′. Since the t-structure on C is
excellent, it is clear that D′ is closed under filtered colimits. Theorem A.7.2.2.15 implies that B′ is a filtered
colimit of B-modules of the form Bk; it therefore suffices to show that each Bk ∈ D′, which is obvious.

We now prove (3). We will prove that F−1 ModB′(C)≥0 = ModB(C)≥0; the proof that

F−1 ModB′(C)≤0 = ModB(C)≤0

is similar. Let M ∈ ModB(C) be such that B′⊗BM ∈ ModB′(C)≥0; we wish to prove that M ∈ ModB(C)≥0.
Since ModB(C) is right complete (Proposition 6.20), it will suffice to show that πkM ' 0 for k < 0. Since the
functor B′ ⊗B • is t-exact (by (1) and (2)), we have B′ ⊗B πkM ' πk(B′ ⊗B M) ' 0. The faithful flatness
of B → B′ implies that the cofiber B′/B is a flat B-module, so the proof of (2) gives B′/B ⊗B πkM ∈ C≤0.
It follows that the cofiber sequence

πkM → B′ ⊗B πkM → (B′/B)⊗B πkM

induces a monomorphism πkM ' π0(B′ ⊗B πkM) ' 0 in the abelian category C♥, so that πkM ' 0 as
desired.

Construction 6.29. Fix a connective E∞-ring A and an A-linear∞-category C equipped with an excellent
t-structure. Given −∞ ≤ m,n ≤ ∞, we let N≥m denote the full subcategory of

Mod(C) = LMod(C)×AlgA CAlgcn
A

spanned by those pairs (B,M) where B is a connective E∞-algebra over A, and M ∈ ModB(C)≥m. Let

N
≤n
≥m ⊆ N≥m the full subcategory spanned by those pairs (B,M) ∈ N≥m such that M ∈ ModB(C)≤n. It

is easy to see that the forgetful functor p : N≥m → CAlgcn
A is a coCartesian fibration. For each connective
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A-algebra B, the fiber (N≤n≥m)B ⊆ (N≥m)B is a the essential image of a localization functor LB = τ≤n.
If f : B → B′ is a map of connective A-algebras, the base change functor M 7→ B′ ⊗B M carries LB-
equivalences to LB′ -equivalences. It follows that the forgetful functor q : N≤n≥m → CAlg(Modcn

A ) is also a
coCartesian fibration (Lemma A.2.2.4.11). Moreover, if f : B → B′ is flat, then the base change functor

M 7→ B′⊗BM is t-exact and therefore carries (N≤n≥m)B into (N≤n≥m)B′ (Lemma 6.28), so that a morphism in

N
≤n
≥m lifting f is q-coCartesian if and only if it is p-coCartesian.

Proposition 6.30. Let A be a connective E∞-ring, let C be an A-linear∞-category equipped with an excellent
t-structure. Let −∞ ≤ m,n ≤ ∞, and let q : N≤n≥m → CAlgcn

A be defined as in Construction 6.29. Then, as

a coCartesian fibration, q is classified by a functor χ : CAlgcn
A → Ĉat∞ which is a sheaf with respect to the

flat topology.

Proof. We first show that χ preserves finite products. In view of Lemma 6.16, it suffices to observe the
following: given a finite collection of connective A-algebras Bi with product B =

∏
iBi and module objects

Mi ∈ ModBi(C), the product M =
∏
iMi belongs to ModB(C)≤n if and only if each Mi ∈ ModBi(C)≤n, and

M ∈ ModB(C)≥m if and only if each Mi ∈ ModBi(C)≥m.
According to Proposition 5.7, it remains to show that if B → B0 is a faithfully flat morphism of connective

A-algebras having Čech nerve B• in CAlgopA , then the composite diagram

N(∆+)
B•→ CAlgcn

A
χ→ Ĉat∞

is a limit diagram. Since the inclusion N(∆s) ↪→ N(∆) is right cofinal (Lemma T.6.5.3.7), it will suffice to
show that

N(∆s,+) ↪→ N(∆+)
B•→ CAlgcn

A
χ→ Ĉat∞

is a limit diagram. By virtue of Theorem 6.27, this reduces to the following concrete assertion: an object
M ∈ ModB(C) belongs to ModB(C)≥m∩ModB(C)≤n if and only if Bp⊗BM ∈ LModBp(C)≥m∩LModBp(C)≤n
for all integers p. This assertion is a special case of Lemma 6.28.

Lemma 6.31. Let A be a connective E∞-ring and C an A-linear ∞-category equipped with an excellent
t-structure. Let B• be an augmented cosemisimplicial of CAlgcn

A which is a flat hypercovering of B = B−1.
Let M• be a coCartesian cosemisimplicial discrete (B•|N(∆s))-module object of C: that is, M• supplies an
object Mp ∈ ModBp(C)♥ for each p ≥ 0, and an equivalence Bp

′⊗BpMp →Mp′ for each injection [p]→ [p′].
Then:

(1) The unnormalized cochain complex

M0 φ→M1 →M2 → · · ·

is acyclic in positive degrees (in the abelian category C♥).

(2) The canonical map B0 ⊗B ker(φ)→M0 is an isomorphism in the abelian category C♥.

Proof. Fix n ≥ 0, and let q : N≤0
≥−n → CAlgcn

A and p : N≤0
≥−∞ → CAlgcn

A be defined as in Construction 6.29.

We regard B• as a diagram N(∆s,+) → CAlgcn
A , and M• as a diagram N(∆s) → N

≤0
≥−n lifting B•|N(∆s).

Let M denote a p-limit of the diagram M• (lying over B•). Let M ′ denote a q-limit of the diagram M•

(also lying over B•), so that M ′ ' τ≥−nM as objects of ModB(C). It follows from Example A.1.2.4.8 that

the homotopy groups of M are given (as objects of the abelian category C♥) by the cohomology groups of
the unnormalized cochain complex

M0 →M1 →M2 → · · · ,

and M ′ ' τ≥−nM . Proposition 5.12 implies that the pullback map q′ : N≤0
≥−n×N(C) N(∆s,+)→ N(∆s,+) is

classified by limit diagram χ : N(∆s,+)→ Ĉat∞. Combining this observation with Lemma 5.17, we conclude
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that the natural map B0 ⊗B M ′ → M0 is an equivalence. It follows from Lemma 6.28 that M ′ is discrete,
so that the homotopy groups πkM vanish for every nonzero k ≥ −n. Moreover, we have

M0 ' π0M
0 ' π0(B0 ⊗B M ′) ' B0 ⊗B (π0M

′) ' B0 ⊗B ker(φ),

which proves (2). Assertion (1) follows, since n can be chosen arbitrarily large.

Proof of Theorem 6.12. Let χ : CAlgA → Ĉat∞ classify the coCartesian fibration q : Mod(C) → CAlgA .
According to Lemma 6.17, it will suffice to show that the restriction χ|CAlgcn

A is a hypercomplete sheaf with
respect to the flat topology. Using Proposition 5.12 and Lemma 6.16, we are reduced to proving the following:
for every flat hypercovering B• : N(∆s,+) → CAlgA of a connective A-algebra B = B−1, the coCartesian

fibration q′ : Mod(C) ×CAlgA N(∆s,+) → N(∆s,+) is classified by a limit diagram N(∆s,+) → Ĉat∞. To
prove this, we will verify that q′ satisfies the hypotheses of Lemma 5.17:

(a) Let α : M → N be a morphism ofB-module objects of C, and suppose that the induced mapB0⊗BM →
B0⊗B N is an equivalence. We wish to prove that α is an equivalence. This follows immediately from
Lemma 6.28.

(b) LetM• : N(∆s)→ Mod(C) be a q-coCartesian lifting ofB•|N(∆s), and letM ∈ LModB(C) be a q-limit
of M• (lying over B•). We wish to prove that, for every p ≥ 0, the canonical map α : Bp⊗BM →Mp

is an equivalence. It clearly suffices to treat the case p = 0. For every integer q, the cosemisimplicial
object πqM

• of C♥ satisfies the hypotheses of Lemma 6.31. Using Lemma 6.31 and Corollary A.1.2.4.10,
we deduce that the canonical map B0⊗BπqM → πqM

0 is an equivalence. Combining this with Lemma
6.28, we deduce that the map α induces an equivalence πq(B

0 ⊗B M) → πqM
0 for every integer q.

Since C is right and left complete, it follows that α is an equivalence.

Remark 6.32. Let A be a connective E∞-ring, C an A-linear ∞-category equipped with an excellent t-
structure, and fix −∞ ≤ m,n ≤ ∞. Let q : N≤n≥m → CAlgA be defined as in Construction 6.29, and let

χ : CAlgcn
A → Ĉat∞ classify the coCartesian fibration q. Then χ is a hypercomplete sheaf with respect to

the flat topology on CAlgA. This follows immediately from Theorem 6.12 and Lemma 6.28, as in the proof
of Proposition 6.30.

7 Digression: Henselian Rings

In this section, we will review some basic facts about Henselian rings which will be needed in the study of
spectral algebraic geometry. For a more detailed exposition, we refer the reader to [56].

Definition 7.1. Let R be a commutative ring. We will say that R is Henselian if it is a local ring with
maximal ideal m which satisfies the following condition: for every étale R-algebra R′, every map of R-algebras
R′ → R/m can be lifted to a map of R-algebras R′ → R.

Warning 7.2. Our terminology is not completely standard; some authors do not require locality in the
definition of a Henselian ring.

Notation 7.3. If R is a commutative ring and we are given a pair of commutative R-algebras A and B, we
let HomR(A,B) denote the set of R-algebra homomorphisms from A to B.

Proposition 7.4. Let R be a Henselian local ring with maximal ideal m and let R′ be an étale R-algebra.
Then the reduction map θR′ : HomR(R′, R)→ HomR(R′, R/m) is bijective.
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Proof. The definition of a Henselian local ring guarantees that θR′ is surjective. For injectivity, suppose we
are given two R-algebra maps f, g : R′ → R with θ(f) = θ(g). Since R′ is étale over R, the multiplication
map m : R′ ⊗R R′ → R′ induces an isomorphism (R′ ⊗R R′)[ 1

e ] ' R′ for some idempotent element e ∈
R′ ⊗R R′. The maps f and g determine a map u : R′ ⊗R R′ → R. Since θ(f) = θ(g), the composite map
u′ : R′⊗RR′ → R→ R/m factors through m, so that u′(e) is invertible in R/m. Since R is local, we conclude
that u(e) ∈ R is invertible, so that u also factors through m; this proves that f = g.

Proposition 7.5. Let R→ A be a finite étale map between local commutative rings. If R is Henselian, then
A is also Henselian.

Remark 7.6. Proposition 7.11 can be generalized: if R is a Henselian local ring and A is a local R-algebra
which is finitely generated as an R-module, then A is also Henselian. We refer the reader to [56] for a proof.

Lemma 7.7. Let f : R → R′ be an étale map of commutative rings which exhibits R′ as a projective R-
module of rank n. Then there exists a faithfully flat finite étale morphism R→ A such that R′ ⊗R A ' An.

Proof. We proceed by induction on n. If n = 0, we can take A = R. Assume n > 0. Then f is faithfully
flat. Replacing R by R′, we can assume that f admits a left inverse g : R′ → R. Since f is étale , the map g
determines a decomposition R′ ' R ×R′′. Then R′′ is finite étale of rank (n− 1) over R. By the inductive
hypothesis, we can choose a faithfully flat finite étale map R → A such that R′′ ⊗R A ' An−1. It follows
that R′ ⊗R A ' An as desired.

Lemma 7.8. Let R → A be a finite étale map of commutative rings, and let φ : A → A′ be a ring
homomorphism. Then there exists a ring homomorphism R → R′ and a map ψ : A′ → R′ ⊗R A with the
following universal property: for every commutative R-algebra B, composition with ψ induces a bijection

HomR(R′, B)→ HomA(A′, B ⊗R A).

Moreover, if A′ is étale over A, then R′ is étale over R.

Proof. The assertion is local on R (with respect to the étale topology, say). We may therefore reduce to
the case where the finite étale map R → A splits, so that A ' Rn (Lemma 7.7). Then A′ is isomorphic to
a product A′1 × · · · × A′n of R-algebras. Let R′ = A′1 ⊗ · · · ⊗ A′n, and let ψ : A′ → R′ ⊗R A ' R′

n
be the

product of the evident maps A′i → R′. It is easy to see that ψ has the desired property. If A′ is étale over
A, then each A′i is étale over R, so that R′ is also étale over R.

Proof of Proposition 7.11. Let m denote the maximal ideal of R; since A is local, mA is the unique maximal
ideal of A. Choose an étale map A → A′ and an A-algebra map φ0 : A′ → A/mA. We wish to prove that
φ0 lifts to a map A′ → A. Choose an étale map R → R′ as in Lemma 7.8. Then φ0 is classified by a
map ψ0 : R′ → R/m. Since R is Henselian, we can lift ψ0 to a map ψ : R′ → R, which classifies a lifting
φ : A′ → A of φ0.

Corollary 7.9. Let R be a Henselian commutative ring. Suppose we are given a faithfully flat étale map
R→ R′. Then there exists an idempotent element e ∈ R′ such that R′[ 1

e ] is local, faithfully flat over R, and
finitely generated as an R-module.

Proof. Let m denote the maximal ideal of R and set k = R/m. Since R′ is faithfully flat over R, the quotient
R′/mR′ is a nontrivial étale k-algebra. We can therefore choose a finite separable extension k′ of k and a
surjective k-algebra map φ0 : R′/mR′ → k′. Choose a filtration

k = k0 ↪→ k1 ↪→ · · · ↪→ kn = k′

where each ki+1 has the form ki[xi]/(fi(xi)) for some monic polynomial fi (in fact, we may assume that
n = 1, by the primitive element theorem, but we will not need to know this). We lift this to a sequence of
algebra extensions

R = A0 ↪→ A1 ↪→ · · · ↪→ An
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where Ai+1 = Ai[xi]/(f i(xi)) for some monic polynomial f i lifting fi. Since k′ is separable over k, each

derivative ∂ fi(xi)
∂ xi

is invertible in ki+1. It follows that ∂ fi(xi)
∂ xi

is invertible in Ai+1, so that each Ai+1 is a
finite étale extension of Ai. Set A = An, so that A is a finite étale extension of R. Note that A is a local
ring with maximal ideal mA and residue field A/mA = k′. The map φ0 together with the quotient map
A→ A/mA amalgamate to give an A-algebra map ψ0 : A⊗RR′ → A/mA. Since A is Henselian (Proposition
7.11), the map ψ0 lifts to an A-algebra map ψ : A⊗RR′ → A, which we can identify with a map φ : R′ → A
lifting φ0. Since φ0 is surjective, the map φ is surjective modulo m and therefore surjective by Nakayama’s
lemma (since A is a finitely generated R-module). Since R′ and A are both étale over R, the map φ is an
étale surjection. It follows that A ' R′[ 1

e ] for some idempotent element e ∈ R′.

Definition 7.10. Let φ : R → A be a map of commutative rings. We will say that φ is quasi-finite if it
exhibits A as a finitely generated R-algebra and, for every map R → k where k is a field, TorR0 (A, k) is a
finite-dimensional vector space over k.

We will need the following nontrivial fact about quasi-finite morphisms of commutative rings (for a proof,
we refer the reader to [56]):

Theorem 7.11 (Zariski’s Main Theorem). Let φ : R→ A be a quasi-finite map of commutative rings. Then

φ factors as a composition R
φ′→ B

φ′′→ A, where φ′ exhibits B as a finitely generated R-module and φ′′ induces
an open immersion of schemes SpecZA→ SpecZB.

Proposition 7.12. Let φ : R → A be a map of commutative rings which exhibits A as a finitely generated
R-module. Let κ be the residue field of R at some point p ∈ SpecZR, let A0 = TorR0 (κ,A), and suppose
we are given a decomposition of commutative rings A0 = A′0 × A′′0 . Then the map R → κ factors as a
composition

R
ψ→ R1 → κ

where R1 is an étale R-algebra and a decomposition of A1 = TorR0 (R1, A) as a product A1 = A′1 × A′′1 with

A′0 ' TorR
′

0 (κ,A′1) and A′′0 ' TorR
′

0 (κ,A′′1).

Proof. Since A is a finitely generated R-module, A0 is a finite-dimensional vector space over κ, and therefore
admits a basis {x1, . . . , xn}. Replacing R by a localization if necessary, we may assume that each xi lifts to
an element xi ∈ A. Using Nakayama’s lemma, we may assume (after replacing R by a suitable localization)
that the elements xi generate A as an R-module. Consequently, we have

xixj =
∑
k

rki,jxk

for some elements {rki,j}1≤i,j,k≤n. Let R′ = R[y1, . . . , yn]/(f1, . . . , fn) with

fk(y1, . . . , yn) = yk −
∑
i,j

rki,jyiyj ,

and let ∆ ∈ R′ be the image of the determinant of the Jacobian matrix [
∂ fj
∂ yi

].

For every κ-algebra B, the set of κ-algebra homomorphisms TorR0 (κ,R′)→ B can be identified with the
collection of elements with the set of elements e =

∑
1≤i≤n bixi in B ⊗κ A0 such that

e2 =
∑
i,j

rki,jbibjxk = e.

If I ⊆ B is a nilpotent ideal, then the Zariski spectra of B ⊗κ A0 and (B/I) ⊗κ A0 are homeomorphic, so
that reduction moduli I induces a bijection between idempotent elements of B ⊗κ A0 and (B/I)⊗κ A0. It
follows that TorR0 (κ,R′) is an étale κ-algebra, so that the image of ∆ is invertible in TorR0 (κ,R′).

65



The decomposition A0 = A′0 × A′′0 is determined by an idempotent element e0 ∈ A0, which is classified
by a map of R-algebras φ0 : R′ → κ. The above argument shows that this map factors through R1 = R′[ 1

∆ ].
By construction, R1 is étale over R. Let A1 = R1 ⊗R A. By construction, e =

∑
yi ⊗ xi is an idempotent

element of A1, which determines a decomposition A1 ' A′1 ×A′′1 having the desired properties.

Corollary 7.13. Let R be a Henselian local ring with maximal ideal m and let A be a commutative R-algebra
which is finitely generated as an R-module. Then every decomposition of A/mA as a product of two rings
(A/mA)0 × (A/mA)1 can be lifted to a product decomposition A ' A0 ×A1.

Proposition 7.14. Let φ : R → A be a quasi-finite map of commutative rings and let κ denote a residue
field of R at some point p ∈ SpecZR. Then the canonical map R→ κ factors as a composition R→ R1 → κ
where R1 is an étale R-algebra, and A1 = R1 ⊗R A factors as a product A′1 × A′′1 , where A′1 is a finitely
generated R1-module and TorR1

0 (κ,A′′1) ' 0.

Proof. Using Theorem 7.11, we deduce that the map φ : R → A factors as a composition R
φ′→ B

φ′′→ A
where φ′ exhibits B as a finitely generated R-module and φ′′ induces an open immersion of schemes. Let
B0 = TorR0 (κ,B) and A0 = TorR0 (κ,A). Since B0 is a finite dimensional algebra over κ, its spectrum SpecZB0

is discrete. It follows that the open subscheme SpecZA0 is a union of components of SpecZB0: that is, we have
a decomposition B0 ' A0×B′′0 . Using Proposition 7.12, we deduce that there is a factorization R→ R1 → κ
where R1 is étale over R and B1 = R1 ⊗R B factors as a product B′1 × B′′1 , with A0 = TorR1

0 (κ,B′1)
and B′′0 = TorR1

0 (κ,B′′1 ). This factorization determines a prime ideal q ∈ SpecZR1 lying over the prime
p ∈ SpecZR.

Let A′1 = A⊗BB′1 and A′′1 = A⊗BB′′1 . It is clear that TorR1
0 (κ,A′′1) ' 0. The map SpecZA′1 → SpecZB′1

is an open immersion, and the compement of its image is a closed subset K ⊆ SpecZB′1. Since B′1 is a
direct factor of B1, it is finitely generated as an R1-module, so that the image of K in SpecZR1 is closed.
By construction, this image does not contain q. Replacing R1 by a localization if necessary, we may assume
that K = ∅ so that A′1 ' B′1 is a finitely generated R1-module.

Corollary 7.15. Let R be a Henselian ring with maximal ideal m and let φ : R → A be a quasi-finite
morphism of commutative rings. Then there is a decomposition A ' A′×A′′ where A′ is a finitely generated
R-module and A′′/mA′′ ' 0.

Proposition 7.16 (Hensel’s Lemma). Let R be a local Noetherian ring which is complete with respect to its
maximal ideal m. Then R is Henselian.

Proof. Let R′ be an étale R-algebra. The structure theory of étale morphisms implies that we can write
R′ = R[x1, . . . , xn]/(f1, . . . , fn)[∆−1], where ∆ denotes the determinant of the Jacobian matrix [ ∂ fi∂ xj

]1≤i,j≤n
(see Proposition 8.10). We wish to show that every R-algebra homomorphism φ0 : R′ → R/m can be lifted
to a ring homomorphism φ : R′ → R. Since R is complete, it will suffice to construct a compatible sequence
of R-algebra homomorphisms φa : R′ → R/ma+1. Assume that φa has already been constructed, and choose
elements {yj ∈ R}1≤j≤n such that φa(xj) ∼= yj modulo ma+1. Since φa is a ring homomorphism, we have

fi(~y) ∈ ma+1 for 1 ≤ i ≤ n. Let ∆[~x] denote the determinant of the Jacobian matrix M(~x) = [ ∂ fi∂ xj
]1≤i,j≤n.

Then ∆[~y] is invertible modulo ma+1 and therefore invertible (since R is local). It follows that M(~y) is an

invertible matrix over R, so we can define ~y′ = ~y + M(~y)−1 ~f(~y). A simple calculation gives shows that
fi(~y

′) ∈ m2(a+1), so that the assignment xi 7→ y′i determines a ring homomorphism φa+1 : R′ → R/aa+2

compatible with φa.

Definition 7.17. Let R be a commutative ring. We say that R is strictly Henselian if R is Henselian and
the residue field R/m is separably closed.

Proposition 7.18. Let R be a commutative ring. The following conditions are equivalent:

(1) The ring R is strictly Henselian.
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(2) For every finite collection of étale maps {φα : R → Rα} such that the induced map R →
∏
αRα is

faithfully flat, one of the maps φα admits a left inverse.

Proof. Suppose first that condition (1) is satisfied, and let m denote the maximal ideal of R. Let {φα : R→
Rα} be as in (2). Since the map R→

∏
αRα is faithfully flat, there exists an index α such that Rα/mRα is

nonzero. Since Rα is étale over R, Rα/mRα is a product of separable field extensions of k = R/m. Since k is
separably closed, we can choose a map of R-algebras θ : Rα/m→ R/m. The assumption that R is Henselian
implies that θ lifts to a map of R-algebras Rα → R, which is left inverse to φα.

Now suppose that (2) is satisfied; we wish to prove that R is strictly Henselian. We first observe that R
is nonzero (otherwise the map from R to an empty product is faithfully flat, contradicting (2)). For every
element x ∈ R, the map R→ R[ 1

x ]×R[ 1
1−x ] is faithfully flat, so condition (2) implies that either x or 1− x

is invertible in R: that is, R is a local ring.
We now claim that R is Henselian. Let R′ be an étale R-algebra and choose a map of R-algebras

θ : R′ → R/m. We wish to prove that θ can be lifted to an R-algebra map R′ → R. Let k = R/m, so
that R′/mR′ is a product of finite separable extensions of k. We proceed by induction on the dimension n
of R′/mR′ as a k-vector space. Note that n > 0, since θ induces a surjection R′/mR′ → k. It follows that
R′ is faithfully flat over R, so condition (2) implies that there is a map of R-algebras φ : R′ → R. Since R′

is étale over R, the kernel of the map φ is generated by an idempotent element e ∈ R′. If θ(e) = 0, then

θ factors as a composition R′
φ→ R → R/m so that φ is the desired lifting of θ. Assume otherwise. Then

θ(e) = 1 (since e is idempotent and k is a field), so that θ factors through the quotient R′′ = R′/(1 − e) of
R′. The inductive hypothesis then implies that the induced map R′′ → R/m lifts to a map of R-algebras
R′′ → R, so that the composite map R′ → R′′ → R is the desired lifting of θ.

To complete the proof, we must show that the field k = R/m is separably closed. Assume otherwise.
Then we can choose a nontrivial finite separable extension field k′ of k. Without loss of generality, k′ is
generated by a single element; we may therefore write k′ = k[x]/(f(x)) for some monic polynomial f with
coefficients in k. Let f(x) be a monic polynomial with coefficients in R which lifts f (and has the same
degree as f), and let R′ = R[x]/(f(x)). Then R′ is finite as an R-module. The derivative of f(x) is invertible
in R′/mR′, and therefore (by Nakayama’s lemma) invertible in R′. It follows that R′ is faithfully flat and
étale over R. Using condition (2), we deduce that there is a map of R-algebras R′ → R. Reducing modulo
m, we obtain a map of k-algebras k′ → k, contradicting our assumption that k′ is a proper extension of
k.

Corollary 7.19. Let φ : R→ A be a map of commutative rings. The following conditions are equivalent:

(1) The commutative ring A is strictly Henselian.

(2) For every finitely presented R-algebra R′ and every finite collection of étale maps {R′ → R′α} which
induce a faithfully flat map R′ →

∏
αR
′
α, every R-algebra map R′ → A factors through some Rα.

Proof. Assume that (1) is satisfied, and let {R′ → R′α} be as in (2). For any map R′ → A, we obtain a
finite collection of étale maps {φα : A→ R′α ⊗R A} which induce a faithfully flat map A→

∏
α(R′α ⊗R A).

Proposition 7.18 implies that one of the maps φα admits a left inverse, which determines a map of R′-algebras
from R′α into A.

Now suppose that (2) is satisfied. We will show that A satisfies the criterion of Proposition 7.18. Choose a
finite collection of étale maps {A→ Aα} which induce a faithfully flat map A→

∏
αAα. Using the structure

theory for étale morphisms (see Proposition 8.10 below), we may assume that there exists a finitely presented
R-algebra R′ and étale maps R′ → R′α such that Aα ' R′α⊗RA. Replacing R′ by a product of localizations
if necessary, we may suppose that the map R′ →

∏
αR
′
α is faithfully flat. Condition (2) then guarantees the

existence of a map of R′-algebras
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8 Spectral Deligne-Mumford Stacks

In §2 we introduced the definition of a spectral scheme: that is, a spectrally ringed ∞-topos (X,OX) which
is locally equivalent to the spectrum of a connective E∞-ring. Here the definition of spectrum is taken with
respect to the Zariski topology, which is formally encoded in the geometry G

Sp
Zar of Definition 2.18. In this

section, we will introduce a variation on the theory of spectral schemes: the theory of spectral Deligne-
Mumford stacks.

We begin by generalizing the theory of strictly Henselian rings to an arbitrary topos.

Definition 8.1. Let X be a topos and let OX be a commutative ring object of X. For every finitely generated
commutative ring R, let SolR(OX) ∈ X be an object having the following universal property: for every object
U ∈ X, there is a canonical bijection

HomX(U, SolR(OX)) ' HomRing(R,HomX(U,OX)).

We will say that OX is strictly Henselian if the following condition is satisfied:

(∗) For every finitely generated commutative ring R and every finite collection of étale maps R → Rα
which induce a faithfully flat map R→

∏
αRα, the induced map∐

α

SolRα(OX)→ SolR(OX)

is an effective epimorphism.

Example 8.2. If X is the topos of sets, then we can identify commutative ring objects of X with commutative
rings. Under this identification, a commutative ring object of X is strictly Henselian in the sense of Definition
8.1 if and only if it is strictly Henselian in the sense of Definition 7.17 (the equivalence follows from Corollary
7.19).

Definition 8.3. Let X be an ∞-topos and let OX be a sheaf of E∞-rings on X. We will say that OX is
strictly Henselian if π0 OX is a strictly Henselian commutative ring object of the topos of discrete objects of
X. Note that if OX is strictly Henselian, then it is local (in the sense of Definition 2.5). We let RingTopét

denote the full subcategory of RingTopZar spanned by the locally spectrally ringed ∞-topos (X,OX) such
that OX is strictly Henselian. We will say that a spectrally ringed ∞-topos (X,OX) is strictly Henselian if it
belongs to RingTopét.

The starting point for our definition of spectral Deligne-Mumford stacks is the following analogue of
Proposition 2.6:

Proposition 8.4. The functor Γ|RingTopét : RingTopét → CAlgop admits a right adjoint.

Proposition 8.4 asserts that for every E∞-ring R, there exists a strictly Henselian spectrally ringed ∞-
topos (X,OX) and a map θ : R→ Γ(X,OX) with the following universal property: for every strictly Henselian
spectrally ringed ∞-topos (Y,OY), composition with θ induces a homotopy equivalence

MapRingTopZar
((Y,OY), (X,OX))→ MapCAlg(R,Γ(Y;OY)).

The spectrally ringed ∞-topos (X,OX) is uniquely determined up to equivalence; and we will denote it by
Specét(R). We will refer to Specét(R) as the spectrum of R with respect to the étale topology.

Definition 8.5 (Spectral Deligne-Mumford Stack: Concrete Definition). A nonconnective spectral Deligne-
Mumford stack is a spectrally ringed ∞-topos (X,OX) such that there exists a collection of objects Uα ∈ X

satisfying the following conditions:

(i) The objects Uα cover X. That is, the canonical map
∐
α Uα → 1 is an effective epimorphism, where 1

denotes the final object of X.
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(ii) For each index α, there exists an E∞-ring Rα and an equivalence of spectrally ringed ∞-topoi

(X/Uα ,OX |Uα) ' Specét(Rα).

We let Stknc denote the full subcategory of RingTopZar spanned by the nonconnective spectral Deligne-
Mumford stacks.

A spectral Deligne-Mumford stack is a nonconnective spectral Deligne-Mumford stack (X,OX) such that
OX is connective. We let Stk denote the full subcategory of Stknc spanned by the spectral Deligne-Mumford
stacks.

In order to process Definition 8.5, we need to understand the functor Specét : CAlgop → RingTopét whose
existence is asserted by Proposition 8.4. As in §2, we will construct this functor by appealing to the general
results of [42]. For this, we will introduce a geometry G

nSp
ét , which “controls” the theory of strictly Henselian

sheaves of E∞-rings. This will require a few preliminary concerning étale morphisms between E∞-rings.
Recall that a morphism f : A→ B of E∞-rings is said to be étale if the underlying map of commutative

rings π0A → π0B is étale, and the canonical map (πiA) ⊗π0A (π0B) → πiB is an isomorphism for every
integer i. We refer the reader to §A.7.5 for an extensive discussion of the theory of étale maps between
E∞-rings.

If f : A → B is an étale map between E∞-rings, then the relative cotangent complex LB/A vanishes
(Corollary A.7.5.4.5). We now establish some partial converses.

Lemma 8.6. Let f : A→ B be a map of connective E∞-rings. The following conditions are equivalent:

(1) The abelian group π0LB/A vanishes, and π0B is finitely generated as an algebra over π0A.

(2) There exist finitely many elements x1, . . . , xn ∈ π0B which generate the unit ideal, such that each of
the induced maps A→ B[ 1

xi
] factors as a composition

A
f ′→ Ai

f ′′→ B[
1

xi
]

where f ′ is étale and f ′′ induces a surjection π0Ai → π0B[ 1
xi

].

Proof. Suppose first that (2) is satisfied. Each of the commutative rings π0B[ 1
xi

] is a quotient of an étale π0A-
algebra, and therefore finitely generated over π0A. Let B0 ⊆ π0B be a finitely generated π0A-subalgebra
containing each xi, such that B0[ 1

xi
]→ π0B[ 1

xi
] is surjective for each i. Since the xi generate the unit ideal

in B, we deduce that π0B = B0 is finitely generated over π0A.
It remains to prove that π0LB/A ' 0. Since the elements xi generate the unit ideal, it will suffice to show

that (π0LB/A)[ 1
xi

] ' π0(LB/A ⊗B B[ 1
xi

]) ' π0LB[ 1
xi

]/A vanishes for each index i. Choose a factorization

A
f ′→ Ai

f ′′→ B[
1

xi
]

as in (2). We have a short exact sequence of abelian groups

π0(B[
1

xi
]⊗A′ LAi/A)→ π0LB[ 1

xi
]/A → π0LB[ 1

xi
]/Ai .

Here LAi/A vanishes since f ′ is étale (Corollary A.7.5.4.5) and π0LB[ 1
xi

]/Ai can be identified with the rel-

ative Kähler differentials Ωπ0B[ 1
xi

]/π0Ai (Proposition A.7.4.3.9), which vanishes because f ′′ is surjective on

connected components. It follows that π0LB[ 1
xi

]/A ' 0 as desired.

Now suppose that (1) is satisfied. Let R = π0B. Since R is finitely generated over π0A, we can
choose a presentation R ' (π0A)[x1, . . . , xn]/I for some ideal I ⊆ (π0A)[x1, . . . , xn]. Then π0LB/A is the
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module of Kähler differentials of R over π0A (Proposition A.7.4.3.9). That is, π0LB/A is the quotient of the
free R-module generated by elements {dxi}1≤i≤n by the submodule generated by elements {df}f∈I . Since
π0LB/A ' 0, we can choose a finite collection of elements {fj ∈ I}1≤j≤m such that the Jacobian matrix

M = {∂ fj∂ xi
} has rank n. Let {ak} be the collection of determinants of n-by-n submatrices of the matrix

M , so that the elements ak generate the unit ideal in R. We will prove that each of the composite maps
A→ B[ 1

ak
] factors as a composition

A
f ′→ Ak

f ′′→ B[
1

ak
],

where f ′ is étale and f ′′ is surjective on connected components. Reordering the fj if necessary, we may

suppose that m ≥ n and that xk is the determinant of the matrix {∂ fj∂ xi
}1≤i,j≤n. Set

R′ = (π0R)[x1, . . . , xn,
1

ak
]/(f1, . . . , fm),

so that R is an étale algebra over π0A. It follows from Theorem A.7.5.0.6 that R′ can be lifted (in an
essentially unique fashion) to an étale A-algebra Ak. Moreover, Corollary A.7.5.4.6 implies that the surjective
map R′ → R[ 1

ak
] = π0B[ 1

ak
] lifts to a map Ak → B[ 1

ak
], thereby giving us the desired factorization.

Lemma 8.7. Let f : A→ B be a map of connective E∞-rings. Assume that:

(1) The map f induces a surjection f0 : π0A→ π0B.

(2) The commutative ring π0B is finitely presented over π0A (that is, the kernel of f0 is a finitely generated
ideal in π0A).

(3) The abelian group π1LB/A vanishes.

Then there exists an element D ∈ π0A such that π0B ' (π0A)[ 1
D ].

Proof. Let I denote the kernel of f0, and let R = (π0A)/I2. It follows from Corollary A.7.4.1.27 that, in the
∞-category CAlgA, we have a commutative diagram

R //

��

π0B

��
π0B // (π0)B ⊕ (I/I2)[1].

Since πiLB/A ' 0 for i ≤ 1, the canonical map

MapCAlgA
(B, π0B)→ MapCAlgA

(B, π0B ⊕ (I/I2)[1])

is a homotopy equivalence, so that MapCAlgR
(B,R)→ MapCAlgk

(B, π0B) is also a homotopy equivalence. In
particular, the truncation map B → π0B lifts (in an essentially unique fashion) to a map B → R. Passing to
connected components, we deduce that the quotient map of commutative algebras φ : (π0A)/I2 → (π0A)/I
admits a section as a map of π0A-algebras. This implies that φ is an isomorphism: that is, that I = I2.

Because π0B is finitely presented over π0A, the ideal I is generated by finitely elements y1, . . . , ym. Since
I = I2, we can write yi =

∑
j zi,jyj for some elements zi,j ∈ I. Let Z denote the matrix {zi,j}1≤i,j≤m. Then

id−Z annihilates the vector (y1, . . . , ym) ∈ (π0A)p. Let D ∈ π0A denote the determinant of id−Z. Since
the entries of Z belong to I, D is congruent to 1 modulo I and is therefore invertible in π0B. It follows that
we have a canonical map g : A[ 1

D ]→ B. We claim that g is an isomorphism on connected components. The
surjectivity of g is clear, and the injectivity follows from the observation that multiplication by D annihilates
every element of I.
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Lemma 8.8. Let f : A→ B be a morphism of connective E∞-rings and let 1 ≤ n ≤ ∞ be an integer. The
following conditions are equivalent:

(1) The commutative ring π0B is finitely presented over π0A, and πiLB/A ' 0 for i ≤ n.

(2) The map f factors as a composition

A
f ′→ A′

f ′′→ B

where f ′ is étale, f ′′ induces an isomorphism πiA → πiB for i < n, and f ′′ induces a surjection
πnA→ πnB.

Proof. Suppose first that (2) is satisfied. Then π0B ' π0A
′ is étale over π0A, and therefore finitely presented

as a π0A-algebra. We have a fiber sequence

B ⊗A′ LA′/A → LB/A → LB/A′ .

Since A′ is étale over A, we deduce that LA′/A ' 0. Since f ′′ is n-connective, Corollary A.7.4.3.2 implies
that LB/A ' LB/A′ is (n+ 1)-connective, thereby completing the proof of (1).

Now assume that condition (1) holds. We first prove that π0B is étale over π0A. Using Lemma 8.6, we
can choose a finite collection of elements xi ∈ π0B generating the unit ideal such that each of the induced
maps A→ B[ 1

xi
] factors as a composition

A
g′→ Ai

g′′→ B[
1

xi
]

where g′ is étale and g′′ is surjective on connected components. Note that π1LB[ 1
xi

]/Ai ' (π1LB/A)[ 1
xi

] ' 0.

Using Lemma 8.7, we deduce that π0B[ 1
xi

] is étale over π0Ai and therefore over π0A, from which it follows
that π0B is étale over π0A.

Using Theorem A.7.5.0.6, we can choose an étale A-algebra A′ and an isomorphism of π0A-algebras
α : π0A

′ ' π0B. Theorem A.7.5.4.2 implies that we can lift α to a map of A-algebras f ′′ : A′ → B. To
complete the proof, it will suffice to show that f ′′ is n-connective; this follows from Corollary A.7.4.3.2.

Lemma 8.9. Let A → B be a morphism of connective E∞-rings, and assume that the relative cotangent
complex LB/A vanishes. The following conditions are equivalent:

(1) The commutative algebra π0B is finitely presented over π0A.

(2) The algebra B is of finite presentation over A.

(3) The algebra B is almost of finite presentation over A.

(4) The map A→ B is étale.

Proof. The implication (4) ⇒ (1) is obvious, the equivalences (1) ⇔ (2) ⇔ (3) follow from Theorem
A.7.4.3.18, and the implication (1)⇒ (4) is a special case of Lemma 8.8.

Using Lemma 8.9, we can prove an analogue of the usual structure theorem for étale morphisms between
commutative rings.

Proposition 8.10. Let k be a connective E∞-ring, and let φ : A → B be a morphism between connective
k-algebras. The following conditions are equivalent:

(1) The map φ is étale.
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(2) There exists a pushout diagram of k-algebras

k{x1, . . . , xn} //

φ0

��

A

φ

��
k{y1, . . . , yn}[ 1

∆ ] // B,

where φ0(xi) = fi(y1, . . . , yn) ∈ (π0k)[y1, . . . , yn] and ∆ ∈ (π0k)[y1, . . . , yn] denotes the determinant of
the Jacobian matrix [ ∂ fi∂ yj

]1≤i,j≤n.

Proof. To prove that (2) implies (1), it suffices to observe that the map φ0 appearing in the diagram is étale.
Note that the relative cotangent complex of φ0 can be identified with the cofiber of the map

Lk{x1,...,xn}/k ⊗k{x1,...,xn} k{y1, . . . , yn}[
1

∆
]→ Lk{y1,...,yn}[ 1

∆ ]/k.

This is a map of free modules of rank n, which is given on π0 by the Jacobian matrix [ ∂ fi∂ yj
]1≤i,j≤n. Since this

matrix is invertible in π0k{y1, . . . , yn}[ 1
∆ ], we deduce that the relative cotangent complex of φ0 vanishes, so

that φ0 is étale by Lemma 8.9.
We now prove that (1) ⇒ (2). Suppose that φ is étale. The structure theorem for étale morphisms of

ordinary commutative rings implies the existence of an isomorphism

π0B ' (π0A)[y1, . . . , ym]/(f1, . . . , fm),

such that the determinant of the Jacobian matrix [ ∂ fi∂ yj
]1≤i,j≤m is invertible in π0B. Let {ai ∈ π0A}1≤i≤k

be the nonzero coefficients appearing in the polynomials fi. Choose a commutative diagram

k{x1, . . . , xk}
g0 //

��

A

φ

��
k{x1, . . . , xk, y1, . . . , ym}

g1 // B

where g0 carries each xi to ai ∈ π0A. For each 1 ≤ i ≤ m, choose a polynomial

f i ∈ (π0k)[y1, . . . , ym, x1, . . . , xk]

lifting fi, so that g1(f i) = 0 ∈ π0B. Let ∆ ∈ (π0k)[y1, . . . , ym, x1, . . . , xk] be the determinant of the Jacobian

matrix [∂ fi∂ yj
]1≤i,j≤n. It follows that there exists a commutative diagram Using Corollary A.7.5.4.6, we deduce

the existence of a commutative diagram

k{x1, . . . , xk, z1, . . . , zm}

h

��

ε // k{x1, . . . , xk} // A

φ

��
k{x1, . . . , xk, y1, . . . , ym, }[ 1

∆ ]
g1 // B

where h(zi) = f i and ε(zi) = 0 for 1 ≤ i ≤ m. We claim that the outer square appearing in this diagram is
a pushout. To see this, form a pushout diagram

k{x1, . . . , xk, z1, . . . , zm} //

φ0

��

A

��
k{x1, . . . , xk, y1, . . . , ym}[ 1

∆ ] // B′
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so that we have a canonical map ψ : B′ → B; we wish to show that ψ is an equivalence. By construction,
ψ : B′ → B induces an isomorphism on connected components. The first part of the proof shows that B′ is
étale over A, so that LB′/A ' 0. Since LB/A ' 0, we conclude that LB/B′ ' 0, so that B ' B′ by Corollary
A.7.4.3.2.

We are now ready to introduce the analogues of the geometries G
Sp
Zar and G

nSp
Zar of §2.

Definition 8.11. Let k be an E∞-ring. We define a geometry G
nSp
ét (k) as follows:

(1) On the level of ∞-categories, we have G
nSp
ét (k) = G

nSp
Zar (k) = G

nSp
disc(k): that is, GnSp

ét (k) is the opposite
of the ∞-category of compact k-algebras. If A is a compact k-algebra, we let SpecA denote the
corresponding object of GnSp

ét (k).

(2) A morphism f : SpecA → SpecB in G
nSp
ét (k) is admissible if the underlying map of E∞-rings B → A

is étale.

(3) A collection of admissible morphisms {SpecAα → SpecA} generates a covering sieve on SpecA if and
only if, for every prime ideal p ⊆ π0A, there exists an index α such that p(π0Aα) 6= π0Aα.

If k is the sphere spectrum (regarded as an initial object of CAlg), then we will denote the geometry

G
nSp
ét (k) by G

nSp
ét .

Remark 8.12. The condition appearing in (3) of Definition 8.11 is equivalent to the requirement that the
map

∐
Spec(π0Aα)→

∐
Spec(π0A) is a surjection of topological spaces (endowed with the Zariski topology).

It is also equivalent to the requirement that there exist a finite collection of indices {α1, . . . , αn} such that
the product map π0A→

∏
1≤i≤n π0Aαi is a faithfully flat map of commutative rings.

The role of the geometry G
nSp
ét is summarized by the following result, which we will prove at the end of

this section:

Proposition 8.13. Let X be an ∞-topos and let

θ : Funlex(GnSp
ét (k),X) ' ShvCAlgk(X)

be the equivalence of Remark 2.17. A left exact functor O : G
nSp
ét (k) → X is a G

nSp
ét (k)-structure on X if

and only if the underlying sheaf of E∞-rings of θ(O) is strictly Henselian, in the sense of Definition 8.1.

A natural transformation α : O → O′ in Funlex(GnSp
ét (k),X) is local if and only if θ(α) determines a local

map between sheaves of E∞-rings, in the sense of Definition 2.5. In particular, we have an equivalence of
∞-categories

RingTopét ' LTop(GnSp
ét )op.

Proposition 8.13 implies that if O is a sheaf of E∞-rings on an ∞-topos X, then the condition that the
corresponding left exact functor G

nSp
ét → X be a G

nSp
ét -structure depends only on the underlying sheaf of

commutative rings π0 O. In particular, it is insensitive to operations like replacing O by its connective cover,
and by replacing that connective cover by its truncations. To study these operations, we introduce a variant
of the geometry G

nSp
ét .

Definition 8.14. Let k be a connective E∞-ring. We let GSp
ét (k) denote the full category of GnSp

ét (k) spanned

by objects of the form SpecA, where A is a connective compact k-algebra. We regard G
Sp
ét (k) as a geometry,

where a morphism SpecA→ SpecB is admissible if the underlying map of E∞-algebras B → A is étale, and
a collection of admissible morphisms {SpecAα → SpecA} generates a covering sieve on SpecA in G

Sp
ét (k) if

and only if it generates a covering sieve in G
nSp
ét (k). If k is the sphere spectrum (regarded as an initial object

of CAlg), then we will denote the geometry G
Sp
ét (k) by G

Sp
ét .
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Remark 8.15. Let k be an E∞-ring. Every admissible morphism (admissible cover) in G
nSp
Zar (k) is also an

admissible morphism (admissible cover) in G
nSp
ét (k). In other words, the identity map G

nSp
Zar (k)→ G

nSp
ét (k) is a

transformation of geometries. If k is connective, then the analogous assertions hold for G
Sp
Zar(k) and G

Sp
ét (k).

Remark 8.16. Let k be a connective E∞-ring, and let Gét(π0k) be the geometry introduced in §V.2.6. The

truncation functor A 7→ π0A determines a transformation of geometries G
Sp
ét (k) → Gét(π0k), which exhibits

Gét(π0k) as a 0-stub of GSp
ét (k).

We now compare the geometries G
nSp
ét (k) and G

Sp
ét (k).

Proposition 8.17. Let φ : k → k′ be a map of E∞-rings, where k is connective, so that base change along
φ induces a transformation of geometries G

Sp
ét (k)→ G

nSp
ét (k′). Then:

(1) Every admissible morphism in G
nSp
ét (k′) is a pullback of the image of an admissible morphism in G

Sp
ét (k).

(2) The Grothendieck topology on G
nSp
ét (k′) is generated by the Grothendieck topology on G

Sp
ét (k) (for a more

precise statement, see the proof below).

Proof. Assertion (1) follows immediately from Proposition 8.10. To prove (2), let G denote the ∞-category

G
nSp
disc(k′), endowed with an arbitrary Grothendieck topology. Suppose that every admissible covering in G

Sp
ét (k)

determines a covering sieve in G. We wish to show that every admissible covering {fα : SpecAα → SpecA}
generates a covering sieve in G. We may assume without loss of generality that the set of indices α is finite.
Using (1), we deduce that each of the maps fα fits into a pullback diagram

SpecAα
fα //

��

SpecA

gα

��
SpecB′α

f ′α // SpecBα,

where f ′α is an admissible morphism in G
Sp
ét (k). Replacing each Bα with the tensor product B = ⊗αBα

(taken over the E∞-ring k), we may assume that the underlying map gα : Bα → A is independent of α. Let
g0 : π0B → π0A be the induced map of commutative rings.

Let X = SpecZB. Each of the maps π0B → π0B
′
α is étale, so that SpecZB′α has open image Uα ⊆ X

(Proposition 0.2). Since the maps fα cover A, we deduce that the Zariski spectrum of A has image contained
in

⋃
α Uα. It follows that there exists a finite collection of elements b1, . . . , bn ∈ π0B with the following

properties:

(i) The images ai = g0(bi) generate the unit ideal in π0A.

(ii) For 1 ≤ i ≤ n, there exists an index αi such that the basic open set Vi = {p ⊆ π0B : bi /∈ p} is
contained in Uαi .

Condition (i) implies that the morphisms {SpecA[ 1
ai

]→ SpecA} form an admissible covering with respect

to the geometry G
nSp
Zar (k′), and therefore generate a covering sieve with respect to the topology on G (see

Remarks 2.15 and 2.16). Consequently, it will suffice to show that, for each index 1 ≤ i ≤ n, the pullback
maps {f iα : SpecAα[ 1

ai
] → SpecA[ 1

ai
]} generate a G-covering sieve on SpecA[ 1

ai
] (here we abuse notation

by identifying ai ∈ π0A with its image in π0Aα). Let αi be as in (ii). We claim that the single morphism
f iαi : SpecAαi [

1
ai

]→ SpecA[ 1
ai

] generates a G-covering sieve. To prove this, we observe that f iαi is a pullback

of the map SpecB′αi [
1
bi

]→ SpecB[ 1
bi

], which is a G
Sp
ét (k)-covering by construction.

Corollary 8.18. Let k be a connective E∞-ring, and let X be an ∞-topos. Then:

(1) A left-exact functor O : GnSp
ét (k)→ X is a G

nSp
ét (k)-structure on X if and only if O |GSp

ét (k) is a G
Sp
ét (k)-

structure on X.
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(2) Let O,O′ : GnSp
ét (k) → X be G

nSp
ét (k)-structures on X. A natural transformation α : O → O′ is local if

and only if the induced map O |GSp
ét (k)→ O |GSp

ét (k) is local.

Corollary 8.19. Let k be an E∞-ring, and let f : G
nSp
ét → G

nSp
ét (k) be the transformation of geometries

induced by the map S → k, where S denotes the sphere spectrum. Then:

(1) A left-exact functor O : GnSp
ét (k)→ X is a G

nSp
ét (k)-structure on X if and only if O ◦f is a G

nSp
ét -structure

on X.

(2) Let O,O′ : GnSp
ét (k) → X be G

nSp
ét (k)-structures on X. A natural transformation α : O → O′ is local if

and only if the induced map O ◦f → O′ ◦f is local.

Remark 8.20. If k is connective, then f restricts to a transformation of geometries f0 : GSp
ét → G

Sp
ét (k). We

have the following analogous results:

(1′) A left-exact functor O : GSp
ét (k)→ X is a G

nSp
Zar (k)-structure on X if and only if O ◦f0 is a G

Sp
ét -structure

on X.

(2′) Let O,O′ : GSp
ét (k)→ X be G

Sp
ét (k)-structures on X. A natural transformation α : O→ O′ is local if and

only if the induced map O ◦f0 → O′ ◦f0 is local.

Our next goal is to show that when k is connective, the geometry G
Sp
ét (k) can be obtained as the geometric

envelope of a pregeometry T
Sp
ét (k). To define this pregeometry, we need a few remarks about the notion of a

smooth morphism between E∞-rings.

Definition 8.21. Let k be a connective E∞-ring. Let φ : B̃ → B be a map of connective k-algebras. We
will say that φ is a nilpotent thickening if the underlying map of commutative rings (π0φ) : π0B̃ → π0B is
surjective, and the ideal I = ker(π0φ) is nilpotent.

Let F : CAlgcn
k → S be a (space-valued) functor on the ∞-category of connective k-algebras. We will

say that F is formally smooth if, for every nilpotent thickening B̃ → B, the induced map F (B̃) → F (B) is
surjective.

Proposition 8.22. Let k → A be a morphism of connective E∞-algebras, and let F : CAlgcn
k → S be

the functor corepresented by A (given informally by B 7→ MapCAlgk
(A,B). The following conditions are

equivalent:

(1) The functor F is formally smooth, in the sense of Definition 8.21.

(2) The relative cotangent complex LA/k is a projective A-module (see Definition A.7.2.2.4).

Proof. Assume first that F is formally smooth; we wish to show that LA/k is projective. In view of Proposi-
tion A.7.2.2.6, it will suffice to show that for every cofiber sequence N ′ → N → N ′′ of connective A-modules,
the induced map φ : MapModA(LA/k, N) → MapModA(LA/k, N

′′) is surjective on connected components: in
other words, we wish to show that the homotopy fibers of φ are nonempty. Fix a map LA/k → N ′′, corre-
sponding to a section of s the projection map A⊕N ′′ → A. Invoking the definition of LA/k, we see that the
homotopy fiber of φ over s can be identified with the homotopy fiber of the map φ′ : F (A⊕N)→ F (A⊕N ′′).
We now observe that the map A⊕N → A⊕N ′′ is a nilpotent thickening, so that the homotopy fibers of φ′

are nonempty by virtue of (1).

Now suppose that LA/k is projective. We wish to prove that F is formally smooth. Let B̃ → B be a

nilpotent thickening and let η ∈ F (B); we wish to show that η can be lifted to a point in F (B̃). We define

a tower of B̃-algebras
. . .→ B(2)→ B(1)→ B(0) = B
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Assume that B(i) has been constructed, and let M(i) = LB(i)/B̃ . By construction, we have a derivation

d : B(i)→ B(i)⊕M(i), fitting into a commutative diagram

B̃ //

��

B(i)

d0

����
B(i)

d // B(i)⊕M(i);

here d0 denotes the trivial derivation. We now define B(i+ 1) to be the fiber product B(i)×B(i)⊕M(i) B(i).

Let I ⊆ π0B̃ be the kernel of the surjection π0B̃ → π0B. We next claim:

(∗) For every integer n ≥ 0, the algebra B(n) is connective. Moreover, the map π0B̃ → π0B(n) is a
surjection, whose kernel is the ideal I2n .

The proof of (∗) proceeds by induction on n. Assume that (∗) holds for B(n), and let K denote the

fiber of the map B̃ → B(n). Condition (∗) guarantees that K is connective, and that the image of the map

π0K → π0B̃ is the ideal J = I2n . We have a map of fiber sequences

K //

��

B̃ //

��

B(n)

��
M(n)[−1] // B(n+ 1) // B(n),

so the fiber K ′ of the map B̃ → B(n+ 1) can be identified with the fiber of the composition

K
β→ K ⊗B̃ B(n)

α→M(n)[−1].

To prove (∗), it will suffice to show that K ′ is connective and the image of the map π0K
′ → π0B̃ is J2. We

have a fiber sequence
fib(β)→ K ′ → fib(α).

Since K is connective, Theorem A.7.4.3.1 guarantees that fib(α) is 1-connective. It follows that the maps
πi fib(β) → πiK

′ are surjective for i ≤ 0. To complete the proof, it will therefore suffice to show that

fib(β) is connective and the map π0 fib(β) → π0B̃ has image J2. This follows from the observation that

fib(β) ' K×B̃K, so that π0 fib(β) ' Torπ0B̃
0 (π0K,π0K). Under this identification, the map π0 fib(β)→ π0B̃

corresponds to the bilinear multiplication map

π0K × π0K → J × J → π0B̃,

whose image generates the ideal J2 ⊆ π0B̃.
Choose any map of k-algebras A → B(n). Since LA/k is projective, the space MapModA(LA/k,M(n))

is connected. It follows that the homotopy fibers of the projection map F (B(n) ⊕M(n)) → F (B(n)) are
connected. Consequently, for any derivation d : B(n) → B(n) ⊕M(n), the homotopy fibers of the induced
section F (B(n))→ F (B(n)⊕M(n)) are nonempty. It follows that the homotopy fibers of the pullback map
F (B(n + 1)) → F (B(n)) are also nonempty: in other words, every point of ηn ∈ F (B(n)) can be lifted
to a point ηn+1 ∈ F (B(n + 1)). Consequently, we are free to replace the pair (B, η0) with (B(n), ηn) for

any n ≥ 0. Since I is nilpotent, condition (∗) implies that the map π0B̃ → π0B(n) is bijective for n � 0.

Replacing B by B(n), we can reduce to the case where π0B̃ → π0B is an isomorphism.
Let M = τ≤1LB/B̃ , let d : B → B ⊕M be the canonical derivation, and form a pullback diagram

B′ //

��

B

d

��
B

d0 // B ⊕M.
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Repeating the above arguments, we deduce that M is 1-connective, so that F (B′)→ F (B) is surjective. We

claim that the canonical map B̃ → B′ is 1-connective. Let N denote the kernel of the projection B̃ → B, so
that we have a map of fiber sequences

N //

f

��

B̃ //

��

B

��
M [−1] // B′ // B.

To show that B̃ → B′ is 1-connective, it will suffice to show that f is 1-connective; that is, f induces a
bijection π0N → π1M and a surjection π1N → π2M . The second assertion is clear, since π2M ' 0 by
construction. For the first, we factor π0f as a composition

π0N
β→ π0(N ⊗B̃ B) ' π0N ⊗π0B̃

(π0B)
β′→ π1LB/B̃

β′′→ π1M.

The map β is an isomorphism because π0B̃ ' π0B, the map β′ is an isomorphism by Theorem A.7.4.3.1,
and the map β′′ is an isomorphism by construction. Replacing B by B′, we can assume that B̃ → B is
1-connective.

We now repeat the original construction of the tower

. . .→ B(2)→ B(1)→ B(0)

and prove the following strengthening of (∗):

(∗′) For n ≥ 0, the map B̃ → B(n) is 2n-connective.

The proof of (∗′) proceeds by induction on n, the case n = 1 being obvious. Assume therefore that B̃ → B(n)
is 2n-connective, and let K and K ′ be as in the proof of (∗). We wish to prove that K ′ is 2n+1-connective.
As before, we have a fiber sequence

fib(α)→ K ′ → fib(β).

Here fib(β) ' K⊗B̃K, and is therefore 2n+1-connective since K is 2n-connective by the inductive hypothesis.
The map α is (2n+1 + 1)-connective by Theorem A.7.4.3.1.

As before, each of the maps F (B(n + 1)) → F (B(n)) is surjective on connected components, so we can
lift η to a point of lim←−F (B(n)) ' F (lim←−B(n)). To complete, the proof, it suffices to show that the canonical

map B̃ → lim←−B(n) is an equivalence. This follows from (∗), since Postnikov towers of connective k-algebras
are convergent (Proposition A.7.1.3.19).

Proposition 8.23. Let k → A be a morphism of connective E∞-rings. Assume that π0A is a finitely
generated algebra over π0k. The following conditions are equivalent:

(1) The functor CAlgcn
k → S corepresented by A is formally smooth.

(2) The relative cotangent complex LA/k is a projective A-module.

(3) The relative cotangent complex LA/k is a finitely generated projective A-module.

(4) There exist elements a1, . . . , an ∈ π0A which generate the unit ideal and a collection of étale maps
k{x1, . . . , xmi} → A[ 1

ai
].

Moreover, if these conditions are satisfied, then A satisfies the following:

(5) The algebra A is locally of finite presentation over k.
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(6) The underlying commutative ring π0A is a smooth algebra over π0k, in the sense of classical commu-
tative algebra.

Proof. The implication (3) ⇒ (2) is obvious; the converse follows from the observation that π0LA/k is the
module of Kähler differentials of π0A over π0k (Proposition A.7.4.3.9) and therefore finitely presented over
π0A. The equivalence (1) ⇔ (2) follows from Proposition 8.22. The implication (1) ⇒ (6) is obvious, and
the implication (3) ⇒ (5) follows from Theorem A.7.4.3.18. We will complete the proof by showing that
(4)⇔ (3).

Assume first that (4) is satisfied. Note that LA/k is a finitely generated projective A-module if and only
if π0LA/k is a finitely generated projective module over π0A, and each of the induced maps

Torπ0A
0 (π0LA/k, πjA)→ πjLA/k

is an isomorphism. Since the elements ai ∈ π0A generate the unit ideal, it will suffice to show that each
(π0LA/k)[ 1

ai
] is a finitely generated projective module over (π0A)[ 1

ai
], and that the induced maps

Tor
(π0A)[ 1

ai
]

0 ((π0ALA/k)[
1

ai
], (πjA)[

1

ai
])→ (πjLA/k)[

1

ai
].

Each of the algebras A[ 1
ai

] is étale over A, so that LA[ 1
ai

]/k ' LA/k ⊗A A[ 1
ai

]. Consequently, we may replace

A by A[ 1
ai

] and thereby reduce to proving (3) in the case where we have an étale map k{x1, . . . , xm} → A.
In this case, we have

LA/k ' Lk{x1,...,xm}/k ⊗k{x1,...,xm} A ' A
m

and the result is obvious.
Converely, suppose that (3) is satisfied; we will prove (4). The module π0LA/k is projective and of finite

rank over π0A. Consequently, there exist elements a1, . . . , an generating the unit ideal in π0A such that
each of the modules (π0LA/k)[ 1

ai
] is a free module of some rank mi over (π0A)[ 1

ai
]. Replacing A by A[ 1

ai
],

we may suppose that π0LA/k is a free module of some rank m. Proposition A.7.4.3.9 allows us to identify
π0LA/k with the module of Kähler differentials of π0A over π0k. In particular, π0LA/k is generated (as an
A-module) by finitely many differentials {dxp}1≤p≤q. The identification π0LA/k ' (π0A)m allows us to view
the differentials {dxq}1≤p≤q as an m-by-q matrix M . Let {bj} be the collection of all determinants of m-by-m
square submatrices appearing in M . Since the elements {dxp}1≤p≤q generate (π0A)m, the matrix M has
rank m so that the elements bj generate the unit ideal in A. It therefore suffices to prove that (4) is satisfied
by each of the algebras A[ 1

bj
]. We may therefore assume (after discarding some of the elements xi) that

q = m and that π0LA/k is freely generated by the elements dxi. The choice of elements x1, . . . , xm ∈ π0A
determines a map k{x1, . . . , xm} → A. The fiber sequence

Lk{x1,...,xm}/k ⊗k{x1,...,xm} A→ LA/k → LA/k{x1,...,xm}

shows that the relative cotangent complex LA/k{x1,...,xm} vanishes, so that A is étale over k{x1, . . . , xm} by
Lemma 8.9.

Definition 8.24. Let k be a connective E∞-ring. We will say that a k-algebra A is smooth over k if it
satisfies the equivalent conditions of Proposition 8.23: that is, if A is connective, formally smooth over k,
and π0A is finitely generated over π0k.

Warning 8.25. A smooth morphism of connective E∞-rings k → A need not be flat (in contrast with the
situation in classical algebraic geometry).

We now organize the smooth k-algebras into a pregeometry.

Definition 8.26. Let k be a connective E∞-ring. We let T
Sp
ét (k) denote the full subcategory of G

Sp
ét (k)

spanned by the objects of the form SpecA for which there exists an étale morphism of k-algebras

k{x1, . . . , xn} → A,

for some n ≥ 0. We regard T
Sp
ét (k) as a pregeometry as follows:
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(1) A morphism SpecA→ SpecB in T
Sp
ét (k) is admissible if and only if the corresponding map of k-algebras

B → A is étale.

(2) A collection of admissible morphisms {SpecAα → SpecA} in T
Sp
ét (k) generates a covering sieve on

SpecA if and only if it generates a covering sieve in G
Sp
ét (k): that is, if and only if there exists a finite

set of indices {αi}1≤i≤n such that the induced map A→
∏

1≤i≤nAαi is faithfully flat.

If k is the sphere spectrum (regarded as an initial object of CAlg), then we will denote the pregeometry

T
Sp
ét (k) by T

Sp
ét .

Variant 8.27. If k is a connective E∞-ring, we let T
′ Sp
ét (k) denote the full subcategory of GSp

ét (k) spanned

by those objects of the form SpecA where A is a smooth k-algebra. We regard T
′ Sp
ét (k) as a pregeometry,

using the admissible morphisms and admissible coverings in G
Sp
ét (k), as in Definition 8.26. Using condition

(4) of Proposition 8.23 and Proposition V.3.2.8, we deduce that the inclusion T
Sp
ét (k) ⊆ T

′ Sp
ét (k) is a Morita

equivalence of pregeometries. In particular, for any ∞-topos X, the restriction map

Strloc
T
′ Sp
ét (k)

(X)→ Strloc
T

Sp
ét (k)

(X)

is an equivalence of ∞-categories.

Proposition 8.28. Let k be a connective E∞-ring. The inclusion T
Sp
ét (k) ⊆ G

Sp
ét (k) exhibits G

Sp
ét (k) as a

geometric envelope of TSp
ét (k).

Proof. As in the proof of Proposition 2.20, we let T0 denote the full subcategory of GSp
ét (k) spanned by objects

of the form k{x1, . . . , xn}; we will show that the inclusion T0 ⊆ G
Sp
ét (k) satisfies conditions (1) through (6)

of Proposition V.3.4.5. Conditions (1), (2) and (3) follow as in the proof of Proposition 2.20, and assertions
(4) and (5) are proven as in Proposition 8.17. To verify (6), let us suppose that C is an idempotent complete
∞-category which admits finite limits and that α : f → f ′ is a natural transformation between admissible
functors f, f ′ : T

Sp
ét (k) → C which induces an equivalence f |T0 ' f ′|T0. We wish to prove that α is an

equivalence.
Fix an object of SpecA ∈ T

Sp
ét (k) corresponding to a smooth k-algebra A for which there exists an

étale map k{z1, . . . , zm} → A. Using Proposition 8.10, we deduce the existence of a pushout diagram of
k-algebras

k{x1, . . . , xn} //

φ

��

k{z1, . . . , zm}

��
k{y1, . . . , yn}[ 1

∆ ] // A

where φ(xi) = fi(y1, . . . , yn) and ∆ is the determinant of the Jacobian matrix [ ∂ fi∂ yj
]1≤i,j≤n. We wish to

show that α is an equivalence on A. Since f, f ′ : Tét(k) both preserve pullbacks by étale morphisms, it will
suffice to show that α is an equivalence on k{x1, . . . , xn}, k{z1, . . . , zm}, and k{y1, . . . , yn}[ 1

∆ ]. In the first
two cases, this is clear (since f |E = f ′|E); in the third case, it follows from the proof of Proposition 2.20.

Corollary 8.29. Let k be a connective E∞-ring. For each n ≥ 0, let G
Sp
ét (k)≤n denote the opposite of the

∞-category of compact objects in the ∞-category τ≤n CAlgcn
k of connective, n-truncated E∞-algebras over k.

The composite functor

T
Sp
ét (k) ⊆ G

Sp
ét (k)

τ≤n→ G
Sp
ét (k)≤n

exhibits G
Sp
ét (k)≤n as an n-truncated geometric envelope of Tét(k). In particular, the functor A 7→ π0A

exhibits Gét(π0k) as a 0-truncated geometric envelope of TSp
ét (k).

Proof. Combine Proposition 8.28, Lemma V.3.4.11, and Remark 8.16.
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Remark 8.30. Let k be a connective E∞-ring and X an ∞-topos. The proofs of Propositions 2.20 and 8.28
imply that the restriction functors

Funlex(GSp
ét (k),X) → Funad(TSp

ét (k),X)

→ Funad(TSp
ét (k),X)

→ Funπ(T0,X)

are equivalences of ∞-categories (here T0 denotes the full subcategory of TSp
ét (k) spanned by those objects

of the form Spec k{x1, . . . , xn}, and Funπ(T0,X) the full subcategory of Fun(T0,X) spanned by those func-
tors which preserve finite products). Remarks V.1.1.5 and V.1.1.6 allow us to identify the ∞-category

Funlex(GSp
ét (k),X) with the ∞-category ShvCAlgcn

k
(X) of sheaves of connective k-algebras on X. In particular,

for each n ≥ 0, we have a truncation functor τ≤n : Funlex(GSp
ét (k),X) → Funlex(GSp

ét (k),X). This induces
truncation functors

τ≤n : Funad(TSp
ét (k),X)→ Funad(TSp

ét (k),X)

τ≤n : Funad(TSp
Zar(k),X)→ Funad(TSp

Zar(k),X)

τ≤n : Funπ(T0,X)→ Funπ(T0,X).

We claim that each of these truncation functors is simply given by composition with the truncation functor
τX≤n on X. Unwinding the definitions, this amounts to the following assertion:

(∗) Let O : GSp
ét (k) → X be a left exact functor, and O′ its n-truncation in Funlex(GSp

ét (k),X). Then, for

every A ∈ T
Sp
ét (k), the induced map O(A)→ O′(A) exhibits O′(A) as an n-truncation of O(A) in X.

Note that if π∗ : Y → X is a geometric morphism and O ∈ Funlex(GSp
ét (k),Y) satisfies (∗), then π∗ O also

satisfies (∗) (because the induced map Funlex(GSp
ét (k),Y) → Funlex(GSp

ét (k),X) commutes with n-truncation,
by Proposition T.5.5.6.28).

Without loss of generality, we may suppose that X arises as a left-exact localization of a presheaf ∞-
category P(C). Let π∗ : P(C) → X be the localization functor, and π∗ : X → P(C) its right adjoint. Then,

for each O ∈ Funlex(GSp
ét (k),X), the counit map π∗π∗ O→ O is an equivalence. In view of the above remark,

it will suffice to prove that (P(C), π∗ O) satisfies (∗). In particular, we may assume that X has enough points
(given by evaluation at objects of C), and can therefore reduce to the case X = S. In this case, we can
identify O with a connective k-algebra R, and assertion (∗) can be reformulated as follows:

(∗′) Let R be a connective k-algebra and let A be a smooth k-algebra. Then the map

MapCAlgk
(A,R)→ MapCAlgk

(A, τ≤nR)

exhibits MapCAlgk
(A, τ≤nR) as an n-truncation of the mapping space MapCAlgk

(A,R).

Assertion (∗′) is equivalent to the requirement that the diagram {MapCAlgk
(A, τ≤nR)} is a Postnikov

tower for MapCAlgk
(A,R). Since R is the limit of its Postnikov tower (Proposition A.7.1.3.19), we de-

duce that MapCAlgk
(A,R) is the limit of {MapCAlgk

(A, τ≤nR)}; it therefore suffices to show that the
tower {MapCAlgk

(A, τ≤nR)} is a Postnikov tower. In other words, it suffices to show that each of the
maps φ : MapCAlgk

(A, τ≤n+1R) → MapCAlgk
(A, τ≤nR) exhibits MapCAlgk

(A, τ≤nR) as an n-truncation of
MapCAlgk

(A, τ≤n+1R). Since MapCAlgk
(A, τ≤nR) is evidently n-truncated, it suffices to show that the ho-

motopy fibers of φ are (n+ 1)-connective. According to Theorem A.7.4.1.26, there is a pullback diagram of
k-algebras

τ≤n+1R //

��

τ≤nR

��
τ≤nR // (τ≤nR)⊕ (πn+1R)[n+ 2].
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Consequently, it suffices to show that the homotopy fibers of the map

φ′ : MapCAlgk
(A, τ≤nR)→ MapCAlgk

(A, (τ≤nR)⊕ (πn+1R)[n+ 2]).

The map φ′ is a section of the projection map

ψ : MapCAlgk
(A, (τ≤nR)⊕ (πn+1R)[n+ 2])→ MapCAlgk

(A, τ≤nR).

To complete the proof, we show that ψ has (n + 2)-connective homotopy fibers. Note that the homotopy
fiber of ψ over an algebra map A → τ≤nR is given by the mapping space MapModA(LA/k, (πn+1R)[n + 2]),
which is (n+ 2)-connective because LA/k is a projective A-module.

We are now ready to give the proof of Proposition 8.13.

Proof of Proposition 8.13. Let X be an ∞-topos and k an E∞-ring. We must prove two assertions:

(a) Let O : GnSp
ét (k)→ X be a left exact functor, and O0 the corresponding sheaf of E∞-rings on X. Then

O is a G
nSp
ét -structure on X if and only if O0 is strictly Henselian.

(b) Let α : O→ O′ be a map of GnSp
ét (k)-structures on X, and α0 : O0 → O′0 the corresponding map between

sheaves of E∞-rings. Then α is a local transformation of GnSp
ét (k)-structures if and only if α0 is a local

map of sheaves of E∞-rings (in the sense of Definition 2.5).

Let us first prove (a). Using Corollary 8.19, we can reduce to the case where k is the sphere spectrum.
In particular, k is connective. Using Corollary 8.18, we can replace O0 by its connective cover and O by its
restriction to G

Sp
ét ⊆ G

nSp
ét . Using Proposition 8.28 and Remark 8.30, we can replace O0 by its 0-truncation

π0 O0, in which case the desired result follows immediately from the definitions. The proof of (b) is similar:
using the same arguments, we can replace O0 and O′0 by π0 O0 and π0 O

′
0, in which case the desired result

follows from Proposition V.2.6.16.

Remark 8.31. Let (X,OX) be a spectrally ringed∞-topos. If the underlying topos X of discrete objects of
X has enough points, then we can give an even more concrete criterion: the sheaf of E∞-rings OX is strictly
Henselian if and only if, for every point x of the topos X, the stalk (π0 OX)x is a strictly Henselian local
ring. Moreover, a map of strictly Henselian E∞-rings OX → O′X is local if and only if, for each point x ∈ X,
the induced map (π0 OX)x → (π0 O

′
X)x is a local homomorphism between local commutative rings.

Using Proposition 8.13, we see that Proposition 8.4 is a special case of Theorem V.2.1.1. We can also
recast Definition 8.5 in the language of geometries:

Definition 8.32 (Spectral Deligne-Mumford Stack: Abstract Definition). Let k be an E∞-ring. A noncon-

nective spectral Deligne-Mumford stack over k is a G
nSp
ét (k)-scheme (see Definition V.2.3.9), where G

nSp
ét (k) is

the geometry of Definition 8.11.
If k is connective, a spectral Deligne-Mumford stack over k is a G

Sp
ét (k)-scheme, where G

Sp
ét is the geometry

of Definition 8.14.

Remark 8.33. In the special case where k is the sphere spectrum (regarded as an initial object of CAlg), the
notion of (nonconnective) spectral Deligne-Mumford stack over k reduces to the notion of (nonconnective)
spectral Deligne-Mumford stack introduced in Definition 2.7.

Let (X,OX) be a nonconnective spectral Deligne-Mumford stack over an E∞-ring k. We can think of OX

either as a sheaf of E∞-algebras over k, or as a left exact functor G
nSp
ét (k) → X. We will generally abuse

notation by not distinguishing between these two avatars of OX: we will whichever point of view is more
convenient for the problem at hand.

Definition 8.34. Let k be a connective E∞-ring, and let n ≥ 0. We will say that a connective spectral
Deligne-Mumford stack (X,OX) is n-truncated if OX is n-truncated, when regarded as a sheaf of spectra on
X.
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Equivalently, (X,OX) is n-truncated if the restriction OX |TSp
ét (k) takes values in the full subcategory of

X spanned by the n-truncated objects.

Definition 8.35. Let k be an E∞-ring, and let n ≥ 0. We will say that a spectral Deligne-Mumford stack
(X,OX) is n-localic if the ∞-topos X is n-localic, in the sense of Definition T.6.4.5.8.

The following result shows that the theory of derived Deligne-Mumford stacks really does generalize the
classical theory of Deligne-Mumford stacks:

Proposition 8.36. Let k be a connective E∞-ring, and let Sch≤0
≤1(GSp

ét (k)) denote the full subcategory of

Sch(GSp
ét (k)) spanned by those G

Sp
ét (k)-schemes which are 0-truncated and 1-localic. Then Sch≤0

≤1(GSp
ét (k)) is

canonically equivalent to the ∞-category of Deligne-Mumford stacks over the commutative ring π0k (see
Definition V.2.6.9).

Proof. Combine Corollary 8.29 with Theorem V.2.6.18.

Our next goal is to compare the theories of connective and nonconnective spectral Deligne-Mumford
stacks. The following assertion is an immediate consequence of Proposition 2.30:

Proposition 8.37. Let k be a connective E∞-ring, and let U : LTop(GSp
ét (k)) → LTop(GnSp

ét (k)) be the

relative spectrum functor associated to the inclusion of geometries G
Sp
ét (k) ↪→ G

nSp
ét (k). Then U is a fully

faithful embedding, whose essential image consists of those pairs (X,OX) where OX determines a connective
sheaf of E∞-rings on X.

The proof of Proposition 2.33 immediately yields the following analogue for the étale topology:

Proposition 8.38. Let k be a connective E∞-ring, and let (X,O) be a nonconnective spectral Deligne-

Mumford stack over k. Then (X,O |GSp
ét (k)) is a spectral Deligne-Mumford stack over k.

Combining Propositions 8.37 and 8.38, we obtain the following result:

Corollary 8.39. Let k be a connective E∞-ring and let U be as in Proposition 8.37. Then U induces a fully
faithful embedding Sch(GSp

ét (k)) → Sch(GnSp
ét (k)), whose essential image consists of those spectral Deligne-

Mumford stacks (X,O) such that O determines a connective sheaf of E∞-rings on X.

We now discuss the operation of truncation for structure sheaves of spectral Deligne-Mumford stacks.

Proposition 8.40. Let k be a connective E∞-ring. For each n ≥ 0, the pregeometry T
Sp
ét (k) is compatible

with n-truncations.

Proof. This is a consequence of the corresponding result for the Nisnevich topology which we will prove in
a sequel to this paper.

Remark 8.41. Let (X,OX) be a nonconnective spectral Deligne-Mumford stack. We will abuse notation
by identifying OX with the underlying CAlg-valued sheaf on X. It follows from Proposition 8.38 that the
pair (X, τ≥0 OX) is a spectral Deligne-Mumford stack; we will refer to (X, τ≥0 OX) as the underlying spectral
Deligne-Mumford stack of (X,OX). Using Propositions 8.40 and V.3.4.15, we conclude that for each n ≥ 0,
the pair (X, τ≤nτ≤0 OX) is an n-truncated spectral Deligne-Mumford stack. In particular, if X is 1-localic
and we take n = 0, then we obtain a 1-localic, 0-truncated Deligne-Mumford stack (X, π0 OX), which we
can identify with an ordinary Deligne-Mumford stack (Proposition 8.36). We will refer to (X, π0 OX) as the
underlying ordinary Deligne-Mumford stack of (X,OX).

We conclude this section with a concrete characterization of the class of spectral Deligne-Mumford stacks,
analogous the the description of spectral schemes given in Definition 2.2.

Theorem 8.42. Let X an ∞-topos, and OX a sheaf of E∞-algebras on X. Then (X,OX) is a nonconnective
spectral Deligne-Mumford stack if and only if the following conditions are satisfied:
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(1) Let φ∗ : X → X′ be a geometric morphism of ∞-topoi, where X′ is 1-localic and φ∗ is an equivalence
on discrete objects (so that φ∗ exhibits X′ as the 1-localic reflection of X). Let OX′ be the commutative
ring object in the underlying topos of X′ corresponding to π0 OX. Then (X′,OX′) is a spectral Deligne-
Mumford stack over k (which is 1-localic and 0-truncated, and can therefore be identified with an
ordinary Deligne-Mumford stack X by Proposition 8.36).

(2) For every integer i, πi OX is a quasi-coherent sheaf on X.

(3) The object Ω∞ OX ∈ X is hypercomplete.

Proof. The proof follows the same lines as that of Theorem 2.40, but is slightly more complicated (because
assertions (1) and (2) are not local on X). In what follows, we will abuse notation by identifying OX with the

corresponding left exact functor G
nSp
ét → X. Suppose first that (X,OX) is a nonconnective spectral Deligne-

Mumford stack. We will prove that (1), (2), and (3) are satisfied. Remark 8.41 implies that (X, π0 OX) is
a spectral Deligne-Mumford stack, and Corollary 8.29 allows us to identify π0 OX with a Gét-structure on
X. Let φ∗ : X→ X′ be the 1-localic reflection of X; then Theorem V.2.3.13 implies that (X′,OX′) is again a
spectral Deligne-Mumford stack, and that the map (X, π0 OX)→ (X′,X′ ) is étale. This proves (1).

Assertion (3) is local on the ∞-topos X. Consequently, to prove that (3) holds, we may assume that
(X,OX) is affine; the proof then proceeds exactly as in the proof of Theorem 2.40. To prove (2), we consider

a collection of objects {Uα ∈ X} such that
∐
Uα → 1X is an effective epimorphism, and each of the G

nSp
ét (k)-

schemes (X/Uα ,OX |Uα) is affine, equivalent to SpecétAα for some Aα ∈ CAlgk. The composite geometric
morphisms

X/Uα → X→ X′

are étale and cover X′. Since assertion (2) is local on X′, it is sufficient to show that the restriction of each
πi OX to X/Uα is a quasi-coherent sheaf on the ordinary Deligne-Mumford stack given by (X/Uα , π0(OX |Uα))
(in other words, the affine scheme Spec(π0Aα). This follows immediately from Theorem V.2.2.12: the
restriction of πi OX is the quasi-coherent sheaf associated to πiAα, viewed as a module over the commutative
ring π0Aα.

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X,OX) is a
nonconnective spectral Deligne-Mumford stack. The assertion is local on X′. The étale geometric morphism
X→ X′ determines an equivalence X ' X′/U , for some 2-connective object U in X′. Passing to a cover of X′,
we may assume without loss of generality that U admits a global section s : 1X → U ; since U is 1-connective,
this map is an effective epimorphism. This section determines a geometric morphism of∞-topoi s∗ : X′ → X.
In view of Proposition V.2.3.10, it will suffice to show that (X′, s∗ OX) is a spectral Deligne-Mumford stack
over k. Replacing X by X′, we are reduced to the case where X is 1-localic and (X, π0 OX) is a spectral
Deligne-Mumford stack. Passing to a cover of X again if necessary, we may suppose that (X, π0 OX) is the
spectrum of a (discrete) commutative ring R.

We now proceed as in the proof of Theorem 2.40. Assume first that the structure sheaf OX is connective
(as a sheaf of E∞-rings on X). Applying (2), we conclude that each πi OX is the quasi-coherent sheaf
associated to an R-module Mi. We have isomorphisms

Hn(X;πi OX) '

{
Mi if n = 0

0 otherwise.

(see §T.7.2.2 for a discussion of the cohomology of an ∞-topos, and Remark T.7.2.2.17 for a comparison
with the usual theory of sheaf cohomology.) For each n ≥ 0, let A≤n ∈ CAlg denote the E∞-ring of global
section Γ(X; τ≤n OX). There is a convergent spectral sequence

Ep,q2 = Hp(X;πq(τ≤n OX))⇒ πq−pA≤n.

It follows that this spectral sequence degenerates to yield isomorphisms

πiA≤n '

{
Mi if 0 ≤ i ≤ n
0 otherwise.
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In particular, π0A≤n ' R.
Fix n ≥ 0, and let (Xn,OXn) be the spectrum of A≤n. The equivalence An ' Γ(X; τ≤n OX) induces a

map φn : (Xn,OXn)→ (X, τ≤n OX) in LTop(GnSp
ét ). Since π0An ' R, the geometric morphism φ∗n : Xn → X is

an equivalence of∞-topoi, and φn induces an isomorphism of quasi-coherent sheaves φ∗n(πi OXn) ' πi OX for
0 ≤ i ≤ n. Since the structure sheaves on both sides are n-truncated, we conclude that φn is an equivalence.

Let A denote the inverse limit of the tower of E∞-rings

. . .→ A≤2 → A≤1 → A≤0,

so that π0A ' R. We can therefore identify the spectrum of A with (X,O′X). As in the proof of Theorem
2.40, we see that O′X is the inverse limit of its truncations

τ≤n O
′
X ' φ∗n OXn ' τ≤n OX .

Passing to the inverse limit, we obtain a map

ψ : OX → lim{τ≤n OX} ' O′X .

By construction, ψ induces an isomorphism on all (sheaves of) homotopy groups, and is therefore ∞-
connective. The 0th space of O′X is a hypercomplete object of X (since it is an inverse limit of truncated
objects of X), and the 0th space of OX is hypercomplete by assumption (3). It follows that ψ is an equivalence,
so that (X,OX) ' SpecétA is a spectral Deligne-Mumford stack as desired..

We now treat the case where the structure sheaf OX is not assumed to be connective. The pair (X, τ≥0 OX)

satisfies conditions (1), (2), and (3), so the argument above proves that (X, τ≥0 OX) ' Specét(A) for some
connective E∞-ring A. Let B ∈ CAlg be the E∞-ring of global sections of OX. Then τ≥0B is connective
cover of the algebra of global sections of τ≥0 OX, and is therefore equivalent to A. In particular, we can

identify Specét(B) with (X,O′X), for some sheaf of E∞-rings O′X on X. To complete the proof, it will suffice
to show that the canonical map θ : O′X → OX is an equivalence. Let F denote the fiber of the map θ, viewed
as an object of ShvSp(X). Since θ induces an equivalence on the level of connective covers, we deduce that
τ≥0 F ' 0. We wish to prove that F ' 0. Suppose otherwise. Since ShvSp(X) is right complete (Proposition
1.7), we deduce that there exists an integer n (necessarily positive) such that πn F is nonzero. We will assume
that n is chosen minimal with respect to this property. We have an exact sequence of sheaves of OX -modules

π1−n O
′
X → π1−n OX → π−n F → π−n O

′
X → π−n OX .

The homotopy groups of OX are quasi-coherent sheaves on X by (2). Since (X,O′X) is a spectral Deligne-
Mumford stack, it also satisfies (2) (by the first part of the proof), so that homotopy groups of O′X are also
quasi-coherent sheaves on the ordinary Deligne-Mumford stack X. It follows that π−n F is a nonzero quasi-
coherent sheaf on the ordinary Deligne-Mumford stack X. Since X is the spectrum of the commutative
ring R, we conclude that π−n F has a nonvanishing global section. The minimality of n guarantees that
π−nΓ(X;F) ' Γ(X;π−n F), so that the spectrum Γ(X;F) is nonzero. But Γ(X;F) can be identified with
the fiber of the map of global sections Γ(X;O′X)→ Γ(X;OX), which is equivalent to the identity map on the
E∞-ring B. We therefore obtain a contradiction, which completes the proof.

Remark 8.43. In the situation of Theorem 8.42, the spectral Deligne-Mumford stack (X,OX) is affine if and
only if X ' X′ and the Deligne-Mumford stack (X′, φ∗π0 OX) is affine. The “if” direction follows immediately
from the proof of Theorem 8.42. To prove the “only if” direction, we may assume that (X,OX) ' Specét(A)
for some E∞-ring A. Then the results of §V.2.2 show that X can be identified with the ∞-category of
sheaves on the∞-category of étale A-algebras, which is equivalent (by Theorem A.7.5.0.6) to the∞-category
of sheaves on the ordinary category of étale π0A, and therefore 1-localic. It follows that (X′, φ∗π0 OX) '
(X, π0 OX) which can be identified with the spectrum of the discrete commutative ring π0A.
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9 Comparison Results

In this section, we will discuss how some of the definitions given earlier in this paper are related to one
another, and to some of the ideas introduced in [42]. We can summarize our main results as follows:

(A) In §2, we introduced the notion of a (nonconnective) spectral scheme, which can be interpreted as

a scheme with respect to the geometry G
nSp
Zar , which encodes the Zariski topology on the ∞-category

CAlg of E∞-rings (see Definition 2.10). Replacing the Zariski topology by the étale topology, we

obtain another geometry G
nSp
ét whose schemes are the (nonconnective) spectral Deligne-Mumford stacks

of §8. There is an evident transformation of geometries G
nSp
Zar → G

nSp
ét , which is the identity functor

at the level of underlying ∞-categories. This transformation determines a relative spectrum functor
Specét

Z : SpSchnc → Stknc. We will show that this functor is fully faithful when restricted to 0-localic
spectral schemes (Theorem 9.1).

(B) Let k be an E∞-ring. The geometries GnSp
Zar and G

nSp
ét have relative versions GnSp

Zar (k) and G
nSp
ét (k), which

control the Zariski and étale topologies on the ∞-category of E∞-algebras over k. However, the role
of k is inessential. For example, the ∞-category of (nonconnective) spectral k-schemes is equivalent to
the ∞-category of (nonconnective) spectral schemes X equipped with a map X → SpecZ(k). We will
deduce this from a general relativization statement (Proposition 9.17).

(C) Let k be an ordinary commutative ring, regarded as a discrete E∞-ring. The theory of spectral k-
schemes is closely related to the theory of derived k-schemes introduced in [42]. More precisely, there
is a forgetful functor from derived k-schemes to spectral k-schemes, which an equivalence when k
contains the field Q of rational numbers (Corollary 9.28).

We begin by giving a precise formulation of (A):

Theorem 9.1. Let Specét
Z : RingTopZar → RingTopét be the relative spectrum functor associated to the

transformation of geometries G
nSp
Zar → G

nSp
ét . Then Specét

Z induces a fully faithful functor from the ∞-category
SpSchnc

≤0 of 0-localic nonconnective spectral schemes to the ∞-category Stknc
≤1 of 1-localic nonconnective

spectral Deligne-Mumford stacks.

We will prove Theorem 9.1 at the end of this section.

Remark 9.2. Since the relative spectrum functor Specét
Z carries SpecZ(R) into Specét(R) for any E∞-ring

R, it preserves various local properties of sheaves of E∞-rings, such as the property of being connective or
n-truncated. In particular, Specét

Z determines a fully faithful embedding from the ∞-category of 0-localic,
0-truncated connective spectral schemes into the ∞-category of 1-localic, 0-truncated connective Deligne-
Mumford stacks. This fully faithful embedding can be identified with the usual embedding of the category
of schemes into the 2-category of Deligne-Mumford stacks (see Propositions 2.37 and 8.36).

Warning 9.3. The relative spectrum functor Specét
Z is not fully faithful in general. This is a reflection of

the fact that the theory of spectral schemes (X,OX) is ill-behaved if we do not require X to be 0-localic.

Definition 9.4. Let X = (X,OX) be a nonconnective spectral Deligne-Mumford stack. We will say that X
is schematic if it belongs to the essential image of the fully faithful functor of Theorem 9.1. That is, X is
schematic if it has the form Specét

Zar Y for some 0-localic nonconnective spectral scheme Y.

It is not difficult to characterize the class of schematic spectral Deligne-Mumford stacks. For this, we
need to introduce a bit of terminology.

Definition 9.5. Suppose that j : U → X = (X,OX) is a map of nonconnective spectral Deligne-Mumford
stacks (nonconnective spectral schemes). We will say that j is an open immersion if it factors as a composition

U
j′→ (X/U ,OX |U)

j′′→ (X,OX)
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where j′ is an equivalence and j′′ is the étale morphism associated to a (−1)-truncated object U ∈ X. In
this case, we will also say that U is an open substack (open subscheme) of X.

Proposition 9.6. Let X = (X,OX) be a nonconnective spectral Deligne-Mumford stack. The following
conditions are equivalent:

(1) There exists a collection of open immersions {jα : Uα → X} which determine a covering of X, where
each Uα is affine.

(2) Let f∗ : X→ Y be a geometric morphism of ∞-topoi which exhibits Y as a 0-localic reflection of X (so
that Y can be identified with the ∞-topos of sheaves on the underlying locale of (−1)-truncated objects
of X). Then the pair Y = (Y, f∗ OX) is a nonconnective spectral scheme, and the geometric morphism
f∗ induces an equivalence X ' Specét

Zar Y.

(3) The nonconnective spectral Deligne-Mumford stack X is schematic.

Lemma 9.7. Let (X,OX) be a nonconnective spectral scheme, let (Y,OY) = Specét
Zar(X,OX) be the noncon-

nective associated spectral Deligne-Mumford stack, and let f∗ : X→ Y be the associated geometric morphism.
Then f∗ induces an equivalence τ≤−1 X→ τ≤−1 Y between the underlying locales of X and Y.

Proof. The assertion is local on X; we may therefore assume without loss of generality that (X,OX) '
SpecZarA is the affine nonconnective spectral scheme associated to an E∞-ring A. Then X ' Shv(X), where
X is the Zariski spectrum of the commutative ring π0A (see Lemma V.2.5.18). That is, X is the collection
of prime ideals p ⊆ π0A. As a topological space, X has a basis of open sets given by Ua = {p ∈ X : a /∈ p},
where a ranges over elements of the commutative ring π0A. The ∞-category τ≤−1 X is equivalent to the
nerve of the partially ordered set U(X) of open subsets of X.

Let C = (CAlgét
A/)

op denote the opposite of the ∞-category of étale A-algebras. As explained in §V.2.2,
we can identify Y with the∞-category Shv(C). In particular, τ≤−1 Y is equivalent to the nerve of the partially

ordered set P consisting of sieves C(0) ⊆ C which are saturated in the following sense: if A′ is an étale A-
algebra, and there exists a covering family {A′ → A′i} such that each A′i belongs to C(0), then A′ belongs to

C(0).
The pullback functor f∗ : τ≤−1 X → τ≤−1 Y determines a map of partially ordered sets λ : U(X) → P .

Unwinding the definitions, we see that λ carries an open subset U ⊆ X to the smallest saturated sieve
C(0) ⊆ C which contains A[a−1] whenever Ua ⊆ U . To complete the proof, it will suffice to show that λ is an
isomorphism of partially ordered sets.

For every open set U ⊆ X, let λ′(U) denote the full subcategory of C spanned by those étale A-algebras A′

such that the map SpecZA′ → SpecZA = X factors through U , where SpecZ denotes the Zariski spectrum.
We claim that λ′(U) = λ(U). Since λ′(U) is a saturated sieve which contains A[a−1] whenever Ua ⊆ U ,
we immediately deduce that λ(U) ⊆ λ′(U). Conversely, suppose that A′ is an étale A-algebra belonging
to λ′(U). We wish to prove that A′ ∈ λ(U). The map SpecZA′ → SpecZA is open (Proposition 0.2), so
its image is a quasi-compact open subset V ⊆ U ⊆ X. We can therefore write V =

⋃
1≤i≤n Uai for some

finite sequence of elements a1, . . . , an ∈ π0A. For 1 ≤ i ≤ n, let a′i denote the image of ai in π0A
′. Since

the inverse images of the open subsets Ua ⊆ X cover SpecZA′, the map A′ →
∏

1≤i≤nA
′[a′
−1
i ] is étale and

faithfully flat. Since λ(U) is saturated, it will suffice to show that A′[a′
−1
i ] ∈ λ(U); this follows immediately,

since A[a−1
i ] ∈ λ(U) by construction.

We next claim that if U and V are open subsets of X such that λ(U) ⊆ λ(V ), then U ⊆ V . Since
U is the union of basic open sets of the form Ua, we may assume that U = Ua for some a ∈ π0A. Then
A[a−1] ∈ λ(U) ⊆ λ(V ) = λ′(V ), so that V contains the image of the map SpecZA[a−1]→ SpecZA = X.

The above argument shows that λ is an isomorphism of U(X) onto a partially ordered subset of P .
To complete the proof, it will suffice to show that λ is surjective. To this end, choose a saturated sieve
C(0) ⊆ C; we wish to show that C(0) lies in the image of λ. Let U be the smallest open subset of X which
contains the (open) image UA′ of the map SpecZA′ → SpecZA whenever A′ ∈ C(0). By construction, we

have C(0) ⊆ λ′(U) = λ(U). To complete the proof, it suffices to show that this inclusion is an equality. That
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is, we must show that if B is an étale A-algebra such that the image of the map θ : SpecZB → SpecZA = X
is contained in U , then B ∈ C(0). Since the image of θ is quasi-compact, it is contained in a finite union of⋃

1≤i≤n UAi , where each Ai ∈ C(0). It follows that the map B →
∏

1≤i≤n(Ai ⊗A B) is étale and faithfully

flat. Since C(0) is a saturated sieve containing each Ai, it must also contain B.

Remark 9.8. In the situation of Lemma 9.7, if (X,OX) is a 0-localic spectral scheme, then the geometric
morphism f∗ : X→ Y exhibits X as the 0-localic ∞-topos associated to Y; see §T.6.4.5.

Proof of Proposition 9.6. The implication (2) ⇒ (3) is obvious. We next prove that (3) ⇒ (1). If (3) is
satisfied, then X ' Specét

Zar Y for some 0-localic nonconnective spectral scheme Y. The proof of Theorem 2.40
shows that Y admits a covering by open immersions {Vα → Y}, where each Vα is an affine nonconnective
spectral scheme. It follows that X admits a covering by open immersions {Specét

Z Vα → X}, and each
Specét

Z Vα is an affine nonconnective spectral Deligne-Mumford stack.
We complete the proof by showing that (1) ⇒ (2). The content of assertion (2) is local on Y. We are

therefore free to replace X by one of the open substacks Uα (note that since Y is the 0-localic reflection of X, the
pullback functor f∗ : Y→ X induces an equivalence on (−1)-truncated objects) and thereby reduce to the case
where X = SpecétR is affine. Using Lemma 9.7, we can identify Y with the∞-topos Shv(SpecZR) of sheaves
on the topological space SpecZR. Unwinding the definitions, we obtain an identification Y ' SpecZR, from
which assertion (2) follows immediately.

Corollary 9.9. Let X = (X,OX) be a nonconnective spectral Deligne-Mumford stack. Then X is schematic
if and only if the 0-truncated spectral Deligne-Mumford stack (X, π0 OX) is schematic.

Proof. This follows from the criterion of Proposition 9.6, since a nonconnective spectral Deligne-Mumford
stack (U,OU) is affine if and only if (U, π0 OU) is affine (see the proof of Theorem 2.40).

The proof of Theorem 9.1 involves some formal arguments which require a bit of a digression. Let G

be a geometry and let (X,OX) be a G-scheme. Then (X,OX) represents a functor X : Ind(Gop) → S, given
informally by the formula R 7→ MapSch(G)(SpecGR, (X,OX)). According to Theorem V.2.4.1, the G-scheme
(X,OX) is determined up to canonical equivalence by the functor X. In particular, for any ∞-topos Y and
any G-structure OY ∈ Strloc

G (Y), the mapping space MapLTop(G)((X,OX), (Y,OY)) can be recovered from the
functor X. Our first goal is to make this recovery somewhat explicit. To this end, let us identify OY with
an Ind(Gop)-valued sheaf on Y. Then the composition

Yop
OY→ Ind(Gop)

X→ S .

can be regarded as a presheaf of spaces on Y. The main technical ingredient in the proof of Theorem 9.1 is
the following:

Theorem 9.10. Let G be a geometry, let (X,OX) be a G-scheme representing the functor X : Ind(Gop)→ S,
and let (Y,OY) be an arbitrary object of LTop(G). Then the functor

(U ∈ Y) 7→ MapLTop(G)((X,OX), (Y/U ,OY |U))

can be identified with the sheafification of the presheaf given by the composition Yop
OY→ Ind(Gop)

X→ S .

Remark 9.11. Theorem 9.10 plays an important role in mediating between two different pictures of a
G-scheme:

(i) A G-scheme can be thought of as a pair (Y,OY), where Y is an ∞-topos and OY is a G-structure on Y.

(ii) A G-scheme can be thought of as representing a functor X : Ind(Gop)→ S.
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Both of these points of view are valuable, because they suggest two different generalizations of the notion of
a G-scheme. In case (i), we can consider arbitrary G-structures on∞-topoi (instead of considering only those
which are locally of the form SpecGR), and in case (ii) one can consider arbitrary functors X : Ind(Gop)→ S

(not only representable functors). However, these two generalizations can be related as follows: given a G-
structured∞-topos (Y,OY) and a functor X : Ind(Gop)→ S, one can define a mapping space Map((Y,OY), X)
to be the global sections of the sheafification of the presheaf given by (U ∈ Y) 7→ X(OY(U)). Theorem 9.10
asserts that this definition is sensible: that is, it recovers the usual mapping spaces in LTop(G)op in cases
where X is representable by a scheme (a somewhat easier argument shows that it also recovers the usual
mapping spaces in Fun(Ind(Gop), S) in cases where (Y,OY) is a G-scheme).

Before giving the proof of Theorem 9.10, let us record some consequences.

Corollary 9.12. Let α : G→ G′ be a transformation of geometries which determines an equivalence between
the underlying ∞-categories, and let C = Ind(Gop) ' Ind(G′op). Let (X,OX) be a G-scheme representing a

functor X : C → S, and let X ′ : C → S be the functor represented by the G′-scheme SpecG
′

G (X,OX). Regard

Cop as endowed with the Grothendieck topology determined by the geometry G′. Assume that

(∗) The topology on Cop is subcanonical: that is, the identity functor C→ C is a C-valued sheaf on Cop.

Then the evident map X → X ′ exhibits X ′ as a sheafification of X (with respect to the Grothendieck topology
on C).

Proof. The functor X ′ is given informally by the formulas

X ′(R) = MapSch(G′)(SpecG
′
R,SpecG

′

G (X,OX)) ' MapLTop(G)((X,OX),SpecG
′
R).

Fix an object R ∈ C, and let D denote the full subcategory of (CR/)
op spanned by those morphisms R→ R′

in C which are pushouts of admissible morphisms in G′, endowed with the Grothendieck topology determined

by the geometry G′. The results of §V.2.2 show that we can identify SpecG
′
R with the pair (Shv(D),O),

where O can be identified with the sheafification of the C-valued presheaf on D given by the composition
O′ : Dop ⊆ CR/ → C. Let Y : Dop → S be the sheafification of the presheaf X ◦ O. Theorem 9.10 gives
an identification X ′(R) ' Y (R). Assumption (∗) implies that O ' O′, so that Y is the sheafification of the
presheaf X ◦ O′. It follows that X ′ is the sheafification of X (see the proof of Proposition V.2.4.4).

Proof of Theorem 9.1. Let (X,OX) be a 0-localic spectral scheme. We will prove that for every spectral
scheme (Y,OY), the map

φY : MapSpSchnc((Y,OY), (X,OX))→ MapStknc(Specét
Z (Y,OY),Specét

Z (X,OX))

is a homotopy equivalence. Using Lemma V.2.3.11, we can reduce to the case where (Y,OY) is affine. Let
X : CAlg → S be the functor represented by (X,OX), and let X ′ : CAlg → S be the functor represented
by Specét

Z (X,OX). We wish to prove that the evident natural transformation α : X → X ′ is an equivalence.
The étale topology on the ∞-category CAlg is subcanonical (Theorem 5.14), so Corollary 9.12 implies that
α exhibits X ′ as a sheafification of X with respect to the étale topology on CAlg. To complete the proof, it
suffices to observe that Theorem 5.15 guarantees that X is already a sheaf with respect to the étale topology
on CAlg.

We now turn to the proof of Theorem 9.10. The proof relies on the following:

Lemma 9.13. Let G be a geometry, and suppose we are given a pair of objects (X,OX), (Y,OY) ∈ LTop(G).

Let F : Yop×X→ Ŝ be the functor given informally by the formula

F (U, V ) = MapLTop(G)((X/V ,OX |V ), (YU/,OY |U)).

Then F determines a colimit-preserving functor X→ Shv
Ŝ
(Y).
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Proof. Proposition V.2.3.5 shows that F preserves limits in the first variable, and can therefore be identified
with a functor f : X→ Shv

Ŝ
(Y). We wish to show that f preserves small colimits. Fix a small diagram {Vα}

in X having colimit V ∈ X; we need to prove that the canonical map lim−→ f(Vα) → f(V ) is an equivalence

in Shv
Ŝ
(Y). For each object U ∈ Y, let eU : Shv

Ŝ
(Y) ⊆ Fun(Yop, Ŝ) be the functor represented by U . The

objects eU generate Shv
Ŝ
(Y) under (non-small) colimits. It therefore suffices to prove that for every map of

the form α : eU → f(V ), the pullback map

(lim−→ f(Vα))×f(V ) eU ' lim−→(f(Vα)×f(V ) eU )→ eU

is an equivalence. We can identify α with a point η ∈ F (U, V ), which determines a geometry morphism
α∗ : X/V → Y/U . Remark V.2.3.4 gives canonical identifications f(Vα)×f(V ) eU ' eα∗Vα . Since the functor
α∗ preserves small colimits, we are reduced to proving that the Yoneda embedding e preserves small colimits.
Note that e can be identified with the inclusion X ' ShvS(X) ⊆ Shv

Ŝ
(X), which preserves small colimits.

Proof of Theorem 9.10. Let (X,OX) be a G-scheme. For each V ∈ X, let XV : LTop(G) → Ŝ denote the
functor corepresented by (X/V ,OX |V ), so that XV ◦SpecG can be identified with the functor XV : Ind(Gop)→
S determined by the G-scheme (X/V ,OX |V ). Let (Y,OY) be an arbitrary G-structured ∞-topos, and let
χ : YY → LTop(G)op denote the functor given informally by the formula U 7→ (Y/U ,OY |U). Let Q be a
left adjoint to the inclusion of the ∞-category of affine G-schemes into LTop(G)op, given informally by the
formula (Z,OZ) 7→ SpecG Γ(OZ). We will prove that, for every object V ∈ X, the natural transformation

θV : XV ◦ OY ' XV ◦Q ◦ χ→ XV ◦ χ

exhibits XV ◦ χ as a sheafification of the presheaf XV ◦ OY : Yop → S.
Let L : Fun(Yop, Ŝ)→ Shv

Ŝ
(Y) be a left adjoint to the inclusion. Let X0 denote the full subcategory of X

spanned by those objects for which L(θV ) is an equivalence; we wish to prove that X0 ⊆ X. If (X/V ,OX |V )

is affine, then θV is an equivalence of presheaves so that V ∈ X0. In view of Lemma V.2.3.11, it will suffice to
show that X0 is stable under small colimits. Lemma 9.13 shows that the functor V 7→ XV ◦χ preserves small
colimits (as a functor from X to Shv

Ŝ
(Y)). To complete the proof, it will suffice to show that the functor

V 7→ L(XV ◦OY) also preserves small colimits. In other words, we must show that if V ∈ X is a colimit of a

diagram {Vα} in X and F : Yop → Ŝ is a sheaf, then the canonical map

Map
Fun(Yop,Ŝ)

(XV ◦ OY,F)→ lim←−Map
Fun(Yop,Ŝ)

(XVα ◦ OY,F)

is a homotopy equivalence.
Let C denote the full subcategory of the fiber product Yop×Fun({0},Ind(Gop)) Fun(∆1, Ind(Gop)) spanned

by pairs (U, f : OY(U) → A), where U ∈ Y and f is an admissible morphism in Ind(Gop). Let C0 denote
the full subcategory of C spanned by those objects (U, f : OY(U) → A) where f is an equivalence, so that
the projection map C0 → Yop is an equivalence. Note that the inclusion i : C0 ⊆ C admits a left adjoint
f . Let π : C → Ind(Gop) be the functor given by the formula (U, f : OY(U) → A) 7→ A. Let F′ denote the

composition C
f→ C0 → Yop

F→ Ŝ, so that F′ is a right Kan extension of its restriction F′ |C0. It follows that,
for every object V ∈ X, we have a canonical homotopy equivalence

Map
Fun(C,Ŝ)

(XV ◦ π,F′)→ Map
Fun(C0,Ŝ)

(XV ◦ π ◦ i,F′ ◦i) ' Map
Fun(Yop,Ŝ)

(XV ◦ OY,F).

We are thereby reduced to proving that if V is the colimit of a diagram {Vα} in X, then the canonical map

Map
Fun(C,Ŝ)

(XV ◦ π,F′)→ lim←−Map
Fun(C,Ŝ)

(XVα ◦ π,F
′)

is a homotopy equivalence.
For each object U ∈ Y, let CU denote the fiber product C×Yop{U}: that is, the full subcategory of

Ind(Gop)OY(U)/ spanned by the admissible morphisms OY(U) → A. Let E denote the full subcategory
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of Fun(C, Ŝ) spanned by those functors F : C → Ŝ with the property that each restriction F |CU is a
sheaf (with respect to the Grothendieck topology determined by the collection of admissible coverings in

G). Using Lemma V.2.4.9, we deduce that the inclusion E ⊆ Fun(C, Ŝ) admits a left adjoint L′, which is
characterized by the requirement (L′F )|CU is a sheafification of F |CU for each V ∈ Y. We observe that
F′ ∈ E. It therefore suffices to show that if V is the colimit of a diagram {Vα} in X, then the canonical map
L′ lim−→(XVα ◦ π) → L′(XV ◦ π) is an equivalence. In other words, we must show that for each U ∈ Y, the
presheaves lim−→XVα |CU and XV |CU have the same sheafification. This follows from Lemma 9.13, applied to

the affine G-scheme SpecG OY(U).

We now discuss the dependence of the theory of spectral k-schemes on the choice of E∞-ring k. We begin
with some general remarks.

Proposition 9.14. Let C be a compactly generated presentable ∞-category, and let G be the full subcategory
of Cop spanned by the compact objects. Suppose that G is equipped with the structure of a finitary geometry
(Definition V.1.2.5 and Remark V.2.2.8). Then:

(a) For each object X ∈ C, the ∞-category CX/ is compactly generated; we let G(X) denote the full
subcategory of (CX/)

op spanned by the compact objects of CX/.

Given an object Z ∈ G(X), we will say that a sieve G(X)
(0)
/Z ⊆ G(X)/Z is covering if there exists a

morphism Z → Z0 in Cop where Z0 ∈ G, and an admissible covering {Yα → Z0} of Z0 such that each of the

induced maps Yα ×Z0
Z → Z belongs to the sieve G(X)

(0)
/Z .

(b) For each object X ∈ C, the collection of covering sieves determines a Grothendieck topology on the
∞-category G(X).

We will say that a morphism f : Y → Z in Cop is admissible if there exists a pullback diagram

Y
f //

��

Z

��
Y0

f0 // Z0

in Cop, where f0 is an admissible morphism in G. Suppose that the collection of admissible morphisms in
Cop is stable under retracts. Then:

(c) For each object X ∈ C, the collection of admissible morphisms together with the Grothendieck topology
on G(X) exhibit G(X) as a finitary geometry.

Proof. We first prove (a). Proposition T.5.5.3.11 guarantees that CX/ is presentable. Let G(X) denote the
full subcategory of (C/X)op spanned by those objects which are compact in C/X . The inclusion G(X)op ⊆ C/X
extends to a fully faithful embedding F : Ind(G(X)op)→ C/X (Proposition T.5.3.5.11) which preserves small
colimits (Proposition T.5.5.1.9). It follows that F admits a right adjoint G (Corollary T.5.5.2.9). To complete
the proof of (a), it will suffice to show that F is essentially surjective; equivalently, we must show that G is
conservative. To this end, let α : Y → Z be a morphism in CX/ such that G(α) is an equivalence. We wish to
show that α is an equivalence. Since C is compactly generated, this is equivalent to the requirement that that
for every compact object K ∈ C, composition with α induces a homotopy equivalence θ : MapC(K,Y ) →
MapC(K,Z). Let u : C→ CX/ denote a left adjoint to the forgetful functor, given informally by the formula
u(C) ' C

∐
X. We can identify θ with the map MapCX/

(u(K), Y ) → MapCX/
(u(K), Z). Since G(α) is an

equivalence by assumption, it will suffice to show that u(K) is a compact object of CX/. We now complete
the proof by observing that because the forgetful functor CX/ → C preserves filtered colimits (Proposition
T.4.4.2.9), the functor u preserves compact objects (Proposition T.5.5.7.2).

We now prove (b). It will suffice to show that the collection of covering sieves in G(X) satisfies conditions
(1), (2), and (3) of Definition T.6.2.2.1:
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(1) If Z is an object of G(X), then G(X)/Z is a covering sieve on Z. This is clear, since G(X)/Z contains
the pullback of the admissible covering sieve {1→ 1} in G, where 1 denotes the final object of G.

(2) If f : Y → Z is a morphism in G(X) and G(X)
(0)
/Z is a covering sieve on Z, then the pullback sieve

f∗ G(X)
(0)
/Y ⊆ G(X)/Y is a covering sieve on Y . This follows immediately from the definition.

(3) Let Z ∈ G(X) be an object, let G(X)
(0)
/Z ⊆ G(X)/Z be a covering sieve on Z, and let G(X)

(1)
/Z ⊆ G(X)/Z

be another sieve on Z. Suppose that, for every morphism f : Y → Z belonging to G(X)
(0)
/Z , the pullback

sieve f∗ G(X)
(1)
/Z is a covering sieve on Y . We must show that G(X)

(1)
/Z is a covering sieve on Z. Invoking

our assumption that G(X)
(0)
/Z is covering, we deduce the existence of a map Z → Z0 for Z0 ∈ G and

an admissible covering {Yα → Z0}α∈A in G such that each of the maps fα : Yα ×Z0
Z → Z belongs to

G(X)
(0)
/Z . Since G is finitary, we may assume that the collection of indices A is finite. For each α ∈ A,

there exists a morphism Yα ×Z0
Z → Wα, where Wα ∈ G, and an admissible covering {Vαβ → Wα}

such that each of the pullback maps Vαβ ×Wα
(Yα ×Z0

Z) → (Yα ×Z0
Z) belongs to f∗ G(X)

(1)
/Z . Let

Z ′0 = Z0 ×
∏
αWα ∈ G, so that the collection of products {Yα × Vαβ → Z ′0} forms an admissible

covering of Z ′0. We observe that each of the pullback maps (Yα × Vαβ)×Z′0 Z → Z belongs to G
(1)
/Z , so

that G
(1)
/Z is covering as desired.

We now prove (c). We first claim that the collection of admissible morphisms in G(X) is stable under
composition (note that this collection clearly contains all equivalences in G(X)). Suppose we are given
admissible morphisms f : U → V and g : V → W in G(X). We wish to prove that g ◦ f is an admissible
morphism. Since f and g are admissible, there exist a pullback diagrams

U
f //

��

V

��

V //

��

W

��
U0

f0 // V0 V1
g0 // W1

in Cop, where f0 and g0 are admissible morphisms in G. Write W as a filtered limit lim←−{Wα} of compact
objects of (CW1/)

op, so that V ' V1 ×W1 W is the limit of the filtered diagram {V1 ×W1 Wα}. Since V0 is a
compact object of C, the projection V → V0 factors as a composition

V → V1 ×W1 Wα → V0

for some index α. Replacing W1 by Wα (and V1 by V1 ×W1
Wα), we may suppose that the map V → V0

factors through V1. Replacing V0 by V1 (and U0 by U0 ×V0 V1), we may suppose that V0 = V1 (as objects of
C/V ). Then g ◦ f is a pullback of g0 ◦ f0, and therefore admissible as desired.

It is clear that the Grothendieck topology on G(X) is generated by a Grothendieck topology on the
subcategory of G(X) spanned by the admissible morphisms, and that this Grothendieck topology is finitary.
To complete the proof of (c), it will suffice to show that the collection of admissible morphisms satisfies
conditions (i) through (iii) of Definition V.1.2.1. Condition (i) is obvious, and condition (iii) follows from
our assumption that the class of admissible morphisms is stable under retracts. To prove (ii), suppose we
are given a diagram

V
g

  
U

f
??

h // W
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in G(X), where g and h are admissible. We must show that f is admissible. As above, we can choose pullback
diagrams

U
h //

��

W

��

V
g //

��

W

��
U0

h0 // W0 V1
g0 // W1

in Cop, where g0 and h0 are admissible morphisms in G. Replacing W0 and W1 by the product W0 ×W1,
we can assume that W0 = W1. Write W as a filtered limit lim−→{Wα} of compact objects of (CW0/)

op. Then

the map lim←−{U0 ×W0 Wα} ' U
f→ V → V1 factors through U0 ×W0 Wα for some index α. Replacing W0 by

Wα, we reduce to the case where there exists a map f0 : U0 → V1 such that f is a pullback of f0. Since g0

and h0 are admissible, the map f0 is admissible (since G is assumed to be a geometry); it follows that f is
an admissible morphism in G(X).

Remark 9.15. In the situation of Proposition 9.14, suppose that we are given a morphism f : X → Y in
the ∞-category C. Then the left adjoint to the forgetful functor C/X → C/Y preserves compact objects,
and therefore induces a functor f∗ : G(X)→ G(Y ). It is easy to see that this functor is a transformation of
geometries.

Remark 9.16. Let C be as in Proposition 9.14, let f : A→ B be a morphism in C, and let f∗ : G(A)→ G(B)
be the transformation of geometries of Remark 9.15. Let X be an ∞-topos, and let OX : G(B) → X be a
left-exact functor, which we will identify with a CB/-valued sheaf F on X. Then f∗◦OX is a left-exact functor
from G(A) to X¡ which we can identify with the CA/-valued sheaf on X obtained by the composition

Xop
F→ CB/ → CA/ .

Note that the collection of admissible morphisms and admissible coverings in G(B) is generated by the f∗-
images of admissible morphisms and admissible coverings in G(A). Consequently, the sheaf OX is G(B)-local
if and only if f∗ OX is G(A)-local. Similarly, a morphism α : OX → O′X between G(B)-local sheaves is
G(B)-local if and only if it induces a G(A)-local morphism f∗ ◦ OX → f∗ ◦ O′X.

Proposition 9.17. Let C be as in Proposition 9.14, let f : A → B be a morphism in C, and let θ :
LTop(G(B)) → LTop(G(A)) be the functor given by composition with induced transformation of geometries
f∗ : G(A)→ G(B). Then:

(1) For every object R ∈ CB/ ' Ind(G(B)op), the functor θ carries SpecG(B)R to SpecG(A)R (here we
abuse notation by identifying R with its image in CA/ ' Ind(G(A)op)).

(2) The functor θ induces an equivalence of ∞-categories

LTop(G(B)) ' LTop(G(B))SpecG(B) B/ → LTop(G(A))θ(SpecG(B) B)/ ' LTop(G(A))SpecG(A) B/.

(3) The functor θ carries G(B)-schemes to G(A)-schemes, and induces an equivalence of ∞-categories

Sch(G(B))→ Sch(G(A))/ SpecG(A)B.

In particular, for every object B ∈ C we have a categorical equivalence Sch(G(B)) ' Sch(G)/ SpecG B.

Proof. We first prove (1). Let D denote the full subcategory of (CR/)
op spanned by the admissible morphisms

R′ → R in Cop, endowed with the Grothendieck topology determined by the geometry structure on G(R).

Using the explicit construction of spectra described in §V.2.2, we see that SpecG(A)R can be identified with
the pair (X,OX), where X = Shv(D) and OX corresponds to the CA/-valued sheaf given by sheafifying the
presheaf given by the composition

FA : Dop ⊆ CR/ → CA/ .
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Similarly, SpecG(B)R can be identified with the pair (X,O′X), where O′X is obtained by sheafifying the presheaf
given by the composition

FB : Dop → CR/ → CB/ .

If φ : CB/ → CA/ denotes the forgetful functor, then we have an equivalence FA ' φFB , so that

θ(X,O′X) = (X, φO′X) ' (X,OX)

as required.
We now prove (2). Replacing C by CA/, we are reduced to proving that θ induces an equivalence

φ : LTop(G(B))→ LTop(G)SpecG B/. The map φ fits into a commutative diagram

LTop(G(B))
φ //

%%

LTop(G)SpecG B/

xx
LTop

where the vertical maps are coCartesian fibrations, and the map φ preserves coCartesian morphisms. It
therefore suffices to show that φ induces an equivalence of ∞-categories after passing to the fiber over any
object X ∈ LTop (Corollary T.2.4.4.4). Unwinding the definitions, we are reduced to proving that homotopy
coherent diagram

Strloc
G(B)(X) //

��

Strloc
G (X)

��
CB/ // C

is a homotopy pullback square, where the vertical maps are given by the formation of global sections. Using
Remark 9.16, we can reduce to proving the analogous assertion in the case where G is a discrete geometry.
In this case, the above square is equivalent to the diagram

ShvCB/(X) //

��

ShvC(X)

��
CB/ // C,

where the vertical maps are given by evaluation on the final object of X. Since horizontal maps in this
diagram are left fibrations, we can reduce (using Corollary T.2.4.4.4 again) to proving that the left vertical
map induces a homotopy equivalence

χ : MapFun(Xop,C)(F,G)→ MapC(B,G(1)).

Here F denotes the constant functor Xop → C taking the value B, G denotes an arbitrary C-valued sheaf on X,
and χ is given by evaluation on the final object 1 in X. The desired result now follows from the observation
that F is a left Kan extension of the constant functor {1} → {B} ↪→ C along the inclusion {1} ↪→ Xop.

Assertion (3) follows immediately from (1) and (2).

Example 9.18. Let C denote the ∞-category CAlg of E∞-rings, and let us identify the full subcategory
G ⊆ Cop with the geometry G

nSp
Zar of Definition 2.10. We note that this example satisfies the hypothesis of

Proposition 9.14: namely, the admissible morphisms in C are precisely those maps of E∞-algebras of the
form A 7→ A[ 1

a ], where a ∈ π0A; this collection is stable under retracts by virtue of Remark 2.11. For every

E∞-ring k, the geometry G(k) described in Proposition 9.14 agrees with the geometry G
nSp
Zar (k) of Definition

93



2.10: this follows immediately from Remark 2.16. Proposition 9.17 then provides a justification for the
terminology of Definition 2.27: the ∞-category of nonconnective spectral k-schemes is equivalent to the
∞-category of nonconnective spectral schemes lying over SpecZ k. Similar reasoning applies if we replace
the geometry G

nSp
Zar by G

nSp
ét (using Proposition 8.17 in place of Remark 2.16; in this case, the admissible

morphisms in C are precisely the étale morphisms of E∞-rings).

Example 9.19. Let C denote the ∞-category CAlgcn of connective E∞-rings, and let us identify the full
subcategory G ⊆ Cop with the geometry G

Sp
Zar of Definition 2.10. This example also satisfies the hypothesis of

Proposition 9.14. For every connective E∞-ring k, the geometry G(k) described in Proposition 9.14 agrees

with the geometry G
Sp
Zar(k) of Definition 2.10: this follows again from Remark 2.16. It follows that the ∞-

category of spectral k-schemes is equivalent to the ∞-category of spectral schemes lying over SpecZ k. The
same reasoning applies to spectral Deligne-Mumford stacks (using Proposition 8.17 again).

We can also apply Proposition 9.17 to the theory of derived schemes introduced in [42]. First, we need
to recall a bit of notation. Let SCR denote the ∞-category of simplicial commutative rings, so that full
subcategory SCR≤0 ⊆ SCR spanned by the discrete objects can be identified with the nerve of the category
of ordinary commutative rings. For every commutative ring k, we let Polyk denote the category of polynomial
algebras k[x1, . . . , xn], regarded as a full subcategory of the category of commutative k-algebras. There is
an evident fully faithful embedding

f : N(Polyk) ↪→ (SCR≤0)k/ ↪→ SCRk/ .

Using Proposition T.5.5.8.15, we deduce that this inclusion can be extended (in an essentially unique fashion)
to a functor F : SCRk = PΣ(N(Polyk))→ SCRk/ which preserves sifted colimits.

Proposition 9.20. For every commutative ring k, the functor F : SCRk → SCRk/ defined above is an
equivalence of ∞-categories.

Proof. We first show that f preserves finite coproducts. Since F clearly preserves initial objects, it suffices to
show that F preserves pairwise coproducts: in other words, we must show that for every pair of nonnegative
integers m and n, the diagram

k //

��

k[x1, . . . , xm]

��
k[y1, . . . , yn] // k[x1, . . . , xm, y1, . . . , yn]

is a pushout square in the ∞-category SCR. In view of Proposition V.4.1.11, it suffices to show that the
image of this diagram is a pushout square in the ∞-category CAlg of E∞-rings. In other words, we must
show that the canonical map

k[x1, . . . , xm]⊗k k[y1, . . . , yn]→ k[x1, . . . , xm, y1, . . . , yn]

is an equivalence of k-module spectra; this follows from Proposition A.7.2.2.13.
Using Proposition T.5.5.8.15, we deduce that the functor F : SCRk → SCRk/ preserves small colimits.

We next claim that F is fully faithful. In view of Proposition T.5.5.8.22, it suffices to show that every
polynomial ring R : k[x1, . . . , xn] is a compact projective object of SCRk/. Let e : SCRk/ be the functor
corepresented by R; we wish to show that e preserves sifted colimits. Since R is the coproduct of k with
Z[x1, . . . , xn] in SCR, we can identify e with the composition

SCRk/
θ→ SCR

e′→ S,

where e′ is the functor corepresented by Z[x1, . . . , xn] and θ is the evident forgetful functor. The functor θ
preserves all contractible colimits (Proposition T.4.4.2.9) and Z[x1, . . . , xn] is a compact projective object of
SCR (Proposition T.5.5.8.22), we conclude that e preserves sifted colimits as desired.
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Corollary T.5.5.2.9 guarantees that the functor F admits a right adjoint G. To complete the proof that
the fully faithful functor F is an equivalence of ∞-categories, it will suffice to show that G is conservative.
In other words, we must show that if α : R→ R′ is a morphism in SCRk/ such that G(α) is an equivalence,
then α is an equivalence. This follows from the existence of a commutative diagram

MapSCR(Z[x], R) //

��

MapSCR(Z[x], R′)

��
MapSCRk

(k[x], G(R)) // MapSCR k(k[x], R′)

where the vertical maps are homotopy equivalences.

Example 9.21. Let G denote the full subcategory of SCRop spanned by those objects which are compact
in SCR, and let us identify G with the geometry Gder

Zar introduced in §V.4.2. The hypothesis of Proposition
9.14 are satisfied, so that for every object k ∈ SCR we get an induced geometry G(k). If k is a discrete
commutative ring, then we can identify G(k) with the geometry Gder

Zar(k) of §V.4.2. It follows from Proposition
9.17 that the∞-category of derived k-schemes is equivalent to the∞-category of derived schemes lying over

SpecG
der
Zar(k). Similarly reasoning shows that the ∞-category of derived Deligne-Mumford stacks over k is

equivalent to the ∞-category of derived Deligne-Mumford stacks lying over SpecG
der
ét (k).

Our final goal in this section is to explain the connection between the theory of spectral algebraic geometry
developed in this paper with the theory of derived algebraic geometry introduced in [42]. Fix a commutative
ring k; we will abuse notation by identifying k with a discrete E∞-ring (see Proposition A.7.1.3.18). Let
SCRk denote the ∞-category of simplicial commutative k-algebras (see §V.4.1) and CAlgcn

k the ∞-category
of connective E∞-algebras over k. Proposition V.4.1.11 furnishes a forgetful functor θ : SCRk → CAlgcn

k ,
which admits both right and left adjoints. We let Ψ : CAlgcn

k → SCRk denote a left adjoint to θ.

Example 9.22. The functor Ψ carries free E∞-algebras to polynomial algebras; that is, we have canonical
equivalences Ψ(k{x1, . . . , xn}) ' k[x1, . . . , xn].

Since the forgetful functor θ preserves small colimits (Proposition V.4.1.11), the functor Ψ preserves
compact objects (Proposition T.5.5.7.2), and therefore induces left-exact functors

ΨZar : GSp
Zar(k)→ Gder

Zar(k) Ψét : GSp
ét (k)→ Gder

ét (k).

Our first goal in this section is to prove the following:

Proposition 9.23. The functors ΨZar : GSp
Zar(k)→ Gder

Zar(k) and Ψét : GSp
ét (k)→ Gder

ét (k) are transformations
of geometries.

To prove Proposition 9.23, we need to understand the functor Ψ a bit better. Note that the forgetful
functor θ : SCRk → CAlgcn

k is compatible with the formation of the underlying spaces. In particular, for
every object A ∈ SCRk, we have a canonical isomorphism π0A ' π0θ(A) of commutative k-algebras.

Lemma 9.24. Let A be a connective E∞-algebra over k. Then the unit map A → θ(Ψ(A)) induces an
isomorphism of commutative rings

φ : π0A→ π0θ(Ψ(A)) ' π0 Ψ(A).

Proof. Let R be a (discrete) commutative k-algebra. We wish to show that composition with φ induces
a bijection ψ : Hom(π0 Ψ(A), R) → Hom(π0A,R). Regard R as a discrete object of SCRk (so that θ(R)
is a discrete object of SCRk), we can identify ψ with the homotopy equivalence MapSCRk

(Ψ(A), R) →
MapCAlgcn

k
(A, θ(R)) resulting from the adjunction between θ and Ψ.
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Lemma 9.25. Let f : A→ B be an étale morphism in CAlgcn
k . Then the induced map Ψ(A)→ Ψ(B) is an

étale morphism in SCRk.

Proof. The morphism f induces an étale map of commutative rings π0A → π0B. Using Lemma 9.24, we
can identify π0B with an étale algebra over the commutative ring π0 Ψ(A). Corollary V.4.3.12 ensures the
existence of an (essentially unique) étale morphism f ′ : Ψ(A)→ B′ in SCRk with π0B

′ ' π0B. The map f ′

is adjoint to a map of E∞-algebras g : A→ θ(B′), and π0g : π0A→ π0θ(B
′) ' π0B

′ lifts to an isomorphism

π0B ' π0B
′. Applying Corollary A.7.5.4.6, we deduce that g factors as a composition A

f→ B → θ(B′), so
that f ′ factors as a composition

Ψ(A)
Ψ(f)→ Ψ(B)

γ→ B′.

Since f ′ is étale, it will suffice to show that γ is an equivalence. To this end, choose an arbitrary morphism
Ψ(A)→ R in SCRk; we will show that composition with γ induces a homotopy equivalence

Map(SCRk)Ψ(A)/
(B′, R)→ Map(SCRk)Ψ(A)/

(Ψ(B), R) ' MapCAlgA/
(B, θ(R)).

This is clear, since Propositions A.7.5.4.6 and V.4.3.11 allow us to identify both sides with the discrete space
Homπ0A(π0B, π0R).

Example 9.26. Let A be a connective k-algebra, and let a ∈ π0A ' π0 Ψ(A). Lemmas 9.24 and 9.25 imply
that the functor Ψ carries A[ 1

a ] to an étale Ψ(A)-algebra R with π0R ' (π0A)[ 1
a ]. In other words, the functor

Ψ commutes with localization of algebras: we have canonical equivalences Ψ(A[ 1
a ]) ' Ψ(A)[ 1

a ].

Proof of Proposition 9.23. Lemma 9.25 shows that Ψét carries admissible morphisms in G
Sp
ét (k) to admissi-

ble morphisms in Gder
ét (k), and Example 9.26 shows that ΨZar carries admissible morphisms in G

Sp
Zar(k) to

admissible morphisms in Gder
Zar(k). For each of the geometries under consideration, a collection of admis-

sible morphisms {SpecAα → SpecA} is a covering if and only if there exists a finite collection of indices
{α1, . . . , αn} such that the underlying map of commutative rings π0A→

∏
1≤i≤n π0Aαi . Using Lemma 9.24,

we deduce that the functors ΨZar and Ψét preserve admissible coverings.

Using Proposition 9.23, we deduce that composition with ΨZar and Ψét yields functors

ΘZar : LTop(Gder
Zar(k))→ LTop(GSp

Zar(k)) Θét : LTop(Gder
ét (k))→ LTop(GSp

ét (k)).

These functors can be described concretely as follows. Let X be an∞-topos and OX a sheaf on X with values
in SCRk. Composition with the forgetful functor θ : SCRk → CAlgcn

k determines a sheaf of connective
E∞-algebras on X. If OX is local or strictly Henselian, then θ(OX) has the same property; the functors ΘZar

and Θét are both given by the construction

(X,OX) 7→ (X, θOX).

Proposition 9.27. The functor ΘZar carries derived schemes over k to spectral schemes over k, and the
functor Θét carries derived Deligne-Mumford stacks over k to spectral Deligne-Mumford stacks over k.

Proof. The assertion is local. It therefore suffices to show that for every object A ∈ SCRk, we have

ΘZar SpecG
der
Zar(k)A ' SpecG

Sp
Zar(k) θ(A) and Θét SpecG

der
ét (k)A ' SpecG

Sp
ét (k) θ(A). Since the forgetful functor θ

induces an equivalence from the ∞-category of étale A-algebras in SCRk to the ∞-category of étale θ(A)-
algebras in CAlgk (both are equivalent to the nerve of the ordinary category of étale π0A-algebras), this
follows from the explicit construction of spectra given in §V.2.2. Alternatively, one can deduce the first as-
sertion by combining Theorems 2.40 and V.4.2.15 (after reducing to the affine case), and the second assertion
by combining Theorems 8.42 and V.4.3.32.

In what follows, we let Z Specder
Sp and ét Specder

Sp denote the relative spectrum functors associated to the
transformations of geometries

G
Sp
Zar(k)→ Gder

Zar(k) G
Sp
ét (k)→ Gder

ét (k).
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Corollary 9.28. The adjoint functors ΘZar : LTop(Gder
Zar(k))→ LTop(GSp

Zar(k)) and

Z Specder
Sp : LTop(GSp

Zar(k))→ LTop(Gder
Zar(k))

restrict to determine an adjunction

Sch(Gder
Zar(k))

ΘZar //Sch(GSp
Zar(k)).oo

The adjoint functors
Θét : LTop(Gder

ét (k))→ LTop(GSp
ét (k))

and

ét Specder
Sp : LTop(GSp

ét (k))→ LTop(Gder
ét (k))

restrict to determine an adjunction

Sch(Gder
ét (k))

Θét //Sch(GSp
ét (k)).oo

If k is an algebra over the ring Q of natural numbers, then each of these functors is an equivalence of
∞-categories.

Proof. The first two assertions follow from Proposition 9.27 (note that a relative spectrum functor SpecG
′

G

always carries G-schemes to G′-schemes). The final assertion follows from the observation that if k is a
Q-algebra, then the forgetful functor θ : SCRk → CAlgcn

k is an equivalence of ∞-categories (Proposition
V.4.1.11).

We conclude this section by giving an explicit description of the relative spectrum functors Z Specder
Sp

and ét Specder
Sp appearing in the statement of Corollary 9.28. Fix an ∞-topos X. Let OX be a connective

sheaf of E∞-algebras over k on X, which we view as a functor Xop → CAlgcn
k . The composite functor

Ψ ◦OX : Xop → SCRk need not be a SCRk-valued sheaf on X. However, it admits a sheafification, which we
will denote by OΨ

X (see Lemma 1.12).

Proposition 9.29. Let (X,OX) be an object of LTop(GSp
Zar(k)). Then the canonical map

φ : OX → (θ ◦Ψ)OX → θ(OΨ
X)

determines an equivalence
(X,OΨ

X) 'Z Specder
Sp (X,OX).

If OX is strictly Henselian, then φ determines an equivalence (X,OΨ
X) 'ét Specder

Sp (X,OX).

Proof. Using Lemma 9.24, we deduce that the canonical map π0 OX → π0 O
Ψ
X is an isomorphism. Using

Corollary 2.25 and Remark V.4.2.13, we deduce that OΨ
X is local (and can therefore be identified with a

Gder
Zar(k)-structure on X); similarly, if OX is strictly Henselian, then Remark V.4.3.18 guarantees that OΨ

X

is strictly Henselian (and can therefore be identified with a Gder
ét (k)-structure on X). Let Y be any other

∞-topos and OY any SCRk-valued sheaf on Y. It is easy to see that φ induces a homotopy equivalence

MapLTop(Gder
disc(k))((X,O

Ψ
X), (Y,OY))→ MapLTop(GSp

disc(k))((X,OX), (Y, θOY)).

To complete the proof, it will suffice to show the following:

(1) If OY is local and f∗ : X → Y is a geometric morphism, then a morphism α : f∗ OX → θOY in

ShvCAlgk(Y)≥0 is local (with respect to the geometry G
Sp
Zar(k)) if and only if the adjoint morphism

β : f∗(OΨ
X)→ OY is local (with respect to the geometry Gder

Zar(k)).
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(2) If OY is strictly Henselian, then α is local (with respect to the geometry G
Sp
ét (k)) if and only if β is local

(with respect to the geometry Gder
ét (k)).

To prove (1), we observe that both conditions are equivalent to the locality of the induced map π0f
∗ OX '

π0f
∗ OΨ

X → π0 OY ' π0θOY, since the pregeometries T
Sp
Zar(k) and TZar(k) are compatible with 0-truncations

(Corollary 2.24 and Remark V.4.2.11). Similarly, assertion (2) follows since the pregeometries T
Sp
ét (k) and

Tét(k) are compatible with 0-truncations (Propositions V.4.3.28 and 8.40).

Remark 9.30. Proposition 9.29 asserts that if OX is a local sheaf of E∞-algebras over k on an ∞-topos X,
then its relative spectrum has the same underlying ∞-topos, with structure sheaf given by the sheafification
of the presheaf (U ∈ X) 7→ ΨOX(U). If (X,OX) is a connective spectral scheme over k (or a connective
spectral Deligne-Mumford stack over k), then we can be even more explicit. If (X,OX) is the spectrum of
a connective k-algebra A, then the results of §V.2.2 show that X ' Shv(C), where C is the opposite of the
∞-category of étale A-algebras. Similarly, the spectrum of Ψ(A) has the form (X′,O′X′), where X′ = Shv(C′)
for C′ the opposite of the ∞-category of étale Ψ(A)-algebras in SCRk. Lemmas 9.24 and 9.25 show that
the functor Ψ determines an equivalence from C to C′, thereby giving an identification of X with X′. The
composition of OX with the canonical map φ : Cop → P(C)op → Shv(C)op can be identified with the
composition Cop ⊆ CAlgA/ → CAlgk, and the restriction O′X′ |C

′op admits a similar description. It follows

that the canonical map ΨOX(U) → O′X′(U) is an equivalence whenever U lies in the essential image of φ.
Extrapolating to the non-affine case, we arrive at the following conclusion: the sheafification of the presheaf
formulate our observation as follows: the sheafification of the presheaf (U ∈ X) 7→ ΨOX(U) does not change
the values of that presheaf on any object U ∈ X for which (X/U ,OX |U) is affine.

98



References

[1] Atiyah, M. and I. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co.,
Reading, Mass.-London-Don Mills, Ontario.

[2] Behrend, K. and B. Fantechi. The intrinsic normal cone. Inventiones Mathematicae 128 (1997) no. 1,
45-88.

[3] Ben-Zvi, D., Francis, J., and D. Nadler. Integral Transforms and and Drinfeld Centers in Derived
Algebraic Geometry.

[4] Bergner, J. Three models for the homotopy theory of homotopy theories. Topology 46 (2007), no. 4,
397–436.

[5] Boardman, J. and R. Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces. Lecture
Notes in Mathematics, 347, Springer-Verlag (1973).

[6] Crane, L. and D.N. Yetter. Deformations of (bi)tensor categories. Cahiers Topologie Geom. Differentielle
Categ. 39 (1998), no. 3, 163–180.

[7] Deligne, P. Catégories tannakiennes. The Grothendieck Festschrift, Vol. II, 111195, Progr. Math., 87,
Birkhuser Boston, Boston, MA, 1990.
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