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Abstract. We compute the SO(n+1)-equivariant mod 2 Borel cohomology of the
free iterated loop space ZSn

when Z is a mod 2 generalized Eilenberg Mac Lane
space. When n = 1, this recovers Bökstedt and Ottosen’s computation for the
free loop space. The highlight of our computation is a construction of cohomology
classes using an O(n)-equivariant evaluation map and a pushforward map.
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1. Introduction

Let Z be a mod 2 generalized Eilenberg–Mac Lane space of finite type1 (which we
will call GEM), and let H∗ denote the mod 2 cohomology functor.

In [BO99; Ott03], Bökstedt and Ottosen gave a functorial computation ofH∗(ZS1

hSO(2))
for such Z. To do this, they construct a certain endofunctor ℓ of the category of
unstable algebras over the Steenrod algebra, and show that ℓ(H∗(Z)) is naturally

isomorphic to H∗(ZS1

hSO(2)) for Z a GEM, where GEM is the category of GEMs and

homotopy classes of maps2.

1See Remark 2.4.1 for a discussion of the finite type hypothesis, and how it can be avoided.
2In fact, they prove this more generally when Z has polynomial cohomology.
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The main goal of this paper is to extend their work to higher dimensional spheres.
That is, we functorially compute an associated graded algebra of H∗(ZSn

hSO(n+1)) for
n ≥ 1, the n = 1 case essentially recovering their ℓ functor.

For a finite unstable algebra A over the Steenrod algebra, there is a division end-
ofunctor (− : A) of the category of unstable algebras over the Steenrod algebra
that is left adjoint to (−)⊗ A, and has the property that there is a natural isomor-
phism (H∗(Z) : H∗(Y )) ∼= H∗(ZY ) for Z a GEM. We use Ln to denote the functor
(− : H∗(Sn)), and we show that Ln(A) comes equipped with a natural derivation of
cohomological degree −n which we denote d. The functor Ln is very explicit, and
we refer the reader to Proposition 2.8 and Remark 2.8.1 for more about it.

Theorem A. Let Z ∈ GEM, and n ≥ 1. There is a natural multiplicative filtra-
tion on H∗(ZSn

hSO(n+1)) such that the associated graded is the cohomology of the com-

mutative differential graded algebra (or cdga) with underlying algebra Ln(H
∗(Z)) ⊗

H∗(BSO(n+1)) with differential determined by x⊗ 1 7→ dx⊗wn+1 and 1⊗wi 7→ 0.

Here wi is the i
th Stiefel–Whitney class inH i(BSO(n+1)). In the case, n = 1, there

are no multiplicative extension problems in Theorem A, and so the cohomology of the
cdga recovers the functor ℓ of Bökstedt and Ottosen. In the general case, we obtain
partial results about the multiplicative extension problems, which are collected in
Section 6.

Letting q : ZSn → ZSn

hSO(n+1) denote the map to the homotopy orbits, the proof of
Theorem A proceeds by analyzing the Serre spectral sequence of the Borel fibration

ZSn
ZSn

hSO(n+1) BSO(n+ 1)
q

This spectral sequence can also be obtained as the homotopy fixed point spectral
sequence of the SO(n+1)-action on the cochains of ZSn

, and so we refer to it as the
homotopy fixed point spectral sequence. The E2-term of this homotopy fixed point
spectral sequence is Ln(H

∗(Z)) ⊗ H∗(BSO(n + 1)), and we show that there are no
differentials until the En+1-page, where the differential is given exactly by the cdga
differential in the theorem.

The most subtle point is to show that En+2 = E∞, so that the cohomology of
the cdga agrees with the associated graded of the cohomology of H∗(ZSn

h SO(n+1)).
The En+2-page in this situation has the pleasant property that its multiplicative
generators lie on the edges of the spectral sequence. To show that these multiplica-
tive generators are permanent cycles, we explicitly construct cohomology classes in
H∗(ZSn

hSO(n+1)) which represent generating classes on the En+2-page, as explained in
the theorem below.



THE BOREL COHOMOLOGY OF FREE ITERATED LOOP SPACES 3

Theorem B. Let Z be a space, and n ≥ 1. For 0 ≤ i ≤ n, there are natural
transformations

δ : Hj(Z) → Hj−n(ZSn

hSO(n+1))

ϕi : H
j(Z) → H2j−i(ZSn

h SO(n+1))

such that if Z ∈ GEM, the composite H∗(ZSn

hSO(n+1))
q∗−→ H∗(ZSn

) ∼= Ln(H
∗(Z))

induced from the map ZSn → ZSn

hSO(n+1) sends δ(a) to da, ϕi(a) to Sqia for i < n,

and ϕn(a) to Sqna+ ada.
Moreover, when Z ∈ GEM, the images of ϕi, δ along with wi generate H

∗(ZSn

hSO(n+1))
as an algebra.

The existence of the operation δ gives a canonical lift of the derivation d on
Ln(H

∗(Z)) to take values in H∗(ZSn

hSO(n+1)). The other operations ϕi should be
thought of as lifts of the En+1-power operations on mod 2 cohomology to take values
in the Borel cohomology of the free loop space. Indeed, it follows from the above
theorem that ϕn pulled back along the composite Z → ZSn → ZSn

h SO(n+1) gives the
Steenrod operation Sqn.
The construction of the operations ϕn comes from the equivariant evaluation map

ZSn → Z2 evaluating at antipodal points of the sphere. This map is equivariant for
the O(n) action, where O(n) is the stabilizer of the antipodal points as a set.

This equivariant evaluation map induces a map

H∗(Z2
hC2

)⊗H∗(BSO(n)) ∼= H∗(N
O(n)
SO(n)(Z)hO(n)) → H∗(ZSn

hO(n))

The latter cohomology H∗(ZSn

hO(n)) turns out to be a free module of rank n over

H∗(ZSn

hSO(n+1)) with basis ti, 0 ≤ i ≤ n, where t is the class coming from H1(BC2).
We then define the classes ϕi to be the coefficients of the image of the total power
operation class P (x) ∈ H∗(Z2

hC2
) with respect to this basis. We implement the

extraction of the coefficients with respect to this basis using a pushforward map in
cohomology from the O(n)-homotopy orbits to the SO(n+ 1)-homotopy orbits.

In addition to describing the cohomology of ZSn

hSO(n+1) as the cohomology of a cdga,
we give a presentation of the cohomology of this cdga, in generators and relations
similar to Bökstedt and Ottosen’s functor ℓ.

Theorem C. Let Z ∈ GEM, and let A be an unstable algebra over the Steenrod
algebra. For A = H∗(Z), the ring ℓn(H

∗(Z)) (see Definition 7.2 for an explicit pre-
sentation) is naturally isomorphic to an associated graded algebra of H∗(ZSn

h SO(n+1)).

In this paper, it is convenient to use the language of zeroth derived functors as
ways of explaining the origin of many of the functors we use. Given a contravariant
functor out of (hS)ft, the homotopy category of finite type spaces, its zeroth derived
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functor is obtained by restricting to the category of finite Eilenberg Mac Lane spaces
GEMfin, and then left Kan extending along the functor H∗ : GEMfin → K into the
category of unstable algebras over the Steenrod algebra.

In particular Theorem 7.4 is equivalent to the fact that the functor ℓn is the zeroth
derived functor of the functor taking a space Z to grH∗(ZSn

h SO(n+1)). We note that

if we understood all the relations between the classes in H∗(ZSn

h SO(n+1)), it would be
possible to refine Theorem 7.4 to compute the functor ℓn, which is defined to be the
zeroth derived functor of H∗(ZSn

h SO(n+1)).

Question 1.1. Can one present ℓn, the zeroth derived functor of Z 7→ H∗(ZSn

hSO(n+1)),
using ϕi, δ, wi as generators?

We also wonder if there is an algebraic way to come up with a presentation for the
functor ℓn, similarly to how the zeroth derived functor ofH∗(−Sn

) can be constructed
purely algebraically as the left adjoint of (−) ⊗H∗(Sn) in the category of unstable
algebras over the Steenrod algebra.

The functors ℓn and ℓn are like higher dimensional analogs of ℓ, and can be thought
of as a version of negative cyclic homology for the free iterated loop space that is
constructed just using Steenrod algebraic data.

We turn to posing some further directions related to our work we think would be
interesting to explore.

The zeroth derived functor ℓn is just the first in a family of (nonabelian) derived
functors that approximate H∗(ZSn

hSO(n+1)). The higher derived functors are defined
purely algebraically in relation to the zeroth one.

Question 1.2. Can the higher derived functors of ℓn be computed, at least in some
nontrivial examples?

There is a Bousfield homology spectral sequence whose E2 term is the derived func-
tors of ℓn(H

∗(Z)) and which (under favorable conditions) converges toH∗(ZSn

hSO(n+1)).

This was worked out in the case n = 1 in [BO04] by Bökstedt and Ottosen, and they
moreover found that for Z = CPn, the spectral sequence degenerates at E2, converg-
ing to H∗((CPn)S

1

hSO(2)).
Next, we speculate about the extent to which our results can be generalized.

Question 1.3. For which real G-representations V can one compute H∗(Z
S(V )
hG ),

where Z ∈ GEM?

In the above question, S(V ) are the unit vectors in the representation G. We
suspect that our results should generalize in a straightforward manner to the standard
representations of U(n) and Sp(n).

Question 1.4. Are there analogs of our computations at odd primes?
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In [Ott03], Ottosen constructs an analog of ℓ1 at odd primes, but it is unclear
what the generalization is for larger n. Namely, the construction of ℓ1 at odd primes
fundamentally uses the subgroups Cp ⊂ SO(2). At the prime 2, the analog of these
for larger n was O(n) ⊂ SO(n+ 1), but there isn’t an obvious odd primary analog.

Outline of the paper. This paper is organized as follows:
In Section 2, we study zeroth derived functors, and explain how Lannes’ division

functor gives an example. We give a presentation of division by H∗(Sn).
In Section 3, we explain some facts about SO(n + 1)-spaces relevant to the main

results of the paper.
In Section 4, we construct classes of H∗(ZSn

hSO(n+1)) by producing the natural trans-

formations δ, ϕi, and compute their images in H∗(ZSn
).

In Section 5, we use the results of Section 4 to completely describe the homotopy
fixed point spectral sequence computing H∗(ZSn

h SO(n+1)) for Z ∈ GEM.
In Section 6, we prove some relations that hold for the classes δ, ϕi.
In Section 7, we compute the zeroth derived functor of the functor taking a space

Z to the associated graded of H∗(ZSn

hSO(n+1)).

Notation.

(1) We use hS to denote the homotopy category of spaces, and hS ft to denote
those which are finite type, ie have finitely many cells in each degree.

(2) We use GEM to denote the homotopy category of finite type mod 2 general-
ized Eilenberg–Mac Lane spaces, and GEMfin to denote those which are finite
(ie truncated).

(3) We use H∗(−) to denote homology with mod 2 coefficients.
(4) We use Fn(−) to denote the functor (−)S

n

hSO(n+1).

(5) We use U to denote the category of unstable modules over the Steenrod
algebra as in Schwartz’s book [Sch94, Definition 1.3.1], and use K to denote
the category of unstable algebras over the Steenrod algebra [Sch94, Definition
1.4.1].

(6) Given a space X with a G-action, we use X0 to denote X with the trivial
G-action, and use α : X0 ×G → X to denote the G-equivariant action map.

Acknowledgements. We are grateful to Haynes Miller for introducing us to un-
stable modules over the Steenrod algebra, for suggesting this project, and for helpful
conversations and comments. This work was done as part of the MIT PRIMES
program, and we thank PRIMES for this research opportunity. We thank Piotr
Pstragowski for a helpful conversation about derived functors. The first author was
supported by the NSF Graduate Research Fellowship under Grant No. 1745302.
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2. Cohomology and derived functors

In this section, we explain the construction and universal properties of the zeroth
derived functor of a functor out of hSop. We explain Lannes’ division functors and
how they give an example of a zeroth derived functor.

Let U denote the symmetric monoidal category of unstable modules over the Steen-
rod algebra (see [Sch94]), so that K, the category of unstable algebras over the Steen-
rod algebra, is the category of commutative monoids in U satisfying Sq0(x) = x2,
where Sqi = Sq|x|−i.

Lemma 2.1. The functor H∗ : (GEMfin)op → K identifies the target with the cocom-
pletion of the source with respect to sifted colimits (in 1-categories). In particular,
if D is a 1-category with sifted colimits, and F : (GEMfin)op → D is a functor, then
there is a unique sifted colimit preserving functor F̃ : K → D extending F along H∗.

Proof. It is easy to see that the categoryK is the same as presheaves out of (GEMfin)op

that preserve products. Indeed, such a presheaf is determined by its value on
K(Z/2Z,m), which corresponds to the mth-graded piece of an unstable algebra, and
the functoriality corresponds to the Steenrod operations, the multiplication, and the
instability condition. The category of product preserving presheaves is the sifted
cocompletion, finishing the proof. □

Definition 2.2. Given a functor F : (hS ft)op → D, where D has sifted colimits, we
can restrict it to (GEMfin)op, and then construct the zeroth derived functor, which is
the left Kan extension F : K → D that exists by the above lemma. Note that there
is a natural isomorphism between F ◦H∗ and F on (GEMfin)op.

Often, the zeroth derived functor also agrees with F on the larger category GEMop.
The lemma below gives a criterion for when this is true.

Definition 2.3. We say that a functor F : (hS ft)op → D is Postnikov convergent if
it sends the Postnikov tower of an object of GEM to a filtered colimit diagram.

Lemma 2.4. If F : (hS ft)op → D is a Postnikov convergent functor, and F :
K → D its zeroth derived functor, then there is a unique natural transformation
η : F ◦ H∗ → F extending the natural isomorphism that exists on the subcategory
(GEMfin)op. Moreover η is an isomorphism on (GEM)op.

Proof. Let F2 ⊗ Σ∞
+ (−) denote the functor taking a space to its F2-valued chains,

viewed as a spectrum, and let Ω∞ denote the 0th space of a spectrum. Then given
a space X, we can consider RX = Ω∞(F2 ⊗ Σ∞

+X), which is the Eilenberg Mac
Lane space whose homotopy groups are the homology of X. Since R comes from
an adjunction, it is part of a monad, and gives a cosimplicial resolution R•+1(X)
of X in terms of finite-type Eilenberg Mac Lane spaces. We can combine this with
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the Postnikov tower to get a tower of cosimplicial objects τ≤nR
•+1(X), where τ≤n

denotes the nth Postnikov truncation.
The functor H∗ : (hS ft)op → K sends this diagram to a colimit diagram, since it

is Postnikov convergent and R•+1(X) is the canonical resolution of H∗(X) by free
unstable algebras. Since F preserves sifted colimits, it follows that F ◦H∗ also sends
this to a colimit diagram. It then follows that there is a unique natural transformation
η extending the isomorphism on (GEMfin)op coming from the assembly map of this
colimit diagram for F , ie the unique map making the square below commute.

colim(F ◦H∗(τ≤nR
•+1(X))) F ◦H∗(X)

colim(F (τ≤nR
•+1(X))) F (X)

∼=

∼= ηX

Since both the source and target of η are Postnikov convergent, it follows that η
is an isomorphism on GEMop. □

Remark 2.4.1. The reason we work with finite type spaces is that free unstable
algebras over the Steenrod algebra come from the cohomology of mod 2 generalized
Eilenberg–Mac Lane spaces only when they are finite type. This issue is not serious,
and can be avoided by working with homology instead of cohomology, ie in a category
of unstable coalgebras over the Steenrod algebra. Note also that for most functors
of interest such as H∗((−)S

n

hSO(n+1)) which we apply zeroth derived functors to send
filtered colimits to limits, and are therefore determined by their value on objects of
finite type.

Now we recall Lannes’ division functor, and how it gives an example of a zeroth
derived functor.

Definition 2.5. Given A ∈ K of finite type, the functor (−)⊗ A has a left adjoint
[Sch94, Proposition 3.8.2], which we denote ((−) : A), and call division by A.

Proposition 2.6. Let Y ∈ hS ft. There is a natural map θY : (H∗(Z) : H∗(Y )) →
H∗(ZY ) that is an isomorphism when Z ∈ (GEMfin)op or Z ∈ GEM and Y is a finite
space. Moreover, θY identifies (H∗(−) : H∗(Y )) with the zeroth derived functor of
H∗(−Y ).

Proof. (− : H∗(Y )) preserves colimits, so is left Kan extended from (GEMfin)op by
Lemma 2.1. It is thus enough to produce the natural transformation θY and check
it is an isomorphism on objects of GEM.

There is an evaluation map evY : ZY × Y → Z at the level of spaces, which upon
taking cohomology gives a map H∗(Z) → H∗(ZY )⊗H∗(Y ). We define θY to be the
map that is mate to this map via the adjunction defining the division functor.
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When Y is finite, then both the source and target are Postnikov convergent, so it
is enough to see that this comparison map is an isomorphism when Z ∈ (GEMfin)op.
For this we note that the functor Z → ZY on (GEMfin)op is a coproduct preserving
endofunctor, and so it suffices to check the result for Z = K(F2, n). But H∗(ZY )
corepresents the functor that is maps of graded vector spaces out of the dual of
H∗(Y ) shifted up by n, and so does (H∗(Z) : H∗(Y )) by the universal property of
the left adjoint and the fact that H∗(Z) corepresents Hn. □

Notation 2.7. We use Ln(A) to denote (A : H∗(Sn)) as an endofunctor of K,
and use θn : Ln(H

∗(Z)) → H∗(ZSn
) to denote the natural transformation θSn from

Proposition 2.6.

The following proposition is well known, but we include a proof.

Proposition 2.8. As a commutative A-algebra, Ln(A) is generated by generators
da in degree |a| − n for each a ∈ A, along with the relations:

(1) d(a+ b) = da+ db
(2) d(ab) = d(a)b+ ad(b)
(3) (da)2 = d(Sqna)
(4) d(Sqia) = 0 for all n > i ≥ 0.

The action of the Steenrod algebra is determined by Sqi(da) = d(Sqia) and the Cartan
formula, and the universal map A → Ln(A) ⊗ H∗(Sn) sends a 7→ a ⊗ 1 + da ⊗ yn
where yn is the nontrivial element of Hn(Sn).

Proof. We use F2{−}K to denote the functor taking a graded F2-vector space V to
the free object on V in K, ie the left adjoint of the forgetful functor into graded
F2-vector spaces. Let N = H∗(Sn). It follows from Proposition 2.6 that there is an
isomorphism (F2{V∗}K : N) ∼= F2{V∗⊗N∗}K, since F2{V∗⊗N∗}K is the cohomology
of the mapping space from Sn to the GEM associated to V∗.

There is a unique graded basis 1, d for N∗, and so the generators in F2{V∗ ⊗N∗}K
of the form v ⊗ 1 we call v, and the ones of the form v ⊗ d we call dv. Moreover,
following the isomorphisms show that the coevaluation is given by v 7→ v⊗1+dv⊗yn.
More generally, given a ∈ A ∈ K, giving a class a ∈ An is the same as a map
a : F2{ΣnF2}K → An, and we define a and da to be the images of the corresponding
classes after applying ((−) : N). Clearly relation (1) holds.

Applying Sqi on the coevaluation map, we see Sqia 7→ Sqia ⊗ 1 + Sqi(da) ⊗ yn
so we must have dSqia = Sqida. From this it follows that relations (3) and (4)
hold. Furthermore, applying the formula for the coevaluation on a product, we find
ac 7→ (a⊗ 1 + da⊗ yn)(c⊗ 1 + dc⊗ yn), yielding relation (2).
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Now an arbitrary algebra A can be presented canonically as a pushout

F2{A⊗ A}K ⊗ F2{
⊕∞

0 ΣiA}K F2{A}K

0 A

The vertical nonzero map is given by [a] 7→ a and the horizontal one sends [a⊗ b] to
[a][b]− [ab], and a ∈ ΣiM to Sqi[a]− [Sqia].
Applying ((−) : N), since ((−) : N) preserves pushouts, we get a pushout square

F2{A⊗ A⊗N∗}K ⊗ F2{
⊕∞

0 ΣiA⊗N∗}K F2{A⊗N∗}K

0 (A : N)

This gives a presentation for (A : N) as the quotient of F2{−}K(A⊗N∗) by relation
(2), and the additional relation Sqi(da) = dSqi(a).

From this we can extract a presentation for A : N as an algebra. The fact that
Sqida = dSqia simplifies things: The fact that Sqia = 0 for i < 0 and Sq0a = a2

reduces to relations (3) and (4). This presentation then reduces to the presentation
of an algebra: a and da are generators for a ∈ A with relations (1)− (4). □

Remark 2.8.1. We note from the proof of Proposition 2.8 that the functor (− :
H∗(Sn)) sends F2{M}K to F2{M⊕ΩnM}K, where Ωn shifts the gradings of a grading
vector space down by n, ie (ΩnM)i = Mi+n.

3. SO(n+ 1) actions

In this section, we collect relevant facts about spaces with SO(n + 1)-actions, to
set up our understanding of the SO(n + 1) action on the mapping space from Sn.
Many of the results here are well known. Throughout this section, X denotes a left
or right SO(n+ 1) space.

Pushforward. An important construction we use later is that of the pushforward
on cohomology. It makes sense in great generality, but we are interested in it for
a fibration f : E → B whose fiber F is a compact manifold of dimension n. We
refer the reader to [CK09] and [ABG18] for a reference on this construction. The
pushforward is a natural map f∗ : H

∗(E;Hn(F )) → H∗−n(B) that can be defined in
two equivalent ways, which we now describe.

Let ν be the normal bundle of the fibration f : E → B. This is a virtual bundle
of dimension −n on E, whose fiber is the negative of the vectors tangent to the
fiber. Then there is a Gysin map Σ∞

+B → Eν , where Eν is the Thom spectrum of ν.
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The pushforward is then defined as the composite H∗(E) ∼= H∗−n(Eν) → H∗−n(B),
where the first map is the Thom isomorphism, and the second is the Gysin map.

If F is connected, then the pushforward map can be identified with the map
H∗(E) → H∗(B;Hn(F )) ∼= H∗−n(B) where H∗(E) is identified with the cohomology
of B with coefficients in the local system that is the cochains on the fiber. Indeed this
follows from the axiomatic characterization of [CK09, Theorem 3.1]. In this case, the
nth row of the E∞ page of the Serre spectral sequence is a quotient of H∗(E). The
E∞ page injects into the E2 page, so the composite H∗(E) → E∗−n,n

∞ → E∗−n,n
2 =

H∗−n(B) gives the pushforward map.
The properties of the pushforward we need are:

Proposition 3.1. Let f : E → B be a fibration whose fiber F is a compact manifold
of dimension n. Then we have:

(1) f∗ is a map of H∗(B) modules (see [ABG18, page 5])
(2) f∗ is natural with respect to pullback fibrations.
(3) g∗ ◦ f∗ = (g ◦ f)∗.3

We are primarily interested in the following situation. Suppose G,H are compact
Lie groups. If X is a G-space and H ⊂ G is a subgroup, then there is a fibration
XhH → XhG with fiber G/H. The pushforward of this fibration is denoted τGH .

Coactions and comparisons. The group O(n) sits inside SO(n+1) as the stabilizer
of any 1-dimensional subspace of the standard representation of SO(n + 1). First
we compare the cohomologies of the O(n) and SO(n+1) quotients of an SO(n+1)-
space. We recall that H∗(BO(n)) is a polynomial ring on the Stiefel–Whitney classes
wi ∈ H i(BO(n)) for 1 ≤ i ≤ n, and H∗(BSO(n)) is polynomial ring on wi for
2 ≤ i ≤ n.

Lemma 3.2. The map BO(n) → BSO(n+ 1) sends wi in H∗(BSO(n+ 1)) to wi +
wi−1w1 in H∗(BO(n)). This realizes H∗(BO(n)) as a free module over H∗(BSO(n+
1)). Two bases of this free module are given by 1, w1, . . . , wn and wi

1, 0 ≤ i ≤ n.
For any SO(n+1)-space X, the limit comparison map of H∗(−) applied to XhO(n)

∼=
BO(n)×BSO(n+1) XhSO(n+1) induces an isomorphism

H∗(BO(n))⊗H∗(BSO(n+1)) H
∗(Xh SO(n+1))

∼=−→ H∗(XhO(n))

Proof. The map BO(n) → BSO(n + 1) is given by taking an n-plane bundle and
adding a copy of its determinant bundle. By the Whitney sum formula, we get that∑n+1

0 wi in H∗(BSO(n + 1)) pulls back to (
∑n

0 wi)(1 + w1). Thus wi pulls back to
wi+w1wi−1, where we interpret wi to be 0 when it is 0 for the universal bundle. The
fiber of the map is RPn, where the map to BO(n) is the orthogonal complement of

3This is because Gysin maps compose, and the Thom isomorphism is multiplicative.
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the tautological bundle. Thus by the Whitney sum formula, its total Stiefel-Whitney
class is 1

t+1
= 1+t+· · ·+tn. Thus wi get sent to a basis of H

∗(RPn). Now considering
the Serre spectral sequence of the fibration RPn → BO(n) → BSO(n + 1), and
comparing Poincare polynomials, there is no room for differentials, so the spectral
sequence degenerates at E2, and the wi generate H∗(BO(n)) freely. The basis wi

is related to the classes wi
1 via a triangular matrix with diagonal entries 1, so both

families work as a basis.
For the general case, consider the Eilenberg-Moore spectral sequence of the pull-

back square

XhO(n) Xh SO(n+1)

BO(n) BSO(n+ 1)

⌟

Since H∗(BO(n)) is a free H∗(BSO(n+1))-module, the E2-term is concentrated in
one line and is H∗(BO(n)) ⊗H∗ BSO(n+1) H

∗(XhSO(n+1)). Thus the spectral sequence
collapses at E2, and gives the result we want. □

Next, we study the left action of SO(n + 1) on Sn. Recall that H∗(SO(n)) is
isomorphic to ⊗i oddF2[xi]/(x

pi
i ) where |xi| = i and pi is the smallest power of 2 such

that |xpi
i | ≥ n [Hat02, 3D.2]. The following lemmas are well known.

Lemma 3.3. The Serre spectral sequence of the fibration SO(n) → SO(n+1) → Sn

has no differentials. Moreover the nontrivial class yn ∈ Hn(Sn) pulls back to x2k

i

where i2k = n.

Proof. The first statement follows from comparing Poincaré polynomials. Since
the Serre spectral sequence degenerates, yn must generate the kernel of the map
H∗(SO(n + 1)) → H∗(SO(n)), but this kernel has a unique generator which is the
class indicated in the statement of the lemma. □

Lemma 3.4. In the Serre spectral sequence of the fibration of the universal bundle
SO(n+ 1) → · → BSO(n+ 1), the class x2k

i transgresses to hit wi2k+1.

Proof. By induction on n using the map BSO(k) → BSO(k + 1) induced from the
inclusion and comparing Serre spectral sequences for the path space fibrations, we
only need to show this for x2k

i where 2k = n. This class pulls back to 0 in H∗(SO(n)),
so by comparing the path space fibrations, it cannot have any differential other than
a transgression. Via the transgression it must hit the class wn+1 as it is the only
class left on the En+1,0

n+1 and the E∞ page has F2 in bidegree 0, 0.
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However, by induction this is the only class in dimension n whose differential has
not been computed, and wn+1 is the only class in dimension n+1 that has not been
hit by a differential. □

Lemma 3.5. The coaction of H∗(SO(n+ 1)) on H∗(Sn) is given by yn 7→ yn ⊗ 1 +

1⊗ x2k

i where i2k = n.

Proof. Since the action map SO(n + 1) × Sn → Sn is unital and H∗(Sn) is 2-
dimensional, yn must be sent to yn ⊗ 1 + 1 ⊗ c for some class c. The class c is
then the image of yn in the composite SO(n+ 1) → SO(n+ 1)× Sn → Sn. But the
composite map is the fibration in Lemma 3.3, so we are done by that lemma. □

Here is another related spectral sequence we use later. It can also be used to give
an alternate proof that yn pulls back to x2k in Lemma 3.3.

Lemma 3.6. The Serre spectral sequence of the fibration SO(n) → Sn−1 → BSO(n−
1) has differentials sending x2k

i to wi2k+1 for i < n.

Proof. This follows by considering the comparison map from this spectral sequence
to the one in Lemma 3.4. □

The free iterated loop space. We now compute the coaction and evaluation map
relevant to the mapping space ZSn

where Z is a space. Recall from Notation 2.7
that there is a natural transformation θn : Ln(H

∗(Z)) → H∗(ZSn
), and so given a

class a in H∗(Z), there are corresponding classes θn(a), θn(da) in H∗(ZSn
).

The following lemma follows from the definition of θn:

Lemma 3.7. The coevaluation map H∗(Z) → H∗(ZSn × Sn) on cohomology sends
the class a to θn(a)⊗ 1 + θn(da)⊗ yn.

Proposition 3.8. The coaction H∗(ZSn
) → H∗(ZSn

)⊗H∗(SO(n+1)) sends θn(da) 7→
θn(da)⊗ 1, θn(a) 7→ θn(a)⊗ 1 + θn(da)⊗ x2k

i where i2k = n.

Proof. Consider the commutative diagram

ZSn × Sn Z

ZSn × SO(n+ 1)× Sn ZSn × Sn

ev

αR

αL ev

Where αL is the left action on Sn and αR is the right action on ZSn
. We can

pull back the class a ∈ H∗(Z) to H∗(ZSn × SO(n + 1) × Sn) along ev and αL,
which by Lemma 3.7 and Lemma 3.5 is given by a 7→ θn(a) ⊗ 1 + θn(da) ⊗ yn 7→
θn(a) ⊗ 1 ⊗ 1 + θn(da) ⊗ yn ⊗ 1 + θn(da) ⊗ 1 ⊗ x2k

i . Thus by commutativity, this is
where α∗

R sends the class θn(a)⊗ 1 + θn(da)⊗ yn, giving the result. □
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Next we end with some computations that are needed later. SO(n)2hSO(n−1) denotes
the quotient by the diagonal action.

Lemma 3.9. The Serre spectral sequence of SO(n) → SO(n)2hSO(n−1) → SO(n)hSO(n−1)
∼=

Sn−1 where the second map is given by projection onto one factor degenerates at
E2, as does the Eilenberg Moore sequence sequence for the product of two copies of
SO(n)/ SO(n− 1) over BSO(n− 1). Moreover, the map SO(n)2 → SO(n)2h SO(n−1) is
injective on cohomology.

Proof. For the first and last statement, one considers the map of spectral sequences
coming from the following map of fibrations:

SO(n) SO(n)2h SO(n−1) Sn−1

SO(n) SO(n)2 SO(n).

Then one uses the injectivity of the map on cohomology and the lack of differentials
in the target to conclude. For the statement about the Eilenberg Moore spectral
sequence, since the map Sn−1 → BSO(n−1) is trivial on cohomology by Lemma 3.4,
the E2 term is H∗(Sn−1)⊗H∗(Sn−1)⊗ Tor∗,∗(H∗(BSO(n− 1))), which cannot have
any differentials, as it is the same dimension as the cohomology of SO(n)2hSO(n−1). □

4. Equivariant evaluations

The goal of this section is to construct the natural transformations ϕi, δ that we
use to prove Theorem B.

Construction and identification of the classes. Here for an arbitrary space
Z, we study classes in the cohomology of ZSn

hSO(n+1). From the discussion in the
introduction, when Z ∈ GEM, the cohomology should be generated by the classes
wi coming from BSO(n + 1), along with classes that under the map q : ZSn →
ZSn

h SO(n+1) pullback to θn(Sq
i a), i < n, θn(Sq

n a+ada), θn(da) where a is an arbitrary

cohomology class in H∗(Z). Our goal is to construct classes ϕi(a), δ(a) in ZSn

h SO(n+1)

that pull back to these (Proposition 4.4). Our construction uses the equivariant
evaluation maps.
Before introducing the equivariant evaluation, we recall the following functor:

Notation 4.1. We use N
O(n)
SO(n)(−) to denote the Norm/coinduction functor that is

the right adjoint of the forgetful functor from spaces with an O(n)-action to spaces
with an SO(n)-action.
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If Y is a space with an O(n)-action, we use ∆O(n) : Y → N
O(n)
SO(n)(Y ) to denote the

unit of the adjunction.

Remark 4.1.1. Choose an element x ∈ O(n) of order 2. Then N
O(n)
SO(n)(Y ) is explicitly

given by the space Y 2 with O(n)-action so that the SO(n)-action of an element z
sends (a, b) to (za, xzx−1b) and x sends (a, b) to (b, a). Moreover, ∆O(n)(a) = (a, xa)
in this description.

Notation 4.2. Let ev0 be the map ZSn → Z0 given by evaluating at a basepoint
of Sn, where Z0 denotes Z with a trivial action. Since SO(n) ⊂ SO(n + 1) is the
stabilizer of a point in Sn, this map is SO(n)-equivariant.

Let ev1 : ZSn → N
O(n)
SO(n)(Z) be the O(n)-equivariant map corresponding to ev0

under the adjunction of Notation 4.1. Note that the O(n) action on N
O(n)
SO(n)(Z) factors

through C2 = O(n)/ SO(n).
The notation ev0, ev1 is used both to refer to these maps as well as the induced

maps on homotopy quotients

ev0 : Z
Sn

h SO(n) → ZhSO(n)
∼= Z × BSO(n)

ev1 : Z
Sn

hO(n) → N
O(n)
SO(n)(Z)hO(n)

Let π denote the projection map N
O(n)
SO(n)(Z)hO(n) = (Z2 × BSO(n))hC2 → Z2

hC2

Recall (see for example [Mil]) that for a ∈ H∗(Z), there is a total power operation
class P (a) in H∗(Z2

hC2
) with the property that its pullback to Z2 is a ⊗ a, and its

pullback to the fixed points Z × RP∞ is
∑

i t
i Sqi(a). Let t ∈ H∗(Z2

hC2
) denote the

pullback of the generator t ∈ H∗(BC2) = H∗(RP∞).

Definition 4.3. We define the natural map

δ : H∗(Z) → H∗−n(ZSn

hSO(n+1))

to be the composite

H∗(Z)
π∗
1−→ H∗(Z×BSO(n)) = H∗(Zh SO(n))

ev∗0−−→ H∗(ZSn

h SO(n))
τ
SO(n+1)
SO(n)−−−−−→ H∗−n(ZSn

h SO(n+1)).

For 0 ≤ i ≤ n we define the natural map

ϕi : H
j(Z) → H2j−i(ZSn

hSO(n+1))

by taking ϕi(a) to be the image of tn−iP (a) in the composite

H∗(Z2
hC2

)
π∗
−→ H∗(N

O(n)
SO(n)(Z)hO(n))

ev∗1−−→ H∗(ZSn

hO(n))
τ
SO(n+1)
O(n)−−−−−→ H∗(ZSn

hSO(n+1)).

Our goal is to prove the following result, which is a substantial part of Theorem B:
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Proposition 4.4. For the map q∗ : H∗(ZSn

hSO(n+1)) → H∗(ZSn
), we have q∗(δ(a)) =

θn(da), q
∗(ϕi(a)) = θn(Sqia) for 0 ≤ i < n, and q∗(ϕn(a)) = θn(Sqna+ ada).

We begin by showing that δ(a) has the desired image in H∗(ZSn
) in the Lemma

below, which is the first part of Proposition 4.4.

Lemma 4.5. The image of δ(a) via the map q∗ : H∗(ZSn

hSO(n+1)) → H∗(ZSn
) is the

class θn(da).

Proof. Let α : ZSn

0 ×SO(n+1) → ZSn
be the SO(n+1)-equivariant map coming from

the SO(n+ 1)-action on ZSn
. The key observation is that the homotopy quotient of

α by SO(n + 1) is exactly the map q : ZSn → ZSn

hSO(n+1). Then we can consider the
commutative diagram

H∗(ZhSO(n)) H∗(ZSn

hSO(n)) H∗(ZSn

hSO(n+1))

H∗(Z) H∗(ZSn

0 × Sn) H∗(ZSn

0 ).

i∗

ev∗0

α∗

τ
SO(n+1)
SO(n)

q∗

ev∗
τ
SO(n+1)
SO(n)

By the definition of δ(a), we are trying to understand the image of a from the top
left corner to the bottom right corner. But following the lower part of the diagram,
and using Lemma 3.7 this gives a 7→ θn(a)⊗ 1 + θn(da)⊗ yn 7→ θn(da). □

Definition 4.6. Let Y be a space with SO(n + 1)-action. We define fY to be the
composite

Y0 × SO(n+ 1)
∆O(n)−−−→ N

O(n)
SO(n)(Y0 × SO(n+ 1))

N
O(n)
SO(n)

(α)

−−−−−−→ N
O(n)
SO(n)(Y )

where α is the SO(n+1)-action map. This is equivalently the map corresponding

under the adjunction defining N
O(n)
SO(n) to the SO(n)-equivariant action map Y0 ×

SO(n+ 1) → Y .

To prove Proposition 4.4, it remains to understand the image of the elements ϕi(a)
under q∗. One could try using the exact same strategy as in Lemma 4.5 to prove
this, but one would have to understand the map

ZSn × RPn ∼= (ZSn

0 × Sn)hC2 → (Z2)hC2

at the level of cohomology, which is C2-equivariant analog of Lemma 3.7. We don’t
see any direct way of doing this, so we approach understanding this via considering
the diagram below, where Z ′ denotes ZSn

0 ×SO(n+1), and we have identified SO(n+
1)/O(n) = RPn.
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(1)

H∗(Z2
hC2

) H∗(N
O(n)
SO(n)(Z)hO(n)) H∗(ZSn

hO(n)) H∗(ZSn

h SO(n+1))

H∗(N
O(n)
SO(n)(Z

Sn
)hO(n)) H∗(ZSn

0 × RPn) H∗(ZSn

0 )

H∗(N
O(n)
SO(n)(Z

′)hO(n)) H∗(Z ′
0 × RPn)

π∗ ev∗1

N
O(n)
SO(n)

(ev0)∗

τ
SO(n+1)
O(n)

α∗ q∗

f∗
ZSn

N
O(n)
SO(n)

(α)∗

τ
SO(n+1)
O(n)

(α×1)∗

f∗
Z′

In the the diagram above, we would like to compute the image of the class ϕi(a)
along the map H∗(ZSn

h SO(n+1)) → H∗(ZSn
). Because this class was constructed using

τ
SO(n+1)
O(n) , this is image of the class tn−iP (a) in the diagram above fromH∗(N

O(n)
SO(n)(Z)hO(n))

to H∗(ZSn

0 ). Identifying H∗(ZSn

0 ×RPn) with H∗(ZSn
)[t]/tn+1, the pushforward from

H∗(ZSn

0 ×RPn) to H∗(ZSn

0 ) extracts the coefficient of tn by the description of push-
forwards in Section 3 via the Serre spectral sequence. Thus we focus our efforts on
understanding the map

H∗(N
O(n)
SO(n)(Z)hO(n)) → H∗(ZSn

0 × RPn)

The arrow indicated 1 × α∗ in the above diagram is an injection, so it suffices to
understand the composite map

H∗(N
O(n)
SO(n)(Z)hO(n)) → H∗(ZSn

0 × RPn) → H∗(Z ′
0 × RPn)

.
To do this, we need to understand the cohomology of N

O(n)
SO(n)(Z

′)hO(n). The map

Z ′ → ZSn

0 given by projection to the first factor induces a map

N
O(n)
SO(n)(Z

′)hO(n) → N
O(n)
SO(n)(Z

Sn

0 )hO(n),

and the pullback of a class P (a) along this map is given the same name. Similarly,
the projection to the second factor Z ′ → SO(n+ 1) induces a map

N
O(n)
SO(n)(Z

′)hO(n) → N
O(n)
SO(n)(SO(n+ 1))hO(n).

We construct a class P (yn) ∈ H∗(N
O(n)
SO(n) SO(n+1)hO(n)) whose pullback toH

∗(N
O(n)
SO(n)(Z

′)hO(n))

is given the same name.

Lemma 4.7. There is a unique class P (yn) ∈ H∗(N
O(n)
SO(n)(SO(n + 1))hO(n)) that

pulls back to the class (π∗
1y)(π

∗
2y) in H∗(N

O(n)
SO(n)(SO(n + 1))h SO(n)), and to 0 in

H∗(N
O(n)
SO(n)(SO(n))hO(n)). Here πi is the map (N

O(n)
SO(n) SO(n + 1))hSO(n) → SO(n +
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1)h SO(n) = Sn given by projection onto the ith factor, and yn ∈ Hn(Sn) is the non-
trivial class.

Proof. Consider the following map of fibrations:

N
O(n)
SO(n) SO(n+ 1) N

O(n)
SO(n) SO(n+ 1)hC2 BC2

N
O(n)
SO(n) SO(n+ 1)hSO(n) N

O(n)
SO(n) SO(n+ 1)hO(n) BC2

π

where the middle map is defined in Notation 4.2 for Z = SO(n + 1). The left and
right vertical maps are injective on cohomology (see Lemma 3.9), so since all the
classes of the form a⊗ a of H∗(SO(n+ 1)2)⊗H0(BC2) are permanent cycles in the
Serre spectral sequence of the fibration (because of P (a)), the same is true of classes
in H∗(SO(n+ 1)2) that pullback to ones of the form a⊗ a, for example yn ⊗ yn. By
looking at the relative Serre spectral sequences with respect to SO(n) ⊂ SO(n+ 1),
this class is seen to be unique as described. □

We now may finish the proof of Proposition 4.4.

Proof of Proposition 4.4. The case of δ(a) was treated in Lemma 4.5, so we focus on
computing the image of ϕi(a) in H∗(ZSn

).
We first claim that the class P (a) ∈ H∗(Z2

hC2
) is sent to the sum of three terms

P (θn(a)) + τ
O(n)
SO(n)θn(a)⊗ θn(da)⊗ 1⊗ yn + P (θn(da))P (yn) in H∗(N

O(n)
SO(n)(Z

′)hO(n)).

To do this, we observe that the map N
O(n)
SO(n)Z

′
hO(n) → Z2

hC2
factors through the map

(ZSn × Sn)2hC2
→ Z2

hC2
given by evaluation on each factor. Via the latter map, by

Lemma 3.7 P (a) pulls back to P (θn(a)⊗ 1 + θn(da)⊗ yn). Since P (cd) = P (c)P (d)
and P (c+ d) = P (c) + P (d) + τC2

∗ (c⊗ d)4, we have
P (θn(a) ⊗ 1 + θn(da) ⊗ yn) is equal to P (θn(a)) + P (θn(da))P (yn) + τC2

∗ (θn(a) ⊗
θn(da)⊗ 1⊗ yn). Pulling this back to N

O(n)
SO(n)(Z

′)hO(n) yields the claim.

Next we study each of the three terms. We can compute the image of P (θn(a)) in
ZSn

0 × RPn by examining the commutative square:

Z ′ × RPn N
O(n)
SO(n)(Z

′)hO(n)

ZSn

0 × RPn (N
O(n)
SO(n)(Z

Sn

0 )× BSO(n))hC2

4These properties of P are well known and easily verified using that the map (1) in [Mil, page 1] is
injective.
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P (θn(a)) is pulled back from the class with the same name in H∗(N
O(n)
SO(n)(Z

Sn

0 )hC2).

That class pulls back to
∑

i Sqi θn(a)t
i in H∗(ZSn

0 ×RPn) essentially by definition of
the Steenrod operations.

For τ
O(n)
SO(n)θn(a)⊗ θn(da)⊗ 1⊗ yn, by the naturality of the pushforward, its image

in H∗(ZSn ×RPn) can be obtained by pulling back the class θn(a)⊗θn(da)⊗1⊗yn ∈
H∗((ZSn × Sn)2) along the diagonal to ZSn × Sn, and then pushing forward to
ZSn × RPn. Pulling back yields θn(ada)⊗ yn, and the pushing forward is a product
with the pushforward map Sn → RPn, giving the class θn(ada)⊗ tn.
Finally, we examine the class P (yn) using the fact that it is pulled back from

N
O(n)
SO(n)(SO(n+ 1))hO(n) and the commutative diagram

Z ′ × RPn N
O(n)
SO(n)(Z

′)hO(n)

SO(n+ 1)× RPn N
O(n)
SO(n)(SO(n+ 1))hO(n)

Then, for degree reasons, the class P (yn) pulls back along the bottom map to
∑

ci⊗ti,
where ci are classes of degree i > 1.
Putting it all together, the class P (θn(a)) ∈ H∗(Z2

hC2)
) is sent to

∑
c′i ⊗ ti +∑

i θn(Sqia)⊗ti+θn(ada)⊗tn in H∗(Z ′×RPn) where c′i are classes of positive degree.
Because in the commutative diagram (1) above, the map indicated by ↪→ is injective,
this means that P (θn(a)) is sent to

∑n
0 θn(Sqia)t

i + θn(ada)t
n in H∗(ZSn

) × RPn.

Since the pushforward map τ
SO(n+1)
O(n) : H∗(ZSn

0 ×RPn) → H∗(ZSn

0 ) extracts the power

of tn, tiP (a) (and thus ϕi(a)) is sent to θn(Sqn−ia) for i ̸= 0 and θn(Sqna− ada) for
i = 0. □

5. The homotopy fixed point spectral sequence

Recall that there is a homotopy fixed point spectral sequence computingH∗(ZSn

hSO(n+1))

with E2-term H∗(ZSn
) ⊗ H∗(BSO(n + 1)). This homotopy fixed point spectral se-

quence can also be interpreted as the Serre spectral sequence associated to the fi-
bration ZSn → ZSn

hSO(n+1) → BSO(n + 1). The goal of this section is to completely
compute this spectral sequence when Z ∈ GEM, thereby determining the Borel co-
homology of the free iterated loop space of such a space, proving Theorem A. A key
step is to know that the spectral sequence degenerates at the En+2-page, which uses
the results of Section 4, and also proves Theorem B.
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Proposition 5.1. For Z ∈ GEM, there are no differentials in the homotopy fixed
point spectra sequence until the En+1 page. On the En+1 page, the differential is given
by dn+1(θn(a)) = wn+1θn(da) for a ∈ H∗(ZSn

).

Proof. Via the description of Proposition 2.8 and Proposition 2.6, the cohomology
H∗(ZSn

) is computed by the functor Ln(H
∗(Z)). In particular, it is generated by

classes of the form θn(a) and θn(da), where a is a class in H∗(Z) pulled back via
evaluation at a point. By the Leibniz rule, it suffices to just understand differentials
on θn(a), and θn(da) for these classes. But by naturality of the differential and θ,
and the fact that a is pulled back from an Eilenberg–Mac Lane space, we just need
to prove the assertions when Z = K(Z/2,m) and the cohomology of the fiber is
a free unstable algebra on a and da. By Lemma 4.5, the class θn(da) survives to
E∞, so the unstable algebra generated by θn(da) cannot have any differentials by the
universality argument along with the Leibniz rule.

We first claim that θn(a) has no differentials before the En+1-page of the spec-
tral sequence. To see this, we note that an earlier differential would be detected
in H∗(ZSn

h SO(n)), so it suffices to show the homotopy fixed point spectral sequence

computing H∗(ZSn

h SO(n)) degenerates. But the SO(n)-equivariant evaluation map

ev0 : ZSn → Z0 exhibits a as a permanent cycle. This also shows that the dn+1-
differential cannot have terms involving wi for i < n+ 1.
To see the claimed dn+1-differential, we consider the SO(n+ 1)-equivariant evalu-

ation map ZSn × Sn → Z0, and the induced map on homotopy fixed point spectral
sequences. The homotopy fixed point spectral sequence for Z0 degenerates since
the action is trivial, so a has no differentials. On the other hand, a pulls back to
θn(a)⊗ 1+ θn(da)⊗ yn. In the homotopy fixed point spectral sequence for Sn, there
is a dn+1-differential dyn = wn+1 since the orbit is BSO(n). Thus the desired dif-
ferential follows from the Leibniz rule since 0 = dn+1(θn(a) ⊗ 1 + θn(da) ⊗ yn) =
dn+1θn(a)⊗ 1 + θn(da)⊗ wn+1 = (dn+1θn(a) + θn(da)wn+1)⊗ 1. □

Below is a picture of part of the homotopy fixed point spectral sequence, where
a ∈ Hm(Z).
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2 3 4 5 ... n+ 1

m− n

m

2m− i

w2 w3 w4 w5 ... wn+1

θn(Sq1da)

θn(a)

θn(da)

θn(Sqia)

θn(da)⊗ wn+1

Remark 5.1.1. Note that the En+1 differential commutes with the Steenrod algebra
action on the columns of the E2-page of the spectral sequence. This is because it is
given by the derivation d multiplied by wn+1, and d commutes with the action of the
Steenrod algebra by Proposition 2.8.

We introduce some notation for dealing with excess of admissible sequences over
the Steenrod algebra, using lower indices:

Notation 5.2. Given a multi-index of nonnegative integers (a1, . . . , ak), we say that
the sequence is admissible of excess < i in degree m if the sequence of Steenrod
operations Sqa1 . . . Sqak acting on a class in degree m is an admissible sequence of
excess < i. This is equivalent to the condition that the m− a1 ≤ i, and the sequence
is nondecreasing. Let Ab,c be the set of admissible sequences of Steenrod operations
of excess < b in degree c.

Proposition 5.3. For Z ∈ GEM, for 0 ≤ i < n , the classes θn(da), θn(Sqia), θn(Sqna+
ada) for a ∈ H∗(Z) along with the wi for 2 ≤ i ≤ n + 1 generate the En+2 page of
the homotopy fixed point spectral sequence as an algebra.

Proof. Since the differential for the En+1 page is dn+1(θn(a)) = wn+1θn(da), it suffices
to show that ker(d) ⊂ H∗(ZSn

) is generated by θn(Sqia), θn(Sqna + ada), θn(da).
Because all of the elements that are of the form da are in the image, this is true if
and only if the cohomology of d acting on H∗(ZSn

) = Ln(H
∗(Z)) is generated by

Sqia, Sqna+ ada for i < n.
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Write Z =
∏

s∈Sm
K(Z/2,m), where S∗ is a finite nonnegatively graded set. Then

Ln(H
∗(Z)) with its differential is a tensor product of Ln(H

∗(K(Z/2,m))) over the
set S. Thus we can reduce to the case when Z = K(Z/2,m). Denote SqI =
Sqa1Sqa2 . . . Sqak for a multi-index I = (a1, . . . , ak). Then SqIι generate H∗(Z) as a
polynomial algebra when I ∈ Am,m (see Notation 5.2).

Ln(H
∗(Z)) is generated as an algebra by

• SqIι with leading term Sqi for i ̸= n and I ∈ Am,m

• dSqIι for I ∈ Am−n,m

• SqnSqIι+ SqIιdSqIι for (n, I) ∈ Am,m

Indeed, these generators are obtained by adding decomposable elements to the usual
set of generators. Next, observe that the generators listed above that are nonzero
are actually a set of free generators in the sense that the only relations among them
are that x2 = x when x is a generator of degree 0.
d(SqIι) is 0 when the first term is Sqi with i < n, d(SqIι) is SqI−ndι where I − n

is the sequence where n is subtracted from every term in I. Thus by pairing up each
generator x with dx we have decomposed H∗(X) as a tensor product of differential
graded algebras. By the Kunneth formula, the cohomology of the differential graded
algebra is generated by

(G1) Sq0SqIι = (SqIι)
2 where I ∈ Am,m has leading term Sqi for i > n.

(G2) SqIι with leading term Sqi for i < n.
(G3) SqnSqIι+ SqIιdSqIι for (n, I) ∈ Am,m.

We now analyze the cases m ≤ n explicitly for the reader.
In the case m < n, the differential d on Ln(H

∗(Z)) is zero, so the En+1 and En+2

pages are the same. On the other hand, Sqma = a which along with the wi generate
the En+1 page, so the claim holds.

In the casem = n, there is an ‘unusual’ tensor factor which is the cdga F2[ι, dι]/((dι)
2 =

dι), and we can see that the cohomology is generated by ι2, ι(1 + dι), which are in
(G1) and (G3) respectively. □

We are now ready to prove Theorem A, which we reformulate below:

Theorem 5.4 (Theorem A). For Z ∈ GEM, there are no differentials in the ho-
motopy fixed point spectral sequence until the En+1 page. On the En+1 page, the
differentials are determined by dn+1(θn(a)) = wn+1θn(da) and dn+1(θn(da)) = 0 for
a ∈ Ln(H

∗(Z)). Moreover, En+2 = E∞.

Proof. This follows immediately from Proposition 4.4, 5.1, and 5.3. □

Next we prove Theorem B, which we reproduce below for convenience:



THE BOREL COHOMOLOGY OF FREE ITERATED LOOP SPACES 22

Theorem 5.5 (Theorem B). Let Z be a space, and n ≥ 1. For 0 ≤ i ≤ n, there are
natural transformations

δ : Hj(Z) → Hj−n(ZSn

hSO(n+1))

ϕi : H
j(Z) → H2j−i(ZSn

h SO(n+1))

such that if Z ∈ GEM, the composite H∗(ZSn

hSO(n+1))
q∗−→ H∗(ZSn

) ∼= Ln(H
∗(Z))

induced from the map ZSn → ZSn

hSO(n+1) sends δ(a) to da, ϕi(a) to Sqia for i < n,

and ϕn(a) to Sqna+ ada.
Moreover, when Z ∈ GEM, the images of ϕi, δ along with wi generate H

∗(ZSn

hSO(n+1))
as an algebra.

Proof. Everything but the last statement is in Proposition 4.4. For the last statement,
by Proposition 5.3 we learn that the image of the natural transformations generate
the associated graded algebra, and hence also generate H∗(ZSn

hSO(n+1)) itself. □

Remark 5.5.1. Theorem B says that when Z ∈ GEM, then all of the classes in
H∗(ZSn

hSO(n+1)) can be constructed using wi, δ, ϕi. The origin of δ, ϕi are the equi-
variant evaluation maps ev0, ev1, so it’s surprising that these classes account for the
entire cohomology of ZSn

hSO(n+1). Note that by Lemma 3.2, for any SO(n+ 1)-space,

H∗(XhO(n)) is a free module over H∗(Xh SO(n+1)) and the pushforward is a surjective
module map. Thus the crucial map in the construction of ϕi is not the pushforward,
but rather the evaluation map.

6. Some relations between classes

The goal of this section is to make progress towards computing the cohomology
of ZSn

h SO(n+1) for Z ∈ GEM, as an unstable algebra over the Steenrod algebra. From

Theorem 5.5 we know that generators for H∗(ZSn

hSO(n+1)) are given by wi, δ(a), ϕi(a)

for a ∈ H∗(Z). Here we collect some relations that hold among these classes. The
goal of this section is to prove the proposition below:

Proposition 6.1. The following relations hold (δi,j is the Kronecker delta).5

(1) ϕi(a+ b) = ϕi(a) + ϕi(b) + wn−iδ(ab) (w1 = 0, w0 = 1)
(2) δ(a+ b) = δ(a) + δ(b)
(4) wn+1δ(a) = 0

(6) ϕk(ab) =
∑

i+j=k ϕi(a)ϕj(b)+
∑2n

ℓ=n+1

∑
i+j=ℓ ϕi(a)ϕj(b)

∑2≤α1...αm≤n+1
α1+...αm=ℓ−k

αm>n−k

∏m
f=1wαf


(7) Sqϕn−k(a) =

∑
j≥0

∑
i

(
k+|a|−j
i−2j

)
ϕn−i−k+2j(Sq

ia) + δk0
∑

2j<i δ(Sq
ja× Sqi−ja)

5The numbering of the relations is so as to agree with the numbering in Definition 7.2.



THE BOREL COHOMOLOGY OF FREE ITERATED LOOP SPACES 23

(8) Sqiδ(a) = δ(Sqia)
(9) Sqi(δ(a)) = Sqi(ϕj(a)) = 0 for i < 06

(10) Sq0(δ(a)) = δ(a)2

To begin verifying the relations, we study the following diagram, where SO(n) acts
trivially on the spaces in the left side of the diagram:

(i)

H∗(Zh SO(n)) H∗(ZSn

hSO(n)) H∗(ZSn

h SO(n+1))

H∗(N
O(n)
SO(n)(Z)hSO(n)) H∗(ZSn

h SO(n))

H∗(N
O(n)
SO(n)(Z)hO(n)) H∗(ZSn

hO(n))

ev∗0
τ
SO(n+1)
SO(n)

τ
O(n)
SO(n)

ev∗1

∆∗

τ
O(n)
SO(n)

ev∗1

τ
SO(n+1)
O(n)

The only square that does not obviously commute is the top left one. But the
corresponding maps of spaces commutes up to homotopy since evaluation at any two
points give homotopic maps as Sn is connected.

Lemma 6.2. The class a⊗ b ∈ H∗(Z2) maps to
∑n

0 t
ir∗(wiδ(ab)) in H∗(ZSn

hO(n)) in

(i), where r : ZSn

hO(n) → ZSn

hSO(n+1) is the quotient map, r∗(w1) = 0, r∗(w0) = 1. This

implies wn+1δ(a) = 0.

Proof. Moving the class a ⊗ b through ∆∗ and the top row of the diagram gives
δ(ab). H∗(ZSn

hO(n)) is a free module over H∗(ZSn

hSO(n+1)) with basis ti, 0 ≤ i ≤ n

(see Lemma 3.2), and τ
SO(n+1)
O(n) extracts the coefficient of tn. Thus the tn coefficient

of the image of a ⊗ b is δ(ab). Now in H∗(N
O(n)
SO(n)(Z)hO(n)), τ

O(n)
SO(n)a ⊗ b is killed

by multiplication by t, so the same is true of the image of a ⊗ b. But if q is the
map ZSn

hO(n) → ZSn

h SO(n+1), then tn+1 = tn−1q∗w2 + tn−2q∗w3 + · · · + q∗wn+1. Thus

if t(tnδ(ab) +
∑n−1

0 cit
i) = 0, we must have that ci = δ(ab)q∗wn−i (cn−1 = 0), and

q∗wn+1δ(ab) = 0, giving the result.
□

Next, we look at the Steenrod action on δ(a), ϕi(a). There is only one step in the
construction of δ(a), ϕi(a) that does not necessarily commute with the Steenrod ac-
tion, namely the pushforward map. Nevertheless, the interaction of the pushforward
with the Steenrod squares is understandable via the Stiefel–Whitney classes of the
normal bundle of the fibration.
6This relation can be ignored because it is the instability condition.
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Lemma 6.3. Let f : X → Y be a fibration whose fibers are manifolds of dimension
n, let ν denote the normal bundle of f , wν its total Stiefel-Whitney class, and τf the
pushforward map of f . Then Sq(τf (a)) = wνSq(a).

Proof. Recall that the pushforward is the composite of the Thom isomorphism of
ν with the the Gysin map H∗(Xν) → H∗(Y ) in cohomology. Since the latter map
comes from a map of spectra, it commutes with Steenrod operations, and the former
is given by multiplication by the Thom class u. Squ = wνu essentially by definition
of the wi [MS74], so Sq(ua) = SquSqa = wνuSqa. Then composing with the Gysin
map gives the result. □

Lemma 6.4. The relations

Sqϕn−k(a) =
∑
j≥0

∑
i

(
k + |a| − j

i− 2j

)
ϕn−i−k+2j(Sq

ia) + δk0
∑
2j<i

δ(Sqja× Sqi−ja)

Sqiδ(a) = δ(Sqia)

hold.

Proof. For δ(a), by Lemma 6.3, we have that Sq δ(a) = wνδ(Sq(a)). However, wν is
easy to compute: ν is the pullback of the normal bundle of the fibration BSO(n) →
BSO(n + 1). But −ν is the bundle that gives the tangent of the fiber, which is the
tautological bundle with Stiefel–Whitney classes wi. Thus wν = (

∑
wi)

−1.
For ϕi(a), because we started with the class tiP (a), it suffices to understand the

action of the Steenrod squares on that. This is given by the Nishida relations (see
[Nis68]):

Sq(tkP (a)) =
∑
i>0

(∑
j≥0

(
k + |a| − j

i− 2j

)
ti+k−2jP (Sqj a) + δk0

∑
2j<i

τC2
∗ (Sqja⊗ Sqi−ja)

)
which gives the desired result. □

We are now ready to prove Proposition 6.1.

Proof. Relations (9), (10) hold for any object of K. Relation (4) was proven in Lemma
6.2 and Relations (7), (8) were proven in Lemma 6.4.

We now prove the remaining relations, using the notation of Section 4. First

observe that in H∗(N
O(n)
SO(n)(Z)hO(n)), τ

O(n)
SO(n)(a ⊗ b) = P (a + b) − P (a) − P (b). Thus

multiplying by ti and looking at the image inH∗(ZSn

h SO(n+1)), we can use the definition

of the ϕi to get relation (1). Since ev∗0 and τ
SO(n+1)
SO(n) are additive, relation (2) holds.

To see relation (3), note that the image of P (a) in ZSn

hO(n) is
∑n

i t
iϕi(a). Since
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P (ab) = P (a)P (b), and tn+1 = tn−1q∗w2 + tn−2q∗w3 + · · · + q∗wn+1, isolating the tk

coefficient gives

ϕk(ab) =
∑
i+j=k

ϕi(a)ϕj(b) +
2n∑

ℓ=n+1

∑
i+j=ℓ

ϕi(a)ϕj(b)

 ∑
2≤α1...αm≤n+1
α1+...αm=ℓ−k

αm>n−k

m∏
f=1

wαf

 .

□

7. A presentation of the zeroth derived functor

Having computed H∗(ZSn

hSO(n+1)) for Z ∈ GEM in terms of an explicit cdga, we
turn to giving an explicit presentation of the cohomology of that cdga. We do this
by writing an explicit functor ℓn, and proving that ℓn is the zeroth derived functor
of the associated graded algebra of H∗(ZSn

h SO(n+1)). Our approach is largely inspired

by and analogous to [BO99, Section 5, Section 8].
Our first goal will be to define the functor ℓn. Because of the fact that the dif-

ferentials in Theorem A are compatible with the Steenrod operations acting on the
columns of the spectral sequence, ℓn naturally lands in a slightly more refined cate-
gory than bigraded commutative F2-algebras. We now define this more refined target
category, Kgr.

Definition 7.1. We let Kgr denote the category of commutative algebras in the
category UN (with respect to the Day convolution7), such that the degree 0 piece is
in K. We refer to the degree coming from the grading of objects in K and U as the
Steenrod degree, to distinguish it from degree coming from the grading.

We now define the functor whose underlying bigraded algebra we claim to be the
zeroth derived functor of grH∗(ZSn

hSO(n+1)).

Definition 7.2. Let A ∈ K. ℓn(A) is the graded algebra over the Steenrod algebra
multiplicatively generated as an object in Kgr by classes ϕi(a), δ(a) for a ∈ A in
graded degree 0, and wi in graded degree i, with Steenrod degree 2|a|− i, |a|−n,and
0 respectively, with the following relations, where δi,j denotes the Kronecker delta
function:

(1) ϕi(a+ b) = ϕi(a) + ϕi(b)
(2) δ(a+ b) = δ(a) + δ(b)
(3) δ(ab)δ(c) + δ(bc)δ(a) + δ(ca)δ(b) = 0
(4) wn+1δ(a) = 0

7This means that (X ⊗ Y )i = ⊕j+k=iXj ⊗ Yk
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(5) δ(a)ϕi(b) = δ(aSqib) + δ0nδ(ab)δ(b)
(6) ϕk(ab) =

∑
i+j=k ϕi(a)ϕj(b)

(7) Sqϕn−k(a) =
∑

j≥0

∑
i

(
k+|a|−j
i−2j

)
ϕn−i−k+2j(Sq

ia) + δk0
∑

2j<i δ(Sq
ja× Sqi−ja)

(8) Sqiδ(a) = δ(Sqia)
(9) Sqi(δ(a)) = Sqi(ϕj(a)) = 0 for i < 0

(10) Sq0(δ(a)) = δ(a)2, Sq0(ϕj(a)) = ϕj(a)
2

(11) ϕk(Sqia) =
∑(2|a|−i−k)/2

j=0

( |a|−i−j−1
2|a|−i−k−2j

)
ϕ2j−2|a|+2i+k(Sq

ja) + δk,nϕi(a)δ(Sqia) for

k > i
(12) ϕ0(Sqja) = ϕj(a)

2 + δj,nδ(a
2Sqna)

where we declare ϕm(a) = 0 for m > n.

Now, we can construct a natural transformation ηn on GEMs that we will show
witnesses ℓn as the zeroth derived functor of H∗(ZSn

h SO(n+1)).

Proposition 7.3. Let Z ∈ hS ft. For a ∈ H∗(Z), the map sending wi, δ(a), ϕi(a)
to the image of wi, δ(a), ϕi(a) in the associated graded, with wi in grading i and
δ(a), ϕi(a) in grading 0, defines a natural map of bigraded F2-algebras

ηn : ℓn(H
∗(Z)) → grH∗(ZSn

h SO(n+1))

This map is an isomorphism for Z ∈ GEMfin iff it witnesses ℓn as the zeroth derived
functor of grH∗(ZSn

hSO(n+1)).

Proof. ℓn preserves sifted colimits since it is defined from the input in terms of gen-
erators and relations. Sifted colimits are preserved by the forgetful functor from Kgr

to bigraded F2-algebras, so if the formula in the proposition defines a natural trans-
formation for Z ∈ GEMfin, then it left Kan extends to a map to the zeroth derived
functor of grH∗(ZSn

h SO(n+1)), which naturally maps to grH∗(ZSn

h SO(n+1)) by Lemma 2.4,

giving the map in general. We also see that ηn being an isomorphism on Z ∈ GEMfin

is equivalent to it witnessing ℓn as the zeroth derived functor of grH∗(ZSn

h SO(n+1)).

Thus to finish the proof of the proposition, because ℓn is presented by genera-
tors and relations, it suffices to check that all of the generating relations among
wi, δ(a), ϕi(a) are satisfied in the declared images for Z ∈ GEMfin. We check the
relations in the same order that the relations are listed in Definition 7.2.

(1) This is linearity of Sqi.
(2) This is linearity of d.
(3) This follows from the Leibniz rule for d.
(4) This follows since the dn+1 differential applied to a is wn+1da.
(5) We can calculate d(a)Sqi(b) = d(aSqib) for i < n and d(a)(Sqn(b) − bdb) =

d(ab)db.
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(6) This is essentially the Cartan formula.
(7) Lemma 6.4.
(8) Lemma 6.4, or alternatively the fact that Sqi commutes with d.
(9) This is the instability condition.
(10) This is the compatibility of Sq0 with the algebra structure.
(11) This is the Adem relations.
(12) This follows from the fact that Sq0(Sqia) = (Sqia)

2.

□

The goal of this section is to prove Theorem 7.4 below, which by Proposition 7.3
(and Postnikov completeness) is equivalent to checking ηn is an isomorphism for
Z ∈ GEMfin. Note that this implies Theorem C of the introduction.

Theorem 7.4. The natural transformation ηn realizes ℓn as the zeroth derived func-
tor of Z 7→ grH∗(ZSn

h SO(n+1)), and is an isomorphism for Z ∈ GEM.

The work done here is completely algebraic. To make the identification, we break
up both sides into manageable pieces, and identify the pieces.

First we define functors En+1, E∞ that describe algebraically the En+1-page and
E∞-page of the homotopy fixed point spectral sequence for Z ∈ GEM.

Definition 7.5. Given A ∈ K, En+1(A) is defined as the bigraded algebra given by
Ln(A)⊗H∗(BSO(n + 1)) where the first tensor factor is in bidegrees (0, ∗) and the
second is in bidegree (∗, 0). The Steenrod square Sqi acts in the (0, ∗) direction, so
that En+1 can be viewed as an object of Kgr. En+1(A) is additionally equipped with
a differential d degree (−n, n + 1) that is a derivation, determined by the formula
d(a) = da⊗ wn+1 and d(da) = 0 , where a, da are the generators of Ln(A).

Definition 7.6. The functor E∞ : K → Kgr defined to be the cohomology of
En+1(A) with respect to the differential d.

E∞ of course depends on n, but we suppress the dependence in the notation.

Lemma 7.7. When Z ∈ GEM, E∞ can be identified with the E∞ term of the
homotopy fixed point spectral sequence.

Proof. Recall that for Z ∈ GEM, the En+1 page of the spectral sequence is the tensor
product of H∗(BSO(n + 1)) and H∗(ZSn

) = Ln(H
∗(Z)) by Proposition 2.6, and by

Theorem 5.4 the result immediately follows. □

Definition 7.8. Define the natural transformation ηn : ℓn → E∞ which sends δ(a) 7→
da, ϕi(a) 7→ Sqia for i < n, and ϕn(a) 7→ Sqna+ ada. These images in Ln clearly are
in the kernel of d and hence in E∞, and all the relations of ℓn are satisfied.
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Remark 7.8.1. Definition 7.8 is compatible with our previous definition of ηn when
A = H∗(Z) for Z ∈ GEM.

In order to study ℓn, we break it up into smaller pieces which contain essentially
all of its information.

Definition 7.9. ℓ′n is defined to be the quotient of ℓn as a ring by wi, i ≤ n+1. ℓ′n/δ
is defined to be the quotient of ℓ′n by δ(a) for all a.

Note that ℓ′n and ℓ′n/δ live entirely in grading zero, so can be viewed as objects in
K.

Lemma 7.10. ℓ′n can be presented in K using the generators δ(a), ϕi(a), and the
relations (1)-(3) and (5)-(12) of Definition 7.2. Furthermore, ℓ′n/δ(A) is generated
by ϕi(a) for a ∈ A modulo the following relations:

(1) ϕi(a+ b) = ϕi(a) + ϕi(b)
(2) ϕk(ab) =

∑
i+j=k ϕi(a)ϕj(b)

(3) Sqiϕn−k(a) =
∑

j

(
k+|a|−j
i−2j

)
ϕn−i−k+2j(Sq

ja)

(4) Sqi(ϕj(a)) = 0 for i < 0

(5) Sq0(ϕj(a)) = ϕj(a)
2.

(6) ϕk(Sqia) =
∑(2|a|−i−k)/2

j=0

( |a|−i−j−1
2|a|−i−k−2j

)
ϕ2j−2|a|+2i+k(Sq

ja) for k > i.

(7) ϕ0(Sqja) = ϕj(a)
2

with ϕm(a) = 0 for m > n.

Proof. The first statement is clear since the wi, i ≤ n are not involved in the relations,
and the only relation on wn+1 is wn+1δ(a) = 0.

The second statement is also clear since ℓ′n/δ(A) is obtained from ℓ′n(A) by adding
more relations, namely killing the δ classes. □

We break up the functor E∞ into smaller pieces.

Definition 7.11. E ′
∞(A) is the quotient of E∞(A) by the wi. E ′

∞/d(A) is the
quotient of E ′

∞(A) by elements of the form da.

The natural map ℓn → E∞ → E ′
∞ sends the wi to 0, so factors as a map η′n : ℓ′n →

E ′
∞. Further quotienting the map to E ′

∞/d factors makes the map factor through
ℓ′n/δ, giving a map we can call η′n/d.

This implies E ′
∞(A), E ′

∞(A)/d can also be described as follows: Consider Ln(A)
as a differential graded algebra, where the differential is a 7→ da. Then E ′

∞(A) is the
kernel of d and E ′

∞(A)/δ is the cohomology of d.

Finally, we need an algebraic version of the pushforward map τ
SO(n+1)
SO(n) , and a ring

map from ℓ′n(A) into a subalgebra of Ln(A) that is an algebraic version of the quotient
map in cohomology.
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Definition 7.12. The map τ : Ln(A) → ℓ′n(A) is the F2-linear map that sends
adb1 . . . dbn to δ(a)δ(b1) . . . δ(bn). The map i : ℓ′n(A) → Ln(A) is the ring map
sending δ(a) to da, ϕi(a) to Sqia for i < n and ϕn(a) to Sqna+ ada.

Proposition 7.13. The maps i, τ are well-defined, and the differential d on Ln

factors as i ◦ η′n ◦ τ . Moreover, τ ◦ η′n = 0 and τ fits in an exact sequence Ln(A)
τ−→

ℓ′n(A) → ℓ′n/δ(A) → 0.

Proof. To check τ is well defined, it suffices to check the ideal generated by relations
(1), (2), (3), (4) from Proposition 2.8 is sent to 0. Relation (1) is easy and relation
(3), (4) follows from the fact that ℓ′n ∈ K. To check (2), if we have an element of
the form adb1 . . . dbn(d(xy)− d(x)y + d(y)x), it is sent to δ(b1) . . . δ(bn)(δ(ay)δ(x) +
δ(xy)δ(a) + δ(ax)δ(y)) = 0.
To check i is well defined, we must check that the relations for ℓ′n hold in Ln(A).

To see this, by naturality, it suffices to prove the relations hold in the universal
cases. But the universal cases are GEM spaces, where we have an identification of
Ln(H

∗(Z)) with H∗(ZSn
) which agrees with our defined map.

□

Lemma 7.14. The natural map ηn : ℓn(A) → E∞(A) is an isomorphism iff η′n/d(A)
is an isomorphism.

Proof. We observe from the presentation that ℓn(A) decomposes as a direct sum⊕
αi≥0

wα2
2 · · ·wαn

n ℓ′n(A)⊕
⊕

βi≥0,βn+1>0

wβ2

2 . . . w
βn+1

n+1 ℓ
′
n/δ(A)

Similarly, E∞ decomposes as⊕
αi≥0

wα2
2 · · ·wαn

n E ′
∞ ⊕

⊕
βi≥0,βn+1>0

wβ2

2 . . . w
βn+1

n+1 E
′
∞/d

Via this decomposition, the map ℓn(A) → E∞(A) splits as a sum of copies of
η′n/d(A) and η′n(A) accordingly. Thus it suffices to prove that η′n/d(A) and η′n(A)
are isomorphisms.

We now show that η′n/d being an isomorphism implies η′n is too. E ′
∞ is generated

by lifts of E ′
∞/d as well as the elements da. Because η′n/d is surjective, and da is hit

by δ(a), the map is surjective. For injectivity, suppose a is in the kernel of η′n. Then
because η′n/d is injective, we can assume a is in the kernel of d. But by Proposition
7.13, this means a = τ(b) where db = 0. By surjectivity of η′n/d this means that b is
the sum of dc and a class in the image of η′n. But τ(dc) = 0 and τ ◦ η′n = 0, which
shows a = 0. □

The next lemma is the key to proving that ηn is an isomorphism.
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Lemma 7.15. For Z ∈ GEM, η′n/d is an isomorphism for A = H∗(Z).

Proof. We will use notation from Proposition 5.3 (see Notation 5.2). Write Z =∏
s∈Sm

K(Z/2,m), where S∗ is a finite nonnegatively graded set, set |s| = m for
an element s ∈ Sm, and let A|s|,|s| be the admissible sequences of excess < |s| of
degree < |s| (see notation 5.2). In the proof of Proposition 5.3, it is shown that
E ′

∞/d(H∗(Z)) is generated by the nonzero elements of the below list:

(G1) Sq0SqIιs for (i1, . . . , ik) = I ∈ A|s|,|s| satisfying i1 > n.
(G2) SqIιs with leading term Sqi for i < n.
(G3) SqnSqIιs + SqIιsdSqIιs for (n, I) ∈ A|s|,|s|

Moreover, the only relation among the generators is when |s| = 0, where the relation
ι2s = ιs holds.

We can thus define an algebra map ζ : E ′
∞(H∗(Z))/d → ℓ′n(H

∗(Z))/d via the
following prescription:

• Send Sq0SqIιs in (G1) to ϕ0(SqIιs).
• Send SqIιs in (G2) to ϕi(SqI′ιs), where I ′ is I with i removed.
• Send SqnSqIιs + SqIιsdSqIιs in (G3) to ϕn(SqIιs).

Relation (7) for ℓ′n/δ shows that this does give an algebra homomorphism, and it
is clear that that η′n/d◦ ζ = id, implying that ζ is injective. Thus it remains to check
that ζ is surjective. Due to the multiplicative and additive relations for ϕi, it suffices
to check that ϕi(g) is in the image for each multiplicative generator g of H∗(Z).

(1) ϕ0(SqIιs) is automatically in the image for SqI leading with Sqi for i > n.
For i ≤ n, relation (7): (ϕi(a))

2 = ϕ0(Sqia) shows that it is in the image.
(2) For i > 0, ϕi(SqIι) is automatically in the image for SqI leading with Sqj for

j ≥ i. For j < i, the Adem relations (6) lets us express ϕi(SqIι) using terms
involving ∑

ϕα(Sqβι)

with α ≤ β < j which is in the image.

□

Now we can complete the proof of Theorem 7.4.

Proof of Theorem 7.4. By Proposition 7.3, it suffices to see that ηn is an isomorphism
for Z ∈ GEM, but this follows from Lemma 7.14 and Lemma 7.15. □
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