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Introduction

The following thesis plays a central role in deformation theory:

(*) If X is a moduli space over a field k of characteristic zero, then a formal neighborhood of any point
x € X is controlled by a differential graded Lie algebra.

This idea was developed in unpublished work of Deligne, Drinfeld, and Feigin, and has powerfully influenced
subsequent contributions of Hinich, Kontsevich-Soibelman, Manetti, Pridham, and many others. One of our
main goals in this paper is to give a precise formulation (and proof) of (x), using the language of higher
category theory.

The first step in formulating (*) is to decide exactly what we mean by a moduli space. For simplicity,
let us work for now over the field C of complex numbers. We will adopt Grothendieck’s “functor of points”
philosophy, and identify an algebro-geometric object X (for example, a scheme) with the functor R +—
X(R) = Hom(Spec R, X). This suggests a very general definition:

Definition 0.0.1. A classical moduli problem is a functor X : Rings — S8et, where Ringe denotes the
category of commutative C-algebras and Set denotes the category of sets.

Unfortunately, Definition 0.0.1 is not adequate for the needs of this paper. First of all, Definition 0.0.1
requires that the functor X take values in the category of sets. In many applications, we would like to consider
functors X which assign to each commutative ring R some collection of geometric objects parametrized by
the affine scheme Spec R. In such cases, it is important to keep track of automorphism groups.

Example 0.0.2. For every commutative C-algebra R, let X(R) denote the category of elliptic curves
E — SpecR (morphisms in the category X(R) are given by isomorphisms of elliptic curves). Then F
determines a functor from Ring- to Gpd, where Gpd denotes the 2-category of groupoids. In this case, X
determines an underlying set-valued functor, which assigns to each commutative ring R the set mo X (R) of
isomorphism classes of elliptic curves over R. However, the groupoid-valued functor X : Ringe — Gpd is
much better behaved than the set-valued functor myX : Rings — Set. For example, the functor X satisfies
descent (with respect to the flat topology on the category of commutative rings), while the functor 7o X does
not: two elliptic curves which are locally isomorphic need not be globally isomorphic.

Because the functor X of Example 0.0.2 is not Set-valued, it cannot be represented by a scheme. How-
ever, it is nevertheless a reasonable geometric object: it is representable by a Deligne-Mumford stack. To
accommodate Example 0.0.2, we would like to adjust Definition 0.0.1 to allow groupoid-valued functors.

Variant 0.0.3. Let C be an oco-category. A C-valued classical moduli problem is a functor N(Rings) — C.
Here Ring denotes the category of commutative algebras over the field C of complex numbers.

Remark 0.0.4. We recover Definition 0.0.1 as a special case of Variant 0.0.3, by taking € to be (the nerve
of) the category of sets. In practice, we will be most interested in the special case where € is the oo-category
8 of spaces.

The next step in formulating (x) is to decide what we mean by a formal neighborhood of a point z in a
moduli space X. Suppose, for example, that X = Spec A is an affine algebraic variety over the field C of
complex numbers. Then a closed point z € X is determined by a C-algebra homomorphism ¢ : A — C,
which is determined a choice of maximal ideal m = ker(¢) C A. One can define the formal completion of X
at the point z to be the functor X” : Ring — Set given by the formula

XMR)={f € X(R): f(Spec R) C {x} C Spec A}.

In other words, X”*(R) is the collection of commutative ring homomorphisms ¢ : A — R having the property
that ¢ carries each element of m to a nilpotent element of R. Since m is finitely generated, this is equivalent
to the condition that ¢ annihilates m™ for some integer n > 0, so that the image of ¢ is a quotient of A by
some m-primary ideal.



Definition 0.0.5. Let R be a commutative algebra over the field C of complex numbers. We will say that
R is a local Artinian if it is finite dimensional as a C-vector space and has a unique maximal ideal mg. The
collection of local Artinian C-algebras forms a category, which we will denote by Ring®*.

The above analysis shows that if X is an affine algebraic variety over C containing a point x, then the
formal completion X” can be recovered from its values on local Artinian C-algebras. This motivates the
following definition:

Definition 0.0.6. Let C be an oo-category. A C-valued classical formal moduli problem is a functor
N(Ring&") — €.

If X is a Set-valued classical moduli problem and we are given a point n € X(C), we can define a
Set-valued classical formal moduli problem X” by the formula

X"(R) = X(R) Xx(r/mp) {n}-

We will refer to X as the completion of X at the point n. If X is Gpd-valued, the same formula determines
a Gpd-valued classical formal moduli problem X" (here we take a homotopy fiber product of the relevant
groupoids).

Example 0.0.7. For every commutative C-algebra R, let X(R) denote the groupoid whose objects are
smooth proper R-schemes and whose morphisms are isomorphisms of R-schemes. Suppose we are given a
point n € X(C), corresponding to smooth and proper algebraic variety Z over C. The formal completion
X" assigns to every local Artinian C-algebra R the groupoid X”(R) of deformations over Z over R: that
is, smooth proper morphisms f : Z — Spec R which fit into a pullback diagram

Z—7

.

Spec C —— Spec R.

Example 0.0.7 is a typical example of the kind of formal moduli problem we would like to study. Let us
summarize some well-known facts about the functor X”:

(a) The functor X" carries the ring Cl[e]/(e?) to the groupoid of first-order deformations of the variety
Z. Every first order deformation of Z has an automorphism group which is canonically isomorphic to
H°(Z;Ty), where Tz denotes the tangent bundle of Z.

(b) The collection of isomorphism classes of first order deformations of Z can be canonically identified with
the cohomology group H(Z;Ty).

(¢) To every first order deformation 7, of Z, we can assign an obstruction class § € H*(Z;Tz) which
vanishes if and only if 7; extends to a second-order deformation 7, € X(Cle]/(€?)).

Assertion (a) and (b) are very satisfying: they provide a concrete geometric interpretations of certain
cohomology groups, and (b) can be given a conceptual proof using the interpretation of H' as classifying
torsors. By contrast, (c¢) is often proven by an ad-hoc argument which uses the local triviality of the first
order deformation to extend locally, and then realizes the obstruction as a cocycle representing the (possible)
inability to globalize this extension. This argument is computational rather than conceptual, and it does
not furnish a geometric interpretation of the entire cohomology group HQ(Z i Tz).

Let us now sketch an explanation for (¢) using the language of spectral algebraic geometry, which does
not share these defects. The key observation is that we can enlarge the category on which the functor X
is defined. If R is a connective E.-algebra over C, we can define X(R) to be the underlying co-groupoid
of the oco-category of spectral schemes which are proper and smooth over R. If R is equipped with an



augmentation € : R — C, we let X”(R) denote the fiber product X (R) x x(c) {1}, which we can think of
as a classifying space for deformations of Z over Spec R. In the special case where R is a discrete local
Artinian C-algebra, we recover the groupoid-valued functor described in Example 0.0.7. However, we can
obtain more information by evaluating the functor X on E..-algebras over C which are not discrete. For
example, let C[d] denote the square-zero extension C @ C[1]. One can show that there is a canonical bijection
H*(Z;Ty) ~ moX"(C[0]). We can regard this as an analogue of (c): it gives a description of cohomology
group H2(Z ;Ty) as the set of isomorphism classes of first order deformations of Z to the “nonclassical”
commutative ring C[d].

The interpretation of obstructions as elements of H?(X, T'x ) can now be obtained as follows. The ordinary
commutative ring Cle]/(€3) is a square-zero extension of Cl[e]/(e?) by the ideal C €2, and therefore fits into
a pullback diagram of E.-rings

Cle]/(¢?) — Clel/(¢?)

L

C CJd].

In §IX.9, we saw that this pullback square determines a pullback square of spaces

X(CleJ/(€%)) —= X(Cle]/(€*))

and therefore a fiber sequence of spaces
X" (C[/(€%) = X" (Cle]/(¢?)) — X" (C[3]).

In particular, every first-order deformation 7; of Z determines an element of o X\(C[d]) ~ H*(Z; Ty), which
vanishes precisely when 7; can be lifted to a second order deformation of Z.

The analysis that we have just provided in Example 0.0.7 cannot be carried out for an arbitrary classical
formal moduli problem (in the sense of Definition 0.0.6): it depends crucially on the fact that the functor
X" could be defined on E,.-rings which are not assumed to be discrete. This motivates another variant of
Definition 0.0.1:

Definition 0.0.8. Let CAlgd” denote the co-category of small E.-algebras over C (see Proposition 1.1.11).
A formal moduli problem over C is a functor X : CAlge” — 8 which satisfies the following pair of conditions:

(1) The space X(C) is contractible.

(2) For every pullback diagram
R——=Ry

]

Ry —— Ry

in CAlgd&" for which the underlying maps mgRg — moRo1 + mo Ry are surjective, the diagram

X(R) —— X(Ro)

L

X(Rl) —_— X(R()l)

is a pullback square.



Remark 0.0.9. Let CAlgd denote the co-category of connective Eqo-algebras over the field C of complex
numbers, and let X : CAlgd — 8 be a functor. Given a point z € X (C), we define the formal completion
of X at the point z to be the functor X" : CAlgg" — 8 given by the formula X"(R) = X(R) X x(c) {=}.
The functor X automatically satisfies condition (1) of Definition 0.0.8. Condition (2) is not automatic, but
holds whenever the functor X is defined in a sufficiently “geometric” way. To see this, let us imagine that
there exists some oco-category of geometric objects € with the following properties:

(a) To every object A € CAlgd' we can assign an object Spec A € €, which is contravariantly functorial in

A.

(b) There exists an object X € € which represents X, in the sense that X (A) ~ Home(Spec A, X) for every
small C-algebra A.

To verify that X" satisfies condition (2) of Definition 0.0.8, it suffices to show that when ¢ : Ry — Rp; and
¢’ : Ri — Ry are maps of small E,, algebras over C which induce surjections moRg — mgRo1 + moR1, then
the diagram

Spec Ro1 Spec Ry

| |

Spec Ry — Spec(R1 X gy, Ro)

is a pushout square in €. This assumption expresses the idea that Spec(Rg X g,, R1) should be obtained by
“gluing” Spec Ry and Spec R; together along the common closed subobject Spec Ry .

Example 0.0.10. Let € denote the co-category Stkg of spectral Deligne-Mumford stacks over C. The
construction Spec®® : CAlgd — C satisfies the gluing condition described in Remark 0.0.9 (Corollary I1X.6.5).
It follows that every spectral Deligne-Mumford stack X over C equipped with a base point x : Spec®* C — X
determines a formal moduli problem X" : CAlg&" — 8, given by the formula

X7 (R) = MapStkc (Specét R, %) ><MapStkc (Spectt C,X) {m}

We refer to X” as the formal completion of X at the point x.

Remark 0.0.11. Let X : CAlgd® — 8 be a formal moduli problem. Then X determines a functor X :
hCAlg&" — 8Set between ordinary categories (here hCAlgd" denotes the homotopy category of CAlgd'),
given by the formula X(A) = moX(A). It follows from condition (2) of Definition 0.0.8 that if we are given
maps of small F . -algebras A — B <+ A’ which induce surjections mgA — myB < myA’, then the induced
map

X(AxpA)— X(A) ) X(A)

is a surjection of sets. There is a substantial literature on set-valued moduli functors of this type; see, for
example, [50] and [33].

Warning 0.0.12. If X is a formal moduli problem over C, then X determines a classical formal moduli
problem (with values in the co-category 8) simply by restricting the functor X to the subcategory of CAlgg®
consisting of ordinary local Artinian C-algebras (which are precisely the discrete objects of CAlge").

If X = (X, 0) is a spectral Deligne-Mumford stack over C equipped with a point 7 : SpecC — X and X
is defined as in Example 0.0.10, then the restriction Xy = X|N(Ring&") depends only on the pair (X, 7 O).
In particular, the functor X cannot be recovered from Xj.

In general, if we are given a classical formal moduli problem X : N(Ring&") — 8, there may or may not
exist a formal moduli problem X such that X = X|N(Ring®"). Moreover, if X exists, then it need not be
unique. Nevertheless, classical formal moduli problems Xy which arise naturally are often equipped with a
natural extension X : CAlge" — 8 (as in our elaboration of Example 0.0.7).



Theorem 0.0.13. Let Moduli denote the full subcategory of Fun(CAlgg™, 8) spanned by the formal moduli
problems, and let Lie%g denote the category of differential graded Lie algebras over C (see §2.1). Then there
s a functor

0 : N(Lieg®) — Moduli

with the following universal property: for any oo-category €, composition with 6 induces a fully faithful
embedding Fun(Moduli, ) — Fun(N(Lie(ég), C), whose essential image is the collection of all functors F :

N(Lie(ég) — C which carry quasi-isomorphisms of differential graded Lie algebras to equivalences in C.

Remark 0.0.14. An equivalent version of Theorem 0.0.13 has been proven by Pridham; we refer the reader
to [54] for details.

Remark 0.0.15. Let W be the collection of all quasi-isomorphisms in the category Lie((ljg, and let Lie‘ég (W1
denote the oco-category obtained from N(Lie(ég) by formally inverting the morphisms in W. Theorem 0.0.13
asserts that there is an equivalence of co-categories Lie((ijg [W~1] ~ Moduli. In particular, every differential
graded Lie algebra over C determines a formal moduli problem, and two differential graded Lie algebras
g+ and g, determine equivalent formal moduli problems if and only if they can be joined by a chain of
quasi-isomorphisms.

Theorem 0.0.13 articulates a sense in which the theories of commutative algebras and Lie algebras are
closely related. In concrete terms, this relationship is controlled by the Chevalley-Filenberg functor, which
associates to a differential graded Lie algebra g, a cochain complex of vector spaces C*(g,). The cohomol-
ogy of this cochain complex is the Lie algebra cohomology of the Lie algebra g,, and is endowed with a
commutative multiplication. In fact, this multiplication is defined at the level of cochains: the construction
g« — C*(g.) determines a functor C* from the (opposite of) the category Lie(ég of differential graded Lie
algebras over C to the category CAlg%g of commutative differential graded algebras over C. This functor
carries quasi-isomorphisms to quasi-isomorphisms, and therefore induces a functor between co-categories

¢ : Lieg8[W =17 — CAlg#[Ww'~!],

where W is the collection of quasi-isomorphisms in Lie‘ég (as in Remark 0.0.15) and W’ is the collection of
quasi-isomorphisms in CAlg(ég (here the co-category CAlgng[W’ ~1] can be identified CAlgg of E-algebras
over C: see Proposition A.7.1.4.11). Every differential graded Lie algebra g. admits a canonical map
g« — 0, so that its Chevalley-Eilenberg complex is equipped with an augmentation C*(g,) — C*(0) ~ C.
We may therefore refine ¢ to a functor Lie(ég [(W—1]oP — CAlgg® taking values in the co-category CAlgy'®
of augmented E-algebras over C. We will see that this functor admits a left adjoint ® : CAlgg® —
Lie(ég [W~1]°P (Theorem 2.3.1). The functor 6 : N(Lie%g) — Moduli appearing in the statement of Theorem
0.0.13 can then be defined by the formula

0(8.)(R) = Mapy g6y (D(R). 5.).

In more abstract terms, the relationship between commutative algebras and Lie algebras suggested by
Theorem 0.0.13 is an avatar of Koszul duality. More specifically, Theorem 0.0.13 reflects the fact that the
commutative operad is Koszul dual to the Lie operad (see [29]). This indicates that should be many other
versions of Theorem 0.0.13, where we replace commutative and Lie algebras by algebras over some other
pair of Koszul dual operads. For example, the Koszul self-duality of the E,-operads (see [17]) suggests an
analogue of Theorem 0.0.13 in the setting of “noncommutative” derived algebraic geometry, which we also
prove (see Theorems 3.0.4 and 4.0.8).

Let us now outline the contents of this paper. In §1, we will introduce the general notion of a deformation
theory: a functor of co-categories ® : T°? — E satisfying a suitable list of axioms (see Definitions 1.3.1 and
1.3.9). We will then prove an abstract version of Theorem 0.0.13: every deformation theory © determines
an equivalence = ~ Moduli™, where Moduli” is a suitably defined oco-category of formal moduli problems



(Theorem 1.3.12). This result is not very difficult in itself: it can be regarded as a distillation of the purely
formal ingredients needed for the proof of results like Theorem 0.0.13. In practice, the hard part is to
construct the functor ® and to prove that it satisfies the axioms of Definitions 1.3.1 and 1.3.9. We will give
a detailed treatment of three special cases:

(a) In §2, we treat the case where T is the oo-category CAlg;"® of augmented Ec-algebras over a field k
of characteristic zero, and use Theorem 1.3.12 to prove a version of Theorem 0.0.13 (Theorem 2.0.2).

(b) In §3, we treat the case where T is the co-category Alg;"® of augmented E;-algebras over a field k
(of arbitrary characteristic), and use Theorem 1.3.12 to prove a noncommutative analogue of Theorem
0.0.13 (Theorem 3.0.4).

(¢) In §4, we treat the case where T is the co-category Algén)’a”ug of augmented E,-algebras over a field k
(again of arbitrary characteristic), and use Theorem 1.3.12 to prove a more general noncommutative
analogue of Theorem 0.0.13 (Theorem 4.0.8).

In each case, the relevant deformation functor ® is given by some variant of Koszul duality, and our
main result gives an algebraic model for the oco-category of formal moduli problems Moduli¥. In 85, we
will use these results to study some concrete examples of formal moduli problems which arise naturally in
deformation theory.

Remark 0.0.16. The notion that differential graded Lie algebras should play an important role in the
description of moduli spaces goes back to Quillen’s work on rational homotopy theory ([73]), and was
developed further in unpublished work of Deligne, Drinfeld, and Feigin. Many other mathematicians have
subsequently taken up these ideas: see, for example, the book of Kontsevich and Soibelman ([33]).

Remark 0.0.17. The subject of deformation theory has a voluminous literature, some of which has substan-
tial overlap with the material discussed in this paper. Though we have tried to provide relevant references
in the body of the text, there are undoubtedly many sins of omission for which we apologize in advance.

Notation and Terminology

We will use the language of oco-categories freely throughout this paper. We refer the reader to [40] for a
general introduction to the theory, and to [41] for a development of the theory of structured ring spectra
from the co-categorical point of view. For convenience, we will adopt the following reference conventions:

(T') We will indicate references to [40] using the letter T.
(A) We will indicate references to [41] using the letter A.

(V) We will indicate references to [42] using the Roman numeral V.
(VII) We will indicate references to [43] using the Roman numeral VII.
(VIIT) We will indicate references to [44] using the Roman numeral VIII.
)

(IX) We will indicate references to [45] using the Roman numeral IX.

For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [40].

If C is an oco-category, we let €~ denote the largest Kan complex contained in €: that is, the co-category
obtained from € by discarding all non-invertible morphisms.

We will say that a map of simplicial sets f :.S — T is left cofinal if, for every right fibration X — T, the
induced map of simplicial sets Funy (7T, X) — Funr(S, X) is a homotopy equivalence of Kan complexes (in
[40], we referred to a map with this property as cofinal). We will say that f is right cofinal if the induced
map S — TP is left cofinal: that is, if f induces a homotopy equivalence Funy (7', X)) — Funy (S, X) for



every left fibration X — T. If S and T are co-categories, then f is left cofinal if and only if for every object
t € T, the fiber product S xr Ty, is weakly contractible (Theorem T.4.1.3.1).

Throughout this paper, we will generally use the letter k& to denote a field (sometimes assumed to be
of characteristic zero). We let Mody, denote the oo-category of k-module spectra (more concretely, one can
think of the objects of Mod;, as given by chain complexes of vector spaces over k: see Remark 2.1.1). For
each M € Mody, the homotopy groups 7, M constitute a graded vector space over k. We will say that M is
locally finite if each homotopy group 7, M is finite-dimensional as a vector space over k.

For 0 < n < oo, we let Alg;n) denote the oo-category of E,-algebras over k (see Definition A.7.1.3.5).
In the special case n = 1, we will denote Algl(cn) by Alg,; in the special case n = oo we will denote
Algi") by CAlg,. If A € Alg,(cn)7 then an augmentation on A is a map of E,-algebras ¢ : A — k. We let
Alg,(f)’aug = (Alg;n)) /i denote the oo-category of augmented [E,,-algebras over k (when n = 1 we denote this

oo-category by Algi"®, and when n = co we denote it by CAlgy"®). If A € Alg;n)’aug, then we will refer to
the fiber of the augmentation € : A — k as the augmentation ideal of A, and often denote it by m4. Then
m4 has the structure of a nonunital E,,-algebra over k. The construction A — my4 determines an equivalence

from the oo-category Alg,(cn)’aug to the oo-category of nonunital E,-algebras over k (Proposition A.5.2.3.15).
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1 Deformation Theories: Axiomatic Approach

Our goal in this paper is to prove several variants of Theorem 0.0.13, which supply algebraic descriptions of
various oo-categories of formal moduli problems. Here is a basic prototype for the kind of result we would
like to obtain:

(*) Let T be an co-category of algebraic objects of some sort, let Y™ C T be a full subcategory spanned
by those objects which are small (i.e., Artinian), and let Moduli® C Fun(Y*™,8) be the oo-category of
functors X : T — 8 which satisfy a suitable gluing condition (as in Definition 0.0.8). Then there is
an equivalence of co-categories Moduli' ~ =, where = is some other oo-category of algebraic objects.

Our goal in this section is to flesh out assertion (x). We begin in §1.1 by introducing the notion of a
deformation context (Definition 1.1.3). A deformation context is a presentable co-category T equipped with
some additional data (namely, a collection of spectrum objects E, € Stab(Y)). Using this additional data,
we will explain how to define the full subcategory Y5 C T of small objects of T (Definition 1.1.8), and
the full subcategory Moduli¥ C Fun(Y*,8) of formal moduli problems (Definition 1.1.14). Our definitions
are very general and therefore suitable for a wide variety of applications. Nevertheless, they are sufficiently
powerful to ensure that there is a reasonable differential theory of theory of formal moduli problems. In §1.2
we will explain how to associate to every formal moduli problem X a collection of spectra X (E,), which
we call the tangent complex(es) of X. The construction is functorial: every map between formal moduli
problems u : X — Y can be differentiated to obtain maps of spectra X(E,) — Y (E,). Moreover, if each of
these maps is a homotopy equivalence, then u is an equivalence (Proposition 1.2.10).

In §1.3, we will formulate a general version of (k). For this, we will introduce the notion of a deformation
theory. A deformation theory is a functor © : T — = satisfying a collection of axioms (see Definitions 1.3.1
and 1.3.9). Our main result (Theorem 1.3.12) can then be stated as follows: if ® : TP — E is a deformation
theory, then ® determines an equivalence of oco-categories = ~ Moduli¥. The proof of this result will be
given in §1.5, using an oo-categorical variant of Quillen’s small object argument which we review in §1.4.



Our work in this section should be regarded as providing a sort of formal outline for proving results
like Theorem 0.0.13. In practice, the main difficulty is not in proving Theorem 1.3.12 but in verifying its
hypotheses: that is, in constructing a functor ® : T°? — = which satisfies the axioms listed in Definitions
1.3.1 and 1.3.9. The later sections of this paper are devoted to carrying this out in special cases (we will
treat the case of commutative algebras in §2, associative algebras in §3, and E,-algebras in §4).

1.1 Formal Moduli Problems

In this section, we introduce a general axiomatic paradigm for the study of deformation theory. Let us begin
by outlining the basic idea. We are ultimately interesting in studying some class of algebro-geometric objects
(such as schemes, or algebraic stacks, or their spectral analogues). Using the functor of points philosophy,
we will identify these geometric objects with functors X : T — 8, where T denotes some oo-category of
test objects. The main example of interest (which we will study in detail in §2) is the case where T to be
the oo-category CAlg;"® = (CAlgy) sk of augmented E.-algebras over a field k of characteristic zero. In
any case, we will always assume that Y contains a final object *; we can then define a point of a functor
X : T — 8 to be a point of the space X (). Our goal is to introduce some techniques for studying a formal
neighborhood of X around a chosen point n € X (*). This formal neighborhood should encode information
about the homotopy fiber products X (A) x x(,) {n} for every object A € T which is sufficiently “close” to
the final object *. In order to make this idea precise, we need to introduce some terminology.

Notation 1.1.1. If T is a presentable co-category, we let T, denote the oo-category of pointed objects of
T (Definition T.7.2.2.1) and Stab(Y) the stabilization of T (Definition A.1.4.4.1). Then Stab(Y) can be
described as a homotopy limit of the tower of co-categories

Q Q
e Y, 2T, 5T —

In particular, we have forgetful functors Q°~™ : Stab(T) — T, for every integer n € Z. We let Q" :
Stab(T) — T denote the composition of Q2°~" with the forgetful functor T, — Y.

Remark 1.1.2. We can describe Stab(Y) explicitly as the oo-category of strongly excisive functors from
Si‘n to T, where an is the oco-category of pointed finite spaces (see Corollary A.1.4.4.14; we will return to
this description of Stab(T) in §1.2).

Definition 1.1.3. A deformation context is a pair (T, {E,}acr), where T is a presentable oo-category and
{Eu}acr is a set of objects of the stabilization Stab(Y).

Example 1.1.4. Let k& be an E-ring, and let T = CAlgi"® = (CAlg,),, denote the co-category of
augmented E..-algebras over k. Using Theorem A.7.3.5.14, we can identify Stab(T) with the oco-category
Mody of k-module spectra. Let E € Stab(Y) be the object which corresponds to k& € Mody under this
identification, so that for every integer n we can identify Q°°~"F with the square-zero extension k @ k[n] of
k. Then the pair (CAlg,"®,{E}) is a deformation context.

Definition 1.1.5. Let (Y, {E,}acr) be a deformation context. We will say that a morphism ¢ : A’ — A in
T is elementary if there exists an index o € T, an integer n > 0, and a pullback diagram

A — >«
ld’ \L¢0
A——=Q>"F,.

Here ¢ corresponds the image Q°~" F, in the oo-category of pointed objects T ..

Example 1.1.6. Let k be a field and let (T, {E}) be the deformation context described in Example 1.1.4.
Suppose that ¢ : A’ — A is a map between connective objects of T = CAlg},"®. Using Theorem A.7.4.1.26,
we deduce that ¢ is elementary if and only if the following conditions are satisfied:



(a) There exists an integer n > 0 and an equivalence fib(¢) ~ k[n] in the oco-category Mod s (here we
regard k as an object of Mod 4/ via the augmentation map A" — k).

(b) If n = 0, then the multiplication map 7 fib(¢) ® 7o fib(¢) — ¢o fib(¢) vanishes.

If (a) is satisfied for n = 0, then we can choose a generator Z for 7 fib(¢) having image = € mpA’. Condition
(b') is automatic if © = 0. If a # 0, then the map o fib(¢) — mA’ is injective, so condition (b) is equivalent
to the requirement that 22 = 0 in mpA’.

Remark 1.1.7. Let (T,{E,}acT) be a deformation context, and suppose we are given an object A € T.
Every elementary map A’ — A in T is given by the fiber of a map A — Q> "FE, for some n > 0 and
some « € T. Tt follows that the collection of equivalence classes of elementary maps A" — A is bounded in
cardinality.

Definition 1.1.8. Let (T, {Es}acr) be a deformation context. We will say that a morphism ¢ : A’ — A
in T is small if it can be written as a composition of finitely many elementary morphisms A’ ~ Ay — A; —
oo — A, ~ A. We will say that an object A € T is small if the map A —  (which is uniquely determined
up to homotopy) is small. We let Y5 denote the full subcategory of T spanned by the small objects.

Example 1.1.9. Let (T,{E,}acr) be a deformation context. For every integer n > 0 and every index
a € T, we have a pullback diagram

Qoo—nEa *

| |

—_ o QoofnflEa’

It follows that the left vertical map is elementary. In particular, Q>°~"FE, is a small object of Y.

Remark 1.1.10. Let (Y, {E,}acr) be a deformation context. It follows from Remark 1.1.7 that the
subcategory T C T is essentially small.

Proposition 1.1.11. Let k be a field and let (Y,{E}) be the deformation context of Example 1.1.4. Then
an object A € T = CAlg,"® is small (in the sense of Definition 1.1.8) if and only if the following conditions
are satisfied:

(1) The homotopy groups m, A vanish for n < 0 and n > 0.
(2) Fach homotopy group m, A is finite-dimensional as a vector space over k.

(3) The commutative ring moA is local with maximal ideal k, and the canonical map k — (mpA)/m is an
isomorphism.

Proof. Suppose first that A is small, so that there there exists a finite sequence of maps
A=Ay > A1 — > A, >~k

where each A; is a square-zero extension of A;;1 by k[m;], for some n; > 0. We prove that each A, satisfies
conditions (1), (2), and (3) using descending induction on i. The case i = n is obvious, so let us assume that
i < n and that A;;1 is known to satisfy conditions (1), (2), and (3). We have a fiber sequence of k-module
spectra

k[m,] — Az — AZ‘+1

which immediately implies that A; satisfies (1) and (2). The map ¢ : mpA; — mpA;+1 is surjective and
ker(¢)? = 0, from which it follows immediately that 7o A; is local.
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Now suppose that A satisfies conditions (1), (2), and (3). We will prove that A is small by induction on
the dimension of the k-vector space m,.A. Let n be the largest integer for which 7, A does not vanish. We first
treat the case n = 0. We will abuse notation by identifying A with the underlying commutative ring myA.
Condition (3) implies that A is a local ring; let m denote its maximal ideal. Since A is a finite dimensional
algebra over k, we have mT! ~ 0 for 4 > 0. Choose i as small as possible. If i = 0, then m ~ 0 and A ~ k,
in which case there is nothing to prove. Otherwise, we can choose a nonzero element x € m* C m. Let A’
denote the quotient ring A/(z). It follows from Example 1.1.6 that the quotient map A — A’ is elementary.
Since A’ is small by the inductive hypothesis, we conclude that A is small.

Now suppose that n > 0 and let M = 7, A, so that M has the structure of a module over the ring myA.
Let m C mgA be as above, and let i be the least integer such that m*'M ~ 0. Let x € m*M and let M’ be
the quotient of M by z, so that we have an exact sequence

0kSM—>M =0

of modules over mgA. We will abuse notation by viewing this sequence as a fiber sequence of A”-modules,
where A” = 7<,,_1 A. Tt follows from Theorem A.7.4.1.26 that there is a pullback diagram

A k

L

A" ——= ke Mn+1].

Set A" = A" Xpgarpy1) k- Then A ~ A’ Xpgpnq1) b so we have an elementary map A — A’. Using the
inductive hypothesis we deduce that A’ is small, so that A is also small. O

Remark 1.1.12. Let k be a field and suppose that A € CAlg, satisfies conditions (1), (2), and (3) of
Proposition 1.1.11. Then the mapping space MapCAlgk (A, k) is contractible. In particular, A can be promoted

(in an essentially unique way) to a small object of T = CAlg;". Moreover, the forgetful functor CAlgy"® —

CAlg,, is fully faithful when restricted to the full subcategory T°™ C Y. We will denote the essential image
of this restriction by CAlg;™. We refer to CAlg;™ as the oco-category of small E -algebras over k.

Remark 1.1.13. Let (T, {E,}acr) be a deformation context. Then the collection of small morphisms in
T is closed under composition. In particular, if ¢ : A’ — A is small and A is small, then A’ is also small. In
particular, if there exists a pullback diagram

B ——= A
s
B——A
where B is small and ¢ is small, then B’ is also small.
We are now ready to introduce the main objects of study in this paper.

Definition 1.1.14. Let (T, {Es}acr) be a deformation context. A formal moduli problem is a functor
X : T — § satisfying the following pair of conditions:

(a) The space X (*) is contractible (here * denotes a final object of T).
(b) Let o:

A ——= B

Lk

A——DB

be a diagram in Y. If ¢ is a pullback diagram and ¢ is small, then X (o) is a pullback diagram in 8.
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We let Moduli®™ denote the full subcategory of Fun(T5™,8) spanned by the formal moduli problems. We
will refer to Moduli¥ as the oo-category of formal moduli problems.

Condition (b) of Definition 1.1.14 has a number of equivalent formulations:

Proposition 1.1.15. Let (Y, {Es}acr) be a deformation context, and let X : T — 8§ be a functor. The
following conditions are equivalent:

(1) Leto:

A ——= D

Lk

A——DB

be a diagram in Y*™. If o is a pullback diagram and ¢ is small, then X (o) is a pullback diagram in 8.

(2) Let o be as in (1). If o is a pullback diagram and ¢ is elementary, then X (o) is a pullback diagram in
S.

(3) Let o be as in (1). If o is a pullback diagram and ¢ is the base point morphism x — Q®°~"E,, for some
a €T andn >0, then X (o) is a pullback diagram in 8.

Proof. The implications (a) = (b) = (c) are clear. The reverse implications follow from Lemma T.4.4.2.1.
O

Example 1.1.16. Let (T,{E,}acr) be a deformation context, and let A € T be an object. Let Spec(A) :
T5™ — 8§ be the functor corepresented by A, which is given on small objects of T by the formula Spec(A)(B) =
Map~y(A, B). Then Spec(A) is a formal moduli problem. Moreover, the construction A — Spec(A) deter-
mines a functor Spec : T — Moduli*.

Remark 1.1.17. Let (T, {E,}acT) be a deformation context. The co-category T°™ C 7T is essentially small.
It follows from Lemmas T.5.5.4.19 and T.5.5.4.18 that the co-category Moduli! is an accessible localization
of the oo-category Fun(Y*™,8); in particular, the co-category Moduli™ is presentable.

Remark 1.1.18. Let (T, {Es}acr) be a deformation context, and let X : T — 8 be a functor which
satisfies the equivalent conditions of Proposition 1.1.15. For every point n € X (x), define a functor X, :
T — 8 by the formula X, (A) = X(A) X x(x) {n}. Then X, is a formal moduli problem. We may therefore
identify X as a family of formal moduli problems parametrized by the space X (x). Consequently, condition
(a) of Definition 1.1.14 should be regarded as a harmless simplifying assumption.

In the special case where (T, {E,}acr) is the deformation context of Example 1.1.4, Definition 1.1.14
agrees with Definition 0.0.8. This is an immediate consequence of the following result:

Proposition 1.1.19. Let k be a field and let X : CAlgi™ — 8 be a functor. Then conditions (1), (2), and
(3) of Proposition 1.1.15 are equivalent to the following:

(%) For every pullback diagram
R—— Ry

]

Ry —— Ry

in CAlgd" for which the underlying maps moRo — moRo1 < moR1 are surjective, the diagram

X(R) — X (Ro)

L

X(Rl) — X(R()l)

12



is a pullback square.
The proof of Proposition 1.1.19 will require the following elaboration on Proposition 1.1.11:

Lemma 1.1.20. Let k be a field and let f : A — B be a morphism in CAlgi™. Then f is small (when
regarded as a morphism in CAlgy"®) if and only if it induces a surjection of commutative rings moA — moB.

Proof. Let K be the fiber of f, regarded as an A-module. If mgA — 7B is surjective, then K is connective.
We will prove that f is small by induction on the dimension of the graded vector space 7, K. If this dimension
is zero, then K ~ 0 and f is an equivalence. Assume therefore that 7, K # 0, and let n be the smallest integer
such that 7, K # 0. Let m denote the maximal ideal of mgA. Then m is nilpotent, so m(m, K) # 7, K and we
can choose a map of mgA-modules ¢ : 7, K — k. According to Theorem A.7.4.3.1, we have (2n+1)-connective
map K ®4 B — Lg;a[—1]. In particular, we have an isomorphism 7,1 Lp/4 ~ TorgoA(noB, T, K) so that
¢ determines a map Lp/4 — k[n + 1]. We can interpret this map as a derivation B — B @ k[n + 1]; let
B'=B X Bakin+1) k- Then f factors as a composition
AL p LB

Since the map f” is elementary, it will suffice to show that f’ is small, which follows from the inductive
hypothesis. O

Proof of Proposition 1.1.19. The implication (%) = (3) is obvious, and the implication (1) = (x) follows
from Lemma 1.1.20. O

Remark 1.1.21. The proof of Proposition 1.1.19 shows that condition (x) is equivalent to the stronger
condition that the diagram
R—— R,

]

Ry —— Rn

is a pullback square whenever one of the maps mgRg — m9Ro1 or moR1 — moRo1 is surjective.

1.2 The Tangent Complex

Let X be an algebraic variety over the field C of complex numbers, and let x : Spec C — X be a point of
X. A tangent vector to X at the point x is a dotted arrow rendering the diagram

SpecC —*——= X

7
~
~
~
~
~

Spec C[e]/(€?) — Spec C

commutative. The collection of tangent vectors to X at x comprise a vector space Tx 5, which we call the
Zariski tangent space of X at . If Ox , denotes the local ring of X at the point z and m C Ox , its maximal
ideal, then there is a canonical isomorphism of vector spaces T'x , ~ (m/m?)V.

The tangent space Tx , is among the most basic and useful invariants one can use to study the local
structure of an algebraic variety X near a point z. Our goal in this section is to generalize the construction
of Tx ; to the setting of an arbitrary formal moduli problem, in the sense of Definition 1.1.14. Let us
identify X with its functor of points, given by X (A) = Hom(Spec A, X) for every C-algebra A (here the
Hom is computed in the category of schemes over C). Then T'x , can be described as the fiber of the map
X(Cl[e]/(e?)) — X(C) over the point x € X(C). Note that the commutative ring Cle]/(€?) is given by
Q>®FE, where E is the spectrum object of CAlggi® appearing in Example 1.1.4. This suggests a possible
generalization:
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Definition 1.2.1. Let (Y, {E,}qer) be a deformation context, and let ¥ : T — 8 be a formal moduli
problem. For each a € T', the tangent space of Y at « is the space Y(Q®E,,).

There is a somewhat unfortunate aspect to the terminology of Definition 1.2.1. By definition, a formal
moduli problem Y is a 8-valued functor, so the evaluation of X on any object A € T*™ might be called a
“space”. The term “tangent space” in algebraic geometry has a different meaning: if X is a complex algebraic
variety with a base point x, then we refer to T'x ,, as the tangent space of X not because it is equipped with
a topology, but because it has the structure of a vector space over C. In particular, Tx , is equipped with
an addition which is commutative and associative. Our next goal is to prove that this phenomenon is quite
general: for any formal moduli problem Y : T — §, each tangent space Y (2 E,) of Y is an infinite loop
space, and therefore equipped with a composition law which is commutative and associative up to coherent
homotopy.

We begin by recalling some definitions.

Notation 1.2.2. Let € be an oco-category which admits finite colimits and D an oco-category which admits
finite limits. We say that a functor F': € — D is excisive if, for every pushout square

Co1 — Cy

L

c,——C

in C, the diagram
F(Co1) — F(Co)

L

F(C)) —— F(CO)

is a pullback square in D. We say that F is strongly excisive if it is excisive and carries initial objects of C
to final objects of D.

We let Sim denote the co-category of finite pointed spaces. For any oo-category D which admits finite
limits, we let Stab(D) denote the full subcategory of Fun(Sim, D) spanned by the pointed excisive functors.
We recall that Stab(D) is an explicit model for the stabilization of D; in particular, it is a stable co-category
(see oo-category, which is model for the stabilization of D (see Corollary A.1.4.4.14). In particular, we can
realize the oo-category Sp = Stab(8) of spectra as the full subcategory of Fun(8%, 8) spanned by the strongly
excisive functors.

Proposition 1.2.3. Let (T,{E, f;aeT ) be a deformation context. For each o € T, we identify E, € Stab(T)
with the corresponding functor 8" — Y. Then:

(1) For every map f : K — K’ of pointed finite spaces which induces a surjection moK — moK’, the
induced map Eo(K) — Eo(K') is a small morphism in Y.
(2) For every pointed finite space K, the object E,(K) € T is small.

Proof. We will prove (1); assertion (2) follows by applying (1) to the constant map K — . Note that f is
equivalent to a composition of maps

K=Ky— K —--—K,=K,

where each K; is obtained from K;_; by attaching a single cell of dimension n;. Since mgK surjects onto
moK', we may assume that each mn; is positive. It follows that we have pushout diagrams of finite pointed
spaces

Ki1——K;

|
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Since F, is excisive, we obtain a pullback square

Ey(Ki—1) — E.(K;)

L

* — QniEo”

so that each of the maps E,(K;—1) — E4(K;) is elementary. O

It follows from Proposition 1.2.3 that if (T, {E4}aer) is a deformation context, then each E, can be
regarded as a functor from an to the full subcategory T*™ C T spanned by the small object. It therefore
makes sense to compose FE, with any formal moduli problem.

Proposition 1.2.4. Let (T,{Es}act) be a deformation context and let Y : T°™ — 8 be a formal moduli
problem. For every a € T, the composite functor

gfin By ysm Y, g

is strongly excisive.

Proof. 1t is obvious that Y o E,, carries initial objects of SE“ to contractible spaces. Suppose we are given a
pushout diagram
K——K'

L

of pointed finite spaces; we wish to show that the diagram o :

Y(Ea(K)) —Y(Ea(K'))

| |

Y(Ea(L)) —Y(Ea(L))

is a pullback square in 8. Let K’ denote the union of those connected components of K’ which meet the image
of the map K — K'. There is a retraction of K’ onto K’,, which carries the other connected components of
K’ to the base point. Define L', and the retraction L' — L/, similarly. We have a commutative diagram of
pointed finite spaces

K—sK — K/

N

L——L——=1I
where each square is a pushout, hence a diagram of spaces

Y(Eo(K)) —=Y(Ea(K')) —= Y (Ea(K%))

| | |

Y(Eo(L)) ——Y(Ea(L)) —— Y (Ea(L})).

To prove that the left square is a pullback diagrams, it will suffice to show that the right square and the
outer rectangle are pullback diagrams. We may therefore reduce to the case where the map moK — moK’ is
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surjective. Then the map moL — moL’ is surjective, so that E,(L) — E,(L’) is a small morphism in Y™
(Proposition 1.2.3). Since E, is excisive, the diagram

is a pullback square in T. Using the assumption that Y is a formal moduli problem, we deduce that o is a
pullback square of spaces. O

Definition 1.2.5. Let (Y,{E,}acr) be a deformation context, and let Y : T — § be a formal moduli
problem. For each o € T, we let Y(E,,) denote the composite functor

gfin Bg ppsm Y, g

We will view Y (E,) as an object in the co-category Sp = Stab(8) of spectra, and refer to Y (E,) as the
tangent complex to 'Y at a.

Remark 1.2.6. In the situation of Definition 1.2.5, suppose that T has a single element, so that {F, }oer =
{E} for some E € Stab(Y) (this condition is satisfied in all of the main examples we will study in this paper).
In this case, we will omit mention of the index « and simply refer to Y(F) as the tangent complex to the
formal moduli problem Y.

Remark 1.2.7. Let Y : T — 8 be as in Definition 1.2.5. For every index a, we can identify the tangent
space Y (Q*E,) at a with the Oth space of the tangent complex Y (E,,). More generally, there are canonical
homotopy equivalences

Y(Q¥"E,) ~ Q*""Y(E,)

for n > 0.

Example 1.2.8. Let X = Spec R be an affine algebraic variety over the field C of complex numbers, and
suppose we are given a point x of X (corresponding to an augmentation € : R — C of the C-algebra R). Then
X determines a formal moduli problem X" : CAlg&" — 8, given by the formula X”(A) = Mapgagans (R, A)
(here we work in the deformation context (CAlgg'®,{E}) of Example 1.1.4). Unwinding the definitions, we
see that the tangent complex X" (E) can be identified with the spectrum Moryod, (Lr/ ¢, C) classifying
maps from the cotangent complex Lg,c into C (regarded as an R-module via the augmentation €). In

particular, the homotopy groups of X" (FE) are given by
7T1X/\(E) ~ (7'('71'(]6 XRnr LR/C))V.

It follows that m; X" (F) vanishes for i > 0, and that moX"(F) is isomorphic to the Zariski tangent space
(m/m2)Y of X at the point x. If X is smooth at the point z, then the negative homotopy groups of m; X"\ (E)
vanish. In general, the homotopy groups m; X" (E) encode information about the nature of the singularity
of X at the point . One of our goals in this paper is to articulate a sense in which the tangent complex
X"(FE) encodes complete information about the local structure of X near the point z.

Warning 1.2.9. The terminology of Definition 1.2.5 is potentially misleading. For a general deformation
context (T, {Eqs}acr) and formal moduli problem Y : T5™ — 8, the tangent complexes Y (FE,) are merely
spectra. If k is a field and (T, {Eq }aer) = (CAlg"®,{E}) is the deformation context of Example 1.1.4, one
can show that the tangent complex Y (F) admits the structure of a k-module spectrum, and can therefore
be identified with a chain complex of vector spaces over k. This observation motivates our use of the term
“tangent complex.” In the general case, it might be more appropriate to refer to Y(E,) as a “tangent
spectrum” to the formal moduli problem Y.
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The tangent complex of a formal moduli problem Y is a powerful invariant of Y. We close this section
with a simple illustration:

Proposition 1.2.10. Let (Y, {Es}act) be a deformation context and let uw : X — Y be a map of formal
moduli problems. Suppose that u induces an equivalence of tangent complexes X(E,) — Y (E,) for each
a €T. Then u is an equivalence.

Proof. Consider an arbitrary object A € T so that there exists a sequence of elementary morphisms
A=4)—> A — - = A, >

in Y. We prove that the map u(A4;) : X(A;) — Y (A4;) is a homotopy equivalence using descending induction
on i, the case i = n being trivial. Assume therefore that i < n and that «(A4;41) is a homotopy equivalence.
Since A; — A;4+1 is elementary, we have a fiber sequence of maps

’U,(Az) — ’U,(A,H_1) — U(Qooana)

for some n > 0 and € T. To prove that u(A;) is a homotopy equivalence, it suffices to show that
u(Q®°~"E,) is a homotopy equivalence, which follows immediately from our assumption that u induces an
equivalence X (F,) = Y (E,). O

1.3 Deformation Theories

Let (T, {Eq4}aer) be a deformation context. Our main goal in this paper is to obtain an algebraic description
of the oo-category Moduli® C Fun(YT*,8) of formal moduli problems. To this end, we would like to have
some sort of recognition criterion, which addresses the following question:

(@) Given an oco-category Z, when does there exist an equivalence Moduli* ~ =?

We take our first cue from Example 1.1.16. To every object A € T, we can associate a formal moduli
problem Spec A € Moduli™ by the formula (Spec A)(R) = Mapy(A, R). Combining this construction with
an equivalence Moduli® ~ =, we obtain a functor ® : T — =. We begin by axiomatizing the properties of
this functor:

Definition 1.3.1. Let (T, {E, }acr) be a deformation context. A weak deformation theory for (Y,{Eqs}aer)
is a functor ® : T°? — E satisfying the following axioms:

(D1) The co-category E is presentable.
(D2) The functor ® admits a left adjoint ®’ : = — TP,
(D3) There exists a full subcategory Z¢ C = satisfying the following conditions:

(a) For every object K € Z, the unit map K — D®’K is an equivalence.

(b) The full subcategory Z, contains the initial object () € Z. It then follows from (a) that () ~
DD'() ~ D(x), where x denotes the final object of Y.

(¢) For every index a € T and every n > 1, there exists an object K, ,, € Ep and an equivalence
N> "Ey ~ DK, . It follows that the base point of Q°°~"E,, determines a map

Van : Kan 2 DD' Ky, 2 D(Q°"E,) = D(x) ~ 0.

(d) For every pushout diagram
Kyn—K

=]

) —— K’

where o € T and n > 0, if K belongs to to 2 then K’ also belongs to Z.
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Definition 1.3.1 might seem a bit complicated at a first glance. We can summarize axioms (D2) and
(D3) informally by saying that the functor ® : T°” — = is not far from being an equivalence. Axiom (D2)
requires that there exists an adjoint D’ to ®, and axiom (D3) requires that ®’ behave as a homotopy inverse
to ©, at least on a subcategory =y C = with good closure properties.

Example 1.3.2. Let k be a field of characteristic zero and let (CAlg;"®, {E}) be the deformation context
described in Example 1.1.4. In §2, we will construct a weak deformation theory ®© : (CAlg;"®)°? — Liey,
where Lie denotes the oo-category of differential graded Lie algebras over k (Definition 2.1.14). Here the
adjoint functor ®’ : Lie, — (CAlg}"®)°P assigns to each differential graded Lie algebra g, its cohomology
Chevalley-Eilenberg complex C*(g.) (see Construction 2.2.13). In fact, the functor ® : (CAlg;"®)°? — Liek
is even a deformation theory: it satisfies condition (D4) appearing in Definition 1.3.9 below.

Remark 1.3.3. In view of Corollary T.5.5.2.9 and Remark T.5.5.2.10, condition (D2) of Definition 1.3.1 is
equivalent to the requirement that the functor © preserves small limits.

Remark 1.3.4. In the situation of Definition 1.3.1, the objects K, , € Z¢ are determined up to canonical
equivalence: it follows from (a) that they are given by K, , ~ 99'K, , ~ D(Q>*°""E,). In particular, the
objects Q>*~"E,, belong to =.

Our next result summarizes some of the basic features of weak deformation theories.

Proposition 1.3.5. Let (T,{Es}acr) be a deformation context and © : TP — Z a weak deformation
theory. Let 29 C Z be a full subcategory which is stable under equivalence and satisfies condition (3) of

Definition 1.3.1. Then:
(1) The functor ® carries final objects of Y to initial objects of E.

(2) Let A € Y be an object having the form ®'(K), where K € Zy. Then the unit map A — D'D(A) is an
equivalence in Y.

(3) If A€ Y is small, then D(A) € Zg and the unit map A — D'DA is an equivalence in Y.

(4) Suppose we are given a pullback diagram o :

A —— B

Lk

A——B
in T, where A and B are small and the morphism ¢ is small. Then ©(0) is a pushout diagram in =.

Proof. Let () denote an initial object of Z. Then () € Zg so that the adjunction map §§ — DD') is an
equivalence. Since ®’ : = — YT is left adjoint to D, it carries §) to a final object * € T. This proves (1).
To prove (2), suppose that A = D'(K) for K € Zy. Then the unit map v : A — D' A has a left homotopy
inverse, given by applying ®’ to the the map v : K — D®'K in E. Since v is an equivalence (part (a) of
Definition 1.3.1), we conclude that « is an equivalence.

We now prove (3). Let A € T be small, so that there exists a sequence of elementary morphisms

A=Ay = A1 — - — A, = x

We will prove that D A; € =y using descending induction on ¢. If i = n, the desired result follows from (1).
Assume therefore that i < n, so that the inductive hypothesis guarantees that ©(4;41) € Ep. Choose a
pullback diagram o :

A

|,k

A LN Q" B,
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where n > 0, a € T, and ¢ is the base point of 2°°~"FE,,. Form a pushout diagram 7 :

DO "E,) e DAy

N

D) — X

in 2. There is an evident transformation £ : 0 — ©’(7) of diagrams in Y. Since both o and D’(7) are
pullback diagrams and the objects 4,11, Q" "E,, and * belong to the essential image of D’| =g, it follows
from assertion (2) that & is an equivalence, so that A; ~ ©’(X). Assumption (d) of Definition 1.3.1 guarantees
that X € Zp, so that A; lies in the essential image of D'| Z,.

We now prove (4). The class of morphisms ¢ for which the conclusion holds (for an arbitrary map A — B
between small objects of T) is evidently stable under composition. We may therefore reduce to the case
where ¢ is elementary, and further to the case where ¢ is the base point map * — Q*°~"E,, for some a € T
and some n > 0. Arguing as above, we deduce that the pullback diagram o :

A/—>>i<

|k

A—— Q> "E,

is equivalent to ©'(7), where 7 is a diagram in Z¢ which is a pushout square in Z. Then D (o) ~ DD'(7) ~ 7
is a pushout diagram, by virtue of condition (a) of Definition 1.3.1. O

Corollary 1.3.6. Let (T,{E,}aer) be a deformation context and D : TP — = a weak deformation theory.
Let j : 2 — Fun(2°?,8) denote the Yoneda embedding. For every object K € =, the composition

yom oy 2, mor 1) g

is a formal moduli problem. This construction determines a functor ¥V : = — Modulit C Fun (YT, 8).

Remark 1.3.7. Corollary 1.3.6 admits a converse. Let (T, {E, }aer) be a deformation context. The functor
Spec : T°? — Moduli of Example 1.1.16 satisfies conditions (D1), (D2) and (D3) of Definition 1.3.1, and
therefore defines a weak deformation theory (we can define the full subcategory Moduliy € Moduli whose
existence is required by (D3) to be spanned by objects of the form Spec(A), where A € T5).

Combining Corollary 1.3.6 with Proposition 1.2.4, we obtain the following result:

Corollary 1.3.8. Let (T,{Es}act) be a deformation context and © : TP — = a weak deformation theory.
For each a € T and each K € =, the composite map

Eq D —op J(K
gfin Loy p 2, zor 1) g

is strongly excisive, and can therefore be identified with a spectrum which we will denote by e (K). This

construction determines a functor e, : = — Sp = Stab(8) C Fun(8/", 8).

Definition 1.3.9. Let (Y, {FE,}acr) be a deformation context. A deformation theory for (T,{Eqs}aecr) is
a weak deformation theory © : T°? — = which satisfies the following additional condition:

(D4) For each o € T, let e, : E — Sp be the functor described in Corollary 1.3.8. Then each e, preserves
small sifted colimits. Moreover, a morphism f in = is an equivalence if and only if each e, (f) is an
equivalence of spectra.
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Warning 1.3.10. Let (Y, {X,}aecr) be a deformation context, and let Spec : TP — ModuliY be given
by the Yoneda embedding (see Remark 1.3.7). The resulting functors e, : Moduli® — Sp are then given
by evaluation on the spectrum objects E, € Stab(Y), and are therefore jointly conservative (Proposition
1.2.10) and preserve filtered colimits. However, it is not clear that Spec is a deformation theory, since the
tangent complex constructions X — X (FE,) do not obviously commute with sifted colimits.

Remark 1.3.11. Let (T,{E}) be a deformation context, let © : T°” — = be a deformation theory for Y,
and let e : Z — Sp be as in Corollary 1.3.8. The functor e preserves small limits, and condition (D4) of
Definition 1.3.9 implies that e preserves sifted colimits. It follows that e admits a left adjoint F' : Sp — =.
The composite functor e o F' has the structure of a monad A on Sp. Since e is conservative and commutes
with sifted colimits, Theorem A.6.2.2.5 gives us an equivalence of oco-categories = ~ LMod 4 (Sp) with the
oo-category of algebras over the monad 7'. In other words, we can think of = as an co-category whose objects
are spectra which are equipped some additional structure (namely, a left action of the monad A).

More generally, if (T, {E,}aer) is a deformation context equipped with a deformation theory © : TP —
=, the same argument supplies an equivalence = ~ LMod A(SpT): that is, we can think of objects of = as
determines by a collection of spectra (indexed by T'), together with some additional structure.

We can now formulate our main result:

Theorem 1.3.12. Let (Y,{Eq}act) be a deformation context and let ® : TP — = be a deformation theory.
Then the functor ¥ : 2 — Moduli® of Corollary 1.3.6 is an equivalence of co-categories.

The proof of Theorem 1.3.12 will be given in §1.5.

Remark 1.3.13. Let (T,{E,}aer) be a deformation context, let ® : T — = a deformation theory, and

consider the functor ¥ : = — Moduli of Corollary 1.3.6. The composite functor Y7 2 = % Moduli” carries
an object A € T to the formal moduli problem defined by the formula

B+ Mapz(DB,DA) ~ Map(A,D'D(B)).

The unit maps B — ©'D B determines a natural transformation of functors 3 : Spec — ¥ o D, where Spec :
TP — Moduli” is as in Example 1.1.16. It follows from Proposition 1.3.5 that the natural transformation 3
is an equivalence. Combining this with Theorem 1.3.12, we conclude that ® is equivalent to weak deformation
theory Spec : T — Moduli® of Remark 1.3.7.

We can summarize the situation as follows: a deformation context (Y, {E,}aer} admits a deformation
theory if and only if, for each a € T, the construction X +— X (F,) determines a functor Moduli¥ — Sp
which commutes with sifted colimits. If this condition is satisfied, then the deformation theory on Y is
unique (up to canonical equivalence), given by the functor Spec : TP — Moduli ™.

1.4 Digression: The Small Object Argument

Let € be a category containing a collection of morphisms {f, : Co — Dy}, and let g : X — Z be another
morphism in €. Under some mild hypotheses, Quillen’s small object argument can be used to produce a
factorization ) ;
xXLyLz

where ¢’ is “built from” the morphisms f,, and g” has the right lifting property with respect to the morphisms
fo (see §T.A.1.2 for a detailed discussion). The small object argument was originally used by Grothendieck to
prove that every Grothendieck abelian category has enough injective objects (see [25] or Corollary A.1.3.4.7).
It is now a basic tool in the theory of model categories.

Our goal in this section is to carry out an oo-categorical version of the small object argument (Proposition
1.4.7). We begin by introducing some terminology.
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Definition 1.4.1. Let € be an oco-category. Let f: C'— D and ¢ : X — Y be morphisms in €. We will say
that g has the right lifting property with respect to f if every commutative diagram

C——X
L)
D——Y

can be extended to a 3-simplex of €, as depicted by the diagram
C——X
)
D——Y.

In this case, we will also say that f has the left lifting property with respect to g.

More generally, if S is any set of morphisms in €, we will say that a morphism g has the right lifting
property with respect to S if it has the right lifting property with respect to every morphism in S, and that
a morphism f has the left lifting property with respect to S if f has the left lifting property with respect to
every morphism in S.

Definition 1.4.2. Let C be an oco-category and let S be a collection of morphisms in €. We will say that
a morphism f in € is a transfinite pushout of morphisms in S if there exists an ordinal o and a diagram
F : N[a] — € (here [« denotes the linearly ordered set of ordinals {3 : 8 < a}) with the following properties:

(1) For every nonzero limit ordinal A < a, the restriction F|N[A] is a colimit diagram in C.
(2) For every ordinal 8 < «a, the morphism F(8) — F(8 + 1) is a pushout of a morphism in S.
(3) The morphism F(0) — F(«) coincides with f.

Remark 1.4.3. Let C be an oco-category, and let S and T' be collections of morphisms in €. Suppose that
every morphism belonging to T is a transfinite pushout of morphisms in S. If f is a transfinite pushout of
morphisms in T, then f is a transfinite pushout of morphisms in S.

Definition 1.4.4. Let C be an oco-category and let S be a collection of morphisms in €. We will say that S
is weakly saturated if it has the following properties:

(1) If f is a morphism in € which is a transfinite pushout of morphisms in S, then f € S.

(2) The set S is closed under retracts. In other words, if we are given a commutative diagram

C—(C'——C

ok

D——sD —-=0D
in which both horizontal compositions are the identity and f” belongs to S, then so does f.

Remark 1.4.5. If C is the nerve of an ordinary category (which admits small colimits), then Definition
1.4.4 reduces to Definition T.A.1.2.2.

Remark 1.4.6. Let S be a weakly saturated collection of morphisms in an co-category C. Any identity
map in € can be written as a transfinite composition of morphisms in S (take & = 0 in Definition 1.4.2).
Condition (2) of Definition 1.4.4 guarantees that the class of morphisms is stable under equivalence; it follows
that every equivalence in € belongs to S. Condition (1) of Definition 1.4.4 also implies that S is closed under
composition (take o = 2 in Definition 1.4.2).
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We can now formulate our main result, which we will prove at the end of this section.

Proposition 1.4.7 (Small Object Argument). Let € be a presentable oco-category and let S be a small
collection of morphisms in C. Then every morphism f : X — Z admits a factorizaton

xLviz
where f' is a transfinite pushout of morphisms in S and f" has the right lifting property with respect to S.
Warning 1.4.8. In contrast with the ordinary categorical setting (see Proposition T.A.1.2.5), the factor-

ization ) ;
xLylz
of Proposition 1.4.7 cannot generally be chosen to depend functorially on f.

To apply Proposition 1.4.7, the following observation is often useful:

Proposition 1.4.9. Let C be an oco-category and let T be a collection of morphisms in C. Let S denote
the collection of all morphisms in C which have the left lifting property with respect to T. Then S is weakly
saturated.

Proof. Since the intersection of a collection of weakly saturated collections is weakly saturated, it will suffice
to treat the case where T consists of a single morphism g : X — Y. Note that a morphism f : C — D
has the left lifting property with respect to g if and only if, for every lifting of ¥ to €y, the induced map
0r : Cr/ /vy — Cgoy vy is surjective on objects which lie over g € C/y. Since 0y is a left fibration, it is a
categorical fibration; it therefore suffices to show that object of €, /v which lies over g is in the essential
image of 0y. We begin by showing that S is stable under pushouts. Suppose we are given a pushout diagram
o

C/ fﬂl D/

Lo

in C, where f’ € S. We wish to prove that f € S. Consider a lifting of Y to €¢, which we can lift further
to C,,. The map 60 is equivalent to the left fibration C,,/y — €5,y . Since o is a pushout diagram, this is
equivalent to the map 6 : Cy/ /y Xeor, )y Cx/ /v — €y y. It will therefore suffice to show that every lifting
of g to €y, /vy lies in the essential image of ¢, which follows from our assumption that every lifting of g to
Ccr/ /v lies in the essential image of 0.

We now verify condition (1) of Definition 1.4.4. Fix an ordinary « and a diagram F : [a] — C satisfying
the hypotheses of Definition 1.4.2, and let f : F'(0) — F'(c) be the induced map. Choose a lifting of Y to €y,
which we can lift further to Cr,. Then 60 is equivalent to the map 6 : Cp/ ;y — Cp(gy/ /v It will therefore
suffice to show that every lift of g to an object of X € Cr(0)/ /v lies in the image of §. For each 8 < a,
we let Fy = F|[3]; we will construct a compatible sequence of objects X5 € Cr,/ /vy by induction on 3. If
B =0, we take X5 = X. If 8 is a nonzero limit ordinal, then our assumption that Fjz is a colimit diagram

guarantees that the map Cp,, /vy — @“KB Cr,/ /v is a trivial Kan fibration so that X g can be defined. It

remains to treat the case of a successor ordinal: let 3 < a and assume that X g has been defined; we wish to
show that the vertex X 5 lies in the image of the map 6 : Crsrn//y = Cryyyy- Let u: F(B) = F(B+1) be
the morphism determined by F', so that 0z is equivalent to the map 6,. Since the image of Xp in Crp), /Yy
lies over g, the existence of the desired lifting follows from our assumption that u € S.

We now verify (2). Consider a diagram o : A2 x Al — €, given by

c- 20— C

e

D——-D ——=D.
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Assume that f’ € S; we wish to prove f € S. Choose a lifting of Y to Cy/, and lift Y further to C,, (here
we identify f with o|({2} x A!). Let X be a lifting of g to Ccy/ /v we wish to show that X lies in the image
of §;. We can lift X further to an object X € Coo/ /v Where 09 = o[(A% x {0}). Let o’ = o|(A! x A).
The forgetful functor 6 : €,/ /y — €y, /y is equivalent to , so that the image of X in Cyx/ /v lies in the
image of 6. It follows immediately that X lies in the image of 0. O

Corollary 1.4.10. Let C be a presentable co-category, let S be a small collection of morphisms of C, let T
be the collection of all morphisms in C which have the right lifting property with respect to every morphism
in S, and let SV be the collection of all morphisms in € which have the left lifting property with respect to
every morphism in T. Then SV is the smallest weakly saturated collection of morphisms which contains S.

Proof. Proposition 1.4.9 implies that SV is weakly saturated, and it is obvious that SV contains S. Suppose
that S is any weakly saturated collection of morphisms which contains S; we will show that SV C S. Let
f: X — Z be a morphism in SV, and choose a factorization

i

can be extended to a 3-simplex

We therefore obtain a commutative diagram

x4 x_ . x
f £ f
g "

J——=Y ——=7

which shows that f is a retract of f’ and therefore belongs to S as desired. O

Recall that if € is an co-category which admits finite limits and colimits, then every simplicial object X,
of € determines latching and matching objects Ly (Xe), My (X,o) for n > 0 (see Remark T.A.2.9.16). The
following result will play an important role in our proof of Theorem 1.3.12:

Corollary 1.4.11. Let C be a presentable co-category and let S be a small collection of morphisms in C.
Let'Y be any object of €, and let ¢ : C/y — C be the forgetful functor. Then there exists a simplicial object
Xeo of C/y with the following properties:

(1) For eachm >0, let uy, : Ly,(Xe) — X, be the canonical map. Then ¢(uy,) is a transfinite pushout of
morphisms in S.

2) For each n >0, let v, : X, = M, (X,) be the canonical map in C,y. Then ¢(v,) has the right liftin
/ g g
property with respect to every morphism in S.
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Proof. We construct X, as the union of a compatible family of diagrams xM . N(A<,) — €y, which
we construct by induction on n. The case n = —1 is trivial (since A<_; is empty). Assume that n > 0 and
that X{"~" has been constructed, so that the matching and latching objects L,(X), M,(X) are defined
and we have a map ¢ : L,(X) — M, (X). Using Proposition T.A.2.9.14, we see that it suffices to construct

a commutative diagram
Xn
N
t
) ———————— M, (X,

Ln(Xe )

in €,y. Since the map €,y — € is a right fibration, this is equivalent to the problem of producing a

commutative diagram
K,
HLn(X2)) —— s §(M, (X))

in the co-category C. Proposition 1.4.7 guarantees that we are able to make these choices in such a way that
(1) and (2) are satisfied. O

Remark 1.4.12. In the situation of Corollary 1.4.11, let ) denote the initial object of €. Then for each
n > 0, the canonical map w : ) — ¢(X,,) is a transfinite pushout of morphisms in S. To prove this, we let
P denote the full subcategory of Ap,, spanned by the surjective maps [n] — [m]; we will regard P as a
partially ordered set. For each upward-closed subset Py C P, we let Z(P,) denote a colimit of the induced
diagram

N(Py)” — N(A)” 25 ¢,y 25 €.

Then Z(0) ~ 0 and Z(P) ~ ¢(X,,). It will therefore suffice to show that if P, C P is obtained from Py by
adjoining a new element given by « : [n] — [m], then the induced map 6 : Z(Py) — Z(Py) is a transfinite
pushout of morphisms in S. This follows from assertion (1) of Corollary 1.4.11, since 6 is a pushout of the
map Qb(un) : (b(Lm(X‘)) - qb(Xm)

Proof of Proposition 1.4.7. Let S = {g; : C; = D,;};cr. Choose a regular cardinal x such that each of the
objects C; is rk-compact. We construct a diagram F' : N[s] — €,z as the union of maps {F, : N[a] —
C/z}a<x; here [a] denotes the linearly ordered set of ordinals {8 : # < a}. The construction proceeds by
induction: we let Fy be the morphism f : X — Z, and for a nonzero limit ordinal A < k we let F) be
a colimit of the diagram obtained by amalgamating themaps {F,}a<x. Assume that « < k and that F,
been constructed. Then F,(«) corresponds to a map X’ — Z. Let T'(«) be a set of representantives for all
equivalence classes of diagrams equivalence classes of diagrams oy :

C,——=X'
-
Dy —— 7,

where g; is a morphism belonging to S. Choose a pushout diagram

HtET(a) C——X'

o

HteT(a) Dy —— X"
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in €,7. We regard X" as an object of Cx// 7. Since the map (C,z)r,; — Cx// 7z is a trivial Kan fibration,
we can lift X' to an object of (C,z)F, /, which determines the desired map Fi 1.

For each o < &, let fo : Y, — Z be the image F'(a) € C/z. Let Y =Y, and f” = f.. We claim that f”
has the right lifting property with respect to every morphism in S. In other words, we wish to show that for
each ¢ € I and every map D; — Z, the induced map

Mape/z (DY) — Mape/z (C,Y)

is surjective on connected components. Choose a point 1 € Mape/z (C;,Y). Since C; is k-compact, the space
Mape/z (C;,Y) can be realized as the filtered colimit of mapping spaces hﬂa 1\/Iap@/Z(Ci,Ya)7 SO we may
assume that 7 is the image of a point 7, € Mape /Z(Ci,Ya) for some o < k. The point 7, determines a
commutative diagram

C;——=Y,

-

DiHZ

which is equivalent to o; for some ¢t € T(a). It follows that the image of 7, in Mape/Z(Ci, Yo 41) extends to
D, so that 7 lies in the image of the map Mape (D, Ya41) — Mape , (C5,Y).

The morphism F(0) — F(x) in €,z induces a morphism f’: X — Y in C; we will complete the proof by
showing that f’ is a transfinite pushout of morphisms in S. Using Remark 1.4.3, we are reduced to showing
that for each a < &, the map Y, — Y,41 is a transfinite pushout of morphisms in S. To prove this, choose
a well-ordering of T'(«) having order type . For v < f3, let t, denote the corresponding element of T'(c).
We define a functor G : N[§] — C so that, for each 8’ < 3, we have a pushout diagram

H’Y<ﬁ/ Ct,y E——— Ya

|

H’Y<5/ Dt'v - G(ﬂ/)

It is easy to see that G satisfies the conditions of Definition 1.4.2 and therefore exhibits Y, — Y,11 as a
transfinite pushout of morphisms in S. O

1.5 Smooth Hypercoverings

Let (Y,{Eq4}acr) be a deformation context which admits a deformation theory ® : T°? — =. Our goal in
this section is to prove Theorem 1.3.12, which asserts that the construction K — Mapz(D(e), K) induces an
equivalence of oco-categories ¥ : = — Moduli*. The key step is to prove that every formal moduli problem
X admits a “smooth atlas” (Proposition 1.5.8).

We have seen that if X is an algebraic variety over the field C of complex numbers and x : Spec C — X
is a point, then X determines a formal moduli problem X” : CAlgd" — 8 (Example 1.2.8). However,
Definition 1.1.14 is far more inclusive than this. For example, we can also obtain formal moduli problems

by extracting the formal completions of algebraic stacks.

Example 1.5.1. Let n > 0 be an integer, and let A be a connective E,-ring. We say that an A-module M
is projective of rank n if oM is a projective module over mpA of rank n, and M is flat over A. Let X (A)
denote the subcategory of Mod s whose objects are modules which are locally free of rank n, and whose
morphisms are equivalences of modules. It is not difficult to see that the co-category X (A) is an essentially
small Kan complex. Consequently, the construction A — X (A) determines a functor X : CAlg™ — 8.

Let 7 denote the point of X(C) corresponding to the complex vector space C". We define the formal
completion of X at 1 to be the functor X" : CAlg&" — 8 given by X"(R) = X(R) xx(c) {n}. More
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informally, X" (R) is a classifying space for projective R-modules M of rank n equipped with a trivialization
C®rM ~ C". Then X" is a formal moduli problem (we will prove a more general statement to this effect
in §5.2).

If A is a local commutative ring, then every projective A-module of rank of n is isomorphic to A™. If
X is the functor of Example 1.5.1, we deduce that X (A) can be identified with the classifying space for the
group GL,(A) of automorphisms of A™ as an A-module. For this reason, the functor X is often denoted
by BGL,,. It can be described as the geometric realization (in the oo-category of functors F' : CAlg™ — §
which are sheaves with respect to the Zariski topology) of a simplicial functor F,, given by the formula
F,(A) = GL,(A)™, where GL,(A) denotes the subspace of Mapyj,q, (A", A™) spanned by the invertible
morphisms. Similarly, the formal completion X” can be described as the geometric realization of a simplicial
functor F*, given by F)»(R) = fib(GL,,(R) — GL,(C)) for R € CAlgg" (after passing to formal completions,
there is no need to sheafify with respect to the Zariski topology: if R € CAlgg”, then moR is a local Artin
ring, so that every projective R-module of rank n is automatically free).

Remark 1.5.2. Example 1.5.1 can be generalized. Suppose that X is an arbitrary Artin stack over C.
Then X can be presented by an atlas, which is a (smooth) groupoid object

=2 U, —= .

in the category of C-schemes. Let g : Spec C — Uy be any point, so that 79 determines points 7,, : Spec C —
U, for every integer n. We can then define formal moduli problems U, : CAlge" — 8 by formally completing
each U,, at the point 7,,. This gives a simplicial object U* in the oo-category Fun(CAlgd*, 8). The geometric
realization |UJ'| € Fun(CAlgg', 8) is also a formal moduli problem which we will denote by X”. One can
show that it is canonically independent (up to equivalence) of the atlas U, chosen.

Our first goal in this section is to formulate a converse to Remark 1.5.2. Roughly speaking, we would like
to assert that every formal moduli problem Y : CAlge” — 8 admits a description that resembles the formal
completion of an algebraic stack. However, the precise context of Remark 1.5.2 is too restrictive in several
respects:

(a) We can associate formal completions not only to algebraic stacks, but also to higher algebraic stacks.
Consequently, rather than trying to realize Y as the geometric realization of a groupoid object Y, of
Moduli C Fun(CAlggd", 8), we will allow more general simplicial objects Y, of Moduli.

(b) We would like to exhibit Y as the geometric realization of a simplicial object Y, where each Y,
resembles the formal completion of a C-scheme near some point (which, without loss of generality, we
may take to be an affine scheme of the form Spec®® R). Since the construction of the formal completion
makes sense not only for schemes but also for spectral Deligne-Mumford stacks (Example 0.0.10), we
should allow the possibility that R is a nondiscrete E,-algebra over C.

(¢) If R is an augmented E-algebra over C, then A determines a formal moduli problem SpecR :
CAlgg" — 8 given by the formula A — Map Algre (R, A). This functor is perhaps better understood
(at least in the case where R is Noetherian) as the formal spectrum of R", where R" denotes the
completion of R along the augmentation ideal in mgR. To incorporate a wider class of examples, we
should allow arbitrary (possibly infinite-dimensional) affine formal schemes, not only those which arise
as the formal completions of actual schemes.

Let us now explain how to make these ideas more precise. We will work in the setting of an arbitrary
deformation context (Y, {Eq}aer)-

Definition 1.5.3. Let (Y, {E,}acr) be a deformation context. We let Pro(T*™) denote the oo-category of
pro-objects of T*™: that is, the smallest full subcategory of Fun(Y®™", §)°P which contains all corepresentable
functors and is closed under filtered colimits. We will say that a functor X : T®™ — § is prorepresentable if
it belongs to the full subcategory Pro(Y*™) C Fun(Y*™, 8)°P.

26



Remark 1.5.4. Let (Y,{E,}qer) be a deformation context. Since filtered colimits in 8§ are left exact
(Example T.7.3.4.4), the full subcategory Moduli® is stable under filtered colimits in Fun(T*™,8). Since
every corepresentable functor is a formal moduli problem (Example 1.1.16), we conclude that Pro(YT®™)°P
is contained in Moduli® (as a full subcategory of Fun(Y*™ 8)). That is, every prorepresentable functor
T — 8 is a formal moduli problem.

Our next objective is to introduce a general notion of smooth morphism between two formal moduli
problems.

Proposition 1.5.5. Let (Y, {Eq,}act) be a deformation context, and let uw : X — Y be a map of formal
moduli problems X, Y : T — 8. The following conditions are equivalent:

(1) For every small map ¢ : A — B in T°™, w has the right lifting property with respect to Spec(¢) :
Spec(B) — Spec(A).

(2) For every small map ¢ : A — B in Y™, the induced map X(A) — X (B) Xy (py Y (A) is surjective on
connected components.

(3) For every elementary map ¢ : A — B in Y*™, the induced map X (A) — X (B) Xy ()Y (A) is surjective
on connected components.

(4) For every a € T and every n > 0, the homotopy fiber of the map X (Q°""E,) = Y (Q>*""E,) (taken
over the point determined by the base point of Q°~"E, ) is connected.

(5) For every a € T, the map of spectra X(E,) — Y (E,) is connective (that is, it has a connective
homotopy fiber).

Proof. The equivalence (1) < (2) is tautological, and the implications (2) = (3) = (4) are evident. Let S
be the collection of all small morphisms A — B in T for which the map X(A4) — X(B) xy () Y (A) is
surjective on connected components. The implication (3) = (2) follows from the observation that S is closed
under composition, and the implication (4) = (3) from the observation that S is stable under the formation
of pullbacks. The equivalence (4) < (5) follows from fact that a map of M — M’ of spectra is connective if
and only if the induced map Q"M — Q=" M’ has connected homotopy fibers for each n > 0. O

Definition 1.5.6. Let (Y,{E,}qacr) be a deformation context, and let u : X — Y be a map of formal
moduli problems. We will say that u is smooth if it satisfies the equivalent conditions of Proposition 1.5.5.
We will say that a formal moduli problem X is smooth if the map X — % is smooth, where * denotes the
final object of Moduli* (that is, the constant functor T — 8 taking the value * € §).

Remark 1.5.7. We can regard condition (5) of Proposition 1.5.5 as providing a differential criterion for
smoothness: a map of formal moduli problems X — Y is smooth if and only if it induces a connective map
of tangent complexes X (E,) — Y (E,). This should be regarded as an analogue of the condition that a map
of smooth algebraic varieties f : X — Y induce a surjective map of tangent sheaves Tx — f*Ty.

Proposition 1.5.8. Let (T, {Eqs}acr) be a deformation context and let X : Y™ — 8§ be a formal moduli
problem. Then there ezists a simplicial object Xo in Moduli}rX with the following properties:

(1) Fach X, is prorepresentable.

(2) For each n > 0, let M, (X,) denote the nth matching object of the simplicial object Xo (computed in
the co-category Moduli}fx). Then the canonical map X, — M, (X,) is smooth.

In particular, X is equivalent to the geometric realization | X,| in Fun(YT™8).

The proof of Proposition 1.5.8 will use the following simple observation:

27



Lemma 1.5.9. Let (Y,{E,}act) be a deformation context, and let S be the collection of all morphisms
in the co-category Moduli® of the form Spec(B) — Spec(A), where the underlying map A — B is a small
morphism in T*™. Let f: X =Y be a morphism in Moduli, and suppose that [ is a transfinite pushout of
morphisms in S. If X is prorepresentable, then'Y is prorepresentable.

Proof. Since the collection of prorepresentable objects of Moduli™ is closed under filtered colimits, it will
suffice to prove the following:

(%) If  : A — B is a small morphism in Moduli® and we are given a pushout diagram

Spec(B) —= X

iSpeC(rﬁ) lf

Spec(A) ——Y
where X is prorepresentable, then Y is also prorepresentable.

To prove (x), we note that X can be regarded as an object of Pro(Y*™)Z" pec(B)) = ~ Ind((Y75)°?). In other
words, we have X ~ lim Spec(Bg) for some filtered diagram {Bg} in Y75. Then

Y ~ Spec (Bg) H Spec(A
Spec(B)

For any formal moduli problem Z, we have

MapModuh Spec Bﬁ H Spec Z(B,B) X Z(B) Z(A) = Z(Bﬁ XB A)
Spec(B)

(since the map ¢ : A — B is small), so that Spec(Bg) [[gpec(5) SPec(A) = Spec(Bg x g A) is corepresented
by an object Bg xp A. It follows that Y is prorepresentable, as desired. O

Proof of Proposition 1.5.8. Let X be an arbitrary formal moduli problem. Applying Corollary 1.4.11, we
can choose a simplicial object X, of Moduli}rx such that each of the maps X,, — M, (X,) is smooth, and
each of the maps L, (X,) — X,, is a transfinite pushout of morphisms of the form Spec B — Spec A, where
A — B is an elementary morphism in T*™. Using Remark 1.4.12 and Lemma 1.5.9, we conclude that each
X, is prorepresentable. This proves (1) and (2). To prove that X ~ |X,| in Fun(YT*",8), it suffices to
observe that condition (2) implies that X,(A) is a hypercovering of X (A) for every A € T*™. O

We now turn to the proof of Theorem 1.3.12 itself. We will need the following;:

Lemma 1.5.10. Let (Y,{E,}acT) be a deformation context and let © : Y°P — = be a deformation theory.
For every small object A € T, D(A) is a compact object of the co-category =.

Proof. Since A is small, there exists a sequence of elementary morphisms
A=Ag—> A = > A, ~ %

in Y. We will prove that D (A;) is a compact object of = by descending induction on i. When i = n, the desired
result follows from the observation that © carries final objects of T to initial objects of Z (Proposition 1.3.5).
Assume therefore that ¢ < n and that D(A;11) € E is compact. Since the map A; — A;41 is elementary, we
have a pullback diagram o :

A

|

Ajp1 —=Q%"E,
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for some a € T and some n > 0. It follows from Proposition 1.3.5 that D (o) is a pushout square in E.
Consequently, to show that D(A;) is a compact object of =, it will suffice to show that D(A;+1), D(x), and
D(Q>*°~"E,) are compact objects of =. In the first two cases, this follows from the inductive hypothesis.
For the third, we note that the functor corepresented by ©(Q°~"E,) is given by the composition

2 8p TS,
where e, is the functor described in Corollary 1.3.8. Our assumption that © is a deformation theory
guarantees that e, commutes with sifted colimits. The functor 2°~" : Sp — 8§ commutes with filtered
colimits, so the composite functor = — 8§ commutes with filtered colimits which implies that Q*°~"F, is a
compact object of =. O

We are now ready to prove our main result.

Proof of Theorem 1.3.12. Let ( i;E o tacT) be a deformation context, let © : T°? — = be a deformation
theory, and let ¥ : = — Moduh C Fun(Y®,8) denote the functor given by the formula ¥(K)(A4) =
Mapz(D(A), K). We wish to prove that ¥ is an equivalence of co-categories. It is clear that ¥ preserves
small limits. It follows from Lemma 1.5.10 that ¥ preserves filtered colimits and is therefore accessible.
Using Corollary T.5.5.2.9 we conclude that ¥ admits a left adjoint ®. To prove that ¥ is an equivalence, it
will suffice to show:

(a) The functor ¥ is conservative.

(b) The unit transformation u : idpoedunn — ¥ o ® is an equivalence.

We begin with the proof of (a). Suppose we are given a morphism f : K — K’ in Z have that ¥(f) is an
equivalence. In particular, for each a € T and each n > 0, we have a homotopy equivalence

Maps (D(Q% " E,), K) ~ U(K)(DQ°"E,) — U(K') (D0 "E,) ~ Mapz (D(Q¥"E,), K').

It follows that e, (K) ~ eq(K'), where e, : & — Sp is the functor described in Corollary 1.3.8. Since the
functors e, are jointly conservative (Definition 1.3.9), we conclude that f is an equivalence.

We now prove (b). Let X € Moduli® be a formal moduli problem; we wish to show that u induces an
equivalence X — (Vo ®@)(X). According to Proposition 1.2.10, it suffices to show that for each o € T', the
induced map

0: X(Ey) = (Pod)(X)(Ey) ~eq(PX)
is an equivalence of spectra. To prove this, choose a simplicial object X, of Moduli}AX satisfying the re-
quirements of Proposition 1.5.8. For every object A € T the simplicial space Xq(A) is a hypercovering of
X (A) so that the induced map |Xo(A4)| = X(A) is a homotopy equivalence. It follows that X is a colimit
of the diagram X, in the oo-category Fun(Y*™,8) and therefore also in the co-category Moduli. Similarly,
X(E,) is equivalent to the geometric realization | X, (Eq,)| in the oo-category Fun($i",8) and therefore also
in the co-category of spectra. Since ® preserves small colimits and e, preserves sifted colimits, we have

ea(P(X)) = eq(P|Xe|) =~ |ea(PX,)].
It follows that 6 is a geometric realization of a simplicial morphism
Oo : Xo(Eq) — €0(PX,).

It will therefore suffice to prove that each 6,, is an equivalence, which is equivalent to the requirement that
u induces an equivalence X,, — (¥ o ®)(X,,). In other words, we may replace X by X,,, and thereby reduce
to the case where X is prorepresentable. Since the functors ® and ¥ both commute with filtered colimits,
we may further reduce to the case where X = Spec(A) for some A € T*™. Since ®(Spec(A4)) = D(A4), it
suffices to show that for each B € T°™, the map

Mapy (A, B) = Map=(D(B),D(4)) ~ Mapy (4, 9D (B))

is a homotopy equivalence, which follows immediately from Proposition 1.3.5. O
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2 Moduli Problems for Commutative Algebras

Let k be a field of characteristic zero, fixed throughout this section. An E-algebra R € CAlg,, is small if it
satisfies the conditions of Proposition 1.1.11: that is, if R is connective, 7w, R is a finite dimensional vector
space over k, and moR is a local ring with residue field k. We let CAlg;™ denote the full subcategory of
CAlg,, spanned by the small E,.-algebra over k (we can also identify CAlg;™ with a full subcategory of the
oo-category CAlgy"® of augmented E-algebras over k: see Remark 1.1.12).

Recall that a functor X : CAlgy™ — 8 is called a formal moduli problem if it satisfies the following pair

of conditions (see Proposition 1.1.19):
(a) The space X (k) is contractible.

(b) For every pullback diagram
R—— Ry

]

Ry —— Ry

in CAlg;™, if both the maps moRy — moRo1 + 7o Ry are surjective, then the diagram of spaces

X(R) — X(Ro)

L

X(Rl) I X(R(]l)

is also a pullback diagram.

In this section, we will study the full subcategory Moduli;, C Fun(CAlg;™, 8) spanned by the formal moduli
problems.

We begin by applying the general formalism of §1.2. To every formal moduli problem X € Modulig, we
can associate a spectrum T'x € Sp, which is given informally by the formula Q*°"Tx = X (k & k[n]) for
n > 0. In particular, we can identify the Oth space Q°Tx with X (k[e]/(¢?)), an analogue of the classical
Zariski tangent space. We refer to T'x as the tangent complex of the formal moduli problem X.

The construction X — Tx commutes with finite limits. In particular, we have a homotopy equivalence
of spectra Tx[—1] ~ Tax, where QX denotes the formal moduli problem given by the formula

(QX)(R) = QX(R)

(note that a choice of point 1 in the contractible space X (k) determines a base of each X (R), so the loop
space QX (R) is well-defined). The formal moduli problem QX is equipped with additional structure: it can
be regarded as a group object of Modulig. It is therefore natural to expect that the tangent complex T x
should behave somewhat like the tangent space to an algebraic group. We can formulate this idea more
precisely as follows:

(*) Let X € Modulig be a formal moduli problem. Then the shifted tangent complex Tx[—1] ~ Tox can
be identified with the underlying spectrum of a differential graded Lie algebra over k.

Example 2.0.1. Suppose that A is a commutative k-algebra equipped with an augmentation ¢ : A — k.
Then R defines a formal moduli problem X over k, which carries a small E,-algebra R over k to the mapping
space Mapg Alghes (A, R). When k is of characteristic zero, the tangent complex Tx can be identified with
the complex of Andre-Quillen cochains taking values in k. In this case, the existence of a natural differential
graded Lie algebra structure on Ty [—1] is proven in [58].
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Assertion (x) has a converse: every differential graded Lie algebra g, arises (up to quasi-isomorphism)
as the shifted tangent complex Tx[—1] of some X € Moduliy. Moreover, the formal moduli problem X
is determined by g, up to equivalence. More precisely, we have the following stronger version of Theorem
0.0.13:

Theorem 2.0.2. Let k be a field of characteristic zero, and let Liey denote the oo-category of differential
graded Lie algebras over k (that is, Liey is the oo-category obtained from the ordinary category Liezg of
differential graded Lie algebras over k by formally inverting all quasi-isomorphisms; see Definition 2.1.14).
Then there is an equivalence of co-categories W : Liep — Moduliy. Moreover, the functor g. — Ty (g, )[—1]
is equivalent to the forgetful functor Liey, — Sp (which carries a differential graded Lie algebra g. to the
generalized Eilenberg-MacLane spectrum determined by the underlying chain complex of g. ).

Our main goal in this section is to prove Theorem 2.0.2. The first step is to construct the functor
U : Liexy — Modulig. Let g, be a differential graded Lie algebra over k, and let R € CAlg;™. Since k has
characteristic zero, we can identify R with an (augmented) commutative differential graded algebra over k;
let us denote its augmentation ideal by mp. The tensor product mg ®j g, then inherits the structure of
a differential graded Lie algebra over k. Roughly speaking, ¥(g.)(R) should be a suitably-defined space of
Maurer-Cartan elements of the differential graded Lie algebra mgr ®y g.: that is, the space of solutions to the
Maurer-Cartan equation dz = [z, z]. There does not seem to be a homotopy-invariant definition for the space
MC(g.) of Maurer-Cartan elements of an arbitrary differential graded Lie algebra over k: the well-definedness
of MC(mpg ®y, g.) relies on the nilpotence properties of the tensor product mg ®y, g. (which follow from our
assumption that R is small). Nevertheless, there is a well-defined bifunctor MC : CAlg},"® x Liey — 8 which
is given heuristically by (R, g«) — MC(mpg ®j g«). This functor can be defined more precisely by the formula

MC(R> g*) = NIapLie;c (;D(R)7 9+),

where © : (CAlg;"®)°? — Liey, is the Koszul duality functor that we will describe in §2.3. Roughly speaking,
the Koszul dual of an augmented E.-algebra R is a differential graded Lie algebra ®(R) € Lie; which
corepresents the functor g, — MC(mpg ®j, g.). However, it will be more convenient for us to describe D (R)
instead by the functor that represents. We will define ® as the right adjoint to the functor C* : Lie, —
(CAlgy"®)°P, which assigns to each differential graded Lie algebra g, the commutative differential graded
algebra C*(g.) of Lie algebra cochains on g. (see Construction 2.2.13).

Remark 2.0.3. For our purposes, the Maurer-Cartan equation dz = [z, z] (and the associated space MC(g.)
of Maurer-Cartan elements of a differential graded Lie algebra g.) are useful heuristics for understanding
the functor ¥ appearing in Theorem 2.0.2. They will play no further role in this paper. For a construction
of the functor ¥ which makes direct use of the Maurer-Cartan equation, we refer the reader to the work of
Hinich (see [26]). We also refer the reader to the work of Goldman and Millson ([22] and [23]).

Let us now outline the contents of this section. We begin in §2.1 with a brief overview of the theory of
differential graded Lie algebras and a definition of the co-category Liey. In §2.2, we will review the homology
and cohomology theory of (differential graded) Lie algebras, which are computed by the Chevalley-Eilenberg
constructions

g = Ou(g4) 8 > C7(g4).

The functor C* carries quasi-isomorphisms of differential graded Lie algebras to quasi-isomorphisms between
(augmented) commutative differential graded algebras, and therefore descends to a (contravariant) functor
from the oo-category Liey, to the oo-category CAlg;". We will show that this functor admits a left adjoint
© and study its properties. The main point is to show that D defines a deformation theory (in the sense of
Definition 1.3.9) on the deformation context (CAlg;"®, {E}) of Example 1.1.4. We will use this fact in §2.3
to deduce Theorem 2.0.2 from Theorem 1.3.12.

If X : CAlgi™ — 8 is a formal moduli problem, then we can introduce an co-category QCoh(X) of quasi-
coherent sheaveson X. It follows from Theorem 2.0.2 that X is completely determined by a differential graded
Lie algebra g, (which is well-defined up to quasi-isomorphism). In §2.4, we will show that QCoh(X) can
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be obtained as a full subcategory of the co-category of (differential graded) representations of g, (Theorem
2.4.1).

2.1 Differential Graded Lie Algebras

Let k be a field of characteristic zero. Theorem 2.0.2 asserts that the co-category Moduliy of formal moduli
problems over k is equivalent to the oco-category Liey of differential graded Lie algebras over k. Our goal
in this section is to explain the definition of Lie; and establish some of its basic properties. We begin by
reviewing the definition of the ordinary category Lie(,ig of differential graded Lie algebras over k and showing
that it admits the structure of a model category (Proposition 2.1.10). Along the way, we will introduce some
of the notation and constructions which will play a role in our proof of Theorem 2.0.2.

Notation 2.1.1. Let k£ be a field. We let Vectzg denote the category of differential graded vector spaces
over k: that is, the category whose objects are chain complexes

I VAR 7 /S

We will regard Vectzg as a symmetric monoidal category, whose tensor product is the usual tensor product
of chain complexes given by the formula

VeW),= @ VyarWy,
p=p’+p”’
and the symmetry isomorphism V@ W ~ W ® V is the sum of the isomorphisms Vyy ® Wy ~ Wy @ Vi,
multiplied by the factor (—1)P'7".
We recall that the category Vectig admits a model structure, where:

(C) A map of chain complexes f : V., — W, is a cofibration it is degreewise monic: that is, each of the
induced maps V,, — W,, is injective.

(F) A map of chain complexes f : V, — W, is a fibration it is degreewise epic: that is, each of the induced
maps V,, — W, is surjective..

(W) A map of chain complexes f : V., — W, is a weak equivalence if it is a quasi-isomorphism: that is, if
it induces an isomorphism on homology groups H,, (V) — H, (W) for every integer n.

Moreover, the underlying co-category of Vectig can be identified with the oo-category Mody of k-module
spectra (see Remark A.7.1.1.16).

Notation 2.1.2. Let V be a graded vector space over k. We let V' denote the graded dual of V', given by
(VV), = Homy(V_p, k). For each integer n, we let V[n] denote the same vector space with grading shifted
by n, so that Vin], = V,—p.

Definition 2.1.3. We let Alggg denote the category of associative algebra objects of Vectzg, and CAlgzg
the category of commutative algebra objects of Vectig. We will refer to objects of Algzg as differential
graded algebras over k and objects of CAlgig as commutative differential graded algebras over k. According

to Propositions A.4.1.4.3 and A.4.4.4.6, Alg‘,ig and CAlgzg admit combinatorial model structures, where a
map [ : A, — B, of (commutative) differential graded algebras is a weak equivalence or fibration if the
underlying map of chain complexes is a weak equivalence or fibration.

Remark 2.1.4. In more concrete terms, a differential graded algebra A is a chain complex (A, d) together
with a unit 1 € Ap and a collection of k-bilinear multiplication maps A, x A, — A1, satisfying

le=zxl=z z(yz) = (xy)z d(zy) = dzy + (—1)Pzdy

for x € Ay, y € Ay, and z € A,. The differential graded algebra A is commutative if zy = (—1)P9yx for
r €Ay, ye A,
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Definition 2.1.5. A differential graded Lie algebra over k is a chain complex (g.,d) of k-vector spaces
equipped with a Lie bracket [,] : g, @k gq — gp+q satisfying the following conditions:

(1) For z € g, and y € g4, we have [z,y] + (—1)?[y, z] = 0.

(2) For x € gp, y € gg, and z € g,, we have
(=D [z, [y, 2l + (=1)"[y, [z, 2] + (=1)" [z, [z, y]] = 0.

(3) The differential d is a derivation with respect to the Lie bracket. That is, for z € g, and y € g4, we
have

Given a pair of differential graded Lie algebras (g.,d) and (g..,d’), a map of differential graded Lie algebras
from (g.,d) to (g.,d’) is a map of chain complexes F : (g.,d) — (gl,d’) such that F([z,y]) = [F(z), F(y)]
for z € gp, y € gq. The collection of all differential graded Lie algebras over k forms a category, which we
will denote by Liezg.

Example 2.1.6. Let A, be a (possibly nonunital) differential graded algebra over k. Then A, has the
structure of a differential graded Lie algebra, where the Lie bracket

[]: Ap @k Ag = Apig
is given by [z,y] = 2y — (—1)Plyz.

Remark 2.1.7. The construction of Example 2.1.6 determines a forgetful functor Algzg — Lie(,ig. This
functor admits a left adjoint U : Liez1g — Algzg7 which assigns to every differential graded Lie algebra g,
its universal enveloping algebra U(g.). The universal enveloping algebra U(g.) can be described as the
quotient of the tensor algebra ,,~,9%™ by the two-sided ideal generated by all expressions of the form
(z®y)— (—1)P(y ® x) — [z, y], where = € g, and y € g,. The collection of such expressions is stable under
the differential on @, <, g&™, so that U(g,) inherits the structure of a differential graded algebra.

The universal enveloping algebra U(g,) admits a natural filtration

U(g*)go g U(g*)gl g Tty

where U(g,)<" is the image of Do<i<n 92" in U(g.). The associated graded algebra of U(g.) is commutative

(in the graded sense), so that the canonical map g. — U(g)S! induces a map of differential graded algebras
6 : Sym* g, — grU(gs). According to the Poincare-Birkhoff-Witt theorem, the map 6 is an isomorphism
(see Theorem 2.3 of [73] for a proof in the setting of differential graded Lie algebras).

Remark 2.1.8. Let g, be a differential graded Lie algebra over k. For each integer n, we let ¢ : g&™ — U(g.)
denote the multiplication map. For every permutation o of the set {1,2,...,n}, let ¢, denote the induced
automorphism of g®”. The map % > o ¥ 0 ¢y is invariant under precomposition with each of the maps ¢,
and therefore factors as a composition

g™ = Sym™(g.) = U(g.)=" C U(g.).
We observe that the composite map
Sym"(g.) ©5 U(g.)=" — & U(g.)
coincides with the isomorphism of Remark 2.1.7. It follows that the direct sum of the maps ¥,, determines

an isomorphism of chain complexes § : Sym*(g.) — U(g.).
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Definition 2.1.9. Let f : g. — g, be a map of differential graded Lie algebras over k. We will say that f is
a quasi-isomorphism if the underlying map of chain complexes is a quasi-isomorphism: that is, if F' induces
an isomorphism on homology.

Proposition 2.1.10. Let k be a field of characteristic zero. Then the category Liezg of differential graded
Lie algebras over k has the structure of a left proper combinatorial model category, where:

(W) A map of differential graded Lie algebras [ : g. — gl is a weak equivalence if and only if it is a
quasi-isomorphism (Definition 2.1.9).

(F) A map of differential graded Lie algebras f : g« — @l is a fibration if and only if it is a fibration of
chain complezes: that is, if and only if each of the induced maps g, — g; s a surjective map of vector
spaces over k.

(C) A map of differential graded Lie algebras f : g. — g is a cofibration if and only if it has the left lifting
property with respect to every map of differential graded Lie algebras which is simultaneously a fibration
and a weak equivalence.

Lemma 2.1.11. Let f : g. — g be a map of differential graded Lie algebras over a field k of characteristic
zero. The following conditions are equivalent:

(1) The map f is a quasi-isomorphism.
(2) The induced map U(g.) — U(gl) is a quasi-isomorphism of differential graded algebras.

Proof. We note that if g : V, — W, is any map of chain complexes of k-vector spaces, then g is a quasi-
isomorphism if and only if g induces a quasi-isomorphism Sym™*(V,) — Sym*(W.). The desired assertion
now follows immediately from Remark 2.1.8. O

Proof of Proposition 2.1.10. The forgetful functor Lie(,ig — Vect(,:g has a left adjoint (the free Lie algebra
functor), which we will denote by Free : Vect(,ig — Lie(,ig . For every integer n, let E(n), denote the acyclic
chain complex

= 0=20=2k~k—-0—-0—---

which is nontrivial only in degrees n and (n — 1), and let 9 E(n). be the subcomplex of E(n), which is
nontrivial only in degree (n—1). Let Cj be the collection of morphisms in Liegg of the form Free(d E(n).) —

Free(E(n).), and let W be the collection of all quasi-isomorphisms in Liezg. We claim that the collection of
morphisms Cy and W satisfy the hypotheses of Proposition T.A.2.6.13:

(1) The collection W of quasi-isomorphisms is perfect, in the sense of Definition T.A.2.6.10. This follows
immediately from Corollary T.A.2.6.12, applied to the forgetful functor Liezg — Vectig.

(2) The collection of weak equivalences is stable under pushouts of morphisms in Cy. In other words, if
f i 8« — ¢, is a quasi-isomorphism of differential graded Lie algebras over k and = € g,_1 is a cycle
classifying a map Free(d E(n).) — g«, we must show that the induced map

g J[ Free(En).) »g, J[  Free(E(n).)

Free(0 E(n).) Free(0 E(n)+)

is also a quasi-isomorphism of differential graded Lie algebras. Let A, = U(gx), let A, = U(g,), and
let F': A, — A’ be the map induced by f. We will abuse notation and identify x with its image in
An—1. Using Lemma 2.1.11, we see that F' is a quasi-isomorphism, and we are reduced to showing that
F induces a quasi-isomorphism B, — B., where B, is the differential graded algebra obtained from
A, by adjoining a class y in degree n with dy = z, and B, is defined similarly. To prove this, we note

that B, admits an exhaustive filtration

A, ~B°Cc Bl Cc B2 C...
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where BS™ is the subspace of B spanned by all expressions of the form agya,y - - - yai, where k < m
and each a; belongs to the image of A, in B,. Similarly, we have a filtration

I~ R'<0 <1 1<2
AL ~B=S0cpBstcB=2cC...

of B.. Since the collection of quasi-isomorphisms is stable under filtered colimits, it will suffice to show
that for each m > 0, the map of chain complexes BE™ 5 B s a quasi-isomorphism. The proof
proceeds by induction on m, the case m = 0 being true by assumption. If m > 0, we have a diagram

of short exact sequences of chain complexes

0 B*Sm—l B*Sm B*Sn/B*Sm—l 0

L 3

I<m-—1 1< 1< I<m-—1
0 — B**m - > B**m - > B**m/B**m — 0.

The inductive hypothesis implies that the left vertical map is a quasi-isomorphism. To complete
the inductive step, it will suffice to show that ¢ is a quasi-isomorphism. For this, we observe that
the construction ag ® -+ ® a, — aoyaiy---ya,, determines an isomorphism of chain complexes
AGmFL B*Sm/B*Smfl7 and similarly we have an isomorphism A/®m+1 — B;Sm/B,/kSm*l. Under
these isomorphisms, ¢ corresponds to the map A®™+1 — A/®™m+1 given by the (m + 1)st tensor power
of I, which is a quasi-isomorphism by assumption.

(3) Let f: g« — g, be a map of differential graded Lie algebras which has the right lifting property with
respect to every morphism in Cy. We claim that f is a quasi-isomorphism. To prove this, we must
show that f induces an isomorphism 6, : H,(g«) — H,(g.) for every integer n (here H,(h.) denotes
the homology of the underlying chain complex of h,). We first show that 6, is surjective. Choose a
class n € H,(g,), represented by a cycle € g/,. Then z determines a map u : Free(E(n).) — g
which vanishes on Free(d E(n).). It follows that u = f o v, where v : Free(E(n).) — g« is a map of
differential graded Lie algebras which vanishes on Free(d E(n — 1),). The map v is determined by a

cycle T € g,, which represents a homology class lifting 7.

We now prove that 6,, is injective. Let n € H,,(g«) be a class whose image in H,,(g,) vanishes. Then
n is represented by a cycle x € g,, such that f(z) = dy, for some y € g;,, ;. Then y determines a map
of differential graded Lie algebras u : Free(E(n + 1).) — ¢’ such that u| Free(d E(n + 1),) lifts to g..
It follows that u = f o v, for some map of differential graded Lie algebras Free(E(n + 1)) — g« such
that v| Free(0 E(n + 1),) classifies z. It follows that z is a boundary, so that n = 0.

It follows from Proposition T.A.2.6.13 that Lie(,ig admits a left proper combinatorial model structure
having W as the class of weak equivalences and Cj as a class of generating cofibrations. To complete the
proof, it will suffice to show that a morphism u : g, — g, in Liegg is a fibration if and only if it is degreewise
surjective. Suppose first that u is a fibration. For each integer n, let i,, : 0 — Free(E(n).) be the evident
map of differential graded Lie algebras. Then i,, factors as a composition

0—=0 H Free(E(n —1),) =~ Free(0 E(n).) — Free(E(n).),
Free(0 E(n—1).)

and is therefore a cofibration. The unit map k ~ U(0) — U(Free(E(n),)) ~ @,,~c E(n)®™ is a quasi-
isomorphism (since F(n) is acyclic and therefore each E(n)®™ is acyclic for m > 0). It follows that i, is a
trivial cofibration, so that u has the right lifting property with respect to i,,. Unwinding the definitions, we
conclude that the map g,, — g/, is surjective.

Now suppose that u is degreewise surjective; we wish to show that u is a fibration. Let S be the collection
of all trivial cofibrations in Liezg which have the left lifting property with respect to u. Let f : b, — b7 be
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a trivial cofibration in Liezg; we will prove that f € S. Note that f contains each of the trivial cofibrations
in : 0 = Free(E(n),) above. Using the small object argument, we can factor f as a composition

b L0, 5 pl
where f/ € S and f” has the right lifting property with respect to each of the morphisms 7,,: that is, f is
degreewise surjective. Since f and f’ are quasi-isomorphisms, we conclude that f” is a quasi-isomorphism.

It follows that f” is a trivial fibration in the category of chain complexes and therefore a trivial fibration in
the category Liegg . Since f is a cofibration, the lifting problem
b~ b,
7
f p 7 lf”

admits a solution. We conclude that f is a retract of f/, and therefore also belongs to S. O

Remark 2.1.12. The forgetful functor Algzg — Liezg of Example 2.1.6 preserves fibrations and weak
equivalences, and is therefore a right Quillen functor. It follows that the universal enveloping algebra functor
U: Lieig — Algzg is a left Quillen functor.

Proposition 2.1.13. Let J be a small category such that N(J) is sifted. The forgetful functor
G: Liezg — Vectig
preserves J-indexed homotopy colimits.

Proof. Let G’ : Alg(,ig — Vect(,ig be the forgetful functor. It follows from Remark 2.1.8 that the functor G
is a retract of G’ o U. It will therefore suffice to show that G’ o U preserves J-indexed homotopy colimits.
The functor U is a left Quillen functor (Remark 2.1.12) and therefore preserves all homotopy colimits. We
are therefore reduced to showing that G’ preserves J-indexed homotopy colimits, which is a special case of
Lemma A.4.1.4.13. O

Definition 2.1.14. Let k£ be a field of characteristic zero. We let Lie, denote the underlying oo-category
of the model category Lie‘,ig. More precisely, Lie; denotes an co-category equipped with a functor w :

N(Liezg) — Lieg having the following universal property: for every oco-category C, composition with u
induces an equivalence from Fun(Lieg, C) to the full subcategory of Fun(N(Liezg),G) spanned by those

functors F' : Lieig — € which carry quasi-isomorphisms in Lie,(ig to equivalences in € (see Definition A.1.3.3.2
and Remark A.1.3.3.3). We will refer to Liey as the oo-category of differential graded Lie algebras over k.

Remark 2.1.15. Using Proposition A.7.1.1.15, we conclude that the underlying oo-category of the model
category Vectig can be identified with the co-category Mod, = Mod (Sp) of k-module spectra. The forgetful

functor Liezg — Vectzg preserves quasi-isomorphisms, and therefore induces a forgetful functor Lie, — Mody.

Proposition 2.1.16. Let k be a field of characteristic zero. Then the co-category Liey, is presentable, and
the forgetful functor 6 : Liey, — Mody of Remark 2.1.15 preserves small sifted colimits.

Proof. The first assertion follows from Proposition A.1.3.3.9. Using Propositions A.1.3.3.11, A.1.3.3.12, and
2.1.13, we conclude that 6 preserves colimits indexed by small categories J such that N(J) is sifted. Since
any filtered co-category J admits a left cofinal map N(A) — J where A is a filtered partially ordered set
(Proposition T.5.3.1.16), we conclude that 6 preserves small filtered colimits. Since 6 also preserves geometric
realizations of simplicial objects, it preserves all small sifted colimits (Corollary T.5.5.8.17). O

Remark 2.1.17. The forgetful functor 6 : Lie, — Mod, is monadic: that is, 6§ admits a left adjoint
Free : Mody — Lieg, and induces an equivalence of Lie, with LMody(Mody), where T is the monad on
Mody, given by the composition 6 o Free. This follows from Theorem A.6.2.0.6 and Proposition 2.1.16.
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2.2 Homology and Cohomology of Lie Algebras

Let g be a Lie algebra over a field k and let U(g) denote its universal enveloping algebra. We can regard
k as a (left or right) module over U(g), with each element of g acting trivially on k. The homology and
cohomology groups of g are defined by

Ho(g) = Tor] @ (k, k) H"(g) = Extfy g (k, k).

These groups can be described more explicitly as the homology groups of chain complexes C,(g) and C*(g),
called the (homological and cohomological) Chevalley-Filenberg complexes of g. In this section, we will review
the definition of these chain complexes (in the more general setting of differential graded algebras) and
establish some of their basic properties. These constructions will play an important role in the construction
of the deformation theory @ : (CAlg}"®)°P — Liey, required for the proof of Theorem 2.0.2.

Suppose now that g is a Lie algebra. In order to compute the groups H.(g) and H*(g), we would like to
choose an explicit resolution of the ground field & as a (left) module over the universal enveoping algebra
U(g). We can obtain such a resolution by taking the universal enveloping algebra of an acyclic differential
graded Lie algebra which contains g.

Construction 2.2.1. Let g, be a differential graded Lie algebra over a field k. We define another differential
graded Lie algebra Cn(g). as follows:

(1) For each n € Z, the vector space Cn(g). is given by g, ® gn—1. We will denote the elements of Cn(g),,
by x + ey, where x € g, and y € g, 1.

(2) The differential on Cn(g), is given by the formula d(z + ey) = dx + y — edy.
(3) The Lie bracket on Cn(g). is given by [z + ey, 2’ +ey'] = [z, 2] + €([y, 2] + (—1)P[z, y']), where z € g,,.
We will refer to Cn(g), as the cone on g..

Remark 2.2.2. Let g, be a differential graded Lie algebra over a field k. Then the underlying chain complex
Cn(g). can be identified with the mapping cone for the identity id : g. — g«. It follows that Cn(g). is a
contractible chain complex. In particular, the map 0 — Cn(g). is a quasi-isomorphism of differential graded
Lie algebras.

Construction 2.2.3. Let g, be a differential graded Lie algebra over a field k. The zero map g, — 0
induces a map of differential graded algebras U(g).) — U(0) ~ k. There is an evident map of differential
graded Lie algebras g. — Cn(g).. We let C,(g.) denote the chain complex given by the tensor product
U(Cn(g)«) ®u(g.) k. We will refer to C.(g.) as the homological Chevalley-FEilenberg complex of g..

Remark 2.2.4. Let g, be a differential graded Lie algebra over a field k, and regard the shifted chain complex
g:«[1] as a graded Lie algebra with a vanishing Lie bracket. There is an evident map of graded Lie algebras
(without differential) g.[1] — Cn(g).. This map induces a map of graded vector spaces Sym*(g.[1]) =~
U(g«[1]) — U(Cn(g)«). Using the Poincare-Birkhoff-Witt theorem, we obtain an isomorphism of graded
right U(g.)-modules

U(Cn(g).) ~ Sym*(g.[1]) @ U(g.),

hence an isomorphism of graded vector spaces

¢ = Sym™(g.[1]) = Cu(g)-

We will often identify C.(g.) with the symmetric algebra Sym™(g.[1]) using the isomorphism ¢. Note that
¢ is not an isomorphism of differential graded vector spaces. Unwinding the definitions, we see that the
differential on C,(g.) is given by the formula

D(.’Ell'n) = E (—1)p1+m+pi71$1...$i71d$i$i+1...$n+
1<i<n
E (—1)pi(pi+l+“.+p]‘_l)]}1 oo L1541 - - .ij_l[aj‘i, ajj}xj_,_l eIy
1<i<j<n
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Remark 2.2.5. Let g. be a differential graded Lie algebra over a field k. The filtration of Sym™(g.) by the
subsets Sym="(g,.) ~ @D, <, Sym’ g, determines a filtration

ko~ C0g.) = C5'(ga) = CF2(ge) = -+

Using the formula for the differential on C,(g.) given in Remark 2.2.4, we deduce the existence of canonical
isomorphisms

CE™(g.)/CE" 1 (gs) ~ Sym" g.

in the category of differential graded vector spaces over k.

Proposition 2.2.6. Let f : g. — g, be a quasi-isomorphism between differential graded Lie algebras over
a field k of characteristic zero. Then the induced map Ci(g«) — Ci(g.) is a quasi-isomorphism of chain
complezxes.

Proof. Since the collection of quasi-isomorphisms is closed under filtered colimits, it will suffice to show that
the induced map 6, : Cf"(g*) — Cf"(g' ) is a quasi-isomorphism for each n > 0. We proceed by induction

*
on n. When n = 0, the map 6 is an isomorphism and there is nothing to prove. Assume therefore that

n > 0, so that we have a commutative diagram of short exact sequences

<n-—1

0 —— CF""H(gs) — C"(g+) — Sym" (gu[1]) —0

N

00— C&" ! (gl) —= CF"(gl) — Sym"(g.[1]) —=0

Using the inductive hypothesis, we are reduced to showing that the map ¢ is a quasi-isomorphism. Since k is
a field of characteristic zero, the map ¢ is a retract of the map g&"[n] — g/®"[n], which is a quasi-isomorphism
by virtue of our assumption that f is a quasi-isomorphism. O

If g, is a differential graded Lie algebra, we will refer to the homology groups of the chain complex C(g.)
as the Lie algebra homology groups of g.. Our next goal is to show that if g, is free, then the homology of
g is easy to describe.

Proposition 2.2.7. Let V, be a differential graded vector spaces over a field k of characteristic zero and let
g« be free differential graded Lie algebra generated by V.. Then the map

E k@ Vill] = k@ g.[l] = CF'(g.) = Culgs)
is a quasi-isomorphism of chain complexes over k.

To prove Proposition 2.2.7, we will need a general observations about differential graded algebras and
their modules.

Lemma 2.2.8. Let A, be a differential graded algebra over a field k, and let f : M, — N, be a map of
differential graded right modules over A,. Assume that:

(1) The differential graded module M, can be written as a union of submodules
0=M0),C M), S M(2),C---

where each successive quotient M(n)./M(n — 1), is isomorphic (as a differential graded A.-module)
to a free differential graded module of the form @, Aslea].

(2) The chain complex N, is acyclic.

38



Then the map f is nullhomotopic. That is, there exists a map of graded A.-modules h : M, — N,y
satisfying dh + hd = f.

Proof. We construct a compatible family of nullhomotopies h(n) : M(n), — N,y for the maps f(n) =
fIM(n).. When n = 0, such a nullhomotopy exists and is unique (since M (0). ~ 0). Assume therefore that
n > 0 and that h(n — 1) has been constructed. Condition (1) guarantees that M(n)./M(n — 1), is freely
generated (as an A,-module) by generators T, € (M(n)/M(n —1))... Choose z, € M(n)., representing
To. We compute

d(f(xs) — h(n —1)dz,) = f(dze) — d(h(n — 1)dzy) = h(n — 1)d*z, = 0.

Since N, is acyclic, we can choose Yo € Ne_ 11 with dy, = f(za) — h(n — 1)dz,. We now define h(n) to be
the unique map of graded A,-modules from M (n), to N.y1 which extends h(n — 1) and carries x4 t0 yYo; it
is easy to see that h(n) has the desired properties. O

Lemma 2.2.9. Let A, be a differential graded algebra over a field k, and let M, be a chain complex of
differential graded right modules over A,. Assume that M, is acyclic and satisfies condition (1) of Lemma
2.2.8. Then, for any differential graded left A.-module N., the tensor product M, ® o, N, is acyclic.

Proof. Tt follows from Lemma 2.2.8 that identity map id : M, — M, is chain homotopic to zero: that is,
there exists a map h : M, — M, such that dh + hd = id. Then h determines a contracting homotopy for
M, ®4, Ny, so that M, ®4, N, is also acyclic. O

Proof of Proposition 2.2.7. Note that the universal enveloping algebra U(g.) can be identified with the tensor
algebra T'(V,) ~ @,,5o V.¥". Let M, C U(Cn(g).) be the right T'(V.)-submodule generated by k & V.[1].
Unwinding the definitions, we see that M, is isomorphic (as a chain complex) to the direct sum k & M/,
where M is isomorphic to mapping cone of the identity map from @,., V.¥™ to itself. It follows that
the inclusion k < M, is a quasi-isomorphism. The composite inclusion k < M, — U(Cn(g).) is given
by applying the universal enveloping algebra functor U to the inclusion of differential graded Lie algebras
0 — Cn(g)«, and is therefore a quasi-isomorphism by Remark 2.2.2 and Lemma 2.1.11. It follows that the
inclusion M, C U(Cn(g).) is a quasi-isomorphism, so that the quotient Q. = U(Cn(g).)/M, is acyclic. It
is not difficult to see that Q. satisfies hypothesis (1) of Lemma 2.2.8; in particular, Q. is free as a graded
A,-module. It follows that we have an exact sequence of chain complexes

0
0— M, 1w,k — U(Cn(g)«) Q7. k— Q- Q7. k — 0.

Lemma 2.2.9 guarantees that Q. ®p(v.) k is acyclic, so that 6 determines a quasi-isomorphism &k © V,[1] —
Ci(g+). O

Notation 2.2.10. It follows from Proposition 2.2.6 that the Chevalley-Eilenberg construction C, : Liezg —
Vectgg induces a functor of oco-categories Liey — Mody, which we will also denote by C,.. Note that C.,
carries the initial object 0 € Liey to C,(0) ~ k, and therefore induces a functor Liey — (Mody);,. We will
abuse notation by denoting this functor also by C..

Remark 2.2.11. Let g. be a differential graded Lie algebra over a field k of characteristic zero. Then
U(Cn(g)«) can be regarded as a cofibrant replacement for k in the model category of differential graded right
modules over U(g.). The tensor product functor M, — M, ®yqg,) k is a left Quillen functor. It follows
that C,(g«) is an explicit model for the left derived tensor product k ®[L]( o) k. Equivalently, the image of
C.(g+) in Modj, can be identified with the oco-categorical relative tensor product k ® 4 k, where A € Alg, is
the image of U(g.) under the functor N(Alg(#) — Alg,..

Proposition 2.2.12. Let k be a field of characteristic zero. Then the functor of co-categories C, : Liey —
(Modyg )k, preserves small colimits.
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Proof. In view of Corollary T.4.2.3.11 and Lemma A.1.3.2.9, it will suffice to show that C, preserves finite
coproducts and small sifted colimits. We begin by showing that C, preseres small sifted colimits. In view
of Lemma T.4.4.2.8 and Proposition T.4.3.1.5, it will suffice to show that the composite functor Lie, —
(Mody),; — Mody, preserves small sifted colimits. The proof of Proposition 2.2.6 shows that for each n > 0,
the functor C=" preserves quasi-isomorphisms and therefore induces a functor of co-categories Liey, — Mody.
Since the collection of quasi-isomorphisms in Vectig is closed under filtered colimits, every colimit diagram
in Vectzg indexed by a filtered category determines a homotopy colimit diagram in Vect‘,jg and therefore a
colimit diagram in Mody, (Proposition A.1.3.3.11). It follows that the functor C, : Lie;, — Mody is a colimit
of the functors C=" : Liey — Mody,. Using Proposition T.5.5.2.3, we are reduced to proving that each of the
functors C=" preserves small sifted colimits. We proceed by induction on n, the case n < 0 being trivial.
Since the field k has characteristic zero, the construction V, — Sym" V, preserves quasi-isomorphisms and
therefore induces a functor Sym” : Mody — Modg. Let 6 : Liey, — Mody be the forgetful functor. Using
Remark 2.2.5 and Corollary A.1.3.1.11, we obtain a fiber sequence of functors

Ccs=n=l 5 C=" 5 Sym" of[1]

from Liej, to Mody. Since C=""! preserves sifted colimits by the inductive hypothesis and 0[1] preserves
sifted colimits by Proposition 2.1.16, it will suffice to show that the functor Sym”™ preserves sifted colimits.
Since the characteristic of k is zero, the functor Sym” is a retract of the functor V, — V2", which evidently
preserves sifted colimits.

We now prove that C., : Liey — (Mody), preserves finite coproducts. Since C. preserves initial objects
by construction, it will suffice to show that C, preserves pairwise coproducts. That is, we must show that
for every pair of differential graded Lie algebras g. and g/, having a coproduct g/ in Lieg, the diagram o :

is a pushout square in Mody.

Let Free : Mody — Liex be a left adjoint to the forgetful functor. Using Proposition A.6.2.2.11 and
Proposition 2.1.16, we deduce that g. can be obtained as the geometric realization of a simplicial object
(g«)e Of Lieg, where each (g.),, lies in the essential image of Free. Similarly, we can write g, as the geometric
realization of a simplicial object (g )s. Then (g )e is the geometric realization of a simplicial object (gZ/)e of
Liey, given by [n] — (g«)n [[(g%)n. Since the functor C, commutes with geometric realization of simplicial
objects, it will suffice to show that the diagram

I — Ci((g4)n)
Ci((g2)n) — Ci((g¥)n)
is a pushout square in Mody, for each n > 0. We may therefore reduce to the case where g, ~ Free(V,),
g’ ~ Free(V/) for some objects Vi, V/ € Modg. Then g7 ~ Free(V, & V). Using Proposition 2.2.7, we can
identify o with the diagram

k——= ko V,[1]

| |

ko V] —ka V.1 e V/[1],

which is evidently a pushout square in Mody. O
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We now turn our attention to the cohomology of (differential graded) Lie algebras.

Construction 2.2.13. Let g, be a differential graded Lie algebra over k. We let C*(g.) denote the linear
dual of the chain complex dual to C\(g.). We will refer to C*(g.) as the cohomological Chevalley-Filenberg
complex of g,. We will identify elements A € C"(g,) with the dual space of the degree n part of the graded
vector space Sym”* (g.[1]).

There is a natural multiplication on C*(g.), which carries A € CP(g.) and p € C(g.) to the element
A € CPTi(g,) characterized by the formula

)@y mn) = (S, 8 N@i, -2, g, -2, )
S,87

Here z; € g,, denotes a sequence of homogeneous elements of g,, the sum is taken over all disjoint sets
S={i1<...<iptand 8" = {j1 < ... < Jp—m} range with SUS" = {1,...,n} and r;; +---+1;,, = p,
and €(S,5") = [licsr jes.ic;(—1)""7. With this multiplication, C*(g.) has the structure of a commutative
differential graded algebra.

Remark 2.2.14. Let g, be a differential graded Lie algebra over a field k of characteristic zero. Unwinding
the definitions, we can identify C*(g.) with the chain complex of right U(g.)-linear maps from U(Cn(g).)
into k. Arguing as in Remark 2.2.11, we see that C*(g.) is a model for the right derived mapping complex
of right U(g.)-module maps from & to itself.

Remark 2.2.15. Let k be a field of characteristic zero, let V, be a chain complex of vector spaces over k, and
let g, be the free differential graded Lie algebra generated by V.. The quasi-isomorphism k® V,[1] = C.(gx)
of Proposition 2.2.7 induces a quasi-isomorphism of chain complexes

C*(g«) = ka V,Y[-1],

where V.Y denote the dual of the chain complex V,. In fact, this map is a quasi-isomorphism of commutative
differential graded algebras (where we regard k @ V,Y[—1] as a trivial square-zero extension of k).

Notation 2.2.16. Let k£ be a field of characteristic zero. It follows from Proposition 2.2.6 that the con-
struction g, — C*(g.) carries quasi-isomorphisms of differential graded Lie algebras to quasi-isomorphisms
of commutative differential graded algebras. Consequently, we obtain a functor between oo-categories
Lie,, — CAlg;”, which we will also denote by C*.
Note that the functor C* carries the initial object 0 € Liey, to the final object k € CAlgy”. We therefore
obtain a functor
Liey — (CAlg)?)y, ~ (CAlgy"#)°P,

where CAlg;"® = (CAlg,)/;, denotes the oo-category of augmented E.-algebras over k. We will abuse
notation by denoting this functor also by C*.

Proposition 2.2.17. Let k be a field of characteristic zero. Then the functor C* : Lie, — (CAlgy"®)°P
preserves small colimits.

Proof. Using Corollary A.3.2.2.5, we are reduced to proving that the composite functor
Lier, <5 (CALg2"8)7 —s (Mod(?)y,

preserves small colimits. We note that this composition can be identified with the functor
Liey, =% (Mody), — (ModZ?),,/,

where D is induced by the k-linear duality functor V, ~ V.Y from Vectig to itself. According to Proposition
2.2.12, it will suffice to show that D preserves small colimits. Using Propositions A.1.3.3.10, A.1.3.3.11, and
A.1.3.3.12, we are reduced to the problem of showing that the functor V, — V. carries homotopy colimits

in Vect(# to homotopy limits in Vect($, which is obvious. O
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2.3 Koszul Duality for Differential Graded Lie Algebras

Let k be a field of characteristic zero, and let C* : Lie, — (CAlg;"®)°? be the functor constructed in
Notation 2.2.16. Proposition 2.2.17 implies that C* preserves small colimits. Since the co-category Liey is
presentable (Proposition 2.1.16), Corollary T.5.5.2.9 (and Remark T.5.5.2.10) imply that C* admits a right
adjoint © : (CAlg;"®)°? — Liey. We will refer to the functor © as Koszul duality. The main goal of this
section is to prove the following result:

Theorem 2.3.1. Let k be a field of characteristic zero, and let (CAlgy"®,{E}) be the deformation context
of Ezample 1.1.4. Then the Koszul duality functor © : (CAlg;"®)°? — Liey is a deformation theory (see
Definition 1.5.9).

We will then deduce Theorem 2.0.2 by combining Theorems 2.3.1 and 1.3.12.

Remark 2.3.2. Let us temporarily distinguish in notation between the cohomological Chevalley-Eilenberg
functor

C* : Lief® — (CAlgy®)%

of Construction 2.2.13 and the induced functor of oo-categories Lie,, — (CAlg}:"#)°P, denoting the latter
functor by F. We saw above that F admits a right adjoint, the Koszul duality functor © : (CAlg;"¢)P —
Lieg. In particular, C* determines a functor from the homotopy category of Lie(,ilg to the homotopy category
of (CAlg;1g )?i which admits a right adjoint. However, the functor C* itself does not admit a right adjoint; in
particular, it is not a left Quillen functor. Consequently, it is not so easy to describe the functor ® using the
formalism of differential graded Lie algebras. To obtain a more explicit construction of D, it is convenient
to work in the setting of L..-algebras. Since we will not need this construction, we do not describe it here.

Remark 2.3.3. We will often abuse notation by identifying the Koszul duality functor © : (CAlg;"#)°P —

Liej, with the induced functor between opposite co-categories CAlg;"® — Liey”.

The first step in our proof of Theorem 2.3.1 is to show that the Koszul duality functor © : (CAlgy"#)? —
Liey is a weak deformation theory: that is, it satisfies axioms (D1), (D2), and (D3) of Definition 1.3.1.
Axioms (D1) and (D2) are easy: we have already seen that Liej, is presentable (Proposition 2.1.16), and the
functor © admits a left adjoint by construction. To verify (D3), we will prove the following:

Proposition 2.3.4. Let k be a field of characteristic zero and let g. be a differential graded Lie algebra over
k. We will say that g. is good if it is cofibrant (with respect to the model structure on Liegg described in
Proposition 2.1.10) and there exists a graded vector subspace Vi C g, satisfying the following conditions:

(#) For every integer n, the vector space Vi, is finite dimensional.
(i1) For every nonnegative integer m, the vector space Vy, is trivial.
(ii1) The graded vector space V, freely generates g. as a graded Lie algebra.

Let C be the full subcategory of Liex spanned by those objects which can be represented by good objects of
Liezg. Then C satisfies conditions (a), (b), (¢), and (d) of Definition 1.5.1.

The main ingredient in the proof of Proposition 2.3.4 is the following lemma, whose proof we will defer
until the end of this section.

Lemma 2.3.5. Let g, be a differential graded Lie algebra over a field k of characteristic zero. Assume that:
(a) For every integer n, the vector space g, is finite dimensional.
(b) The vector space gy, is trivial for n > 0.

Then the unit map u : g. — DC*(g) is an equivalence in Liey.
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Proof of Proposition 2.3.4. We verify each condition in turn:

(a)

(b)
(¢)

(d)

Let g. € ©; we wish to prove that the unit map g, — DC*(g) is an equivalence in Lie;. We may
assume without loss of generality that g. is good, so there is a graded subspace V, C g, satisfying
conditions (), (i7), and (7i7). As a graded vector space, g, is isomorphic to a direct summand of the
augmentation ideal in U(g) ~ @, V.2". It follows that each g, is finite dimensional, and that g,, ~ 0
for n > 0. The desired result now follows from Lemma 2.3.5.

The initial object 0 € Liey obviously belongs to C.

We must show that for each n > 0, the square-zero algebra k & k[n] € CAlg;"® is equivalent to C*(g)
for some object g. € C. In fact, we can take g, to be the differential graded Lie algebra freely generated
by the complex k[—n — 1] (see Remark 2.2.15).

Suppose that n < —2 and that we are given a pushout diagram

Freelk [n]) *— T
0 gl

in the oco-category Liex. Here Free : Mody — Lie; denotes the left adjoint to the forgetful functor.
We wish to show that if g, € C, then g/, € €. We may assume without loss of generality that g. is
good. Since Free(k[n]) is a cofibrant object of Liezg and g, is fibrant, we can assume that « is given
by a morphism Free(k[n]) — g. in the category Liefclg (determined by a cycle = € g,,). The morphism
v in Lie k is represented by the cofibration of differential graded Lie algebras j : Free(d E(n + 1).) <
Free(E(n + 1)) (see the proof of Proposition 2.1.10). Form a pushout diagram o :

Free(0 E(n)«) — g«

T

Free(E(n+ 1)) —b,.

Since j is a cofibration and g, is cofibrant, ¢ is a homotopy pushout diagram in Liezg, so that b,
and g, are equivalent in Lie, (Proposition A.1.3.3.11). It will therefore suffice to show that the object
h. € Lie}® is good.
The differential graded Lie algebra b, is cofibrant by construction. Let V, C g be a subspace satisfying
conditions (4), (i4), and (¢i7), and let y € b, 1 be the image of a generator of E(n + 1),41. Let V be
the graded subspace of b, generated by V, and y. It is trivial to verify that V satisfies conditions (%),
(éi), and (7).

O

Proof of Theorem 2.5.1. Proposition 2.3.4 shows that the functor © : (CAlg}"®)°? — Liey, is a weak defor-
mation theory. We will show that it satisfies axiom (D4) of Definition 1.3.9. Let E € Stab(CAlg;"®) be the
spectrum object of Example 1.1.4, so that Q° "E ~ k & k[n]. The proof of Proposition 2.3.4 shows that
D(FE) is given by the infinite loop object {Free(k[—n — 1])},,>¢ in Lie;”; here Free : Mody, — Liej, denotes
a left adjoint to the forgetful functor 6 : Liey, — Modyg. It follows that the functor e : Lie, — Sp appearing
in Definition 1.3.9 is given by (F o 0)[1], where F : Mod, = Mod(Sp) — Sp and 6 : Lie;, — Mody, are the
forgetful functors. Since F' is conservative and commutes with all colimits, it will suffice to observe that 6 is
conservative (which is obvious) and preserves sifted colimits (Proposition 2.1.16). O

We are now ready to prove our main result:
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Proof of Theorem 2.0.2. Let k be a field of characteristic zero, and let ¥ : Lie;, — Fun(CAlgi™,8) denote
the functor given on objects by the formula

U(g.)(R) = Mapy ., (D(R), ).

Combining Theorems 2.3.1 and 1.3.12, we deduce that ¥ is a fully faithful embedding whose essential
image is the full subcategory Moduliy C Fun(CAlg;™,8) spanned by the formal moduli problems. Let
X +— Tx denote tangent complex functor Moduliy — Sp, given by evaluation on the spectrum object
E € Stab(CAlgy™) appearing in Example 1.1.4. Then the functor g. — Ty(q,)[—1] coincides with the
functor e[—1], where e : Lie, — Sp is the functor appearing in Definition 1.3.9. The proof of Theorem 2.3.1
supplies an equivalence of e[—1] with the forgetful functor

Liey — Modg = Modg(Sp) — Sp.
O

Corollary 2.3.6. Let k be a field of characteristic zero and let X : CAlgi™ — 8 be a formal moduli problem.
Then following conditions are equivalent:

(1) The formal moduli problem X is prorepresentable (see Definition 1.5.3).
(2) Let Tx denote the tangent complex of X. Then m;Tx ~ 0 for i > 0.

Proof. Suppose first that X is prorepresentable; we wish to show that the homotopy groups m;Tx vanish
for ¢ > 0. The construction X — m;Tx commutes with filtered colimits. It will therefore suffice to show
that m;Tx ~ 0 when X = Spec A is the the functor corepresented by an object A € CAlg;™. This is clear:
the homotopy group mTx ~ m; Mapgageus (4, klel/ (€2)) vanishes because A is connective and k[e]/(e?) is
discrete.

We now prove the converse. Let X be a formal moduli problem such that m;Tx ~ 0 for ¢ > 0; we wish to
prove that X is prorepresentable. Let U : Lie, — Moduliy be the equivalence of co-categories of Theorem
2.0.2. Then we can assume that X = ¥(g,) for some differential graded Lie algebra g, satisfying H;(g.) ~ 0
for ¢ > 0 (here we let H;(g.) denote the ith homology group of the underlying chain complex of g., rather
than the Lie algebra homology of g. computed by the Chevalley-Eilenberg complex C.(g.) of §2.2).

We now construct a sequence of differential graded Lie algebras

0=9(0) = g(1)x = 9(2)s — -

equipped with maps ¢(i) : g(i)« — g«. For every integer n, choose a graded subspace V,, C g,, consisting of
cycles which maps isomorphically onto the homology H,,(g.). Then we can regard V, as a differential graded
vector space with trivial differential. Let g(1), denote the free differential graded Lie algebra generated by
Vi, and ¢(1) : g(1)x — g« the canonical map. Assume now that ¢ > 1 and that we have constructed a
map ¢(4) : g(i)« — g« extending ¢(1). Then ¢(i) induces a surjection 6 : H,,(g(i)x) — H.(g«). Choose a
collection of cycles x, € g(i),, whose images form a basis for ker(6). Then we can write ¢(i)(zo) = dy, for
some Yo € gn,+1- Let g(i+ 1), be the differential graded Lie algebra obtained from g(i). by freely adjoining
elements Y, (in degrees n, + 1) satisfying dY, = z,. We let ¢(i + 1) : g(i + 1), — g. denote the unique
extension of ¢(i) satistying ¢(i + 1)(Ya) = Ya-
We now prove the following assertion for each integer i > 1:

(*;) The inclusion V_; < g(i)_1 induces an isomorphism V_; — H_1(g(7)«), and the groups g(¢), vanish
for n > 0.

Assertion (x;) is easy when ¢ = 1. Let us assume that (x;) holds, and let 6 be defined as above. Then 6
is an isomorphism in degrees > —1, so that g(i + 1), is obtained from g(i). by freely adjoining generators
Y, in degrees < —1. It follows immediately that g(i + 1),, ~ 0 for n > 0. Moreover, we can write
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g(i+1)_1 ~ g(i)—1 ® W, where W is the subspace spanned by elements of the form Y, where n, = —2. By
construction, the differential on g(i + 1), carries W injectively into

9(i)—2/dg(i) -1 C g(i +1)_o/dg(i)_1,

so that the Lie algebras g(i + 1), and g(¢). have the same homology in degree —1.

Let g/, denote the colimit of the sequence {g(¢)+}i>0. The evident map g, — g. is surjective on homology
(since the map g(1). — g« is surjective on homology). If 5 € ker(H.(g.) — H.(g«), then 7 is represented by
a class 77 € ker(H,(g(¢)+) — H.(g.)) for i > 0. By construction, the image of 7 vanishes in H.(g(¢ + 1).),
so that n = 0. Tt follows that the map g, — g. is a quasi-isomorphism. Since the collection of quasi-
isomorphisms in Lieig is closed under filtered colimits, we conclude that g, is a homotopy colimit of the
sequence {g(7)«}i>0 in the model category Liezg, and therefore a colimit of {g(#).};>0 in the co-category Liey.
Setting X (i) = ¥(g(i).) € Modulig, we deduce that X ~ h_r>nX(z) To prove that X is prorepresentable, it
will suffice to show that each X (i) is prorepresentable.

We now proceed by induction on 4, the case i = 0 being trivial. To carry out the inductive step, we note
that each of the Lie algebras g(i 4+ 1), is obtained from g(¢). by freely adjoining a set of generators {Y, }aca
of degrees n, +1 < —1, satisfying dY, = zo, € g(i),, (this is obvious when i = 0, and follows from (x;)
when ¢ > 0). Choose a well-ordering of the set A. For each « € A, we let g5 denote the Lie subalgebra of
g(i + 1), generated by g(i). and the elements Y3 for § < «, and let 9= be defined similarly. Set

X W(gE) XS = w(eE).
For each o € A, we have a homotopy pushout diagram of differential graded Lie algebras
Free(0 E(ng + 1)) — Free(E(nq + 1))

| |

as® g%,

hence a pushout diagram of formal moduli problems

Spec(k @ k[nq + 1]) —— Spec(k)
X<e — . x<e

It follows that the map X (i) — X (i+1) satisfies the criterion of Lemma 1.5.9. Since X (%) is prorepresentable,
we conclude that X (i + 1) is prorepresentable. O

The remainder of this section is devoted to the proof of Lemma 2.3.5. We will need a few preliminaries.

Notation 2.3.7. Let F': (Vectig)"p — Vect;1g be the functor between ordinary categories which carries each
chain complex (V,,d) to the dual chain complex (V,”,d"), where V' = Homy(V_,, k) and the differential d*
is characterized by the formula dY (\)(v) + (=1)"A(dv) = 0 for A € V,/. The construction V, — V.Y preserves
quasi-isomorphisms and therefore induces a functor Mod;” — Mody, which we will denote by V — V. We
will refer to this functor as k-linear duality.

Remark 2.3.8. For every pair of k-module spectra V, W € Mody,, we have canonical homotopy equivalences
MapModk(vv WV) = MapModk(V Q@ W, k) ~ MapModk(Wa Vv)~

It follows that k-linear duality, when regarded as a functor Modj, — Mod}”, is canonically equivalent to the
left adjoint of the k-linear duality functor Mod;” — Mody.
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Let us now study the composite functor
(CAIg™"8)? 3 Lie, % Mody,

where 6 denotes the forgetful functor. This composition admits a left adjoint

Free

Mody, 2 Lie, <5 (CAlg2®)r,

which is in turn induced by the map of ordinary categories Vect(® — CAlgt® given by V, — C*(Free(V.)).
Remark 2.2.15 supplies a (functorial) quasi-isomorphism of commutative differential graded algebras

C*(Free(Vy)) = ko V.Y [-1].

It follows that the underlying functor of co-categories Mod), — (CAlg;"®)°P is given by composing the k-
linear duality functor Mod, — Mod;” with the functor Mod;” — (CAlg;"®)°P given by the formation of
square-zero extensions M +— k @ M[—1]. Both of these functors admit left adjoints: in the first case, the
left adjoint is given by k-linear duality (Remark 2.3.8), and in the second it is given by the formation of the
relative cotangent complex A+ (L, ®4 k)[—1] =~ Ly respectively. We have proven:

Proposition 2.3.9. Let k be a field of characteristic zero and let 0 : Lie, — Mody, be the forgetful functor.
Then the composite functor

(CAIg2"8)? 25 Lie, —25 Mod,,

is given on objects by A — LX/A.

To prove Lemma 2.3.5, we need to analyze the unit map g, — DC*(g.) associated to a differential graded
Lie algebra g.. We begin with a few preliminary remarks regarding explicit models for the cotangent fiber
of a commutative differential graded algebra.

Definition 2.3.10. Let A, be a commutative differential graded algebra over k equipped with an augmenta-
tion w : A, — k. The kernel of u is an ideal m4 C A,. We let Indec(A). denote the quotient mA/mI%‘, which
we regard as a complex of k-vector spaces. We will refer to Indec(A), as the chain complex of indecomposables
in As.

Remark 2.3.11. The construction V, — k@V, determines a right Quillen functor from Vectzg to (CAIgzg) ks
whose left adjoint is given by A, — Indec(A).. It follows that the functor Indec(A), preserves weak
equivalences between cofibrant objects of (CAlgzg) /K, and induces a functor of co-categories CAlg,"® —
Modj. This functor is evidently left adjoint to the formation of trivial square-zero extensions, and is therefore
given by A+ Laj, ®ak ~ Ly a[—1]. It follows that for every cofibrant augmented commutative differential
graded algebra A, the canonical map A, — k®Indec(A), induces an equivalence Ly /4, [-1] =~ L4, @4,k —
Indec(A). in Mody, (here we abuse notation by identifying A, with its image in the oo-category CAlg}"#).
Proof of Lemma 2.3.5. Let g, be a differential graded Lie algebra satisfying hypotheses (a) and (b); we wish
to show that the unit map g. — DC*(g) is an equivalence in the oo-category Liey. Since the forgetful
functor Liey — Mody is conservative, it will suffice to show that w induces an equivalence g. — DLy /c+(q,)
in Mody, (see Proposition 2.3.9). This map has a predual, given by the map

u: LC*(g*)/k ®C*(g) k — g:(/[—l]

We will prove that u is an equivalence.
Consider the isomorphism of graded vector spaces

C*(g+) =~ H (Sym" g. [1])\/'

n>0
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Choose a basis {yi,...,y,} for the vector space g_1, and let {z1,...,z,} be the dual basis for gy, so that
C%g.) can be identified with the power series ring k[[z1,...,z,]]. Let A, = @, ~,(Sym"(g.[1]))V, and
regard A, as a graded subalgebra of C*(g.). It is easy to see that A, is a differential graded subalgebra of
C*(g4), and that Ay contains the polynomial ring k[x1,...,z,]. Using (a) and (b), we deduce that A, is a
graded polynomial ring generated by g)[—1], and that the natural map

As Olay,.ony) BllT1, - 2p]] = C*(g4)

is an isomorphism of commutative differential graded algebras. Since k[[z1, ..., zp]] is flat over k[z1,. .., z,],
it follows that for each n € Z we have an isomorphism in homology

Hn(A*) ®k[:v1,...,xp] k[[xlv s 7$p]] - Hn(C*(g*))a

so that the diagram
Elzq,...,zp) — K[[z1,...,2p]]

l l

A, C*(g+)

is a pushout square in the co-category CAlg,. We therefore obtain equivalences

Lesgy/a. @cx(g.) B~ Liflay oo, )) /Ko eszy) Qkllzr,eapl) B~ Lryk = 0.

where R denotes the tensor product k[[z1, ..., 2] ®ka,,..., z,) kB = k. Tt follows that u can be identified with
the map Ly, ®a, k — g)/[—1] which classifies the morphism A, — k @ g)[—1] ~ k @ Indec(A).. Since A,
is a cofibrant differential graded algebra, Remark 2.3.11 implies that u is an equivalence in Mody. O

2.4 Quasi-Coherent Sheaves

Let k be a field and let X : CAlg}™ — 8 be a formal moduli problem over k. Following the ideas introduced
in §VIIL.2.7, we can define a symmetric monoidal co-category QCoh(X) of quasi-coherent sheaves on X.
Roughly speaking, a quasi-coherent sheaf F on X is a rule which assigns to each point 7 € X(R) an R-
module n* F € Modg, which is functorial in the following sense: if ¢ : R — R’ is a morphism in CAlgy™
and 7’ denotes the image of 1 in X(R'), then there is an equivalence '*F ~ R’ @g n* F in the oco-category
MOdR/.

If the field k has characteristic zero, Theorem 2.0.2 provides an equivalence of co-categories U : Liey, —
Modulij. In particular, every formal moduli problem X is equivalent to ¥(g.), for some differential graded
Lie algebra g, which is well-defined up to quasi-isomorphism. In this section, we will explore the relationship
between g, and the oo-category QCoh(X). Our main result is the following:

Theorem 2.4.1. Let k be a field of characteristic zero, let g, be a differential graded Lie algebra over k, and
let X = WU(g.) be the associated formal moduli problem. Then there is a fully faithful symmetric monoidal
embedding QCoh(X) — Repy, , where Repy, denotes the oo-category of representations of g. (see Notation

2.4.6).

Remark 2.4.2. It follows from Theorem 2.4.1 that the co-category Rep,, can be regarded as a (symmetric
monoidal) enlargement of the co-category QCoh(X) of quasi-coherent sheaves on the formal moduli problem
determined by g.. This enlargement can be described geometrically as the oo-category of Ind-coherent
sheaves on X. We refer the reader to §3.4 for a discussion of Ind-coherent sheaves in the noncommutative
setting, and to §3.5 for a noncommutative analogue of Theorem 2.4.1.

We begin with a discussion of representations of differential graded Lie algebras.
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Definition 2.4.3. Let &k be a field and let g, be a differential graded Lie algebra over k. A representation
of g, is a differential graded vector space V, equipped with a map

g*@kv*_)‘/*

satisfying the identities
[z, ylv = z(yv) + (=1)"y(av)

for z € gp, y € gq. The representations of g, comprise a category which we will denote by Repjf.

Example 2.4.4. For every differential graded vector space V,, the zero map
O ®k V* — ‘/*

exhibits V, as a representation of g.. In particular, taking V., = k (regarded as a graded vector space
concentrated in degree zero), we obtain a representation of g, on k which we call the trivial representation.

Note that a representation of a differential graded Lie algebra g, is the same data as a (left) module over
the universal enveloping algebra U(g.). Using Proposition A.4.3.3.15, we deduce the following:

Proposition 2.4.5. Let g, be a differential graded Lie algebra over a field k. Then the category Repgf of
representations of g. admits a combinatorial model structure, where:

(W) A map f : V. — W, of representations of g. is a weak equivalence if and only if it induces an
isomorphism on homology.

(F) A map f: V. — W, of representations of g« is a fibration if and only if it is degreewise surjective.
Notation 2.4.6. If g, is a differential graded Lie algebra over a field k, we let W, denote the collection of
all weak equivalences in Repgf, and we let

Repy, = Repg®[W,']

denote the oo-category obtained from Repgf by formally inverting all quasi-isomorphisms: that is, the
underlying oco-category of the model category described in Proposition 2.4.5.

It follows from Theorem A.4.3.3.17 that we can identify Rep,, with the oo-category LMody(q,) of left
modules over the universal enveloping algebra U(g.) (which we regard as an E;-ring). In particular, Rep,
is a stable oco-category.

Construction 2.4.7. Let g. be a differential graded Lie algebra over a field k and let V, be a representation
of g.. We let C*(g.; Vi) denote the differential graded vector space of U(g.)-module maps from U(Cn(g).)
into V.. We will refer to C*(g.; Vi) as the cohomological Chevalley-Eilenberg complex of g. with coefficients
m V.

Remark 2.4.8. Unwinding the definitions, we see that the graded pieces C™(g.; Vi) can be identified with
the set of graded vector space maps Sym*(g.[1]) — Vi[—n].

We note that C*(g.; Vi) has the structure of a module over the differential graded algebra C*(g.). The
action is given by k-bilinear maps

Cp(g*) X Cq(g*§ ‘/*) — Cp+q(g*§ V;)v

which carries a class A € CP(g,) and pu € C(g.; Vi) to the element A\ € CP19(g,; V,) given by

)@y .mn) =Y (S, SN @i, -, )y, ),
S,87

as in Construction 2.2.13.
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Remark 2.4.9. Tt follows from general nonsense that the (differential graded) endomorphism ring of
the functor C*(g.;e) : Repgf — Mod%1g is isomorphic to the (differential graded) endomorphism ring of
U(Cn(g).) (regarded as a representation of g.). In particular, the action of C*(g.) on C*(g.;e) arises
from an action of C*(g.) on U(Cn(g).), which commutes with the left action of U(g.). For an alternative
description of this action, we refer the reader to the proof of Proposition 3.3.7.

Proposition 2.4.10. Let g, be a differential graded Lie algebra over a field k of characteristic zero. Then
the functor Vi, — C*(g.; Vi) preserves quasi-isomorphisms.

Proof. For each n > 0 and each V, € Repgf, we let F,,(V.) denote the quotient of C*(g,; Vi) given by maps
from Sym="(g,[1]) into V.. Then C*(g.;V.) is given by the inverse limit of a tower of fibrations

o By(VL) = FU(VL) — Fy(Va).

It will therefore suffice to show that each of the functors F,, preserves quasi-isomorphisms. We proceed by
induction on n. If n = 0, then F,, is the identity functor and the result is obvious. Assume therefore that
n>0. Let K : Repgf — Modzg be the functor given by the kernel of the surjection F;,, — Fj,_1, so that we
have a short exact sequence of functors

0—-K—F,—F,1—0.

It will therefore suffice to show that the functor K preserves quasi-isomorphisms. Unwinding the definitions,
we see that K carries a representation V, to the chain complex of X,,-equivariant maps from (g,[1])®" into
V., regarded as objects of Mod(,ig. Since k has characteristic zero, the functor K is a direct summand of the
functor K’ : Repgf — Mod‘,:g7 which carries V, to the chain complex of maps from (g.[1])®" into V,. This
functor evidently preserves quasi-isomorphisms. O

Remark 2.4.11. Let g, be a differential graded Lie algebra over a field k of characteristic zero, and let
Moddcg;( o) denote the category of differential graded modules over C*(g.). The functor

C*(gx; o) : Repgf — Moddcg*(g*)

preserves weak equivalences and fibrations. Moreover, it has a left adjoint F', given by
M, = U(Ca(g).) - (q.) M.

(see Remark 2.4.9). It follows that C*(g.;e) is a right Quillen functor, which induces a map between the
underlying oo-categories Repy, — Modc+(q,). We will generally abuse notation by denoting this functor
also by C*(g.;e). It admits a left adjoint f : Modg«(4,) — Rep,. (given by the left derived functor of F').

Proposition 2.4.12. Let k be a field of characteristic zero and let g, be a differential graded Lie algebra over
k. Assume that the underlying graded Lie algebra is freely generated by a finite sequence of homogeneous
elements x1,...,x, such that each dx; belongs to the Lie subalgebra of g. generated by x1,...,x;—1. Let
[ : Modg-(qg,) — Rep,, denote the left adjoint to the functor C*(g.;e) (see Remark 2.4.11). Then f is a
fully faithful embedding.

Lemma 2.4.13. Let k be a field and let A, be an augmented differential graded algebra over k; we will abuse
notation by identifying A, with its image in Mody. Assume that A, is freely generated (as a graded algebra)
by a finite sequence of homogeneous elements x1,...,x,, such that each dx; lies in the subalgebra generated
by x1,...,x;—1. Then the field k is a compact object of the stable co-category LMod 4, .

Proof. Adding scalars to the elements x; if necessary, we may assume that the augmentation A, — k
annihilates each x;. For 0 <1 < n, let M(4). denote the quotient of A, by the left ideal generated by the
elements z1,...,z;. We will prove that each M (i), is perfect as a left A,-module; taking i = n, this will
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imply the desired result. The proof proceeds by induction on i. If ¢ = 0, then M (i), ~ A, and the result
is obvious. If ¢ > 0, then the image of z; in M (i — 1), is a cycle. It follows that right multiplication by z;
induces a map of left A,-modules A, — M (i — 1)., fitting into an exact sequence

0— Ay 5 M(i— 1), — M(i). — 0.
Since M (i — 1), is perfect by the inductive hypothesis, we deduce that M (7). is perfect. O

Proof of Proposition 2.4.12. We first show that f is fully faithful when restricted to the full subcategory
Modpccf(fg*) C Modc+ (g, spanned by the perfect C*(g.)-modules. Let M and N be perfect C*(g.)-modules.
We wish to show that f induces an isomorphism

Regard M as fixed. The collection of those modules N for which # is an isomorphism is closed under retracts,
shifts, and extensions. To prove that 6 is an isomorphism for each N € Modgef(f 0.)’ it will suffice to prove that
0 is an isomorphism for N = C*(g.). By the same reasoning, we can reduce to the case where M = C*(g..).
Then fM ~ U(Cn(g).) and fN ~ U(Cn(g.) ~ k, so that Exty . (fM, fN) ~ Exty,(U(Cn(g)s), k) is
canonically isomorphic to the Lie algebra cohomology of g.. Under this isomorphism, 6 corresponds to the
identity map.

We now prove that f is fully faithful in general. Since Modc«(q,) ~ Ind(Modgir(fg*)) and the functor f

preserves filtered colimits, it will suffice to show that f carries objects 1\/Iodgef(f g O perfect U(g.)-modules.
The collection of those M € Modg«(4,) for which fM is perfect is closed under extensions, shifts, and
retracts. It will therefore suffice to show that fC*(g.) ~ k is perfect as a U(g.)-module, which follows from

Lemma 2.4.13. O

Lemma 2.4.14. Letk be a field and let A be a coconnective Eq-algebra over k, equipped with an augmentation
€:A— k. Let C C LMody be a full subcategory which contains k (regarded as a left A-module via the
augmentation €) and is closed under colimits and extensions. Then C contains every left A-module whose
underlying spectrum is connective.

Proof. Let M be a left A-module whose underlying spectrum is connective. We will construct a sequence of
objects
0=M(0)—> M(1)—> M2)—---

in € and a compatible family of maps 6(i) : M (i) — M with the following property:

(¥) The groups m; M (i) vanish unless 0 < j < ¢, and the maps m;M(j) — ;M are isomorphisms for
0<y <.

Assume that ¢ > 0 and that we have already constructed a map 6(i) satisfying (x). Let M’ = fib(6(4)),
so that m; M’ ~ 0 for j < i — 1. Using Proposition VII1.4.1.9, we can construct a map of left A-modules
N — M’ which induces an isomorphism m;_1N — m;_1M’, with 7; N ~ 0 for j # ¢ — 1. Let M (i+ 1) denote
the cofiber of the composite map N — M’ — M(i). There is an evident map 6(i +1) : M(i +1) - M
satisfying (). We will complete the proof by showing that M (i 4+ 1) € €. We have a fiber sequence

M(i) - M(i+1) — N[1].

Lemma VII1.4.3.16 implies that N[1] is equivalent to a direct sum of copies of k[i]. Since € contains k and is
closed under colimits, we conclude that N[1] € €. The module M (i) belong to € by the inductive hypothesis.
Since C is closed under extensions, we deduce that M (i + 1) € C. O

Notation 2.4.15. Let g, be a differential graded Lie algebra and let V, be a representation of g.. We will
say that V. is connective if its image in Mody is connective: that is, if the homology groups of the chain
complex V, are concentrated in non-negative degrees. We let Mod;i1 denote the full subcategory of Rep,,
spanned by the connective g,-modules.
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Proposition 2.4.16. Let g. be as in the statement of Proposition 2.4.12, and assume that each of the
generators z; of g. has negative homological degree. Then the fully faithful embedding f : Modc=(4,) — Repg,
induces an equivalence of co-categories

Modgﬂ (gx) — MOdET .

Proof. Since C*(g,) is connective, we can characterize as the smallest full subcategory of Modg‘*(g*) which
contains C*(g,) and is closed under colimits and extensions. It follows that f induces an equivalence from
Modg? 4. to the smallest full subcategory of Mody" which contains fC*(g.) >~ k and is closed under colimits
and extensions. It is clear that this full subcategory is contained in Mod;'*’, and the reverse inclusion follows
from Lemma 2.4.14. O

We next observe that the category Repgf of representations of a differential graded Lie algebra g, is
symmetric monoidal. If V., and W, are representations of g., then the tensor product V, ®; W, can be
regarded as a representation of g., with action given by the formula

z(v@w) = (zv) @w + (—1)Pv ® (zw)

for homogeneous elements x € g,, v € V,, and w € W,. For fixed V, € Repgf, the construction W, +—
V. ®1 W, preserves quasi-isomorphisms. It follows from Proposition A.4.1.3.4 that the underlying co-category
Rep,, = Repgf[Wgzl] inherits a symmetric monoidal structure.

Remark 2.4.17. Let g, be a differential graded Lie algebra over a field k. Then the diagram

Repg, X Repg, %, Repy.

i l

Modk X Modk &> Modk

commutes up to equivalence. It follows that the tensor product functor ® : Rep, x Repy — Rep,, preserves
small colimits separately in each variable.

We now wish to study the behavior of the functor C*(g.;e) with respect to the symmetric monoidal
structure defined above. It will be convenient for us to simultaneously study the behavior of this functor
with respect to change of differential graded Lie algebra g..

Q®

dg  as follows:

Construction 2.4.18. Let k be a field. We define a category Rep

(1) An object of Repg@g@ is a tuple (g«, Vil,..., V"), where g, is a differential graded Lie algebra over k

*

and each V is a representation of g,.
(2) Given a pair of objects (g, V., ..., V™), (b, WL, ..., W) € Rep?g@), a morphism
(g, VIH, o V) = (0, WL WD)

is given by a map « : (m) — (n) of pointed finite sets, a morphism ¢ : b, — g, of differential graded
Lie algebras, and, for each 1 < j < mn, a map ®a(i):j Vi — W] of representations of b, (here we
regard each V! as a representation of b, via the morphism @).

The category Rep(‘?g® is equipped with an evident forgetful functor Repff)g@ — (Lieig)"p x Fin,, which

induces a coCartesian fibration N(Repg@g@) — N(Liezg)"p x N(Fin,).

For our applications of Construction 2.4.18, we will need the following general result:
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Proposition 2.4.19. Let p: C — D be a coCartesian fibration of co-categories. Suppose that we are given,
for each D € D, a collection of morphisms Wp in the fiber Cp. Suppose further that for each morphism
D — D’ in D, the induced functor Cp — Cp: carries Wp into Wpr. Let W = Upeo Wp. Since p carries
each morphism of W to an equivalence in D, it factors as a composition

Replacing C[W =] by an equivalent co-category if necessary, we may assume that q is a categorical fibration.
Then:

(1) The map q is a coCartesian fibration.
(2) The functor 6 carries p-coCartesian morphisms in C to qg-coCartesian morphisms in C[W ~1].
(3) For each D € D, the map 0 induces an equivalence C[W5'] — (C[W~1])p.

Proof. Let x : D — Cat classify the Cartesian fibration p. For each D € D, we have a canonical equivalence
X(D) ~ Cp; let W}, denote the collection of morphisms in x(D) whose in Cp are equivalent to morphisms
belonging to Wp. Then the construction D — (x(D), W) determines a functor xw : D — WCat, where
WCat, is defined as in Construction A.4.1.3.1. Composing with the left adjoint to the inclusion Cat,, —
Weat,,, we obtain a new functor X’ : D — Cat, given on objects by x'(D) = x(D)[W, '] ~ Cp[Wx'].
The functor x’ classifies a coCartesian fibration p’ : € — D. We have an evident natural transformation
X — X', which determines a functor ¢ € Funp (€, €') which carries p-coCartesian morphisms to p’-coCartesian
morphisms. To complete the proof, it will suffice to show that ¢ induces an equivalence C[W 1] — €.
Equivalently, we must show that for any co-category €, composition with ¢ induces a fully faithful embedding
v : Fun(€’, €)= — Fun(C, &)= whose essential image consists of those functors F' : € — & which carry each
morphism of W to an equivalence in €&.

Evaluation at the vertex 0 € A! induces a Cartesian fibration Fun(A!,D) — D. We define a new
simplicial set & with a map 7 : & — D so that the following universal property is satisfied: for every map
of simplicial sets K — D, we have a canonical bijection

Hom(getA)/ » (K, 8/) = HOH?[getA (K XFun({O},D) Fun(Al, @), 8)

Using Corollary T.3.2.2.12, we deduce that the map r : & — D is a coCartesian fibration. The diagonal in-
clusion D — Fun(A'!, D) induces a map K — K Xpyn({o},0) Fun(A!, D) for every map K — D. Composition
with these maps gives a functor u : & — €. We claim:

(*) Let Fun’p(C,&") denote the full subcategory of Funp (€, &’) spanned by those functors which carry
p-coCartesian morphisms to r-coCartesian morphisms. Then composition with u induces a trivial Kan
fibration Fun’y (€, €’) — Fun(C, &)

To prove (x), we note that Funp (€, &) can be identified with the co-category
Fun(C X pun({o},D) Fun(A', D), &).

Under this isomorphism, Funl, (€, ') can be identified with the full subcategory spanned by those functors
F' which are right Kan extensions of their restrictions to € <+ € Xpyn({o},0) Fun(A!, D). Assertion (x) now
follows from Proposition T.4.3.2.15. A similar argument gives:

(¥) Let Funl, (€', €") denote the full subcategory of Fungp (€', ") spanned by those functors which carry
p’-coCartesian morphisms to r-coCartesian morphisms. Then composition with u induces a trivial Kan
fibration Fun’, (€', &") — Fun(€’, &)
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It follows that we can identify v with the map
Funlp (€', €)= — Fun’y (€, &)=,

Let v : D — Cato classify the coCartesian fibration r, so that v is given by the map Mappy,(p, eas..)(X's V) —
Mapgn(p,cat..) (X, V) given by composition with the natural transformation . The desired result now follows
from the construction of the natural transformation x’. O

Corollary 2.4.20. Let k be a field and let W be the collection of all morphisms in Repggg(§<> of the form
@ (g*a V*17 M V*n) — (g*v V*/lv M) ‘/*/n)
where the image of « in both Lie(,:g and Fin, is an identity map, and o induces a quasi-isomorphism Vi — V!
for 1 < i < n. Then we have a coCartesian fibration Repf?g@[W_l] — N(Lie‘,ig)OP x N(Fin,). For every
differential graded Lie algebra g, over k, we can identify the fiber Repf?g@[W‘l]g* = Repé@;@[W_l] X N(Lied®)or
k
{g+} with the symmetric monoidal co-category Repf’*.

The Chevalley-Eilenberg construction V, — C*(g,; Vi) is a lax symmetric monoidal functor. For every
pair of representations V., W, € Repgf, there is a canonical map

which classifies bilinear maps
CP(gs; Vi) x CU(gu; Wi) — CPH(g.; Vi @ W),

which carries a class A € CP(gy; Vi) and p € C(g.; W,) to the element Ay € CPT4(g,; Vi @ W,) given by

M) (@1 ) = €(S, SN @i, - wi,) @ s, -2, )
S,S’

Remark 2.4.21. Taking V., and W, to be the trivial representation of g., we recover the multiplication on
C*(g4«) described in Construction 2.2.13. Taking V, to be the trivial representation, we recover the action of
C*(g«) on C*(gs«; W,) described in Remark 2.4.8. It follows from general nonsense that the multiplication
maps

are C*(g.)-bilinear, and therefore descend to give maps
C*(9*§ V*) R+ (g.) C*(Q*Q W*) — C*(G*; Vi ®k W*)

Notation 2.4.22. Let € be a symmetric monoidal co-category. We let Mod(€)® = Mod“™™(€)® be as
in Definition A.3.3.3.8: more informally, the objects of Mod(€)® are given by tuples (A, M1, ..., M,) where
A € CAlg(C) and each M; is a module over A. If € = N(Cp) is isomorphic to the nerve of a symmetric
monoidal category Cp, then Mod(€)® is also isomorphic to the nerve of a category, which we will denote by
Mod(€g)®.

The lax symmetric monoidal structure on the functor C*(g.;e), and its dependence on g., are encoded
by a map of categories
Rep$,” — Mod(Mod{#)®,

given on objects by
(9*7 V*17 MR V*n) '_> (C*(g*)7 C*(g*7 V*1)7 MR C*(g*’ V*n))'
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Composing this with the map of symmetric monoidal functor N(Modzg) — Mody, we obtain a map
N(Repf’g@) — Mod(Mody)®. If the field k has characteristic zero, then Proposition 2.4.10 implies that this

functor carries morphisms of W (where W is defined as in Corollary 2.4.20) to equivalences in Mod(Mody)®,
and therefore induces a lax symmetric monoidal functor

G : N(Rep,”)[W ] = N(Lie[#) xcalg, Mod(Mody)®.
Proposition 2.4.23. Let k be a field of characteristic zero, and consider the commutative diagram

G

N(Rep%, )W 1] N(Lie%®)°P x ca15, Mod(Mody,)®

\ /
N(Lie(#)P x N(Fin,).
Then:
(1) The functor G admits a left adjoint F relative to N(Liezg)"p x N(Fin,) (see Definition A.7.3.2.2).
(2) The functor F carries q-coCartesian morphisms to p-coCartesian morphisms.

Remark 2.4.24. We can summarize Proposition 2.4.23 more informally as follows. For every differential
graded Lie algebra g. over k, the construction V, — C*(g,; Vi) determines a lax symmetric monoidal functor
from Repy, to Modc-(g,). This functor admits a symmetric monoidal left adjoint f : Modc-(q,) — Repy, .
Moreover, the functor f depends functorially on the differential graded Lie algebra g..

Proof of Proposition 2.4.23. We will prove the existence of F'; it will then follow from the fact that F' admits
a right adjoint relative to N(Liezg)"p x N(Fin,) that F carries g-coCartesian morphisms to p-coCartesian
morphisms (see Proposition A.7.3.2.6). To prove the existence of F, we will check that G satisfies the
criterion of Proposition A.7.3.2.11. For each differential graded Lie algebra g, and each (n) € N(Fin,), the
induced functor

Gty Rep,” (W g,y = (Mode (g0

is equivalent to a product of n copies of the functor C*(g.;e) : Rep,, — Modc-(q,), and therefore admits
a left adjoint fy, by Remark 2.4.11. Unwinding the definitions, we are reduced to proving that for every
finite sequence of C*(g.)-modules My,..., M,, and every map of differential graded Lie algebras h. — gu,
the canonical map

fo.(C™(bs) ®c=(g,) M1 ®c(qg,) @0+ (g.) Mn) = fo. (M1) @ - @y fg. (M)

is an equivalence. We observe that both sides are compatible with colimits in each M; (see Remark 2.4.17).
Since Mod ¢ (g, is generated under small colimits by the modules C*(g.)[k] for k € Z, we can reduce to the
case where M; = C*(g,) for 1 <4 < n. In this case, the result is obvious. O

Construction 2.4.25. Let k be a field. The coCartesian fibration Mod(Mod)® — CAlg,, x N(Fin,) is

classified by a map x : CAlg, — Monc()mm(@oo) ~ CAlg(@oo), which carries an E-algebra A over k
to Mod 4, regarded as a symmetric monoidal co-category. Let x*™ denote the restriction of x to the full
subcategory CAlg;™ C CAlg, spanned by the small E-algebras over k. Applying Theorem T.5.1.5.6, we
deduce that x*™ admits an essentially unique factorization as a composition

CAIgS™ % Fun(CAIgS™, 8)%7 Y2 CAlg(Catos),

where the functor QCoh preserves small limits. For every functor X : CAlgi™ — 8, we will regard QCoh(X) €

CAlg(@oo) as a symmetric monoidal co-category, which we call the co-category of quasi-coherent sheaves
on X.
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Remark 2.4.26. Let Prt C @oo denote the subcategory whose objects are presentable co-categories and
whose morphisms are colimit preserving functors, and regard Pr' as a symmetric monoidal co-category
as explained in §A.6.3.1. Note that the functor y of Construction 2.4.25 factors through CAlg(Prl) C

CAlg(éa\too). Since this inclusion preserves small limits, we deduce that the functor
QCoh : Fun(CAIgi™, ) — CAlg(Catoc)
also factors through CAlg(Pr"). In other words:

(a) For every functor X : CAlgi™ — 8, the co-category QCoh(X) is presentable.

(b) For every functor X : CAlgi™ — 8, the tensor product ® : QCoh(X)x QCoh(X) — QCoh(X) preserves
small colimits separately in each variable.

Sm

¢) For every natural transformation f : X — Y of functors X,Y : CAlg;™ — §, the induced functor
k
f*:QCoh(Y) — QCoh(X) preserves small colimits.

Remark 2.4.27. Let k be a field and let X : CAlgi™ — 8§ be a functor which classifies a right fi-
bration X — CAlgy™. Then QCoh(X) oo-categories of coCartesian sections of the coCartesian fibration
X xcalg, Mod(Mody) — X. More informally, an object F € QCoh(X) is a rule which assigns to every point
n € X(A) an A-module F,, and to every morphism f : A — A’ carrying n to ' € X(A’) an equivalence
3'77' ~ A’ ®a ?77'

Construction 2.4.28. Let k be a field of characteristic zero. The coCartesian fibration Repg@g@[W—l] —

N(Liegg)” x N(Fin,) of Corollary 2.4.20 classifies a functor ¥, : N(Liezg)"p — CAlg(@m), given on objects
by g. — Rep, . If ¢ : b. — g. is a quasi-isomorphism of differential graded Lie algebras, then the induced
map U(h.) — U(g.) is an equivalence in Alg,, so that the forgetful functor Rep, — Repy, is an equivalence
of co-categories. It follows that X, induces a functor y : Lie;” — CAlg(éa\too).

We let xi™ : CAlgy" — CAlg(éa\too) denote the composition of ¥ with the Koszul duality functor
D : (CAlgy")°? — Liey studied in §2.3. Applying Theorem T.5.1.5.6, we deduce that x{™ admits an
essentially unique factorization as a composition

CAlg;™ % Fun(CAlgy™, §)7 % CAlg(Catae),
where j denotes the Yoneda embedding and the functor QCoh' preserves small limits.

Remark 2.4.29. If f : X — Y is a natural transformation between functors X,V : CAlgi™ — 8§, we will
denote the induced functor QCoh'(Y) — QCoh'(X) by f'.

The functor ;™ appearing in Construction 2.4.28 factors through subcategory CAlg(Prl) C CAlg(@m).
As in Remark 2.4.26, we deduce that the functor QCoh' factors through CAlg(Pr"). That is, each of the
oo-categories QCoh' (X) is presentable, each of the functors f' : QCoh!(Y) — QCoh!(X) preserves small
colimits, and the tensor product functors QCoh'(X) x QCoh'(X) — QCoh'(X) preserve small colimits
separately in each variable.

Remark 2.4.30. For A € Alg}", the biduality map A — C*(D(A)) is an equivalence. It follows that the
functor x*™ of Construction 2.4.25 is given by the composition

CAlgy™ 3 Lie?? & CAlg™™® — CAlg,, % CAlg(Cato,).

The functor F' of Proposition 2.4.23 induces a natural transformation x*™ — X}, and therefore a natural
transformation QCoh — QCoh' of functors Fun(CAlg;™, 8)°? — CAlg(Pr™).
Let A € CAlgy™ and let g. = D(A) be its Koszul dual. Since A is small, there exists a sequence of maps

A=A, — A, 11— --- = A=k
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where each A; is a square-zero extension of 4,1 by k[n;] for some n; > 0. We therefore have a sequence of
differential graded Lie algebras

0=2(40) > D(41) = - = D(A,) =~ gs,

where each ©(4;) is obtained from D(A;_1) by adjoining a cell in dimension —n; — 1. It follows that, up
to quasi-isomorphism, g, satisfies the hypotheses of Proposition 2.4.12 and Proposition 2.4.16. We conclude
that the natural transformation ™ — x{™ induces a (symmetric monoidal) fully faithful embedding

X" (A) ~ Mod 4 ~ Mod¢-(q,) — Rep,, =~ XM (A),

which restricts to an equivalence of co-categories Mod§' — Repcgr:. It follows that the natural transformation

QCoh — QCoh' determines a (symmetric monoidal) fully faithful embedding QCoh(X) — QCoh'(X) for
each X € Fun(CAlg;™, 8).

We now turn to the proof of Theorem 2.4.1. Let k be a field of characteristic zero and let X : CAlgi™ — 8
be a formal moduli problem, given by ¥(g.) for some differential graded Lie algebra g.. Remark 2.4.30
supplies a symmetric monoidal fully faithful embedding QCoh(X) —» QCoh!(X ). To prove Theorem 2.4.1,
it will suffice to prove the following:

Proposition 2.4.31. Let k be a field of characteristic zero, let g, be a differential graded Lie algebra over
k and let X = W(g.) be the formal moduli problem given by X(R) = Mapy,, (D(R),g«). Then there is a

canonical equivalence of symmetric monoidal co-categories QCoh!(X) ~ Repy. .

Lemma 2.4.32. Let k be a field and let v : Alg}” — @oo classify the Cartesian fibration LMod(Mody) —
Alg,. (so that v is given by the formula v(A) = LMod ). Then v preserves K -indexed limits for every weakly
contractible simplicial set K.

Proof. Let Pr® denote the subcategory of @Oo whose objects are presentable oco-categories and whose
morphisms are functors which admit left adjoints, and/geﬁne Prl C @oo similarly. Note that the functor
v factors through Pr®, and that the inclusion Pr® C Cat., preserves small limits (Theorem T.5.5.3.18). It
will therefore suffice to show that if K is weakly contractible, then v carries K-indexed limits in Alg;” to
K-indexed limits in Prf. Using the equivalence Prt ~ (Pr)°P of Corollary T.5.5.3.4, we can identify v with
a functor p : Alg, — Prl (the functor p classifies the coCartesian fibration LMod(Mody) — Alg,,). Theorem
A.6.3.5.10 implies that the functor Alg, ~ (Algy)r, — (fPrL)MOdk/ admits a right adjoint, and therefore
preserves all small colimits. It therefore suffices to verify that the forgetful functor (Pr')ypeq, ;= Pyl
preserves K-indexed colimits, which follows from Proposition T.4.4.2.9. O

Lemma 2.4.33. Let k be a field of characteristic zero, and let X : Lie}’ — @OO be as in Construction
2.4.28. Then X preserves K -indexed limits for every weakly contractible simplicial set K.

Proof. The functor Y factors as a composition Liej” 5 Alg?? 5 Cateo, where v preserves K-indexed limits
by Lemma 2.4.32, and U preserves all small limits (since it is right adjoint to the forgetful functor Alg;” —
Lie/”). O
Proof of Proposition 2.4.1. Let ¥ : Liey — Modulig be the equivalence of co-categories appearing in Theo-
rem 2.0.2, and let ¥~! denote a homotopy inverse to ¥. Let L : Fun(CAlgy™, 8) — Modulix denote a left ad-
joint to the inclusion functor Moduliy C Fun(CAlg}™,S) (see Remark 1.1.17), and let oF Fun(CAlgi™,8) —

Alg:"® be the composition U~ o L. The functor ® preserves small colimits, and the composition of ®
with the Yoneda embedding (CAlg;™)°? — Fun(CAlg)™,8) can be identified with the Koszul duality functor

D : (Algp™)°P — Algp"®. Let X : Lie;” — CAlg(Cato) be as in Construction 2.4.28 (given on objects by
X(g«) = Repy, ), and let I : Fun(CAlgp™, 8)°? — CAlg(Caty,) denote the composite functor
Fun(CAlg;™, 8)P 2, Lie;” X CAlg(éa\too).
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Let € denote the full subcategory of Fun(CAlg;™,8) spanned by the corepresentable functors. By construc-
tion, the functors F' and QCoh! agree on the oo-category €, and by construction QCoh! is a right Kan
extension of its restriction to €. We therefore have a canonical natural transformation «: F — QCoh!. We
will prove the following:

(%) If X : CAlgi™ — 8 is a formal moduli problem, then « induces an equivalence of co-categories

F(X) = QCoh'(X)).

Taking X = ¥(g.) for A € Alg;"®, we see that (%) guarantees an equivalence of symmetric monoidal
oo-categories oo-categories Rep, =~ F/(X) — QCoh'(X).

It remains to prove (k). Let & C Fun(CAlgy",8) be the full subcategory spanned by those functors
X for which a induces an equivalence of oo-categories F(X) — QCoh'(X). The localization functor L :
Fun(CAlgy™, 8) — Modulig, the equivalence ¥~! : Moduli, — Liej, both preserve small colimits. It follows
from Lemma 2.4.33 that the functor ¥ : Lie}” — @m preserves sifted limits, so that F' preserves sifted
limits. Since the functor QCoh! preserves small limits, the co-category € is closed under sifted colimits in
Fun(CAlg;™, 8). Since & contains all corepresentable functors and is closed under filtered colimits, it contains
it contains all prorepresentable formal moduli problems (see Definition 1.5.3). Proposition 1.5.8 implies that
every formal moduli problem X can be obtained as the geometric realization of a simplicial object X,

of Fun(CAlg;™,8), where each X, is prorepresentable. Since & is closed under geometric realizations in
Fun(CAlgi™, 8), we conclude that X € &€ as desired. O

We conclude this section with a simple observation about connectivity conditions. Let X : CAlgi™ — 8
be a formal moduli problem and let ¥ € QCoh(X) be a quasi-coherent sheaf on X, so that F determines an
A-module F,, for every n € X(A) (see Remark 2.4.27). We will say that F is connective if each F,, € Mod 4 is
connective. We let QCoh(X )™ denote the full subcategory of QCoh(X) spanned by the connective objects.
It is easy to see that QCoh(X )™ is a presentable co-category which is closed under colimits and extensions
in QCoh(X), and therefore determines an accessible t-structure on QCoh(X) (see Proposition A.1.4.5.11).

Proposition 2.4.34. Let k be a field of characteristic zero, let g, be a differential graded Lie algebra
over k and let X = VU(g,) be the associated formal moduli problem. Then the fully faithful embedding
¢ : QCoh(X) — Rep,, induces an equivalence of oo-categories QCoh(X )" — Repy”.

Proof. If ¢ : b, — g« is a map of differential graded Lie algebras over k inducing a map of formal moduli
problems Y — X, then the diagram

QCoh(X) —— Rep,,

L

QCoh(Y) —— Rep,,

commutes up to canonical homotopy. Taking h. = 0, we deduce that the composite functor QCoh(X) —
Rep,y, — Mody is given by evaluation at the base point o € X (k). In particular, we deduce that 6 carries
QCoh(X)°™ into

Repy" = Rep,, XMod, Mody" .

To complete the proof, it will suffice to show that if V' € Mod;i‘7 then V. belongs to the essential image
of §. To prove this, it suffices to show that for every point n € X(A) classified by a map of differential
graded Lie algebras D(A) — g., the image of V' in Repg4) belongs to the essential image of the functor
QCoh(Spec A) — Repgp(a). Since V' is connective, this follows from Proposition 2.4.16 (note that D(A)
satisfies the hypotheses of Propositions 2.4.12 and 2.4.16; see Remark 2.4.30. O
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3 Moduli Problems for Associative Algebras

Let A be a connective E-ring. We say that an A-module spectrum M is projective of rank n if the following
conditions are satisfied:

(1) The group moM is a projective moA-module of rank n.

(2) For every integer n, the canonical map
TOI“gOA(ﬂ'nA,TFQM) — T M
is an isomorphism (that is, M is flat over A).

Let X (A) denote the subcategory of Mods whose objects are A-modules which are projective of rank n,
and whose morphisms are equivalences. Then X (A) is an essentially small Kan complex. The construction
A X(A) determines a functor X : CAlg™ — 8. Let us fix a field k and a point € X (k), corresponding
to a vector space V of dimension n over k. The formal completion of X (at the point n) is the functor
XN CAlgy™ — 8 given by

XMNR) = X(R) xx( {n}-

More informally, X" (R) is a classifying space for pairs (M, «), where M is a projective R-module of rank
nand a : kg M ~ V is an isomorphism of k-vector spaces. It is not difficult to see that the functor
X7 CAlgy™ — 8 is a formal moduli problem (we will give a proof of a stronger assertion in §5.2).

Assume now that k is a field of characteristic zero. According to Theorem 2.0.2, the functor X” :
CAlg;™ — 8 is determined (up to equivalence) by a differential graded Lie algebra g.. Let Tx denote the
tangent complex of X, so that T'x~[—1] can be identified with the spectrum underlying the chain complex
of vector spaces g.. Then the space Q®°Txr ~ X" (k[e]/(¢?)) can be identified with a classifying space for
the groupoid of order deformations of the vector space V: that is, projective k[e]/(e?)-modules M equipped
with an isomorphism M/eM ~ V. Since any basis of V' can be lifted to a basis for M, this groupoid has only
one isomorphism class of objects (which is represented by the module Ve]/€2V). We conclude that Q°°Tx
is homotopy equivalent to the classifying space BG, where G is the group of automorphisms of V[e]/e2V
which reduce to the identity automorphism modulo €. Every such automorphism can be written uniquely
1+ eM, where M € End(V) is an endomorphism of V. From this we deduce that the homology of the
chain complex g, is isomorphic to End(V') in degree zero and vanishes in positive degrees. It also vanishes
in negative degrees: this follows from the observation that each of the spaces X”(k @ k[n]) is connected
(any basis for V' can be lifted to a basis for any (k @ k[n])-module deforming V). It follows that g, is
quasi-isomorphic to an ordinary Lie algebra g over k (concentrated in degree zero), whose underlying abelian
group is isomorphic to End(V). With a bit more effort, we can show that the isomorphism g ~ End(V) is
an isomorphism of Lie algebras: that is, the Lie bracket on g can be identified with the usual commutator
bracket [A, B] = AB — BA of k-linear endomorphisms of V' (see Example 5.2.9).

However, there is more to the story. If R € CAlgy", then any connective R-module M equipped with an
equivalence k @ g M ~ V is automatically projective of rank n. We can therefore identify X”(R) with the
fiber product

LMOd%] XLModin{V}“

This description of X”*(R) makes no reference to the commutativity of R. We can therefore extend X" to
a functor X7 : Algi™ — 8, where Alg;™ denotes the oo-category of small E;-algebras over k (see Definition
3.0.1 below). The existence of the extension X7} is a special property enjoyed by the formal moduli problem
X", Since X” is completely determined by the Lie algebra End(V'), we should expect that the existence
of X7 reflects a special property of End(V'). In fact, there is something special about End(V): it is the
underlying Lie algebra of an associative algebra. We will see that this is a general phenomenon: if g, is a
differential graded Lie algebra and Y : CAlgi™ — 8§ is the associated formal moduli problem for E..-algebras
over k, then Y extends to a formal moduli problem Y, : Algi™ — 8 for Eq-algebras over k if and only if g, is

58



quasi-isomorphic to the underlying Lie algebra of a (nonunital) differential graded algebra A, (see Example
2.1.6).

Our main goal in this section is to prove an analogue of Theorem 2.0.2 in the setting of noncommutative
geometry. Before we can state our result, we need to introduce a bit of terminology.

Definition 3.0.1. Let k be a field. We let Alg, denote the oo-category of E;-algebras over k, and Algi"® =
(Algy,)/r the oo-category of augmented [E;-algebras over k. We will say that an object A € Alg, is small if
it satisfies the following conditions:

(a) The algebra A is connective: that is, m;A ~ 0 for ¢ < 0.

)
(b) The algebra A is truncated: that is, we have m; A ~ 0 for ¢ > 0.
¢) Each of the homotopy groups m; A is finite dimensional when regarded as a vector space over field k.
)

(
(d) Let n denote the radical of the ring mpA (which is a finite-dimensional associative algebra over k).
Then the canonical map k — (mpA)/n is an isomorphism.

We let Algi™ denote the full subcategory of Alg; spanned by the small k-algebras.

Remark 3.0.2. Let k be a field and let A € Algy™. It follows from conditions (a) and (d) of Definition 3.0.1
that the mapping space Map Alg,, (A, k) is contractible: that is, A admits an essentially unique augmentation.
Consequently, the projection map

Algi™ x a1, Algh"® — Algy™

is an equivalence of co-categories. Because of this, we will often abuse notation by identifying Alg;™ with

its inverse image in Algy"®.

Definition 3.0.3. Let & be a field and let X : Algi™ — S be a functor. We will say that X is a formal E;
moduli problem if it satisfies the following conditions:

(1) The space X (k) is contractible.

(2) For every pullback diagram
R—— Ry

]

Ry —— Ry

in Algi™ for which the underlying maps mo Ry — moRop1 < moR;1 are surjective, the diagram

X(R) — X(Ro)

L

X(Ry) —— X(Ro1)
is a pullback square.
We let Modulig) denote the full subcategory of Fun(Alg;™, 8) spanned by the formal E; moduli problems.
We can now state our main result:
Theorem 3.0.4. Let k be a field. Then there is an equivalence of co-categories W : Algy"® — Moduli,(:) .

Remark 3.0.5. Unlike Theorem 2.0.2, Theorem 3.0.4 does not require any assumptions on the characteristic
of the field k.
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Like Theorem 2.0.2, Theorem 3.0.4 is a reflection of Koszul duality: this time in the setting of associative
algebras. In §3.1, we will introduce the Koszul duality functor

DM (Algh"8)P — Algh"e.

Roughly speaking, if € : A — k is an augmented Ei-algebra over k, then the Koszul dual D) (A) is the
(derived) endomorphism algebra of k as a (left) A-module. In §3.2, we will show that D) is a deformation
theory (in the sense of Definition 1.3.9). We will then deduce Theorem 3.0.4 from Theorem 1.3.12, using the

functor W : Alg;"® — Moduli,(vl) given by
U(A)(R) = Mapyj e (DM (R), A).

For every field k, there is an evident forgetful functor CAlg;™ — Alg}™. Composition with this forgetful

functor determines a map 6 : Modulig) — Modulig. In §3.3, we will show that if the characteristic of k is
zero, then 6 fits into a commutative diagram of oco-categories

Alg" — Moduli "

c

Lie, —— Moduliy,

where the upper horizontal map is the equivalence of Theorem 3.0.4 and the lower horizontal map is the
equivalence of Theorem 2.0.2. Here ¢’ is a functor which assigns to each augmented Eq-algebra € : A — k
its augmentation ideal m4 = fib(€) (Proposition 3.3.2).

If X is a formal E;-moduli problem over k, then we can associate to X a pair of co-categories QCoh (X)
and QCohg(X), which we call the co-categories of (left and right) quasi-coherent sheaves on X. Roughly
speaking, an object ¥ € QCoh; (X) is a rule which assigns to each point n € X(A) a left A-module F,,
depending functorially on 7 (and QCohp(X) is defined similarly, using right modules in place of left). In
§3.4, we will construct fully faithful embeddings

QCoh, (X) — QCoh} (X)  QCohp(X) < QCohz(X).

In §3.5, we will use these constructions to formulate and prove a noncommutative analogue of Theorem 2.4.1:
if X = U(A) is the formal moduli problem associated to an augmented E;-algebra A over k, then there are
canonical equivalences of co-categories

QCoh} (X) ~RMods  QCoh's(X) ~ LMod 4
(Theorem 3.5.1). In particular, this gives fully faithful embeddings
QCoh; (X) — RMod 4 QCohy(X) — LMod4,

which are equivalences when restricted to connective objects (Proposition 3.5.8).

3.1 Koszul Duality for Associative Algebras

Let k be a field, let A be an associative algebra over k, and let M be a left A-module. The commutant B
of A in Endg (M) is defined to be the set of A-linear endomorphisms of M. Then B can be regarded as
an associative algebra over k, and M admits the structure of a bimodule over A and B: that is, an action
of the tensor product A ®; B. In many cases, one can show that the relationship between A and B is
symmetric. For example, if A is a finite dimensional central simple algebra over k and M is nonzero and of
finite dimension over k, then we can recover A as the commutant of B in Endy(M).
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In this section, we will discuss the operation of Koszul duality in the setting of (augmented) E;-algebras
over a field k. Roughly speaking, Koszul duality can be regarded as a derived version of the formation of
commutants. Suppose that A is an E;-algebra over k equipped with an augmentation € : A — k. Then €
determines an action of A on the k-module M = k. The Koszul dual of A is an E;-algebra B over k which
classifies A-linear maps from M to itself. We have commuting actions of A and B on M, which can be
encoded by a map p: A ® B — k extending the augmentation e. This suggests the following definition:

(*) Let A be an augmented E;-algebra over a field k. Then the Koszul dual of A is universal among
E;-algebras B equipped with an augmentation u : A ®; B — k extending the augmentation on A.

Our first goal in this section is to make (%) more precise, and show that it determines a (contravariant)
functor ®) from the oo-category Alg;"® of augmented E;-algebras over k to itself. Every augmentation
1 A®, B — k restricts to augmentations on A and B, and is classified by a map of augmented E;-algebras
a: B — DW(A). We will say that u evhibits B as a Koszul dual of A if the map « is an equivalence. The
main results of this section establish some basic formal properties of Koszul duality:

(a) Let u : A®k B — k be an augmentation which exhibits B as the Koszul dual of A. Under some
mild hypotheses, there is a close relationship between the oco-categories LMod 4 and LModg of (left)
modules over A and B, respectively (Theorem 3.1.14).

(b) Let : A®y B — k be an augmentation which exhibits B as the Koszul dual of A. Under some mild
hypotheses, it follows that u also exhibits A as a Koszul dual of B (Corollary 3.1.15). In other words,
the double commutant map A — DMDM(A) is often an isomorphism.

We begin by introducing some terminology.

Definition 3.1.1. A pairing of co-categories is a triple (€, D, A : M — € x D), where € and D are oco-
categories and p is a right fibration of co-categories.

We will generally abuse notation by denoting a pairing of co-categories simply by .

Definition 3.1.2. Let A : M — C x D be a pairing of co-categories, and let M € M be an object having
image (C,D) € Cx D). We will say that M is left universal if it is a final object of M x¢{C}, and right
universal if it is a final object of M xp{D}. We let M* and M* denote the full subcategories of M spanned
by the left universal and right universal objects, respectively. We say that \ is left representable if, for
each object C' € C, there exists a left universal object M € M lying over C. We will say that X is right
representable if, for each object D € D, there exists a right universal object M € M lying over D.

Construction 3.1.3. Let A : M — Cx D be a pairing of oco-categories. A\ is classified by a functor
X : C?x D% — 8. Note that A is left representable if and only if, for each object C € €, the induced
map xc : x|({C} x D?) — § is representable by an object D € D. In this case, x determines a functor
C? — Fun(D?, 8) which is given by the composition

e 25 p I Fun(D, )

for some essentially unique functor @) : € — D (here j : D — Fun(D?, §) denotes the Yoneda embedding).
We will refer to © as the duality functor associated to \; it carries each object C' € € to an object D (C)
which represents the functor y¢. Similarly, if A is right representable, then it determines a duality functor
D' : D? — €, which we will also refer to as the duality functor associated to X. If X is both left and right
representable, then D : € — D is right adjoint to the duality functor D' : D — €.

We now specialize to the main example of interest.
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Construction 3.1.4. Let k be a field, and let Alg; = Alg(Mody) denote the oo-category of associative
algebra objects of Mody, and let Algi™® = (Algy) ), denote the oo-category of augmented associative algebra
objects of Mody. We will regard Alg, as a symmetric monoidal co-category (where the tensor product
operation is given objectwise). Let m : Alg, x Alg, — Alg, denote the tensor product functor, and let
Do, p1 : Alg, x Alg,, — Alg,. denote the projection onto the first and second factor, respectively. Since the
unit object of Alg, is an initial object, we have natural transformations pg 2 m & py, which determine a
map Alg, x Alg, — Fun(A2, Alg,). We let M) denote the fiber product

(Algk X Algk) XFun(A%,Algk) Fun(Ag7 Algzug)'

More informally, the objects of MW can be identified with triples (A, B, \), where A and B are E;-algebras
over k, and € : A ®; B — k is an augmentation on the tensor product A ®; B (which then induces
augmentations on A and B, respectively). Note that evaluation on the vertices 0,1 € A3 induces a right
fibration A : M) — Alg?® x Algt"e.

Proposition 3.1.5. Let k be a field and let A : MY — Algi"® x Algi"® be the pairing of co-categories
described in Construction 3.1.4. Then X is both left and right representable.

Proof. We will prove that A is left representable; the proof of right representability is similar. Fix an object
A € Algi"™®, and let F': (Algy"®)°? — 8 be the functor given by

We wish to show that the functor F' is representable by an object of Alg,. Define F” : Alg}” — 8 by the
formula

F/(B) = ﬁb(MapAlgk (A Ok Bv k) - MapAlgk (Aa k))

Corollary A.6.1.4.13 implies that the functor F’ is corepresented by an object By € Alg,, given by a
centralizer of the augmentation € : A — k. In particular, we have a point of n € F'(By), which determines
an augmentation p : A ® By — k. Let us regard By as an augmented algebra object via the composite map
By — A®y, By 5 k, so that 7 lifts to a point 77 € F(By). To complete the proof, it will suffice to show that
for each B € Alg}"®, evaluation on 7 induces a homotopy equivalence 6 : Map atgees (B, Bo) = F(B). This
map fits into a map of fiber sequences

MapAlgzug (B,By) —— MapAlgk (B,By) —— MapAlgk (B, k)

| - |

F(B) F'(B) MapAlgk (B, k),

where 0" and 0" are homotopy equivalences (in the first case, this follows from our assumption that 7 exhibits
F’ as the functor represented by By). O

Definition 3.1.6. Let k be a field. We let D) : (Algi"®)°P — Alg}"® denote the functor obtained by

aug

applying Construction 3.1.3 to the left representable pairing A : M - Alg;"® x Algi"® of Construction
3.1.4. We will refer to the functor ®) as Koszul duality.

Remark 3.1.7. Since the pairing A : M) — Alg;"® x Algi"® of Construction 3.1.4 is both left and right
representable, it determines two functors (Alg}"®)°P — Algi"®. It follows by symmetry considerations that

these functors are (canonically) equivalent to one another; hence there is no risk of confusion if we denote
them both by D) : (Alg}"®)P — Alg}"®. Tt follows from Construction 3.1.3 that D) is adjoint to itself:

aug

more precisely, the functor D) : (Alg}"®)°P — Algy"® is right adjoint to the induced map between opposite
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oo-categories Algy"® — (Alg}"#)°P. More concretely, for any pair of objects A, B € Alg};"® we have a canonical

homotopy equivalence
Map g e (A, DM (B)) = Map e (B, D1 (A)).

In fact, both of these spaces can be identified with the homotopy fiber of the canonical map
MapAlgk (A Ok B7 k) — 1v[apAlg,€ (Aa k) X MapAlgk (Bv k)

Remark 3.1.8. Let k be a field and let 4 : A®y B — k be a morphism in Alg,, which we can identify with
an object of the co-category M of Construction 3.1.4. We say that p exhibits B as a Koszul dual of A if it
is left universal in the sense of Definition 3.1.2: that is, if it induces an equivalence B — D) (A). Similarly,

we say that u exhibits A as a Koszul dual of B if it is right universal: that is, if it induces an equivalence
A—2W(B).

Construction 3.1.9. Let k be a field and let p : A ®, B — k be a morphism in Alg,. Then p induces a

tensor product functor
LMod s x LModg — LMod; ~ Mod;, .

We let LPair, denote the fiber product (LModa x LModpg) XMod, (Mody),x. We can think of the objects of
LPair,, as triples (M, N, €), where M is a left module over A, N is a left module over B, and ¢ : M @ N — k
is a map of left modules over A ®; B. The projection map

A : LPair, — LMod s x LModp

is a right fibration of co-categories, so that we can regard LPair, as a pairing of co-categories.

Proposition 3.1.10. Let k be a field, let p: A ®y B — k be a morphism in Alg,, and let A : LPair, —
LModa x LModpg be the pairing of co-categories of Construction 3.1.9. Then X is both left and right repre-
sentable.

Proof. We will prove that A is left representable; the proof of right representability is similar. Fix an object
M € LMod,; we wish to show that that the functor N +— MapLMOdA®kB(M ®p N, k) is representable by
an object of LModpg. Let us denote this functor by F. According to Proposition T.5.5.2.2, it will suffice to
show that the functor F' carries colimits in LModpg to limits in 8. This follows from the observation that
the construction N +— M ®j N determines a functor LModp — LModag, 5 which commutes with small
colimits. [

Notation 3.1.11. Let k be a field and let p: A ®; B — k be a morphism in Alg;,.. Combining Proposition
3.1.10 with Construction 3.1.3, we obtain duality functors

LMod? 2% LModp

@I
LMod%® — LMod,4 .

By construction, we have canonical homotopy equivalences
Mappnoa, (M, D), N) ~ Mappytod g, » (M @k N, k) = Mappyoq,, (N, D, M).

Remark 3.1.12. Let k be a field and let u : A ®; B — k be a morphism in Alg;. The proof of Theorem
A.6.1.4.12 shows that p exhibits B as a Koszul dual of A if and only if it p exhibits B as a classifying
object for morphisms from A to k in Mod’%> (Mody,) ~ 4BMod 4(Mody) (here we regard 4BMod 4(Mody,) as
left-tensored over the co-category Mody ). This is equivalent to the condition that € exhibit B as a classifying
object for morphisms from k ~ A ® 4 k to itself in 4BMody(Mody) ~ LMod4: that is, that x4 induces an
equivalence of left B-modules B — D)9 ,(B) ~ D, (k). Similarly, u exhibits A as a Koszul dual of B if and
only if it induces an equivalence A — D/ (k) of left A-modules.
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We would like to use Remark 3.1.12 to verify (in good cases) that the relation of Koszul duality is
symmetric. For this, we need to understand the linear duality functors ©, and @L associated to a pairing
w:AR,B — k.

Definition 3.1.13. Let k be a field. An object A € Alg; is coconnective if the unit map k¥ — A exhibits
k as a connective cover A. Equivalently, A is coconnective if mgA is a 1-dimensional vector space over k
generated by the unit element, and 7, A ~ 0 for n > 0.

If M € Mody, we will say that M is locally finite if each of the homotopy groups 7, M is finite dimensional
as a vector space over k. We will say that an object A € Alg,, is locally finite if it is locally finite when
regarded as an object of Mody.

Our analysis of the Koszul duality functor rests on the following result:

Theorem 3.1.14. Let k be a field and let u : A ®, B — k be a morphism in Alg,. Assume that A is
coconnective and that p exhibits B as a Koszul dual of A. Then:

1) Let M be a left A-module such that m,M ~ 0 for n > 0. Then 1,9,(M) ~0 for n <0.

2) The Ei-algebra B is connective.

3) Let N be a connective B-module. Then 7,9’

123

(1)
(2)
(3) (N) ~0 forn >0.

(4) Let M be as in (1) and assume that M is locally finite. Then the canonical map M — D0, M is an
equivalence in LMod 4.

Corollary 3.1.15. Let k be a field, and let A € Algy"® be coconnective and locally finite. Then the canonical
map A — DWDW(A) is an equivalence. In other words, if u: A®y B — k exhibits B as a Koszul dual of
A, then p also exhibits A as a Koszul dual of B.

Proof. Let p: A®, B — k be a map which exhibits B as a Koszul dual of A. We wish to prove that p
exhibits A as the Koszul dual of B. According to Remark 3.1.12, it will suffice to show that the unit map
A — D) D,(A) is an equivalence of left A-modules. Since A is coconnective and locally finite, this follows
from Theorem 3.1.14. O

The proof of Theorem 3.1.14 will require some preliminaries. We begin with a variation on Proposition
VIII.4.1.9.

Lemma 3.1.16. Let A be a coconnective Eq-algebra over a field k such that m_1A ~ 0, and let M be a
left A-module such that m;M ~ 0 for i > 0. Assume that A and M are locally finite. Then there exists a
sequence of left A-modules

0=M(0) — M(1) = M2)—---

with the following properties:

(1) For each n > 0, there exists a locally finite object V(n) € (Modg)<—_, and a cofiber sequence

A V(n) - M(n—-1) = M(n)

(2) There exists an equivalence 6 : hﬂM(n) ~ M.

Proof. We construct M (n) using induction on n, beginning with the case n = 0 where we set M(0) = 0.
Assume that M(n — 1) € (LMod)/y has been constructed, and let V' (n) denote the underlying k-module
of the fiber of the map M(n — 1) — M. We then define M(n) to be the cofiber of the induced map
A® V(n) — M(n —1). This construction produces a sequence of objects

M(0) = M(1) — -
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in (LMod),ar, hence a map 6 : lim M (n) = M. We claim that 6 is an equivalence of left A-modules. To
prove this, it suffices to show that 6 is an equivalence in Modg. As an object of Modg, we can identify
lim M (n) with the direct limit of the sequence

M(0) — M(0)/V(1) > M(1) > M(1)/V(2) — - --

It therefore suffices to show that the map lim M (¢)/V(i+1) = M is an equivalence in Mody, which is clear
(since each cofiber M (i)/V (i + 1) is equivalent to M). This proves (2). We next prove the following by a
simultaneous induction on n:

(an) The map M(n) — M induces an isomorphism m; M (n) — m; M for i > —n and an injection for i = —n.
(b)) Each M (n) is locally finite.
(

a,,) The k-module V(n + 1) belongs to (Modg)<—rn—1.

n)
(v,) The k-module V(n + 1) is locally finite.

n

Assertions (ag) and (bg) are obvious, and the equivalences (a,,) < (a],) and (b,) < (b)) follow from the
existence of a long exact sequence

o mVin+l) 5> mMn) - M = i Vin+ 1) — -

We will complete the proof by showing that (a;,) and (b),) imply (a),, ;) and (b,41). Assertion (b,41) follows
from (b),) by virtue of the existence of an exact sequence

To prove (a,+1), we note that the identification M ~ M(n)/V(n) gives a fiber sequence

(A/k) @1 V(n) = M D M(n+1)
in Modg, where A is a right inverse to the A-module map M (n+ 1) — M. We therefore have an equivalence
Mn+1) ~ M & ((A/k) @, V(n))[1] in Mody so that V(n + 1) ~ (A/k)[1] ® V(n). Since m;A/k ~ 0 for
i > —1, it follows immediately that (a,) = (a;, ;). O

Lemma 3.1.17. Let A be a connective Ei-algebra over a field k. Let M and N be left A-modules such that
TmmM =~ 0 form > 0 and 7, N =~ 0 for m < 0. Then the canonical map 6 : Ext% (M, N) — Homy, (7o M, moN)
s surjective.

Proof. We have an evident map of k-module spectra mgM — M, which determines a map of left A-modules
A ®y (moM) — M. Let K denote the fiber of this map, so that we have a fiber sequence of spaces

?,
Mapy yioq, (M, N) = Mapyoq, (moM, N) = Mapyyoq,, (K, V).

Since m,, K ~ 0 for m > 0, Proposition VIII.4.1.14 implies that the mapping space Mapy o4, (K, V) is
connected. It follows that ¢ induces a surjection

Ext% (M, N) — Ext% (moM, N) ~ Homy(mo M, moN).

O

Lemma 3.1.18. Let A be a connective Eq-algebra over a field k, and let M be a left A-module such that
T M ~ 0 for m # 0. Suppose we are given a map of Ei-algebras A — k. Then M lies in the essential
image of the forgetful functor 6 : Mody ~ LMod, — LMod 4.
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Proof. Let V = mgM, and regard V as a discrete k-module spectrum. Lemma 3.1.17 implies that the evident
isomorphism mo0(V) ~ myM can be lifted to a map of left A-modules (V) — M, which is evidently an
equivalence. O

Proof of Theorem 3.1.14. We first prove (1). Let M € LModa be such that m,,M ~ 0 for m < 0. Using
Proposition VII1.4.1.9 and Remark VIII1.4.1.10, we can write M as the colimit of a sequence of A-modules

0= M(0) > M(1) = M(2) -,

where each M (n) fits into a cofiber sequence A®y V(n) — M(n) — M(n+1) for V(n) € (Mody)<—1. Then
D,(M) is a limit of the tower {D,(M(n))}n>0. It will therefore suffice to prove that 7,9, (M (n)) ~ 0 for
m < 0 and that each of the maps 10D, (M(n)) = mo®,(M(n — 1)) is surjective. We have a fiber sequence

Du(M(n)) = Du(M(n - 1)) = D, (A V(n)).

It will therefore suffice to show that 7,0, (A ®; V(n)) ~ 0 for m < 0. Unwinding the definitions, we must
show that if m < 0, then any map of A®;, B-modules from (A ®y V(n)) ®; B[m] to k is nullhomotopic. This
is equivalent to the assertion that every map of k-module spectra from V(n)[m] into k is nullhomotopic.
Since k is a field, this follows from the observation that oV (n)[m| ~ m,V(n) ~ 0.

Since u : A®y B — k exhibits B as a Koszul dual of A, the augmentation on B gives a map k®; B — k
which induces an equvialence B — © (k). Assertion (2) now follows immediately from assertion (1). We
next prove (3). Let € be the full subcategory of LModp spanned by those objects N for which 7,0, (N) >~ 0
for n > 0. Since @:L : LMod?Y — LMody preserves small limits, the oo-category € is stable under small
colimits in LModpg. To prove that € contains all connective left B-modules, it will suffice to show that B € C.
This is clear, since D} (B) ~ k.

We now prove (4). Let M € LMody4 be locally finite and assume that 7, M ~ 0 for n > 0. Let Ky
denote the fiber of the unit map uy : M — DD, (M). Condition (1) implies that D (M) is connective, so
that mL@:/D,L(M) ~ (0 for n > 0 by (3). It follows that 7, Ky ~ 0 for n > 0. We prove that m,, K ~ 0 for
all n, using descending induction on n. Using Proposition VIII.4.1.9, we can choose a map of left A-modules
u : M’ — M which induces an isomorphism m,,M' — 7,,M for m < 0 and satisfies 7,,, M’ ~ 0 for m > 0.
Let M" denote the cofiber of u, so that m,, M"” ~ 0 for m # 0 and therefore Lemma 3.1.18 guarantees that
M" is a direct sum of (finitely many) copies of k. The condition that e exhibits B as a Koszul dual of A
guarantees that B ~ © (k) and therefore the unit map uy : k ~ D/ (B) — D) D, (k) is an equivalence. It
follows that ups~ is an equivalence. The cofiber sequence

M — M" — M'[1]

induces an equivalence Kjp; ~ K M,[l][—l]. The inductive hypothesis implies that m, 41Ky = 0, so that
oKy ~ 0 as desired. O]

In §4, we will need the following stronger version of Corollary 3.1.15:

Proposition 3.1.19. Let k be a field and suppose given a finite collection of maps{p; : A; @k B; = k}i<i<m
in Alg,.. Assume that each A; is coconnective and locally finite and that each p; exhibits B; as a Koszul dual
of A;. Let A=@Q,; Ai, B=@Q), Bi, and let 1 : A®y B — k be the tensor product of the maps ;. Then p
exhibits A as the Koszul dual of B.

Warning 3.1.20. In the situation of Proposition 3.1.19, it is not necessarily true that p exhibits B as
the Koszul dual of A. For example, suppose that m = 2 and that A; = Ay = k & k[—1], endowed with
the square-zero algebra structure. In this case, the Koszul dual of A; can be identified with the power
series ring k[[z1]], regarded as a discrete E;-algebra. Similarly, the Koszul dual of A5 can be identified with
k[[z2]], and the Koszul dual of the tensor product A; ®x As is given by k[[z1,22]]. The canonical map
0 : E[[z1]] @& k[[x2]] = E[[z1,22]] is not an isomorphism: however, Proposition 3.1.19 guarantees that 6
induces an equivalence after applying the Koszul duality functor.
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Proof. For 1 < i < m, let ®; : LMod}{ — LModp, be the duality functor determined by p;, and let
@L : LMod® — LMod 4 be the duality functor associated to u. For every sequence of objects M = {M; €
LMody, }, we have a canonical map wuy; : My ®y, - - - @ My, — @L(@lMl Q-+ Qk Dy Myy,). We will prove
the following:

() If M = {M;}1<i<m € ]]; LMody,, is such that the homotopy groups m,M; ~ 0 vanish for ¢ > 0 and
each M; is locally finite, then u; is an equivalence.

Fix 0 < m’ < m. We will show that assertion (x) holds under the additional assumption that M; ~ k for
i > m’. The proof proceeds by induction on m/. If m’ = 0, then each M; ~ k and the desired result follows
immediately from our assumption that each p, exhibits B; as a Koszul dual of A;. Let us therefore assume
that m’ > 0 and that condition (x) holds whenever M; ~ k for i < m/.

Note that if M satisfies the hypotheses of (%), then Theorem 3.1.14 guarantees that each ©;(M;) is
connective and therefore that anL(ZDlMl Qp ++ Dk D M,y,) ~ 0 for n > 0. Let K; denote the fiber of
Uz, 8o that 7, K ; ~ 0 for n > 0. We prove that m,K,; ~ 0 for all n, using descending induction on
n. Using Proposition VIII.4.1.9, we can choose a map of left A-modules v : M’ — M,,, which induces an
isomorphism 7, M’ — 7, M, for p < 0 and satisfies 7, M’ ~ 0 for p > 0. Let M" denote the cofiber of v, so
that 7, M" ~ 0 for p # 0 and therefore Lemma 3.1.18 guarantees that M" is a direct sum of (finitely many)
copies of k. Let M” be the sequence of modules obtained from M by replacing M,y with M”, and let N be
the sequence of modules obtained from M by replacing M, with M’ [1]. The inductive hypothesis implies
that K7, ~ 0. Using the cofiber sequence

My — M" — M'[1],

we obtain an equivalence K; ~ Kg[—1], so that m,K; ~ m, 1Ky is trivial by the other inductive
hypothesis. O

3.2 Formal Moduli Problems for Associative Algebras
Let k be a field. In this section, we will use the Koszul duality functor D) : (Algi"®)°P — Algi™® to

construct an equivalence of co-categories Algy"® ~ Moduli,(cl)7 and thereby obtain a proof of Theorem 3.0.4.
The main point is to show that ®(!) is a deformation theory (in the sense of Definition 1.3.9). We begin by
introducing a variation on Example 1.1.4:

Construction 3.2.1. Let k be a field. Theorem A.7.3.5.14 gives an equivalence of the stabilization
Stab(Alg,"®) with the co-category pBModg(Mody) ~ Mody, of k-module spectra. Let E € Stab(Alg;"®)
correspond to the unit object k € Mody, under this identification (so we have Q*°~"E ~ k @ k[n| for every
integer n). We regard (Alg;"®,{E}) as a deformation context (see Definition 1.1.3).

Our first goal in this section is to show that the deformation context (Alg:"®, {E}) of Construction 3.2.1
allows us to recover the notion of small k-algebra and formal [E; moduli problem via the general formalism
laid out in §1.1.

Proposition 3.2.2. Let k be a field and let (Alg;"®,{E}) be the deformation context of Construction 3.2.1.
Then an object A € Alg;"® is small (in the sense of Definition 1.1.8) if and only if its image in Alg;, is small
(in the sense of Definition 3.0.1). That is, A is small if and only if it satisfies the following conditions:

(a) The algebra A is connective: that is, m;A ~ 0 for i <0.
(b) The algebra A is truncated: that is, we have m; A ~ 0 for i > 0.

)
¢) Each of the homotopy groups m; A is finite dimensional when regarded as a vector space over field k.
)

(
(d) Let n denote the radical of the ring mgA (which is a finite-dimensional associative algebra over k).
Then the canonical map k — (mpA)/n is an isomorphism.
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Proof. Suppose first that there there exists a finite sequence of maps
A=Ay~ A —---— A, >k

where each A; is a square-zero extension of A; 1 by k[n;], for some n; > 0. We prove that each A; satisfies
conditions (a) through (d) using descending induction on i. The case i = n is obvious, so let us assume that
i < n and that 4,1 is known to satisfy conditions (a) through (d). We have a fiber sequence of k-module
spectra

klni| — A = Aia

which immediately implies that A; satisfies (a), (b), and (c). To prove (d), we note that the map ¢ : mp4; —
moA;41 is surjective and ker(¢)? = 0, so that the quotient of myA; by its radical agrees with the quotient of
moA;41 by its radical.

Now suppose that A satisfies conditions (a) through (d). We will prove that A is small by induction on
the dimension of the k-vector space m,A. Let n be the largest integer for which 7, A does not vanish. We
first treat the case n = 0. We will abuse notation by identifying A with the underlying associative ring myA.
Let n denote the radical of A. If n = 0, then condition (d) implies that A ~ k so there is nothing to prove.
Otherwise, we can view n as a nonzero module over the associative algebra A ®j A°P. It follows that there
exists a nonzero element x € n which is annihilated by n ® n. Using (d) again, we deduce that the subspace
kx C Ais a two-sided ideal of A. Let A’ denote the quotient ring A/kxz. Theorem A.7.4.1.23 implies that
A is a square-zero extension of A’ by k. The inductive hypothesis implies that A’ is small, so that A is also
small.

Now suppose that n > 0 and let M = 7w, A. Then M is a nonzero bimodule over the finite dimensional
k-algebra moA. It follows that there is a nonzero element x € M which is annihilated (on both sides) by the
action of the radical n C mgA. Let M’ denote the quotient of M by the bimodule generated by x (which, by
virtue of (d), coincides with kx), and let A” = 7<,,_1A. It follows from Theorem A.7.4.1.23 that there is a
pullback diagram

|

A" —— k@ Mn+1].
Set A" = A" Xpgrrpmy1) ko Then A ~ A’ Xpgpnq1) b so we have an elementary map A — A’. Using the
inductive hypothesis we deduce that A’ is small, so that A is also small. O

We will also need a noncommutative analogue of Lemma 1.1.20:

Proposition 3.2.3. Let k be a field and let f : A — B be a morphism in Algi™. Then f is small (when

regarded as a morphism in Algy"®) if and only if it induces a surjection of associative rings moA — moB.
Proof. The “only if” direction is obvious. For the converse, suppose that mgA — myB is surjective, so that
the fiber I = fib(f) is connective. We will prove that f is small by induction on the dimension of the graded
vector space 7. If this dimension is zero, then I ~ 0 and f is an equivalence. Assume therefore that
7l # 0, and let n be the smallest integer such that 7,/ # 0. Let Lp,4 denote the relative cotangent
complex of B over A in the setting of Eq-algebras, regarded as an object of pBModg(Mody). Remark
A.7.4.1.12 supplies a fiber sequence
Lp/a —B®aB— B.

In the oco-category LModpg, this sequence splits; we therefore obtain an equivalence of left B-modules
Lpja =~ cofib(B — B®4 B) ~ B®4 cofib(A — B) ~ B®a I[1].

The kernel of the map mgA — moB is contained in the radical of mgA and is therefore a nilpotent ideal.
It follows that 7, 1Lp/4 ~ TorgOB(ﬂ'oA, m,I) is a nonzero quotient of of m,I. Let us regard m,41Lp/4
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as a bimodule over myB, and let n be the radical of mpB. Since n is nilpotent, the two-sided submodule
W(Tny1Lp/a) + (Tnr1Lp/a)n does not coincide with m,41Lp,4. It follows that there exists a map of moB-
bimodules 7,1Lp /4 — k, which determines a map Lp/4 — k[n + 1] in the co-category skBModpg(Mody).
We can interpret this map as a derivation B — B @ k[n + 1]. Let B’ = B X gg[n+1) k be the associated
square-zero extension of B by k[n]. Then f factors as a composition

AL LB
Since the map f” is elementary, it will suffice to show that f’ is small, which follows from the inductive
hypothesis. O

Corollary 3.2.4. Let k be a field and let X : Algi™ — 8 be a functor. Then X belongs to the full subcategory
Moduli,(cl) of Definition 3.0.3 if and only if it is a formal moduli problem in the sense of Definition 1.1.14.

Proof. The “if” direction follows immediately from Proposition 3.2.3. For the converse, suppose that X
satisfies the conditions of Definition 3.0.3; we wish to show that X is a formal moduli problem. According
to Proposition 1.1.15, it will suffice to show that for every pullback diagram in Alg}™

A B

o

k——k @ k[n]

satisfying n > 0, the associated diagram of spaces

X (k) ——= X(k @ k[n])

is also a pullback square. This follows immediately from condition (2) of Definition 3.0.3. O
We can now state the main result of this section:

Theorem 3.2.5. Let k be a field. Then the Koszul duality functor
W (Alg™8)or — Algq"®
is a deformation theory (on the deformation context (Algy"®,{E}) of Construction 3.2.1).

Proof of Theorem 3.0.4. Let k be a field of characteristic zero, and let ¥ : Algi"® — Fun(Algy™, 8) be the
functor given on objects by the formula W(A)(R) = Mapy, aus (®M(R), A). Combining Theorems 3.2.5
and 1.3.12, we deduce that ¥ is a fully faithful embedding whose essential image is the full subcategory
Moduli,(cl) C Fun(Algy™, 8) spanned by the formal E; moduli problems. O

Proof of Theorem 3.2.5. The oo-category Algi"® is presentable by Corollary A.3.2.3.5, and D) admits a
left adjoint by Remark 3.1.7. Let Zy C Alg}"® be the full subcategory spanned by those algebras which
are coconnective and locally finite (see Definition 3.1.13). We will complete the proof that DM is a weak
deformation theory by showing that the subcategory Z¢ satisfies conditions (a) thorugh (d) of Definition
1.3.1:

(a) For every object A € Z, the unit map A — DMDM)(A) is an equivalence. This follows from Corollary
3.1.15.
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(b)
(¢)

(d)

The full subcategory =y contains the initial object k € Algy"®. This is clear from the definitions.

For each n > 1, there exists an object K,, € Zo and an equivalence k @ k[n] ~ DM (K,,). In fact, we
can take K, to be the free algebra @,,~, V®™ generated by V = k[—n — 1] (this is a consequence of
Proposition 4.5.6, but is also not difficult to verify by direct calculation).

Let n > 1 and suppose we are given a pushout diagram o :

K, —k

b

A—s A

in Alg;"®, where K, is as in (¢). We must show that if A € Zy, then A’ € Zy. Note that o is also a
pushout diagram in Alg,. We will make use of the fact that Alg,, is the underlying oco-category of the
model category Alggg of differential graded algebras over k (for a different argument which does not use
the theory of model categories, we refer the reader to the proof of Theorem 4.5.5). Choose a cofibrant
differential graded algebra A, representing A, and let B, denote the free differential graded algebra
generated by a class x in degree (—n —1). Since B, is cofibrant and A, is fibrant, the map ¢ : K, — A
can be represented by a map ¢g : B, — A, of differential graded algebras, which is determined by
the element 2’ = ¢o(z) € A_,,_1. Let B, denote the free differential graded algebra generated by the
chain complex E(—n), (see the proof of Proposition 2.1.10): in other words, B, is obtained from B,
by freely adjoining an element y € B’ , satisfying dy = . Then B, is quasi-isomorphic to the ground
field k. Let v : B, — B. be the evident inclusion, and form a pushout diagram oy :

-

in the category Algzg. Since A, is cofibrant and g is a cofibration, the diagram og is also a homotopy
pushout square, so that the image of oy in Alg, is equivalent to the diagram o. It follows that the
differential graded algebra A/, represents A’. We can describe A/, explicitly as the differential graded
algebra obtained from A, by adjoining an element 3’ in degree —n satisfying dy’ = z’. As a chain
complex, A, can be written as a union of an increasing family of subcomplexes

0 1 2
A=A CAT CAT C oo

where A™ denote the graded subspace of A/, generated by products of the form agyaiy- - am, yam.
The successive quotients for this filtration are given by A/ /A™M~1 ~ A®m+1[_pm]. Tt follows that the
homology groups of A /A, can be computed by means of a (convergent) spectral sequence {EF?, d, },>2

with
P 0 ifp<o0
S (A)®P ) gipanp  ifp > 1.

Since A is coconnective and n > 0, the groups E5'? vanish unless p + ¢ < —np < 0. It follows that
each homology group H,,(A’/A.) admits a finite filtration by subquotients of the vector spaces E5
with p + ¢ = m, each of which is finite dimensional (since A is locally finite), and that the groups
H,, (A, /A,) vanish for m > 0. Using the long exact seugence

C Hm(A*) - Hm(A;) - H"L(A;/A*) - Hm—l(A*) o
we deduce that H,,(A,) is finite dimensional for all m and isomorphic to H,,(4.) for m > 0, from

which it follows immediately that A’ € =
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We now complete the proof by showing that the weak deformation theory ®() satisfies axiom (D4) of
Definition 1.3.9. For n > 1, and A € Algi"®, we have a canonical homotopy equivalence

T(A)(Q*(E)) = Map g0 (D) (k @ k[n]), A) = Mapyjgome (Ko, A) = Q7" fib(A — k).
These maps determine an equivalence from the functor e : Alg;"® — Sp with I[1], where I : Alg;"™® — Sp
denotes the functor which assigns to each augmented algebra € : A — k its augmentation ideal fib(e). This
functor is evidently conservative, and preserves sifted colimits by Proposition A.3.2.3.1. O

Remark 3.2.6. Let k be a field, let € : A — k be an object of Algy"®, and let X = ¥(A) denote the formal
E; moduli problem associated to A via the equivalence of Theorem 3.0.4. The proof of Theorem 3.2.5 shows
that the shifted tangent complex X (E)[—1] € Sp can be identified with the augmentation ideal fib(e) of A.

We close this section by proving a noncommutative analogue of Corollary 2.3.6.

Proposition 3.2.7. Let k be a field and let X : Algi™ — 8 be a formal Ey moduli problem over k. The
following conditions are equivalent:

(1) The functor X is prorepresentable (see Definition 1.5.3).

(2) Let X(E) denote the tangent complex of X. Then m;X(E) ~ 0 for i > 0.

(3) The functor X has the form W(A), where A € Alg;"® is coconnective and W : Algi"® — Moduli,(fl) is
the equivalence of Theorem 3.0.4.

Proof. The equivalence of (2) and (3) follows from Remark 3.2.6. We next prove that (1) = (2). Since the
construction X — X (E) commutes with filtered colimits, it will suffice to show that m; X(E) ~ 0 for i > 0
in the case when X = Spec R is representable by an object R € Alg)™. In this case, we can write X = ¥(A)
where A = DM(R) belongs to the full subcategory =y C Algi"® appearing in the proof of Theorem 3.2.5. In
particular, A is coconnective, so that X satisfies condition (3) (and therefore also condition (2)).

We now complete the proof by showing that (3) = (1). Let A € Alg;"® be coconnective. Choose a
representative of A by a cofibrant differential graded algebra A, € Algzg. Since A, is cofibrant, we may
assume that the augmentation of A is determined by an augmentation of A,. We now construct a sequence
of differential graded algebras

k= A(~1), — A(0), — A(1), — A(2), — ---

equipped with maps ¢(i) : A(i). — A.. For each n < 0, choose a graded subspace V,, C A,, consisting
of cycles which maps isomorphically onto the homology H,,(A.). We regard V, as a differential graded
vector space with trivial differential (which vanishes in nonnegative degrees). Let A(0). denote the free
differential graded Lie algebra generated by Vi, and ¢(0) : A(0), — A, the evident map. Assume now
that we have constructed a map ¢(i) : A(i). — A. extending ¢(1). Since A is coconnective, the map
0 : H,(A(i)«) — H.(A,) is surjective. Choose a collection of cycles z, € A(i),, whose images form a basis
for ker(#). Then we can write ¢(i)(x4) = dy, for some y, € Ay 1. Let A(i+ 1), be the differential graded
algebra obtained from A(7),. by freely adjoining elements Y, (in degrees n, + 1) satisfying dY, = x,. We
let (i +1): A(i + 1) — A, denote the unique extension of ¢ (i) satisfying ¢(i + 1)(Ya) = ya.
We now prove the following assertion for each integer i > 0:

(*;) The inclusion V_; — A(i)_; induces an isomorphism V_; — H_;1(A(?).), the unit map k — A(3)o is
an isomorphism, and A(4); ~ 0 for j > 0.

Assertion (*;) is obvious when ¢ = 0. Let us assume that (x;) holds, and let § be defined as above. Then
6 is an isomorphism in degrees > —1, so that A(i + 1), is obtained from A(i). by freely adjoining generators
Y, in degrees < —1. It follows immediately that A(i+1); ~ 0 for j > 0 and that the unit map k — A(i+1)o
is an isomorphism. Moreover, we can write A(i + 1)_1 ~ A(i)_1 @ W, where W is the subspace spanned by
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elements of the form Y,, where n, = —2. By construction, the differential on A(i + 1). carries W injectively
into

A1) _o/dAG)—1 C Ali+1)_o/dAG)_1,

so that the differential graded algebras A(i + 1), and A(4). have the same homology in degree —1.

Let A/ denote the colimit of the sequence {A(i)+};>0. The evident map g, — g. is surjective on
homology (since the map A(0), — g. is surjective on homology). If n € ker(H,(A,) — H.(A.), then 7 is
represented by a class 7j € ker(H,(A(7).) — Hi(A)) for i > 0. By construction, the image of 7 vanishes in
H,(A(i + 1).), so that n = 0. It follows that the map A, — A, is a quasi-isomorphism. Since the collection
of quasi-isomorphisms in Alg(,:g is closed under filtered colimits, we conclude that A, is a homotopy colimit
of the sequence {A(i).};>0 in the model category Algzg. Let A(i) € Algy"™® be the image of the differential
graded algebra A(i). (equipped with the augmentation determined by the map ¢(i) : A(i), — A.), so that
A ~ lim A(i) in Algp"®. Setting X (i) = W(A(i).) € Modulig), we deduce that X ~ lim X (i). To prove that
X is prorepresentable, it will suffice to show that each X (7) is prorepresentable.

We now proceed by induction on 4, the case ¢ = —1 being trivial. To carry out the inductive step, we
note that each of the Lie algebras A(i + 1), is obtained from A(i). by freely adjoining a set of generators
{Ya}aes of degrees n, + 1 < —1, satisfying dY, = x4 € A(i)n,. Choose a well-ordering of the set S. For
each a € S, we let AS® denote the Lie subalgebra of A(i 4 1), generated by A(¢). and the elements Yz for
8 < a, and let AS® be defined similarly. Set

X =W(AFY) XS =U(ATY).

For each integer n, let B(n), be the free differential graded algebra generated by a class = in degree n and
B’(n), the free differential graded algebra generated by a class x in degree n and a class y in degree n + 1
satisfying dy = x. For each o € S, we have a homotopy pushout diagram of differential graded algebras

B(n)x —— B'(n).

L

<a <a
As A",

hence a pushout diagram diagram of formal E; moduli problems

Spec(k @ k[ny + 1]) —— Spec(k)

l |

X<o - X<e

It follows that the map X (i) — X (i+1) satisfies the criterion of Lemma 1.5.9. Since X (%) is prorepresentable,
we conclude that X (i + 1) is prorepresentable. O

3.3 Comparison of Commutative and Associative Deformation Theories

Let k be a field of characteristic zero and let X : Algi™ — 8 be a formal E;-moduli problem. The forgetful
functor CAlg, — Alg, carries small E.-algebras over k to small E;-algebras over k, and therefore induces
a forgetful functor 6 : CAlgi™ — Algi™. The composite functor (X o ) : CAlgi™ — 8 is a formal moduli
problem over k. Consequently, composition with 6 determines a functor ¢ : Moduli,(:) — Modulig. Theorems
3.0.4 and 2.0.2 supply equivalences of co-categories

Alg?™ ~ Moduli{"”  Liej, ~ Moduli,

so that we can identify ¢ with a functor ¢’ : Algi"® — Lie,. Our goal in this section is to give an explicit
description of the functor ¢'.
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Recall that the co-category Alg,. of E;-algebras over k can be identified with the underlying oco-category
of the model category Algig of differential graded algebras over k (Proposition A.7.1.4.6). Let (Algig) Jk
denote the the category of augmented differential graded algebras over k. Then (Algzg) /i inherits a model
structure, and (because k € Algig is fibrant) the underlying oco-category of (Algzg) /i can be identified with
Alg?"®. For every object € : A, — k of (Alggg)/k, we let ma, = ker(e) denote the augmentation ideal of A,.
Then m,4, inherits the structure of a nonunital differential graded algebra over k. In particular, we can view
my, as a differential graded Lie algebra over k (see Example 2.1.6). The construction A, — my4, determines
a functor (Alg;jc1g )k — Liezg, which carries quasi-isomorphisms to quasi-isomorphisms. We therefore obtain
an induced functor of co-categories 1 : Alg;"® — Lie k. We will prove that the functors 1, ¢ : Algi"® — Liey,
are equivalent to one another. We can state this result more precisely as follows:

Theorem 3.3.1. Let k be a field of characteristic zero. The diagram of co-categories

Algi"® id Lieg

.

Moduli{") — = Moduliy

commutes (up to canonical homotopy). Here ¢ and ¢ are the functors described above, and the vertical maps
are the equivalences provided by Theorems 2.0.2 and 3.0.4.

To prove Theorem 3.3.1, we need to construct a homotopy between two functors Algy"® — Moduli, C
Fun(CAlg;™, 8). Equivalently, we must construct a homotopy between the functors

F,F': Alg"® x CAlgi™ — 8

given by
F(Aa R) = MapLiek (Q(R)v '(/}(A)) F/(Av R) = MapAng"g (',D(l) (R)7 A)

Composing the Koszul duality functor © : (CAlg,"#)?” — Lie, with the equivalence of co-categories
Lie,, ~ Moduli, we obtain the functor Spec : (CAlg;"#)°? — Moduliy of Example 1.1.16. It follows from
Yoneda’s lemma that this functor is fully faithful when restricted to (CAlgi™)°P, so that © induces an
equivalence from (CAlg;"#)°? onto its essential image € C Liej,. The inverse of this equivalence is given by
g« — C*(g.). It follows that we can identify F and F’ with functors G, G’ : Alg;"® x €7 — §, given by the
formulas

G(A,g.) = Mapy, (8.,90(4))  G'(A,g.) = Mapy e (D0 (g.), A).

Note that the forgetful functor (Algzg) k= Liegg is a right Quillen functor, with left adjoint given by
the universal enveloping algebra construction g. — U(g.) of Remark 2.1.7. Tt follows that the functor ¢
admits a left adjoint Lie, — Alg}"®, which we will also denote by U. Then the functor G : Alg;"® x €¥ — 8
can be described by the formula G(A, g.) = Map j 2us (U(g), A). Theorem 3.3.1 is therefore a consequence
of the following assertion:

Proposition 3.3.2. Let k be a field of characteristic zero. Then the diagram of co-categories

(Lieg)°P A CAlg"®

lU
o)

(Alg,"®)oP —— Alg"®

commutes up to canonical homotopy.
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The proof of Proposition 3.3.2 will require a brief digression.

Definition 3.3.3. Let A : M — €x D and N : M’ — €' x D’ be pairings of co-categories. A morphism of
pairings from X to X is a triple of maps

a:M— M B:C—C v:D—=D
such that the diagram
M = M

l/\ ik/
exD P oy gy

commutes up to homotopy. Assume that A and )\ are left representable. We will say that a morphism of
pairings (o, 3,7) is left representable if it carries left universal objects of M to left universal objects of M'.

Proposition 3.3.4. Let \: M — Cx D and N : M' — € x D’ be left representable pairings of co-categories,
which induce functors Dy : € — D and Dy : P = D', Let (o, B,7) from X to N'. Then the diagram

er 22 p

ok

e/op Dy D/

commutes up to canonical homotopy.

Proof. The right fibrations A and X\’ are classified by functors
CPxD? — 8§ C'P x D'P — 8§,

which we can identify with maps x : @ — Fun(D, 8) and ¥’ : €'? — Fun(D'?,8). Let G : Fun(D'?,§) —
Fun(€’°?,8) be the functor given by composition with 3. Then « induces a natural transformation y —
Gox' of. Let F denote a left adjoint to G, so that we obtain a natural transformation u : F oy — x' o 3
of functors from €% to Fun(D'?,8). Let jp : D — Fun(D?,8) and jg : D' — Fun(D'?,§) denote the
Yoneda embeddings. Then x ~ jp o D and X’ ~ jp o D, and Proposition T.5.2.6.3 gives an equivalence
Fojp >~ jprovy. Then u determines a natural transformation

o oyoDy~Fojpo®Dy~Foyx5x 0f~jpoDyof.

Since jp is fully faithful, this is the image of the a natural transformation of functors vo®y — Dy o S.
Our assumption that o carries left universal objects of M to left universal objects of M’ implies that this
natural transformation is an equivalence. O

Construction 3.3.5. Let C be a category. We define a new category TwArr(C) as follows:
(a) An object of TwArr(C) is given by a triple (C, D, ¢), where C € €, D € D, and ¢ : C — D is a

morphism in C.

(b) Given a pair of objects (C, D, ¢),(C',D’,¢') € TwArr(€), a morphism from (C, D, ) to (C',D’,¢")
consists of a pair of morphisms «: C — C’, 8 : D’ — D for which the diagram

CLD

b, I

CILDI

comimutes.

74



(¢) Given a pair of morphisms

(©.D.¢) % (. D'.¢) "8 (0" D".¢")

in TwArr(@), the composition of (¢, ') with («, 3) is given by (¢’ o v, B0 5').

We will refer to TwArr(C) as the twisted arrow category of €. The construction (C, D, ¢) — (C,D)
determines a forgetful functor A : TwArr(C) — € x € which exhibits TwArr(C) as fibered in sets over
C x €°P (the fiber of A over an object (C, D) € € x €°? can be identified with the set Home(C, D)). It follows
that the induced map

A N(TwArr(€)) — N(€) x N(€)°P

is a pairing of oco-categories. This pairing is both left and right representable, and the associated duality
functors
Dy N(C)? — N(C)P D : N(C) — N(€)

are equivalent to the identity.
Remark 3.3.6. We will discuss an co-categorical version of Construction 3.3.5 in §4.2.
We will deduce Proposition 3.3.2 from the following;:

Proposition 3.3.7. Let k be a field of characteristic zero and let MY — Alg;"® x Algi"® be the pairing of
oco-categories of Construction 3.1.4. There exists a left representable map of pairings

N(TwAry(Lief®)) MW

b

N(Lief®) x N(Lief#)or T Algis x Algy"s

Here U and C* denote the (covariant and contravariant) functors from N(Lieig) to Algy"® induced by the
universal enveloping algebra and cohomological Chevalley-FEilenberg constructions, respectively.

Proof of Proposition 3.53.2. As noted in Construction 3.3.5, the pairing of co-categories N(TwArr(LieZg)) —
N(Lie}#) x N(Lie{#)? induces the identity functor id : N(Lie{®)? — N(Lie)°?. Applying Proposition
3.3.4 to the morphism of pairings 7' of Proposition 3.3.7, we obtain an equivalence between the functors
C*oid, @M o U : N(Liegg)‘)p — Alg;"®. Since the canonical map

Fuun(Lief”, Algg?) - Fun(N(Licf)””, Alg}*)
is fully faithful, we obtain an equivalence between the functors C*, D) o U : Lie;” — Alg}"®. .

Proof of Proposition 3.3.7. Let g. be a differential graded Lie algebra and let Cn(g). be as in Construction
2.2.1. The universal enveloping algebra U(Cn(g).) has the structure of a (differential graded) Hopf algebra,
where the comultiplication is determined by the requirement that the image of Cn(g). consists of primitive
elements. In particular, we have a counit map € : Cn(g). — k. Let End(U Cn(g).) denote the chain complex
of U(Cn(g).)-comodule maps from U(Cn(g).) to itself. Since U(Cn(g).) is cofree as a comodule over itself,
composition with the counit map € : U(Cn(g).) — k induces an isomorphism 6 from End(U Cn(g).) to the
k-linear dual of U Cn(g).. We regard End(U Cn(g).) as endowed with the opposite of the evident differential
graded Lie algebra structure, so that U Cn(g). has the structure of a right module over End(U Cn(g).). Let
Endgy (U Cn(g).) denote the subcomplex of End(U Cn(g).) consisting of right U(g,)-module maps, so that 6
restricts to an isomorphism from Endy(U Cn(g).) to the k-linear dual C*(g.) of Ci(g+) ~ U Cn(g)« @y (q.) k-
It is not difficult to verify that this isomorphism is compatible with the multiplication on C*(g) described in
Construction 2.2.13. It follows that U Cn(g). is equipped with a right action of C*(g.), which is compatible
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with the right action of U(g.) on U Cn(g).. Let M.(g.) denote the k-linear dual of U Cn(g),. Then M,
is a contravariant functor, which carries a differential graded Lie algebra g, to a chain complex equipped
with commuting right actions of U(g.) and C*(g«). Moreover, the unit map k — UE(g.) determines a
quasi-isomorphism eg, : M, (g.) — k.

Note that the initial object k € Alg,(:) can be identified with a classifying object for endomorphisms of
the unit object k& € Mody. Using Theorem A.6.1.2.34 and Proposition A.6.1.2.39, we can identify Alg;"®
with the fiber product LMod(Modg) Xwmod,, {k}. Let X C (Mody) s, denote the full subcategory spanned by
the final objects, so that we have an equivalence of co-categories

a: MW~ (Alg;, x Alg,) X alg, LMod(Mody) Xnoa, X -

We define a more rigid analogue of MWD as follows: let Y C (Vectzg);C , be the full subcategory spanned by
the quasi-isomorphisms of chain complexes V, — k and let C denote the category

Algy® x Algy® x a5 LMod(Vect}®) Xy s Y,

so that a determines a functor 7" : N(€) — M™Y. We will define T as a composition

TwArr(N(Liet#)) 5 N(e) T M) |
Here the functor T” assigns to each map v : h. — g, of differential graded Lie algebras the object of €
given by (U(bh«), C*(g+), My (g+), €g, ), where M, (g.) is regarded as a left module over U(h.) ®, C*(g«) by
combining the commuting left actions of U(g.) and C*(g.) on M,.(g.) (and composing with the map 7).
We now claim that the diagram o :

N(TwArr(Liezg)) £l M

b
N(Lie(®) x N(Liel®)or ZX0 A1g2e 5 Algee

commutes up to canonical homotopy. Consider first the composition of T with the map MY - Algi"®

given by projection onto the first factor. Unwinding the definitions, we see that this map is given by the
composing the equivalence ¢ : LMod(Mody) Xpod, X =~ Alg?"® with the functor Tj : N(TwArr(Lie}®)) —
LMod(Mod) XMoa, X given by

Té('Y (b — g*) = (U(f)*),M*(g*),eg*).

The counit map U(g.) — k determines a quasi-isomorphism of U(h,)-modules k — M., (g.), so that Tj is
equivalent to the functor T:) given by T:)(fy i b — gi) = (U(hy), k,idg), which (after composing with &)
can be identified with the map N(TwArr(Lie[®)) — N(Lie}#) LA Alg;"®. Now consider the composition
of T with the map MY Alg;"® given by projection onto the second factor. This functor is given by
composing the equivalence & with the functor 77 : N(TwArr(Liezg)) — LMod(Mody) XMoa, X given by
T/(v: he = g4) = (C*(9), Mi(g+), €g.). Note that ey is a map of C*(g)-modules and therefore determines

an equivalence of Ty with the functor Tll given by T;(v : b = gs) = (C*(g), k,idg). Tt follows that the
composition of T] with £ can be identified with the composition

N(TwArr(Liei#)) - N(Lic{®)*” & Algj™.

This proves the homotopy commutativity of the diagram o. After replacing T' by an equivalent functor, we
can assume that the diagram o is commutative.
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It remains to show that o determines a left representable map between pairings of oo-categories. Let g,
be a differential graded Lie algebra, and let End(M.(g.)) denote the differential graded algebra of endomor-
phisms of the chain complex M, (g.). Since M, (g.) is quasi-isomorphic to k, the unit map k£ — End(M.(g.))
is a quasi-isomorphism of differential graded algebras. Unwinding the definitions, we must show that the
map 6 : U(g.) ®r C*(g«) — End(M,(g)) exhibits C*(g.) as Koszul dual (as an E;-algebra) to U(g.). Let A,
denote the differential graded algebra of endomorphisms of U Cn(g). (as a chain complex). Then 6 factors
as a composition

U(g.) @k C*(g.) & A. & End(M. (g.))

where 6" is a quasi-isomorphism. It will therefore suffice to show that 6" exhibits C*(g.) as Koszul dual
to U(gs). Since UFE,(g.) is a free U(g,)-module, this is equivalent to the requirement that 6’ induces a
quasi-isomorphism ¢ : C*(g.) — W., where W, is the differential graded algebra of right U(g.)-module
maps from U Cn(g). to itself. This is clear, since ¢ admits a left inverse given by composition with the
quasi-isomorphism U Cn(g). — k. O

3.4 Quasi-Coherent and Ind-Coherent Sheaves

Let k be a field and let X : CAlgi™ — 8 be a formal moduli problem. In §2.4, we introduced a symmetric
monoidal co-category QCoh(X) of quasi-coherent sheaves on X. Our goal in this section is to study analogous
definitions in the noncommutative setting. In this case, there is no symmetric monoidal structure and it
is important to distinguish between left and right modules. Consequently, if X : Algi™ — 8§ is a formal
E;-moduli problem, then there are two natural analogues of the oco-category QCoh(X). We will denote these
oo-categories by QCoh; (X) and QCohy(X), and refer to them as the oo-categories of (left and right) quasi-
coherent sheaves on X. We will also study noncommutative counterparts of the fully faithful embedding
QCoh(X) — QCoh'(X) of Remark 2.4.30.

We will devote most of our attention to the case where X = Spec A is corepresented by a small E;-algebra
A over k. At the end of this section, we will explain how to extrapolate our discussion to the general case
(Construction 3.4.20).

Definition 3.4.1. Let k£ be a field. We will say that an object M € Mody, is small if it is perfect as a
k-module: that is, if 7, M has finite dimension over k. If R is an E;-algebra over k and M is a right or
left module over R, we will say that M is small if it is small when regarded as an object of Mody. We let
LMod%" denote the full subcategory of LModg spanned by the small left R-modules, and RMod%" the full
subcategory of RModg spanned by the small right R-modules.

Remark 3.4.2. Let k be a field, let R be an augmented Ej-algebra over k. Assume that R is connective
and that the kernel I of the augmentation map myR — k is a nilpotent ideal in mgR. Then an object
M € LModpg is small if and only if it belongs to the the smallest stable full subcategory € C LModpg
which contains k ~ (mgR)/I and is closed under equivalence. The “if” direction is obvious (and requires
no assumptions on R), since the full subcategory LMod%" C LModg is stable, closed under retracts, and
contains k. For the converse, suppose that M is small; we prove that M € C using induction on the dimension
of the k-vector space m. M. If M ~ 0 there is nothing to prove. Otherwise, there exists some largest integer n
such that m, M is nonzero. Since [ is nilpotent, there exists a nonzero element x € m,, M which is annihilated
by I. Then multiplication by « determines a map of discrete R-modules k& — 7, M, which in turn determines
a fiber sequence of R-modules
kln] - M — M'.

The inductive hypothesis guarantees that M’ € € and it is clear that k[n] € C, so that M € C as desired.

We first show that if R is an E;-algebra over a field k, then k-linear duality determines a contravariant
equivalence between the co-categories LMod%" and RMod%".

Lemma 3.4.3. Let k be a field and let R be an Eq-algebra over k. Define a functor A : RMod} x LMod}) —
8 by the formula \(M, N) = Mapyy,q, (M ®g N, k). Then:
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(1) For every right R-module M, let Ay : LMod — 8 be the restriction of X to {M} x LMod}. Then
Au s a representable functor.

(1) Let p : RMod? — Fun(LMody,8) be given by p(M)(N) = X(M,N). Then p is homotopic to a
composition
RMody *% LModg % Fun(LMod%, §),

where j denotes the Yoneda embedding.

(2) For every left R-module M, let Ay : RMod, — 8 be the restriction of A to RMod% x{N}. Then Ay
is a representable functor.

(2) Let i/ : LMod?Y — Fun(RMod,8) be given by p/(N)(M) = X(M,N). Then p' is homotopic to a
composition

LMod% “8 RModg % Fun(RMod?, §),
where j denotes the Yoneda embedding.

(3) The functors o and pjy determine mutually inverse equivalences between the oo-categories RModRy"
and (LModz")°P.

Proof. We first note that (1’) and (2') are reformulations of (1) and (2). We will prove (1); the proof of (2) is
similar. Let M € RModpg; we wish to show that Ay, is a representable functor. Since LModpg is a presentable
oo-category, it will suffice to show that the functor \j; preserves small limits (Proposition T.5.5.2.2). This
is clear, since the functor N — M ®pg N preserves small colimits.

Let po : RMod% — LModg and g : LMod? — RModpg be as in (1') and (2"). We note that puf,
can be identified with the right adjoint to pg’. Let M € RModg. For every integer n, we have canonical
isomorphisms

Tnpo(M) = o Maprytea,, (R[n], po(M)) =~ mo Mapyjoq, (M ®r Rn, k) ~ (m_nM)Y,

where (7, M )" denotes the k-linear dual of the vector space m_,, M. It follows that ug carries (RModR")°P
into LMod%". Similarly, u( carries (LMod%")°? into RMod%". To prove (3), it will suffice to show that for
every pair of objects M € RMod%", N € LMod%", the unit maps

M = popo(M) N — popn(N)

are equivalences in RMod g and LModg, respectively. Passing to homotopy groups, we are reduced to proving
that the double duality maps

oM — (m,M)Y)Y TN = (7 N)V)Y

are isomorphisms for every integer n. This follows from the finite-dimensionality of the vector spaces m,, M
and 7, N. O

Definition 3.4.4. Let k be a field and let R € Alg;™ be a small E-algebra over k. We let LMod!R denote
the full subcategory of Fun(RMod%", 8) spanned by the left exact functors, and RMod!R the full subcategory
of Fun(LMod3", 8) spanned by the left exact functors. We will refer to LMod}, as the co-category of Ind-
coherent left R-modules, and RMod!R as the co-category of Ind-coherent right R-modules.

Remark 3.4.5. Using the equivalence RMod%" ~ (LModR")° of Lemma 3.4.3, we obtain equivalences of
oo-categories

LMod}, ~ Ind(LMod3") ~ RMody, ~ Ind(RMod3™).

Our next goal is to explain the dependence of the oco-categories LMod!R and RModIR on the choice of
algebra R € Algy™. This will require a bit of a digression.
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Construction 3.4.6. Let p : X — S be a map of simplicial sets. We define a new simplicial set DI(p)
equipped with a map DI(p) — S so that the following universal property is satisfied: for every map of
simplicial sets K — S, we have a bijection

Hom(setA)/sop (K, Dl(p)) ~ HOInge‘EA (K Xs X, S)

Note that for each vertex s € S, the fiber DIl(p)s = DI(p) xg {s} is canonically isomorphic to the presheaf
oo-category Fun(Xs, 8).

Assume that p is an inner fibration. We let DI°(p) the full simplicial subset of DI(p) spanned by those
vertices which correspond to corepresentable functors X, — 8, for some s € S. If each of the co-categories
X, admits finite limits, we let Dllex(p) denote the full simplicial subset of DI(p) spanned by those vertices
which correspond to left exact functors X, — 8, for some vertex s € .S,

Remark 3.4.7. Let p: X — S be an inner fibration and assume that each of the fibers X is an co-category
which admits finite limits. Then for each vertex s € S, we have a canonical isomorphism Dlle"(p)S ~
Ind(X2P).

Proposition 3.4.8. Let p: X — S be a map of simplicial sets. Then:

(1) If p is a Cartesian fibration, then the map DI(p) — S is a coCartesian fibration. Moreover, for every
edge e : s — s' in S, the induced functor

Fun(Xs, 8) ~ Dl(p)s — Dl(p)s ~ Fun(X, 8)
is given by composition with the pullback functor e* : Xy — X, determined by p.

(2) If p is a coCartesian fibration, then the map D1(p) — S is a Cartesian fibration. Moreover, for every
edge e : s — s' in S, the induced functor

Fun(X,,8) ~ DI(p)s — Dl(p)s ~ Fun(X5, 8)
is given by composition with the functor ey : Xy — X4 determined by p.

(3) Suppose p is a Cartesian fibration, that each fiber X, of p admits finite limits and that for every edge
e:s— s in S, the pullback functor e* : Xy — X, is left exact. Then the map Dllex(p) — Sisa
coCartesian fibration. Moreover, for every edge e : s — s’ in S, the induced functor

Ind(X2%) ~ DI'"*(p), — DI'*(p)y =~ Ind(X?P)
is given by composition with the pullback functor e*.

(4) If p is a coCartesian fibration, then the canonical map q : Dl(p) — S is a coCartesian fibration, which
restricts to a coCartesian fibration Dlo(p) — S. If each fiber X, admits finite limits, then q also
restricts to a coCartesian fibration DI'*(p) — S.

Proof. Assertion (1) and (3) follow from Corollary T.3.2.2.12. The implication (1) = (2) is immediate. We
now prove (4). Assume that p is a coCartesian fibration. Then (2) implies that Dl(p) — S is a Cartesian
fibration, and that each edge e : s — s’ induces a pullback functor D1(p)s — Dl(p)s which preserves small
limits and filteredcolimits Using Corollary T.5.5.2.9, we deduce that this pullback functor admits a left
adjoint Fun(X,,8) — Fun(Xy,8), which is given by left Kan extension along the functor e : Xy — X
Corollary T.5.2.2.5 implies that the forgetful functor ¢ : D1(p) — S is also a coCartesian fibration. Since the
operation of left Kan extension carries corepresentable functors to corepresentable functors, we conclude that
q restricts to a coCartesian fibration gq : D1° (p) — S (and that a morphism in DI’ (p) is go-coCartesian if and
only if it is g-coCartesian). Now suppose that each fiber X of p admits finite limits. For each s € S, the oo-
category DI'*(p), = Ind(X ") can be identified with the full subcategory of DI(p)s = P(XP) generated by
DI1°(p), under filtered colimits. If e : s — s’ is an edge of S, then the functor e, : DI(p), — DI(p), preserves
small filtered colimits and carries DI%(p), into DI°(p)y, and therefore carries DI'*(p), into DI'*(p),. It
follows that ¢ restricts to a coCartesian fibration DI'*(p) — S. O
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Remark 3.4.9. Let p: X — S be a coCartesian fibration of simplicial sets. For each s € S, the fiber D1° (p)s
is isomorphic to the essential image of the Yoneda embedding X — Fun(Xq,8), and therefore equivalent
to X¢P. In fact, we can be more precise: if p is classified by a map x : S — Catoo, then the coCartesian
fibration Dlo(p) — S is classified by the functor e o y, where e is the equivalence of Cat,, with itself which
carries each oco-category to its opposite.

Proposition 3.4.10. Let p: X — S be a coCartesian fibration of simplicial sets. Assume that:
(a) For each s € S, the fiber X is compactly generated.

(b) For every morphism edge e : s — s’ in S, the induced functor X; — X preserves compact objects and
small colimats.

Let X° denote the full simplicial subset of X spanned by those vertices which are compact objects of X,
for some s € S. Let p°P : X°P — S°P be the induced map between opposite simplicial sets, and let poP :
(X€)P — S be the restriction of p°?. Then the restriction map ¢ : DI°(p°P) C DI (p°P) — DI'**(p2P) is
an equivalence of coCartesian fibrations over S°P.

Proof. Tt follows from (a) and (b) that each of the functors e, : Xy — X admits a right adjoint e*, so that p
is a Cartesian fibration and therefore p°P is a coCartesian fibration. Applying Proposition 3.4.8, we conclude
that the projection map ¢ : D1° (p°?) — S°P is a coCartesian fibration. It follows from (b) that the projection
X¢ — S is a coCartesian fibration whose fibers admit finite colimits, and that for every edge e : s — s
in S the induced functor X$ — X¢ preserves finite colimits. Applying Proposition 3.4.8 again, we deduce
that the map ¢ : DI'*(p%) — S is a coCartesian fibration. We next claim that ¢ carries g-coCartesian
morphisms to ¢’-coCartesian morphisms. Unwinding the definitions, this amounts to the following claim: if
€:x — 2’ is a p-Cartesian edge lifting e : s — s’, then € induces an equivalence h,s o e, — h, of functors
X — 8, where hy : X2 — 8 is the functor represented by x and h, : XF — 8 is the functor represented
by 2’. This is an immediate consequence of the definitions.

To complete the proof, it will suffice to show that for every vertex s € S, the functor ¢ induces an
equivalence of oo-categories Dlo(p"p)s — Dllex(pgp). That is, we must show that the composite functor

¥ Xg = Fun(X?,8) — Fun((X?9)?, 8) = Ind(XY)

is an equivalence of co-categories. This is clear, since ¥ is right adjoint to the canonical map Ind(X¢) — X
(which is an equivalence by virtue of our assumption that X is compactly generated). O

Construction 3.4.11. Let & be a field and let LMod(Mody) and RMod(Mody) denote the co-categories of
left and right module objects of the symmetric monoidal co-category Mod. That is, LMody, is an co-category
whose objects are pairs (R, M), where R € Alg,, and M is a left R-module, and RMody, is an oo-category
whose objects are pairs (R, M) where R € Alg, and M is a left R-module. We let LMod®"(Mody) denote
the full subcategory of LMod(Mody) spanned by those pairs (R, M) where R € Algi™ and M € LMod%",
and define RMod*" (Mod) € RMod(Mody,) similarly. We have evident forgetful functors

LMod*™ (Mod;,) % Algs™ & RMod*™ (Mody,).

We set
RMod'(Mody) = DI'*(q)  LMod'(Mody) = DI'*(¢/),

so that we have evident forgetful functors
RMod' (Mody,) — Algi™ + LMod' (Mody,).
Remark 3.4.12. It follows from Proposition 3.4.8 that the forgetful functors

LMod' (Mody,) — Algi™ + RMod' (Mody,)
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are coCartesian fibrations. For every object R € Algi™, we can identify the fiber RMod'(Mody) x Algm {1}

with the co-category RMod's of Definition 3.4.4, and LMod'(Mody,) X Algzm { R} with the oo-category LMod',
of Definition 3.4.4. If f: R — R’ is a morphism in Alg}™, then f induces functors

RMod'; — RMody,  LMody — LModl,,
both of which we will denote by f'.

We next explain how to regard the co-categories RMod!R and LMod!R as enlargements of the co-categories
LModg and RModg, respectively. Let LMod%erf and RMod%erf denote the full subcategories of LModg and
RModpg spanned by the perfect R-modules. If R is small, we have evident inclusions

RMod%™ C RMod}®  LMod®™" C LMod3 .
The first inclusion induces a fully faithful embedding
®p : RModp ~ Ind(RMod%™) < Ind(RMod5") ~ RMod, .
However, the functors ® g are badly behaved in some respects. For example, if f : R — R’ is a morphism in

Algy™, then the diagram of oo-categories

RMod ——> RMod

oo o

RMod!; — > RModl,

generally does not commute up to homotopy (here f* denotes the base change functor M — M ®@p R'). In
what follows, we will instead consider the fully faithful embeddings Wi : RModg — RMod!R given by

RModp ~ Ind(RMod?™) ~ Ind((LMod%™")°P) < Ind((LMod")°?) ~ Ind(RMody") ~ RMod, .

Our next goal is to give a description of this functor which is manifestly compatible with base change in the
algebra R € Algp™.

Construction 3.4.13. Let k be a field, and let A : RMod(Mody) x 15, LMod™ (Mody) — 8 be the functor
given by
)\(M, R, N) = MapModk (k, M ®R N).

If we fix M and R, then the functor N +— Mapyy.q, (k, M ®g N) is left exact. It follows that A is determines
a functor ¥ : RMod(Mody) xalg, Algy" — RMod' (Mody).

Proposition 3.4.14. Let k be a field, and consider the diagram

N4

RMod(Mody,) x a1, Alg;™ RMod' (Mody,)
P
q
Algy™
where p and q are the forgetful functors and ¥ is defined as in Construction 3.4.13. Then:
(1) The functor U carries p-coCartesian morphisms to q-coCartesian morphisms.

(2) For every object R € Alg}™, the induced functor Vg : RModg — RMod!R preserves small colimits.
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(3) The functor U is fully faithful.

Proof. We first prove (1). Let « : (M, R) — (M’,R’) be a p-coCartesian morphism in RMod(Mody). We
wish to prove that ¥(«) is g-coCartesian. Unwinding the definitions, we must show that for every small
R’-module N, the canonical map

MapModk(k:,M ®R N) — MapModk (k,M/ ®R/ N)

is an equivalence. This is clear, since the map M ® g N — M’ ®z/ N is an equivalence.

We now prove (2). Fix an object R € Algy™. For every N € LMod%", the functor M — Mapyyq, (k, M®r
N) commutes with filtered colimits and finite limits. It follows that ¥z commutes with filtered colimits and
finite limits. Since Wy is a left exact functor between stable co-categories, it is also right exact. We conclude
that Wi commutes with filtered colimits and finite colimits, and therefore with all small colimits.

We now prove (3). By virtue of (1), it will suffice to prove that for R € Alg}" the functor ¥ : RModr —
RMod!R is fully faithful. Using (2) and Proposition T.5.3.5.11, we are reduced to proving that the restriction
g RMod%erf is fully faithful. Note that if M be a perfect right R-module and M" its R-linear dual (regarded
as a perfect left R-module), then Wx (M) is the functor corepresented by MY € Ll\/[od%e]rf C LModR". We

can therefore identify U] RMod%erf with the composition of fully faithful embeddings

RMod2™" ~ (LMod?™)*? C (LMod$™)% </ RMod,
(here j denotes the Yoneda embedding). O

Remark 3.4.15. Construction 3.4.13 and Proposition 3.4.14 have evident dual versions, which give a fully
faithful embedding LMod(Mody) x a1g, Algy™ — LMod' (Mody).

Our next goal is to say something about the essential image of the functor Ui : RModg — RMod!R of
Proposition 3.4.14.

Definition 3.4.16. Let R be a small E;-algebra over a field k, and let € : R — k be the augmentation. We
will say that an object M € RMod!R is connective if € M is a connective object of Mod;, ~ Mod!k. We let
RMod!I’;iCn denote the full subcategory of RModIR spanned by the connective objects. Similarly, we define a
full subcategory LMody™ C LMod.

Remark 3.4.17. Let R be a small E -algebra over a field k. It follows from Proposition T.5.4.6.6 that
RMod!I’%Cn is an accessible subcategory of RMod!R7 which is evidently closed under small colimits and exten-
sions. Applying Proposition A.1.4.5.11, we conclude that there exists a t-structure on the stable co-category
RMod}, with (RMod'z)so = RMod ™.

Proposition 3.4.18. Let k be a field, let R € Alg)™. Then the fully faithful embedding i : RModgr —
RMod!R of Proposition 3.4.14 restricts to an equivalence of co-categories RMody — RModIﬁfn,

Proof. Let € : R — k be the augmentation map and let M € RMod!R. We wish to show that €' M is connective
if and only if M ~ Ui(M’) for some M’ € RMod%'. The “if” direction is clear: if M ~ Wp(M'), we have
equivalences

€M~ eUr(M') =~ Uy (e*M') ~k@r M.

For the converse, assume that €' M is connective. Let @ C RMod}, denote the essential image of ¥ | RMod$;
we wish to prove that M € C. It follows from Proposition 3.4.14 that € is closed under colimits and extensions
in RMody.

We begin by constructing a sequence of objects

0= M(0) = M(1) = M(2) — -

in € and a compatible family of maps (i) : M (i) — M with the following property:

82



(*) The groups mj€e' M (i) vanish unless 0 < j < i, and the maps ;€' M(j) — 7;¢' M are isomorphisms for
0<j <.

Assume that ¢ > 0 and that we have already constructed a map 6(i) satisfying (). Let M’ = cofib(0(z)),
so that mje' M’ ~ 0 for j < i. Let us regard M’ as a functor LMod%" — 8, so that M’(k[m]) is (m + i)-
connective for every integer . It follows by induction that for every m-connective object N € LMod}", the
space M'(N) is (m + i)-connective. In particular, M’(N) is connected when N denotes the cofiber of the
map R[—i] — k[—i]. Using the fiber sequence

M'(R[—i]) = M'(k[—i]) — M'(cofib(R[—i] — k[—1])),

we deduce that the map moM’(R[—i]) — moM’(k[—i]) is surjective. Let K = Wr(R) € RMody. Then
K[i] = Ur(R]i]) can be identifed with the functor corepresented by R[—i]. We have proven the following:

(+') For every point n € m;e' M ~ oM’ (k'[—i]), there exists a map K[i] — M such that n belongs to the
image of the induced map k ~ m;e' K[i] — m;e' M.

Choose a basis {v4 }aes for the k-vector space mie' M’ ~ m;e' M. Applying (+') repeatedly, we obtain a
map v : P,cg K[i] = M'. Let M" = cofib(v) and let M (i + 1) denote the fiber of the composite map
M — M’ — M"”. We have a fiber sequence

M(i) — M(i+1) - @ Kli].
a€ES

Since C is closed under colimits and extensions (and contains K [i] ~ U R[i]), we conclude that M (i+1) € C.
Using the long exact sequence of homotopy groups

mie M(i) — mie M(i + 1) — 7€ @ Ki] — mj_1€ M(i),
a€es

we deduce that the canonical map M (i + 1) — M satisfies condition ().

Let M(o0) = th(z) Since € is closed under colimits, we deduce that M(co) € €. Using (x) (and
the vanishing of the groups 7rje!M for j < 0), we deduce that w induces an equivalence e* M (c0) — e*M.
Identifying M and M (co) with left exact functors LMod%" — 8, we conclude that w induces a homotopy
equivalence M (00)(k[j]) — M (k[j]) for every integer j. Since M and M (co) are left exact, the collection of
those objects N € LMod%" for which M (co)(N) — M(N) is a homotopy equivalence is closed under finite
limits. Using Lemma 3.4.2, we deduce that every object N € LMod%" has this property, so that w is an
equivalence and M ~ M (o0) € C as desired. O

Remark 3.4.19. Let R be a small E;-algebra over a field k. The natural t-structure on the oo-category
RModp, is right complete. It follows from Proposition 3.4.18 that the fully faithful embedding ¥ : RModr —
RMod}y, induces an equivalence from RModp to the right completion of RMod'y.

Construction 3.4.20. Let k£ be a field. The coCartesian fibrations

RMod(Mody,) x a1g, Algi™ 28 Algi™ & RMod' (Mody,)

are classified by functors x, x1 : Algy™ — Catuo. Since Cats, admits small limits, Theorem T.5.1.5.6 implies
that x and x1 admit (essentially unique) factorizations as compositions

Alg™ 2 Fun(Algs™, 8)°7 Y87 Cat.,

—

QCoh!
P LR Cate

Algs™ 2 Fun(Algd™, 8)
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where j denotes the Yoneda embedding and the functors QCohp and QCoh!R preserve small limits. Similarly,
the coCartesian fibrations

LMod(Mody,) X alg, Algi™ — Algi™ — LMod'(Mody,)
are classified by maps x/, x{ : Algp" — @OO, which admit factorizations

Algs™ 2 Fun(Algs™, 8)°F b Catoe

g j Cohl, ——
Algi™ 2 Fun(Alg™, 8)°P AL Catee.

For each functor X : Algi™ — 8, we will refer to QCoh (X) and QCohy(X) as the co-categories of (left and
right) quasi-coherent sheaves on X . Similarly, we will refer to QCoh, (X) and QCoh'z(X) as the oo-categories
of (left and right) Ind-coherent sheaves on X.

Remark 3.4.21. For every functor X : Algi™ — 8, the co-categories QCoh, (X), QCohp(X), QCoh’ (X),
and QCoh's(X) are presentable and stable.

Remark 3.4.22. Let k be a field, let X : Algi™ — 8 be a functor which classifies a right fibration X — Alg}™.
Then QCohy(X) and QCohyx(X) can be identified with the oo-categories of coCartesian sections of the
coCartesian fibrations

X X Alg,, RMOd(MOdk) X+ X XAngm RMOd'(MOdk)

More informally, an object F € QCohy(X) is a rule which assigns to every point n € X (A) a right A-module
Fy, and to every morphism f: A — A’ carrying ) to ' € X(A’) an equivalence F,y ~ F, ® 4 A". Similarly,
an object of G € QCoh'z(X) is a rule which assigns to every point € X (A) an Ind-coherent right R-module
G, € RMod',, and to every morphism f : A — A’ carrying n to f € X(R’') an equivalence Sy ~ 'S,
The oco-categories QCohy, (X) and QCoh!L(X ) admit similar descriptions, using left modules in place of right
modules.

Notation 3.4.23. By construction, the co-categories QCoh(X), QCoh;, (X), QCoh'y(X), and QCoh} (X)
depend contravariantly on the object X € Fun(Algi™,8). If o : X — Y is a natural transformation, we will
denote the resulting functors by

o : QCohx(Y) = QCohgr(X) o : QCohlz(Y) — QCohy(X)
o : QCoh, (Y) — QCoh, (X)  a':QCoh (V) — QCoh' (X).
Remark 3.4.24. Let k be a field. The fully faithful embedding ¥ of Proposition 3.4.14 induces a natural

transformation QCohy — QCoh’, of functors Fun(Algi™,8) — Cato.. For every functor X : Algi™ — 8,
we obtain a fully faithful embedding QCoh(X) — QCoh's(X) which preserves small colimits. Moreover, if

a: X — Y is a natural transformation of functors, we obtain a diagram of co-categories

QCohy(Y) — QCohy(Y)

ia* l“!

QCoh(X) — QCohj(X)

which commutes up to canonical homotopy. Similarly, we have fully faithful embedding QCoh;(X) —
QCoh} (X), which depend functorially on X in the same sense.
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Notation 3.4.25. Let k be a field and let X : Algi™ — 8 be a functor. We will say that an object
F € QCohi(X) is connective if F,, € RMod,4 is connective for every point n € X(A) (see Notation 3.4.22).
We let QCoh (X ) denote the full subcategory of QCoh (X ) spanned by the connective right quasi-coherent
sheaves, and define a full subcategory QCoh, (X )™ C QCoh, (X) similarly.

We will say that an object § € QCoh!R is connective if, for every point n € X(k), the object G, €

RMod}, ~ Mody, is connective. We let QCoh’(X)e™ denote the full subcategory of QCoh's(X) spanned by
the connective objects, and define QCoh} (X ) C QCoh’ (X) similarly.

Remark 3.4.26. Let X : Alg;™ — 8 be a functor. The full subcategories
QCohy, (X)™ € QCohy (X)  QCohp(X)™ C QCohy(X)
QCohj (X)™ C QCohz(X)  QCohy(X)™ C QCohjx(X)

of Notation 3.4.25 are presentable and closed under extensions and small colimits. It follows from Proposition
A.1.4.5.11 that they determine t-structures on QCoh, (X), QCohy(X), QCoh} (X), and QCoh'(X).

Using Proposition 3.4.18, we immediately deduce the following:
Proposition 3.4.27. Let k be a field and let X : Algi™ — 8 be a functor. Then the fully faithful embeddings

QCoh, (X) — QCoh} (X)  QCohy(X) — QCohk(X)
of Remark 3.4.24 induce equivalences of co-categories

QCoh; (X)™ ~ QCoh', (X)) QCohx(X)®™ ~ QCoh'y(X)™.

3.5 Koszul Duality for Modules

Our goal in this section is to prove the following non-commutative analogue of Theorem 2.4.1:

Theorem 3.5.1. Let k be a field, let A € Algy"®, and let X : Algy™ — 8 be the formal E1 moduli problem
associated to A (see Theorem 3.0.4). Then there are canonical equivalences of co-categories

QCoh, (X) ~RMods  QCoh%(X) ~LMod, .
In particular, we have fully faithful embeddings
QCoh, (X) < RMody4 QCohp(X) — LMod,4 .
The main ingredient in the proof of Theorem 3.5.1 is the following result.

Proposition 3.5.2. Let k be a field, and let x : Algi" — Cates be as in Construction 3.4.20 (given
on objects by x1(R) = RMod!R), and let x' : Algi? be the functor which classifies the Cartesian fibration
LMod(Mody) — Alg,, (given by the formula x'(A) = LMod 4 ). Then xi is homotopic to the composition

(1) /e~
Algi™ — Alg™8 25 (Alg™U8)P — Alg? % Cato..

In particular, for every R € Algy™, there is a canonical equivalence of co-categories RMod!R ~ LModg ) (g)-

Before giving the proof of Proposition 3.5.2, let us explain how it leads to a proof of Theorem 3.5.1.

Proof of Theorem 3.5.1. We will construct the equivalence QCoh!R(X) ~ LMod4; the construction of the
equivalence QCoh’ (X) ~ RMod is similar. Let k be a field and let QCoh', : Fun(Alg;™, 8)7P — Catoe be as
in Construction 3.4.20. Let ¥ : Alg}"® — Moduli,(cl) be the equivalence of co-categories provided by Theorem
3.0.4, and let ¥~! denote a homotopy inverse to ¥. Let L : Fun(Algi™, 8) — Moduli](cl) denote a left adjoint to
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the inclusion functor Moduli](:) C Fun(Algi™, 8) (see Remark 1.1.17), and let @1 : Fun(Algi™, 8) — Alg;"®

be the composition of ¥~ o L. The functor W preserves small colimits, and the composition of ol
with the Yoneda embedding (Algi™)°? — Fun(Algi™,8) can be identified with the Koszul duality functor
DM (AlgP™)P — Algi"®. Let x/ : Algy —>/\Gaht(,O be as in Proposition 3.5.2 (given on objects by
X' (A) = LMod,), and let F : Fun(Algi™, 8)°? — Cato, denote the composite functor
sm op DD aug\ o op X 57
Fun(Alg)™, 8)7 — (Alg,"®)°? — Alg,” = Catoe.

Let C denote the full subcategory of Fun(Alg;y™,8) spanned by the corepresentable functors. Proposition
3.5.2 implies that there is an equivalence of functors aq : F| €% — QCoh's | €. Since QCohl, is a right Kan
extension of its restriction to €°?, the equivalence ag extends to a natural transformation F — QCohIR. We
will prove:

¥) If X : Algi™ — 8 is a formal E; moduli problem, then « induces an equivalence of oco-categories
k
F(X) — QCohz(X).

Taking X = W(A) for A € Alg}"®, we see that () guarantees an equivalence of co-categories
Ba:LMody ~ x/(U1W(A)) ~ F(F(A)) — QCohz(X).

It remains to prove (x). Let & C Fun(Algy™,8) be the full subcategory spanned by those functors X
for which a induces an equivalence of oo-categories F(X) — QCoh%(X). The localization functor L :
Fun(Algi™, 8) — Moduli,(cl), the equivalence W1 : Moduli,(cl) — Alg;"®, and the forgetful functor Algy"® —
Alg,, preserve small colimits. Lemma 2.4.32 implies that the functor x' : Alg)” — Catoo preserves sifted
limits. It follows that the functor F' preserves sifted limits. Since QCoh!R preserves small limits, the co-
category €& is closed under sifted colimits in Fun(Algi™,8). Since € contains all corepresentable functors
and is closed under filtered colimits, it contains it contains all prorepresentable formal moduli problems (see
Definition 1.5.3). Proposition 1.5.8 implies that every formal E; moduli problem X can be obtained as the
geometric realization of a simplicial object X, of Fun(Algi™, 8), where each X, is prorepresentable. Since €
is closed under geometric realizations in Fun(Alg;™,8), we conclude that X € & as desired. O

We now turn to the proof of Proposition 3.5.2. Consider first the functor x’ : Alg}? — éa\tOo classifying
the Cartesian fibration p : LMod(Mody) — Alg,. Using Remark 3.4.9, we see that x’ also classifies the
coCartesian fibration DI°(p°?) — Alg{”. Let LMod”*(Mod},) denote the full subcategory of LMod(Mody,)
spanned by those pairs (A, M), where A € Alg,, and M is a perfect left module over A. Let pper denote
the restriction of p to LMod(Mody,). Proposition 3.4.10 supplies an equivalence of DI°(p°) ~ DI'** (Ppert) Of
coCartesian fibrations over Alg;”. By construction, xi : Algi™ — @oo classifies the coCartesian fibration
RMod'(Mod;) = DI'*(¢q) — Algi™, where ¢ denotes the Cartesian fibration LMod*™(Mody) — Algj™.
Consequently, Proposition 3.5.2 is a consequence of the following:

Proposition 3.5.3. Let k be a field and let © : Algi™ — Alg;” denote the composition

ey
Algy™ — Alg;"® 2, (Algy"®)P — Algy”,

where ®1) denotes the Koszul duality functor of Definition 3.1.6. Then there is a pullback diagram of
oo-categories

LMod™™ (Mody ) —= > LMod?** (Mod},)°?

| |

Algi™ Alg??.
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We now proceed to construct the diagram appearing in the statement of Proposition 3.5.3.

Construction 3.5.4. Fix a field k. We let MY — Alg;"® x Algi"® be the pairing of oco-categories defined in

Construction 3.1.4. The objects of MY are given by triple (A, B,¢€), where A,B € Alg;, and e : AQr B — k
is an augmentation on A ®; B (which then determines augmentations on A and B). Set

ﬁ = LMOd(MOdk) XAlgk M(l) XAlgk LMOd(MOdk),

so that M is an co-category whose objects can be identified with quintuples (A, B,e, M, N), where A, B €
Alg,, € : A®y B — k is an augmentation, M € LModa, and N € LModg. There is an evident functor
X : M” = 8, given on objects by the formula

X(AaBa67Ma N) = MapLModA®kB(M Rk N7 k)

Then y classifies a right fibration M*™ — M. Let LMod™'#(Mody,) denote the co-category
LMOd(MOdk) XAlgk Algzug’

so that the forgetful functor M*“™ — LMod™&(Mod;) x LMod™"é(Mody) is a right fibration and therefore
determines a pairing of LMod™'®(Mody) with itself.

Proposition 3.5.5. Let k be a field, let A : MY — Algi"® x Algi"® be the pairing of Construction 3.1.4
and N : M*M — LMod™&(Mod;) x LMod®"8(Mody) the pairing of Construction 3.5.4. Then N is both left
and right representable. Moreover, the forgetful functor MM o MY s both left and right representable.

Proof. We will show that )\ is left representable and M* My M@ s left representable; the corresponding
assertions for right representability will follow by symmetry. Fix an object A € Algi"® and a left A-module
M. Let B = DM (A) be the Koszul dual of A and ¢ : A ®;, B — k the canonical map. Proposition 3.1.10
implies that e determines a duality functor ©, : LMod%’ — LModpg. We let N = ©.(M), so that there is a
canonical map of left A ®; B-modules yu : M ®, N — k. The quintuple (A, B, e, M, N) is an object of the
oo-category M of Construction 3.5.4, and p determines a lifting to an object X € MM We complete the
proof by observing that X is left universal and has left universal image in MWL, O

It follows from Proposition 3.5.5 that the pairing M*“™ — LMod®'(Mody,) x LMod®'¢(Mod;,) determines
a duality functor D*M : LMod*'#(Mody) — LMod®"#(Mod},)°?. Let ®’ denote the composite map

LM
LMod*™ (Mody) — LMod®"&(Mody,) AN LMod*"®(Modg)°? — LMod(Mody )°P.

By construction, we have a commutative diagram o :

LMod™ (Mod; ) —2 > LMod (Mody,)°?

L

Algi™ Alg?? .

We next claim that the functor ®’ carries p-Cartesian morphisms to g-Cartesian morphisms. Unwinding
the definitions, we must show that if f : R — R’ is a morphism in Alg}" and M is a small left R’-module,
then the canonical map

9M : Q(l)(R) ®®(1>(R’) 9#/(M) — QIJ(M)
is an equivalence, where ®,, : LMod® — LModga)(g) and Dy : LMody — LModga) (g are the duality
functors determined by the pairings p : R @, @M (R) — k and i/ : R’ @, @M (R') — k. The modules
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M € LModgs for which 6, is an equivalence span a stable subcategory of LModg, which includes k, and
therefore contains all small R’-modules (Lemma 3.4.2).

To complete the proof of Proposition 3.5.3, it suffices to show that the functor @ carries LMod®™ (Mody,)
into LModP*"f (Mod},)°? and induces an equivalence of co-categories

LMod™" (Mody) — LMod”*" (Mody)?P x ajger Algy™ .
Using Corollary T.2.4.4.4, we are reduced to proving that ®’ induces an equivalence of co-categories

sm erf o
LModss" — (LModZ%t )%

for every R € Algy". This is a consequence of Remark 3.4.2 together with the following more general
assertion:

Proposition 3.5.6. Let k be a field and let p: A, B — k be a map of Eq-algebras over k which exhibits
B as a Koszul dual of A. Then the duality functor ®, : LMod%’ — LModp restricts to an equivalence
C— LMod%erf, where C denotes the smallest stable subcategory of LMod 4 which contains k (regarded as a
left A-module via the augmentation A — A ®j, B k) and is closed under retracts.

Proof. Let ’D;L : LMod?’ — LMod4 be as in Notation 3.1.11, and let D denote the full subcategory of
LMod 4 spanned by those objects M for which the unit map M — D) D, (M) is an equivalence in LMod 4.
It is clear that D is a stable subcategory of LMod 4 which is closed under retracts. Since p exhibits B as
a Koszul dual of A, the subcategory D contains k so that € C D. It follows that the functor ©,| € is fully
faithful. Moreover, the essential image of ©,|C is the smallest stable full subcategory of LModp which

contains D, (k) ~ B and is closed under retracts: this is the full subcategory LMod%erf C LModp. O

Remark 3.5.7. Let k be a field of characteristic zero and let 6 : CAlgy™ — Algy™ denote the forgetful
functor. Let X : Algi™ — 8 be a formal E; moduli problem over &, so that X o6 is a formal moduli problem
over k. For each R € CAlg)™, we have a canonical equivalence of co-categories Modr ~ RModg(p). Passing
to the inverse limit over points n € X (6(R)), we obtain a functor QCohy(X) — QCoh(X o 6). According
to Theorem 3.0.4, there exists an augmented E;-algebra A over k such that X is given by the formula
X(R) = Map, aus (®M(R), A). Let m4 denote the augmentation ideal of A. Regard m4 as an object of
Lieg, so that X o @ is given by the formula

(X 0 0)(R) = Mapy., (D(R), ma)
(see Theorem 3.3.1). Theorems 2.4.1 and 3.5.1 determine fully faithful embeddings
QCohy(X) — LMod 4 QCoh(X o ) < Repy,, -

We have an evident map of E;-algebras U(my) — A, which determines a forgetful functor LMody —
LMody (m 4) =~ Repy, ,- With some additional effort, one can show that the diagram

QCOhR(X) —> LMody4

| |

QCoh(X o ) —— Rep,, ,

commutes up to canonical homotopy. That is, the algebraic models for quasi-coherent sheaves provided by
Theorems 2.4.1 and 3.5.1 in the commutative and noncommutative settings are compatible with one another.

We conclude this section with a discussion of the exactness properties of equivalences

QCoh (X) ~RModsy  QCoh%y(X) ~ LMod4
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appearing in Theorem 3.5.1. Let RMod$' and LMod* denote the full subcategories spanned by those right
and left A-modules whose underlying spectra are connective. Note that the equivalences of Theorem 3.5.1
depend functorially on A, and when A = k they are equivalent to the identity functor from the oco-category
Mody, to itself. Let x denote the final object of Moduli,(cl)7 so that we have a canonical map of formal moduli
problems * — X (induced by the map of augmented E;-algebras k — A). It follows that Theorem 3.5.1
gives an equivalence

QCohy (X)™ =~ QCohy,(X) Xqcon, () QCohy ()
RMOdA XRMody, RMOdin
~ RMod%

12

and, by symmetry, an equivalence QCoh!R(X )" ~ LMod%'. Combining this observation with Proposition
3.4.27, we obtain the following result:

Proposition 3.5.8. Let k be a field, let A € Alg;"®, and let X : Algi™ — 8 be the formal Eq moduli problem
associated to A (see Theorem 3.0.4). Then the fully faithful embeddings

QCoh/ (X) — RMod 4 QCohpx(X) < LMod,4 .
of Theorem 3.5.1 restrict to equivalences of co-categories
QCoh (X)" ~ RMod}' QCohp(X)" ~ LMody' .
Warning 3.5.9. If A is an arbitrary E;-ring, then the full subcategories
LMod}' = LMody4 xgp Sp™ € LMod 4 RMod}' = RMod4 xgp Sp™ € RMod 4

are presentable, closed under small colimits, and closed under extensions. It follows from Proposition
A.1.4.5.11 that LMod4 and RMod 4 admit t-structures with

(LMod )so = LMod%  (RMod4)so = RMod?' .

However, it is often difficult to describe the subcategories (LMod4)<o € LMod 4 and (RMod 4)<o € RMod 4.
In particular, they generally do not coincide with the subcategories

LMod 4 xgp Spgo C LMod 4 RMod 4 xgp, SpSO C RMod 4

unless the E;-ring A is connective.

4 Moduli Problems for E,-Algebras

Let k be a field. In §2 and §3 we studied the co-categories Moduli and Moduli,(cl) consisting of formal moduli
problems defined for commutative and associative algebras over k, respectively. In the oo-categorical context,
there is a whole hierarchy of algebraic notions in between these two extremes. Recall that the commutative
oo-operad can be identified with the colimit of a sequence

Ass® ~EP - ES - EY — -+,
where E¥ denotes the Boardman-Vogt oco-operad of little n-cubes (see Corollary A.5.1.1.5). Consequently,
the oco-category CAlg; of E.-algebras over k can be identified with the limit of a tower of co-categories

R Alg,(:’) — Alg,(f) — Algg) ~ Alg,,

where Alg,(fn) denotes the oco-category of E,,-algebras over k. Our goal in this section is to prove a generaliza-
tion of Theorem 3.0.4 in the setting of E,-algebras, for an arbitrary integer n > 0. To formulate our result,
we need a bit of terminology.
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Definition 4.0.1. Let & be a field, let n > 1, and let A be an E,,-algebra over k. We will say that A is small
(n),sm

if its image in Algy, is small, in the sense of Definition 3.0.1. We let Alg, denote the full subcategory of
Algi™ spanned by the small E,-algebras over k.

Remark 4.0.2. Let n > 1 and let A be an E,,-algebra over k. Then A is small if and only if it is connective,
A is finite-dimensional over k, and the unit map k& — (mpA)/m is an isomorphism, where m denotes the
radical of myA.

Remark 4.0.3. Let k be a field and let A be an E,-algebra over k, for n > 0. An augmentation on A is
a map of E,-algebras ¢ : A — k. We let Alggﬁn)"wg = (Alg,(:'))/k denote the oco-category of augmented E,,-

algebras over k. Note that if n > 1 and A € Algé") is small, then the space MapAlg(n) (A, k) of augmentations
k

on A is contractible. It follows that the projection map
Alg™E oy Al — Algf™ "

is an equivalence of co-categories. We will henceforth abuse notation by identifying Alg,(vn)’sm with its inverse

image in Alg,(:) e

Remark 4.0.4. It will be convenient to have a version of Definition 3.0.1 also in the case n = 0. We

therefore adopt the following convention: we will say that an augmented Egp-algebra A over k is small if A is
connective and 7, A is a finite dimensional vector space over k. We let Alg,(co)’Sm denote the full subcategory
of Alg,(co)’aug spanned by the small augmented Eg-algebras over k.

Notation 4.0.5. Let k be a field, let n > 0, and let € : A — k be an augmented E,,-algebra over k. We let
my4 denote the fiber of the map € in the stable co-category Mody. We will refer to m4 as the augmentation
ideal of A. The construction (¢ : A — k) — my4 determines a functor

m : Alg{™"™8 — Mod,, .
In the case n = 0, this functor is an equivalence of co-categories.

Definition 4.0.6. Let k be a field, let n > 0 be an integer and let X : Alg,in)’sm — 8 be a functor. We will
say that X is a formal E,, moduli problem if it satisfies the following conditions:

(1) The space X (k) is contractible.

(2) For every pullback diagram
R—— Ry

]

Ry —— Ry

in Algy™ for which the underlying maps mgRg — moRo1 < 7o Ry are surjective, the diagram

X(R) — X(Ro)

L

X(Rl) E—— X(R()l)
is a pullback square.

We let Moduli,g") denote the full subcategory of Fun(Algén)’Sm7 8) spanned by the formal E,, moduli problems.
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Example 4.0.7. It is not difficult to show that a functor X : Alg,(co)’Srn — 8 is a formal Eq moduli problem if
and only if it is strongly excisive (see Definition A.1.4.4.4): that is, if and only if X carries the initial object

of Alg,(co)’sm to a final object of §, and carries pushout squares to pullback squares.
We are now ready to formulate our main result.

Theorem 4.0.8. Let k be a field and let n > 0 be an integer. Then there is an equivalence of co-categories
U Alg,(cn)’aug — Moduli,(cn). Moreover, the diagram

Alg{™ ™8 2 Moduli™

G

Mody, — = Sp
commutes up to homotopy, where T : Moduli,in') — Sp denotes the tangent complex functor (so that
O>°~"Tx ~ X(k @ k[m]) form > 0) and m : Alg,(;l)’aug — Mody, is the augmentation ideal functor of
Notation 4.0.5.

Example 4.0.9. When n = 1, Theorem 4.0.8 follows from Theorem 3.0.4 and Remark 3.2.6.

Remark 4.0.10. Suppose that k is a field of characteristic zero. For each n > 0, there is an evident
forgetful functor CAlgi™ — Alg,(cn)’sm, which induces a forgetful functor 6 : Moduli,(cn) — Modulig. Using the
equivalences

Liex ~ Moduliy Modulii") ~ Alg,(c")’aug

of Theorems 2.0.2 and 4.0.8, we can identify 6 with a map Alg,(cn)’aug — Lieg. We can summarize the situation

informally as follows: if A is an augmented E,-algebra over k, then the shifted augmentation ideal m4[n — 1]
inherits the structure of a differential graded Lie algebra over k. In particular, at the level of homotopy
groups we obtain a Lie bracket operation

[,]: mpma X TgMa4 — Tpygin—1MA.

One can show that this Lie bracket is given by the Browder operation on m 4. If Free : Mody — Algén) denotes

the free algebra functor (left adjoint to the forgetful functor Alg,(:) — Mody), then the Browder operation

is universally represented by the the map ¢ appearing in the cofiber sequence of augmented E,,-algebras

Free(klp+q+n—1]) 4 Free(k[p] @ k[q]) — Free(k[p]) ®x Free(k[q])
supplied by Theorem A.5.1.5.1.
The appearance of the theory of E,-algebras on both sides of the equivalence
Alg{""™"® ~ Moduli{"’ C Fun(Alg{"", 8)

is somewhat striking: it is a reflection of the Koszul self-duality of the little cubes operads E® (see [17]). In
particular, there is a Koszul duality functor

™) . (Alg’(cn),aug)op N Algl(qn),aug-

This functor is not difficult to define directly : if A is an augmented E,-algebra over k, then D (A)
is universal among E,-algebras over k such that the tensor product A ®; ®( (A) is equipped with an
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augmentation extending the augmentation on A. The equivalence ¥ appearing in the statement of Theorem
4.0.8 carries an augmented E,,-algebra A to the functor X given by the formula

X(R) = Map, ) ) s (D™ (R), A).

In §4.5, we will prove that the Koszul duality functor ®(™ is a deformation theory (in the sense of
Definition 1.3.9), so that Theorem 4.0.8 is a consequence of Theorem 1.3.12. The main point is to produce a
full subcategory 2o C Alg,’ (n):248 \hich satisfies axiom (D3) of Definition 1.3.1. We will define Z to be the
full subcategory of Alg(”)’z’Lug spanned by those augmented E,, algebras A which satisfy suitable finiteness
and coconnectivity conditions. We will then need to prove two things:

(a) The full subcategory Zg C Alg )8 Yag good closure properties.
(b) For every object A € Z, the biduality map A — D™D (™) (A) is an equivalence.

The verification of (a) comes down to connectivity properties of free algebras over the E,-operad. We will
establish these properties in §4.1, using topological properties of configuration spaces of points in Euclidean
space.

The proof of (b) is more involved, and requires us to have a good understanding of the Koszul duality
functor D™, Let us begin with the case n = 1, which we have already studied in §3.1. Let A be an
E-algebra over a field k. Then the Koszul dual ®()(A) can be described as a classifying object for A-linear
maps from k to itself, or equivalently as the k-linear dual of the object k ® 4 k. In §4.3, we will show that
the algebra structure on D) (A) can be obtained by dualizing a coalgebra structure on Bar(A) = k®4 k: in
particular, we have a comultiplication given by

Bar(A) =k @ k~kR4 AR®ak > k®4k®4 k ~ Bar(A4) ® Bar(A).

The proof will require an co-categorical generalization of the twisted arrow category introduced in Construc-
tion 3.3.5, which we will study in §4.2.

The bar construction A — Bar(4) = k ®4 k is in some ways better behaved than the Koszul duality
functor ®W): for example, it is a symmetric monoidal functor, while ®(1) is not (see Warning 3.1.20). In
§4.4, we will use this observation to analyze the Koszul duality functor ®(") for a general integer n, using
induction on n. Using Theorem A.5.1.2.2, we can identify the co-category Alg("+1) with Alg(Alg,(C")), the

(n)

oo-category of associative algebra objects of Alg, ™. If A is an augmented K, ;-algebra, then we can apply

the bar construction to obtain a coalgebra object of Alg,&”)@ug. It is not difficult to show that the Koszul
duality functor
@(n 1) . (Al (n), aug)op N Alg](cn)7aug
is lax monoidal. We will show that the composite map
(Algl(gn-l—l),aug)op

1 (”) €Lug)op

~  Alg(A
By A1g<<A1g<" A8 ) op)
(n)

©—> Alg(Algén)’a“g)

Alggcn+1),aug

can be identified with the Koszul duality functor ®(+1). This will allow us to deduce results about the
Koszul duality functors ®( from analogous facts about the Koszul duality functor ®™), and in particular
to deduce (a) from Corollary 3.1.15 (see Theorem 4.4.5).

Remark 4.0.11. Let X : Alg,(c")’sm — 8 be a formal E,-moduli problem for n > 1. Using the ideas

introduced in §3.4, we can define co-categories QCoh (X) and QCoh’, (X) of quasi-coherent and Ind-coherent
sheaves on X, respectively. According to Theorem 4.0.8, the functor X is given by the formula

X (R) = Map yn.00n (D (R), 4)
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for some (essentially unique) augmented E,-algebra A over k. Since the bar construction B +— Bar(B) is
symmetric monoidal, it carries augmented E,,-algebras over k to augmented E,,,_;-algebras over k. It follows
that the iterated bar construction Bar" ' (A) admits the structure of an Ei-algebra. In this context, we have
the following version of Theorem 2.4.1: there is an equivalence of co-categories QCoh!L(X ) =~ RModpan-1(4)
(and therefore also a fully faithful embedding QCoh,(X) < RModp,n-1(4)). Moreover, one can show that
this is an equivalence of E,,_;-monoidal co-categories (here the E,,_;-monoidal structure on RModp,n-1(4)

arises from the fact that Bar™ '(A) can be regarded as an E,,_j-algebra object of Alg??).

4.1 Coconnective E,-Algebras

Let k be a field and let n > 0 be an integer. Our goal in this section is to study some finiteness and
coconnectivity conditions on E,-algebras over k which will play a role in our proof of Theorem 4.0.8.

Definition 4.1.1. Let k be a field and let A be an Eg-algebra over k: that is, a k-module equipped with
a unit map e : k — A. Let m be an integer. We will say that A is m-coconnective if the homotopy groups
m; cofib(e) vanish for ¢ > —m.

More generally, if A is an E,-ring equipped with a map of E,-rings & — A, we will say that A is m-
coconnective if it is m-coconnective when regarded as an Eg-algebra over k (here we do not require that A
is an E,,-algebra over k, though this will always be satisfied in cases of interest to us).

Remark 4.1.2. If A is an E;-algebra over a field k, then A is coconnective (in the sense of Definition 3.1.13)
if and only if it is 1-coconnective (in the sense of Definition 4.1.1).

Remark 4.1.3. If m > 0, then an E,-algebra A over k is m-coconnective if and only if the unit map k& — A
induces an isomorphism k — mgA, and the homotopy groups 7; A vanish for ¢ > 0 and —m < i < 0.

Notation 4.1.4. Let k be a field and let n > 0 be an integer. We let Free™ : Mod;, — Alg,i") denote a left
adjoint to the forgetful functor Algg’) — Mody. For any object V' € Mody, the free algebra Free(")(V) is

equipped with a canonical augmentation € : Free™ (V) = k, corresponding to the zero morphism. V — k in
MOdk.

Our main result can be stated as follows:

Theorem 4.1.5. Let k be a field, let A be an E,, -algebra over k, and let m > n be an integer. Suppose we
are given a map ¢ : V. — A in Mody, where m;V ~ 0 for i > —m, and form a pushout diagram

Free™ (V) A

[

k—> A

where ¢’ is the map of B, -algebras determined by ¢ and € is the augmentation of Notation 4.1.4. If A is
m-coconnective, then A’ is also m-coconnective.

Our proof of Theorem 4.1.5 is somewhat indirect. We will first show that the conclusion of Theorem 4.1.5
is valid under an additional hypothesis on A (Proposition 4.1.13). We will then use this variant of Theorem
4.1.5 to show that the additional hypothesis is automatically satisfied (Proposition 4.1.14). First, we need
to introduce a bit of terminology.

Notation 4.1.6. Let k be a field and let A be an E,-algebra over k. We let Mod]i" = Mod]i" (Mody)
denote the oo-category of E,,-modules over A (see §A.3.3.3). Note that ModIE{‘ is a presentable oco-category
(Theorem A.3.4.4.2) and the forgetful functor 6 : Mod’" — Mody, is conservative and preserves small limits

93



and colimits (Corollaries A.3.4.3.3, A.3.4.3.6, and A.3.4.4.6). It follows that Mod'y is a stable co-category.
The composite functor
Mod% % Mody, — Sp &5 8

preserves small limits and filtered colimits, and is therefore corepresentable by an object M € ModE"
(Proposition T.5.5.2.7). Since  is conservative, the object M generates Mod]i” in the following sense: an
object N € ModE"‘ vanishes if and only if the abelian groups Ext;/[o gEn

A
Applying Theorem A.7.1.2.1 (and its proof), we see that there exists an E;-ring [ A and an equivalence of
oo-categories LMod [ 4 ~ ModE" carrying [ A to the module M (this latter condition is equivalent to the
requirement that the composition

(M, N) vanish for every integer n.

LMod 4 ~ Mod}" — Mody, — Sp

is equivalent to the forgetful functor LMod ra— Sp). The E;-ring A can be characterized (up to equivalence)
as the Eq-ring of endomorphisms of M in the stable co-category Mod]i".

Remark 4.1.7. In the situation of Notation 4.1.6, let Mod™" denote the oo-category of pairs (4, M), where

A is an E,,-algebra over k and M is an E,-module over A. We have a presentable fibration Mod®" — Alg;")

classified by a functor y : Algé”) — Prl: here Prl denotes the oco-category whose objects are presentable
oo-categories and whose morphisms are functors which preserve small colimits. Since each Mod]i" is stable,
the functor x factors as a composition

Alg(™ X Mods, (Prl) — Prt

(see Proposition A.6.3.2.13). Since x carries the inital object k € Algi") to Mody, (see Proposition A.3.4.2.1),

the canonical map Sp — Mody allows us to factor y through a functor x” : Alg,(c") — Modg (Prl)gy, /.
According to Theorem A.6.3.5.5, the construction B — LModpg determines a fully faithful embedding
Alg(Sp) — Modsgp(Pr¥)sp /. and Notation 4.1.6 implies that the functor x” factors through the essen-
tial image of this embedding. It follows that we can regard the construction A — [ A as a functor

IE Alg,(c") — Alg(Sp).

Remark 4.1.8. Let k be a field, and regard k as an E,-algebra over itself. Then the forgetful functor
ModI,E" — Mody is an equivalence of oo-categories (Proposition A.3.4.2.1), so that we have a canonical
equivalence of Eq-rings k ~ f k. For any E,-algebra A over k, the unit map k& — A is a map of [E,-algebras,
and therefore induces a map of Ey-rings k ~ [k — [ A. In particular, the homotopy groups m. A can be
regarded as vector spaces over the field k.

With more effort, one can show that the map k — [ A is central: that is, [ A can be regarded as an
E;-algebra over k. We will not need this fact.

Example 4.1.9. If n = 0 and A is an E,-algebra over k, then the forgetful functor ModIE{L — Mody, is an
equivalence Proposition A.3.3.3.19). It follows that the map k — [ A of Remark 4.1.8 is an equivalence.

That is, [ : Alg,go) — Alg(l) can be identified with the constant functor taking the value k.

Example 4.1.10. If n=1and A € Algggn), then there is a canonical equivalence of co-categories Modg1 ~
4ABMod 4 (Mody) (Theorem A.4.3.4.28). Using Corollary A.6.3.6.12, we obtain a canonical equivalence of
Ei-rings [ A ~ A ®; A™, where A™ denotes the E;-algebra A equipped with the opposite multiplication.

More generally, for any integer n > 1, the inclusion of co-operads EY — E? determines a forgetful functor
AlgE" — AlgE1 which induces a map of E;-rings A ®; A™¥ — [ A. We may therefore regard [ A as an A-A
bimodule object of Mody.

Remark 4.1.11. Let k be a field and let A be an E,-algebra over k. One can show that the E;-ring [ A
is given by the topological chiral homology fR" {0} A defined in §A.5.3.2). We will make no use of this
description in what follows.
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Remark 4.1.12. Let A be an E,-algebra over a field k. Theorem A.7.3.6.1 supplies a fiber sequence of
E,,-modules over A

LA/k[nfl]%/A%A,

where L4/, denotes the relative cotangent complex of A over k in the setting of E,-algebras. If A is
connective, then L4/ is also connective. For n > 1, it follows that J A is also connective (this is also true
for n = 0; see Example 4.1.9), so that the oo-category Mod]i” (Mody,) =~ Mod 4 inherits a ¢-structure from
the t-structure on Mody. For n > 2, we deduce also that the map 7o f A — mp A is an isomorphism, so that the
forgetful functor Mod®" (Mody) — LMod4 induces an equivalence of abelian categories Mod%" (Mody)¥ ~
LMod}.

Theorem 4.1.5 is an immediate consequence of the following pair of results:

Proposition 4.1.13. Let k be a field, let A be an E,-algebra over k, and let m > n be an integer. Suppose
we are given a map ¢ : V — A in Mody, where m;V ~ 0 for i > —m, and form a pushout diagram

Free™ (V) A

-

where ¢ is the map of E,-algebras determined by ¢ and € is the augmentation of Notation 4.1.4. Assume
that A is m-coconnective and that [ A is (m + 1 — n)-coconnective. Then A" is m-coconnective, and [ A" is
(m + 1 — n)-coconnective. Moreover, if A and [ A are locally finite, then A" and [ A’ are locally finite.

Proposition 4.1.14. Let A be an E,, -algebra over a field k, and assume that A is m-coconnective for m > n.
Then the Eq-ring [ A is (m + 1 — n)-coconnective.

The proof of Propositions 4.1.13 and 4.1.14 rely on having a good understanding of the free algebra functor
Free™ : Mod; — Algé”). Recall that for V' € Mody, the underlying k-module spectrum of Free™ (V) is
given by

b symz' (V),

m>0
where Symg' (V) is the colimit of a diagram indexed by the full subcategory Ky, , C (ES) /1) spanned by the
active morphisms (m) — (1) in the co-operad E® (see Proposition A.3.1.3.11). We will need the following
geometric fact, which will be proven at the end of this section:

Lemma 4.1.15. Let m and n be positive integers. Then the Kan compler K, ,, defined above is homotopy
equivalent to Sing(X), where X is a finite CW complex of dimension < (m —1)(n — 1).

Lemma 4.1.16. Let A be a coconnective Eq-algebra over a field k such that m_1A ~ 0. Let M be a left
A-module, let N be a right A-module. Suppose that A, M, and N are locally finite, and that m;M ~ ;N ~ 0
fori>0. Then N ® 4 M is locally finite.

Proof. Let {M(n)},>0 be as in Lemma 3.1.16. Then m;(N ®4 M) ~ hﬂﬂ'i(N ®4 M(n)). We have cofiber
sequences
A®pV(n) - M(n—1) — M(n)

where V(n) € (Mody)<—_n, whence a cofiber sequences
N®p,V(n) > N®sMn—-1) = Ns M(n)

in Modg. Since each 7;V (n) is finite-dimensional, the homotopy groups of N ® V(n) are finite-dimensional.
It follows by induction on n that N ®4 M (n) is locally finite. Since m;(N ®; V(n)) ~ 0 for ¢ > —n, the
maps m; (N ®4 M(n —1)) — m(N ®4 M(n)) are bijective for ¢ > —n + 1. It follows that m;(N ®4 M) ~
ligqm-(N ®4 M(n)) is also a finite dimensional vector space over k. O
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Lemma 4.1.17. Let k be a field and let n > 0. The functor f : Algén) — Alg(l) preserves small sifted
colimits.

Proof. Let © : Alg(l) — Modsp(iPrL)Sp/ be the fully faithful embedding B — LModp of Theorem A.6.3.5.5.
To prove that the functor | preseves small sifted colimits, it will suffice to show that the composite functor
O o [ preserves small sifted colimits. Since every sifted simplicial set is contractible, it suffices to show

that the induced map Alg,in) — Mods, (Prl) preserves small sifted colimits (Proposition T.4.4.2.9). Using
Theorem A.7.3.5.14, we see that this functor classifies the stable envelope of the Cartesian fibration 6 :

Fun(Al,Algé")) — Fun({l},Algé")), classified by the functor ¢ : Alg,(g") — Prl given informally by A —

(Alg,(cn)) /A~ It will therefore suffice to show that  preserves small sifted colimits. Using Theorem T.5.5.3.18,

we are reduced to showing that the composite functor Alg,in) L prl o R ga\tzz preserves small

sifted colimits. This functor also classifies the forgetful functor # (this time as a Cartesian fibration). Fix a

sifted oco-category K and a colimit diagram f : K* — Alg,(cn); we wish to show that the Cartesian fibration

¢’ : Fun(Al, Alg,(cn)) X Fun({1},Alg("™) K" is classified by limit diagram (K>)°P — Catoo. Let A € Alg,(cn) denote

the image under f of the cone point of K>, and for each vertex v € K let A, = f(v). According to Lemma
VII.5.17, it will suffice to verify the following:

(a) The pullback functors g, : (Algén)) JA — (Alg,(:)) /A, given by B — A, x4 B, are jointly conservative.
Since K is nonempty, it will suffice to show that for each v € K, the pullback ¢, is conservative. To
this end, suppose we are given a map o : B — B’ in (Alg,(cn))/A such that ¢,(a) is an equivalence.
Since the fiber of « (as a map of spectra) is equivalent to the fiber of ¢,(«) (by virtue of Corollary

A.3.2.2.5), we conclude that « is an equivalence as well.

(b) Let h € Fun K, Fun(Al, Algé") )) be a map which carries each edge of K to a 6-Cartesian morphism

Alg;n) (
in the oo-category Fun(A!, Alg,(cn)), corresponding to a natural transformation {B, — A, }yex, and let

h € Fun (K", Alg,(gn)) be an f-colimit diagram extending h; we wish to show that h carries each

Algl™
edge of K” to a #-Cartesian morphism in Fun(A!, Algé")). Unwinding the definitions, we must show
that if B = hﬂBv, then for each v € K the diagram o :

B, ——

~<—

A, ——

is a pullback square in Alg,(cn). For each v € K, let I,, denote the fiber of the map B, — A, in Mody,
and let I be the fiber of the map B — A; we wish to show that each of the canonical maps I, — I is
an equivalence in Modg. Our assumption on h guarantees that the diagram v + I, carries each edge
of K to an equivalence in Mody. It will therefore suffice to show that the canonical map lim I, — I is
an equivalence in Mody. Since Mody, is stable, the formation of fibers commutes with colimits; it will
therefore suffice to show that A and B are colimits of the diagrams {A,},ex and {B,},cx in Mody,
respectively. Since K is sifted, this follows from the fact that the forgetful functor Algfcn) — Mody
preserves sifted colimits (Proposition A.3.2.3.1).

O

Remark 4.1.18. Let C be a presentable oo-category equipped with an E,-monoidal structure, and if n > 0
assume that the tensor product on € preserves coproducts separately in each variable. Let K,, , be as in
the statement of Lemma 4.1.15, and let K, ,(S) denote the fiber product Ky, , xn¢g) N(3(S)). According
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to Proposition A.3.1.3.11, the free algebra functor Free™ : € — Alg g, (€) carries an object X € C to the

coproduct [,,,5 Symg;) (X), where Symg;) (X) denotes the colimit of a diagram ¢x : Ky, — C.

Suppose now that X € Cis a coproduct of objects { X }scs. Let J be the subcategory of Fin, consisting of
the object (m) and its automorphisms. Let J(S) be the category whose objects are maps of sets {1,...,m} —
S, and whose morphisms are given by commutative diagrams

{1,....m} —4——={1,....m
\S/

where v is bijective. There is an evident forgetful functor ¢ : J(.S) — J. Then ¢x can be identified with the
left Kan extension (along ¢) of a functor ¢{x ., : J(S) — J, where 3 carries an operation v : (m) — (1) in
E® and a map «a : (m)° — S to the object N Xaq)ys -+ Xam)) € € (here 1 : €™ — € denotes the functor
determined by the E,-monoidal structure on €).

For every map u : S — Zxq satisfying > ¢ u(s) = m < oo, let J(S, u) denote the full subcategory of
J(S) spanned by those maps « : (m)° — S such that a~!{s} has cardinality u(s), and let K,, (S, 1) denote
the fiber product K, ,»(S) Xngs)) N(3(S, ). Then K, ,(S) is a disjoint union of the Kan complexes
Ko (S, ). Tt follows that Symg' (X) is a coproduct Hﬂhﬂmen(ﬂ) Note that if T C S and u(s) =0
for s ¢ T, then there is a canonical equivalence

}

¢{XS}S€5 | K (S5 1) =~ d){XS}SeT | Ko (T, | T).

It follows that if the cardinality of S is larger than m, then Symy' (X) can be written as a coproduct of
objects, each of which is a summand of Symg, ([[;cq_(s) X¢) for some s € S.

Proof of Proposition 4.1.13. We will assume n > 0 (otherwise the result is trivial). Let ¢ : Free(")(V) — A
be the map of E,-algebras induced by the zero map V — A, so that A’ can be identified with the colimit of
the coequalizer diagram

(Z)l
Free™ (V) =—= A.
0
given by a map up : N(A; <1)? — Alg;n). Let u : N(A)P — Algén) be a left Kan extension of ug along
the inclusion N(A; <1)°? < N(A)°P, so that u determines a simplicial object A, in Algl(cn) with A" ~ |A,|
and A, ~ A]]Free(V?) for all p > 0. Let R = [ A so that LModg =~ Mod" (Mody) is equipped with an

E,-monoidal structure, where the tensor product is given by the relative tensor product over A. We will
need the following estimate:

(%) For each integer a > 0, the iterated tensor product R®* belongs to (Mody)<o. Moreover, if A and [ A
are locally finite, then R®® is locally finite.

Suppose first that n = 1, so that R ~ A ®; A™" (Example 4.1.10). Then R®® can be identified with
an iterated tensor product A ®; A ®j, - - ® A and assertion (x) is obvious. We may therefore assume that
n > 2. In this case, A is m > n > 2-coconnective, so the desired result follows from Corollary VIII.4.1.11
and Lemma 4.1.16.

Let V' = R ®; V denote the image of V in ModE". For each p > 0, Corollary A.3.4.1.5 allows us
to identify A, with the free E,-algebra generated by V' in the E,-monoidal co-category Mod]i”. Using
Proposition A.3.1.3.11, we obtain an equivalence

A, ~ @ Symg VP

a>0
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(where the symmetric powers are computed in Modg’”). Let @ denote the cofiber of the map A — A’ in the
stable oo-category ModE"(Modk), so that @ is given by the geometric realization of a simplicial object Q,
with Qp, ~ @,.,Symg V'P. To show that A’ is m-coconnective, it will suffice to show that m;@Q ~ 0 for
i>—m.

Using Remark A.1.2.4.5, we obtain a spectral sequence {EP*?},~; converging to m,+,Q, where E}'? is
the normalized chain complex associated to the simplicial k-vector space

pl — ) 7y Symg, (V7).

a>0

It follows from Remark 4.1.18 that the summand 7, Symg (V'?) lies in the image of the degeneracy maps
of this simplicial vector space whenever p > a.

Note that Symg (V'?) is the colimit of a diagram ¢y : K, — Mod%" (Mody,) whose value on each
vertex is given by (V'7)®% where K, , is the Kan complex appearing in the statement of Lemma 4.1.15.
Since m;V =~ 0 for i > —m — 1, condition (*) guarantees that m;(V'?)®* ~ 0 for ¢ > (—m — 1)a, and that the
homotopy groups of (V'?)®% are finitely generated vector spaces over k provided that A and R are locally
finite. Combining this with Lemma 4.1.15, we deduce that if a > 0, then 7, Symg _(V'?) vanishes for

g>(a—-1)n-1)+(-m—-1)a=1-2a—m+ (n—m)(a—1)

and thus for ¢ > 1 —2a —m

If the vector space E}'? is nonzero, there must be an integer a > 0 such that p < a and ¢ < 1 — 2a — m,
so that p+¢ <1 —a—m < —m. This proves that m;Q ~ 0 for ¢ > p + ¢, so that A’ is m-coconnective. For
any integer 4, the inequality ¢ = p+ ¢ < 1 —a —m implies that a is bounded above by 1 —m — 7, so that m;Q
admits a finite filtration whose associated graded vector space consists of subquotients of m;_, Symg VP
where a <1 —m —i and p < a. It follows that if A and R are locally finite, then @ is also locally finite, so
that A’ is locally finite.

To complete the proof, we must show that [ A" is (14m—n)-coconnective, and that [ A’ is locally finite if
Aand [ A are locally finite. According to Lemma 4.1.17, [ A’ can be identified with the geometric realization
of the simplicial Eq-ring | A,. Let B be an arbitrary E,,-ring, let W € Mody, and let W' = ([ B)®; W denote
the image of W in Mody ~ LMod . Then the coproduct B[] Free™ (W) can be identified with the free
E,-algebra in Mod}y generated by W', which is given by Do Symg, (W'). If we let Z(W ) denote the
cofiber in Mody, of the map B — B]] Free™ (W), then we obtain an equivalence [ B~ lim, bZ(bk).
Taking B = A,, we obtain an equivalence

/ A, = lim Q@D Syme, (V7 & £'k)) /(@D Symé, (V7).
b—00 a>0 a>0
Remark 4.1.18 gives a canonical decomposition
Symg (VP @S%k)~ @ Fuar (VP 5%).
a=a’+a’’

Note that F,_1 1 is an exact functor of the second variable, and that if o’ > 2, then the colimit
hﬂ QbFa/@// (V/p, Ebk‘)

vanishes. We therefore obtain an equivalence [ A, ~ @a>0 u—1,1(V'?, k). Unwinding the definitions, we
see that F,_1,1(X,Y) is given by the colimit of a dlagram Ka n— ModE" (Mody,), which carries each vertex

to the iterated tensor product (V'7)®*~! @4 R, here Ka,n is a finite-sheeted covering space of K,, , and
therefore equivalent to the singular complex of a finite CW complex of dimension < (¢ —1)(n — 1) (Lemma
4.1.15). Since condition (*) implies that m;(V'?)®?~! ® 4 R vanishes for i > (—m — 1)(a — 1), we conclude
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that g Fy_11 (VP k) ~0for ¢ > (—m —1)(a—1)+ (n—1)(a—1) = (n —m — 2)(a — 1) and therefore
for ¢ > 2 — 2a. Moreover, if A and [ A are locally finite, then each 7, F,_1,1(V'?, k) is a finite dimensional
vector space over k.

Let Q' denote the spectrum given by the cofiber of the map [ A — [ A’, so that @’ is the geometric
realization of a simplicial spectrum @/, given by

Q) ~ P Facra (V7. R).

a>2

Using Remark A.1.2.4.5, we obtain a spectral sequence {E/P*7},>; converging to 7,4 ,Q’, where E{"? is the
normalized chain complex associated to the simplicial k-vector space

Pl = P mgFa1a (VP k).

a>2

Arguing as above, we deduce that the summand 7, F,—11(V'?, k) lies in the image of the degeneracy maps
of this vector space whenever p > a. It follows that if £{”? is nonzero, then there exists an integer a > 2
such that p < a and ¢ < 2 — 2a, so that p+ ¢ < 2 —a < 0. It follows that m;QQ" ~ 0 for ¢ > 0, from which we
immediately conclude that [ A’ is 1-coconnective. For any integer i, the inequality i = p+ ¢ < 2 — a implies
that a is bounded above by 2 —4, so that 7;()" admits a finite filtration whose associated graded vector space
consists of subquotients of m;_, Fy—11(V'?, k) where 2 <a <2—iand p < a. If A and [ A are locally finite,
then these subquotients are necessarily finite dimensional, so that each m;Q’ is a finite dimensional vector
space. It then follows that [ A’ is locally finite as desired. O

Proof of Proposition 4.1.14. Let A be an E,-algebra over a field k, and assume that A is m-coconnective for
m > n. We wish to show that [ A is (m —n+ 1)-coconnective. The result is trivial if n = 0 (Example 4.1.9);

we will therefore assume that n > 1. We construct a sequence of maps A(0) — A(1) — --- in (Algén))/A by
induction. Let A(0) = k. Assuming that A(¢) has already been defined, we let V(i) denote the fiber of the
map A(i) — A (in Mody) and define A(i + 1) so that there is a pushout square

Free™ (V(i)) —%—> A(i)

X |

k= A(i+ 1)

as in the statement of Proposition 4.1.13. We prove the following statements by induction on i:
(a;) The E,-algebra A(4) is m-coconnective.

(b;) The map 7_,,, A(i) = 7_,, A is injective.
(¢;) The Eq-algebra [ A is (m + 1 — n)-coconnective.
(d;) We have 7,;V (i) ~0 for j > —m.

It is clear that conditions (ag), (by), and (co) are satisfied. Note that (a;) and (b;) imply (d;) and
that (a;), (¢;) and (d;) imply (a;+1) and (¢;41) by Proposition 4.1.13. It will therefore suffice to show
that (a;), (i), (¢i), and (d;) imply condition (b;y1). As in the proof of Proposition 4.1.13, we can identify
A(i + 1) with the geometric realization of a simplicial object A4 of Alg,(cn), with A, ~ A() ] Free™ (V (i)P).
Let @ denote the cofiber of the map A(7) — A(i + 1) (as an object of ModE’; (k)) we have a canonical map
¢ Q — cofib(A(i) — A) ~ V(i)[1]. We wish to prove that ¢ induces an injection 7_,Q — 7_,—1V (), which
follows immediately by inspecting the spectral sequence {E?*?},>; appearing in the proof of Proposition
4.1.13.
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We now claim that the canonical map 6 : th(z) — A is an equivalence. Combining this with assertions
(¢;) and Lemma 4.1.17, we conclude that [ A ~ hglfA(z) is (m + 1 — n)-connective as desired. To prove
that 6 is an equivalence, we note that the image of A(i) in Mod;, can be identified with the colimit of the
sequence

k~ A(0) — A(0)/V(0) - A1) = AL)/V(Q) = -,
where each cofiber A(i)/V (i) is equivalent to A. O

We complete this section by giving the proof of Lemma 4.1.15.

Lemma 4.1.19. Fiz an integer b > 0, and let Qp denote the set of sequences (I1,...,1I,), where each
I; C (—1,1) is a closed interval, and we have x <y whenever x € I,, y € I;, and i < j. We regard Q as
a partially ordered set, where (Iv,...,Iy) < (I1,..., 1) if I; C I} for 1 < i < j. Then the nerve N(Qp) is
weakly contractible.

Proof. The proof proceeds by induction on b. If b = 0, then @, has a single element and there is nothing to
prove. Otherwise, we observe that “forgetting” the last coordinate induces a Cartesian fibration ¢ : N(Q) —
N(Qp—1). We will prove that the fibers of ¢ are weakly contractible, so ¢ is left cofinal (Lemma T.4.1.3.2)
and therefore a weak homotopy equivalence. Fix an element x = ([t1,t]], [t2,t5],.. ., [to—1.t,_1]) € Qb—1.
Then ¢~ '{z} can be identified with the nerve of the partially ordered set Q" = {(t,t}) : t, _, <ty < t, <1},
where (tp,1t}) < (sp,sp) if t, > s and t; < sj.

The map (tp,t},) — t; is a monotone map from @’ to the open interval (¢;_,,1). This map determines
a coCartesian fibration ¢’ : N(Q') — N(t,_,,1). The fiber of ¢’ over a point s can be identified with the
opposite of the nerve of the interval (¢,_,, s), and is therefore weakly contractible. It follows that ¢’ is a weak
homotopy equivalence, so that N(Q') is weakly contractible as desired. O

Proof of Lemma 4.1.15. For every topological space X, let Sym™(X) denote the quotient of X™ by the
action of the symmetric group %,,, and let Conf,,(X) denote the subspace of Sym™(X) corresponding to
m-tuples of distinct points in X. Let O™ = (—1,1)™ denote an open cube of dimension n. Using a variant of
Lemma A.5.1.1.3, we obtain a homotopy equivalence K,, ,, ~ Sing(Conf,,(0")). It will therefore suffice to
show that the configuration space Conf,,(0") is homotopy equivalent to a finite CW complex of dimension
< (m—1)(n—1). If n = 1, then Conf,,(0") is contractible and there is nothing to prove. We prove the result
in general by induction on n. Let us therefore assume that K,/ ,_1 is equivalent to the singular complex of
a CW complex of dimension < (m’ — 1)(n — 2) for every integer m’ > 1.

Let us identify O™ with a product 0"~ x (—1,1), and let pp : O" — 0"~ ! and p; : O® — (—1,1) be
the projection maps. If I C (—1,1) is a disjoint union of finitely many closed intervals (with nonempty
interiors), we let [t] € mol denote the connected component containing ¢ for each ¢ € I. Then mo! inherits
a linear ordering, with [¢] < [¢'] if and only if ¢ < ¢’ and [¢] # [t/]. Let P denote the partially ordered set
of triples (I, ~, u), where I C (—1,1) is a nonempty disjoint union of finitely many closed intervals, ~ is an
equivalence relation on myl such that x < y < z and © ~ z implies ¢ ~ y ~ z, and pu : 1ol — Zg is a
positive integer-valued function such that > _ - u(z) = m. We regard (I, ~, u) as a partially ordered set,
with (I, ~,p) < (I',~, /)i I CI', p'(x) = 3, u(y) where the sum is taken over all y € mol contained in
x, and [s] ~' [t] implies [s] ~ [t] for all s,¢t € I. For every pair (I,~,u) € P, we let Z(I,~, u) be the open
subset of Conf,,(0") consisting of subsets S C 0" which are contained in 0"~! x I° (here I° denotes the
interior of I), have the property that if s,s" € S and [p1(s)] ~ [p1(s’)], then either s = s’ or po(s) # po(s’),
and satisty p(xz) = |{s € S : p1(s) € z}| for x € mol.

We next claim:

(*) The Kan complex Sing(Conf,,(0")) is a homotopy colimit of the diagram of simplicial sets
{Sing(Z(1, ~, )} (1,~ )P

To prove this, it will suffice (by Theorem A.A.3.1) to show that for each point S € Conf,,(0"), the partially
ordered set Ps = {(I,~,n) € P: S € Z(I,~, 1)} has weakly contractible nerve. Let @ denote the collection
of all equivalence relations ~ on S with the following properties:
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(7) If p1(s) < p1(s’) < p1(s”) and s ~ s”, then s ~ ¢’ ~ 5",
(#i) If s ~ &', then either s = s’ or po(s) # po(s’).

We regard @ as a partially ordered set with respect to refinement. Pullback of equivalence relations de-
termines a forgetful functor ¢ : N(Ps) — N(Q)°P. It is easy to see that u is a Cartesian fibration. The
simplicial set N(Q) is weakly contractible, since @) has a smallest element (given by the equivalence relation
where s ~ ¢’ if and only if s = s’). We will complete the proof of (x) by showing that the fibers of ¢ are
weakly contractible, so that ¢ is left cofinal (Lemma T.4.1.3.2) and therefore a weak homotopy equivalence.

Fix an equivalence relation ~€ Q. Unwinding the definitions, we see that ¢~'{~} can be identified
with the nerve of the partially ordered set R consisting of those subsets I C (—1,1) satisfying the following
conditions:

(a) The set I is a disjoint union of closed intervals in (—1,1).
(b) The set I contains p1(S), and p; induces a surjection S — mol.
(¢) If p1(s) and p;1(s’) belong to the same connected component of I, then s ~ s'.

To see that N(R) is contractible, it suffices to observe that the partially ordered set R°P is filtered: it has a
cofinal subset given by sets of the form (J,.g[p1(s) — €, p1(s) + €] for € > 0. This completes the proof of ().
We define a category J as follows:

e An object of J is a triple ([a], ~, 1) where [a] € A, ~ is an equivalence relation on [a] such that i < j < k
and i ~ k implies that i ~ j ~ k, and y : [a] — Z~ is a function satisfying m = >, ., u(7).

e A morphism from ([a],~,u) to ([a'],~', ') in J is a nondecreasing map « : [a] — [a'] such that
alj) ~ a(;’) mplies j ~ 7 and #(j) = Sey; (1)

There is an evident forgetful functor ¢ : P — J, which carries a pair (I,~,u) to (mol,~, 1) where we
abuse notation by identifying 7ol with the linearly ordered set [a] for some a > 0. Let Z’ : J — Seta be a
homotopy left Kan extension of Z along ¢g. For each object ([a],~,u) € d, we can identify Z’([a], ~, ) with
the homotopy colimit of the diagram Z| Py~ ,, where Py, -, denotes the partially ordered set of quadruples
(I,\,~' i) where I C (—1,1) is a disjoint union of closed intervals, A : oI — [a] is nondecreasing surjection,
~' is an equivalence relation on moI such that A([t]) ~ A([t']) implies [t] ~' [¢'], and p' : mol — Zso is a
map satisfying p(i) = ZA(I):Z- w(x) for 0 < i < a. Let P[’a]’w,u be the subset of P ., consisting of
those quadruples (I, \,~', /) where A is a bijection and ~' is the pullback of ~ along A. The inclusion
N(P[’a ]m”) — N(Pyg),~,u) admits a left adjoint and is therefore left cofinal. It follows that Z'([a], ~, u) can
be identified with a homotopy colimit of the diagram Z |P[/a],~,u' Note that Z carries each morphism in P/, Lot
to a homotopy equivalence of Kan complexes. Since P[’a I~ is weakly contractible (Lemma 4.1.19), we conclude
that the map Z(I,~', ') — Z'([a], ~, 1) is a weak homotopy equivalence for any (I, A, ~', i) € P[/a],rv,u'

It follows from condition (x) that Sing(K, ) can be identified with a homotopy colimit of the diagram
Z'. We may assume without loss of generality that Z’ takes values in Kan complexes, so that Z’ determines
a map of oo-categories N(J) — 8. We will abuse notation by denoting this map also by Z’. Note that if
([a],~,p) € 3, then m = >~ ., (i) > a + 1. For each object ([a],~,u) € J, we define the complezity
d([a],~,p) to be the sum |[a]/ ~ | + > y<;<,((i) — 1). Since [a]/ ~ has at least one element, d([a],~, ;)
is bounded below by 1 and bounded above by |[a]| + > <;<, #(i) =1 = Y g<i<, 1(i) = m. Note that for
every nonidentity morphism J — J in J, we have d(J) < d(J’). It follows that every nondegenerate simplex
in N(g), corresponding to a sequence of nonidentity morphisms Jy — -+ — J, in J, is bounded in length
by b < m — 1. It follows immediately that the simplicial set N(J) has only finitely many nondegenerate
simplices. We will prove that for every finite simplicial subset A C N(J), the colimit of the diagram Z’'|A

is homotopy equivalent to the singular complex of finite CW complex of dimension < (n — 1)(m — 1). This
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is obvious when A = (), and when A = N(J) it implies the desired result. To carry out the inductive step,
assume that A is nonempty so that there is a pushout diagram

OAb — > AP

Lk

Ag—A

for some smaller simplicial subset Ay C N(J). The simplex o carries the initial vertex 0 € A® to an object
([a], ~, 1) € J, and we have a pushout diagram

ZI([G]7N7M) X A" — Z/([a‘]a ~, 1) X AP

| |

(2'| Ao) limy(2/]4)

lim
-

where lim(Z’|Ap) is homotopy equivalent to the singular complex of a finite CW complex of dimension
< (n f%(m —1). Let I C (—1,1) be a finite union of a + 1 closed intervals and identify mol with [a],
so that Z'([a],~, ) ~ Z(I,~,u) is homotopy equivalent to the product [Lca)/~ Conf, (O"~1), where
Pz = ) ;c, #(1). Using the inductive hypothesis, we deduce that Z’([a], ~, i) is homotopy equivalent to the
nerve of a CW complex of dimension (m — d)(n — 2), where d is the cardinality of the quotient [a]/ ~. It
follows that lim(Z’|A) is homotopy equivalent to the singular complex of a CW complex having dimension
at most the maximum of (m—1)(n—1) and (m—d)(n—2)+b< (m—-1)(n—=2)+(m—1) = (m—1)(n—1),
as desired. O

4.2 Twisted Arrow oco-Categories

Let € be an oo-category. Recall that a functor X : C°? — 8 is representable if there exists an object C' € @
and a point € F(C') such that evaluation on 1 induces a homotopy equivalence Mape(C’,C) — F(C") for
each C' € €. An oo-categorical version of Yoneda’s lemma asserts that there is a fully faithful embedding
j : € = Fun(C’8) (Proposition T.5.1.3.1), whose essential image is the full subcategory of Fun(C°,8)
spanned by the representable functors. The functor j classifies a map p : € x € — 8, given informally by
the formula (C, D) — Mape(C, D). In [40], we gave an explicit construction of p by choosing an equivalence
of € with the nerve of a fibrant simplicial cateogry (see §T.5.1.3).

Our goal in this section is to give another construction of y, which does not rely on the theory of simplicial
categories. For this, we will need an oo-categorical version of Construction 3.3.5: to any oo-category C, we
will associate a new co-category TwArr(C), called the twisted arrow oo-category of €. Roughly speaking, the
objects of TwArr(€) are morphisms f : C — D in €, and morphisms in TwArr(C) are given by commutative
diagrams

04f>D

L, ]

o . p.

We will give a precise definition of TwArr(€) below (Construction 4.2.1) and prove that the construction
(f: C = D)~ (C,D) determines a right fibration A : TwArr(C) — € x C° (Proposition 4.2.3). The right
fibration A is classified by a functor u : €% x € — 8, which we can view in turn as a functor € — Fun(C?,§).
We will show that this functor is equivalent to the Yoneda embedding (Proposition 4.2.5); in particular, it
is fully faithful and its essential image is the collection of representable functors F' : %P — 8.

The twisted arrow oco-category TwArr(€) will play an important role when we discuss the bar construction
in §4.3. For our applications, it is important to know that the construction € — TwArr(C) is functorial
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and commutes with small limits. To prove this, it will be convenient to describe TwArr(€) by means of a
universal property. We will discuss two such descriptions at the end of this section (see Corollary 4.2.11).

Construction 4.2.1. If [ is a linearly ordered set, we let I°P denote the same set with the opposite ordering.
If I and J are linearly ordered sets, we let I xJ denote the coproduct I[]J, equipped with the unique linear
ordering which restricts to the given linear orderings of I and J, and satisfies ¢ < j for ¢ € I and j € J.
Let A denote the category of combinatorial simplices: that is, the category whose objects sets of the form
[n] = {0,1,...,n} for n > 0, and whose morphisms are nondecreasing maps between such sets. Then A is
equivalent to the larger category consisting of all nonempty finite linearly ordered sets. The construction
I — IxI°P determines a functor @ from the category A to itself, given on objects by [n] — [2n + 1]. If C is
a simplicial set (regarded as a functor A°? — §), we let TwArr(C) denote the simplicial set given by

[n] = C(Q[n]) = €([2n + 1]).

Let C be an oco-category. By construction, the vertices of TwArr(C) are edges f : C — D in €. More
generally, the n-simplices of TwArr(C) are given by (2n+ 1)-simplices of €, which it may be helpful to depict
as diagrams

Co o .. C,
Do D, . D,,.

Example 4.2.2. Let € be an ordinary category, and let TwArr(C) be the twisted arrow category of C
introduced in Construction 3.3.5. Then there is a canonical isomorphism of simplicial sets

N(TwArr(C)) ~ TwArr(N(C)).

Consequently, we can think of Construction 4.2.1 as a generalization of Construction 3.3.5 to the oo-
categorical context.

Let € be an arbitrary simplicial set. For any linearly ordered set I, we have canonical inclusions
I — I %1%« [P,
Composition with these inclusions determines maps of simplicial sets
C + TwArr(C) — €.

Proposition 4.2.3. Let C be an oo-category. Then the canonical map X : TwArr(€) — € x C is a right
fibration of simplicial sets. In particular, TwArr(C) is also an co-category.

Proof. We must show that the map A has the right lifting property with respect to the inclusion of simplicial
sets A — A" for 0 < ¢ < n. Unwinding the definitions, we must show that every lifting problem of the
form

K——¢C

|
A2n+1/ AO

admits a solution, where K denotes the simplicial subset of A?"*! consisting of those faces o which satisfy
one of the following three conditions:

e The vertices of ¢ are contained in the set {0,...,n}.

e The vertices of o are contained in the set {n+1,...,2n+ 1}.
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e There exists an integer j # ¢ such that 0 < j < n and neither j nor 2n +1 — j is a vertex of o.

Since @ is an co-category, it will suffice to show that the inclusion K < A2?"*! ig an inner anodyne map of
simplicial sets.

Let us say that a face o of A2"*! is primary if it does not belong to K and does not contain any vertex
in the set {0,1,...,4 — 1}, and secondary if it does not belong to K and does contain a vertex in the set
{0,1,...,i—1}. Let S be the collection of all simplices of A?"*1 which are either primary and do not contain
the vertex i, or secondary and do not contain the vertex 2n +1 —i. If 0 € S, we let ¢’ denote the face
obtained from o by adding the vertex 2n+ 1 —1 if o is primary, and by adding the vertex ¢ if o is secondary.
Note that every face of A2"*1 either belongs to K, belongs to S, or has the form ¢’ for a unique o € S.

Choose an ordering {01, 02,03, ...,0,} of S with the following properties:

e If p < g, then the dimension of o, is less than or equal to the dimension of o,.
o If p < g, the simplices 0, and o4 have the same dimension, and o, is primary, then o, is also primary.

For 0 < ¢ <m, let K, denote the simplicial subset of A?"*1! obtained from K by adjoining the simplices Op
and a;, for 1 < p < ¢q. We have a sequence of inclusions

K=Ky— K| < K, =A>",

It will therefore suffice to show that each of the maps K, 1 — K, is inner anodyne. Let d denote the
dimension of the simplex oy . It now suffices to observe that there is a pushout diagram of simplicial sets

q—1

e

g
Ad —Q>Kq,

where 0 < j < d. O

It follows from Proposition 4.2.3 that we can view the map A : TwArr(€) — € x C° as a pairing of
oo-categories, in the sense of Definition 3.1.1.

Proposition 4.2.4. Let C be an oo-category. Then the pairing X : TwArr(C) — € x C°? is both left and
right representable. Moreover, the following conditions on an object M € TwArr(C) are equivalent:

(a) The object M s left universal (in the sense of Definition 3.1.2).
(b) The object M s right universal (in the sense of Definition 3.1.2).
(¢) When viewed as a morphism in the co-category C, the object M is an equivalence.

Proof. We will prove that (¢) = (b). Then for every object C' € €, the identity morphism id¢ is a right
universal object of TwArr(C) lying over C' € C°?, which proves that A is right representable. Since a right
universal object of TwArr(€) lying over C' € C is determined uniquely up to equivalence, we may also
conclude that (b) = (c¢). By symmetry, we can also conclude that (a) < (¢) and that the pairing \ is left
representable.

Fix an object D € €, and let TwArr(C)p denote the fiber product TwArr(€) xeor {D}. Then A
induces a right fibration of simplicial sets Ap : TwArr(C)p — €. We wish to prove that if M is an object of
TwArr(C)p given by an equivalence f : C — D in C, then M represents the right fibration Ap.

For every linearly ordered set I, there is an evident map of linearly ordered sets I x [°? — I xx*, depending
functorially on I. Composing with these maps, we obtain a functor ¢ : €,p — TwArr(€)p. This map is
bijective on vertices (vertices of both €,p and TwArr(€)p can be identified with edges f : C — D of the

104



simplicial set €). Since the right fibration €,p — € is representable by any equivalence f : C' — D (see the
proof of Proposition T.4.4.4.5), it will suffice to show that the 1 is an equivalence of co-categories.

We now define an auxiliary simplicial set M as follows. For every [n] € A, we let M([n]) denote the
subset of C([n] * [0] x [n]°P) consisting of those (2n + 2)-simplices of € whose restriction to [0] x [n]°P is the
constant (n + 1)-simplex at the vertex D. The inclusions of linearly ordered sets

[n] % [0] <= [n] % [0] % [n]*" ¢= [n] % [n]*P

induce maps of simplicial sets
C/p B Y TwArr(C)p.

The map v : €,p — TwArr(€) can be obtained by composing ¢" with a section of ¢. To prove that ¢ is a
categorical equivalence, it will suffice to show that ¢ and ¢’ are categorical equivalences. We will complete
the proof by showing that ¢ and ¢’ are trivial Kan fibrations.

We first show that ¢ is a trivial Kan fibration: that is, that ¢ has the right lifting property with respect
to every inclusion 0 A™ < A". Unwinding the definitions, we are reduced to solving a lifting problem of the
form

K————C

-
-
P
-
-
-

A" x ADx A”" — 5 A

where K denotes the simplicial subset of A™ x A? x A” ~ A27"*2 gpanned by A" x A?, A% x A", and
AT % A% % AT for every proper subset I C [n]. Since € is an oo-category, it suffices to show that the
inclusion K < A" x A x A" is a categorical equivalence.

Lemma T.5.4.5.10 implies that the composite map

(A" % A JT(A% % A™) 55 K — A" A% A"
A0
is a categorical equivalence. It will therefore suffice to show that the map 4 is a categorical equivalence. Let

K, denote the simplicial subset of K spanned by those faces of the form A” « A%« AT" where I is a proper
subset of [n]. We have a pushout diagram of simplicial sets

(O A™ % A%) o (A0 % 9 A7) Ko
(A" % AY) T a0 (A? % A™) K.

Since the Joyal model structure is left proper, we are reduced to proving that the map iy is a categorical
equivalence. We can write ¢y as a homotopy colimit of morphisms of the form

(AT % A JTA%x ATy = AT« A% AT,
A0

where I ranges over all proper subsets of [n]. Since each of these maps is a categorical equivalence (Lemma
T.5.4.5.10), we conclude that ¢ is a categorical equivalence as desired.

We now prove that ¢’ is a trivial Kan fibration. We must show that ¢’ has the right lifting property
with respect to every inclusion of simplicial sets 0 A™ < A™. To prove this, we must show that every lifting
problem of the form

L—¢C

7
o

A" x ADx A? — > AD
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has a solution, where L denotes the simplicial subset of A" x A?x A™ ~ A?"+2 given by the union of AYx A",
A" x A", and Ky, and f; is a map whose restriction to A% x A™ is constant.

Let o be a face of A?"*2 which does not belong to L. Let i(0) denote the first vertex of A2"*2 which
belongs to o. Since o does not belong to A’ x A" C L, we must have i(c) < n. For j < i(0), we have j ¢ o.
Since o is not contained in Ky, we conclude that 2n + 2 — j € 0. Let us say that o is large if it contains
the vertex 2n 4+ 2 — i(0), and small if it does not contain the vertex 2n + 2 — i(0). Let S be the collection
of small faces of A?"*2 (which are not contained in L). For each o € S, we let o’ denote the face obtained
from o by adding the vertex 2n + 2 — i(o). Choose an ordering of S = {01,09,...,0,,} with the following
properties:

a) If p < g, then the dimension of ¢, is less than or equal to the dimension of o.
P q
(b) If p < ¢ and the simplices 0, and o, have the same dimension, then i(cg,) < i(0,).

For 0 < g <'m, let L, denote the simplicial subset of A*"*2 obtained from L by adding the faces o, and o),
for p < g. We have a sequence of inclusions

L=LyCL CLyC--CL,=A""2

To complete the proof, it will suffice to show that the map fy : Ly — € can be extended to a compatible
sequence of maps {f; : Ly = Clo<q<m. We proceed by induction. Assume that ¢ > 0 and that f,_; :
Lqy—1 — C has already been constructed. Let d be the dimension of 0;, and observe that there is a pushout
diagram of simplicial sets

d
Al ioy)

e

A —

— Lq—l

Consequently, to prove the existence of f, it will suffice to show that the map fq,1|Ag ) can be extended

—1(0
to a d-simplex of €. Since d > i(0,), the existence of such an extension follows from the e(qusumption that € is
an oo-category provided that i(c,) > 0. In the special case i(c) = 0, it suffices to show that the map f,—1|A%
carries the final edge of A4 to an equivalence in C. This follows from our assumption that fo|(A%x A™) is a
constant map (note that 0; automatically contains the vertices n 4+ 1 and 2n + 2, so that the final edge of

o, is contained in A% % A" C A" x AV x AT o~ A20H2), O

Proposition 4.2.5. Let C be an oco-category, and let x : C°P x C — 8§ classify the right fibration X\ :

TwArr(C) — Cx €. The map € — Fun(C°’,8) determined by x is homotopic to the Yoneda embedding
(see §T.5.1.3).

Remark 4.2.6. Let € be an oco-category and let A : TwArr(€) — € x C° be the pairing of Proposition
4.2.3. Proposition 4.2.4 implies that X is right and left representable, so that Construction 3.1.3 yields a pair
of adjoint functors

¥ :e—-C D\ :C—C.
Proposition 4.2.5 asserts that these functors are homotopic to the identity.

Proof. We begin by recalling the construction of the Yoneda embedding j : € — Fun(C°?,8). Choose
a fibrant simplicial category D and an equivalence of oco-categories 1 : € — N(D). The construction
(D,D") — Mapyp(D,D’) determines a simplicial functor F : D? x D — Kan, where Kan denote the
(simplicial) category of Kan complexes. Passing to nerves, we obtain a functor

p:Cx %P — N(D) x N(D)P ~ N(D x D?) — N(Kan) = 8

which we can identify with Yoneda embedding € — Fun(C°” 8). We are therefore reduced to proving that
the functor p classifies the right fibration TwArr(C) — € x €.
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Let ¢ : €[C x C?] — D x D? be the equivalence of simplicial categories determined by v, and let

UII¢ : Setﬁop xD — (SetA)/ @ x @op

denote the unstraightening functor defined in §T.2.2.1. To complete the proof, it will suffice to construct an
equivalence /5 : TwArr(C) — Ung () of right fibrations over € x €.

We begin by constructing the map 3. Let € be the simplicial category obtained from D x D°? by adjoining
a new element v, with mapping spaces given by

Mape (v, (D7Dl)) =0 Mapg((D,D’),v) = MapD(D,D/).

Unwinding the definitions, we see that giving the map 5 is equivalent to constructing a map v : TwArr(€)> —
N(€&) carrying the cone point of TwArr(€)> to v and such that | TwArr(C) is given by the composition

TwArr(C) — € x €7 — N(D x D) — N(&).
To describe the map =, it suffices to define the composite map
Yo 1 AL % TwArr(C)” % N(€&)

for every n-simplex ¢ : A™ — TwArr(C). Let € : Seta — Cata denote the left adjoint to the simplicial nerve
functor. We will define 7, as the adjoint of a map of simplicial categories €[A" "] — & carrying the final
vertex of A" to v and given on €[A"] by the composite map

C[A"] 25" ¢[e] x €[C]P —» D x D C €.
We can identify o with a map A?"+! — @, which induces a functor of simplicial categories
Vo : €[A%"T] 5 ¢(C) = D.
To complete the definition of 7., it suffices to describe the induced maps
Maqun+1](i,n + 1) = Mapg (75(4),v) = Mapp (V6 (1), Ve (2n + 1 — i)
for 0 <4 < n. These maps will be given by a composition
Mapean+1y(i,n + 1) < Mape(aza+1)(i,2n 4 1 — i) =5 Mapy (V6 (i), vo (20 + 1 — 4)).

Recall that for 0 < 5 < k < m, the mapping space Maqum](j, k) can be identified with the nerve of the
partially ordered collection of subsets of [m] having infimum j and supremum k (see Definition T.1.1.5.1).
Under this identification, « corresponds to the map of partially ordered sets given by

Su{n+1}—=Su{2n+1—j5:5€ S}

It is not difficult to see that these maps determine a simplicial functor €[A"+1] — &, giving a map of
simplicial sets v, : A"t — N(€). The construction is functorial in o, and therefore arises from the desired
map 7 : TwArr(C)® — N(&).
It remains to prove that 5 is a homotopy equivalence. Since the maps
TwArr(€C) — Cx C% < Uny ()

are right fibrations, it will suffice to prove that § induces a homotopy equivalence

/BC,C’ : TWAI‘I"(C) XE x @op {(O, C,)} — (Un¢ EF) Xex e’ {(C, C/)}
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for every pair of objects C,C’ € €. Consider the map
u: Crer — TwArr(€) xeor {C'}
appearing in the proof of Proposition 4.2.4. Since u induces a homotopy equivalence
Homg (C,C") = {C} xe €)cr — TwArr(€) xe x eor {(C,C")},
we are reduced to proving that the composite map
Homg (C, ") = TwAr(€) xe x eor {(C,C)} = (Ung F) xewer {(C,C")}
is a homotopy equivalence. This follows from Proposition T.2.2.4.1. O

Our next goal is to characterize the twisted arrow oco-category TwArr(C) by a universal property. In fact,
we will give two such universal properties.

Construction 4.2.7. Let A\ : M — €x D and X : M’ = € x D’ be pairings of co-categories. We define
a simplicial set Mapgp,i,, (A, A’) so that the following universal property is satisfied: for every simplicial
set K, there is a canonical bijection between Homge, (K, Mapcpai, (A, A')) and the set of triples (o, 3,7)
where o : K x € — € is a map of simplicial sets carrying each edge of K to an equivalence in Fun(C,C),
B: K xD — D is a map of simplicial sets carrying each edge of K to an equivalence in Fun(D,D’), and
v : K x M — M is a map fitting into a commutative diagram

KxM Rl M

T

KxKxCxD- L o w1

(it then follows automatically that vy carries each edge of K to an equivalence in Fun(M,M)).

We let CPaira be the simplicial category whose objects are pairings of co-categories A : M — € x D, with
morphism spaces given as above. Then CPairn is a fibrant simplicial category (see Lemma 4.2.15 below);
we let CPair = N(CPaira) denote the associated oco-category. We will refer to CPair as the oo-category of
pairings of oo-categories.

Let CPair’® denote the subcategory of CPair whose objects are right representable pairings of co-categories
A: M — € x D and whose morphisms are right representable morphisms between pairings (see Definition
3.3.3). We will refer to CPair® as the co-category of right representable pairings of co-categories.

Remark 4.2.8. If \: M — €x D and X : M' — €' x D’ are pairings of co-categories, then giving an edge
a: A — X in the co-category CPair is equivalent to giving a morphism of pairings from A to )/, in the sense
of Definition 3.3.3.

Remark 4.2.9. It follows from Proposition T.4.2.4.4 that CPair is equivalent to the full subcategory of
Fun(A2, Caty,) spanned by those diagrams € <— M — D for which the induced map M — € x D is equivalent
to a right fibration. This subcategory is a localization of Fun(A3, Cats,); in particular, we can identify CPair
with a full subcategory of Fun(A2, Cat.,) which is closed under small limits.

Proposition 4.2.10. Let C be an oo-category and let A : TwArr(C) — C x € be the pairing of Proposition
4.2.8. Let pu: M — D x € be an arbitrary right representable pairing of co-categories. Then the evident maps

Ma‘pCPairR ()\7 /1‘) — Map@atoo (GOP7 8) MapCPairR (/1’7 )‘> — 1v[a’1:)(‘3atOo (D7 e)
are homotopy equivalences.

Before giving the proof of Proposition 4.2.10, let us describe some of its consequences.
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Corollary 4.2.11. Let ¢,1) : CPair® — Catoo be the forgetful functors given on objects by the formulas
dp(A:M—=CxD)=2C PYA:M=CxD)=D.
Then:
(1) The functor ¢ admits a right adjoint, given at the level of objects by C — TwArr(C).
(2) The functor ¢ admits a left adjoint, given at the level of objects by D — TwArr(D?).
Proof. Combine Propositions 4.2.10 and T.5.2.4.2. O

Remark 4.2.12. Let us say that a pairing of co-categories is perfect if it is equivalent (in the oco-category
CPair) to a pairing of the form TwArr(€) — € x €%, for some oco-category €. We let CPair®! denote
the subcategory of CPair whose objects are perfect pairings of oco-categories and whose morphisms are
right representable morphisms of pairings (note that if A and A’ are perfect pairings of co-categories, then
Proposition 4.2.4 implies that a morphism of pairings from A to )\ is left representable if and only if it is
right representable). It follows from Corollary 4.2.11 that the full subcategory CPair®®f C CPair® is both a
localization and a colocalization of CPair®. Moreover, the forgetful functors ¢, : CPair® — Catn, restrict
to equivalences CPair®®™ — Cat. Composing these equivalences, we obtain an equivalence of co-categories
from Cat., to itself, given at the level of objects by € — G,

Remark 4.2.13. Let p : M — CxD be a right representable pairing of oco-categories, and let \ :
TwArr(€C) — € x C° be the pairing of Proposition 4.2.3. Using Proposition 4.2.10, we can lift the iden-
tity functor ide to a right representable morphism of pairings («, 8,7) : © — A. For every object D € D,
the induced map

vp : M xp{D} = TwArr(C) xeer {5(D)}

is a map between representable right fibrations over € which preserves final objects, and therefore an equiv-
alence of oco-categories. It follows that the diagram

M — > TwArr(€)
9£ ’ e

is homotopy Cartesian (note that the vertical maps are Cartesian fibrations, so that this condition can be
tested fiberwise).

Corollary 4.2.14. Let u: M — € x D be a pairing of co-categories. The following conditions are equivalent:
(1) The pairing p is perfect.

(2) The pairing p is both left and right representable, and an object of M is left universal if and only if it
is Tight universal.

(3) The pairing p is both left and right representable, and the adjoint functors
DF € — D? CDL:DOP%C
of Construction 3.1.3 are mutually inverse equivalences.

Proof. We first prove that conditions (2) and (3) are equivalent. Assume that p is both left and right
representable. Let C' € €, and choose a left universal object M € M lying over C. Let D = ©,(C) be the
image of M in D, and choose a right universal object N € M lying over D. Then N is a final object of
M xp{D}, so there is a canonical map ug : M — N in M. Unwinding the definitions, we see that the image
of ug in € can be identified with the unit map u : C' — D D¢P(C). Since y is a right fibration and the image
of ug in D is an equivalence, we conclude that v is an equivalence if and only if ug is an equivalence. That

is, u is an equivalence if and only if M is also a right universal object of M. This proves the following:
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(*) The unit map ide — D), 0 DP is an equivalence if and only if every left universal object of M is also
right universal.

The same argument proves:

(+) The counit map Do @L — idper is an equivalence if and only if every right universal object of M is
also left universal.

Combining (x) and (), we deduce that conditions (2) and (3) are equivalent.

The implication (1) = (2) follows from Proposition 4.2.4. We will complete the proof by showing that
(3) = (1). Let A : TwArr(€) — € x C° be the pairing of Proposition 4.2.3. Since X is right representable,
the identity functor ide can be lifted to a right representable morphism of pairings (ide, 8,7) : p — A. We
wish to prove that 8 and v are equivalences. Since the diagram

M — > TwArr(€)
£ ’ e

is homotopy Cartesian (Remark 4.2.13), it will suffice to show that 8 is an equivalence of oco-categories.
Using Remark 4.2.6 and Proposition 3.3.4, we see that the diagram of co-categories

[}

commutes up to homotopy. It follows that § is homotopic to ©%, which is an equivalence by virtue of
assumption (3). O

We now turn to the proof of Proposition 4.2.10. We begin with a general discussion of the mapping
spaces in the co-category CPair. Suppose we are given pairings of co-categories

A:M—=CxD N M 5@ xD.
We have an evident map of simplicial sets
0 : Mapcpyi,, (A, A') = Fun(€, €)™ x Fun(D, D')~.

Lemma 4.2.15. In the situation described above, the map 6 is a Kan fibration. In particular, the mapping
space Mapp,i, . (A, A') s a Kan comple.

Proof. Since Fun(€, €)= x Fun(D,D’)™ is a Kan complex, it will suffice to show that the map 6 is a right
fibration (Lemma T.2.1.3.3). We will prove that 0 has the right lifting property with respect to every right
anodyne map of simplicial sets i : A — B. Fix a map B — Fun(C, €)™ x Fun(D, D")™, and let N denote the
fiber product (€ x D xB) x e o M'. Unwinding the definitions, we are reduced to solvmg a lifting problem
of the form

AxM

%
7
~
P
~ q
~
-

BxM—=BxCxD.

Since q is a pullback of X, it is a right fibration. It will therefore suffice to show ¢’ is right anodyne, which
follows from Corollary T.2.1.2.7. O
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Our next step is to analyze the fibers of Kan fibration 6 : Mapgpy;, . (A, A') = Fun(€, €')~ x Fun(D, D’)=.
Fix a pair of functors a : € — € and § : D — D’. Unwinding the definitions, we see that the fiber
0~{(a, B)} is the oo-category Fune: » o (M, M'). Let x : € x D — § classify the right fibration A, and
let ' : C? x D'? — § classify the right fibration \’. Then Funes » o (M, M) is homotopy equivalent to
the mapping space Mapp,,(gor x por,5)(X; X' © (@ x 3)). Let P(€) = Fun(€,8) and define P(€") similarly,
so that x and X’ can be identified with maps v : D — P(€) and ¢/ : D'? — P(€’). We then have

Mappyn(eer x mor,s) (X, X © (@ X B)) = Mappy,per p(e)) (1, G o V' 0 ),

where G : P(€') — P(C) is the map given by composition with a. Note that G admits a left adjoint
@ : P(C) — P(C"), which fits into a commutative diagram

C——=2P(C)
where the horizontal maps are given by the Yoneda embeddings (see Proposition T.5.2.6.3). Combining this
observation with the analysis above, we obtain a homotopy equivalence
0~ {(a, B)} = Mappyn(per p(ery) (@o v, v/ 0 B).
Let us now specialize to the case where the pairings A : M — €x D and X : M’ — €' x D’ are right
representable. In this case, the functors v and v/ admit factorizations

pr 2 ¢ s P(e)

ol
por A @ — P(e)
(see Construction 3.1.3). We may therefore identify #~1{(, 3)} with the mapping space

MapF\un({Dop)e/)(a o 9//\7 @;\/ o ﬁ)

Under this identification, the subspace

MapCPairR()‘7)‘/) X Fun(€,C’)~ xFun(D,D’)~ {(avﬂ)}

corresponds the summand of Mapp,,,(per ey (@0 D), DY, o 3) spanned by the equivalences a0 D) ~ D'y 0 3
(see Proposition 3.3.4 and its proof).

Proof of Proposition 4.2.10. Let € be an oco-category, let A : TwArr(€) — € x €°? be the pairing of Proposi-
tion 4.2.3, and let p : M — D x € be an arbitrary right representable pairing of co-categories. We first show
that the forgetful functor

Ma'pCPairR ()" u) — Ma'p(‘fatoo (GO;D, 8)

is a homotopy equivalence. Let Mapcpy;,z (A, 1) denote the full simplicial subset of Mapcpaiy, (A, 1) spanned
by the right representable morphisms of pairings. It follows from Lemma 4.2.15 that the map of simplicial
sets

¢ : MapCPairg (>‘a ,LL) - Fun(eop’ 8)2

is a Kan fibration. It will therefore suffice to show that the fibers of ¢ are contractible. Fix a functor
B : € — & so that we have a Kan fibration of simplicial sets u : ¢~*{8} — Fun(€,D)=. Combining
Remark 4.2.6 with the analysis given above, we see that the fiber of u over a functor a : € — D can be
identified with the summand of Mapp,,e,p)(, D), o B) spanned by the equivalences. It follows that u is
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a right fibration represented by the object D], o 3 € Fun(€, D), so that the fiber ¢~ 1{B} is equivalent to
Fun(C, 9)}:@;‘0 5y and therefore contractible.

We now show that the forgetful functor Mapcp,; & (14, A) = Mape,;_ (D, €) is a homotopy equivalence.
For this, it suffices to show that the Kan fibration of simplicial sets ¢ : Mapgpy;z (1, A) = Fun(D, €)= has
contractible fibers. Fix a functor o : D — €, so that we have a Kan fibration v : ¢y~ {a} — Fun(&, €)=,
Using Remark 4.2.6 and the above analysis, we see that the fiber of v over a map 8 : & — @°? can be
identified with the summand of the mapping space Mapp,,(gor,e) (0D}, ). It follows that v is a left fibration
represented by the object oo D), € Fun(€,€), so that the fiber 1y~ '{a} is equivalent to Fun(€’, (‘3)50@;1/

and therefore contractible. O

4.3 The Bar Construction

Let € be a monoidal co-category, let A € Alg(C) be an algebra object of €, and let € : A — 1 be an augmen-
tation on the algebra A. If € admits geometric realizations of simplicial objects, then the bar construction
on A is defined to be the relative tensor product 1 ® 4 1 (here we regard 1 as both a right and left module
over A, by means of the augmentation €): that is, the geometric realization of the simplicial object

S ARA=—=FA—=1.

We will denote this geometric realization by Bar A. Our goal in this section is to study some of the properties
of the construction A — Bar A.

(a) Consider the composition

BarA = 1®41
~ 1R, A®41
- 1®41®41
~ 1®21®11841
% 1oa1)®(1®41)

Bar A ® Bar A.

(here the map « is an equivalence if we assume that the tensor product functor ® : €x € — C
preserves geometric realizations of simplicial objects). We can view this composite map as giving a
comultiplication A : Bar A — Bar A ® Bar A. We will show that this comultiplication is coherently
associative: that is, it exhibits Bar A as an associative algebra object in the monoidal co-category €°P.
Moreover, this algebra object is equipped with a canonical augmentation, given by the morphism

1~~1®1—+1®4,41=Bar4d
in €. We may therefore identify the construction A — Bar A with a functor

Bar : Alg™&(C)°P — Alg™"&(CP).

(b) Assume that C admits totalizations of cosimplicial objects. Then C° admits geometric realizations of
simplicial objects, so that we can apply the bar construction to augmented associative algebra objects
of C°?. We therefore obtain a functor

CoBar : Alg™"8(CP) — Alg™&(C)°P,

which we will refer to as the cobar construction. If C' is an augmented algebra object of C°P (which
we can think of as a augmented coalgebra object of €), then CoBar C' is given by the totalization of a

cosimplicial diagram
1—=C—=%C®C—%£-
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We will show that the functor CoBar : Alg™'®(C°?) — Alg®"®(C)°P is adjoint to the bar construction
Bar : Alg®"8(@)°P — Alg™"&(CP).

To simplify the discussion, we note that there is no harm in assuming that the unit object 1 € C is both
initial and final. This can always be achieved by replacing € by €y, /1 (which inherits a monoidal structure:
see §A.2.2.2). We have canonical equivalences

Alg(Cyy /1) ~ Alg™5(C) Alg(@‘f; /1
which allows us to ignore augmentations in the discussion below.

Let us now describe the adjunction appearing in assertion (b) more explicitly. Suppose we are given an
algebra object A € Alg™®(€) and a coalgebra object C' € Alg™®(C°?). According to (b), we should have a
canonical homotopy equivalence

Mapjg(e) (A, CoBar C) == Map g, (eor) (C, Bar A).

) = Alg™s(€7),

We will prove this by identifying both sides with a classifying space for liftings of the pair (A,C) €
Alg(€ x €°?) to an algebra object of the twisted arrow oco-category TwArr(C).

Theorem 4.3.1. Let C be a monoidal oo-category, so that C°P and TwArr(C) inherit the structure of
monoidal co-categories (see Example 4.3.6). Assume that the unit object 1 € € is both initial and final.
Then:

(1) The induced map X : Alg(TwArr(€)) — Alg(C) x Alg(C°?) is a pairing of co-categories.

(2) Assume that the unit object 1 € C is final (so that every algebra object of C is equipped with a canonical
augmentation) and that C admits geometric realizations of simplicial objects. Then the pairing A is left
representable, and therefore determines a functor ® : Alg(€)°P — Alg(C°?). The composite functor

Alg(€)P 23 Alg(C) — €
is given by A — Bar A.

(3) Assume that the unit object 1 is initial (so that every coalgebra object of C is equipped with a canonical
augmentation) and that C admils totalizations of cosimplicial objects. Then the pairing A is right
representable, and therefore determined a functor ®' : Alg(C°?)°? — Alg(C). The composite functor

Alg(€)? 3 Alg(e) — €
is given by A — CoBar A.

Remark 4.3.2. Assertion (3) of Theorem 4.3.1 follows from assertion (2), applied to the opposite co-category
CP,

Remark 4.3.3. In the situation of Theorem 4.3.1, suppose that the unit object 1 is both initial and final,
and that € admits both geometric realizations of simplicial objects and totalizations of cosimplicial objects.
Then the pairing A : Alg(TwArr(C)) — Alg(C) x Alg(C?) is both left and right representable. We therefore
obtain adjoint functors

DP
Alg(€)===cAlg(C),

ol
given by the bar and cobar constructions, where cAlg(€) = Alg(C?)°? is the oco-category of coalgebra objects
of C.

More generally, if € is an arbitrary monoidal co-category which admits geometric realizations of simplicial

objects and totalizations of cosimplicial objects, then by applying Theorem 4.3.1 to the oo-category Cq, /1
we obtain an adjunction

Algaug(e)%cAlgaug(G).
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The proof of Theorem 4.3.1 will require some general remarks about pairings between monoidal oo-
categories.

Definition 4.3.4. Let O® be an co-operad. A pairing of O-monoidal co-categories is a triple
p:C® 5 0% ¢: D% = 0% A% : M® = C¥ x e D®
)

where p and ¢ exhibit €¥ and D® as O-monoidal co-categories and A% : M® — €% x yo D¥ is a O-monoidal
functor which is a categorical fibration and which induces a right fibration Ax : Mx — Cx x Dx after taking
the fiber over any object X € O.

Remark 4.3.5. In the situation of Definition 4.3.4, we will generally abuse terminology by simply referring
to the O-monoidal functor \® : M® — % X 9® D® as a pairing of monoidal oo-categories. In the special
case where 0% = Ass® is the associative oc-operad, we will refer to A® simply as a pairing of monoidal
oo-categories. If 0% = Comm® is the commutative oo-operad, we will refer to A® as a pairing of symmetric
monoidal co-categories.

Example 4.3.6. Recall that the forgetful functor
A:M—=CxD)—20C

induces an equivalence CPair®®™ — Qat.,, whose homotopy inverse is given on objects by € (A
TwArr(€) — € x C%) (see Remark 4.2.12). Let O® be an oo-operad and let € be a O-monoidal co-category,
which we can identify with a O-monoid object in the oo-category Catoo. It follows that TwArr(C) admits the
structure of a O-monoid object of CPair®®!, which we can identify with a pairing of O-monoidal co-categories

TwArr(€)® — C¥ x e (€)%,

Remark 4.3.7. Let \® : M® — % X 0@ D® be a pairing of O-monoidal co-categories. Then the induced
map Alg,o(M) — Alg,o(€) x Alg, (D) is a pairing of co-categories. This follows immediately from
Corollary A.3.2.2.3.

In particular, if A% is a pairing of monoidal co-categories, then it induces a pairing
Alg()) : Alg(M) — Alg(C) x Alg(D).

The key step in the proof of Theorem 4.3.1 is to establish a criterion for verifying that Alg(\) is left (or
right) representable.

Proposition 4.3.8. Let A\® : M® — €% x 40 D® be a pairing of monoidal co-categories. Assume that:
(1) If 1 denotes the unit object of D, then the right fibration M xp{1} — C is a categorical equivalence.
(2) The underlying pairing X : M — C x D is left representable.

(3) The co-category D admits totalizations of cosimplicial objects.
Then the induced pairing Alg(\) : Alg(M) — Alg(C) x Alg(D) is left representable.

The proof of Proposition 4.3.8 will occupy our attention for most of this section. We begin by treating
an easy special case.

Proposition 4.3.9. Let A\® : M® — C® X 4.0 D be a pairing between monodial co-categories, and assume
that the underlying pairing of oo-categories X : M — € x D is left representable. Let A € Alg(C) be a trivial
algebra object of C (see §A4.58.2.1). Then:

(1) There exists a left universal object of Alg(M) lying over A € Alg(C).
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(2) An object M € Alg(M) lying over A € Alg(Q) is left universal if and only if the image of M in M is
left universal (with respect to the pairing A : M — € x D).

Proof. We can identify Alg(M) xaige) {A} with Alg(N), where N® denotes the monoidal co-category
M® x oo Ass®. An object of Alg(M) X ajge) {A} is left universal if and only if it is a final object of Alg(N).

Since A is left representable, N has a final object. Assertions (1) and (2) are therefore immediate consequences
of Corollary A.3.2.2.5. O

To prove Proposition 4.3.8 in general, we must show that an arbitrary algebra object A € Alg(C) can
be lifted to a left universal object of Alg(M). This object is not as easy to find: for example, its image
in M is generally not left universal for the underlying pairing A : M — € x D. In order to construct it,
we would like to reduce to the situation where A is a trivial algebra object of €. We will accomplish
this by replacing € by another monoidal co-category having A as the unit object: namely, the oo-category
Mod’*(€) ~ 4BMod4(C) (see Theorem A.4.3.4.28).

Lemma 4.3.10. Let A\® : M® — €% x 440 D¥ be a pairing of monoidal co-categories, and let M € Alg(M)
have image (A, B) € Alg(C) x Alg(D). Then the induced map

MBMOdM(M)® — ABMOdA(G)® X Ass® BBMOdB(D)®

is also a pairing of monoidal co-categories.

Proof. It will suffice to show that the map pBMod (M) — 4aBMod 4(€) x gkBModg(D) is a right fibration.
This map is a pullback of the categorical fibration

0 : BMOd(M) — (BMOd(G) X BMOd(TD)) X Alg(C)x Alg(D) Alg(M)
It will therefore suffice to show that 6 is a right fibration. Let
6" : (BMod(€) x BMod(D)) X alg(e)2x Alg(p)2 Alg(M)* — BMod(€) x BMod(D)

be the projection map. Since 6 is a categorical fibration, it will suffice to show that 6’ and 6’ o 6 are right
fibrations. The map €’ is a pullback of the forgetful functor Alg()) : Alg(M) — Alg(C) x Alg(D). It will
therefore suffice to show that Alg()\) and €’ 0 are right fibrations, which follows immediately from Corollary
A.3.2.2.3. O

Proposition 4.3.11. Let A% : M® — €% x 4@ D® be a pairing of monoidal co-categories. Let M € Alg(M)
have image (A, B) € Alg(C) x Alg(D), and identify A and B with their images in C and D, respec-
tively. Assume that B is a trivial algebra object of D and that, for every object C € C, the Kan complex
A"H(C,B)} € M is contractible. Then the forgetful functor Alg(BMody (M) — Alg(M) carries left
universal objects of Alg(nrBMod (M) to left universal objects of Alg(M).

Proof. It will suffice to show that for every A" € Alg(4BMod4(€)) ~ Alg(C) 4, having image A} € Alg(C),
the left fibration Alg(aBModas(M)) X alg(4BModa(e)) 1A'} = Alg(M) X aig(e) {Ap} is an equivalence of oo-
categories (and therefore carries final objects to final objects). Since B is a trivial algebra object of D, the
forgetful functor Alg(pFBModg(D)) — Alg(D) is an equivalence of co-categories. It will therefore suffice to
show that for each B’ € Alg(pBModp (D)) having image B in Alg(pBModg (D)), the induced map

Alg(nBModas (M) X Alg(4BMod.a(€))x Alg(sBMod (D)) 1 (A", B)} = Alg(M) X alg(e)x alg(n) { (A6, Boy)}

is a homotopy equivalence of Kan complexes. For this, it suffices to show that M € Alg(M) is a p-initial
object, where p : Alg(M) — Alg(C) x Alg(D) denotes the projection. Since p is a right fibration, it suffices
to verify that M is an initial object of Alg(M) X aig(e)xalg(p) {(A4, B)}. This oo-category is is given by a
homotopy fiber of the map ¢ : Alg(N) — Alg(€), where N® = M® x% Ass®. We now observe that ¢ is a
categorical equivalence, since the monoidal functor N — € is a categorical equivalence (by virtue of the fact
that it is a right fibration whose fibers are contractible Kan complexes). O
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Notation 4.3.12. Let A% : M® — €% x 4.0 D® be a pairing of monoidal co-categories. If M € Alg(M)
has image (A, B) € Alg(C) x Alg(D), we let A\ps denote the induced pairing pyBMod s (M) — 4BMod4(€) x
BBMOdB(D)

Lemma 4.3.13. Let A% : M® — €% x 40 D¥ be a pairing of monoidal co-categories, and let M € Alg(M)
be an object having image (A, B) € Alg(C) x Alg(D), where B is a trivial algebra object of D. Let F : M —
mBMod s (M) be a left adjoint to the forgetful functor, given by Vs M @V @ M (Corollary A.4.3.3.14).
Then F carries left universal objects of M (with respect to the pairing A : M — Cx D) to left universal
objects of pBMod s (M) (with respect to the pairing Ay : pyBMod (M) — 4aBMod 4(€) x gBModg(D)).

Proof. Let F/ : € — 4BMod(C) and F” : D — gBModg(D) be left adjoints to the forgetful functors
G’ : s.BMod4(€C) — € and G” : gBModg(D) — D. We may assume without loss of generality that the
diagram

M——F o~ BMody (M)
l F/XFI/ i
CxD—— ABMOdA(G) X BBMOdB(@)

is commutative. For each C € @, F induces a functor
f : M XQ{C} — MBMOd]w(M) XABModA(G) {F/(C)}

We note that f has a right adjoint g, given by composing the forgetful functor ,yBModas (M) X, BMod ., (€)
{F'(C)} = M xe{(G'oF")(C)} with the pullback functor M X e{(G' o F'(C)} — M x{C'} associated to the
unit map C — (G'oF")(C). To show that f preserves final objects, it will suffice to show that g is a homotopy
inverse to f. Let u : id — g o f be the unit map. For every object V' € M xe{C?} having image D € D, the
unit map uy : V. — (go f)(V) has image in D equivalent to the unit map D — (G”" o F")(D) ~ B D® B in
D. Since B is a trivial algebra, we conclude that the image of uy in D is an equivalence. Because the map
M xe{C} — D is a right fibration, we conclude that uy is an equivalence. A similar argument shows that
the counit map v : fog — id is an equivalence of functors, so that g is homotopy inverse to f as desired. O

Lemma 4.3.14. Let f : € — € be a right fibration of co-categories, classified by a map x : CP — 8 and
suppose we are given a diagram D : K — C. The following conditions are equivalent:

(1) For every commutative diagram o :

K—21.0
a7
7/
P
K¥——2¢C
there exists an extension q as indicated, which is an f-colimit diagram.
(2) The restriction x|(K*)°P is a limit diagram in 8.
If p is a colimit diagram in C, then these conditions are equivalent to the following:

(3) For every diagram o as in (1), the diagram q : K — € can be extended to a colimit diagram in C, whose
image in C is also a colimit diagram.

Proof. The equivalence of (1) and (2) follows from Lemma VIL.5.17, and the equivalence of (1) and (3) from
Proposition T.4.3.1.5. O

We will need the following refinement of Corollary A.4.2.3.5:
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Lemma 4.3.15. Let M be an co-category which is left-tensored over a monoidal co-category C, let A be an
algebra object of C, and let 6 : LMod o(M) — M denote the forgetful functor. Let p : K — LMod (M) be a
diagram and let pg = 0 o p. Suppose that po can be extended to an operadic colimit diagram Dy : K¢ — M
(in other words, Dy has the property that for every object C' € C, the composite map

K" 9w
is also a colimit diagram in M). Then:
(1) The diagram p extends to a colimit diagram D : K< — LMod 4 (M).

(2) Let p: K¢ — LModa(M) be an arbitrary extension of p. Then P is a colimit diagram if and only if
0 oD is a colimit diagram.

Proof. Let ¢ : M® — C® be the locally coCartesian fibration defined in Notation A.4.2.2.16. The algebra
object A determines a map N(A)? — C®. Let X denote the fiber product N(A)? xce M® and let
LMod (M) — “LMod (M) C Funy(a)er (N(A)°?, X) be the equivalence of Corollary A.4.2.2.15. It follows
from Lemma A.3.2.2.9 that the composite map K — LMod (M) — “LMod (M) can be extended to a
colimit diagram in Funy(a)er (N(A)°,X), that this diagram factors through “LMod (M), and that its
image in M is a colimit diagram. This proves (1) and the “only if” direction of (2). To prove the “if”
direction of (2), let us suppose we are given an arbitrary extension p : K< — LMod 4 (M), carrying the cone
point to a left A-module M. Then p determines a map « : h_n;l(p) — M. If the image of p in M is a colimit
diagram, then the image of o in M is a colimit diagram. Since the forgetful functor LMod 4 (M) — M is
conservative (Corollary A.4.2.3.2), we deduce that « is an equivalence. It follows that P is a colimit diagram
as desired. O

Example 4.3.16. Let M be an oo-category which is left tensored over a monoidal co-category C%, let
A € Alg(C), and 6 : LMods (M) — M denote the forgetful functor. If M, is a #-split simplicial object of
LMod 4 (M), then the underlying map N(A)°? — LMod 4 (M) satisfies the hypothesis of Lemma 4.3.15. It
follows that M, admits a geometric realization in LMod 4 (M) which is preserved by the forgetful functor 6.

Example 4.3.17. Let M be an oo-category which is bitensored over the a pair of monoidal co-categories €%
and D®, and suppose we are given algebra objects A € Alg(€) and B € Alg(D). Let 6 : RModz(M) — M
denote the forgetful functor, and regard RModp (M) as an oco-category left-tensored over € (see §A.4.3.2).
Let u : ABModp(M) ~ LMod4(RModp(M)) — RModp(M) be the forgetful functor, and let M, be a
simplicial object of 4BModg(M). Assume that M, is 6 o p-split. Then p(M,) is a 6-split simplicial object
of RModp(M). It follows from Example 4.3.16 that pu(M,) admits a geometric realization in RMod g (M).
For every object C € C, the diagram

RMod 5(M) —Z> RMod 5(M)

I I
M %%

commutes up to homotopy. It follows that the formation of the geometric realization of p(M,) is preserved
by operation of tensor product with C'. Applying Lemma 4.3.15, we deduce that M, admits a geometric
realization in 4 BMod g (M), which is preserved by the forgetful functor p. This proves the following:

(%) Let M, be v-split simplicial object of 4BModg(M), where v = 6 o i : 4BModp(M) — M is the
forgetful functor. Then M, admits a geometric realization in 4BMod (M), which is preserved by the
functor v.

Remark 4.3.18. In the situation of Example 4.3.17, the forgetful functor v : \BModg(M) — M is conser-
vative (since the functors 8 and p are conservative, by Corollary A.4.2.3.2). Applying Theorem A.6.2.2.5, we
deduce that the functor v is monadic: that is, it exhibits 4BMod g (M) as the co-category of representations
of a monad T on the co-category M. The underlying functor of 7" is given on objects by M — A®@ M ® B.
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Remark 4.3.19. Let G : C — D be any monadic functor between oo-categories, so that € ~ Modr(D) for
some monad T on D. Let F be a left adjoint to G. Every object C' € € can be (canonically) realized as
the geometric realization of a G-split simplicial object Co of €, where each C,, ~ F o T" o G(C) lies in the
essential image of F'.

Lemma 4.3.20. Let f :C — @ be a right fibration of co-categories and let 67. be a simplicial object of C. If
f(C4) is a split simplicial object of C, then C is a split simplicial object of C,.

Proof. This is an immediate consequence of the characterization of split simplicial objects given in Corollary
A.6.2.1.7. O

Lemma 4.3.21. Let A% : M® — C® x 4.0 D® be a pairing of monoidal co-categories, and let M € Alg(M)
be an object having image (A, B) € Alg(C) x Alg(D). Assume that:

(1) The object B € Alg(D) is a trivial algebra in D.
(2) The pairing A : M — C x D is left representable.
(3) The co-category D admits totalizations of cosimplicial objects.
Then the induced pairing Aps : prBModp (M) — aBMod 4(€) x gBModg (D) is left representable.

Proof. Fix an object C' € 4BMod4(C); we wish to show that C can be lifted to a left universal object of
mBMod s (M). Let p’ : 4BMod4(€) — € denote the forgetful functor. Using Example 4.3.17, we deduce that
there is a p’-split simplicial object Cy of 4BMod 4(C) having colimit C', where each C,, lies in the essential
image of the left adjoint to p'.

Fix an object D € D, let Mp denote the fiber product M xp{D}, and consider the induced right
fibration # : Mp — €. Condition (1) implies that D lifts uniquely to an object D € pBModg(D). Set
N = yBModp (M) X BMods () {D'}, so that the projection map N — 4BMod4(€) is a right fibration
classified by a map xp : ABMod4(C)” — 8. We claim that the canonical map xp(C) — @XD(CJ is a
homotopy equivalence. To prove this, it will suffice (Lemma 4.3.14) to show that for every simplicial object
N, of N lifting C,, there exists a geometric realization |N,| which is preserved by the forgetful functor
q: N — 4BMod4(€). Let p: N — Mp denote the forgetful functor. Since ¢’ : Mp — C is a right fibration,
it follows from Lemma 4.3.20 that p(N,) is a split simplicial object of Mp. Since N can be identified with
an oo-category of bimodule objects of Mp, Example 4.3.17 implies that N, has a colimit N in N such that
p(N) = |p(No)|. Since p(N,) is split, we conclude that the colimit of N, is preserved by ¢’ op ~ p’ 0 q. Using
Lemma 4.3.20 again, we conclude that the colimit of N, is preserved by gq.

The pairing Ay is classified by a functor ' : 4BMod4(€)” — Fun(zBModg (D), 8). It follows from
the above arguments that x'(C') ~ Jim X' (Co). We wish to prove that x'(C') is representable. Using condition
(3), we are reduced to proving that each x/(C,,) is a representable functor. This follows immediately from
(2) and Lemma 4.3.13. O

Proof of Proposition 4.3.8. Let A € Alg(C); we wish to show that there is a left universal object of Alg(M)
lying over A. Let B be a trivial algebra object of D, so that condition (1) implies that the right fibration
M xp{B} — C is an equivalence of (monoidal) co-categories. It follows that the pair (A, B) can be lifted
to an object M € Alg(M) in an essentially unique way. Using Proposition 4.3.11, we are reduced to proving
that there exists a left universal object of Alg(3BMods(M)) lying over A € Alg(4BMod4(€)). Since A is
the unit object of 4BMod(C), it suffices to lift A to a left universal object of j;BMod s (M) (Proposition
4.3.9). The existence of such a lift now follows from Lemma 4.3.21. O

Remark 4.3.22. Let A\® : M® — C¥ x 440 D® be a pairing of monoidal oco-categories satisfying the
hypotheses of Proposition 4.3.8. Then Alg(\) : Alg(M) — Alg(C) x Alg(D) is a left representable pairing,
and therefore induces a duality functor D aje(x) : Alg(€)? — Alg(D). By unravelling the proof, we can
obtain a more explicit description of this functor. Namely, let B be a trivial algebra object of D and lift the
pair (4, B) to an algebra object M € Alg(M). Then, as an object of D, we can identify D 5j4(x)(A) with
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Dy, (A). To compute the latter, we need to resolve A € 4BMod4(€) by free bimodules. The equivalence
A~ A®a A gives a simplicial resolution A, of A by free bimodules A,, ~ A ® (A®™) @ A. Then

QAIE(/\) (A) = ,}3)\1»[ (A) = @gAM (AO) = @1 :D)\(A®m)a
[m]eA

where the last equivalence follows from Proposition 4.3.11.

Proof of Theorem 4.3.1. Let € be a monoidal co-category and let Alg(\) : Alg(TwArr(C)) — Alg(C) x
Alg(C°?) be the canonical map. Assertion (1) of the Theorem follows from Remark 4.3.7, which asserts that
A is a pairing of oo-categories. To complete the proof, it will suffice to verify assertion (2) (Remark 4.3.2).
Assume that the unit object 1 € € is final and that € admits geometric realizations of simplicial objects.
Then the pairing A : TwArr(C) — € x C° satisfies the hypotheses of Proposition 4.3.8, so that A is left
representable. In particular, we have a duality functor D () : Alg(€C)? — Alg(C?).

Note that the underlying pairing of oco-categories A : TwArr(€) — € x €% induces the identity map
D, : C%? — € (Remark 4.2.6). Let A € Alg(€) be arbitrary and let M € Alg(TwArr(€)) be as in the proof
of Proposition 4.3.8. Then the duality functor

®>\M : ABMOdA(G)Op — CP

is right adjoint to the forgetful functor 4BMod(€)?”” — €%, and therefore given by the two-sided bar
construction C'— 1®4 C ®4 1. In particular, we see that D 5,(») carries A to the object

1®AA®A121®A]_EG.

4.4 Koszul Duality for E, -Algebras

Our goal in this section is to study the operation of Koszul duality in the setting of augmented E,-algebras
over a field k. More precisely, we will construct a self-adjoint functor

™) . (Algl(cn),aug)op N Alg](gn),aug-

Our main result asserts that for large class of augmented E,-algebras A, the unit map A — D™D A4 is
an equivalence (Theorem 4.4.5).

We begin with the definition of the Koszul duality functor (). Let A be an E,-algebra over a field k.
An augmentation on A is a map of E,-algebras A — k. We let Aug(A) = MapAlg?) (A, k) denote the space
of augmentations on A. If we are given a pair of augmented E,,-algebras ¢ : A — k and ¢’ : B — k, we let
Pair(A, B) denote the homotopy fiber of the map Aug(A ®; B) — Aug(A) x Aug(B), taken over the point
(e,€'). More informally, we can describe Pair(A, B) as the space of augmentations on A ®; B which extend
the given augmentations on A and B. We will refer to the points of Pair(A, B) as pairings of A with B. The
starting point for the theory of Koszul duality is the following fact:

Proposition 4.4.1. Let k be a field, n > 0 an integer, and A be an augmented E, -algebra over k. Then the
construction B +— Pair(A, B) determines a representable functor from (Alg,(cn)’aug)"p into 8. That 1is, there
exists an augmented B, -algebra D™ (A) and a pairing v : A @, DM (A) — k with the following universal
property: for every augmented E,-algebra B, composition with v induces a homotopy equivalence

Map ) ) .sus (B, DM (A)) — Pair(A, B).
k
In the situation of Proposition, we will refer to ®(™(A) as the Koszul dual of A. The construction

A+ D (A) determines a functor D™ : (Alg,&")’aug)ol’ — Alg,in)’aug, which we will refer to as Koszul
duality.
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Example 4.4.2. Suppose that n = 0. Then the construction V' +— k & V defines an equivalence from the
oo-category Mody, of k-module spectra to the co-category Alggﬂg. If V and W are objects of Mody, then a
pairing of V' with W is a k-linear map

dp:koV)pkeoW)2kaVoWa (Ve,W)—k

equipped with homotopies ¢|k ~ id, ¢|V ~ 0 ~ ¢|W. It follows that we can identify Pair(k @V, k& W) with
the space Mapy,q, (V @& W, k). It follows that the Koszul duality functor DO is given by k@ V > ko VY,
where V'V is the k-linear dual of V' (with homotopy groups given by m; VY ~ Homg(7_;V, k)).

Example 4.4.3. When n = 1, the Koszul duality functor D) : (Algi"®)°P — Alg?"® agrees with the functor
studied in §3.1.

Remark 4.4.4. The construction A, B — Pair(A, B) is symmetric in A and B. Consequently, for any pair
of augmented E,-algebras A and B, we have homotopy equivalences

HomAlggcm.aug (B, (A)) ~ Pair(4, B) ~ Pair(B, A) ~ HomAlggcm.aug (A, math frakD™ (B)).

In particular, the tautological pairing A @), ®(™ (A) — k can be identified with a point of Pair(D( (A), A),
which is classified by a biduality map uy : A — Q(”)D(”)(A). Our main goal in this section is to study
conditions which guarantee that w4 is an equivalence.

We can now state the main result of this section:

Theorem 4.4.5. Let n > 0 and let A be an augmented E,-algebra over a field k. If A is n-coconnective
and locally finite, then the biduality map uas : A — Q(”)Q(”)(A) s an equivalence of augmented E,, -algebras
over k.

The remainder of this section is devoted to the proofs of Proposition 4.4.1 and Theorem 4.4.5. We begin
with Proposition 4.4.1. If A is an augmented E,-algebra over a field k, it is easy to deduce the existence of
the Koszul dual ®(™ (A) from the general formalism developed in §A.6.1.4: we can describe D™ (A) as a
centralizer of the augmentation map € : A — k (see Example A.6.1.4.14). We will give a somewhat different
proof here, one which suggests methods of calculating with the Koszul duality functor ®() (which will be
needed in the proof of Theorem 4.4.5). Our first step is to translate the definition of Koszul duality into the
language of pairings of monoidal co-categories, developed in §4.3.

Construction 4.4.6. Fix a field k. We let Alglio) ~ (Mody);, denote the oo-category whose objects
are k-module spectra A equipped with a unit map & — A. We will identify k& with the initial object of
Alg,go), and let Algéo)’aug denote the co-category (Algéo)) /k- There is a canonical equivalence of co-categories
Modj, — Alg\”"™2 given by V s k@ V.

The symmetric monoidal structure on Mod endows Alg,(ﬁo) with a symmetric monoidal structure (see
§A.2.2.2). Let m : Alg,(ﬁo) X Alggco) — Alg,(co) be the tensor product functor, and let pg, p; : Alggco) X Alg,(co) —
Alg,(co) be the projection maps onto the first and second factor, respectively. Since the unit object of Algéo) is

initial, there are natural transformations py =% m < p;, given by a map Alg,(co) X Algg)) — Fun(A3, Algg))).

We let M denote the fiber product

(Alg’(go) X Algch)) « FUH(Ag,Alg](CO)’aug),

Fun(A2,Alg!”)
There is an evident pair of forgetful functors
Alg™® M — Algl? ™

which determine a right fibration A : M — Alg,(co)’aug X Alg,(CO)’aug .
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The symmetric monoidal structure on Mody, induces a symmetric monoidal structure on the co-categories
Alg,go), Alg,(co)’aug, and M. The forgetful functor A promotes to a symmetric monoidal functor

A®M® — (Algl” ) X1, (Algl )%,

For every integer n > 0, we let M™ = Algg (M). Theorem A.5.1.2.2 gives a canonical equivalence
Algg (Algio)) ~ Algfcn), which in turn induces an equivalence of co-categories Algg (Alg](go)’aug) ~ Alg,(f")’aug.

It follows that A induces a right fibration A(™ : MM Alggcn)’allg X Algi)n)’aug (see Example 4.3.6).

Remark 4.4.7. In the special case n = 1, the right fibration
A ™) Alg,(gn)’a"ug X Alggf)’aug
agrees with the pairing of Construction 3.1.4.

It is not difficult to see that right fibration A(™ : M Algfcn)’aug X Alggcn)’aug is classified by the

functor Pr : (Alg,(cn)’a“g)"p X (Algén)’aug)ol) — 8 introduced at the beginning of this section. We may
therefore reformulate Proposition 4.4.1 as follows:

Proposition 4.4.8. Let k be a field and let n > 0 be an integer. Then the pairing A\™ : M
Alg,(cn)’aUlg X Alg,(:)@ug of Construction 4.4.6 is both right and left representable.

Proof. We will show that A(™ is left representable; the proof of right representability is identical. We
proceed by induction on n, the case n = 0 being trivial (see Example 4.4.2). To carry out the inductive
step, let us assume that A(™ is left representable; we wish to prove that A1) is left representable. Let
M — Alg,(co)’aug X Alggco)’aug be as in Construction 4.4.6. The symmetric monoidal structure on Mody, induces
a symmetric monoidal structure on M and Alg,go)’aug, hence (symmetric) monoidal structures on M™ and

Alg,g")’aug. It follows that A(™ can be regarded as a pairing of monoidal co-categories
AM® L p(n)® (Alg,(gn)’aug)(@ % (Alg,(cn)’aug)ég.
Using Theorem A.5.1.2.2, we can identify A(®*1) with the induced pairing
Alg(A™) : Alg(M™) = Alg(Alg!™ ™€) x Alg(Alg{™ "),
We will prove that this pairing is left representable by verifying the hypotheses of Proposition 4.3.8:

(1) The right fibration M x Alg(m,aug{k} — Alg,(Cn)’aug is a categorical equivalence. Unwinding the def-
k

initions, we must show that the Koszul dual CD(”)(k‘) is equivalent to the final object k € Alg}cn)’aug,

which follows immediately from the definitions.

(2) The pairing A" is left representable: this follows from the inductive hypothesis.

3) The oo-category Al (n),aug admits totalizations of cosimplicial objects. In fact, Al (n),aug is a pre-
( gory Alg, p j , Alg,, P

sentable co-category, and therefore admits all limits and colimits.
O

Let us now outline our strategy for proving Theorem 4.4.5. Our proof will proceed by induction on
n. The main idea is to understand the Koszul duality functor (1) as a mixture of Koszul duality for
D™ and the bar construction studied in §4.3. For this, we would like to compare the pairing of monoidal
oo-categories
A® ()@ (Algén)’aUg)(g x (Alg,(cn)’aUg)(X)
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appearing in the proof of Proposition 4.4.8 with the pairing of monoidal co-categories
TWAI‘I‘(AlgI(;n)’aUg)@) N (Algl(cn),aug)éb % (Alggﬂ,aug)op@

of Example 4.3.6. We will do so by constructing a morphism of monoidal pairings

TWArr(Algén)’wg)® M@

|

n),au. n),au id x® ™
(Algé ) g)@ « (Algé ) g)@ XV

(Algg™ ") x (Algf""%)or,

If we ignore the monoidal structures, this morphism of pairings can be obtained by invoking the universal
property of TwArr(Algl(cn)’aug) (Proposition 4.2.10). However, we will need to work harder, because the
horizontal maps appearing in the above diagram are not monoidal functors (recall that the Koszul duality
functor D™ does not commute with tensor products in general; see Warning 3.1.20). To carry out the
construction, we will need a relative version of the twisted arrow construction € +— TwArr(C) introduced in

§4.2.

Construction 4.4.9. Let A : M — € x D, be a pairing of co-categories, classified by a functor x : D7 —
Fun(C?,8) = P(C). Let j : € — P(C) be the Yoneda embedding, and set

Ci=¢C X Fun({0} x€°P,8) Fun(Al X eopvs) XFun({1} x€°P,8) DoP.

Let eg : €, — C and e; : €y — D be the two projection maps, so that we have a natural transformation
a: (joey) — (xoer) of functors Cy — Fun(C?,8). The functor j o eq classifies a right fibration u :
TwArry(€) — € x €5, which we regard as a pairing of co-categories. We will refer to TwArry(C) as the
oco-category of twisted arrows of C relative to .

Note that « classifies a map v : TwArry(€) — M xp CY of right fibrations over € x €. We therefore
obtain a morphism of pairings

TwArry (C) ———= M
lu l)\
o id xeq
ex ey CxD.

Example 4.4.10. In the setting of Construction 4.4.9, suppose that D = A? and that ) is the identity
map from C to itself. In this case, the evaluation map ey : €y — C is an equivalence, and the right fibration
TwArry(C) — € x €S classifies the Yoneda pairing

CPxCy~CPxC—S.

Applying Proposition 4.2.5, we deduce that the pairing TwArry(€) — € x C is equivalent to the pairing
TwArr(€) — € x C° of Construction 4.2.3 (this can also be deduced by comparing the universal properties
of TwArr(€) and TwArry(€) given by Proposition 4.2.10 and 4.4.11, respectively).

Proposition 4.4.11. Let A : M — € x D be a pairing of co-categories, let ji : TwArry(C) — € x C be as
in Construction 4.4.9. Then:

(1) The pairing p is right representable.

(2) Let N : M' — €' x D’ be an arbitrary right representable pairing of oco-categories. Then composition
with the canonical morphism p — A induces a homotopy equivalence

0 : MapCPairR(/\/7 /’(‘) — MapCPair(Ay /J/)
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Corollary 4.4.12. The inclusion functor CPair® < CPair admits a right adjoint, given on objects by the
construction

(A : M = €x D)~ (TwArry(€) — Cx €).
Proof of Proposition 4.4.11. We have a commutative diagram

0

Mapcpain (N, 1) Mapcp,i (A, A)

\ /
Fun(€’, €)= x Fun(D’, D)=.

To prove that 6 is a homotopy equivalence, it will suffice to show that 6 induces a homotopy equivalence of
homotopy fibers over any pair of functors (F : ¢’ — €,G : D' — D). It now suffice to observe that both
homotopy fibers can be identified with the mapping space Mapgy,(eror xpror ) (X's X © (F X G)), where x and
x’ classify the right fibrations A and )\, respectively. O

Remark 4.4.13. Let A : M — € x D be a pairing of co-categories and let 1 : TwArry(€) — € x € be the
pairing of Construction 4.4.9. Assume that X is left representable, so that the duality functor Dy : C? — D
is defined. Unwinding the definitions, we see that C5” is equivalent to the oo-category C” xp Fun(Al, D)
whose objects are triples (C, D, ¢) where C € €°?, D € D, and ¢ : D — ©,(C) is a morphism in D. In
particular, the forgetful functor €3 — €% admits a fully faithful left adjoint L, whose essential image is
spanned by those triples (C, D, ¢) where ¢ : D — D, (C) is an equivalence in D. We will denote this essential
image by (€9)°?, and we let TwArr$(€) denote the inverse image of € x (€)% in TwArry(C).

Note that (€3)°P is a localization of €. Moreover, if f is a morphsim in €57, then Lf is an equivalence
if and only if the image of f in C°? is an equivalence.

Remark 4.4.14. Suppose we are given a morphism of pairings

M

!

CxD—=CxD.

We then obtain an induced right representable morphism of pairings

TwArry(€) — TwArry/ (C)

| l

ExCP ——exey.
Taking D’ = A® and M’ = €, we obtain a morphism of pairings
TwArry(€) —— TwArr(C)

| |

ExC¥ —exe”?
(see Example 4.4.10). If X is left representable, this morphism restricts to an equivalence

TwAr) (€) —— TwArr(C)

| |

€ x(€9)r —=exe?,
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where the pairing on the left is defined as in Remark 4.4.13.

Construction 4.4.15. Suppose we are given a pairing of symmetric monoidal co-categories
A® : M® — G® XN(?in*) ®®,

which we can identify with a commtuative monoid object of the oo-category CPair’®. Applying the right
adjoint to the inclusion CPair® < CPair, we see that the pairing TwArry(€C) — € x € of Construction

4.4.9 can be promoted to a commutative monoid object of CPair®, corresponding to another pairing of
symmetric monoidal co-categories

p® : TwArry (€)% — C% x (€)%,
We obtain a commutative diagram

TwArr(€)® TwArr, (€)® — > M®

| | |

C% Xn(7Fin.) (CP)® <—— €¥ Xn(in,) (€F)® — C% Xn(5in,) D¥

where the horizontal maps are symmetric monoidal functors.

Now suppose that A is left representable. The localization functor L appearing in Remark 4.4.13 is
compatible with the symmetric monoidal structure on €3 (in the sense of Definition A.2.2.1.6), so that the
full subcategory G?\)C’p C (63)01’ inherits a symmetric monoidal structure. Moreover, since the projection map
e — € carries L-equivalences to equivalences, it induces a symmetric monoidal functor J : (G’g)"’”@’ —

(€°P)®. Since the underlying functor (C3)°” — C° is an equivalence, we conclude that 3 is an equivalence.
Let TwArr$(€)® denote the fiber product

TWAI‘I‘)\(G) X(e‘;\?)@ ((‘39\)01%@7
so that we have an equivalence of symmetric monoidal pairings

TwArr(€)® < TwAm)(€)®

| |

C® XN (Fin.) (CF)® <—— €% Xx(gin, ) (€2) P

Composing a homotopy inverse of this equivalence with ~, we obtain a commutative diagram

TwArr(€)® M®
e® XN(CFin*)(eop)(@ —c® XN(Fin.) D

Note that the horizontal maps in this diagram are merely lax symmetric monoidal functors in general.

Remark 4.4.16. We can informally summarize the conclusion of Construction 4.4.15 as follows: if we given
a pairing of symmetric monoidal oco-categories

A2 M® 5 C% x 40 D?

for which the underlying pairing A : M — € x D is left dualizable, then the duality map ®, : € — D of
Construction 3.1.3 has the structure of a lax symmetric monoidal functor.
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Remark 4.4.17. Let C® be a symmetric monoidal co-category. Assume that the unit object 1 € @ is final
and that € admits geometric realizations of simplicial objects. Let A% : TwArr(C)® — €% X comme (€°P)® be
the induced pairing of symmetric monoidal co-categories (see Example 4.3.6), so that A® determines a duality
functor Dayg(n) : Alg(€)%? — Alg(C”?) (Proposition 4.3.8). Note that A® induces a pairing of symmetric
monoidal co-categories. Alg(A\)® : Alg(TwArr(€))® — Alg(€)® x Alg(C?)®. It follows from Remark 4.4.16
that we can identify ® 5j4(x) With a lax symmetric monoidal functor from Alg(€)°? to Alg(€)°?. Concretely,
this structure arises from the observation that for every pair of algebra objects A, B € Alg(C) ~ Alg®"®(C),
there is a canonical equivalence

a:Bary(1,1)s ® Barp(1,1)e — Baragp(1,1).

of simplicial objects of €. If we assume that the tensor product ® : € x € — € preserves geometric realizations
of simplicial objects, then « induces an equivalence Bar(A)®@Bar(B) — Bar(A® B), so that the lax symmetric
monoidal functor D iy : Alg(€C)? — Alg(C?) is actually symmetric monoidal.

In the situation of Construction 4.4.15, we obtain an induced morphism of pairings between algebra
objects T :

Alg(TwArr(@)) Alg(M)

| |

Alg(€) x Alg(C”?) — Alg(€) x Alg(D).

Proposition 4.3.8 supplies conditions which guarantee that the vertical maps in this diagram are left repre-
sentable pairings. For applications to Theorem 4.4.5, we also need a criterion which will guarantee that the
map [ preserves left universal objects. For this, we have the following somewhat technical result:

Proposition 4.4.18. Suppose we are given pairings of monoidal co-categories
A2 M® 5% x 40D NT M 5 ¥ x e D,

Let o : C® — €/®, B8 : D% = D'® and v M® M e maps of planar oco-operads which render the
diagram

M® Y M/®

R "

axpf  ® '
e® X Ass® D® C X Ass® D

commutes. Assume that:

(1) If 1p and 1 are the unit objects of D and D', respectively, then the right fibrations M xp{1p} — €
and M x o {15} — € are categorical equivalences.

2) The pairings A\ : M — Cx D and N : M' — € x D’ are left representable.

3) The oo-categories D and D’ admit totalizations of cosimplicial objects.

5

(2)
3)
(4) The map of planar co-operads « is monoidal, and the map B preserves unit objects.
(5) The underlying functor D — D’ preserves totalizations of cosimplicial objects.

(6)

6) The underlying morphism of pairings

Ml

-l

CxD——=CxD
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is left representable: that is, v carries left universal objects of M to left universal objects of M.
Then the induced morphism of pairings

Alg(M) Alg(M)

lAlg(A) lAlg(/\’)
Alg(€) x Alg(D) — Alg(€") x Alg(D")
is left representable. In particular, the diagram
Alg(€)? —— Alg(C')”

igAlg()\) lgAlg(A’)

Alg(D) Alg(D’)

commutes up to canonical homotopy (see Proposition 3.3.4).

Example 4.4.19. Let F : €® — €'® be a monoidal functor between monoidal co-categories. Assume that
the underlying oo-categories C and €’ admit geometric realizations, that the underlying functor € — €
preserves geometric realizations, and that the unit objects of € and € are final. Then F induces a morphism
between pairings of monoidal co-categories

TwArr(C)® —— TwArr(€)®

e® X(@OP)@ L% X(G/Op)®
and therefore a morphism of pairings

Alg(TwArr(€)) ——— Alg(TwArr(€))

lAlg(A) \L

Alg(@) x Alg(C”?) ——= Alg(C’) x Alg(CP).

Theorem 4.3.1 shows that the pairings Alg(\) and Alg()\’) are left representable, and Proposition 4.4.18 shows
that the functor Alg(TwArr(C)) — Alg(TwArr(C')) preserves left universal objects. Using Proposition 3.3.4
we see that the diagram

Datg(n)
—_—

Alg(C)ep Alg(C?)

Datg(r)
—

Alg(C')ep Alg(CP)

commutes up to canonical homotopy.

If we assume that € and € admit totalizations of cosimplicial objects, that the underlying functor € — ¢’
preserves totalizations of cosimplicial objects, and that the unit objects of € and €’ are initial, then the same
arguments show that the diagram

@/
Alg(CP) =X Alg(e)or

.

Alg(€P) 2EXD Atg(/yor

commutes up to canonical homotopy.
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Example 4.4.20. Let A\® : M® — ¢® XN(gin*)D® be a pairing of symmetric monoidal oo-categories.
Assume that the underlying pairing A : M — € x D is left representable, and consider the diagram o :

TwArr(€)® ——— M¥
J/“® J/A‘@
€ X s (€7)® ——> €% x 40 D®
of Construction 4.4.15. The underlying map of pairings
TwArr(C) ——M

Cx @ CxD

is left represntable by construction. Assume that the following further conditions are satisfied:
(i) The oco-category C admits geometric realizations of simplicial objects.
(ii) The oco-category D admits totalizations of cosimplicial objects.
(#41) The duality functor Dy : €°? — D preserves totalizations of cosimplicial objects.
)

(iv) Let 1e and 19 be the unit objects of € and D, respectively. Then 1e¢ and 19 are final objects of €
and D, and the right fibrations M xe{le} = D and M xp{1n} — C are categorical equivalences.

It follows from (iv) that the duality functor © carries the unit object of € to the unit object of D, so that
the hypotheses of Proposition 4.4.18 are satisfied. It follows that the morphism of pairings

Alg(TwArr(C))

Alg(M)
lAlg(M) lAlg(A)
Alg(@) x Alg(C?) —— Alg(€) x Alg(D)

is left representable. In particular, the duality functor D iy : Alg(€)?? — Alg(D) is given by the compo-
sition

Alg(€)?? " Alg(eoP) % Alg(D)

where D a1g(,) 18 given by the bar construction of §4.3, and ¢ is given by composition with the lax symmetric
monoidal functor (€°?)® — D¥ of Remark 4.4.16 (given on objects C + D (C)).

Proof of Proposition 4.4.18. We wish to show that the functor Alg(M) — Alg(M’) determined by v carries
left universal objects to left universal objects. Let A € Alg(C), let B € Alg(D) be a trivial algebra so that (by
(1)) the pair (A, B) can be lifted to an object M € Alg(M) in an essentially unique way. Let A’ € Alg(€"),
B’ € Alg(D’), and M’ € Alg(M’) be the images of A, B, and M; condition (4) guarantees that B’ is a trivial
algebra object of D’. Using Propositions 4.3.9 and 4.3.11, we see that it suffices to show that the induced
functor ,yBMod s (M) — pBMods (M) preserves left universal objects. In other words, we must show that
for C € 4BMod4(€) having image C’ € 4 BMod a/(€"), the canonical map uc : 3(Dy,,(C)) — Dy, (C7) s
an equivalence in D’. Let 6 : 4BMod4(€) — € be the forgetful functor and choose a #-split simplicial object
Co with C ~ |C,]| such that each C,, belongs to the essential image of the left adjoint of . Let C, be the
image of Cy in 4/BMod 4/ (€’) and let 6" : 4-BModa/(C") — €' be the forgetful functor. The simplicial object
0'(CL) = a(6(C,)) is split with colimit 6/(C") ~ «a(6(C)). It follows from Example 4.3.17 that the canonical
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map |C,| — C’ is an equivalence. Moreover, assumption (4) implies that each C/, lies in the essential image
of the left adjoint to 6’. Arguing as in proof of Lemma 4.3.21, we conclude that the maps

Do C — @19/\1\400 Dy O — Liil@,\;wlC:

M/

are equivalences. Combining this with (5), we conclude that uc is the totalization of the diagram [n] — uc, .
It will therefore suffice to prove that uc, is an equivalence for each n > 0. We may therefore replace C
by C,, and thereby reduce to the case where C = ¢(C), where ¢ : € — 4BMod4(€) is a left adjoint to 6.

Let ¢ : € — aBModa/(€') be a left adjoint to ¢, so that condition (4) implies that C’ ~ ¢’(€/) where
C = a(C). Using Lemma 4.3.13, we are reduced to showing that the induced map B(Dx(C)) — D (6/) is
an equivalence, which follows immediately from (6). O

We now return to the proof of Theorem 4.4.5. Let A be an augmented E,-algebra over a field k; we wish
to prove that (under suitable assumptions) the biduality map 4 — D™D (A) is an equivalence. This is
equivalent to the requirement that, for every augmented E,-algebra B over k, the canonical map

MapAlg(kn),aug (B,A) — MapAlggcn),aug (B, () (n) (A)) ~ MapAlg(kn),aug (’)3(") (4), 9(n) (B))

is a homotopy equivalence. Our strategy is to prove this using induction on n. To make the induction work,
we will need to prove the following slightly stronger assertion (which immediately implies Theorem 4.4.5):

Proposition 4.4.21. Let k be a field, let n > 0 be an integer, and suppose we are given a finite collection
{A1,..., A} of augmented E,, -algebras over k. Let B be an arbitrary augmented E,,-algebra over k. If each
A; is n-coconnective and locally finite, then the canonical map

1\/[apAlg§cn>‘m,g(B7 Al @k Qp Ap) — 1\/IapA1g§€n),m,g (@(H)Al R -+ @, ;g(n)Am7 @(n)B)

is a homotopy equivalence.

Remark 4.4.22. The statement Proposition 4.4.21 can be reformulated as saying that the canonical map
Al Qp -+ Qp A — ’D(")(@(")Al Q- @ ™A,
is an equivalence of augmented E,-algebras over k.

Warning 4.4.23. In the situation of Proposition 4.4.21, the tensor product A = Ay ® -+ - Qk Ay, is also
a locally finite n-coconnective augmented E,-algebra over k, so that (by Theorem 4.4.5) the biduality map
A — D™D A is an equivalence. It follows that the map

Al ®p - @ Ay — D™ (@(")Al R -+ Qpe @(H)Am)
can be identified with the Koszul dual of a map
0:9MWA @ @ DA, - DM (A),

With some further assumptions, one can show that 6 is an equivalence (and thereby deduce Proposition
4.4.21 from Theorem 4.4.5). For example, 6 is an equivalence if each A; is (n 4+ 1)-coconnective. However, §
is not an equivalence in general.

The proof of Proposition 4.4.21 relies on the following general observation.

Lemma 4.4.24. Let F : C® — D® be a lax symmetric monoidal functor between symmetric monoidal co-
categories p : C® — N(Fin,) and ¢ : D® — N(Fin,). Let Cy be a full subcategory of € satisfying the following
condition:
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(x) For every sequence of objects {Ci}1<i<m of Co and every object C' € €, the canonical map
Mape(@ Ci,C") — Map@(@ F(Cy), F(C"))

is a homotopy equivalence.

Let O® be an co-operad, and suppose we are given a sequence of algebra objects {4; € Algy(C)}1<i<n such
that, for each X € O and 1 < i < n, we have A;(X) € Cy. Then for every object B € Algy(C), the canonical
map Then F induces a homotopy equivalence

Map ajq, ey () Ai, B) = Mapyy,, 0y () F(A:), F(B)).

Proof. Let Al — N(Jin,) classify the unique active morphism (n) — (1), and let € = Funy(gin,) (A, €%).
In what follows, we will abuse notation by identifying G‘?m with €". The oo-category € inherits a symmetric
monoidal structure from €, and we have symmetric monoidal forgetful functors (€™)® < C® = C®. The
sequence (Aj,...,A,) can be identified with a O-algebra object of €", and B determines a map 9% — C%.
We let €% = €7 X (@n)® xe® 0%, so that we have a fibration of co-operads €'® — 0% and Alg/o(G/) can
be identified with the mapping space MapAlgo(e)(®i A;, B). We define a fibration of co-operads D'® —
O® similarly, so that Map e, (0)(&); F(A:), F(B)) ~ Alg/o(ﬂl). We wish to show that F' induces a
homotopy equivalence of Kan complexes Alg /O(GI) — Alg /O(D'). For this, it suffices to show that for
every map of simplicial sets K — 0%, the induced map 6 : Funge (K, €'®) — Fungs (K, D'®) is a homotopy
equivalence of Kan complexes. Working simplex-by-simplex, we can assume that K = AP. Then the inclusion
K = A1} ]_[{1} e ]_[{p_l} AP=1r} <y K is a categorical equivalence; we may therefore replace K by K.
Working simplex-by-simplex again, we can assume that K = AP for p = 0 or p = 1. When p = 0, the
desired result follows immediately from (). In the case p = 1, the map A? — O® determines a morphism
@:X = Yin 0% Let a: (m) — (m') be the image of @ in N(Jin,), so that X ~ D ;c(mye X; and
Y =@ e (mno Yy for some objects X;,Yj, € O. Unwinding the definitions, we see that Funge (A?, e'®) is
given by the homotopy limit of the diagram

Hj’e<m'>° Mape(®1gign Ai(Yj), B(Yj))

|

Hj€<m)° Mape(®1gi§n Ai(X;), B(X;)) — Hj’e(m’)o Mape(®1gign,a(j):j' Ai(X;), B(Yy)).
Similarly, Funge (A?, D'®) can be identified with the homotopy limit of the diagram

Hj/e<m/>o Map@(®1§i§n FAl(Y}/% FB(Y}/))

|

Hje<m)° Map®(®1gign FA(X;), FB(X;)) — ije(m/>° Map®(®1gign,a(j):j' FA(X;), FB(Yj)).

It now follows from (*) that 6 is a homotopy equivalence as desired. O

Proof of Proposition 4.4.21. We proceed by induction on n. Assume first that n = 0. For every vector
space V over k, let VV = Homy(V, k) denote the dual vector space. For any object A € Alg,go)’allg, we have
canonical isomorphisms 7,0 (A) ~ (7_,A)" (see Example 4.4.2). Using Remark 4.4.22, we are reduced to
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proving that if {A4;}1<;<n, is a finite collection of locally finite 0-connective objects of Alg,(fo)’aug the canonical

map
B QA= P (A
p=pit-+pm i p=pit+:+pm i
is an isomorphism for every integer p. Since 7y, A; >~ 0 for p; > 0, each of the direct sums is essentially finite,
and the desired result follows immediately from the fact that each 7, A; is a finite dimensional vector space
over k.

The case n = 1 follows from Proposition 3.1.19. Let us now suppose that n > 1 and that Proposition
4.4.21 is valid for E,-algebras; we prove that it is also valid for E,;-algebras. Arguing as in the proof of
Proposition 4.4.8, we see that the right fibration A\(") : MM Alg,(cn)’aug X Alg,(cn)’aug can be promoted to a
pairing of symmetric monoidal co-categories

()\(n))® . (M(n))® - (Alg,(in)’aug)‘g XN (Fins) (Alg;n),aug)(g’
and Theorem A.5.1.2.2 allows us to identify A(»*1) with the induced pairing
Alg(M™) — Alg(Algy"™"¥) x Alg(Alg;"™").

Remark 4.4.16 allows us to regard ®(™) as a lax symmetric monoidal functor. Moreover, Example 4.4.20
shows that ®(*1 is equivalent to the composition

Alg(Alg{V™"%)7 & Alg((Alg{""%)7) & Alg(Alg("™")

where G is given by the bar construction of §4.3 and G’ is induced by ©(™. Note that G is given on objects
by the formula G(A) =k ®4 k.

Assume that A is (n + 1)-connective and locally finite. We have a cofiber sequence of A-modules A —
k — @Q where m;QQ ~ 0 for i > —n. Using Corollary VIII.4.1.11, we deduce that m;(k ®4 @) ~ 0 for i > —n
so that G(A) is n-coconnective. Moreover, Lemma 4.1.16 shows that G(A) is locally finite (here we use our
assumption that n > 1).

Using the inductive hypothesis together with Lemma 4.4.24, we deduce that for any sequence {A;}1<i<m
of (n + 1)-connective, locally finite objects of AlggLJrl)’aug and any object C € Alg((Alg,(c")"‘mg)"f")7 the
canonical map

MapAlg((AIg)(Cn),aug)op)(G(Al) & - G(Am), C) — MapAlg(Alg;")‘a“g)((G/G)(Al) R R (G/G)(Am), G/(C))

is a homotopy equivalence. Consequently, it will suffice to show that for B € Alg(Alg,&")’aug), the functor G
induces a homotopy equivalence

MapAlg(Algﬁc")’a“g)(B’ A @@ An) = MapAlg((Alg)(cn)’a“g)UP)(G(Al) ® - ®G(Ap), G(B)).

The formula G(A) ~ k ® 4 k shows that G is a monoidal functor, so that G(41) ® - - - ® G(A,) ~ G(A) with
A~A ® - ®A,,. Note that A is locally finite and (n + 1)-coconnective. Let F' denote a left adjoint to
G (given by the cobar construction). Using Remark 4.4.22, we are reduced to proving that the counit map
(F o G)(A) — A is an equivalence in Alg(AlgE@")’aug)"p.

The monoidal co-category Alg,(co)’aug admits geometric realizations and totalizations and the unit object
is a zero object, so the cobar and bar constructions yield a pair of adjoint functors

F
Alg((Algy”"%)o7) =—=Alg(Algy ).

0

Let ¢ : Alg,(fb)’aug — Alg,(:))’aug denote the forgetful functor. Then ¢ is a (symmetric) monoidal functor which
preserves geometric realizations of simplicial objects and totalizations of cosimplicial objects, so that ¢ is
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compatible with the bar and cobar constructions (Example 4.4.19). It will therefore suffice to show that the
counit map (Fp o Gp)(¢A) — ¢(A) is an equivalence in Alg(Alg,&O)’aug)"p . Equivalently, it suffices to show

that for each R € Alg(AlgéO)’aug), the canonical map

Mapmg(mgg’)«a"g) (R, pA) — MapAlg((AlgLo),aug)np) (Go(9pA),Go(R))

is a homotopy equivalence. Let G, : Alg((Alg,&O)’aHg)op) — Alg(Alg,(CO)’aug) be the functor given by composi-
tion with the lax monoidal functor ®(?). Using the inductive hypothesis and Lemma 4.4.24, we deduce that
G|, induces a homotopy equivalence

MapAlg((Algio),aug)op) (GO(CbA)v GO(R)) - MapAlg(Algi‘J)’a“g)((G6G0)(¢)A)a (GE)GO)(R))
It will therefore suffice to show that the composite map

Map , arg(ereve) (B 9A4) - = Map,yy 000 ((GoGo)(94), (GoGo) (R))
~ MapAlgil},aug(g(l)((bA),@(1)(R))

is a homotopy equivalence. Since n > 1, this follows from our inductive hypothesis. O

4.5 Deformation Theory of E, -Algebras

Let k be a field. Our goal in this section is to prove Theorem 4.0.8, which asserts that the oco-category
Modulifcn) of formal E,, moduli problems over k is equivalent to the oo-category Alg,(:)’aug of augmented
E,-algebras over k. We first introduce a suitable deformation context, and show that our discussion fits
into the general paradigm described in §1.1. We will then prove that the Koszul duality functor © :
(Alg,(cn)’aug)‘)p — Algén)’aug of §4.4 is a deformation theory, in the sense of Definition 1.3.9 (Theorem 4.5.5).
We will then use this result to deduce Theorem 4.0.8 from Theorem 1.3.12.

We begin by introducing the relevant deformation context. Let k be a field and let n > 0 be an integer.

Using Theorem A.7.3.5.14 and Proposition A.3.4.2.1, we obtain equivalences of co-categories
Stab(Alg!™*") ~ Mod:" (Mody) ~ Mody .

In particular, we can identify the unit object k € Mod;, with a spectrum object E & Stab(Algé”)’aug), given

informally by Q*°~"F = k @ k[m]. We regard the pair (Alg,(cn)’aug7 {E}) as a deformation context.
We will need the following generalization of Proposition 3.2.2:

Proposition 4.5.1. Let k be a field, let n > 1, and let (Alg,&n) 8 LE}) be the deformation context defined
(n),aug

above. Then an object A € Alg, is small (in the sense of Definition 1.1.8) if and only if its image in

Algfcn) is small (in the sense of Definition 8.0.1). That is, A is small if and only if it satisfies the following
conditions:

a) The algebra A is connective: that is, m; A ~ 0 for i < 0.
(b) The algebra A is truncated: that is, we have m;A ~ 0 for i > 0.

(

)
(¢) Each of the homotopy groups m; A is finite dimensional when regarded as a vector space over field k.
(d)

d) Let n denote the radical of the ring mgA (which is a finite-dimensional associative algebra over k).
Then the canonical map k — (mpA)/n is an isomorphism.

Remark 4.5.2. Proposition 4.5.1 is also valid in the case n = 0, provided that we adopt the convention of

Remark 4.0.4. That is, an object A € Alg,(f)’aLug is small (in the sense of Definition 1.1.8) if and only if it
connective and m, A is a finite-dimensional vector space over k.
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Proof. The “only if” direction follows from Proposition 3.2.2 (note that if A is small as an augmented E,,-
algebra, then its image in Alggcn)’aug is also small). To prove the converse, suppose that A € Algén)’aug

satisfies conditions (a) through (d). We wish to prove that there exists a finite sequence of maps
A:A0—>A1—>~'~—>Ad2k

where each A; is a square-zero extension of A;y1 by k[m;], for some m; > 0. If n = 1, this follows from
Proposition 3.2.2. Let us therefore assume that n > 2. We proceed by induction on the dimension of the
k-vector space m, A.

Let m be the largest integer for which 7, A does not vanish. We first treat the case m = 0. We will
abuse notation by identifying A with the underlying commutative ring mgA. Let n denote the radical of A.
If n = 0, then condition (d) implies that A ~ k so there is nothing to prove. Otherwise, we can view n as a
nonzero module over the commutative ring A. It follows that there exists a nonzero element x € n which is
annihilated by n. Using (d) again, we deduce that the subspace kx C A is an ideal of A. Let A’ denote the
quotient ring A/kx. Theorem A.7.4.1.26 implies that A is a square-zero extension of A’ by k. The inductive
hypothesis implies that A’ is small, so that A is also small.

Now suppose that m > 0 and let M = 7,,A. Then M is a nonzero module over the finite dimensional
k-algebra mgA. It follows that there is a nonzero element x € M which is annihilated by the action of the
radical n C mpA. Let M’ denote the quotient of M by the submodule generated by x (which, by virtue of
(d), coincides with kz), and let A” = 7<,,_1A. It follows from Theorem A.7.4.1.26 that there is a pullback
diagram
I

A" ——= k@ Mim+1].

Set A" = A" Xperrims1) k. Then A ~ A’ X pim1) k, 50 we have an elementary map A — A’. Using the
inductive hypothesis we deduce that A’ is small, so that A is also small. O

Proposition 4.5.3. Let k be a field and let f : A — B be a morphism in Algén)’sm. Then f is small (when

n),aug)

regarded as a morphism in Alg,(C if and only if it induces a surjection mgA — wyB.

Proof. If n =1, the desired result follows from Proposition 3.2.3. We will assume that n > 2, and leave the
case n = 0 to the reader. The “only if” direction follows from Proposition 3.2.3 (note that if f is small,
then the induced map between the underlying E;-algebras is also small). We first treat the case where
B ~ A& M|j], for some M € Mod]i" (Mody)¥ and some j > 1. According to Remark 4.1.12, the abelian
category Mod]i" (Mody,)¥ is equivalent to the category of modules over the commutative ring 7o B. Since M
is finite dimensional as a vector space over k, it admits a finite filtration

0=MyCM, C---C M, =M,

where each of the successive quotients M;/M;_; is isomorphic to k. This filtration determines a factorization
of f as a composition
A~A® Mylj] = Ad Mi[j] —» - = Ad M,,[j] = B.

Each of the maps A ® M;[j] — A @ M;41][j] is elementary, so that f is small.

We now treat the general case. Note that the map m9A x,,5 B — B is a pullback of the map mgA — m B,
and therefore a small extension (the map mgA — 7B is even a small extension of E-algebras over k, by
Lemma 1.1.20). It will therefore suffice to show that the map A — mpA Xr,p B is a small extension. We
will prove that each of the maps

TS]‘A XngB B — 7T'0A XnoB B
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is a small extension; taking j > 0 we will obtain the desired result. The proof proceeds by induction on 7,
the case j = 0 being trivial. Assume that j > 0; by the inductive hypothesis, we are reduced to proving that
the map

0 : TSJ‘A Xre;B B — ngflA Xre; 1B B

is small.
We can factor 8 as a composition

9/ 0//
TSjA XTSJ‘B B — TSjA XTSJ‘—1B B = ng_lA XTSJ‘—1B B.

The map 6" is a pullback of the truncation map v : 7<;A — 7<;_1A. It follows from Corollary A.7.4.1.28
that v exhibits 7<;A as a square-zero extension of 7<;_1A4, so that we have a pullback square

TSjA - v s ngflA
Tej1A—(7<;14) @ (m; A)[j + 1.

Here the map ug is small by the argument given above, so that u is small and therefore 6” is small. We will
complete the proof by showing that €’ is small. Note that 6’ is a pullback of the diagonal map

d: TSjB — TSJ‘B Xngle TSjB.

Since 7<;B is a square-zero extension of 7<;_1B by (m;B)[j] (Corollary A.7.4.1.28), the truncation map
T<;jB — 7<;j_1B is a pullback of the canonical map 7<;,_1B — 7<;_1B & (m;B)[j + 1]. It follows that ¢’ is
a pullback of the map

"1 7<j1B = T<j1B Xo, Ba(n; B)lj+1) T<j-1B = 7<j1B @ (m; B)j].
Since j > 1, the first part of the proof shows that ¢’ is small. O

Corollary 4.5.4. Let k be a field, let n > 0 be an integer, and let and let X : Algén)’sm — 8 be a functor.

Then X belongs to the full subcategory Moduli,(c") of Definition 4.0.6 if and only if it is a formal moduli
problem in the sense of Definition 1.1.14.

Proof. The “if” direction follows immediately from Proposition 4.5.3. For the converse, suppose that X

satisfies the conditions of Definition 4.0.6; we wish to show that X is a formal moduli problem. According
(n),sm

to Proposition 1.1.15, it will suffice to show that for every pullback diagram in Alg,

A———B

.

k——k @ k[m]

satisfying m > 0, the associated diagram of spaces

X (k) —— X(k @ k[ml])

is also a pullback square. This follows immediately from condition (2) of Definition 4.0.6. O
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The main result of this section is the following:

Theorem 4.5.5. Let k be a field and let n > 0 be an integer. Then the Koszul duality functor
D) . (Alg,&n)’aug)(’p — Alg,g")’aug
is a deformation theory (in the sense of Definition 1.5.9).

We will give the proof of Theorem 4.5.5 at the end of this section. It relies on the following property of
the Koszul duality functor:

Proposition 4.5.6. Let k be a field, and let Free™ : Mod;, — Algfcn) be a left adjoint to the forgetful functor
(so that Free™ assigns to every k-module spectrum V the free B, -algebra ®D,.>0 Symg, (V). Note that
Free™ (0) ~ k, so that Free™ determines a functor Free®™® : Mod,, ~ (Modyg) 0 — (Algfgn))/k o~ Alg,g")’aug.
Let D™ : (Alg,&n)’aug)"p — Alg,(gn)’aug be the Koszul duality functor. Then the composition ©(™) o Free™$ is
equivalent to the functor Mod;” — Alggvn)’aug given by V — k@ VV[—n], where VV denotes the k-linear dual
of V.

Proof. The functor ©(™ o Free®"$ admits a left adjoint and is therefore left exact. Since Mody, is stable,
Proposition A.1.4.4.10 implies that (™ o Free™ factors as a composition

Mod? L Stab(Alg{™*"8) 23 Alg(™ e

Note that the stabilization Stab(Alg,g")’aug) is equivalent to Mody, and that under this equivalence the functor

Qe Stab(Alng")’aug) — Algfcn)’aug is given by the formation of square-zero extensions V +— k@®V (Theorem
A.7.3.5.7). It follows that we can identify T with the functor Mod;” — Mody, given by the composition

ree(™ n),a ) n),a
Modf? 5™ (Alg{™*"8)or 257 Alg{™ & L, Mod,,
where I denotes the functor which carries each augmented E,-algebra A to its augmentation ideal. The
composition 1 oD (™ assigns to each augmented E,,-algebra B its shifted tangent fiber Mor,; .z, (Lp,x[n], k)
B
(see Example A.7.3.6.7), so that the composition I o @™ o Free™ is given by V — V[n]¥ ~VV[-n]. O

Proof of Theorem 4.0.8. Let k be a field and let n > 0 be an integer. Define a functor ¥ : Alg,(cn)’aug —
Fun(Algfcn)’Sm, 8) by the formula

U(A)(R) = Map y (m.eue (D™ (R), A).

Combining Theorem 4.5.5, Theorem 1.3.12, and Corollary 4.5.4, we deduce that U is a fully faithful em-

bedding whose essential image is the full subcategory Moduli,in) C Fun(Alg,(Cn)’Sm, 8) spanned by the formal
moduli problems. If m > 0, then Proposition 4.1.13 implies that Free®™®(k[—m — n]) is n-coconnective and
locally finite, so the the biduality map

Free®8(k[—m — n]) — D™D ™ Free™ & (k[—m — n])
is an equivalence (Theorem 4.4.5). Using Proposition 4.5.6, we obtain canonical homotopy equivalences
U(A) (k@ k[m]) =~ U(A)(D™ Free™(k[—m — n]))
— MapAlgm),m,g (@™ D™ Free* 8 (k[—m — n]), A)
k
— MapAlgg@),amg (Free™®&(k[—m — n]), A)
QOO—m—TL

~

my,

where my denotes the augmentation ideal of A. These equivalences are natural in m, and therefore give rise
to an equivalence of spectra Ty(4) ~ ma[n] (depending functorially on A). O

134



Example 4.5.7. Suppose that n = 0 in the situation of Theorem 4.0.8. Then the Koszul duality functor
DM . (Algéo)’aug)ol’ — Alg,io)’aug is given by k@ V +— k@ V"V (see Example 4.4.2). Tt follows that the functor
v Algéo)’aug — Modulifco) is given by

Vigw(k@V) = MapAlgECU),aug(k VYV kaoW)~ Mapyod, (VY W) =~ Q®(V @ W).

Here the last equivalence depends on the fact that V' is a dualizable object of Mody (since V is a perfect
k-module).

We may summarize the situation as follows: every object W € Modj determines a formal Ey moduli
problem, given by the formula k ® V +— Q°°(V @, W). Moreoever, every formal Ey moduli problem arises
in this way, up to equivalence.

Proof of Theorem 4.5.5. Let k be a field and let n > 0. We wish to prove that the Koszul duality functor
) ) . (Alg,(cn)’aug)"p — Alg,(cn)’aug satisfies axioms (D1) through (D4) of Definitions 1.3.1 and 1.3.9:

(D1) The oo-category Algl(f)’aug is presentable: this follows from Corollary A.3.2.3.5.

(D2) The functor ®(™ admits a left adjoint. In fact, this left adjoint is given by the opposite of ®() (see
Remark 4.4.4).

(D3) Let 2g C Alggﬂn)’aug be the full subcategory spanned by those augmented [E,-algebras A over k, where
A is coconnective and both A and [ A are locally finite. We will verify that this subcategory satisfies
the requirements of Definition 1.3.1:

(a) For every object A € Zp, the biduality map A — D™D (A) is an equivalence. This follows
from Theorem 4.4.5.

(b) The subcategory Z contains the initial object k € Alg,(c")’aug.

(¢) For each m > 1, there exists an object K,, € Zy and an equivalence o : k @ k[m] ~ D™ K,,. In
fact, we can take K, to be the free E,-algebra generated by k[—m — n|. This belongs to =y by
virtue of Proposition 4.1.13, and Proposition 4.5.6 supplies the equivalence a.

(d) For every pushout diagram

K, ——A
k—— A,

where A € Z( and ¢ is the canonical augmentation on K,,, the object A" also belongs to Zy. This
follows immediately from Propositions 4.1.14 and 4.1.13.

D4) Arguing as in the proof of Theorem 4.0.8, we see that the functor e : Alg!™*"® — Sp appearing in
guing p ) g b app g
Definition 1.3.9 is given by A — my[n|, where m4 denotes the augmentation ideal of A. This functor
is obviously conservative, and preserves sifted colimits by Proposition A.3.2.3.1.

O

We close this section by proving a generalization of Proposition 3.2.7:

Proposition 4.5.8. Let k be a field and let X : Alg,(cn)’sm — 8 be a formal E,, moduli problem over k. The
following conditions are equivalent:

(1) The functor X is prorepresentable (see Definition 1.5.3).

(2) Let X(E) denote the tangent complex of X. Then m;X(E) ~ 0 for i > 0.
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(3) The functor X has the form W(A), where A € Alg,(i,n)’a“ug is n-coconnective coconnective and U :
Alg;en)’aug — Modulién) is the equivalence of Theorem 4.0.8.

Lemma 4.5.9. Let A be an augmented B, -algebra over a field k. If A is connective, then the Koszul dual
D) (A) is n-coconnective.

Proof. Let ModE" denote the co-category of E,-modules over A in the co-category Mody, and regard Modg’“
as tensored over Mod,. As an object of Mody, we can identify ®(")(A) as a classifying object (in Mody,)
for morphisms from A to k in Mod]i" (see Example A.6.1.4.14 and Theorem A.6.1.4.27). Theorem A.7.3.6.1

supplies fiber sequence

n ModE”7 where L4/, denote the relative cotangent complex of A over k as an E,-algebra. We therefore

obtain a fiber sequence
Mor(L a/x[n], k) — D™ (A) 43 k

in Mody. The map €4 depends functorially on A and is an equivalence in the case A = k, and can therefore
be identified with the augmentation on D™ (A). We may therefore identify the augmentation ideal My () (4)
with a classifying object for morphisms from L 4,;[n] to &k in ModE’". To prove that D™ is n-coconnective,
it suffices to show that the mapping space

Mapyjoqzn (Laji, k) = Map ) .o (A, k€] /(€7))

is discrete. This is clear, since A is connective and k[e]/(€?) is discrete. O

Proof of Proposition 4.5.8. The equivalence of (2) and (3) follows from the observation that for X = U(A),
we have m; X (F) ~ m;_,m4, where m4 is the augmentation ideal of A. We next prove that (1) = (2). Since
the construction X — X (E) commutes with filtered colimits, we may reduce to the case where X = Spec R
is representable by an object R € Alggl)’sm. Then R is connective and the desired result follows from Lemma
4.5.9.

We now complete the proof by showing that (3) = (1). Let A € Algl(cn)’aLug be n-coconnective, and choose
a sequence of maps

k=A0)— A1) —» A(2) — ---

as in the proof of Proposition 4.1.14. Then A = @A(i), so that X ~ th(z) with X (¢) = U(A(¢)). To
prove that X is prorepresentable, it will suffice to show that each X (¢) is prorepresentable. We proceed by
induction on ¢, the case ¢ = 0 being trivial.

Assume that X () is prorepresentable. By construction, we have a pushout diagram

Free™ (V) A(i)

]

k—— A(i +1)

where 7;V ~ 0 for j > —n. For m > n, form a pushout diagram

Free™ (T>—mV) A7)

| |

k————A(i,m),
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so that A(i + 1) ~ lim A(i,m). Then X(i +1) ~ lim U(A(i,m)), so we are reduced to proving that
each W(A(i,m)) is prorepresentable. We proceed by induction on m. If m = n, then A(i,m) ~ A(i) and
the desired result follows from our inductive hypothesis. Assume that m > n and that $(A(i,m — 1)) is
prorepresentable. Let W = 7_,,V, so that we have a pushout diagram

Free™ (W[—m]) — A(i,m — 1)

| |

k A(i,m).

Write W as a union of its finite-dimensional subspaces {W,}. For every finite dimensional subspace W, C W,
form a pushout diagram

Free™ (W, [—m]) — A(i,m — 1)

| l

k—————— A(i, W,).

Then U(A(i,m)) is a filtered colimit of the objects W(A(i,W,)). It will therefore suffice to show that each
W(A(i,W,)) is prorepresentable. We proceed by induction on the dimension of W,; if that dimension is
zero, then A(i,W,) ~ A(i,m — 1) and the result is clear. If W, has positive dimension, then we can choose
a subspace W/, of codimension 1. Then we have a pushout diagram

Free™ (k[—m]) — A(i, W)

| |

k A, Wy),

hence a pushout diagram of formal moduli problems

Spec(k & k[m — n]) —— A(i, W)
Spec(k) —— W(A(i, W,)).

We conclude by invoking Lemma 1.5.9. O

5 Examples of Moduli Problems

Let k be a field, and let € be a k-linear co-category (that is, a presentable co-category equipped with an
action of the monoidal co-category Mody, of k-module spectra: see Definition VII.6.2). To € we can associate
a variety of deformation problems associated to C:

(a) Fix an object C' € €, and let R € CAlg)™ be a small E-algebra over k. A deformation of C' over
R is an object Cr € Modg(@), together with an equivalence C' ~ k ® g Cr. Let X(R) denote the
oo-category Modg(C) xe {C} of deformations of C' over R.

(b) For R € CAlgy", a deformation of € over R is an R-linear oo-category Cr equipped with an equivalence
C ~ Mody ®Mody Cr. Let Y(R) = LinCatpr Xpincat, {C} denote a classifying space for R-linear oo-
categories.
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Our goal in this section is to analyze the deformation functors X and Y using the theory of formal moduli
problems developed earlier in this paper. However, we immediately encounter an obstacle: the functors X
and Y need not satisfy the axioms described in Proposition 1.1.19. Suppose, for example, that we are given
a pullback diagram o :

R—— RO

]

Ry —— Ry

in CAlg;™, where the maps mgRy — moRo1 < moR1 are surjective. If C' € € and Cg is a deformation of C
over R, then Cr is uniquely determined by the objects Cr, = Ro ®r Cr, Cr, = R1 ®r Cr,, together with
the evident equivalence

Ro1 ®Rr, Cry ~ Ro1 ®r Cr ~ Ro1 ®R, Cr,

(see Proposition 5.2.2). More precisely, the functor X described in (a) determines a fully faithful embedding
(of Kan complexes)
X(R) = X(Ro) X x(Rgy) X(R1).

The functor Y described in (b) is even more problematic: the map
Y(R) = Y(Ro) Xy (roy) Y (F1)

need not be fully faithful in general, but always has discrete homotopy fibers (Proposition 5.3.3): that is,
we can regard Y (R) as a covering space of Y (Rg) Xy (r,,) Y (R1). To accommodate these examples, it is
useful to introduce a weaker version of the axiomatics developed in §1. For every integer n > 0, we will
define the notion of a n-prozimate formal moduli problem (Definition 5.1.5). When n = 0, we recover the
notion of formal moduli problem introduced in Definition 1.1.14. The requirement that a functor Z be an
n-proximate formal moduli problem becomes increasingly weak as n grows. Nonetheless, we will show that
an n-proximate formal moduli problem Z is not far from being a formal moduli problem: namely, there
exists an (essentially unique) formal moduli problem Z” and a natural transformation Z — Z” such that,
for every test algebra R, the map of spaces Z(R) — Z”(R) has (n— 1)-truncated homotopy fibers (Theorem
5.1.9).

In §5.2, we will turn our attention to the functor X described above, which classifies the deformations of a
fixed object C' € C. We begin by observing that the definition of X (R) does not require the assumption that
R is commutative. Rather, the functor X is naturally defined on the co-category Algi™ of small E;-algebras
over k. We may therefore regard the construction R — X (R) as a functor X : Algi™ — 8, which we will
prove is a 1-proximate formal moduli problem (Corollary 5.2.5). Using Theorem 5.1.9, we can choose an
embedding of X into a formal moduli problem X” : Algi® — 8. According to Theorem 3.0.4 (and its proof),
the functor X” is given by X(R) = Map y s (DM (R), A), for some augmented Ej-algebra A over k. Our
main result (Theorem 5.2.8) characterizes this algebra: the augmentation ideal my can be identified (as a
nonunital E;-algebra) with the endomorphism algebra of the object C € C.

Remark 5.0.1. Efimov, Lunts, and Orlov have made an extensive study of a variant of the deformation
functor X described above. We refer the reader to [10], [11], and [12] for details. The global structure of
moduli spaces of objects of (well-behaved) differential graded categories is treated in [67].

In §5.3, we will study the functor Y which classifies deformations ofco-category € itself. Once again, the
definition of the space Y (R) does not require the assumption that R is commutative. To define Y (R), we
only need to be able to define the notion of an R-linear co-category. This requires a monoidal structure
on the co-category LModpg of left R-modules, and such a monoidal structure exists for every E,-algebra R
over k. We may therefore regard the construction R — Y (R) as a functor Y : Alg,(f)’sm — 8, which we
will prove to be a 2-proximate formal moduli problem (Corollary 5.3.8). Using Theorem 5.1.9, we deduce

the existence of a formal moduli problem Y : Alg,(f)’sm — 8 and a natural transformation Y — Y which
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induces a covering map Y (R) — Y (R) for each R € Alg,(f)’sm. According to Theorem 4.0.8 (and its proof),

the functor Y is given by Y"(R) = Map, @) .au (DP(R), A) for some augmented Eo-algebra A over k.
k

Once again, our main result gives an explicit description of the algebra A: its augmentation ideal m4 can
be identified (as a nonunital Eg-algebra) with the Hochschild cochain complex HC* (@) of the oo-category €
(Theorem 5.3.16).

Remark 5.0.2. For a more extensive discussion of the deformation theory of differential graded categories,
we refer the reader to [30]. See also [37] and [38].

Remark 5.0.3. It is possible to treat the functors X and Y introduced above simultaneously. Let T denote
the oco-category whose objects are pairs (Aj, Az), where Ay is an augmented Es-algebra over k and A; is
an [E;-algebra over As equipped with a map A; — k of E;-algebras over A;. We have spectrum objects
E1, E5 € Stab(Y), given by

Q°"E = (k@ kln),k)  Q° "Ey = (k, k@ k[n)).

Let us regard (T, {E1, Es2}) as a deformation context (in the sense of Definition 1.1.3).

Let C be a k-linear oo-category and let C' € € be an object. Given a pair (R1, R2) € T, we let Z(Ry, R2)
denote a classifying space for pairs (C1, Cy), where Co is an Rp-linear co-category deforming €, and C; €
LModg, (C2) is an object deforming C. The construction (Ry, R2) — Z(R1, R2) determines a 2-proximate
formal moduli problem. Using Theorem 5.1.9 we can complete Z to a formal moduli problem Z” : T9" — 8.

Using a generalization of the techniques studied in §3 and §4, one can combine the Koszul duality functors

DM (AlgE)P — Algi'® D@ (Algl)E)r 5 AlglP e

to obtain a deformation theory ® : (Y)°? — Y. Using Theorem 1.3.12, we see that the formal moduli
problem Z” is determined by an object (A1, A3) € T. One can show that the augmentation ideals my,
and my, are given by the endomorphism algebra End(C') and the Hochschild cochain complex HC*(€) of €,
respectively (note that HC*(C) acts centrally on End(C)).

At the cost of a bit of information, we can be much more concrete. The construction R — Z"(R, R)

determines a formal E, moduli problem F : Alg,(f)’aug — §; for each R € Algf)’sm we have a fiber sequence

X"(R) = F(R) — Y"(R),
where X” and Y are the formal E; and Es moduli problems described above. Applying Theorem 4.0.8,

we deduce that F' is given by the formula F(R) = Map @) aus (D@)(R), A) for some augmented Ey-algebra
k

A over k. Then the augmentation ideal m4 can be identified with the fiber of the natural map HC*(C) —
End(C).

5.1 Approximations to Formal Moduli Problems

The notion of formal moduli problem introduced in Definition 1.1.14 is a very general one, which includes
(as a special case) the formal completion of any reasonable algebro-geometric object at a point (see Example
0.0.10). However, there are also many functors X : CAlg;” — 8 which are of interest in deformation theory,
which do not quite satisfy the requirements of being a formal moduli problem. The deformation functors
that we will study in §5.2 and §5.3 are of this nature. In this section, we will introduce a generalization of
the notion of formal moduli problem (see Definition 5.1.5) which incorporates these examples as well.

We begin by reviewing some general terminology.

Definition 5.1.1. Let n > —2 be an integer. We will say that a diagram of spaces

X ——=Y

L

X—Y
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is n-Cartesian if the induced map ¢ : X' — X xy Y’ is n-truncated (that is, the homotopy fibers of ¢ are
n-truncated).

Example 5.1.2. If n = —2, then a commutative diagram of spaces is n-Cartesian if and only if it is a
pullback square.

The following lemma summarizes some of the basic transitivity properties of Definition 5.1.1:

Lemma 5.1.3. Let n > —2 be an integer, and suppose we are given a commutative diagram

X —sY —= 7

N

X—Y ——Z7

in 8. If the right square is n-Cartesian, then the outer square is n-Cartesian if and only if the left square is
n-Cartesian.

Using Lemma 5.1.3, we immediately deduce the following generalization of Proposition 1.1.15.

Proposition 5.1.4. Let (Y,{E,}act) be a deformation context, and let X : T — 8 be a functor. Let
n > 0 be an integer. The following conditions are equivalent:

(1) Leto:
A ——=PB

-

be a diagram in Y. If o is a pullback diagram and ¢ is small, then X (o) is an (n — 2)-Cartesian
diagram in 8. pullback diagram in S.

(2) Let o be as in (1). If o is a pullback diagram and ¢ is elementary, then X (o) is an (n — 2)-Cartesian
diagram in 8.

(3) Let o be as in (1). If o is a pullback diagram and ¢ is the base point morphism x — Q¥°~™F, for
some « € T and m > 0, then X (o) is an (n — 2)-Cartesian diagram in 8.

Definition 5.1.5. Let (T, {E,}acr) be a deformation context and let n > 0 be an integer. We will say
that a functor X : T — § is a n-prozimate formal moduli problem if X (x) is contractible and X satisfies
the equivalent conditions of Proposition 5.1.4.

Example 5.1.6. A functor X : T®™ — 8§ is a 0-proximate formal moduli problem if and only if it is a formal
moduli problem, in the sense of Definition 1.1.14.

Remark 5.1.7. Let (T,{E,}act) be a deformation context, and suppose we are given a pullback diagram

X ——Y’

L

X—Y

in Fun(Y®™,8). If X and Y are n-proximate formal moduli problems and Y is an (n + 1)-proximate formal
moduli problem, then X’ is an n-proximate formal moduli problem.
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Definition 5.1.8. Let (T, {E,}oer) be a deformation context and let f : X — Y be a natural transforma-
tion between functors X, Y : T — 8. We will say that f is n-truncated if the induced map X(A) — Y (A4)
is m-truncated, for each A € Art.

We can now state the main result of this section:

Theorem 5.1.9. Let (T,{E4}act) be a deformation context which admits a deformation theory, and let
X : Y% — 8 be a functor such that X (x) is contractible (here * denotes the final object of Y ). The following
conditions are equivalent:

(1) The functor X is an n-proximate formal moduli problem.
(2) There exists an (n — 2)-truncated map f: X — Y, where Y is an n-prozimate formal moduli problem.

(3) Let L denote a left adjoint to the inclusion Moduli® C Fun(T*™,8) (see Remark 1.1.17). Then the
unit map X — LX is (n — 2)-truncated.

The proof of Theorem 5.1.9 will require some preliminaries. Let us identify Sp = Stab(8) with the
oo-category of strongly excisive functors 85” — 8. Let Ly : Fun(an,S) — Sp denote a left adjoint to the
inclusion. If X : T — § is a functor, then the composition X o E, determines a functor 8 — 8, and
therefore a spectrum Lo(X o E,,).

Remark 5.1.10. Suppose that F': Sim — 8 is a functor which preserves final objects. Using the results of
§A.1.5.2, we see that LoF € Sp is described by the formula

(LoF)(K) = lig Q" Lo(S"K).

In particular, the functor Ly is left exact when restricted to the full subcategory Fun, (85" 8) C Fun(8fi",8)
spanned by those functors which preserve final objects.

Remark 5.1.11. Let (T, {E,}acr) be a deformation context which admits a deformation theory, and let
X : T — 8 be an n-proximate formal moduli problem. It follows from Theorem 5.1.9 that there exists
an (n — 2)-truncated natural transformation a : X — Y, where Y is a formal moduli problem. In fact, the
formal moduli problem Y (and the natural transformation «) are uniquely deterined up to equivalence. To
prove this, we note that « factors as a composition

xALx 2y,

where (3 is (n — 2)-truncated and ~ is a map between formal moduli problems. For each « € T and each
m > 0, we have homotopy equivalences

QX (M EL) ~ QML (Q° T E,) ~ LX (7™ E,)

Q"X(QFM"E,) ~ Q'Y (Q®°T"TE,) ~ Y (Q®TE,).
From this it follows that v induces an equivalence LX (Q*°"™E,) — Y (Q*°"™E,). Since LX and Y are
formal moduli problems, we conclude that « is an equivalence.

The main ingredient in the proof of Theorem 5.1.9 is the following lemma:

Lemma 5.1.12. Let (T,{E.}aer) be a deformation context which admits a deformation theory and let L
denote a left adjoint to the inclusion functor Moduli¥ C Fun(Y®™,8). Suppose that X : T — § is an
n-prozimate formal moduli problem for some n > 0.

For each oo € T, the canonical map X (E,) = (LX)(E,) induces an equivalence of spectra Lo(X o Ey) —
(LX) o E,.
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Proof. The proof proceeds by induction on n. In this case n = 0, X ~ LX and X o E, is a spectrum, so there
is nothing to prove. Assume therefore that n > 0. Let € be the full subcategory of Fun(YT®" 8) spanned by the
(n—1)-proximate formal moduli problems, and let €, x denote the fiber product € X pyp(ysm gy Fun(T*™,8) /.
By the inductive hypothesis, the map Lo(Y 0o E,) — (LY') o E, is an equivalence of spectra for each Y € € x.
It will therefore suffice to prove the following assertions (for each o € T'):

(a) The spectrum Lo(X o Eq) is a colimit of the diagram {Lo(Y o Ey)}yee, in the oo-category Sp.
(b) The spectrum (LX) o E, is a colimit of the diagram {(LY) o Es}yee,y in the oco-category Sp.

To prove (a), we note that Lo preserves colimits (being a left adjoint) and that the construction Y —
Y (E,) carries colimit diagrams in Fun, (T, 8) to colimit diagrams in Fun, (8" 8), where Fun, (T, 8)
denotes the full subcategory of Fun(Y®™,8) spanned by those functors which preserve final objects and
Fun, (Sim, 8) is defined similarly. It will therefore suffice to show that X is a colimit of the diagram C,x —
Fun(Y*,8). (and therefore also of the underlying functor €,x — Fun,(Y*",8)). We prove a more general
assertion: namely, that the identity functor from Fun(Y®™, 8) to itself is a left Kan extension of the inclusion
C — Fun(Y®™,8). This follows from Proposition T.4.3.2.8 and Lemma T.5.1.5.3, since € contains the
corepresentable functor Spec R for each R € T,

We now prove (b). Fix an index o € T', and let F': €,x — Sp be the functor given by Y > (LY') o E,.
Let * denote the final object of T and let Xy = Spec(x) denote the functor corepresented by *, so that Xy
is an initial object of Fun, (T, 8). Let X, denote the Cechnerve of the map Xy — X, and let G(}X denote
the full subcategory of €,x spanned by those maps Y — X which factor through Xy. We first prove:

(x¥) The functors L|C/x : C/x — Moduli® and F : C/x — Sp are left Kan extensions of L| G?X and
F| €.

To prove (*), choose an object Y € €,x, and let G?Y be the full subcategory of €,y spanned by those

morphisms Z — Y which factor through Yy, = Xy xx Y. We wish to prove that LY € Moduli¥ and
FY € Sp are colimits of the diagrams L] G(/JY and F| G(/J% respectively. Let Y, denote the simplicial object

of C?(/)Y given by the Cech nerve of the map Yy — Y, so that Y,, ~ X,, xx Y. The construction [n] — Y,
determines a left cofinal map N(A)°P — C(/)Y; it will therefore suffice to show that the canonical maps

wi|LY. = LY  v:|FY) > FY

are equivalences. Using Theorem 1.3.12 and condition (4) of Definition 1.3.9, we deduce that the construction
Z + Z o E, determines a functor Moduli¥ — Sp which commutes with sifted colimits. Consequently, to
prove that u is an equivalence, it will suffice to show that v is an equivalence for every choice of index
a € T. Tt follows from Remark 5.1.7 that each Y;, is an (n — 1)-proximate formal moduli problem. Using
the inductive hypothesis, we are reduced to showing that the canonical map 6 : |Lo(Ye 0 E,)| — Lo(Y (E,))
is an equivalence of spectra. Note that Y, o E, is the Cechnerve of the natural transformation

YooE, >YoFE,

in the oo-category Fun, (87", 8). Since the functor Ly is left exact when restricted to Fun, (8™, 8) (Remark
5.1.10), we conclude that Lo (Ys(E,)) is a Cechnerve of the map Lo(Yy 0 E,) — Lo(Y 0 E,)), so that 6 is an
equivalence as desired.

To prove (b), we must show that (LX) o E, is a colimit of the diagram F. Since F is a left Kan extension
of F| G?X, it will suffice to show that (LX) o E,) is a colimit of the diagram F| G’(/)X (Lemma T.4.3.2.7).

The simplicial object X determines a left cofinal map N(A)°P — (?(/) x. We are therefore reduced to proving
that the map |(LX,) o E,| = (LX) o E, is an equivalence of spectra. Since the construction Z — Z o E,
determines a functor Moduli® — Sp which preserves sifted colimits, it will suffice to show that |LX,| ~ LX
in Moduli™. This is equivalent to the assertion that LX is a colimit of the diagram L| G(/) - Using () and
Lemma T.4.3.2.7, we are reduced to proving that LX is a colimit of the diagram L|C,x. Since L preserves
small colimits, this follows from the fact that X is a colimit of the inclusion functor €,x < Fun(Y*",8). O
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Lemma 5.1.13. Let (Y, {Es}acr) be a deformation context and let X : 5™ — § be an n-prozimate formal
moduli problem. For each o € T' and each m > 0, the canonical map 0 : X (Q*°""E,) — Q®°"™Ly(X o E,))
is (n — 2)-truncated.

Proof. We observe that 6 is a filtered colimit of a sequence of morphisms
O+ X(QX°TE,) — Q™ X(Q®° ™ E).
It will therefore suffice to show that each 6,,/ is (n — 2)-truncated. Each 6,,/ is given by a composition of a

finite sequence of morphisms X (Q*°"PE,) — QX (Q>®°"P~1E,), which is (n — 2)-truncated by virtue of our
assumption that X is an n-proximate formal moduli problem. O

Lemma 5.1.14. Let (T,{E,}aer) be a deformation context and let f : X — 'Y be a natural transformation
between n-prorimate formal moduli problems X, Y : T3 — 8. Assume that, for every index a € T and each
m > 0, the map of spaces X (Q®°"™E,) — Y(Q®°"™E,) is (n — 2)-truncated. Then, for each A € T, the
map X (A) — Y (A) is (n — 2)-truncated.

Proof. Since A is small we can choose a sequence of elementary morphisms
A=A = A1 = = Ay = x

We will prove that the map 6; : X(A;) — Y (A;) is (n — 2)-truncated by descending induction on . The case
1 = p is clear (since 6 is a morphism between contractible spaces and therefore a homotopy equivalence).
Assume therefore that ¢ < p and that 6,1 is (n — 2)-truncated. Since the map A; — A;;1 is elementary, we
have a fiber sequence

Ai — Ai+1 — Qoo—mEa
in T*". Let F be the homotopy fiber of the map X (A4;11) = X(Q*°"™E,), and let F’ be the homotopy
fiber of the map Y (A4;+1) = Y(2°~™E,). We have a map of fiber sequences

F— X(A1+1) e X(Qoomea

R

Fr— Y(Az—i-l) E—— Y(Qoomea)'

Since ¢ is (n — 2)-truncated by assumption and 6,41 is (n — 2)-truncated by the inductive hypothesis, we
conclude that v is (n — 2)-truncated. The map 6, factors as a composition

X(A) By (a) xm F 5 vy,

where 6 is a pullback of ¢ and therefore (n —2)-truncated. It will therefore suffice to show that 6 is (n—2)-
truncated. Since Y is an n-proximate formal moduli problem, the map Y (A;) — F’ is (n — 2)-truncated, so
the projection Y (A;) xp F' — F is (n — 2)-truncated. It will therefore suffice to show that the composite
map

is (n—2)-truncated, which follows from our assumption that X is an n-proximate formal moduli problem. [

Proof of Theorem 5.1.9. The implication (3) = (2) is obvious. We next show that (2) = (1). Assume that
X (x) is contractible and that there exists an (n — 2)-truncated map f: X — Y, where Y is an n-proximate
formal moduli problem. We wish to show that X is an n-proximate formal moduli problem. Choose a
pullback diagram

Al——=A

|k

B ——=B
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in T*" where ¢ is small; we wish to show that left square in the diagram of spaces

X(A) —= X(A) —=Y(A

)
Lo
X(B') —= X(B) —=Y(B)

is (n — 2)-Cartesian. Our assumption that f is (n — 2)-truncated guarantees that the right square is (n — 2)-
Cartesian; it will therefore suffice to show that the outer square is (n — 2)-Cartesian (Lemma 5.1.3). Using
Lemma 5.1.3 again, we are reduced to showing that both the left and right squares in the diagram

X(A)) —= Y (A') —= Y(A)

L

X(B) —=Y(B) —=Y(B)

are n-Cartesian. For the left square, this follows from our assumption that f is (n — 2)-truncated; for the
right square, it follows from our assumption that Y is an n-proximate formal moduli problem.

We now complete the proof by showing that (1) = (3). Assume that X is an n-proximate formal moduli
problem; we wish to show that the map X — LX is (n — 2)-truncated. According to Lemma 5.1.14, it will
suffice to show that the map ¢ : X (Q®°"™E,) — LX (2 ™E,) is (n—2)-truncated for each o € T and each
m > 0. Using Lemma 5.1.12, we can identify ¢ with the canonical map X (Q*"""E,) — Q® " Ly(X o E,)),
which is (n — 2)-truncated by Lemma 5.1.13. O

5.2 Deformations of Objects

Let X be an algebraic variety defined over a field k, and let & be an algebraic vector bundle on X. A
first order deformation of € is an algebraic vector bundle € over the scheme X = X Xgpeck Spec ke]/(€2),
together with an isomorphism i*€ — € (where i denotes the closed immersion X < X). Standard arguments
in deformation theory show that the collection of isomorphism classes of first-order deformations can be
identified with the cohomology group H*(X; End(€)), while the automorphism of each first order deformation
of & is given by H(X;End(€)).

Our goal in this section is to place the above observations into a more general context.

(a) In the definition above, we can replace the ring of dual numbers kle]/(e?) by an arbitrary R € CAlgi™
to obtain a notion of a deformation of & over R. Let ObjDef;(R) denote a classifying space for
deformations of € over R. Then ObjDef, can be regarded as a functor CAlg;™ — 8. We will see below
that this functor is a formal moduli problem.

(b) The isomorphisms
H°(X;End(€)) ~ 71 ObjDef (k[e]/(€?)) H'(X;End(&)) ~ m ObjDef (k[e]/(€?))
follow from an identification of the cochain complex C*(X; End(€)) with the (shifted) tangent complex
Tobjpet, [—1].

(¢) The definition of ObjDef (R) does not require the commutativity of R. Consequently, we can extend
the domain of definition of ObjDef, to Algi™, and thereby regard ObjDef as a formal E;-moduli prob-
lem (see Definition 3.0.3). We will see that the identification C*(X;End(€)) ~ Topjpet, [—1] is multi-
plicative: that is, it can be regarded as an equivalence of nonunital E;-algebras (where Topjper, [—1]
is equipped with the nonunital E;-algebra structure given by Remark 3.2.6).
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(d) The definition of the formal moduli problem ObjDef, depends only on the algebraic vector bundle &
as an object of the stable oo-category QCoh(X) of quasi-coherent sheaves on X. We will therefore
consider the more general problem of deforming an object M of an arbitrary k-linear oo-category C.

We begin by introducing some notation.

Construction 5.2.1. Let k be a field, let C be a k-linear oco-category, and let M € € be an object. We
let RMod(€) denote the oo-category of pairs (A, M,4) where A € Alg, and M4 is a right A-module object
of €. The forgetful functor ¢ : RMod(€) — Alg, is a coCartesian fibration. We let RMod“°“***(€) denote
the subcategory of RMod(€) spanned by the g-coCartesian morphisms, so that g restricts to a left fibration
RMod®® (@) — Alg,. We will abuse notation by identifying M with an object of RMod®“*(€) (via
the equivalence RMod(C) — €). We let Defor[M] = RModCOCMt(G)/M. We will refer to Defor[M] as the
oco-category of deformations of M.

There is an evident forgetful functor 6 : Defor[M] — Alg;"®. The fiber of # over an augmented k-algebra
A can be identified with the co-category of pairs (Ma, ut), where My € RModa(C) and pp: Mg ®4 k — M

is an equivalence in €. The map 6 is a left fibration, classified by a functor x : Alg;"® — §; here § denotes
the oo-category of spaces which are not necessarily small.

Let € be as in Construction 5.2.1. Proposition IX.7.4 implies that for every pullback diagram
A ——= A
B ——=B

in Algy, the induced functor RMod 4/ (€) — RMod4(€) Xganod,(e) RModp(€) is fully faithful. This imme-
diately implies the following:

Proposition 5.2.2. Let k be a field, C a k-linear co-category, M € C an object, and let x : Alg;"® — S be
as in Construction 5.2.1. Then, for every pullback diagram

A——s A
B ——=B

in Algp"®, the induced map x(A') — x(A) Xy (p) x(B') induces a homotopy equivalent from x(A’) to a
summand of x(A) Xy (p) x(B).

aug

Corollary 5.2.3. Let k be a field, C a k-linear co-category, M € C an object, and let x : Alg,™® — S be as
in Construction 5.2.1. Then:

(1) The space x(k) is contractible.
(2) Let V€ Mody. Then the space x(k ® V) is essentially small.
(3) Let A € Alg;"™® be small. Then the space x(A) is essentially small.

Proof. Assertion (1) is immediate from the definitions. To prove (2), we note that for each A € Algi"®, the
space x(A) is locally small (when regarded as an oo-category). We have a pullback diagram

keV I
k ke VIl
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so that Proposition 5.2.2 guarantees that x(k @ V') is a summand of Qx(k @ V[1]), and therefore essentially
small. We now prove (3). Assume that A is small, so that there exists a finite sequence of maps

A~Ag—> A1 — - = A, ~k

and pullback diagrams

A ——k

L

Al+1*>k@k

Using (1), (2), and Proposition 5.2.2, we deduce that each X(Ai) is essentially small by descending induction
on . O

Notation 5.2.4. Let k be a field, € a k-linear oo-category, and M € € an object. Let y : Algi"® — S be
the functor classifying the left fibration Defor[M ] — Algaug of Construction 5.2.1. We let ObjDef,, denote
the restriction of x to the full subcategory Alg;™ C Alg;"® spanned by the small E;-algebras over k. Using
Corollary 5.2.3, we can identify ObjDef,, with a functor from Alg;™ to 8.

More informally: the functor ObjDef,, assigns to each R € Alg;™ a classifying space for pairs (Mg, ),
where Mg € RModg(C) and pu: Mg ®g k — M is an equivalence in C.
Combining Corollary 5.2.3 and Proposition 5.2.2, we obtain the following:

Corollary 5.2.5. Let k be a field, C a k-linear co-category, and M € € an object. Then the functor
ObjDef,, : Algi™ — 8 is a 1-prozimate formal moduli problem (see Definition 5.1.5).

Notation 5.2.6. Let k be afield, and let L : Fun(Alg;™, 8) — Moduli,(fl) denote a left adjoint to the inclusion.
If C is a k-linear oo-category and M € C is an object, we let ObjDef’; denote the formal E;-moduli problem
L(ObjDef,,). By construction, we have a natural transformation ObjDef,, — ObjDef},. It follows from
Theorem 5.1.9 that this natural transformation exhibits ObjDef,;(R) as a summand of ObjDef};(R), for
each R € Algi™. Moreover, ObjDef’; is characterized up to equivalence by this property: see Remark 5.1.11.

Notation 5.2.7. Let k be a field, let € be a k-linear co-category, and let M € C be an object. We let End (M)
denote a classifying object for endomorphisms of M. That is, End(M) is an object of Mody equipped with
amap a: M ® End(M) — M in € having the following universal property: for every object V € Mody,
composition with a induces a homotopy equivalence

Mapyioq, (V, End(M)) =~ Mape (M @ V, M).

The existence of the object End(M) follows from Proposition A.4.2.1.33. Moreover, it follows from the
results of §A.6.1.2 show that we can regard End(M) as an E;-algebra over k, and M as a right module over
End(M). In what follows, it will be more convenient to view End(M) as a nonunital Eq-algebra over k,
which can be identified with the augmentation ideal in the augmented E;-algebra k @ End(M).

We can now formulate the main result of this section.

Theorem 5.2.8. Let k be a field, let € be a k-linear co-category, let M € € be an object, and let ¥ : Algi"™® —

Moduh,(g ) be the equivalence of co-categories of Theorem 3.0.4. Then there is a canonical equivalence W (k ®
End(M)) ~ ObjDef};.

Example 5.2.9. Let k be a field and regard Mody, as a k-linear co-category. Let V' be a finite-dimensional
vector space over k, and define ObjDef;, as above. We will see below that ObjDef;, is a formal E; moduli
problem (Proposition 5.2.14), so that ObjDefy, | CAlgi™ is a formal moduli problem over k. Assume now
that k has characteristic zero, and let ® : Lie;, — Moduliy be the equivalence of Theorem 2.0.2. Combining
Theorems 5.2.8 and 3.3.1, we deduce that ObjDefy, | CAlg)™ corresponds, under the equivalence ®, to the
matrix algebra End(V) (equlpped with its usual Lie bracket).
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Remark 5.2.10. Let k be a field, let € be a k-linear co-category, and let M € € be an object. For each
R € Algi™, Theorem A.6.3.4.1 yields a canonical homotopy equivalence

ObjDef y;(R) = RModgr(€) xe {M} ~ Mapy;,car, (LModg, C) xe~ {M}.

It follows that ObjDef ;(R) depends only on the k-linear co-category LModg, together with the distinguished
object k € LModpg (given by the augmentation R — k), so that the construction R — ObjDef,,(R) enjoys
some extra functoriality. This special feature of ObjDef;;(R) is reflected in the structure of the associated
formal E; moduli problem ObjDef},(R): according to Theorem 5.2.8, ObjDef};(R) has the form ¥(A),
where A € Alg;"® is an augmented E;-algebra over k whose augmentation ideal my ~ End(M) is itself
unital.

Theorem 5.2.8 is a consequence of a more precise assertion (Proposition 5.3.16) which describes the
equivalence ¥(k @ End(M)) ~ ObjDef}; explicitly. Before we can formulate it, we need to introduce a bit
more notation.

Construction 5.2.11. Let k be a field, let C be a k-linear oco-category, and let M € C be an object. We let
A v Alg;"® x Algi"® be the pairing of Construction 4.4.6, so that we can identify objects of MY with
triples (A, B, €) where A, B € Alg;, and € : A®, B — k is an augmentation. Given an object (A, B,¢€) € mm
and an object (A, My, p) € Defor[M], we regard M4 ®j, B as an object of pkBMod g, 5(€), so that

(M ®i B) ®ag,B k

can be identified with an object of LMod g (€) whose image in € is given by M4 ® 4 k ~ M. This construction
determines a functor
Defor[M] x pjgze M) — LMod(€) xe {M}

(see Corollary A.6.1.2.40). Let LMod™#(€) denote the fiber product Alg;"® x a1, LMod(€C). The induced
map Defor[M] x 5jgous MY = Defor[M] x (LMod™&(€) x¢ {M}) factors as a composition

Defor[M] x ggeu MO 5 MY X Defor[M] x (LMod™®(€) x¢ {M})

where ¢ is an equivalence of co-categories and )\’ is a categorical fibration. It is not difficult to see that X\’ is
a left representable pairing of oo-categories, which induces a duality functor

DY) : Defor[M]*” — LMod®*(€) x¢ {M}.

Concretely, the functor @5&1) assigns to each object (A, M, 1) € Defor[M]°P the object (D(1)(A), M), where
we regard M as a left ®()-module object of € via the equivalence

Mo~MsRak~ (M 53(1)(14)) D ag,o0 (4) k-

Using Corollary A.6.1.2.40, we have a canonical equivalence of oo-categories 1 : LMod(C) xe {M} ~
(Algy,)/ Enda(a)- Then 7 induces an equivalence

LMOdaug(e) Xe {M} ~ (Algzug)/(k@End(M)).
Combining this equivalence with Construction 5.2.11, we obtain a diagram of co-categories
Defor[M]? —— (Alg}."®) /k@End(a)

| |

(Alg}"8)op Algi"®

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This diagram
determines a natural transformation 3 : ObjDef;; — X, where X : Art™ — 8 is the functor given by the
formula X (A) = Mapygaus (DM (A), k@ End(M)) ~ Map g, (DM (A), End(M)).
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Theorem 5.2.8 is a consequence of Remark 5.1.11 together with the following result:

Proposition 5.2.12. Let k be a field, C a k-linear co-category, and M € C an object. Then the natural
transformation 8 : ObjDef,; — X of Construction 5.2.11 exhibits ObjDef;(R) as a summand of X(R) for
each R € Algy™.

Proposition 5.2.12 asserts that 3 induces an equivalence of formal moduli problems 3 : ObjDef};, — X.
According to Proposition 1.2.10, it suffices to show that 5 induces an equivalence of tangent complexes.
Using the description of the tangent complex of ObjDef}; supplied by Lemma 5.1.12, we are reduced to
proving the following special case of Proposition 5.2.12:

Proposition 5.2.13. Let k be a field, C a k-linear co-category, and let M € C be an object. For each m > 0,
the natural transformation 8 : ObjDef,; — X of Construction 5.2.11 induces a (—1)-truncated map

ObjDef \ (k ® k[m]) = Map pjg20e (DU (k @ k[m]), k ® End(M)) = Mapy,, (9" (k @ k[m]), End(M)).
Proof. We have a commutative diagram

ObjDef (k& k[m]) ————— Map,, (91 (k & k[m]), End(M))

| |

Q ObjDef (k@ klm + 1]) —> QMap,,, (DD (k @ k[m + 1]), End(M)),

where the left vertical map is (—1)-truncated by Corollary 5.2.5 and the right vertical map is a homotopy
equivalence. It will therefore suffice to show that 6 is a homotopy equivalence. Let A = k @ k[m + 1] and
let My = M ®; A € RModa(€). We can identify the domain of § with the homotopy fiber of the map
€ : Mapgyiod, (e)(Ma, Ma) — Mape) (M, M). We have a fiber sequence

M[m+1] = My — M

in RMod 4(€), where A acts on M via the augmentation map A — k. It follows that the homotopy fiber of
¢ is given by

MapRMOdA(e)(MA,M[m +1]) ~ Mape(Mg®4k, M[m+ 1))

Mape (M, M[m + 1])
Mapyoq,, (K[—m — 1], End(M))

12

12

The map 6 is induced by a morphism v : k[-m—1] = D (k@ k[m]) in Mody,. Let Free!) : Mod; — Alg,, be
a left adjoint to the forgetful functor, so that v determines an augmentation (k@k[m])®yFree™ (k[—-m—1]) —
k. This pairing exhibits k @& k[m] as a Koszul dual of Free™ (k[—m — 1]), and therefore also exhibits
Free™ (k[—=m — 1]) as a Koszul dual of k @ k[m] (Theorem 3.1.14). Tt follows immediately that 6 is a
homotopy equivalence. ]

We conclude this section with a few observations concerning the discrepancy between the deformation
functor ObjDef,, and the associated formal moduli problem ObjDef}, introduced in Notation 5.2.6. Under
favorable circumstances, one can show that these two functors are equivalent:

Proposition 5.2.14. Let k be a field, let C be a k-linear co-category, and let M be an object. Assume that
C admits a left complete t-structure and that M is connective. Then the functor ObjDef,, : Algi™ — 8 of
Notation 5.2.4 is a formal moduli problem.
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Proof. Let A € Alg)". We first show that if (M, pn) € ObjDef;;(A), then M € RModa(C)>¢. Since A is
small, we can choose a finite sequence of maps

A~Ag— A — - — A, ~k
and pullback diagrams

A, k

|

Aiy1 —— k@ k[m;]

for some integers m; > 0. We prove by descending induction on 4 that M ®4 A; belongs to RMod 4, (C)>o.
In this case i = n, this follows from our assumption that M,, is connective. If i < n, it follows from the
inductive hypothesis since we have a fiber sequence

M[mi—l]—>M®AAi—>M®AAi+1

in C.
Proposition IX.7.6 implies that if
A ——A

L, )

B —2-B
is a pullback diagram in Alg;™ where the maps f and g induce surjections mgA — moB « moB’, then the

functor
RMOdA/(G)ZO — RMOdA(G)ZO XRModB(e)zo RMOdB/(G)ZO

is an equivalence of co-categories. It follows immediately that

ObjDef , (A") —= ObjDef ,,(A)

i l

ObjDef,,;(B’") —— ObjDef,,(B)
is a pullback diagram in 8. O

Corollary 5.2.15. Let k be a field, let C be a k-linear oco-category which admits a left complete t-structure,
and let M € C>¢. Then the natural transformation  : ObjDef;,; — X of Construction 5.2.11 is an
equivalence. In other words, ObjDef,,; : Algi™ — 8 is the formal moduli problem which corresponds, under
the equivalence of Theorem 3.0.4, to the augmented algebra k @ End(M).

Proof. Combine Theorem 5.2.8, Corollary 5.2.5, and Theorem 5.1.9. O
Remark 5.2.16. Let k be a field. For R € Algy", let RMod!R denote the oco-category of Ind-coherent
right R-modules over R (see §3.4). One can show that RMod!R has the structure of a k-linear oo-category

(depending functorially on R). For any k-linear oo-category €, let RMod!R(G) denote the relative tensor
product € ®wod, RMod!R. The equivalence RMod!R o~ LMod@u)(R) of Proposition 3.5.2 is k-linear, and

(combined with Theorem A.6.3.4.6) determines an equivalence RMod’x(€) ~ LModga(g)(€). Let M € C
and let X : Algi™ — 8§ be the formal moduli problem described in Construction 5.2.11. Then X is given by
the formula

X(R) = Mapyes(DY(R), k@ End(M))
~ Mapy,, (D (R), End(M))
~ LMon(U(R)(C‘?)x@{M}
~ RModk%(€) xe {M}.
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In other words, the formal moduli problem X assigns to each R € Alg;™ a classifying space for pairs (M, a),
where M € RMod(€) and « is an equivalence of M with the image of M ®p k of M in the co-category €.
The (—1)-truncated map ObjDef,; < ObjDef}; ~ X is induced by fully faithful embedding RMod(€) —>
RMod’(€), which are in turn determined by the fully faithful embeddings RModg < RMod}, of Proposition
3.4.14. From this point of view, we can view Proposition 5.2.14 as a generalization of Proposition 3.4.18:
it asserts that the fully faithful embedding RModg(€) < RMod',(€) induces an equivalence on connective
objects (where we declare an object of RMod(€) to be connective if its image in € is connective).

5.3 Deformations of Categories

Let k be a field and let € be a k-linear co-category. In §5.2, we studied the problem of deforming a fixed
object M € €. In this section, we will study the deformation theory of the co-category C itself. For every
small Es-algebra R over k, we will define a classifying space CatDefe(R) for R-linear oco-categoriers Cr
equipped with an equivalence € >~ Mody ®wmody Cr. We will show that, modulo size issues, the construction
R — CatDefe(R) is a 2-proximate formal moduli problem (Corollary 5.3.8; in good cases, we can say
even more: see Proposition 5.3.21 and Theorem 5.3.33). Using Theorem 5.1.9, we deduce that there is a
0-truncated natural transformation CatDefe — CatDefp, where CatDefp is a formal E; moduli problem
(which is uniquely determined up to equivalence: see Remark 5.1.11). According to Theorem 4.0.8, the formal
moduli problem CatDef{ is given by R~ Map Alg(®eus (D@)(R), A) for an essentially unique augmented Eo-

algebra A over k. The main result of this section identifies the augmentation ideal m4 (as a nonunital
Eq-algebra) with the k-linear center of the co-category € (Theorem 5.3.16): in other words, with the chain
complex of Hochschild cochains on C.

We begin with a more precise description of the deformation functor CatDefe.

Notation 5.3.1. Let k be an E.-ring. We let LinCaty ~ Modpoq,, (Pr") denote the co-category of k-linear
oo-categories, which we regard as as a symmetric monoidal oo-category. According to Theorem A.6.3.5.14,
the construction A — LMod4(Mody) determines a symmetric monoidal functor Alg, — LinCaty. Passing

to algebra objects, we obtain a functor Algff) ~ Alg(Alg,) — Alg(LinCaty). We set
LCat(k) = Alg\” X Alg(Lincat,) LMod(LinCaty,)

RCat(k) = Alg!” X plg(Lincat,) RMod(LinCaty,).

The objects of LCat(k) are pairs (A, C) where A is an Es-algebra over k and € is an A-linear oo-category
(that is, an co-category left-tensored over LMod 4). Similarly, the objects of RCat(k) are pairs (B, C) where
B is an Eg-algebra over k and € is an oco-category right-tensored over LModp.

Construction 5.3.2. Let k be a field, and let ¢ : LCat(k) — Alg,(f) be the evident coCartesian fibration.
We let LCat(k)°°C"t denote the subcategory of LCat(k) spanned by the g-coCartesian morphisms, so that
q restricts to a left fibration LCat(k)c¢at — Alg,(f).

Let C be a k-linear oo-category and regard (k,C) as an object of LCat(k). We let Defor[C] denote the

oo-category LCat(k);‘(’gaer)t. We will refer to Defor[C] as the co-category of deformations of €. There is an
evident forgetful functor 6 : Defor[C] — Alg,(f)’aug . The fiber of 6 over an augmented k-algebra A can be

identified with the oco-category of pairs (Ca, ), where C4 is an A-linear oo-category and p is a k-linear
equivalence

LMOdk(eA) ~ Mody ®LMod 4 Ca— C.
The map 6 is a left fibration, classified by a functor y : Alg,(f)’aug — g; here § denotes the oo-category of
spaces which are not necessarily small. We let CatDefe denote the composition of the functor x with the

fully faithful embedding Alg,(f)’sm — Alg}f)’aug.
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Let us now fix a k-linear oo-category C and study the properties of the functor x : Alg;gf)’aug -8

introduced in Construction 5.3.2. We begin with a simple observation. Let A be an E,-ring and let C4
be an A-linear co-category. For every map of Eo-rings A — B, let Cg = LModp ®1,Mo0d, € ~ LModg(C).
Proposition I1X.7.4 implies that if we are given a pullback diagram o : Es-rings

of Eo-rings then the induced map

Ca — Cyur Xeg Cp
is fully faithful. Let D4 be another A-linear oo-category. For every map of Eo-rings A — B, we let Dg ~
LModg(D) be defined as above, and Fung(Dp, Cp) denote the co-category of LMod g-linear functors from
Cp to Dp which preserve small colimits, so there is a canonical equivalence Fung(Dp, Cp) ~ Fun,s (D4, Cp).
It follows that if ¢ is a pullback diagram as above, then it induces a fully faithful functor

Funa(Da,Ca) = Funa (Dar, Car) Xpun,, (D i) Funp(Dp, Cp).
This immediately implies the following result:

Proposition 5.3.3. Let k be a field, let C be a k-linear co-category, and let x : Alg,(f)’aug — 8 be as in
Construction 5.3.2. Then for every pullback diagram

A——s A

L

B——DPB

in Algf)’aug, the induced map 6 : x(A) — x(A") Xy By x(B) is 0-truncated (in other words, the homotopy
fibers of 0 are discrete, up to homotopy).

Variant 5.3.4. Let k be a field, C a k-linear co-category, and x a regular cardinal such that € is k-compactly

generated. For each A € Algg)’aug, we let x, (A) denote the summand of x(A) spanned by those pairs (C4, i)

where C4 is kK-compactly generated. We can regard x, as a functor Alg,(f)’aug — 8. It follows immediately

from Proposition 5.3.3 that for each pullback diagram
A——>A

|

B——= DB

in Alg,(f)’aug, the induced map

X (A) = xu(A") Xy, (8 Xx(B)
has discrete homotopy fibers. We claim that each of these homotopy fibers is essentially small. Unwinding
the definitions, we must show that for every compatible triple of k-compactly generated oco-categories C4/ €
LinCat 4/, Cp € LinCatp/, and Cp € LinCatp, there is only a bounded number of equivalence classes of full
A-linear subcategories C4 C Cas X¢,,, Cp which are k-compactly generated and induce equivalences

GA/ ZLMOdA/(GA) GB ZLMOdB(GA).

For in this case, C4 must be generated generated (under s-filtered colimits) by some subcategory of the
essentially small co-category €7, xen €%, where €, denotes the full subcategory of C4s spanned by the
B

k-compact objects, and €%, and CF are defined similarly.
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Corollary 5.3.5. Let k be a field, let C be a k-linear co-category, and let x : Alg;f)’aug — 8 be as in
Construction 5.3.2. Then:

(1) The space x(k) is contractible.

(2) Let V€ Modg. Then x(k @® V) is locally small, when regarded an co-category. In other words, each
path component of x(k ® V) is essentially small.
(3) Let Ae Alg,(f)’aug be small. Then the space x(A) is locally small.
Proof. Assertion (1) is immediate from the definitions. To prove (2), we note that for each A € Alg,(f)’aug
and every point 7 € x(A) corresponding to a pair (€4, u1), the space Q2(x(A),n) can be identified with the
homotopy fiber of the restriction map
MapFunA((‘ZA7(‘3A)(id7 ld) - Ma‘pFunk(C,@) (ld7 ld)

and is therefore essentially small. We have pullback diagrams

keV I ko V(1] I
k ko V] k ko V2

so that Proposition 5.3.3 guarantees that the map y(k @ V) — Q?x(k @ V[2]) has discrete homotopy fibers.
It follows that each path component of x(k @® V') is a connected covering space of the essentially small space
O?x(k ® V[2]), and is therefore essentially small.

We now prove (3). Assume that A is small, so that there exists a finite sequence of maps

A~Ag— A — - = A, ~k

and pullback diagrams
A; k

.

Aiy1 ——= k@ k[my).

We prove that x(A4;) is locally small using descending induction on ¢. Using (1), (2), and the inductive
hypothesis, we deduce that X = x(k) Xy (x@km,)) X(Ait1) is locally small. Proposition 5.3.3 implies that
the map x(A;+1) — X has discrete homotopy fibers. It follows that every path component of x(4;4+1) is a
connected covering space of a path component of X, and therefore essentially small. O

Variant 5.3.6. Let k be a field, C a k-linear co-category, and & a regular cardinal such that € is k-compactly
generated. Let x, : Alggf)’aug — 8 be as in Variation 5.3.4. The proof of Corollary 5.3.5 yields the following
results:

(1) The space x, (k) is contractible.

(2") Let V € Mody. Then x,(k @ V) is essentially small.

(3) Let A€ Alg,(f)’aug be small. Then the space x(A) is essentially small.

Notation 5.3.7. Let k be a field and C a k-linear co-category. We let y : Alg,(cz)’aug — 8 be as in Construction
5.3.2, and let CatDefe : Algg)’sm — § denote the composition of y with the fully faithful embedding
v: Algl(f)’sm — Algl(f)’a“g . If k is a regular cardinal such that C is k-compactly generated, we let CatDefe
denote the composition x, o v, where x, is as in Variation 5.3.4. It follows from Variation 5.3.6 that we can

identify CatDef¢ , with a functor Alg,(f)’sm — 8 (and the functor CatDef¢ is given by the filtered colimit of

the transfinite sequence of functors {CatDefe .}, where k ranges over all small regular cardinals).
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Corollary 5.3.8. Let k be a field and C a k-linear co-category. Then there exists a formal moduli problem
CatDefp : Alggf)’sm — 8 and a natural transformation o : CatDefe — CatDefs which is O-truncated. In
particular, we can regard CatDefe : Algf)’sm —~Sasa 2-proximate formal moduli problem after a change of

universe (see Theorem 5.1.9).

Proof. Combining Corollary 5.3.5, Proposition 5.3.3, and Theorem 5.1.9, we deduce the existence of a formal

moduli problem CatDef@ : Algf)’sm — 8 and a O-truncated natural transformation a : CatDef e — CatDef@.

For each m > 0, we see that the space

CatDefp (k @ k[m]) ~ Q? CatDefs (k @ k[m + 2]) ~ Q? CatDefe (k @ k[m + 2])

is essentially small (see the proof of Corollary 5.3.5). For an arbitrary object A € Alggf)’sm7 we can choose

a finite sequence of maps A = Ag =+ A; — -+ — A, ~ k and pullback diagrams

A ——k

-

Using the fact that CatDefé is a formal moduli problem, we deduce that each CatDef@ (4;) is essentially
small by descending induction on 7, so that CatDefp(A) is essentially small. O

Remark 5.3.9. In the situation of Corollary 5.3.8, let k be a regular cardinal such that € is k-compactly
generated. Then the composite map

CatDefe ,, — CatDefe — CatDef’e\

is O-truncated, so that CatDefe , is a 2-proximate formal moduli problem by Theorem 5.1.9.

Our next goal is to describe the formal Eo-moduli problem CatDefg more explicitly. Using Theorem
4.0.8 (and its proof), we see that the functor CatDefp is given by

CatDefp(R) = Map,, @ .eus (D@ (R), k ®m),

for some nonunital Es-algebra m over k. We would like to make the dependence of m on € more explicit.

Definition 5.3.10. Let k be an E-ring and let C be a k-linear oco-category. We let RCat(k)e denote the
fiber product RCat(k) Xpincat, {€}. We will say that an object (B, C) € RCat(k)e of RCat(k)e exhibits B
as the k-linear center of C if (B, €) is a final object of RCat(k)e.

Remark 5.3.11. In the situation of Definition 5.3.10 Corollary A.6.1.2.42 implies that the forgetful functor
RMod(LinCaty) XyLincat, {€} — Alg(LinCaty) is a right fibration. It follows that the map ¢ : RCat(k)e —
Alg,(f) is a right fibration, so that an object (B, C) € RCat(k)e is final if and only if the right fibration ¢ is
represented by the object B € Alg,(f). In other words, the k-linear center B of € can be characterized by

the following universal property: for every A € Alg,(f), the space Map Alg® (A, B) can be identified with the
k

space RModpod , (PrY) X Lincat, {€} of k-linear right actions of LMod 4 on €.

Proposition 5.3.12. Let k be an E-ring and let C be a k-linear co-category. Then there exists an object
(B, C) € RCat(k)e which exhibits B as a k-linear center of C.

Proof. Let € be an endomorphism object of € in LinCaty: that is, € is the oco-category of k-linear functors
from C to itself. We regard £ as a monoidal oo-category via order-reversed composition, so that C is
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a right &-module object of LinCatg. According to Theorem A.6.3.5.10, the symmetric monoidal functor
Alg;, — (LinCatg )rod,, , admits a right adjoint G. It follows that G induces a right adjoint G’ to the functor

Alg,(f) ~ Alg(Alg,;,) — Alg((LinCaty)noq, /) ~ Alg(LinCaty),
and we can define B = G'(€). O

Remark 5.3.13. Let k be an E.-ring and C a k-linear co-category The proofs of Proposition 5.3.12 and
Theorem A.6.3.5.10 furnish a somewhat explicit description of the k-linear center B of C, at least as an
[E;-algebra over k: it can be described as the endomorphism ring of the identity functor ide € &€, where € is
the oo-category of k-linear functors from C to itself.

Example 5.3.14. Let k be an Eo-ring, let R € Alg, be an Ej-algebra over k, and let 3(R) = 3g, (R) €
Alg,(f) be a center of R (see Definition A.6.1.4.10). Then 3(R) is a k-linear center of the oo-category
RMod g (Mody).

Remark 5.3.15. Let k be an E,-ring, € a k-linear oco-category, and A € Algf) a k-linear center of C.
The homotopy groups 7, A are often called the Hochschild cohomology groups of €. In the special case
where € = LModg(Mody) for some R € Alg,, Example 5.3.14 allows us to identify 7, A with the group
EXt;gModR(Modk) (R’ R)

We are now ready to formulate the main result of this section.

Theorem 5.3.16. Let k be a field and let C be a k-linear oo-category. Then the functor ObjDefp :

Alg,(f)’sm — 8 is given by
ObjDefg(R) = Map,,,, c).0ux (D) (R), k © 3(€)) ~ Map,,,: (DP(R), 3(€)).

where 3(C) denotes a k-linear center of C.

Using Remark 5.1.11, we see that Theorem 5.3.16 is equivalent to the following:

Proposition 5.3.17. Let k be a field, let C be a k-linear co-category, and let 3(C) € Algg) denote a k-linear
center of C. Let X : Alggf)’sm — 8 be the functor given by the formula X (R) = MapAlg(2> (D?)(R),B). Then
k

there exists a O-truncated natural transformation 8 : CatDefe — X.
The first step in our proof of Proposition 5.3.17 is to construct the natural transformation CatDefe — X.

Construction 5.3.18. Let k be a field and let € be a k-linear co-category. We let A(?) : M2 -
Alg,(f)’wg x Alg,(f)7aug be the pairing of Construction 4.4.6, so that we can identify objects of M®) with triples
(A, B,¢) where A, B € Alg,(f) and € : A®g B — k is an augmentation. Given an object (A4, B,¢) € M@ and
an object (A, Ca,u) € Defor[C], we regard C4 ® LModg as an object of

LMod 4 ® LMod s BModrod (LinCaty,),

so that
Mody ®1.Mod 4 ® LMod g (€4 ® LModp)

can be identified with an object of RModyyoa, (Mody) whose image in LinCaty, is given by
Mody ®LMod 4 Cqa~C.
This construction determines a functor

Defor(€] X ,, @) s M — RMod(LinCaty) Xvincat, {C}.
k

A
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The induced map
Defor[€]  , .0 M) — Defor[€] x (Alg!? ™ X A (Lincaty) RMod(LinCaty) X Lincat, {C})
factors as a composition
Defor[€] x g M) 5 3 2 Defor(€] x (Algl™™ X s tg(tincan) RMod(LinCate) Xincat, {€})

where ¢ is an equivalence of co-categories and )\’ is a categorical fibration. It is not difficult to see that X\’ is
a left representable pairing of oo-categories, which induces a duality functor

D) Defor[C — Algl”™™ X sl (Lincat,) RMod(LinCaty) Xpincat, {€}-

Concretely, the functor @(62) assigns to each object (A, C4, ) € Defor[C]°P the object (D) (A), @), where we
regard C as right-tensored over LModg2) (4 via the k-linear equivalence

C ~ Modg, @1, Mod 4 ® LMod (€4 ® LModg).

Let k be a field and let € be a k-linear co-category. We let 3(C) denote a k-linear center of € (Definition
5.3.10), so that we have a canonical equivalence of co-categories

n: Algl(f) XAlg(LinCatk) RMod(LinCatk) X LinCaty G~ (Alg](f))/3(e).

Composing 1 with the functor Z‘Dg), we obtain a diagram of co-categories

Defor[€]? —— (Alg” ") /re3(0))

| |

(2)
(Algg),aug)op D2 Algf),aug

which commutes up to canonical homotopy, where the vertical maps are right fibrations. This diagram

determines a natural transformation 8 : ObjDefe — X, where X : Alg,(f)
formula X (R) = Map,,, @ (D2 (A),3(C)).
k

,sm

— 8 is the functor given by the

We will prove Proposition 5.3.17 (and therefore also Theorem 5.3.16) by showing that the natural trans-
formation S of Construction 5.3.18 is O-truncated. Since the functor X is a formal Es-moduli problem, £
induces a natural transformation /3 : CatDefé — X. We wish to prove that 3 is an equivalence (which implies
Proposition 5.3.17, by virtue of Theorem 5.1.9). According to Proposition 1.2.10, it suffices to show that
B induces an equivalence of tangent complexes. Using the description of the tangent complex of CatDef@
supplied by Lemma 5.1.12, we are reduced to proving the following special case of Proposition 5.3.17:

Proposition 5.3.19. Let k be a field and C a k-linear co-category. For each m > 0, the natural transfor-
mation [ : ObjDefo — X of Construction 5.3.18 induces a 0-truncated map

ObjDef e (k @ k[m]) — Map, @ @@ (k@ k[m]), 3(C)).
Proof. We have a commutative diagram

ObjDef e (k & k[m])

Map,, o (D) (k & k{m]), 3(€))

|

Q2 ObjDefe(k & km + 2]) —> Q2 Map, | e (D@ (k & klm + 2]), 3(€)),
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where the left vertical map is O-truncated by Corollary 5.3.8 and the right vertical map is a homotopy
equivalence. It will therefore suffice to show that 6 is a homotopy equivalence. Let A = k @ k[m + 2],
let €4 = LMod4 ® € ~ RMod4(C), let & be the oco-category of k-linear functors from € to itself, and let
€ 4 be the oco-category of LMod s-linear functors from €4 to itself, so that there is a canonical equivalence
v: €4 ~LMody(€). Let id € € denote the identity functor from € to itself. Under the equivalence v, the
identity functor from €4 to itself can be identified with the free module A ®id € LMod4(€). Unwinding the
definitions, we see that the domain of 6 can be identified with the homotopy fiber of the map

§:Mapg , (A®id, A®id) ~ Mapg (id, A ® id) — Mapg) (id, id).
We have a canonical fiber sequence
idm+2] - A®id —id
in &, so that the homotopy fiber of £ is given by
Mape (id, id[m + 2]) ~ Mapygod, (k[—m — 2], 3(C)).

The map 6 is induced by a morphism v : k[-m—2] — D@ (k&k[m]) in Mody,. Let Free® : Mod;, — Algff) be
a left adjoint to the forgetful functor, so that v determines an augmentation (k@k[m])®yFree® (k[-m—2]) —
k. The proof of Proposition 4.5.6 shows that this pairing exhibits Free® (k[—m — 2]) as the Koszul dual of
k & k[m], from which it immediately follows that € is a homotopy equivalence. O

Our goal, for the remainder of this section, is to describe the formal moduli problem CatDefé more
explicitly in terms of the oo-category €. Assume that € is compactly generated. Let w denote the first
infinite cardinal and let CatDefe ,, be the deformation functor of Notation 5.3.7 (so that CatDef¢ , classifies
compactly generated deformations of €). Our main result (Theorem 5.3.33) asserts that, under some rather
restrictive assumptions, the composite map

CatDefe , — CatDefe — CatDef@

is an equivalence of functors. Since the natural transformation CatDefe ,, — CatDef@ is O-truncated, this
is equivalent to the assertion that CatDefe,, is itself a formal moduli problem (see Remark 5.1.11). The
functor CatDefe ,, is automatically a 2-proximate formal moduli problem (Remark 5.3.9). Our first step is
to obtain a criterion which guarantees that CatDefe, is a 1-proximate formal moduli problem. First, we
need to introduce a bit of terminology.

Definition 5.3.20. Let C be a presentable stable co-category. We let C° denote the full subcategory of €
spanned by the compact objects of €. We will say that C is tamely compactly generated if it satisfies the
following conditions:

(a) The oo-category € is compactly generated (that is, € ~ Ind(C°)).
(b) For every pair of compact objects C, D € C, the groups Extg(C, D) vanish for n > 0.

Proposition 5.3.21. Let k be a field, let C be a k-linear co-category which is tamely compactly generated,

and let CatDefe,, : Algf)’sm — 8 be as in Notation 5.8.7. Then CatDefe , is a 1-prozimate formal moduli
problem.

The proof of Proposition 5.3.21 will require some preliminaries.

Notation 5.3.22. Let R be an Es-ring and let € be an R-linear oco-category. For every pair of objects
C,D € C, we let More(C, D) € LModpg be a classifying object for morphisms from C to D. This object is
characterized (up to canonical equivalence) by the requirement that there exists a map e : More(C, D)@ C —
D such that, for every M € LModg, the composite map

MapLMOdR(M, More(C, D)) — Mape(M ® C,More(C, D) ® C) = Mape(M ® C, D)

is a homotopy equivalence.
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Lemma 5.3.23. Let R be an Ey-ring and let C be an R-linear co-category. If C € C is compact, then the
construction D — More(C, D) determines a colimit-preserving functor € — LModg.

Proof. Tt is clear that the construction D — More(C, D) commutes with limits and is therefore an exact
functor. To prove that it preserves colimits, it suffices to show that it preserves filtered colimits. For this, it
suffices to show that the construction D — Q° More(C, D) preserves filtered colimits (as a functor from C
to 8), which is equivalent to the requirement that C' is compact. O

Let R and C be as in Notation 5.3.22. Given an object N € LModg, the induced map

N @ More(C, D) ® C "8 N @ D
is classified by a map A : N ® More(C, D) — More(C, N ® D).

Lemma 5.3.24. Let R be an Eo-ring and let € be an R-linear co-category. Let C, D € € and let N € LModpg.
If C is a compact object of C, then the map A : N ® More(C, D) — More(C, N ® D) is an equivalence.

Proof. Using Lemma 5.3.23, we deduce that the functor N +— More(C, N ® D) preserves small colimits. It
follows that the collection of objects N € LModpg such that A is an equivalence is closed under colimits in
LModg. We may therefore suppose that N ~ R[n] for some integer n, in which case the result is obvious. [

Lemma 5.3.25. Suppose we are given a map of Eo-rings R — R', let € be an R-linear co-category, and let
€' = LModg ®LModp C =~ LMod g/ (C). Let F : € — €' be a left adjoint to the forgetful functor G : €' — €, so
that F is given by given by C' +— R' ® C. For every pair of objects C, D € €, the map More(C,D)®C — D
mduces a map

(R ®g More(C, D)) ® F(C) ~ F(More(C, D) ® C) — F(D),
which is classified by a map « : R @ g More(C, D) — More/ (F(C), F(D)). If C € C is compact, then « is

an equivalence.

Proof. The image of a under the forgetful functor LModr — LModpg coincides with the equivalence R’ @ g
More(C, D) — More(C, R’ ® D) of Lemma 5.3.24. O

Lemma 5.3.26. Suppose given a pullback diagram

A——DB

o

A ——= B

of Eo-rings. Let C4 be an A-linear co-category, let Cg = LModp ®1Mod, Ca ~ LModp(€C4), and define Ca/
and Cpr similarly. An object C € C4 is compact if and only if its images in Cp and C4s are compact.

Proof. The “only if” direction is obvious, since the forgetful functors Cp — C4 < C4s preserve filtered
colimits. For the converse, suppose that C' € €4 has compact images Cp € Cg and Cs/ € C4/. Then the
image of C'in Cp X¢,, C4s is compact. Since the natural map C4 — Cp x¢,, Ca- is fully faithful (Proposition
IX.7.4) and preserves filtered colimits, we conclude that C' is compact. O

Lemma 5.3.27. Let f : A — B be a map of connective Eq-rings, and let C4 be an A-linear co-category
which is tamely compactly generated. Then Cp = LModg(C) is tamely compactly generated.

Proof. We note that Cp is compactly generated: in fact, Cp is generated under small colimits by the essential
image of the composite functor map €4 — €4 Le B, which consists of compact objects (since F is left
adjoint to a forgetful functor). It follows that the co-category C% is the smallest stable full subcategory of
Cp which contains F'(€%) and is closed under retracts. Let X C Cp be the full subcategory spanned by those
objects C' such that for every D € Cg, we have Extg, (C, D) ~ 0 for n>> 0. It is easy to see that X is stable
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and closed under retracts. Consequently, to show that €4 C X, it will suffice to show that F(Cp) € X for
each Cy € €. Let us regard Cj as fixed, and let Y be the full subcategory of Cp spanned by those objects
D for which the groups Extg , (F(Cp), D) vanish for n >> 0. Since Y is stable and closed under retracts, it
will suffice to show that F((Dy) € Y for each Dy € €%. In other words, we are reduced to proving that the
homotopy groups m_, More, (F(Cy), F(Dy)) vanish for n > 0. Using Lemma 5.3.25, we must show that
T_n(B®4 More, (Co, Dg)) vanishes for n > 0. Since A and B are connective, this follows from the fact that
7m_n More, (Co, Do) =~ 0 for n > 0 (since C4 is tamely compactly generated). O

Lemma 5.3.28. Let A be a connective Eo-ring and let C4 be an A-linear co-category which is tamely com-
pactly generated. For every map of Eo-rings A — R, we let Cr denote the co-category LModr ®1Mmoed, Ca
LModg(C4). Suppose we are given a pullback diagram

A——B

o

A ——= B

of connective Eq-rings which induces surjective maps mgB — moB’ and mgA' — woB’. Then the induced map
0¢: €4 — Cp xee, €Y, is an equivalence of co-categories.

Proof. The functor 0¢ is given by the restriction of a functor 6 : €4 — Cp X, €Cas, which is fully faithful by
Proposition IX.7.4; this proves that ¢ is fully faithful. We will show that 6 is essentially surjective. We can
identify objects of Cp x¢,, €4 with triples (Cp,Cas,n) where Cp € €3, Car € €}/, and 7 is an equivalence
B' ®p Cp ~ B’ ®4 C4 . In this case, we will denote B’ ® g Cp ~ B’ ® o+ C4» by Cpgr. Note that 6 admits
a right adjoint G, given by (Cp,Car,n) — Cp xc,, Car. In view of Lemma 5.3.26, it will suffice to show
that the counit transformation v : # o G — id is an equivalence when restricted to objects of % Xee, Cy -
Choose such an object (Cp,Cas,7) (so that Cp and Cys are compact) and let C4 = Cp x¢,, Cas; we wish
to show that the canonical maps

¢ZB®ACA—>CB ¢/1A/®ACACA’

are equivalences. We will show that ¢ is an equivalence; the argument that ¢’ is an equivalence is similar.
Let X C Cp be the full subcategory spanned by those objects Dp € Cp such that ¢ induces an equivalence
oo : More, (D, B ®4 Ca) — More, (Dp,Cp). We wish to show that X = Cp. Since X is closed under
small colimits, it will suffice to show that X contains B ® 4 D 4 for every compact object D4 € C4. Let D/
and Dp/ be the images of D4 in C4/ and Cpg/, respectively. Using Lemma 5.3.24, we can identify ¢ with
the canonical map B ® 4 More,(Da,C4) — More, (Dp,Cg). Note that we have a pullback diagram

MOI‘@A(DA,CA) MOI‘@B(DB,CB)

| l

MOI‘@A, (DA/, OA/) —_— MOI‘@B, (DB/,CB/)

and that Lemma 5.3.24 guarantees that the underlying maps
B @4 MOI‘@A, (DA/, CA/) — MOI@B, (DB/, CB/) + B'®p More, (DB, CB)

are equivalences. It will therefore suffice to show that there exists an integer n such that More, (Dp, Cp) and
More,,(Das,Car) belong to (LModpg)>, and (LMod /)y, respectively (Proposition IX.7.6). This follows
immediately from Lemma 5.3.27. O

Notation 5.3.29. Let LinCat™® be the subcategory of LinCat whose objects are pairs (A, €), where 4 is a
connective Eo-ring and € is a tamely compactly generated A-linear oo-category, and whose morphisms are
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maps (4,C) — (A’,€") such that the underlying functor € — €’ carries compact objects of € to compact
objects of €. It follows from Lemma 5.3.27 that the forgetful functor LinCat'°® — Alg(®*" is a coCartesian
fibration. This coCartesian fibration is classified by a functor x*°8 : AIg(Z)’Cn — Cateo.

Lemma 5.3.30. Let x*°8 : Alg(2)"Cn — EZROO be as in Notation 5.8.29. Suppose we are given a pullback
diagram
A——DB

L

A ——= B

of connective Eo-rings which induces surjective maps mgB — moB’ and mgA" — woB’. Then the induced map
F o x*8(A) = x*8(B) Xyres(pry X*B(A) is fully faithful.

Proof. We can identify objects of the fiber product x*&(B) X yces(pr) x*¢(A’) with triples (Cp, Cas,n) where
Cp € LinCauttl;g7 Car € LinCathfg, and 7 is an equivalence LModpg/(Cp) ~ LModp/(C4). Given such an
object, we let Cp; denote the oco-category LModp/ (Cg) ~ LModp/(C4). The functor F admits a right
adjoint G, which carries a triple (Cp,Cas,n) to the full subcategory of Cp x¢,, Cas generated under small
colimits by € x e, C%,. We wish to show that the unit map u : id — GoF is an equivalence. In other words,
we wish to show that if (Cp, Cas,n) = F(C4) for some tamely compactly generated A-linear oo-category
C4, then the canonical map €4 — Cp xe,, Car is fully faithful and its essential image is the subcategory
generated by Cp xee, €} under small colimits. This follows immediately from Lemma 5.3.28. O

Lemma 5.3.31. Let k be a field and let A € Alg,(f)’sm be a small Eo-algebra over k. Let C4 be a com-
pactly generated A-linear oo-category. Then Ca is tamely compactly generated if and only if LModg(Ca) =~
LMody ®1.Mod, Ca is tamely compactly generated.

Proof. The “only if” direction follows from Lemma 5.3.27. For the converse, suppose that LModg(C4) is
tamely compactly generated. Let X C C4 be the full subcategory spanned by those objects D such that, for
each C' € €}, the groups Extg , (C, D) vanish for n > 0. Note that if C, D € €%, then

Extg, (C,k ® D) =~ Extl\j0q, (e4)(k ® C,k ® D)

vanishes for n > 0. It follows that X contains k ® D for each D € C%. Since A is small, we can choose a
finite sequence
A=Ay —---— A,

and pullback diagrams
A; k

.

Aip1 — k@ k[my).

In particular, we have fiber sequences of A-modules
Ai — Ai+1 — k‘[ml]

It follows by descending induction on i that A; ® D € X for each D € €. Taking i = 0, we deduce that
C% C X as desired. O

Proof of Proposition 5.3.21. Combine Variation 5.3.6 with Lemmas 5.3.30 and 5.3.31. O

We can improve further on Proposition 5.3.21 if we are willing to to impose some stronger conditions on
the k-linear oco-category C.
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Definition 5.3.32. Let C be a presentable stable co-category. We will say that an object C' € C is unob-
structible if C'is compact and the groups Extg(C, C) vanish for n > 2.

Theorem 5.3.33. Let k be a field and let C be a k-linear co-category. Assume that C is tamely compactly

generated and that there exists a collection of unobstructible objects {Cy} which generates © under small
colimits. Then the functor CatDefe , : Algl(f)’sm — 8 of Proposition 5.53.21 is a formal Eo moduli problem.

Corollary 5.3.34. Let k be a field and let C be a k-linear co-category. Assume that C is tamely compactly
generated and that there exists a collection of unobstructible objects {Cy} which generates C under small
colimits. Then the composite map

CatDefe , — CatDefe — CatDef@
is an equivalence. Consequently, the functor CatDefe , is given by
CatDefe . (R) = Map, .o (9P (R), 3(€)),
k

where 3(C) denotes the k-linear center of C.
Proof. Combine Theorems 5.3.33 and 5.3.16 with Remarks 5.3.9 and 5.1.11. O

The proof of Theorem 5.3.33 will require some preliminaries. Our first lemma gives an explanation for

the terminology of Definition 5.3.32.

Lemma 5.3.35. Let k be a field, let f : A — A’ be a small morphism between augmented Eo-algebras
over k. Let C4 be a tamely compactly generated A-linear oo-category, let Car = LModa/(C4), and let
C = LMody(C4). Suppose that C € Ca is a compact object whose image in C is unobstructible. Then there
exists a compact object Cy € C4 and an equivalence Cyr ~ AR C4 in Cy.

Proof. Let C € € denote the image of C4/. Since f is small, we can choose a finite sequence of morphisms
A=A4g— - = A, ~ A

and pullback diagrams

A —k

|

Ai+1 —k D k[ml]

in Alg,(f)’aug7 where each m; > 1. We prove by descending induction on i that C4 can be lifted to a
compact object C; € LMody,(C4), the case i = n being trivial. Assume that C;;1 has been constructed.
Let €' = LModgk[m,)(€). According to Lemma 5.3.28, we have an equivalence of oo-categories

(?f — Gfﬂ X@re ce.
Consequently, to show that C;;1 can be lifted to an object C; € €7, it will suffice to show that C;11 and C
have the same image in €'°. This is a special case of the following assertion:
() Let X,Y € €’ be objects having image C € C. Then there is an equivalence X ~ Y in €.

To prove (x), we let ObjDef : Art™) — 8 be defined as in Notation 5.2.4; we wish to prove that any two

points of the space ObjDef(k @ k[m;]) belong to the same path component. According to Proposition

5.2.13, ObjDef(k @ k[m;]) can be identified with a summand of the mapping space MapAlgm(’D(l)(k @
k

k[m;]), End(C)). Since the Koszul dual ®") (k@ k[m;]) is the free associative algebra generated by k[—m;—1],
we have a canonical isomorphism

mo Map,, ) @D (k ® k[my]), End(C)) = 7_p,—1 End(C) ~ Extg it (C, O).

These groups vanish by virtue of our assumption that C' is unobstructible. O
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Remark 5.3.36. In the situation of Lemma 5.3.35, if we assume that Extg(C,C) vanishes, then lifting of
Ca to C4 is unique up to equivalence: that is, C' is undeformable.

Lemma 5.3.37. Let k be a field, let f : A € Alggf)’aug be a small augmented Eq-algebra over k, let Cy
be a tamely compactly generated A-linear oo-category, and let C = LModi(C4). Let {Cs} be a collection
of objects of € which generates € under small colimits, and let {C} be a collection of objects of Ca with
Co = k®Cy. Then the collection {Cy} generates €4 under small colimits.

Proof. Let X be the full subcategory of €4 generated by {C, } under small colimits. Then X contains M ®C
for each M € LMod 4. Taking M = k, we deduce that X contains the images of the objects {C,} under the
forgetful functor 6 : € — C4. Since 6 preserves small colimits, it follows that X contains the essential image
of #. In particular, k ® C € X for each C' € C4. Since A is small, we can choose a finite sequence

A=Ag— - — A,

and pullback diagrams

Ay ——k

.

A1 —=k @ k[my].

It follows by descending induction on i that X contains A; ® C for each C' € C4. Taking i = 0, we deduce
that X = C4. O

Proof of Theorem 5.3.33. Proposition 5.3.21 implies that CatDef¢ ,, is a 1-proximate formal moduli problem.
Suppose we are given a pullback diagram
A——B

|

A/ - 5 B/
in Alg,(f)’sm which induces surjective maps moB — o B’ and mgA’ — myB’. Then the map
6 : CatDefe ,(A) = CatDefe ., (B) Xcatpete.., (5) CatDefe o, (A")

is (—1)-truncated, and we wish to show that it is a homotopy equivalence. Fix a point of the fiber product
CatDefe o, (B) X catpete ., (5') CatDefe o, (A"), which determines a pair (Cas, Cp,n) where Cas is a compactly
generated A’-linear oo-category, Cp is a compactly generated B-linear oo-category, 1 is an equivalence
LModp/ (Cas) ~ LModp/(Cp), and let Cp/ denote the oco-category LModp: (Ca/) ~ LModp (Cp). Let Cxy
denote the full subcategory of Cp x¢,, Cas generated under small colimits by Ch Xee, C% . We will show
that 6(C4) ~ (Cp,Cas,n). Unwinding the definitions, it suffices to show that the canonical maps ¢ :
LModp(C4) — Cp and ¢’ : LModa/(C4) — Cu are categorical equivalences. We will show that ¢ is an
equivalence; the proof for ¢’ is similar.

We first claim that ¢ is fully faithful. It will suffice to show that ¢ is fully faithful when restricted
to compact objects. Since the collection of compact objects of LModg(C4) is generated, under retracts
and finite colimits, by the essential image of the free functor F' : €4 — LModg(C4), it will suffice
to show that for every pair of compact objects C, D € €4, ¢ induces an equivalence of left B-modules
§ © Morpmodg(eq) (F(C), F(D)) — More, (¢F(C),qF(D)). We can identify € with the fiber product
€4 ~ Cp xee, €Y, so that C' and D correspond to triples (Cp,Car,v) and (Dp, Dar,6). Let Cpr de-
note the image of C in Cp/ and let Dp/ be defined similarly. Using Lemma 5.3.25, we can identify
¢ with the map B ® More, (C,D) — More,(Cp,Dp). Here we have an equivalence More, (C, D) ~
More, (Cp, Dp) XMore ,,, (Cpr,Dgr) More,,(Car, Dar). Using Lemma 5.3.25 and Proposition IX.7.4, we are
reduced to proving that More, (Cp, Dp) and More ,,(Cas, Dar) are n-connective for some integer n. This
follows from the fact that Cp and C4s are tamely compactly generated (Lemma 5.3.31).
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It remains to prove that ¢ is essentially surjective. Note that the essential image of is closed under small
colimits. Using Lemma 5.3.35, it will suffice to show that the essential image of ¢ contains every object
Cp € CF whose image in C is unobstructible. Let Cp: be the image of Cp € €%. To prove that C'p can be
lifted to €%, it will suffice to show that C'p: can be lifted to €%,. The existence of the desired lifting follows
from Lemma 5.3.35. O

Remark 5.3.38. The hypotheses of Theorem 5.3.33 are rather restrictive: many k-linear oo-categories of
interest (such as the oo-categories of quasi-coherent sheaves on most algebraic varieties of dimension > 2)
cannot be generated by unobstructible objects. In these cases, the functor CatDefe ,, — CatDefp need not
be an equivalence. In these cases, it seems natural to ask if there is some explicit deformation-theoretic
description of the formal moduli problem CatDefp, analogous to the explicit description of ObjDef’; for an
object M € C given in Remark 5.2.16. To obtain a satisfactory answer, it is presumably necessary to allow
curved deformations of the co-category C.
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