
Received: 18 March 2021 Revised: 25 October 2021 Accepted: 20 December 2021

DOI: 10.1112/topo.12230

Journal of TopologyRESEARCH ARTICLE

Eilenberg Mac Lane spectra as 𝒑-cyclonic
Thom spectra

Ishan Levy

Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

Correspondence
Ishan Levy, Massachusetts Institute of
Technology, 182 Memorial Drive,
Cambridge, MA 02139, USA.
Email: ishanlevy97@gmail.com

Funding information
NSF Graduate Research Fellowship,
Grant/Award Number: 1745302

Abstract
Hopkins andMahowald gave a simple description of the
mod 𝑝 Eilenberg Mac Lane spectrum 𝔽𝑝 as the free 𝔼2-
algebrawith an equivalence of𝑝 and 0.We show for each
faithful 2-dimensional representation 𝜆 of a 𝑝-group 𝐺
that the 𝐺-equivariant Eilenberg Mac Lane spectrum
𝔽
𝑝
is the free 𝔼𝜆-algebra with an equivalence of 𝑝 and

0. This unifies and simplifies recent work of Behrens,
Hahn, and Wilson, and extends it to include the dihe-
dral 2-subgroups of O(2). The main new idea is that 𝔽

𝑝

has a simple description as a 𝑝-cyclonic module over
THH(𝔽𝑝). We show that our result is the best possible
one in that it gives all groups 𝐺 and representations 𝑉
such that 𝔽

𝑝
is the free 𝔼𝑉-algebra with an equivalence

of 𝑝 and 0.
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1 INTRODUCTION

Consider the nontrivial virtual bundle on the circle, 𝑆1 → BO. We can extend this to a double loop
map 𝜇2 ∶ Ω2𝑆3 → BO. Mahowald proved the following result [17].

Theorem1.1 (Mahowald).TheThom spectrum (Ω2𝑆3)𝜇2 is equivalent as an𝔼2-ring to the Eilenberg
Mac Lane spectrum 𝔽2.

This result and its generalizations have since found great use, for example, giving a conceptual
explanation of Bokstedt’s computation of THH(𝔽𝑝) [7, 8].
Hopkins observed that Mahowald’s theorem generalizes to odd primes. We can consider the

𝑝-local stable spherical fibration on the circle 𝑆1 → BGL1(𝕊(𝑝)) representing the class 1 − 𝑝 in 𝜋1.
Extending this to a double loop map 𝜇𝑝 ∶ Ω2𝑆3 → BGL1(𝕊(𝑝)), he showed the following theorem.

Theorem 1.2 (Hopkins [18, Theorem 4.18]). The Thom spectrum (Ω2𝑆3)𝜇𝑝 is equivalent as an 𝔼2-
ring to the Eilenberg Mac Lane spectrum 𝔽𝑝.

Remark 1.2.1. The Thom spectrum in Theorems 1.1 and 1.2 can be interpreted as the free 𝔼2-ring
with 𝑝 ≃ 0 [2, Theorem 5.1]. This means that an 𝔼2-algebra map (Ω2𝑆3)

𝜇𝑝 → 𝑅 is the same as a
nulhomotopy of 𝑝 in 𝑅.

Behrens–Wilson proved an equivariant generalization of Mahowald’s result [6], which we now
explain.

Construction 1.2.1. Let 𝐺 be a group and𝑉 ∶ 𝐺 → O(𝑛) be any representation. We can consider
the𝑉-loopmap 𝜇𝑉,𝑝 ∶ Ω𝑉𝑆1+𝑉 → BGL1(𝕊(𝑝)) extending themap 1 − 𝑝 ∈ 𝜋𝐺1 (BGL1(𝕊(𝑝)))where
𝕊 is the 𝐺-equivariant sphere spectrum. Then 𝑋𝑉,𝑝 is defined to be the Thom spectrum of 𝜇𝑉,𝑝,
which is an 𝔼𝑉-algebra.

The Thom spectra 𝑋𝑉,𝑝 are equivariant generalizations of the Thom spectra considered by
Hopkins and Mahowald. For example, as in Remark 1.2.1, 𝑋𝑉,𝑝 is the free 𝔼𝑉-algebra with 𝑝 ≃ 0.

Theorem 1.3 (Behrens–Wilson). Let 𝜌 be the regular representation of the group 𝐶2. Then there is
an equivalence of 𝔼𝜌-algebras 𝑋𝜌,2 ≅ 𝔽2.

Their proof relies on studying 𝔼𝜌 power operations, similarly to how Mahowald and Hopkins’
results rely on 𝔼2 power operations.
Hahn–Wilson generalized the result to all cyclic 𝑝-subgroups of O(2) [12].

Theorem 1.4 (Hahn–Wilson). Let 𝜆 ∶ 𝐺 → O(2) be a faithful representation of a cyclic 𝑝-group.
Then there is an equivalence of 𝔼𝜆-algebras 𝑋𝜆,𝑝 ≅ 𝔽𝑝 .

Notably, their proof did not involve studying 𝔼𝜆 power operations, but rather used the structure
on 𝑋𝜆,𝑝 as a module over its norm𝑁𝐺∗ (𝑋𝜆,𝑝), the nonequivariant Hopkins–Mahowald result, and
an exotic Thom ring structure on the Thom spectrum as inputs.
We extend the result of Hahn–Wilson to the dihedral 2-subgroups of O(2) and give a simpler

proof in the case of 𝐶𝑝𝑛 ⊂ SO(2), removing the need for exotic Thom ring structures.
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880 LEVY

Theorem A. Let 𝜆 ∶ 𝐺 → O(2) be a faithful representation of a 𝑝-group. Then there is an
equivalence of 𝔼𝜆-algebras 𝑋𝜆,𝑝 ≅ 𝔽𝑝 .

There is a conciseway to capture all of the structure present in TheoremA.Recall [21, Definition
2.10] that a cyclonic spectrum is one that has a Borel 𝑆1-action genuine with respect to the finite
subgroups of 𝑆1†. If it is only genuine with respect to the finite 𝑝-subgroups of 𝑆1, it is said to be
p-cyclonic.
In this language, for 𝑝 > 2, Theorem A says that 𝑋𝜆,𝑝 ≅ 𝔽𝑝 as 𝑝-cyclonic 𝔼𝜆-algebras.

‡

At the prime 2, Theorem A gives more than a 2-cyclonic equivalence since it is a genuine
equivalence on the finite dihedral 2-groups 𝐷2𝑛 as well. Accordingly, we can say that a real 2-
cyclonic spectrum is a Borel O(2)-spectrum that is genuine on the finite 2-subgroups of O(2). Then
Theorem A says for 𝑝 = 2 that 𝑋𝜆,2 ≅ 𝔽2 as real 2-cyclonic 𝔼𝜆-algebras.
Theorem A answers a question of Hahn and Wilson [12, Question 9.4], asking if 𝔽

𝑝
can be a

Thom spectrum for any group 𝐺 that is not a cyclic 𝑝-group. It is also the best possible result in
that it gives all groups 𝐺 and representations 𝑉 of 𝐺 such that the free 𝔼𝑉-algebra with 𝑝 ≃ 0 is
𝔽
𝑝
.

Theorem B. Let 𝐺 be a finite group and 𝑉 ∶ 𝐺 → O(𝑛) a representation. 𝑋𝑉,𝑝 ≅ 𝔽𝑝 if and only if
𝑛 = 2, 𝐺 is a p-group, and 𝑉 is faithful.

The main new idea in the proof of Theorem A is to use a module structure that exists on both
𝔽
𝑝
and 𝑋𝜆,𝑝 that is constructed via equivariant factorization homology.

Definition 1.5. Let𝐺 be a finite group and𝑉 ∶ 𝐺 → O(𝑛) a representation. For an 𝔼𝑉-algebra𝑋,
we define 𝑁𝑉𝑋 to be the genuine equivariant factorization homology ∫

ℝ𝑉−ℝ𝑉
𝐺 𝑋 as in [15].

Some important properties of 𝑁𝑉 are as follows.

(N1) Any 𝔼𝑉-algebra 𝑅 is naturally an 𝔼𝑉𝐺 -algebra over the 𝔼𝑉𝐺+1-ring 𝑁𝑉𝑅.
(N2) For any map 𝑓 of 𝔼𝑉-algebras such that 𝑓Φ𝐻 is an equivalence for any proper subgroup

𝐻 ⊂ 𝐺, 𝑁𝑉𝑓 is an equivalence.

In the proof of TheoremA,we construct amap ofO(2)-𝔼𝜆-algebras𝑓 ∶ 𝑋𝜆,𝑝 → 𝔽
𝑝
, and prove by

induction on the finite𝑝-subgroups𝐺 ⊂ O(2) that𝑓Φ𝐺 is an equivalence. By (N2), in the induction
step we know that (𝑁𝜆𝑓)Φ𝐺 is an equivalence, so that by (N1), 𝑓𝜙𝐺 is a 𝑁𝜆𝔽

𝑝
-module map. The

following result is key in showing that 𝑓Φ𝐺 is an equivalence.

TheoremC. Let 𝜆 ∶ 𝐺 → O(2) be a faithful irreducible representation of a 𝑝-group. Then𝑋Φ𝐺
𝜆,𝑝

and
𝔽Φ𝐺
𝑝

are rank 2 free modules over (𝑁𝜆𝑋𝜆,𝑝)Φ𝐺 and (𝑁𝜆𝔽𝑝)
Φ𝐺 , respectively, generated in degrees 0

and 1.

Because 𝑓Φ𝐺 is a module map, Theorem C reduces showing that 𝑓Φ𝐺 is an equivalence to just
showing that it is 1-connected.

† This terminology was introduced in [5].
‡ The equivalence is a map of genuine O(2) spectra (though it is only an equivalence on the 𝑝-subgroups).
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EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 881

Our proof of Theorem C is a calculation, which for the cyclic groups 𝐺 = 𝐶𝑝𝑛 is made easier
by the fact that we identify 𝑁𝜆𝔽

𝑝
as a 𝐺-spectrum with the topological Hochschild homol-

ogy THH(𝔽𝑝). In fact, for the dihedral 2-subgroups 𝜆 ∶ 𝐷2𝑛 → O(2), 𝑁𝜆𝔽
2
agrees with the real

topological Hochschild homology THR(𝔽2).

Remark 1.5.1. Theorem C can also be concisely stated for all 𝐺 at once using cyclonic spectra. At
odd primes, it says that 𝑋

Φ𝐶𝑝

𝜆,𝑝
and 𝔽

Φ𝐶𝑝
𝑝 are free rank 2 𝑝-cyclonic THH(𝔽𝑝)-modules in degrees 0

and 1, and for 𝑝 = 2, the statement is the same, but with real 2-cyclonic instead of 𝑝-cyclonic.

In section 5, we also identify𝑋𝜆,𝑝 when 𝜆 is a faithful representation of a cyclic group 𝐶𝑞 for 𝑞 a
prime not equal to𝑝. The underlying𝐺-spectrum is algebraic: it is a sumof suspensions ofMackey
functors. More generally, we can ask for 𝑋𝜆,𝑝 to be algebraic in a weaker sense: the underlying 𝐺-
spectrum, viewed as a spectral Mackey functor as in [11] or [4], can be lifted to a Mackey functor
with values in 𝔽𝑝-modules.

Question 1.5.1. Under what conditions does the 𝐺-spectrum 𝑋𝑉,𝑝 lift to a Mackey functor with
values in 𝔽𝑝-modules?

A necessary condition is that dim(𝑉) ⩾ 2, and in section 5, we explain why it is plausible this
is sufficient.
In section 6, we show that when 𝑝 = 2, the Thom spectra in Theorem A admit extra structure.

TheoremD. Let𝜆 be the standard 2-dimensional representation ofO(2). Themap𝜇𝜆,2 ∶ Ω𝜆𝑆1+𝜆 →
BGL1(𝕊(2)) admits a refinement to a 𝜆 + det 𝜆-loop map.

Corollary 1.6. When 𝑝 = 2, the equivalence in Theorem A is one of 𝔼𝜆+det 𝜆-algebras.

It is known that Theorem 1.1 refines to an 𝔼3-equivalence, coming from the equivalenceΩ2𝑆3 =
Ω3 BSp(1). In [12], it was shown that the equivalence in Theorem 1.4 is an 𝔼𝜆+1 equivalence for 𝐺
a cyclic 2-subgroup of O(2). Corollary 1.6 extends these results to include the dihedral subgroups
𝐷2𝑛 of O(2).

2 MODULE STRUCTURES FOR 𝔼𝑽-ALGEBRAS

An important tool in the proof of Theorem A is the use of various module and algebra structures
associated to 𝔼𝑉-algebras. In this section, we explain how these structures can be obtained via
genuine equivariant factorization homology as in [15].
Equivariant factorization homology is a construction taking as input a 𝑉-framed 𝐺-manifold

𝑀 and an 𝔼𝑉-algebra 𝑋, and giving an object ∫𝑀 𝑋 as output. For definitions and details, see [15],
but we recall some properties here.

(F1) ∫
ℝ𝑉
𝑋 = 𝑋.

(F2) It is a 𝐺-symmetric monoidal functor, meaning that it is natural with respect to restriction
to subgroups and takes 𝐺-set indexed disjoint unions of manifolds to 𝐺-set indexed tensor
products (i.e., the Hill–Hopkins–Ravenel norm in 𝐺-spectra).
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882 LEVY

(F3) If a 𝐺-framed manifold 𝑀 is equipped with a collar, that is an identification 𝑀 ≃ 𝑀′ ⊗

(−1, 1) as a framed 𝐺-manifold, this naturally gives ∫𝑀′⊗(−1,1) 𝑋 an 𝔼1-algebra structure [15,
Construction 5.2.1].

(F4) (𝐺-⊗-excision) Given a𝑉-framedmanifold𝑀 with a decomposition𝑀 = 𝑀−1 ∪𝑁×(−1,1) 𝑀1
into open submanifolds𝑀−1,𝑀1 glued along a collar𝑁 × (−1, 1), ∫𝑀−1 𝑋 and ∫𝑀1 𝑋 are nat-
urally left and right modules respectively over ∫𝑁×(−1,1) 𝑋, and ∫

𝑀 𝑋 = ∫
𝑀−1

𝑋 ⊗∫𝑁×(−1,1) 𝑋

∫
𝑀1
𝑋.

From these properties, we extract general results about 𝔼𝑉-algebras.

Proposition 2.1. Let𝑈 be an open subset of 𝑆(𝑉), the unit sphere of ℝ𝑉 , and 𝑋 an 𝔼𝑉-algebra. Let
𝑆𝑈 be the preimage of 𝑈 under the projection ℝ𝑉 − 0 → 𝑆(𝑉). Then 𝑋 is a module over the 𝔼1-ring
∫
𝑆𝑈
𝑋, and there is a canonical map of ∫𝑆𝑈 𝑋 modules ∫𝑆𝑈 𝑋 → 𝑋 that is compatible with unit maps

𝕊 → 𝑋 and 𝕊 → ∫
𝑆𝑈
𝑋. This module structure is natural in𝑈.

Proof. The 𝑉-framed 𝐺-manifold ℝ𝑉 decomposes as ℝ𝑉 ∪𝑆𝑈 𝑆𝑈 , and 𝑆𝑈 admits a collar 𝑆𝑈 ≅
𝑈 × (−1.1). Thus the first claim follows from property (𝐹4) of equivariant factorization homology
above. The second claim follows by observing that there is a tautological decomposition 𝑆𝑈 =
𝑆𝑈 ∪𝑆𝑈 𝑆𝑈 compatible with the decomposition of ℝ𝑉 − 0, so by naturality of property (𝐹4), we
obtain our map of modules. To see that this map is unital, we simply observe that the unit maps
are the maps induced on factorization homology from the inclusion of the empty manifold 𝜙.
Naturality in 𝑈 follows from naturality in (𝐹3), (𝐹4). □

When we set𝑈 = 𝑆(𝑉) − 𝑆(𝑉𝐺) in Proposition 2.1 𝑆𝑈 = ℝ𝑉 − ℝ𝑉
𝐺 , so we obtain the following.

Corollary 2.2. Given an 𝔼𝑉-algebra 𝑋, 𝑋 is naturally a module over 𝑁𝑉𝑋, and receives a unital
𝑁𝑉𝑋-module map from𝑁𝑉𝑋.

Remark 2.2.1. Corollary 2.2 says that 𝑋 is an 𝔼0-algebra in 𝑁𝑉𝑋-modules. In fact, it is true that
𝑁𝑉𝑋 is an 𝔼𝑉𝐺+1-algebra and 𝑋 is canonically an 𝔼𝑉𝐺 -algebra in 𝑁𝑉𝑋-modules, and this refines
the 𝔼𝑉𝐺 -algebra in 𝐺-spectra.

We also need the following module structure, where 𝑁𝑃∗𝑋 is the indexed smash product (i.e.,
HHR norm).

Proposition 2.3. Let𝑃 ⊂ 𝑆(𝑉) be a discrete𝐺-subset. Then𝑃 determines a naturalmodule structure
of 𝑋 over𝑁𝑃∗𝑋 as well as a unital𝑁𝑃∗𝑋-module map𝑁

𝑃
∗𝑋 → 𝑋.

Proof. Choose disjoint 𝐺-equivariant disks around each point 𝑝 in 𝑆𝑉 in a 𝐺-invariant way, and
let 𝑈 be the union of these disks. For each orbit 𝑂 ⊂ 𝑃 with isotropy group 𝐻, the union of the
preimages of the disks around𝑂 in 𝑆𝑈 is isomorphic to𝐺 ×𝐻 ℝ𝑉|𝐻 . It then follows from properties
(𝐹1) and (𝐹2) of equivariant factorization homology that ∫𝑆𝑈 𝑋 ≅ 𝑁

𝑃
∗𝑋. The result then follows

by applying Proposition 2.1 to 𝑈. □

The following facts about 𝑁𝜆𝑋 are important to the proof of the main theorem.
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EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 883

Lemma 2.4. Let 𝜆 ∶ 𝐺 → O(2) be a faithful representation. If 𝑋 → 𝑌 is a map of 𝔼𝜆-algebras that
is an equivalence on 𝐻 fixed points for 𝐻 any proper subgroup of 𝐺, then the map 𝑁𝜆𝑋 → 𝑁𝜆𝑌 is
an equivalence of 𝔼1-algebras.

Proof. In the case that 𝐺 → O(2) factors through SO(2), we can break up ℝ𝜆 − 0 into two copies
of ℝ2 × 𝐺 glued along the collared manifold (ℝ1 ∪ ℝ1) × 𝐺 × (−1, 1). By 𝐺-⊗-excision (𝐹4) and
the fact that induced manifolds are sent to norms (𝐹2), ∫

ℝ2×𝐺 𝑋 = 𝑁
𝐺
∗ 𝑋, which depends on the

underlying spectrum of 𝑋, giving the result.
In the other case,𝐺 = 𝐷2𝑛 is a dihedral subgroup of O(2) for 𝑛 ⩾ 1. If 𝑛 = 1, then𝑁𝜆𝑋 =𝑁

𝐶2
∗ 𝑋,

which again only depends on the underlying spectrum.
If 𝑛 ⩾ 2, we similarly use 𝐺-⊗ excision to see that 𝑁𝜆𝑋 is identified the tensor product

𝑁𝐺∕𝐻0𝑋 ⊗𝑁𝐺𝑋 𝑁
𝐺∕𝐻1𝑋 where 𝐻0 are two conjugate maximal subgroups of 𝐷2𝑛. This formula

again only depends on 𝑋𝐻 for proper subgroups of 𝐺. □

Remark 2.4.1. More generally, the factorization homology ∫𝑀 depends on the𝐻 fixed points when
𝐻 is contained in an isotropy group appearing in𝑀. In particular 𝑁𝑉𝑋 only depends on 𝑋𝐻 for
𝐻 a proper subgroup of 𝐺.

When 𝜆 is a two-dimensional representation of 𝐺, 𝑁𝜆 can be identified with a twisted version
of THR. We only use the following special case.

Lemma 2.5. Let 𝜆 ∶ 𝐺 → SO(2) be a faithful representation, and let𝑋 be a𝐺-commutative algebra
such that the 𝐺-action on the underlying algebra is trivial. Then there is an identification 𝑁𝜆𝑋 ≃
THH(𝑋𝑢𝑛), where THH has the standard genuine 𝐺 action.

Proof. Consider the covering mapℝ𝜆 − 0 → ℝ2 − 0which (ignoring framings) is a |𝐺|-fold cover.
We can break ℝ2 − 0 into two copies of ℝ2 glued along a collared (ℝ ∪ ℝ) × (−1, 1), and this
induces a decomposition of ℝ𝜆 − 0 into ℝ2 × 𝐺 and (ℝ × ℝ) × 𝐺 × (−1, 1). We can choose a fram-
ing on (ℝ × ℝ) × 𝐺 × (−1, 1) so that this gives a collar decomposition. The choice of framing does
not matter because of commutativity.
By 𝐺-⊗-excision, this decomposition realizes 𝑁𝜆𝑋 as 𝑁𝐺𝑋 ⊗𝑁𝐺𝑋⊗𝑁𝐺𝑋 𝑁𝐺𝑋. Since the action

on the underlying spectrum of 𝑋 is trivial, this tensor product agrees with the formula in [1,
Theorem 4.4] of the genuine 𝐺-action on THH(𝑋). □

In the next section we use the following.

Lemma 2.6. Let 𝑉 be a representation of 𝐺 of dimension ⩾ 2. Then (𝑁𝑉𝑋𝑉,𝑝)Φ𝐺 and 𝑋Φ𝐺
𝑉,𝑝

are
𝔽𝑝-modules.

Proof. Let 𝑁 be the kernel of 𝑉. Then 𝑆(𝑉) − 𝑆(𝑉𝐺) contains an orbit of the form 𝐺∕𝑁. Thus
we obtain by Proposition 2.3, Corollary 2.2, and the naturality in Proposition 2.1 an algebra
map 𝑁𝐺

𝑁
𝑋𝑉,𝑝 → 𝑁𝑉𝑋𝑉,𝑝. We can apply geometric fixed points and use [14, Proposition 2.57]

to obtain an algebra map (𝑋𝑉,𝑝)Φ𝑁 → (𝑁𝑉𝑋𝑉,𝑝)
Φ𝐺 . But 𝑁 acts trivially on 𝑉, so it acts triv-

ially on Ω𝑉𝑆𝑉+1 and we can identify (𝑋𝑉,𝑝)Φ𝑁 with the nonequivariant spectrum 𝑋𝑉,𝑝. But this
underlying spectrum is an 𝔽𝑝-algebra by Theorem 1.1 and Theorem 1.2 since dim𝑉 ⩾ 2.
Via Corollary 2.2, 𝑋Φ𝐺

𝑉,𝑝
is a module over (𝑁𝑉𝑋𝑉,𝑝)Φ𝐺 , so it is also an 𝔽𝑝-module. □
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884 LEVY

3 COMPUTING GEOMETRIC FIXED POINTS

Here, we study the geometric fixed points of 𝔽
𝑝
and𝑋𝜆,𝑝, the objects of study in TheoremA. Often

𝑋𝜆,𝑝 will be shortened to just𝑋𝜆. The results of this section together prove the following theorem.

Theorem C. Let 𝜆 ∶ 𝐺 → O(2) be a faithful irreducible representation of a 𝑝-group. Then 𝑋Φ𝐺
𝜆,𝑝

and 𝔽Φ𝐺
𝑝

are rank 2 free modules over (𝑁𝜆𝑋𝜆,𝑝)Φ𝐺 and (𝑁𝜆𝔽
𝑝
)Φ𝐺 , respectively, generated in

degrees 0 and 1.

Proof. This follows immediately from Proposition 3.4, Proposition 3.8, and Proposition 3.2. □

Thom spectra

In this subsection, we study 𝑋𝜆 as an 𝑁𝜆𝑋𝜆-module. The key fact allowing us to do so is that the
module structure arises from taking the Thom spectrum of an action on the level of spaces.

Lemma 3.1. Let 𝜆 be a 2-dimensional faithful irreducible representation of 𝐺.
ThenMap𝐺(𝑆(𝜆), 𝑆𝜆+1) is simply connected.

Proof. For any such 𝜆, 𝑆(𝜆) has a cell decomposition with a 1-cell with isotropy 𝐺 and zero cells
with nontrivial isotropy group. Let 𝑃 be the 0-skeleton of such a cell decomposition. Then there
is a pushout square

which upon applyingMap𝐺(−, 𝑆𝜆+1) yields the pullback square

Since 𝑃 has no fixed points,Map𝐺(𝑃, 𝑆𝜆+1) is a product of spheres of dimension ⩾ 2 so is simply
connected. Applying the exact sequence on homotopy groups to the above pullback square, we
obtain thatMap𝐺(𝑆(𝜆), 𝑆𝜆+1) is simply connected. □

Proposition 3.2. Let 𝜆 be a rank 2 irreducible representation of𝐺. Then𝑋Φ𝐺
𝜆,𝑝

is a rank 2 freemodule
over (𝑁𝜆𝑋𝜆,𝑝)Φ𝐺 , generated in degrees 0 and 1.

Proof. For an 𝔼𝑉-space 𝑋 and a 𝑉-framed manifold𝑀, equivariant nonabelian Poincaré duality
says that ∫𝑀 𝑋 = Map∗(𝑀

+,𝑋), where𝑀+ is the 1-point compactification of𝑀 [16, Theorem 2.2].
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EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 885

This shows that 𝑁𝜆(Ω𝜆𝑆𝜆+1) agrees withMap∗((ℝ𝜆 − 0)+, 𝑆𝜆+1), where (ℝ𝜆 − 0)+ can also be
described as either the cofiber of the inclusion 𝑆0 → 𝑆𝜆 or Σ𝑆(𝜆)+.
Recall that by Corollary 2.2, 𝑋𝜆 is a module over 𝑁𝜆𝑋. By the naturality of equivariant non-

abelian Poincaré duality in the manifold𝑀, the𝑁𝜆(Ω𝜆𝑆𝜆+1)-module structure onΩ𝜆𝑆𝜆+1 comes
from applying Map∗(−, 𝑆𝜆+1) on the natural coaction of the cogroup (ℝ𝜆 − 0)+ = Σ𝑆(𝜆)+ on
(ℝ𝜆)+. This coaction arises from the coaction of the suspension on the cofiber in the cofiber
sequence

𝑆(𝜆)+
𝜖
<→∗+→ (ℝ𝜆)+ → (ℝ𝜆 − 0)+.

Thus the action of 𝑁𝜆(Ω𝜆𝑆𝜆+1) is the action of loop space on the fiber in the sequence

𝑁𝜆(Ω𝜆𝑆𝜆+1) → Ω𝜆𝑆𝜆+1 → Map∗(𝑆
0, 𝑆𝜆+1)

𝜖∗

<<→ Map∗(𝑆(𝜆)
+, 𝑆𝜆+1).

Let 𝑅 denote the 𝔼1-ring (𝑁𝜆𝑋𝜆,𝑝)Φ𝐺 . The geometric fixed points of a Thom spectrum are given
by the Thom spectrum of the fixed points, so the 𝑅-module structure of𝑋𝜆,𝑝 on arises from apply-
ing the Thom spectrum to the 𝐺-fixed points of the action of the first two maps in the above
fiber sequence.
By Lemma 3.1, 𝜖∗ is nulhomotopic after taking𝐺-fixed points since (𝑆𝜆+1)𝐺 = 𝑆1. It follows that

Ω𝜆𝑆𝜆+1 is the product (𝑁𝜆(Ω𝜆𝑆𝜆+1))𝐺 × 𝑆1, and 𝑁𝜆(Ω𝜆𝑆𝜆+1)𝐺 acts only on the first component.
The Thom isomorphism in 𝔽𝑝-homology identifies the action on homology with the action of

𝑁𝜆𝑋𝜆 on 𝑋𝜆 in homology. But the action on 𝔽𝑝-homology is a rank 2 free module generated in
degrees 0 and 1 by the homology of 𝑆1. By Lemma 2.6,𝑋𝜆,𝑁𝜆𝑋𝜆 are 𝔽𝑝-modules, so it follows that
𝑋𝜆 is a rank 2 free module generated in degrees 0,1.

□

Remark 3.2.1. A more careful analysis in Lemma 3.1 shows that when 𝜆 is a cyclic subgroup,
(Ω𝜆𝑆𝜆+1)𝐺 is equivalent to Ω𝑆3 × 𝑆1 × Ω2𝑆3. When 𝜆 is a dihedral group 𝐷2𝑛 for 𝑛 ⩾ 2, it is
equivalent to Ω𝑆2 × Ω𝑆2 × 𝑆1 × Ω2𝑆3. It is interesting that the proof of Proposition 3.2 does not
require explicitly identifying these spaces. We do carry this more careful analysis out for the
representation 𝜌 in Lemma 3.3.

We now identify 𝑋Φ𝐶2
𝜌,2

, where 𝜌 is the regular representation of 𝐶2. Since an 𝔼𝜌-algebra is in

particular an 𝔼1-algebra as 1 ⊂ 𝜌, and (−)Φ𝐶2 is symmetric monoidal, 𝑋
Φ𝐶2
𝜌,2

is an 𝔼1-algebra.

Lemma 3.3. 𝑋Φ𝐶2
𝜌,2

is the 𝔼1-algebra 𝔽2 ⊗ Σ∞+ Ω𝑆
2.

Proof. 𝑋
Φ𝐶2
𝜌,2

is a Thom spectrum of (Ω𝜌𝑆𝜌+1)𝐶2 . To compute these fixed points, we apply

Map
𝐶2
∗ (−, 𝑆

𝜌+1) to the cofiber sequence Σ(𝐶2)+ → 𝑆1 → 𝑆𝜌 → Σ2(𝐶2)+ to get a fiber sequence of
loop spaces

Ω2𝑆3 → (Ω𝜌𝑆𝜌+1)𝐶2 → Ω𝑆2 → Ω𝑆3.

Since the second map is a loop map, it is nulhomotopic, so (Ω𝜌𝑆𝜌+1)𝐶2 = Ω(𝑆2 × Ω𝑆3) as a loop
space, and Ω2𝑆3 acts trivially on the Ω𝑆2 component. Because the Thom spectrum functor is
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886 LEVY

𝐺-symmetric monoidal and takes fixed points to geometric fixed points, the Thom spectrum
of the compositeΩ2𝑆3 = Map(Σ2(𝐶2)+, 𝑆𝜌+1)𝐶2 → (Ω𝜌𝑆𝜌+1)𝐶2 → BGL1(𝕊(2)) is (𝑁

𝐶2
∗ 𝑋𝜌,2)

Φ𝐶2 . By
[14, Proposition 2.57], this is the underlying spectrum of 𝑋𝜌,2, which is 𝑋2,2 = 𝔽2 by Theorem 1.1,
so it follows that 𝑋Φ𝐶2

𝜌,2
is the 𝔼1-𝔽2-algebra 𝔽2 ⊗ Σ∞+ Ω𝑆

2. □

Mackey functors

Now we turn to understanding 𝔽
𝑝
. First we study 𝔽Φ𝐺

𝑝
as a 𝑁𝜆𝔽Φ𝐺

𝑝
-module for the cyclic

𝑝-subgroups of SO(2), using the identification of 𝑁𝜆𝔽
𝑝
with THH(𝔽

𝑝
).

Proposition 3.4. Let 𝐺 be a 𝑝-subgroup of SO(2). Then 𝔽Φ𝐺
𝑝

is a rank 2 free module over (𝑁𝜆𝔽
𝑝
)Φ𝐺

generated in degrees 0 and 1.

Proof. Let𝐻 be the maximal proper subgroup of 𝐺. We have a commutative square of ring maps

𝑁𝜆𝔽
𝑝
can be identified with THH(𝔽𝑝) as a 𝐺-spectrum by Lemma 2.5. Since THH(𝔽𝑝) is p-

cyclotomic, the homotopy ring of (𝑁𝜆𝔽
𝑝
)Φ𝐺 = THH(𝔽𝑝)

Φ𝐺 agrees with that of THH(𝔽𝑝), and so
is a polynomial algebra 𝔽𝑝[𝑥] where |𝑥| = 2. By [19, Corollary IV.4.13], the element 𝑥 becomes a
unit in 𝜋∗ THH(𝔽𝑝)

𝑡𝐶𝑝 .
This map THH(𝔽𝑝)

𝜙𝐶𝑝 → THH(𝔽𝑝)
𝑡𝐶𝑝 is identified with the left vertical map in the diagram

above, so we learn that 𝑥 ∈ 𝜋2(𝑁𝜆𝔽Φ𝐺𝑝 ) is sent to a unit via that map. A unit cannot be in the
kernel of any nonzero ring map, so the image of 𝑥 is not in the kernel of lower horizontal map.
Thus 𝑥 has nonzero image in (𝔽Φ𝐻

𝑝
)𝑡𝐺∕𝐻 , and thus also in 𝔽Φ𝐺

𝑝
.

The ring 𝜋∗(𝔽Φ𝐺𝑝 ) is well known to be 𝔽2[𝑡] for |𝑡| = 1when 𝑝 = 2, and 𝔽𝑝[𝑏] ⊗ Λ(𝑠)with |𝑏| =
2, |𝑠| = 1 for 𝑝 > 2 (see, for example, [14, Proposition 3.18] or [12, Lemma 8.2]). In either case, it is
a rank 2 free module over the subalgebra generated by any nonzero class in degree 2, withmodule
generators in degrees 0,1. Thus the claim follows. □

Remark 3.4.1. It is possible to identify 𝑁𝜆𝔽
2
for the dihedral groups 𝐷2𝑛 with the genuine action

of 𝐷2𝑛 on THR(𝔽2) (see [9, 13 20]). An approach similar to that in Proposition 3.4 should prove
the analogous result for the dihedral groups.

Next, we study 𝔽Φ𝐺
𝑝

where 𝐺 is one of the dihedral groups 𝐷2𝑛 for 𝑛 ⩾ 2. First we will review
a few different ways of thinking about the isotropy separation sequence [14, Section 2.5.2], which
for a 𝐺-spectrum 𝑋 is the cofiber sequence

𝑋ℎ𝑃
tr
<→ 𝑋𝐺 → 𝑋Φ𝐺,
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EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 887

where 𝑋ℎ𝑃 = (𝑋 ⊗ 𝐸𝑃+)𝐺 , with 𝐸𝑃 the classifying space for proper subgroups of 𝐺, and tr the
map induced from 𝐸𝑃+ →∗+= 𝑆0.
Let Orb′𝐺 be the category of nontrivial orbits of 𝐺. One model for 𝐸𝑃+ is the colimit

colim𝐺∕𝐻∈Orb′
𝐺
𝐺∕𝐻+, showing that an alternative formula for 𝑋ℎ𝑃 is colim𝐺∕𝐻∈Orb′

𝐺
𝑋𝐻 , and the

natural map to 𝑋𝐺 is the colimit of the transfer maps. From this description, we see the functor
(−)Φ𝐺 factors through certain fixed point functors.

Lemma 3.5. Let𝐺 be a group, and let𝑁 be a normal subgroup contained in all the maximal proper
subgroups of 𝐺. Then for any 𝐺-spectrum 𝑋, 𝑋Φ𝐺 = (𝑋𝑁)Φ(𝐺∕𝑁), where 𝑋𝑁 is given the structure of
a genuine 𝐺∕𝑁 spectrum.

Proof. The category of orbits for proper subgroups of 𝐺 contains the category of orbits of proper
subgroups of 𝐺∕𝑁 as the subcategory of orbits with isotropy containing 𝑁. We claim that this
inclusion is final, which implies that the two isotropy separation sequences computing 𝑋Φ𝐺 and
(𝑋𝑁)Φ(𝐺∕𝑁) agree, giving the result.
To see finality, we need to check for any orbit 𝐺∕𝐻 ∈ Orb′𝐺 , the category maps to orbits 𝐺∕𝐻

′

with 𝐻′ ⊃ 𝑁 are nonempty and connected. It is nonempty since 𝑁 contains all maximal proper
subgroups. To see it is connected, any two maps 𝐺∕𝐻 → 𝐺∕𝐻′, 𝐺∕𝐻′′, choose basepoints on
the 𝐺-sets so 𝐻,𝐻′,𝐻′′ are the isotropy groups of the basepoints. Then the projections 𝐺∕𝐻 →
𝐺∕𝐻′, 𝐺∕𝐻′′ factor through 𝐺∕𝑁 as pointed 𝐺-sets. □

Note that the above lemma is useful for understanding 𝔽Φ𝐺
𝑝

since 𝔽𝑁
𝑝
agrees with 𝔽

𝑝
for the

group 𝐺∕𝑁.
Another model for 𝐸𝑃+ is 𝑆(∞𝑉)+, where 𝑉 is any 𝐺-representation such that 𝑉𝐺 = 0 and

𝑉𝐻 ≠ 0 for any proper subgroup of𝐺. There is a cofiber sequence 𝑆(∞𝑉)+ → 𝑆0 → 𝑆∞𝑉 , showing
that 𝑋Φ𝐺 can also be described as (𝑋[𝑎−1

𝑉
])𝐺 where 𝑎𝑉 is the element in 𝜋𝐺−𝑉𝕊 arising from the

inclusion 𝑆0 → 𝑆𝑉 .
As a warm up, we will compute 𝜋∗(𝔽Φ𝐺2 )) when 𝐺 is the group 𝐶2𝑛 . This is a well-known com-

putation, but we present it to demonstrate the strategy and set up notation for computing the
geometric fixed points for the dihedral groups 𝐷2𝑛 .

Lemma 3.6. Let𝐺 = 𝐶2𝑛 . Then the homotopy ring𝜋∗(𝔽Φ𝐺2 )) is a polynomial algebra on a generator
𝑢𝜎 in degree 1.

Proof. Let 𝜎 be the nontrivial 1-dimensional representation of 𝐺, and let 𝑏 be a choice of cyclic
generator of𝐺. Since 𝜎𝐻 is nontrivial for all proper subgroups of𝐺, 𝔽Φ𝐺

2
= 𝔽

2
[𝑎−1𝜎 ] = colim𝑛 𝔽2 ⊗

𝑆𝑛𝜎. There is a minimal cell structure on 𝑆𝑛𝜎 with a cell called “1” in dimension 0 with isotropy
group 𝐶2𝑛 and a cell called 𝑥𝑖 with isotropy group 𝐶2𝑛−1 in dimension 𝑖 for 1 ⩽ 𝑖 ⩽ 𝑛. Taking the
fixed points of the 𝔽

2
cellular chain complex, we obtain a chain complex over 𝔽2 generated by 1

and 𝑥𝑖 + 𝑏𝑥𝑖 , with zero differential, showing that 𝜋∗𝔽2 ⊗ 𝑆
𝑛𝜎 is 𝔽2 in dimensions 0 to 𝑛. Taking

the limit as 𝑛 → ∞, this computes 𝜋∗(𝔽Φ𝐺2 ) additively.
To obtain the multiplicative structure, we observe that there is another choice of cells on

𝑆𝑛𝜎 coming from the standard cell structure on 𝑆𝜎 and the decomposition 𝑆𝑛𝜎 ≅ (𝑆𝜎)⊗𝑛. The
isomorphism can be chosen so that it sends 1 ↦ 1⊗𝑛 and 𝑥𝑖 ↦ 1⊗𝑖 ⊗ 𝑥1 ⊗ (𝑥1 + 𝑏𝑥1)

⊗𝑛−𝑖−1.
From this, the multiplication sends 𝑥𝑖 ⊗ 𝑥𝑗 → 𝑥𝑖+𝑗 , so the description as a polynomial algebra
follows. □
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888 LEVY

Next, we study the dihedral groups 𝐷2𝑛 for 𝑛 ⩾ 2.

Proposition 3.7. Let 𝐺 = 𝐷2𝑛 for 𝑛 ⩾ 2. Then there is an isomorphism of rings

𝜋∗(𝔽
Φ𝐺
2
) = 𝔽2[𝑢𝜎1 , 𝑢𝜎2 , 𝑢𝜎′ ]∕(𝑢𝜎1𝑢𝜎2 + 𝑢𝜎1𝑢𝜎′ + 𝑢𝜎2𝑢𝜎′).

Proof. The intersection of the maximal proper subgroups of 𝐷2𝑛 is a normal subgroup of index 4
with quotient 𝐷4 = 𝐶2 × 𝐶2. Thus by Lemma 3.5, we can assume 𝐺 = 𝐶2 × 𝐶2. Suppose that 𝐺 is
generated by 𝑏1, 𝑏2, let 𝜎𝑖 be the 1-dimensional representation of 𝐺 whose kernel is 𝑏𝑖 , and let 𝜎′
be 𝜎1 ⊗ 𝜎2.
The element 𝜎1 + 𝜎2 + 𝜎′ has no fixed points and its restriction to all proper subgroups is

nontrivial. Thus 𝑋Φ𝐺 = 𝑋[𝑎−1
𝜎1+𝜎2+𝜎

′] for all 𝐺-spectra 𝑋. Moreover, 𝑎𝜎1+𝜎2+𝜎′ = 𝑎𝜎1𝑎𝜎2𝑎𝜎′ .

Thus 𝔽Φ𝐺
2
= colim𝑛,𝑚,𝑝→∞ 𝔽2 ⊗ 𝑆

𝑛𝜎1+𝑚𝜎2+𝑝𝜎
′ . We can take the minimal cell structures used

for 𝑆∞𝜎𝑖 and 𝑆∞𝜎′ used in Lemma 3.6 and tensor them together, where we use the names
𝑥𝑖, 𝑦𝑖, 𝑧𝑖 for the cells in 𝜎1, 𝜎2, 𝜎′, respectively. In the 𝔽

2
cellular chain complex, the elements

(𝑥1 + 𝑏2𝑥1) ⊗ 1 ⊗ 1, 1 ⊗ (𝑦1 + 𝑏1𝑦1) ⊗ 1, 1 ⊗ 1 ⊗ (𝑧1 + 𝑏1𝑧1) represent the classes 𝑢𝜎1 , 𝑢𝜎2 , 𝑢𝜎′ ,
respectively. The products work just as in Lemma 3.6 for the same reason.
By applying the cellular differential to the chain

∑
g∈𝐺 g(𝑥1 ⊗ 𝑦1 ⊗ 𝑧1), we obtain the relation

𝑢𝜎1𝑢𝜎2 + 𝑢𝜎1𝑢𝜎′ + 𝑢𝜎2𝑢𝜎′ = 0 in the cohomology of the cellular complex. It is straightforward to
check that the classes 𝑢𝜎1 , 𝑢𝜎2 , 𝑢𝜎′ generate the homology of the chain complex as an algebra, and
that there are no more relations (for example, by counting the dimension of the homology). □

Proposition 3.8. Let 𝐺 = 𝐷2𝑛 for 𝑛 ⩾ 2, and 𝜆 the standard inclusion to O(2). 𝔽Φ𝐺2 is a rank 2 free
module over𝑁𝜆𝔽

2
generated in degrees 0 and 1.

Proof. We first reduce to the case 𝑛 = 2. Present 𝐺 as ⟨𝑎, 𝑏|𝑎2, 𝑎𝑏𝑎𝑏, 𝑏2𝑛−1⟩, and consider sub-
groups 𝐻0 = ⟨𝑎⟩, 𝐻1 = ⟨𝑎𝑏⟩. 𝐺-⊗-excision (F4) lets us identify 𝑁𝜆𝔽

2
with the tensor product

𝑁𝐺∕𝐻0𝔽
2
⊗𝑁𝐺𝔽2

𝑁𝐺∕𝐻1𝔽
2
, so applying (−)Φ𝐺 , we get 𝔽Φ𝐻0

2
⊗𝔽2 𝔽

Φ𝐻1
2

. By factoring the functor
(−)Φ𝐺 as ((−)Φ⟨𝑏2⟩)Φ𝐺∕⟨𝑏2⟩, we are reduced to the case 𝑛 = 2, so our group is 𝐶2 × 𝐶2.

We compute the maps 𝔽Φ𝐻𝑖
2

≅ (𝑁𝐺∕𝐻𝑖𝔽
2
)Φ𝐺

𝑁Φ𝐺

<<<<→ 𝔽Φ𝐺
2

on 𝜋∗ for 𝑖 = 0, 1. By symmetry we can
assume 𝑖 = 0. The map 𝔽

2
→ 𝛽𝔽

2
∶= Map(𝐸𝐺+, 𝔽2) induces a commutative square:

The element 𝑢𝜎 in 𝜋1(𝔽
Φ𝐻0
2
) that gets sent to an invertible element in 𝜋1(𝔽

𝜏𝐻0
2
). It follows that

its image in 𝔽𝜏𝐺
2
, a nonzero ring, cannot be 0, so 𝑢𝜎 has nonzero image in 𝔽Φ𝐺2 too.

To figure out what the image in 𝔽Φ𝐺
2

is, we observe that 𝑢𝜎 comes from applying geometric fixed
points to an element in𝜋𝐻0

1−𝜎
𝔽
2
, where 𝜎 is the nontrivial 1-dimensional representation of𝐻0, so its

norm is an element in 𝜋𝐺
Ind𝐺

𝐻0
(1−𝜎)

𝔽
2
. If 𝜎1 is the nontrivial representation of 𝐺 fixing𝐻1, 𝜎0 is the

nontrivial representation fixing𝐻0, and 𝜎′ is the tensor product, Ind𝐺𝐻0(1 − 𝜎) = 1 + 𝜎0 − 𝜎1 − 𝜎
′.
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EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 889

Composing with 𝑎𝜎0 , we get a nonzero element in 𝜋
𝐺
1−𝜎1−𝜎

′𝔽2 in the image of the norm map. By
the proof of Proposition 3.7, this element is a nonzero linear combination of 𝑢𝜎′ and 𝑢𝜎1 , but there
is an automorphism fixing𝐻 and swapping 𝜎′ and 𝜎′, so by naturality of𝑁Φ𝐺 , it must be the sum
𝑢𝜎1 + 𝑢𝜎′ . Symmetrically, the generator for 𝜋1(𝔽

Φ𝐻1
2
) gets sent to 𝑢𝜎0 + 𝑢𝜎′ .

Finally, we observe that 𝜋∗(𝔽Φ𝐺2 )) = 𝔽2[𝑢𝜎0 , 𝑢𝜎1 , 𝑢𝜎′ ]∕(𝑢𝜎1𝑢𝜎0 + 𝑢𝜎1𝑢𝜎′ + 𝑢𝜎0𝑢𝜎′) is freely gen-
erated in degrees 0 and 1 as a module over 𝔽2[𝑢𝜎1 + 𝑢𝜎′ , 𝑢𝜎0 + 𝑢𝜎′].

□

4 PROOF OF THEOREMA

In this section we prove Theorem A. Let 𝜆 be the standard 2-dimensional representation of O(2).
We begin by producing a map of genuine O(2)-𝔼𝜆-algebras from 𝑋𝜆,𝑝 → 𝔽

𝑝
. As before, 𝑋𝜆,𝑝 will

often be shortened to 𝑋𝜆.

Lemma 4.1. There is a map 𝑓𝜆 ∶ 𝑋𝜆 → 𝔽
𝑝
of genuine O(2)-𝔼𝜆-algebras.

Proof. Since 𝑋𝜆 is an 𝔼𝜆 Thom spectrum, to give such a map 𝑓𝜆, it suffices by [10, X.6.4] to show
that the composite 𝑆𝜆+1 → B𝜆+1 GL1(𝕊0(𝑝)) → B𝜆+1 GL1(𝔽𝑝) is null.
The map 𝜇𝜆,𝑝 represents the class 1 − 𝑝 in 𝜋𝐺0 (GL1(𝔽𝑝)), but 1 − 𝑝 = 1 is the basepoint. □

Remark 4.1.1. In fact, the space of nulhomotopies in Lemma 4.1 is contractible, so the map 𝑓𝜆 is
essentially unique.

Restricting 𝑓𝜆 to the 𝑝-subgroups of O(2), we obtain our map of interest. There are two kinds
of 𝑝-subgroups of O(2). One family consists of the cyclic subgroups 𝐶𝑝𝑛 ⊂ SO(2), and the other
family consists of the dihedral subgroups 𝐷2𝑛 , 𝑛 ⩾ 1. By convention, 𝐷2𝑛 has order 2𝑛, so that 𝐷2
is the cyclic group of order 2 with its regular representation into O(2).
We prove TheoremAby inducting on the finite subgroups ofO(2). Thismeans that the base case

is when𝐺 is the trivial group, where the result is the nonequivariant result of Hopkins–Mahowald
(Theorems 1.1 and 1.2). This shows that Borel equivariantly, 𝑓𝜆, is an equivalence, and the rest of
the proof amounts to turning this into an equivalence of genuine 𝐺-spectra. In the inductive step,
we have a finite 𝑝-subgroup 𝐺 ⊂ O(2), and we assume that 𝑓𝐻

𝜆
is an equivalence for all proper

subgroups of 𝐺.
The first step is to compute 𝜋

0
of 𝑋𝜆. The main ingredient is to use maps from norms of 𝑋𝜆 to

itself to show that certain elements of the Burnside ring are zero.

Proposition 4.2. When 𝜆 is a faithful rank 2 representation of a 𝑝-group, 𝜋
0
(𝑋𝜆) = 𝔽𝑝 .

Proof. 𝑝 = 0 in 𝜋𝐺
0
𝑋𝜆 by construction: the Thom spectrum of the composite 𝑆1 → Ω𝜆𝑆𝜆+1 →

BGL1(𝕊(𝑝)) is the Moore spectrum 𝕊∕𝑝, so there is a unital map 𝕊∕𝑝 → 𝑋𝜆, exhibiting the
nulhomotopy of 𝑝 in 𝑋𝜆.
By induction on the subgroups of 𝐺, we can assume that the two Mackey functors 𝔽

𝑝
, 𝜋
0
𝑋𝜆

agree on proper subgroups of 𝐺. The unit map 𝕊 → 𝑋𝜆 is surjective on 𝜋𝐺0 because 𝑋𝜆 has only
one cell in dimension 0 and is connective, sinceΩ𝜆𝑆𝜆+1 is connected. As remarked already, 𝑝 = 0
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890 LEVY

in 𝜋𝐺
0
(𝑋𝐺
𝜆
). 𝜋𝐺

0
(𝕊) is the Burnside ring𝐴(𝐺), so it suffices to check that the classes [𝐺∕𝐻] are zero

for every subgroup𝐻 ⪇ 𝐺.
If𝐻 is a nonmaximal proper subgroup, then [𝐺∕𝐻] is zero by the induction hypothesis: we can

choose𝐻 ⪇ 𝐻′ ⪇ 𝐺, so that the class [𝐺∕𝐻] factors through the class [𝐻′∕𝐻], which we know to
be zero in 𝑋𝐻′

𝜆
.

To finish the proof, we will break into cases.
If 𝐺 is the group 𝐶𝑝𝑛 , any choice of a free orbit on 𝑆(𝜆) gives by Proposition 2.3 a unital map

𝑁𝐺∗ 𝑋 → 𝑋. Since 𝑝 = 0, the composite map

𝕊 = 𝑁𝐺∗ 𝕊
𝑁𝐺∗ 𝑝
<<<<→ 𝑁𝐺∗ 𝑋 → 𝑋

is also zero. Since the map 𝑁𝐺∗ 𝑋 → 𝑋 is unital, the diagram

commutes. By the distributive law for the indexed tensor product [14, A.3.3, Lemma A.36], the
lower horizontal map corresponds in the Burnside ring to the 𝐺-set Hom(𝐺, 𝑝). In the Burn-
side ring, [Hom(𝐺, 𝑝)] ≡ [𝐺∕𝐶𝑝𝑛−1] (mod 𝑝, [𝐶𝑝𝑛−𝑖 ], 𝑖 ⩾ 2) [12, Lemma 6.6], so it follows that
[𝐺∕𝐶𝑝𝑛−1] = 0.
Next we consider the case 𝐺 = 𝐷2𝑛 for 𝑛 ⩾ 2. We present 𝐷2𝑛 as ⟨𝑎, 𝑏|𝑎2, 𝑏2

𝑛−1
, 𝑎𝑏𝑎𝑏⟩ so that

in the representation 𝜆, 𝑏 ∈ SO(2), and 𝑎 acts as a reflection. There are three maximal proper
subgroups of 𝐺: ⟨𝑎, 𝑏2⟩, ⟨𝑎𝑏, 𝑏2⟩, ⟨𝑏⟩.
ℝ𝜆 has orbits of the form 𝑃0 = 𝐺∕⟨𝑎⟩, 𝑃1 = 𝐺∕⟨𝑎𝑏⟩, and 𝐺, so by Proposition 2.3 we obtain

three unital maps from 𝑁𝐺∗ 𝑋𝜆,𝑁
𝑃0
∗ 𝑋𝜆,𝑁

𝑃1
∗ 𝑋𝜆 to 𝑋. As in the case of cyclic groups, this implies

that [Hom(𝐺, 2)], [Hom(𝑃0, 2)], [Hom(𝑃1, 2)] are all 0. To see what this implies about 𝜋𝐺0 (𝑋𝜆), it
suffices to compute each of these in the Burnside ringmodulo the ideal generated by 2 and [𝐺∕𝐻]
for nonmaximal proper subgroups𝐻.
For each of the 𝐺-sets 𝑆 = 𝐺, 𝑃0, 𝑃1, there are two fixed points in Hom(𝑆, 2). Since maximal

subgroups of 𝐺 contain ⟨𝑏2⟩, we just need to count surjections in Hom(𝑆, 2) that are fixed by left
multiplication by ⟨𝑏2⟩.
For 𝑆 = 𝑃0, it follows that [Hom(𝑃0, 2)] ≡ [𝐺∕⟨𝑎, 𝑏2⟩] since the double coset ⟨𝑏2⟩∖𝐺∕⟨𝑎⟩

consists of two elements. For the same reason, [Hom(𝑃1, 2)] ≡ [𝐺∕⟨𝑎𝑏, 𝑏2⟩]. For 𝑆 = 𝐺, there
is a contribution for each maximal proper subgroup, giving [Hom(𝐺, 2)] ≡ [𝐺∕⟨𝑎𝑏, 𝑏2⟩] +
[𝐺∕⟨𝑎, 𝑏2⟩] + [𝐺∕⟨𝑏⟩]. Thus all of the desired classes in the Burnside ring are zero. □

Below we compare the isotropy separation sequences for the map 𝑓𝜆 ∶ 𝑋𝜆 → 𝔽
𝑝
.

 17538424, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12230 by T
est, W

iley O
nline L

ibrary on [24/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 891

Lemma 4.3. Suppose that 𝑓𝐻
𝜆
is an equivalence for all proper subgroups 𝐻 of 𝐺. Then the map

𝑓Φ𝐺
𝜆
∶ 𝑋Φ𝐺

𝜆
→ 𝔽Φ𝐺

𝑝
is 1-connected.

Proof. Since 𝑓𝐻
𝜆
is an equivalence for all proper subgroups of𝐺, the map (𝑓𝜆)ℎ𝑃 is an equivalence,

since (𝑓𝜆)ℎ𝑃 = colim𝐺∕𝐻∈Orb′
𝐺
𝑓𝐻
𝜆
.

By Proposition 4.2, 𝑓𝐺
𝜆
is an isomorphism on𝜋⩽0. In addition,𝜋𝐺1 (𝔽𝑝) = 0, so 𝑓

𝐺
𝜆
is 1-connected.

Thus by the isotropy separation sequence, 𝑓Φ𝐺
𝜆

is too. □

We now finish the proof of Theorem A.

Theorem A. Let 𝜆 ∶ 𝐺 → O(2) be a faithful representation of a 𝑝-group. Then there is an
equivalence of 𝔼𝜆-algebras 𝑋𝜆,𝑝 ≅ 𝔽𝑝.

Proof. By induction, we can assume that the map 𝑓𝜆 ∶ 𝑋𝜆 → 𝔽
𝑝
induces an equivalence on fixed

points for all proper subgroups. It suffices then to show that 𝑓Φ𝐺
𝜆
∶ 𝑋Φ𝐺

𝜆
→ 𝔽Φ𝐺

𝑝
is an equivalence.

The base case is Theorem 1.1 and Theorem 1.2.
First consider the case when 𝜆 is the regular representation 𝜌 of the group 𝐶2. Then 𝑋

Φ𝐶2
𝜆

→

𝔽
Φ𝐶2
2

is an 𝔼1-algebra map. The codomain has homotopy ring 𝔽2[𝑥], |𝑥| = 1, and the domain does
too by Lemma 3.3. By Lemma 4.3, we learn that the generators are sent to the generators, so 𝑓Φ𝐶2

𝜆
is an equivalence.
In all other cases, 𝜆 is irreducible. For such 𝜆, the induction hypothesis and Lemma 2.4 show

that 𝑁𝜆𝑋Φ𝐺
𝜆
≃ 𝑁𝜆𝔽Φ𝐺

𝑝
.

Thus 𝑓Φ𝐺
𝜆

is a map of 𝑁𝜆𝑋Φ𝐺
𝜆
≃ 𝑁𝜆𝔽Φ𝐺

𝑝
-modules, and Theorem C shows that both sides are

rank 2 free modules generated in degrees 0 and 1. By Lemma 4.3, both module generators of 𝔽Φ𝐺
𝑝

are hit by 𝑓Φ𝐺
𝜆
. Thus the map is surjective on homotopy groups, but must also be injective since

both sides are rank 2 free modules. □

Remark 4.3.1. The category Sp𝐺 of𝐺-spectra contains a full reflective subcategory Sp𝑃𝐺 of𝐺-spectra
of the form 𝑅𝑃𝛽 ∶= Map(𝐸𝑃, 𝑅), where 𝐸𝑃 is the classifying space for proper subgroups of 𝐺. Any
𝔼𝑉-algebra in Sp𝐺 𝑅 can be presented by giving the data of 𝑅𝑃𝛽 as an 𝔼𝑉-algebra in Sp𝑃𝐺 along with
an 𝔼𝑉𝐺 -𝑁𝑉𝑅-algebra map 𝑅𝜙𝐺 → (𝑅𝑃𝛽)𝜙𝐺 .
The proof of Theorem A uses all this data, as we now explain. Fix 𝜆, 𝐺 as in Theorem A. In the

proof, the inductive hypothesis gave that (𝑋𝜆,𝑝)𝑃𝛽 ≅ (𝔽𝑝)
𝑃𝛽 , and we used our understanding of

𝑋
𝜙𝐺

𝜆,𝑝
, 𝔽
𝜙𝐺
𝑝 as 𝔼𝜆𝐺 -𝑁𝜆𝔽

𝜙𝐺
𝑝 -algebras to see that 𝑋𝜆,𝑝 ≅ 𝔽𝑝.

Remark 4.3.2. The proof of Theorem A in the case of the regular representation 𝜌 of 𝐶2 is essen-
tially the same as that in [12]. This is explained by the fact that 𝑁𝜌 = 𝑁𝐶2∗ is just the HHR norm.
In all other cases overlapping with Theorem 1.4, the proof of Theorem A improves the previously
known proof, especially at odd primes, where an exotic Thom ring structure on 𝑋𝜆,𝑝, as well as
an explicit computation of 𝜋𝐺

1
(𝑋𝜆,𝑝) is used in [12].

5 OTHER THOM SPECTRA

In this section we study other 𝑋𝜆,𝑝, showing that the choices of 𝐺, 𝜆, 𝑝 in Theorem A give all 𝑋𝜆,𝑝
isomorphic to 𝔽

𝑝
. Then we discuss the algebraicity of 𝑋𝜆,𝑝 for other 𝐺, 𝜆, 𝑝.
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892 LEVY

Theorem B. Let 𝐺 be a finite group and 𝑉 ∶ 𝐺 → O(𝑛) a representation. 𝑋𝑉,𝑝 ≅ 𝔽𝑝 if and only
if 𝑛 = 2, 𝐺 is a p-group, and 𝑉 is faithful.

Proof. The “if” part of the result is Theorem A.
The underlying spectrum of 𝑋𝑉,𝑝 is a Thom spectrum ofΩ𝑛𝑆𝑛+1 which only has the right mod

𝑝 homology if dim𝑉 = 2, so that is a necessary condition.
Note that if 𝑋𝑉,𝑝 ≅ 𝔽𝑝 holds for 𝑉, 𝑝, it must hold for 𝑉|𝐻, 𝑝 for all subgroups 𝐻. Suppose

that some element 𝑐 of order 𝑝 acts trivially on 𝑉. Restricting to 𝐻 = ⟨𝑐⟩, we have the trivial
representation on the cyclic group of order 𝑝. Since the action is trivial, there is an identification
of 𝑋Φ𝐻

𝑉|𝐻,𝑝 with the underlying Thom spectrum, which is 𝔽𝑝, and 𝜋∗(𝔽𝑝) ≠ 𝜋∗(𝔽Φ𝐻𝑝 ), as the latter
is 𝔽𝑝 in each nonnegative degree (see the discussion in Proposition 3.4).
Next, suppose that some element of prime order 𝑞 ≠ 𝑝 acts trivially on𝑉. Let𝐻 by the subgroup

generated by this element so𝑉|𝐻 is trivial. Then𝑋𝑉|𝐻,𝑝 ≇ 𝔽𝑝 because (𝔽𝑝)
Φ𝐻 = 0, but𝑋Φ𝐻

𝑉|𝐻,𝑝
= 𝔽𝑝

by Theorems 1.2 and 1.1.
Finally, suppose that 𝑉 is injective, and its image contains an element of prime order 𝑞 ≠ 𝑝.

Then restricting to the subgroup generated by that element, Theorem 5.1 (proven below) shows
that 𝑋𝑉,𝑝 does not agree with 𝔽𝑝 when restricted to that subgroup. Thus the conditions on 𝑉 in
Theorem A are necessary. □

For a finite group 𝐺 and an abelian group 𝐴, let 𝐴̃ be the Mackey functor whose value on 𝐺∕𝐺
is𝐴 and otherwise 0. Given a representation𝑉, recall that 𝑎𝑉 is the element in 𝜋𝐺−𝑉𝕊 given by the
inclusion 𝑆0 → 𝑆𝑉 .

Theorem 5.1. Let 𝐺 = 𝐶𝑝 be a cyclic group of prime order 𝑝, 𝜆 ∶ 𝐺 → O(2) an embedding, and
𝑝 ≠ 𝑞. Then as a 𝐺-spectrum, 𝑋𝜆,𝑞 ≅ 𝔽𝑞 ⊕

⨁∞
0 Σ

𝑖𝔽̃𝑞 .

Proof. Let 𝑋 = 𝑋𝜆,𝑞. As a 𝐶𝑝 spectrum, there is a fracture square

which upon applying 𝐺-fixed points becomes the Tate square. By Lemma 2.6 and either
Remark 3.2.1 or [12, Proposition 3.9], 𝑋Φ𝐺 = 𝑎−1

𝜆
𝑋𝐺 is an 𝔽𝑞-module whose homotopy groups

are 𝔽𝑞 in each nonnegative degree. Thus 𝑎−1𝜆 𝑋
𝐺 ≅

⨁∞
0 Σ

𝑖𝔽̃𝑞. Furthermore, since the underlying
action on 𝑋 is trivial on homotopy groups, and 𝑝 ≠ 𝑞, 𝑋∧𝑎𝜆 has fixed points equal to the homotopy
fixed points, so is 𝔽

𝑞
.

The 𝐺-spectrum 𝑎−1
𝜆
(𝑋∧𝑎𝜆

) is zero, since its underlying spectrum is 0 and the homotopy groups
of its fixed points are the Tate cohomology of 𝔽𝑞 with a trivial 𝐶𝑝 action. Thus the above pullback
square gives the decomposition claimed. □

Remark 5.1.1. Using Proposition 3.2 and Remark 4.3.1, it is easy to see that the proof of Theorem 5.1
gives a complete description of the 𝔼𝜆-algebra structure.

The 𝑋𝜆,𝑝 in Theorem 5.1 are sums of generalized Eilenberg Mac Lane spectra, but this is
not always the case. For example, take 𝜆 to be a trivial 2-dimensional representation for a

 17538424, 2022, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/topo.12230 by T
est, W

iley O
nline L

ibrary on [24/06/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EILENBERGMAC LANE SPECTRA AS 𝑝-CYCLONIC THOM SPECTRA 893

nontrivial group, and let 𝑝 be any prime. Then𝑋2,𝑝 is not a generalized Eilenberg Mac Lane spec-
trum. Rather, it is the algebra 𝕊 ⊗ 𝔽𝑝, so that modules over it are the same as 𝔽𝑝-module valued
Mackey functors. In this sense, it can still be considered algebraic.
In Question 1.5.1, it was asked what sufficient conditions are for 𝑋𝜆,𝑝 to be algebraic, that is,

a 𝔽𝑝-module-valued Mackey functor. It was also suggested that the only condition for 𝑋𝜆,𝑝 to be
algebraic is that dim𝜆 ⩾ 2. The arguments of this paper are show that this is not far from being
true. Lemma 2.6 showed that 𝑋Φ𝐺

𝜆,𝑝
is always an 𝔽𝑝-module in this case. By filtering𝑋𝜆,𝑝 by its var-

ious isotropy separation sequences, we can use this to learn that 𝑋𝜆,𝑝 has a finite filtration whose
associated graded objects are algebraic. Moreover, a refinement of the arguments of Theorem 5.1
and Theorem B show that 𝑋𝜆,𝑝 is algebraic whenever 𝐺 is a finite abelian group and dim𝜆 ⩾ 2.

6 ADDITIONAL STRUCTURE

At the prime 2, Theorem A can be sharpened to an equivalence of 𝔼𝜆+det 𝜆-algebras. To show this,
one only needs to show that themap 𝜇𝜆,2 ∶ Ω𝜆𝑆𝜆+1 → BGL1 𝕊(2) can be refined to a 𝜆 + det 𝜆-loop
map. The goal of this section is to explain how to construct this refinement. We closely follow
the strategy in [12, Section 4], except we bypass an unnecessary argument there. From now on,
𝜆 denotes the standard 2-dimensional representation of O(2), and 𝜎 denotes the representation
det 𝜆.
The ability to upgrade 𝜇𝜆,2 to an 𝔼𝜆+𝜎-loopmap stems from the fact that 𝑆1+𝜆 can be 𝜎-delooped

to ℍℙ∞, and equivariant Bott periodicity gives a natural 𝜎-delooping of 𝜇𝜆,2. First, we explain the
delooping Ω𝜎ℍℙ∞ = 𝑆1+𝜆.
The conjugation action of Sp(1) on ℍ makes ℍ into an SO(3) ≅ Sp(1)∕{±1}-equivariant alge-

bra, which induces an action of SO(3) on ℍℙ∞. Restricting this action to O(2), ℍ is equivariantly
isomorphic to the Clifford algebra Cl(𝜆) where 𝜆 is the standard representation of O(2) with a
negative definite form. As a representation, ℍ = Cl(𝜆) is isomorphic to 1 + 𝜆 + det 𝜆 = 1 + 𝜆 + 𝜎.
Via the inclusion O(2) → SO(3), we can view ℍℙ∞ as a O(2)-space. Observe that (ℍℙ∞)𝐺 =

ℂℙ∞ when𝐺 is a cyclic subgroup of O(2), and that (ℍℙ∞)𝐺 = ℝℙ∞ when𝐺 is a dihedral subgroup
𝐷2𝑛 for 𝑛 ⩾ 2.

Lemma 6.1. Restricting the action of SO(3) on ℍℙ∞ toO(2), there is an equivalence ofO(2)-spaces
𝑆𝜆+1 ≅ Ω𝜎ℍℙ∞.

Proof. As an O(2)-space, ℍℙ1 ≅ 𝑆ℍ ≅ 𝑆𝜆+𝜎+1, and so the inclusion ℍℙ1 → ℍℙ∞ is adjoint to a
map 𝑆𝜆+1 → Ω𝜎ℍℙ∞. We show that this adjoint map is an equivalence on𝐺 fixed points for every
subgroup 𝐺 ⊂ O(2). For the cyclic subgroups of O(2), this is [12, Proposition 3.4,3.6], so it suffices
to show that that 𝑆1 ≅ (Ω𝜎ℍℙ∞)𝐷2𝑛 for 𝑛 ⩾ 2.
There is a cofiber sequence

(𝐷2𝑛∕𝐶𝑛)+ → 𝑆0 → 𝑆𝜎.

ApplyingMap(−, ℍℙ∞), we obtain a fiber sequence

Ω𝜎ℍℙ∞ → ℝℙ∞ → ℂℙ∞.

The fiber of the map B𝐶2 → B𝑆1 is 𝑆1, and which is (𝑆𝜆+𝜎+1)𝐷2𝑛 = 𝑆1. □
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Theorem D. Let 𝜆 be the standard 2-dimensional representation of O(2). The map 𝜇𝜆,2 ∶
Ω𝜆𝑆1+𝜆 → BGL1(𝕊(2)) admits a refinement to a 𝜆 + det 𝜆-loop map.

Proof. The construction of our candidate refinement is exactly that in [12, Section 4] which we
refer to for more details. The difference between their arguments and what is done here is that we
prove directly that the constructed map refines 𝜇𝜆,2, bypassing the argument in their Proposition
4.12.
Let BGL(ℍ) be the space classifying 𝐺 − ℍ-bundles, that is, 𝐺-equivariant real vector bundles

𝐸 → 𝑋 with a 𝐺-equivariant algebra map ℍ → End(𝐸).
There is an identificationΩ∞Σℍ KO𝐺 ≃ ℤ × BGL(ℍ) [12, Theorem 4.5], where the equivalence

is given by the Bottmap: the tensor product of a bundlewith the virtual𝐺 − ℍ bundle 𝛾 on the pair
(ℍ, ℍ − {0}) defined by the complex of bundles ℍ → ℍ given at a point 𝑣 ∈ ℍ by multiplication by
𝑣 (see [3, Section 4]). Our delooping is the composite

ℍℙ∞
(−1)−1
<<<<<<<<→ BGL(ℍ) → Ω∞Σℍ KO𝐺

𝜂
<→ Ω∞Σ𝜆+𝜎 KO𝐺 .

To see that this does deloop 𝜇𝜆,2, it suffices to identify the virtual 𝐺 − ℍ-bundle (−1) − 1

restricted to ℍℙ1 with the class coming from 𝛾. For then the element in 𝜋O(2)
𝜆+𝜎+1

Ω∞Σ𝜆+𝜎 KO𝐺 =

𝜋
O(2)
1

BO𝐺 is 𝜂, which is the class defining 𝜇𝜆,2.
To see this identification, we first analyze 𝛾. Replacing the pair (ℍ, ℍ − 0) with the pair

(ℍ, ℍ − 𝐷4) the data of the complex ℍ → ℍ defines a bundle 𝛾′ over 𝑌 = ℍ0 ∪ℍ−𝐷4 ℍ1. There is
a retraction 𝑟 ∶ 𝑌 → ℍ1, and the corresponding virtual bundle is the difference of this bundle
with the bundle on 𝑌 that is the pullback of the composite 𝑌

𝑟
<→ ℍ1 → 𝑌, thought of as a relative

class of the pair (𝑌, ℍ1) ≃ (ℍ, ℍ − 𝐷ℍ). However, this pullback is trivial since it factors through a
contractible space, so after adding 1 to the virtual bundle corresponding to 𝛾, we just get the bundle
𝛾′. There is an equivalence 𝑌 ≃ ℍℙ1 identifying the copies of ℍ with hemispheres, under which
𝛾′ corresponds to the bundle with the tautological clutching function 𝑆(ℍ) → GL1(ℍ), which is
(−1). □
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