
SOME ALGEBRAIC PROBLEMS IN THE CONTEXT OF FUNCTORIAL

SEMANTIOS OF ALGEBRAIC THEORIES

F. William Lawvere

The categorical approach to universal algebra, initiated in

[FSAT], has been extended from finitary to infinitary operations in

[SAEC], from sets to arbitrary base categories through the use of

triples (monads) in [AFT] and [AMT] and from one-sorted theories

over I-dimensional categories -sorted theories over 2-dimen­

sional categories in (BTJ. But despite this generality, there is

still enough information in the machinery of algebraic categories,

algebraic functors, adjoints to algebraic functors, the semantics

and structure superfunctors, etc. to allow consideration of

specific problems analogous to those arising in group theory, ring

theory, and other parts of classical algebra. The approach also

suggests new problems. As examples of the latter we may mention

Linton's considerations of general "commutative" theories [AEC],

Barr's discussion of general "distributive" laws [CGJ, and Freyd's

construction of Kronecker products of arbitrary theories and

tensor of arbitrary algebras [AFG-TPP]. It is our purpose

here to indicate some of the "specific" aspects of the approach, and

also to mention some of the representative problems Which seem to be

open. We restrict ourselves to the case of finitary single-sorted

theories over sets.

An elegant exposition of part of the basic machinery appears in

[AGAJ - we content ourselves here with a brief summary. An algebraic
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theory is a category A having as objects

• • • • • • • • •

and, for each n = 0, 1, 2, 3, ..• , n morphisms

(n)

An If i )0 A,

such that for any n morphisms

Q.
). )0 A,

i = 0, 1, ••• , n - 1,

i = 0, 1, ••• , n - 1,

in there is exactly one morphism

in fA so that

i = 0, 1, ••• , n - 1.

consisting of those covariant set-valued functors which are product­

preserving; its objects are called A-algebras and its morphisms fA ­
homomorphisms. Clearly there is a full embedding fA op C)lo lAb
which preserves coproducts; its values are the finitely-generated freE

IA -algebras, where "free" refers to the left adjoint of the functor

"underlying"

Iff
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whose value at the algebra X is the value of X at A:

= A X.

The underlying functor is a particular algebraic functor, where

the latter means a functor

induced by composition of functors from a theory morphism:Jl3 f .. Jl\ ,
where a theory morphism is just a functor f such that

for all it: n e. w.

Clearly all the theory morphisms determine a category and every

algebraic functor preserves the underlying functors. Hence f--- fb
determines a semantics functor

OJ"0p
.. (Cat, g )

where the category on the right has as morphisms all commutative

triangles

of functors. Switching functor categories a bit shows that structure,

the left adjoint of semantics, may be calculated as follows: Given

a set valued functor U, the n-ary operations of its algebraic

structure are just the natural transformations Un >U, where Un
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is the n-th cartesian power of U in the functor category ,i.e.

is a way of assigning an operation to every value of U in such a

way that all morphisms of are homomorphisms with respect to it.

Several applications of Yoneda's Lemma show that if in fact U = ,
)( for some theory , then the algebraic structure of U is

isomorphic to fA. As a corollary every functor A IJ
)J Jl3D

which preserves underlying sets is induced by one and only one theory

morphism 18 ).A. More generally, if we denote by TIn the

free theory generated by one n-ary operation, then the n-ary opera­

tions of the algebraic structure of any X U > $ are in one-to­

one correspondence with the functors

for which U =
Algebraic functors are faithful and possess left adjoints. In

fact (as pointed out by M. and H. Volger), if 1B f #\
is a morphism of theories then the usual (left) Kan adjoint

18 fAS $
corresponding to f actually takes product-preserving functors into

product preserving functors, and so restricts to a functor f* with

Thus we have the commutative diagram of functors
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18 op fOP
)0 A op

1B b f* )/AD

SiB S •

Explicitly, for any 18 -algebra Y, the underlying set of the "rela­

tively free" A -algebra Yf. is the colimit of

(f, A)

where the first factor of this composite is the obvious forgetful

functor from the category whose morphisms are triples Q, , Q' with

Q, Q' operations in A and '-f a morphism in 18 such that

"ff

I:'
A

is commutative in /f\. In particular, free algebras can be computed

by such a direct limit by taking 18 = the initial theory, i.e., the

dual of the category of finite sets and maps. For the unique f in

, the category of all product

r , = FJ4 •
J'\ andJB

this case we also write

Given two theories

preserving functors has an obvious underlying set

functor, whose algebraic structure is denoted by , the

Kronecker product of A with 18. The Kronecker product is a
C"\",

coherently associative functor J x ;j J having the initial



property stated in terms of (Cat, ),

for which fb has a given property; or

problems will take the forms:

fA for which /Ai has a given

or characterize those f e. J"
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theory as unit obj ect; it also satisfies /A @ 18 iB e fA. The

foregoing semantical definition of is equivalent to the

following wholly fltheoretical" definition:

fA @ 13 = #\. B/R,

where h:\ • 1B denotes the coproduct in J" and R is the congruence

relation generated by the conditions that each An in

should be a "homomorphism" with respect to each Am '\')0 A in

1B [(An)m (j (Am)n ¥ > An being defined as the operation of '+'
on An, Oi being the transpose isomorphism.] and that, symmetrically,

each 13 -operation is an "IA -homomorphism". A famous example is:

if G is the theory of groups, 47 (i) 6 is the theory of abelian

groups.

Having briefly described some of the main tools of the functorial

semantics point of view in general algebra, we now make some method-

ological remarks which this point of view suggests. First, many
e»

Characterize, in terms of J ,those

for which f. has a given property. (Properties may be viewed

as properties of or of and as such may have natural

"relativizations" to properties of fb or f.). Properties of dia-

grams in J may be "semantically" defined via arbitrary "mixtures"

of the processes fb , and algebraic structure from

properties in (Cat, $ ), and direct descriptions in of such

properties of diagrams may be sought. Most of the solved and
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unsolved problems mentioned below are of this general sort. For

example, light would be shed on many situations in algebra if one
OW

could give a computation entirely in terms of u of the algebraic

structure of

for any given diagram

g 1M
in A case in point is that where (7 = theory of groups,

/11 = theory of monoids, = theory of rings with g and f the

obvious inclusions; what is sought in the example is in this case

the full algebraic structure of group rings - this is a very "rich"

theory, having linear "p-th power" unary operations for all p and

more generally an n-ary multilinear operation for every element of

the free group on n letters (e.g. convolution corresponds to the

binary operation of group multiplication). Are these Illultilinear

operations a generating set for the theory in question? Probably

this case is simpler than the example in general, since it is

equivalent to the structure of

g
b

where IA is the theory of abelian groups, and /A has a convenient

tensor product.

Sometimes the problem is in the other direction: for example,

the product x of course has an easy description in terms of
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C1.\.J , but a bit of computation is needed to deduce from general prin-

ciples that (b\ x 1B)b consists of algebras which canonically

split as sets into a product X x Y, where X carries the structure of

an fA -algebra and Y the struc ture of a Ja -algebra).

A second general methodological remark is that the structure

functor often yields much more information than the usual Galois

connection of Birkhoff between classes of algebras of a given type

and sets of equations, precisely because in many situations it is

natural to change the type. Namely, a subcategory X C 18b of

an algebraic category (even a full one) may have an algebraic struc­

ture with more operations (as well as more equations) , i.e.,

the induced morphism 18 may be non-surjective, where

denotes the algebraic structure of:l .. Sb UlB).. S.
An obvious example is that in which is the theory of monoids and

is the full subcategory consisting of those monoids in which

every element has a two-sided inverse. Two other examples arise from

subcategories of the algebraic category of commutative rings: the

algebraic structure of the full category of fields includes the

theory generated by an additional unary operation Q subject to

IQ = I

(x.y)Q = xQ.yQ

x2.xQ
= x

(xQ)Q = x

and similarly the algebraic structure of the category of integral

domains and monomorphisms includes the theory e generated by an

additional operation e subject to
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Oe = 0

(x_y)e = xe_ ye

(xe)e = xe

e xx-x =

The inclusion of fields in integral domains corresponds to the morphism

7R e )t- 7R Q which, while the identity on the common subtheory

(= theory of commutative rings), takes e into the operation of

TR Q def'ined as f'ollows

e x.xQ
x =def'

The third general methodological remark is that, within the

doctrine of universal algebra, the "natural" domain of a construction

used in some classical theorem may be in fact much larger than the

domain for which the theorem itself' can be proved. For example, the

only lR e-algebras which can be embedded in fields are integral do­

mains, but the usual "field of fractions" construction is just the

restriction OJ the adjoint functor (1R e 7R Q) * whose domain

is all of To the same point, the usual construction of Clifford

algebras is defined only for K-modules V equipped with a quadratic

form V q > K; these pairs <V, s> do not form an algebraic cate­

gory. But if we allow ourselves to consider quadratic forms

V > S with values in arbitrary commutative K-algebras S, we can

(i) Define the underlying set to be V x S and f'ind that these gen­

eralized quadratic forms do constitute an algebraic category and

(ii) Extend the Cliff'ord algebra construction to this domain and

find that there it is entirely a matter of algebraic functors and
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their adjoints (for this certain idempotent operations have to be

introduced, as below).

Certain constructions which have the form of algebraic functors

composed with adjoints to algebraic functors may also be interpre­

table along the line of the foregoing remark. For example the

Tlnatural Tl domain of the group ring construction might be said to be

the larger category of all monoids, for there it becomes simply the

adjoint of an algebraic functor. Similar in this respect is the

construction of the exterior algebra of a module, whose usual univer-

sal property is not that of a single left adjoint, but does allow

interpretation in terms of the composition of algebraic functors

and the adjoint of an algebraic functor:

where A\ is the theory of K-modules, is the theory of modules

with an idempotent K-linear operator P, #? is the theory of K­

algebras, and is the theory of K-algebras with an idempotent

K-linear unary operation P satisfying the equation

(f, g, h) being the obvious inclusions). Thus one might claim that

the natural domain of the exterior algebra functor consists really

of modules with given split submodules whose elements are destined

to have square zero.

The problem mentioned earlier, of computing the structure of a

composition: algebraic functor followed by an adjoint of an



- 51 -

algebraic functor, is of relevance also in the above examples, since

e.g. the natural anti-automorphism of Clifford algebras is an element

of the structure theory of that functor, while composing the exterior

algebra functor with the forgetful functor from Lie algebras or

K[x]-modules and then taking algebraic structure should yield exterior

differentiation and determinant, respectively, as operations in

appropriate algebraic theories.

It is obvious and well-known that the constructions of tensor

algebras, symmetric algebras, universal enveloping algebras of Lie

algebras, abelianization of groups, and of the group engendered by a

monoid are all of the form f. for a suitable morphism Perhaps

less well-known are the theory of monoids equipped with a unary

operation "minus" satisfying

and the functor

-(-x) = x ,

(-x)- (-y) = x-y,

1M t-) 1R b

associated to the obvious inclusion f of into the theory of

rings; this functor has the quaternions as one of its values, the

eight quaternions {!l, !i, !j, !k} forming an 1r1(_)-algebra. The

quaternions also appear in another way, namely as a value of the

Cayley-Dickson monad (triple) which is the composition of a certain

algebraic functor with its adjoint and is defined on an appropriate

algebraic category of non-associative (not even all alternative)

algebras with involution.

An algebraic functor whose adjoint does not seem to have been

investigated is the Wronskian, which assigns to each commutative
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algebra equipped with a derivation the Lie algebra consist­

ing of the same module with

For example, is the adjunction always an embeddfng, giving an en­

tirely different sort of "universal enveloping algebra" for a Lie

algebra?

For the remainder of this paper we wish to discuss some problems

exemplifying the canonical sort of the first methodological remark.

Some semantically-defined subcategories of admit not only simple
(/.'\,

descriptions entirely in terms of a ,but also can themselves be

by single algebraic subcategories. Consider the full

subc.atiegory of 5" determined by those A for which UA has a right

adjoint (as well as the usual left adjoint These are

easily seen to be characterized by the property that for each

n = 0, I, 2, •••• each H\ -operation An > A factors uniquely

through one of the projections Such unary theories are in

fact parameterized by the full and faithful left adjoint of the

"unary core" functor

where 111 is the theory of monoids with

00

1M (An, A) -: E nk

k=O

and where (#\ )Un = A (A, A) as a monoid. Thus we may also say that

a theory "is a monoid" if and only if it is unary. Note that if we
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denote the left adjoint

to Un by M, then we have

for any two monoids Ml, M2•
G:'I

Another algebraically parameterized subcategory of J consists

of all IA for which lAb is abelian. we often say that such a theory

"is a ring", for it must necessarily be isomorphic to a value of the

full and faithful functor

Mat

which assigns to each ring R the category MatR whose morphisms are

all the finite rectangular matrices with entries from R (i.e., the

algebraic theory of R-modules). Here (An, A) Z(Xl ' •••• , Xn ] =

the set of polynomials with integer coefficients in n non-commuting

indeterminates. The functor Mat commutes with the Kronecker product

operations defined in the two categories, and has a left adjoint given

by fA .-..-+ Z fA where we now mean by Z the theory corresponding to

the ring Z (i.e., the theory of abelian groups). Note that while a

quotient theory of a ring is always a ring, e.g. the theory of convex

sets (consisting of all stochastic matrices) is a subtheory of a ring

which 1s not a ring.

Since LA Z Cil A canonically, we have the adjoint functor

b bA (z (E) A )
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from the category of -algebras to the canonically associated abelial

category, and for each A -algebra X an adjunction morphism X .. X

if we denote by X the associated ZCD -module. The kernel of this

adjunction morphism may be denoted by [X, X], suggesting notions of

solvability for algebras over any theory , which do in fact agree

with the usual notions for l' = theory of groups, theory of Lie

algebras, or theory of unitless associative algebras. Sometimes [X, X:
may actually be the empty set; for example, if is a monoid, X is

a set on which the monoid acts, then X > X is the embedding of X

into the free abelian group generated by X (equipped with the induced

action of fA ).
The composition

is another way of defining the monoid ring; more generally, for any

theory /J\ and monoid M, #\ 0 M is the theory of A -algebras which

are equipped with an action of M by h' -endomorphisms. In fact,

thinking of theories as generalized rings often suggests a natural

extension of concepts or constructions ordinarily defined only for

rings to arbitrary theories. For example consider fractions: the

category whose objects are theory-morphisms M M any monoid,

any theory, admits a reflection to the subcategory in which M is

a group, constructed by first ignoring fA and forming the algebraic

adjoint, and then taking a pushout in •

Part of the intrinsic characterization of those which are

rings is of course the condition that for each n, An is the n-fold
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coproduct (as well as product) of A in (In fact this alone is

characteristic of semi-rings). Another condition which some theories

satisfy is that An is the 2n- f ol d coproduct of A; such theories

turn out to be parameterized by the algebraic category of Boolean

algebras.

One of the famous solved problems of our canonical type is:

Which theories H\ are such that in IA" , every reflexive subalgebra

y C X x X is actually a congruence relation? The answer is: those

for which there exists at least one -morphism 1.8 3 A , wherE

is the theory generated by one ternary operation Q satisfying the

two equations E:

",x, x, z> Q = z

<x, z, z> Q = x

For example, if = 47, the theory of groups, one could define such

a morphism by

> -1
y, z Q =def x-y -z

Also D? , Mat (R) for any ring R, the theory of Lie algebras, as well

as certain theories of loops or lattices, share with Go the property

described.

Also by now well-known, but apparently more recently considered,

is the problem: For which #\ does lAb have a closed (autonomous)

structure with respect to the standard underlying set functor UJq ?
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The answer is: the commutative , meaning those for which every

operation is also a homomorphism. Since a monoid or ring is commuta­

tive as a monoid or ring if it is commutative as a theory, one is not

surprised to note that in the category of commutative theories, the

coproduct is the Kronecker product.

Less classical, but more trivial, is the question: for which

is the trivial algebra 1 a good generator The answer is:

the affine , meaning those for which

A diag

is the identity morphism for every n-ary fA -operation «J and for

every n = 0, 1, 2, •••• Being "equationally defined", the inclusion

(of affine theories into all) clearly has a left adjoint, but more

interesting seems to be the right adjoint which happens to exist;

this assigns to any the subtheory Aff (J\) consisting of all

(tuples of) those which do satisfy the above condition. Noting

the first four letters of the word "coreflectionfl, we call Aff (/A )
the affine core of IA. The term "affine ll was suggested by the fact

that
Aff c

assigns to each ring its theory of affine modules.
C:-WJWe now list some semantically-defined subcategories lP of

for which good characterizations in terms of alone do not seem to

be known. They will be presented in relativized form, so that

of them are full subcategories of J but all of them contain all the

isomorphisms of With each such relativized problem there is



- 57 -

a corresponding 11absolute" problem: namely to find those 14 such

that the morphism f from the initial theory to belongs to the

class c:. We simply list the condition that arbitrary 18 f A4
belong to C in each case: J, 6

Q) fb takes epimorphisms in A into epimorphisms in 1iI .
The corresponding absolute question is: for which J4 6 are epirnor­

phisms surjective? so that for example has the property while

does not.

fb has a right adjoint (as well as the usual left adjoint).

Note that this second category ® is included in the category Q)

defined above, and that the corresponding absolute question was

answered with "unary theories". However the present relative question

is definitely more general than just morphisms of unary theories

since every morphism between rings is included in category @ as

is the inclusion /11 )- Go (Recall the "gr-oup of un.i t s "}; Since

the right adjoint of tb would have to be represented by f-XI, Xl

being the free -algebra on one generator, the question is related

to the more general one of computing, for any f, the algebraic struc-

ture of the set-valued functor R3 so represented.

G) f * is right adj oint to fb. This very strong condition

obviously implies @. We call the f satisfying Q) Frobenius mor­

phisms since a typical example is a morphism in T of the form

K f where K is a commutative ring, R is a ring, and f makes

R a Frobenius K-algebra. It does not seem to be known if there are

any examples in of Frobenius morphisms which are not ring mor­

phisms. In the context of triples in arbitrary categories, a
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characterization in terms of the existence of a "nonsingular associa-

tive quadratic form" can be given, but it is not clear what the abstrac·

form of this condition means when restricted back to theories (unless

they are rings).

fD takes finitely generated -algebras into finitely

generated JB-algebras. A thorough understanding of this category

would imply the solution of the restricted Kurosh and restricted Burn-

side problems as special cases. In fact the restricted Burnside

problem belongs to the absolute case of the question, taking

/1\ = c;r. theory of groups of exponent r, and the restricted

Kurosh problem to the case relative to JEl = the ground field, taking

= theory of algebras satisfying a given polynomial identity.

G The adjunction morphism Y .. f-(Yf.) is monomorphic

for all B -algebras Y. This category includes the f defined by

the Lie bracket, but not that defined by the Jordan bracket, into

the theory of associate algebras over a field. when applied

to finitely generated free algebras, the adjunction reduces to f

itself, it is clear that all f in category are necessarily mono­

morphisms themselves. But this is not sufficient, as the morphism

Z f from the ring of integers to the ring of rationals shows

(apply f. to an abelian group with torsion). Linton has suggested

that the universally monomorphic f in may coincide with

category G).

reflects the existence of quasi-sections; i.e., for any

h, if there is a lB -homomorphism g with

(h)fege(h)f = (h)f, there is an -homomorphism g with h g h = h.

The absolute form of this condition applies to a ring if it is
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semi-simple artinian. Since simplicity, chain conditions, etc. have

sense in the category tJ , it would be interesting if subcategory (§)
could be characterized in these terms.

Finally, various completion processes on the category of theories

are suggested by the adjointness of the structure functor. For

example, consider the inclusion 3 fin S of finite sets into

all sets. Pulling back and composing with this functor yields an

adjoint pair

(Cat, 3 .. (Cat, S . )f1.n

which when composed with the semantics-structure adjoint pair yields
tF\.

a triple (monad) on the category () • This triple assigns to each-
theory the algebraic theory consisting of all operations

naturally definable on the finite A algebras. For example G is

the (finitary part of) the theory of profinite groups.

Burnside's general problem suggests a different "completion" for

a theory A , namely let ht\ be the structure of (the underlying set

functor of) the category of those which are finitely

generated and in which each single element generates a finite sub­

algebra. We have
r-I

lim IA F

F

where F ranges over finite sets of finite cyclic since

structure is an adjoint. Note that this completion is not functorial

unless we restrict ourselves to category @ Since every finite /A­
algebra satisfies the two finiteness conditions above, one obtains a

morphism ----+)t4
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the study of which reflects one form of a generalized Burnside problem

The functorial completion can also be done relative to a given

theory 1B 0 by using finitely generated or finitely presented 18 0-

algebras, and considering theories 14 equipped with 180 14 .
For example, with 29

0
= a field K, the completion of = K[x] is

the full natural operational calculus K[x] for arbitrary operators on

finite-dimensional spaces; explicitly this ring consists of all

functions Q assigning to every square matrix a over K another aQ of

the same size, such that for every suitable rectangular matrix b and

If K is the field of complex numbers, one has

K[x] e (K)

_/K[[X]]

----)0--. K[x]. "-.KK

where (K) is the ring of entire functions and K[[x]] the ring of

formal power series. (Formal power series also arise as algebraic

structure, by restricting to the subcategory where the action of x

is nilpotent). The ring K[x] would seem to have a possible role in

"formal analytic geometryJl; it has over formal power series the

considerable advantage that substitution is always defined, so that

formal endomorphisms of the formal line would be composable. This-
monoid is extended to , (the dual of) a category of formal maps of

formal spaces of all dimensions by applying the structure-semantical

completion process over finite-dimensional K-vector spaces to the

theory of commutative K-algebras.

C.U.N.Y. Graduate Center
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