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HOMOLOGY OF THE CLASSICAL GROUPS OVER THE DYER-
LASHOF ALGEBRA(!?)

BY
STANLEY O. KOCHMAN

ABSTRACT. The action of the Dyer-Lashof algebra is computed on the homology of
the infinite classical groups (including Spin), their classifying spaces, their homogeneous
spaces, Im J, B Im J and BBSO. Some applications are given while applications by other
authors appear elsewhere.

1. Introduction. In §2, we will show that the Dyer-Lashof algebra <% acts on
the homology of the infinite classical groups (including Spin), their classifying
spaces, their homogeneous spaces, Im J, B Im J and BBSO. In Theorem 1 of
that section we will also list the basic properties of the Dyer-Lashof operations
which will be used extensively in the sequel.

In §3, we state Theorems 5, 6 and 7 which describe the action of the Dyer-
Lashof algebra on H,(BU) and on H*(BU). From these three theorems we
compute that -R-algebra indecomposables of H, (BU), the algebra of AR-Hopf
algebra endomorphisms of H,(BU) and the action of <R on H,(BU X Z)
= H,(Q2BU) in §3. We postpone the proofs of Theorems 5, 6 and 7 to §8. The
proof of Theorem 7 contains an algorithm for computing the action of the Dyer-
Lashof algebra on H, (BU) (see Theorem 97) which we apply in the mod 2 case
to compute this action in dimensions less than or equal to twenty.

In §§4, 5 and 6 we show that the results of §3 imply similar results for the
action of <% on the homology of the remaining classifying spaces of the classical
groups, the classical groups and the homogeneous spaces of the classical groups,
respectively. §6 also contains a discussion of the action of =% on H,(Spin) and
H, (B Spin). In §7, we use the results of the preceding sections to investigate the
action of <R on H,(Im J), H,(B Im J) and H,(BBSO).

The results of this paper have several applications. By T. tom Dieck [6,
Theorem 17.2] the knowledge of the R-action on H,(BO;Z,) can be used to
determine the normal characteristic numbers of the quadratic construction on a
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closed differentiable manifold M in terms of the normal characteristic numbers
of M. In J. P. May [19], . Madsen [14] and A. Tsuchiya [26] the knowledge of
the =R-action on H,(0) and H,(BO) is used together with the maps J,: H,(O)
- H,(F)and (BJ),: H,(BO) — H,(BF) as part of their computation of H, (F)
and H,(BF). M. Herrero [10] has computed homology operations on the
homology of BU X Z and BO X Z with H-space structure induced by the tensor
product of bundles. Her results use the =f-action on the homology of these
spaces with H-space structure induced by the Whitney sum of bundles, i.e. the
theorems of §§3, 4 and 8.

Throughout this paper H,(X) denotes the homology of X with Z,-coefficients
for p any prime. If a statement differs for p odd and p = 2 then the result for p
odd will be stated, followed by the analogous statement for p = 2 in square
brackets.

We will assume a familiarity with the structure of the homology and cohomol-
ogy of the infinite classical groups, their classifying spaces and their homoge-
neous spaces as Hopf algebras over the Steenrod algebra. Three excellent
references for these results are Séminaire Henri Cartan [4], A. Liulevicius [13] and
E. Dyer and R. Lashof [8]. We will also use many elementary properties of the
Steenrod algebra N with no references. All such properties can be found in N.
Steenrod and D. Epstein [24].

I am very grateful to I. Madsen and James Stasheff for their interest and
assistance in the writing of this paper. I am especially indebted to J. Peter May
for his stimulating courses, expert advice and helpful correspondence.

2. The underlying geometry of the action of the Dyer-Lashof algebra on the
homology of the classical groups. The results of the following sections are
predicated on Theorems 1 through 4 which assert that the Dyer-Lashof algebra
acts on the homology of the infinite classical groups, their classifying spaces and
their homogeneous spaces with the product in homology induced by Whitney
sum. These homology operations satisfy the usual properties and commute with
the homomorphisms induced in homology by the structure maps of the two Bott
spectra (see E. Dyer and R. Lashof [8]):

B,, = BUXZ, By = U,
Cs, = BOX2Z, Cgyy = U/O, Cgpia = SP/U, C8n+3 = Sp,
Cinisa = BSpX 2, Cgpys = U/Sp, Cypis = O/U, Cgpy7 = O.

There are two ways of obtaining this information. First, the Bott spectra show
that all the spaces that we are interested in are infinite loop spaces, and hence the
E_-operad C,, acts on these spaces (see Theorem 2). On the other hand, there is
an E_-operad £ which acts on these spaces such that J: O = F and BJ: BO
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~ BF are maps of £ -spaces (see Theorem 3). By Theorem 1, the Dyer-Lashof
algebra acts on the homology of € -spaces for E-operads €. Theorem 3 will also
state that we obtain the same action of the Dyer-Lashof algebra from both of the
above points of view. We will now define an E_-operad and explain the
statements of Theorems 1 through 4.

The endomorphism operad £y [17, Definition 1.2] consists of the spaces £4(j)
of based maps X/ = X, j > 1, and £,(0) = * where X/ is the j-fold Cartesian
product of X with itself. The structure of £, which makes it an operad consists of:

(1) The map y: £ (k) X Ex(jr) X - -+ X Ex(i) = Ex(ir + - - - +ji) defined by
Y(fig1s...,8) = f(g X -+ X g). Note that y satisfies an associativity formula.

2) 1y € £4(1) satisfies Y(ly; g) = gand y(f; 1) = fforallg € £(j) and all
f € &x(k).

(3) The symmetric group Z; acts on £x(j) by

(80)(x15 .+« .5 ;) = 8(Xom101)s + - + s Xgm1(j))-

With the appropriate conventions, the map y becomes equivariant in each of its
two variables.

In general, an operad € [17, Definition 1.1] consists of nonempty spaces €(j)
which have the same formal structure (1), (2) and (3) as the endomorphism
operad. An operad is called Z-free if Z; acts freely on () forj > 1. A Cspace
(X, 0) consists of Z-equivariant maps 6;: ¢(j) = £x(j) which commute with y.
A map f: (X,0) > (X',8) of C-spaces is a based map f: X — X’ such that
fo8i(c) = 8(c) o f! for all ¢ € &(j) and all j > 1. Note that any ¢ € €(2)
defines an H-space structure 8,(c): X X X — X on a C-space X which by J. P.
May [17, Lemma 1.9] is independent of ¢ up to homotopy if all the &(j) are
connected, j > 2.

An E_-operad Cis a =-free operad € such that each ¢(j) is contractible. By
the preceding remarks, if X a C-space for an E,-operad C then H,(X) has a
unique product induced by 6,(c) for any ¢ € £(2). In addition, H,(X; Z,) has
Dyer-Lashof operations for all primes p because there are Z,-equivatiant maps
2(p) X X? - X and &(p)/Z, = K(Z,, 1). More precisely, we state J. P. May [18,
Theorem 1.1}

Theorem 1. Let C be an E-operad, and let p be a prime number. The homology
of a C -space has Dyer-Lashof operatioris Q", n > 0, of degree 2n(p — 1) [of degree
n) which satisfy the following properties:

(1) The Q" are natural with respect to the maps induced in homology by C-maps.

(2) The Q" are linear.

(3) Q%¢) = ¢ and Q"(¢) = 0ifn > O where ¢ € Hy(X) is the identity element
for the multiplication in H (X ).

(@) @"(x) = x? if deg x = 2n[if deg x = n).

(5) Q" o 0, = 0, © Q" where o,: IH,(X) — H,(RX) is the suspension map.
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(6) (multiplicative Cartan formula) Q' (xy) = .o O'(X)Q ().
(7) (comultiplicative Cartan formula)

Ve Q) = £ T OR)© Q") where ¥x) =X ®x"

(8) x © @ = @ o x where x is the conjugation on H,(X).
(9) (Adem relations) If a > pb then

Qe @ =S (-D)™(pi-aa—(p=-Db—i- 1) o

where (i,j) = (i +j)V/i'j! ifi > 0andj > 0 while (i,j) = 0ifi < 0orj <O.
(10) (Nishida relations)

R0 @ = S (s~ pir(p = 1) = ps + PP o B

where B: H,(X) — H,(X) of degree —2s(p — 1) [of degree — s) is dual to P* in
the action of A°® on H,(X).

The above properties of the Dyer-Lashof operations are proved by showing
that the general algebraic considerations of J. P. May [16] are applicable to the
homology of -spaces for € an E,-operad. Many of these basic properties of
Dyer-Lashof operations were first proved in S. Araki and T. Kudo {3}, E. Dyer
and R. Lashof [9] and G. Nishida [21].

Recall that an infinite loop space B, is the first space in a sequence {B, | n > 0}
where B, = Q2B,,, for n > 0. An infinite loop map fy: By = C, between two
infinite loop spaces is the first map in a sequence of maps { f,: B, > C, | n > 0}
such that f, = Qf,,, n > 0. By J. P. May [15], these definitions are equivalent to
the concepts of an Q2-spectrum and a map of Q-spectra where homotopies replace
the equalities. The first method of defining homology operations on the homology
of the infinite classical groups, their classifying spaces, their homogeneous spaces
Spin, BSpin, BBSO, ImJ and BIm/J is to use the Bott spectra to show that all
the spaces in question are infinite loop spaces and that all the canonical maps
and the Bott maps are infinite loop maps. The desired conclusions then follow
from Theorem 1 and the following theorem.

Theorem 2. There is an E-operad C,, such that all infinite loop spaces are C-
spaces and all infinite loop maps are maps of Cy,-spaces.

For a proof and discussion of this theorem see J. P. May [17, §§4 and 5].
Our second approach to defining homology operations on the homology of the
spaces under consideration is based upon Theorem 1 and the following theorem.

Theorem 3. There is an E_-operad L such that all of the classical groups
(including Spin), their classifying spaces, their homogeneous spaces, F and BF are L-
spaces. All of the canonical maps, including J: O — F, BJ: BO — BF, and the Bott
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maps are maps of L-spaces. Furthermore, the induced homology operations are the
same as those induced by the E-operad Cy, via Theorem 2.

For the definition of £ and the proof of Theorem 3, see J. P. May [18, §6].
To define BBSO as an £ -space we need to deloop BSO. That is we need the
following result from J. P. May [17, §14].

Theorem 4. Let C be an E-operad, and let X be a connected C-space. Then (up to
weak homotopy equivalence) X is an infinite loop space such that H,(X ) has the same
homology operations induced by C and by C,, (the operad of Theorem 2 which acts on
infinite loop spaces).

The Dyer-Lashof algebra =% is defined to be the quotient algebra F/J where F
is the free associative algebra generated by {Q",8Q"*! | r > 0} [generated by
{@ | r > 0})] and J is the ideal in F consisting of all elements of F which
annihilate every element of every infinite loop space.

If <R acts on H,(X) then <R acts on H*(X). We let Q;: H*(X) = H*(X)
denote the operation of degree —2r(p — 1) [of degree —r] which is dual to Q".

3. BU, BSU and BU X Z . Recall that H*(BU) = P{c, | n > 1} as algebras
with ¢; = 1 and Y(c,) = D/ ¢; ® ¢, ¢, is called the nth Chern class and has
degree 2n. If we let a, = (c[)* and p, = c* in the basis dual to the basis of
H*(BU) which consists of monomials in the Chern classes, then H,(BU)
= P{a, | n > 1} as algebras with y{(a,) = 3.0 4; ® a,_,, and the primitive
elements of H,(BU), PH,(BU), have a Z,basis {p, | n > 1}. The three basic
theorems whose proofs we postpone to §8 are:

Theorem 5. In H,(BU) forr > Oandn > 1,
Q'(pn) = (_l)’+n(n - 1r- n)‘pn+r(p—l)
[Q?.r(p") = (n -Lr- ”)pnw]'
Theorem 6. In H,(BU) forr > Oandn > 1,
0 (a,) = =1 (n,r —n-— 1)a,sr(p-1y modulo decomposables
[0¥(a,) = (n,r — n — 1)a,,, modulo decomposables).
Theorem 7. In H*(BU) forr > Oandn > 1,
Q!’t(cn) = (_1)'+"(" - "(P - l) - ]»p’ - n)cn-r(p-l)

[Q¥(c,) = (n—r— 1,2r = n)c,_,).

In §11, as part of the proof of Theorem 6, we will produce an algorithm for
computing Q'(a,) inductively. We cannot produce a formula for Q"(a,). Howev-
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er, we can say the following about which monomials im the a,’s can appear in

Q' (a,)-

Theorem 8. In H,(BU) for r > n > 1, Q'(a,) [Q¥(a,)] has no monomial
summand of product filtration degree greater than (r — n)(p — 1) + p and the only
summand of Q'(a,) [Q¥(a,)] of product filtration degree (r — n)(p — 1) + p is
al afr~"Xp=Y. Furthermore if aa,, - - -a, with 0 # a € Z, is a summand of Q' (a,)
[Q¥(a,)] then some n; > n.

Proof. We prove this theorem by induction on n > 1. The assertion forn = 1
is clearly valid. Assume that n > 2 and that the theorem is valid for Q°(a,,)
[Q*(a,,)] if m < n. Among the monomials in the a;’s which appear with a
nonzero coefficient in Q"(a,) [Q¥(a,)] choose M of highest product filtration
degree containing the largest power of a. Write M = aap ---aja with n,
>n,>1e21L,t20,5s>0and0#a € Z, Notethatt > lbyTheorem
7 since otherwise Q;(c,) [Q%' (c,)] would contain monomlals in the Chern classes
other than c,. Then aafl_, - - - af_; ® af'* """ **** appears on the left-hand side of

the equation

Vo Q@) = 3 3 0'a) ® 0(a, )
0) S
e 0@ = 3 3 0%(a) ® 0" ¥(a,.))

This term is matched by a term on the right-hand side of (1) which by the
induction hypothesis must originate from Q*'(a,-,;) ® 0" (a)) [Q* *(a,-1)
® 0¥ 2q). Hence e+:---+e+r=(p—=1r—-n+p
M = a?a{~™»D and a = 1. If there are other monomial summands of Q"(a,)
[0¥(a,)] of product filtration degree (r — n)(p — 1) + p, then choose the one
N # M which has the largest power of @,. Write N = 'ya,,;I -afsal with
m,>m.-|>l fi>20,u>1,v>0and 0+ y € Z, Then yaf_s " ah
® afi***+* is a summand of ¢ o 0"(a,) [y ° 0¥(a,)]. Hence by our induction
hypot.hesis applied to (1) we see that fy + -+ -+ f, +v = (r—n)(p— 1) + pand
N = M, a contradiction. Thus, afaf’ -7~V is the only monomial summand of
Q' (a,) [0*(a,)] of product filtration degree (s — n)(p — 1)k + p. Let Agy - - -
with & > - > k, and 0 # A € Z, be the monomial summand of Q'(a,)
[0¥(a,)], for which (k,... k) is least in the lexicographical order. Hence
Ay _; -+ @,y ® g is a summand of ¢ ° 0(a,) [y ° 0¥(a,)]. By our induction
hypothesis applied to (1) we deduce that k; — 1 > n — 1 and hence k; > n. This
proves the last assertion of the theorem.

We now define and compute the indecomposable elements of H,(BU) over the
Dyer-Lashof algebra.

Definition 9. Let e: S — K and ¢': M — K be augmented algebras over a field
K. IS = Kernel ¢ and IM = Kernel ¢ are called the augmentation ideals of S
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and M respectively. Assume that M is a left S-module. We define the indecom-
posable elements of M over S by

OsM = IM/[IS)(UM) + (IM)’].

Theorem 10. (a) Qo H,(BU; Z,) = {ay | n > 0}.

(b) For p an odd prime, a Z,-basis for Q_¢H,(BU; Z,) is {@,, | n # 0 mod p,
n=s(p-1D)+r1<r<p—-landifs+0thens=3kys;p),0<s,<p
—Lwithr> 52> -2 2> 1)

Proof. (a) By Theorem 6, there is an =f-indecomposable in degree 2n if and
only if (k,n — 2k — 1) = O for all kK > 1. It is easy to see that all such n are the
powers of two.

(b) a,, is R-decomposable if s, = 0 or r < s, since, by Theorem 6, Q7**(a,,.)
= aa,, modulo decomposables with0 # a € Z,. If k > 1,50 # 0, r > 50 and
there is an s; which is either zero or less than s;,, (assume j is least with this
property) then

er.h"‘pm(a'p"rp'(rl)zf-o’m‘) = Yanr
modulo decomposables for some 0 # y € Z,. Thus the claim for Q_¢H, (BU)
contains Q_¢ H, (BU). It remains to show that a,,. is ~f-indecomposable if s = 0
or if r>sp> -+ 2 5 > 1. That is, we must show that Q'(a,._,,-y) is
decomposable for all # > 1 which by Theorem 6 is equivalent to showing that
(np* — t(p — 1),pt — np* — 1) = 0 mod p for all ¢ > 1. This is clear if p° 1 ¢, so
assume ¢ = p°u. Let u = Skoup, 0 < u; <p—1and u_, = r. It can be
shown by induction on i that if (np® — ¢t(p — 1),pt — np* — 1) = (r + u(p — 1),
pu+s—r—1)# 0mod p then

@) s < 4; = pu,

(i) If i < n and

8,' = 0 if Ui 2 U;
=1 ifu_ <uy

then

(“i -&+(p- 1)(l§‘+l “ij—'_l)» jé (55— pu)p/~' — u; + & - 1)

=i+

# 0 mod p.

This implies that s < ¢, a contradiction. Hence (np® — t(p — 1),pt — np® — 1)
=0modpforalls > 1.
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We now determine the algebra of A-~-Hopf algebra endomorphisms of
H,(BU; Z,), first for p = 2 and then for odd primes p. The following terminology
will prove useful.

Definition 11. Let A be a connected Hopf algebra over Z, with f: 4 — 4 a map
of Hopf algebras. f is said to be locally nilpotent if for all a € I4 there is a
natural number n(a) with f@(a) = 0 where f0 = 1,, f! = fand f* = fo fk-!
for kK > 2. When f is locally nilpotent, every element of the power series ring
Z,[[f1lis a well-defined Hopf algebra endomorphism of 4. Addition in Z,[[f]] is
given by Whitney sum, i.e.g+h =¢og® ho .

Let F = y o a be the composite of the canonical maps BU%B Sp X, BU. In Z,
homology, K (ax+) = 0 and F(ay) = a}. Hence FE, is locally nilpotent and
Z,[[R]] is a well-defined algebra of A=R-Hopf algebra endomorphisms of
H,(BU; Z,).

If p is a prime number, let Q, = Z[1/g | q is prime, g # p] as a subring of the
rational numbers Q. By J. F. Adams [1, Lecture 4], complex K-theory with Q,
coefficients is a representable cohomology theory, and we denote the infinite loop
space which represents this theory by BUQ,. Observe that H,(BUQ,;Z,)
= H,(BU; Z,).

Theorem 12. (a) Z,[[E ]] is the algebra of all A-Hopf algebra endomorphisms of
H,(BU; Z,).

(b) Z,[[E 1] is the algebra of all U=R-Hopf algebra endomorphisms of H,(BU; Z,).

(c) Every element of Z,[[ R, ]] is induced by an infinite loop endomorphism of BUQ,.

(d) The elements of Z,[[R]] are induced by the stable KUQ,-theory operations

Z[ly + 7'l

Proof. (a) Let g be an A-Hopf algebra endomorphism of H, (BU; Z,). Then g*
is an A-Hopf algebra endomorphism of H*(BU; Z,). Let k; be the coefficient of
ct' in g*(cy). We will prove that g* = 32,k F*. It is well known that
Oy H*(BU;Z,) = {cy» | n > 0}). Thus, it suffices to show that g*(cpn)
= (320 k; F**)(c), which we prove by induction on n > 0. The case n = 0 is
immediate from the definition of k. Assume now that g(cy) = (2o k; F*)(cy)
if 0<t<n Then glc,) = 2 ki F*)(c,) if 1 <s< 2" Hence g(cy)
— (C20 ki F*)(cyn) is primitive and therefore is zero by the definition of k,.

(b) Every AR-Hopf algebra endomorphism of H,(BU;Z,) is an %A-Hopf
algebra endomorphism and every element of Z,[[£]] is a map of </modules.
Hence (a) implies (b).

(c) and (d). ¢ + ¢! induces F: BU — BU. Hence each element

S k@ + )

induces an infinite loop endomorphism of BUQ, which induces S®.kFiin
homology.
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Corollary 13, (a) H*(BU; Z,) is an indecomposable N-Hopf algebra.
(b) If f is an N-Hopf algebra endomorphism of H,(BU;Z,) then f is a
homomorphism of =R-modules.

We now want to prove the analogues of Theorem 12 and Corollary 13 for odd
primes. Thus for the remainder of the discussion of BU, p will denote an odd
prime and all homology will be understood to have Z,-coefficients for p an odd
prime. By J. F. Adams [1, Lecture 4], BUQ, = [[/z2 BU,, as infinite loop spaces.
Let E;: BUQ, > BU,; and J;: BU,; > BUQ, denote the canonical projections
and injections respectively, 0 < i < p — 2. H,(BU,;) is a polynomial algebra
with indecomposable elements in all positive degrees 2n for which n = i mod
p — 1. We will construct specific algebra generators in Lemma 17. First, however,
we state the theorem and corollary which we are striving to prove.

Theorem 14. Let p be an odd prime, and let 0 < i < p — 2. Then there are
locally nilpotent UR-Hopf algebra endomorphisms F; of H,(BU,;) such that:

(@) Z,[[F]] is the algebra of all A-Hopf algebra endomorphisms of H,(BU,,).

(b) Z,[[E]] is the algebra of all N=R-Hopf algebra endomorphisms of Hy(BU,,).

(c) The map f— Eg o foJp + -+ E, 3¢ © fo J_s is an isomorphism be-
tween 11722 Z [[F]] and

(i) the algebra of all N-Hopf algebra endomorphisms of H,(BU),
(i) the algebra of all U=R-Hopf algebra endomorphisms of H,(BU ).

Corollary 15. (a) H*(BU,;) is an indecomposable A-Hopf algebra.
(b) If f is an A-Hopf algebra endomorphism of H,(BU) or of H,(BUj;) then f is
a homomorphism of =R-modules.

We begin our proof of Theorem 14 by defining the F;.

Lemma 16. Define an algebra endomorphism F of H,(BU) by F(a,) = af and
F(a,) = 0 if n is not divisible by p. Let F, = Ejo © fo J;s,0 < i < p — 2, be the
corresponding algebra endomorphism of the H,(BU,,). Then F and all the F, are
locally nilpotent morphisms of X=R-Hopf algebras.

Proof. F and all the F; are clearly locally nilpotent, and it thus suffices to show
that F is a map of A=~-Hopf algebras. F is a map of coalgebras because both
F ® F o y(a,) and § o F(a,) equal 3% a? ® al_;if n = pk, and they both equal
zero if n is not divisible by p. We now recall that the action of A on H,(BU) is
given by ®(a;) = (n,k — pn)ay_,, Hence F is a homomorphism of %-
modules because both ®" o F(a,) and F o R"(a,) are equal to (n,k — np)a?., if
n + k = pt, while they both equal zero if k + n is not divisible by p.

We digress to show that the Hopf algebra endomorphism F* of H*(BU) is
given by F*(c,) = cf and F*(c,) = 0 if n is not divisible by p. The second
assertion and the first assertion for k = 1 are clearly true. Now assume that
k > 1 and that F*(c,) = cf if 1 < h < k. Then F*(c,x) — cf = ap, since F*
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is a map of coalgebras where a € Z, and p,, is the basis element of PH?*(BU ).
Hence F(a,) contains aaf* as a summand, so @ = 0 since k > 1.

We now verify that F* is a homomorphism of =f-modules by using Theorem
7. One finds that Q} o F(c,) and Fo Qi(c,) are both equal to (—1)**"
~(k=n(p—1) = 1,pn — k)c? if k + n = pt, while they both equal zero if k + n
is not divisible by p.

The following lemma describes the algebraic structure of H,(BU,,).

Lemma 17. There are elements a,, € Hy(BU,;) f 0 <i<p—2,e2>0,
r>1,r#0modpandr =imodp — | such that:

(a) Hy(BU,;) = Pla,, | r = i mod p — 1} as algebras.

(b) &(ao,) = b, ifr =i modp — 1.

(c) F(ap,) = 0 and F(a,,) = a’.,,ife > landr =i mod p - 1.

Proof. We show that there are indecomposable elements a,, in H,.,(BU,;)
satisfying (b) and (c) by induction on p°r. Let ay, = Es(p,) if r> 1, r# 0
mod p and r = i mod p — 1. Clearly a,, is indecomposable, J;+(ap,) = b, and
F(ap,) = 0.If e > 1 then we define a,, as follows: Let a;, be any indecomposa-
ble element of Hy,,(BU,,). Then

3
, — P Jn+! . y/adl
Fla,) = aal,, + T oaf’, a;
j=1

where 0 #* a € Z,, a; € Z,, f;; > 0 and f; > 2 for all j. Now define

ae.r = a-la;.' - a-l jgl ajaﬂ]’:l»ﬁ‘l Tt a‘l’llll;ll.'l'/'
Clearly a,, is indecomposable and F(a,,) = al,,.

Proof of Theorem 14. (a) Let g be an A-Hopf algebra endomorphism of
H,(BU,;), and let k, be the coefficient of af;- in g(a,;;) where i’ = i if i # 0 and
i’ = p—1if i = 0. Reasoning as in the proof of Theorem 12(a), we see that
g= 27’-0 k F.

(b) The assertion follows from (a) and the fact that F; is a homomorphism of
<R-modules.

(c) The assertion follows from (a), (b) and the observation that if fis a Hopf
algebra endomorphism of H,(BU) then Eju o fo J. = 0if 0 < i,j < p—2and
i # j. If this last statement were false then choose x € H,(BU,,) of least degree
with Ej. o foJs(x) # 0. Note that x must be indecomposable and Ej. o f
o J;+(x) must be primitive. Hence i = deg x = deg Ejs o fo Ju(x) = mod p
— 1, a contradiction.

We now turn our attention to BSU. Recall that the mapj: BSU — BU induces
a monomorphism in homology and an epimorphism in cohomology. More
specifically, H*(BSU) is the quotient Hopf algebra of H*(BU) modulo the ideal
generated by ¢;,. Hence Theorem 7 with the added condition ¢; = 0 describes the



HOMOLOGY OF THE CLASSICAL GROUPS 93

action of <R® on H*(BSU). Let H,(BSU;Z,) = P{d, | n > 2} as algebras
where deg a, = 2n and j,(a,) = a, modulo decomposables if » is not a power of
P

Theorem 18. In H (BSU) forr > 0,n > 2and k > 1:

Q' (@) = (1YY (n,r — n = 1)a},,(,—1) modulo decomposables if n is not a
power of p;

[0¥(a,) = (n,r — n — 1)a},., modulo decomposables if n is not a power of 2} and
Q'(ay) is decomposable.

Proof. Q' (a,), for n not a power of p, is evaluated by using Theorem 6 and the
naturality of <R with respect to j, . Let pj, b, be basis elements for PH¥(BSU),
i > 2,and PH¥(BU), i > 1, respectively with j*(p;,) = pj if i is not a power of
p and j*(b) = 0. Then Q'(a,) [Q¥(ax)] is decomposable if and only if
Qi (Bjparipn) = 0 (0¥ (Wa,,) = O 16 p* + r(p — 1) is not a power of p then

Qi (Dprar(p-1) = J*QeBprsr(p-n) = 0
[Qg’(bik.") = j‘Q?(b2k+r) = 0]

because j*(5,) = 0. If p* + r(p — 1) = ' then Q4 (Bjesnipor) = Q5GP = 0
(0¥ (by) = Q¥ (p'3™") = 0).

Theorem 19. (a) QJH'(BSU; Zz) = {ailn...zu I m2> Oandn > 0}.

(b) For p an odd prime, a Z,-basis for Q_oH,(BSU; Z,) is given by {a, | a,
€ Q4H,(BU; Z,) and n > 2} U {@qp-yeyy 1 € 2 0, s > 0, (e,5) #* (0,0)}.

Proof. (a) By Theorem 18, if k = 26+ 2° + 2°h with 0 < b < ¢ < e and
h > 1 then Q*'*(ap,.,) = a; modulo decomposables while Q%(aj.y,) is
always decomposable.

(b) By the proof of Theorem 10(b), it suffices to show that Q" (@e(y p-1y+1}-(p-1))
is decomposable for all ¢ > 0. This, however, follows easily from Theorem 18.

Observe that for p an odd prime BSUQ, = 1%} BSU,, with BSU,;, = BU,
for 1 < i < p— 2. Let F’ be the composite of the canonical maps BSU — BSO
- BSU.

Theorem 20. (a) The vector space of N-Hopf algebra maps from H,(BSU) to
H,(BU) consists entirely of <R-module homomorphisms and is equal to the free left
module with basis { j, } over the ring of %-Hopf algebra endomorphisms of H,(BU ).

(b) Conjugation by j* induces an isomorphism between the N-Hopf algebra
endomorphisms of H*(BU) and H*(BSU ).

(c) Conjugation by j* induces an isomorphism between the UR-Hopf algebra
endomorphisms of H*(BU) and H*(BSU).

(d) Z,[[F.]) is the algebra of N=R-Hopf algebra endomorphisms of H,(BSU; Z,).

(e) The vector space of U-Hopf algebra maps from H,(BSU) to H,(BU) is the
free right module with basis { j,} over the ring of A-Hopf algebra endomorphisms of
H,(BSU).
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Proof. (a) Use the same idea as in the proofs of Theorems 12(a) and 14(a).

(b) Observe from Theorems 12(a) and 14(a) that if f is an %-Hopf algebra
endomorphism of H*(BU) then j* o fo j*~! is a well-defined %-Hopf algebra
endomorphism of H*(BSU). Conjugation by j* is clearly a monomorphism. This
map is onto by (a) since if g is an A-Hopf algebra endomorphism of H*(BSU)
then g o j*: H*(BU) —» H*(BSU) is a map of A-Hopf algebras, and hence
g o j* = j* o ffor some A-Hopf algebra endomorphism f of H*(BU).

Corollary 21. (a) H*(BSU; Z,) and H*(BSU,;;Z,) for p an odd prime are
indecomposable N-Hopf algebras.

(b) Every N-Hopf algebra endomorphism of H*(BSU) is a homomorphism of <R-
modules.

We next consider BUXZ = QU = Q*BU. H,(BUXZ) = H,(BU)
® Z,(Z) as Hopf algebras where Z,(Z) is the group algebra over Z, of the
additive groups of integers. Elements of H,(BU X Z) are written as sums of
x ® [i] where x € H,(BU) and [i] € Z C Z,(Z). The canonical map BU
— BU X Z induces the map x — x ® [0] in homology. The action of A on
H,(BU) is given in terms of the action of %A°® on H,(BU) by the equation
R'(x @ [i]) = R'(x) @ [i].

The action of the Dyer-Lashof algebra on H,(BU X Z) will be determined
from our knowledge of the Dyer-Lashof operations on H,(BU) as soon as we
compute Q"(1 ® [1]) for all n > 0. This observation follows from the multiplica-
tive Cartan formula, the fact that Dyer-Lashof operations commute with the
conjugation x and the equations

x®[k]l=x0[0]0®[1])*, x&[-k]=xe [0]x{1 ®[1]}
for x € H,(BU) and k > 0.
Theorem 22. In H,(BU X Z) forn > 0,

0"(1 ® [1]) = w(bp-1) ® [ 7]
[g*( e[1]) = a,® [2]]

where ,(b,-1) is (c;-1)* in the dual basis of the basis of monomials in the Chern
classes.

Proof. We prove this theorem by induction on n. Q%1 ® [1]) = (1 ® [1])?
= 1 ® [ p]. By the comultiplicative Cartan formula, Q'(1 ® [1]) [Q*(1 ® [1])] is
primitive so for some a € Z,,

Y Q'(1el]) =ap, ®[p] [Q*(1@[1]) = aq ® 2]}

Recall that H,(U) = E{f,| n > 1} as Hopf algebras with degf, =2n— 1.
Since BU X Z = QU, there is a suspension map o,: IH,(BUX Z) — H,(U)
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which is given by
0s(a, ® [k]) = frry fn>0
and
6,(1®[k]-1®[0)) = kf, ifk+#0.

Applying o, to equation (1) we see that

() 0'(f)=of [Q*f) = ofs]

The universal U-bundle induces a suspension map o¥: IH,(U) - H,(BU)

which is given by o¥%(£,) = (=1)"*'p,. Now we apply o¥ to (2) and obtain
0'(a)) = aaf [Q*(a)) = adf].

Hence a = 1, and the theorem is true forn = Qand n = 1.

Now assume that n > 2 and that the theorem is true in dimensions less than
2n. Write n = mp® with m not divisible by p. By the comultiplicative Cartan
formula,

Qn(l ® [l]) - Yn(pp—l) ® [p] = Apn(p—l) ® [P]
[e*(1e[1]) - a,®[2] = Ap, @ [2]]

for some A € Z,
Case 1. Assume that e = 0. As in the case n = 1, apply o¥ © o, to (3) to obtain

®)

0"(@) = (=)™ Dppiyr1 = PAD iy
[0™(a1) + Dpr1 = ADpy].

Hence A = 0 by Theorem 5.
To prove the two remaining cases of Theorem 22 we will use the following
lemma.

Lemma 23. The monomial summands of P'(c,) [P (c,)] have product filtration
degree less than or equal to p.

Proof. For p = 2, this lemma is an immediate consequence of the Wu formula.
For odd primes p we prove this lemma by inductiononr + n.If r =0orn = 1
then the assertion of the lemma is clearly true. Now assume that the lemma is
true for P*(c,,) if s + m < r + n, and assume that r + n > 2. If P(c,) # 0
then choose a summand acf! - - - cj*cf of P’(c,) withk > 0,8 > 0,i, > ijyy > 1
and 0 # a € Z, as follows: Choose such a monomial with ¢ + -+ + ¢, + h
maximal and among all such monomials select the one with



96 S. 0. KOCHMAN

G| €k
. S
(l|,...,ll,...,lk,...,lk)

largest in the lexicographical order. By the Cartan formula,

Vo) = 3 3 P6) @ P e

acf_y et ® cp*e*ath s a summand of Y o P'(c,). If k > 1 then by the
induction hypothesis ¢, + + - + ¢, + & < p. If k = 0 then ac}*" D is a sum-
mand of P’(c,). Hence ap, is a summand of B (a4,(,-1)) When R/ (a,(,-1)) is
written in terms of the dual basis of the basis of monomials in the Chern classes.
However, by considering the map CP* — BU one can show that Ri(a)
= (i,k — pi)ay_j(p—1y Thus n = r = 1, which is a contradiction to n + r > 2.

Proof of Theorem 22 (continued).

Case 2. Assume that n = p° and thate > 1.

We first show that if p* < k < p°*! then

0 (1 ® [1]) = %(0p-1) ® [ 1] + AE1 Yepe(Dp-1) © []
[0*(1 @ [1]) = a, ® 2] + Aa"a,_ ® [2]].

@

If (4) is not true then let k be the smallest integer for which it fails. By the
comultiplicative Cartan formula,

(1 ® [1]) + %(®p-1) ® [] = AL 1 Ve (0pt) @ [P] = b1y
[0*(1 @ [1]) + &, ® [2] + Aaf @ ® [2] = piy]
for some 0 # p € Z,. Write k = p/c with ¢ not divisible by p. The application

of o, to (5) shows that e > f > 0. Now apply P¢’ to (5), use the Nishida
relations and the fact P¢’(p,) = Rl (p,)? = CPy—ps(p-1) tO ODtain

—(p!,k(p = 1) = p/+)Qk#'(1 @ [1]) + RY (b)) ® [ 2]
©) = M2 R (Vi (0p-1)) @ [ 1) = 1ebyprp1y @ [P]
[0 = B o Q%*(1 ® [1]) + R¥*' (&) ® [2] = pepy—yr @ [2]]

Thus, if p = 2 then pc = 0, a contradiction. If p is odd then by Lemma 23 and
the induction hypothesis the left-hand side of (6) contains no power of g, as a
summand. However, the right-hand side of (6) contains pca*?(>-1 as a sum-
mand. Therefore pc = 0, a contradiction. Hence equation (4) is valid for all k
between p° and p+'.
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Consider the following Adem relation:
)
Qr+-r' 0 07 (1 ® [1])

= TS 1y i = 2 4 =i~ 1)Q% o (1 @ [1])

i=2pt=prt
[0 e 0*(1 2 [1])
= zg (2i — 325,24 — i — 1)Q*-% o Q%(1 ® [1])).
jm3.20-1

By Theorems 5 and 8 the left-hand side of (7) contains Aaf™'(?>-V ® [p?] as a
summand while by our induction hypothesis and (4) no such summand appears
on the right-hand side of (7). Hence A = 0.

Case 3. Assume that e > 1 and that m > 2.

Apply B* to (3) and obtain by the Nishida relations

(m - l)Q"_’,(l ® [l]) - Qtp'(‘Yn(pp—l)) ® [P] = 7\93:"(9,.(4»—1) ® [p])v

ie.

(m = 1)pe(0p-1) ® [ ] = R (10 (9p-1)) @ [P] = —Ambp_peyp-1) @ [P]
[0 =0- gp‘zf'l(a") ® [2] = A@}‘*‘(pn) ® [2] = A‘pn-Z' ® [2]]‘

Hence A = 0if p = 2. If pis odd then by Lemma 23 the left-hand side of (8) has
no nonzero multiple of a{®?X7- as a summand while the right-hand side of (8)
has —Ama{*?"XP- as a summand. Thus, A = 0.

4. BSp, BSp X Z, BO, BSO, and BO X Z, We will use the results of the
previous section on BU, BSU and BU X Z to prove analogous theorems about
the classifying spaces of the other infinite classical groups.

We begin by introducing some notation. Let a: BU — BSp, y: BSp — BU,
p: BU = BO and »: BO — BU be the canonical maps. Define b, € H,,(BSp)
by b, = a,(ay,) for n > 0, and note that a,(ay,+;) =0 for n > 0. Then
H,(BSp) = P{b,|n > 1} as algebras and ¥(b,) = Xi-¢ b; ® b,-;. Define k,
€ H*(BSp) by k, = (—1)"y*(c,) for n > 0, and note that y*(cs,4,) = O for
n > 0. Then H*(BSp) = P{k, | n > 1} as algebras with Y{k,) = X/ k; ® k,—;-
Use the dual basis of the basis of monomials in the k, to define p, = k% for
n > 1, and note that (k')* = b, for n > 1. Then {p, | n > 1} is a basis for
PH, (BSp) and v, (p,) = (=1)"py, forn > 1.

For Z, coefficients with p an odd prime, we now make the same definitions in
H,(BO) and H*(BO). Thus, define d, € H,,(BO) by d, = p,(ay,) for n > 0,
and note that p,(ay,,,) =0 for n > 0. Then H,(BO) = P{d,|n > 1} as
algebras with Y(d,) = 3. d; ® d,_,. Define the nth Pontryagin class P,

®)
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€ H*(BO) by B = (—1)"v*(c,) for n > 0, and note that »*(cy,4) = O for
n > 0. Then H*(BO) = P{B | n > 1} as algebras with (B) = 3., P ® B_..
Using the dual basis of the basis of monomials in the Pontryagin classes, we
observe that (P/')* = d, for n > 1, and we define p, = P* for n > 1. Then
{b, | n > 1} is a basis of PH,(BO) and »,(p,) = (—1)"py, foralln > 1.
Theorems 24 through 32 will be stated for the homology and cohomology of
BSp with Z,-coefficients for all primes p. These theorems and their proofs for p
an odd prime are also valid for the homology and cohomology of BO if b, is
replaced by d,, k, is replaced by P, a is replaced by p and vy is replaced by ».

Theorem 24. In H*(BSp) forr > Oandn > 1,
Q;(kn) = (_])(I/Z)r(p+l)(2n - r(p - 1) = Lrp— 2n)kn-(l/2)r(p-l)
[o¥(k,) = (n—r = 1,2r — n)k,,].
Proof. This theorem results from combining Theorem 7 with the definition
ky = (=1)"y*(czn)-
Theorem 25. In H,(BSp) forr > O andn > 1,
Q'(v,) = (“1)(]/ e — 1,r - 2n)bn+(1/2)r(p—l)
[Q"(pn) = (n - Lr- n)pn+r]

Q'(b,) = (=1*'@n,r — 2n — Db,yj2y(p1y modulo decomposables

(@

[@*(b,) = (n,r — n — 1)b,,, modulo indecomposables).

Proof. This theorem is proved by combining Theorems 5 and 6 with the facts
Ya(bs) = (=1)"p;, and a4 (ay,) = b, forn > 1.

Theorem 26. In H,(BSp) forr > 2n > 2 [r > n > 1}, 0"(b,) [Q*(b,)] has no
monomial summand of product filtration degree greater than p + 3(r — 2n)(p — 1)
[r — n + 2}, and the only monomial summand of Q’(b,) of product filtration degree
p+ir=2n)(p—1)[r—n+2] is bbVy2Xr-2Xe=D) [B2b[™"]. Furthermore, if
Ab, « -+ by, is a summand of Q' (b,) [Q¥(b,)] withny > -+ > n,and 0 +# A € Z,
then ny 2> n.

Proof. This theorem follows from Theorem 24 in the same way that Theorem
8 follows from Theorem 7.

Theorem 27. Q_o H,(BSp) has Z,-basis {b,c | n # 0 mod p,n = s(p — 1) + r,
1<r<p-landif s#0 then s =350, 0<5;<p— 1, with r > s
2 25 2 1} [QeHy(BSP; Z,) = {byn | n 2 0}].

Proof. This theorem follows from Theorem 10 and the fact that a,(ay,) = b,
forn > 0.
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Let G = a o y: BSp = BSp. In homology with Z,-coefficients, G, (b,,) = b?
and G, (by,-) = 0 for n > 1. Hence G, is locally nilpotent and Z,[[G,]] is an
algebra of A-Hopf algebra endomorphisms of H, (BSp; Z,).

Theorem 28. (a) Z,[[G, ]] is the algebra of all A-Hopf algebra endomorphisms of
H,(BSp; Z,).

(b) Z,[[Gy]] is the algebra of all UR-Hopf algebra endomorphisms of H,(BSp;
Z,).

(c) Every element of Z,|[G,]) is induced by an infinite loop endomorphism of
BSpQ;.

Proof. (a) and (b) are proved in the same manner as Theorem 12.

() 20 hiGi = [y o g o a ® hylggyp,ls where g is an infinite loop endomor-
phism of BUQ, which induces 32, h; ! in homology and & denotes Whitney
sum.

Corollary 29. (a) H, (BSp; Z,) is an indecomposable N-Hopf algebra.
(b) If g is an U-Hopf algebra endomorphism of H,(BSp;Z,) then g is a
homomorphism of =fR-modules.

Theorem 30. Let p be an odd prime. There are sub-U<R-Hopf algebras H, (BSp),,
of H,(BSp) for 0 < i < 3(p — 3) such that:
() H.(BSp) = @YD, (BSp),,
(b) ay: H,(BU,,) = H,(BSp),,; as UR-Hopf algebras for 0 < i < }(p — 3).
() Z,[[F:]] is isomorphic under conjugation by a, to
() The algebra of %-Hopf algebra endomorphisms of Hy(BSp),,.
(ii) The algebra of AR-Hopf algebra endomorphisms of Hy(BSp),,.
(d) {22 Z [ ;)] is isomorphic under conjugation by a, to
(i) The algebra of N-Hopf algebra endomorphisms of H,(BSp).
(i) The algebra of A=R-Hopf algebra endomorphisms of H,(BSp).

Proof. (a) and (b). Define H,(BSp),; = a.(H,(BU,3)) for 0 < i < §(p - 3).
(c) and (d). Combine (a) and (b) of this theorem with Theorem 14.

Corollary 31. (a) H,(BSp),; is an indecomposable N-Hopf algebra if 0 < i
<Hp-3)

(b) H,(BSp) is an indecomposable A-Hopf algebra if p = 3.

(c) If g is an A-Hopf algebra endomorphism of H, (BSp) or of H, (BSp),, for some
0 < i < ¥(p — 3) then f is a homomorphism of <R-modules.

Theorem 32. (a) The vector space of <R-Hopf algebra maps from H,(BU) to
H,(BSp) are all =R-module homomorphisms and are equal to:
(i) The free left module with basis {a,} over the ring of A-Hopf algebra
endomorphisms of H,(BSp).
(i) A cyclic right module over the ring of U-Hopf algebra endomorphisms of
H,(BU) with generator a,. If p = 2 then this module is free while if p is odd then
this module is a, o TI?Y/2 Z,[[F,]].
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(b) The vector space of N-Hopf algebra maps from H,(BSp) to H,(BU) are all
R-module homomorphisms and are equal to:

(i) A cyclic left module over the ring of U-Hopf algebra endomorphisms of
H,(BU) with generator v,. If p = 2 then this module is free, while if p is odd then
this module is TIE )2 Z [[F;]] © Ya.

(i) The free right module with basis {y,} over the ring of U-Hopf algebra
endomorphisms of H,(BU).

Proof. (a) Let f: H,(BU) — H,(BSp) be a map of A-Hopf algebras. If p = 2,
let f(ap) have h,bf"' as a summand for n > 2 and h, € Z,. Then f
=G hGIVoa, =a, 0 (i, h, E"). If p is odd then f restricted to
H,(BUj,) is zero when i is odd. Our assertions now follow from Theorem 30(b).

(b) (i) The left module in question is isomorphic to the right module of %-Hopf
algebra maps from H*(BU) to H*(BSp) over the ring of %A-Hopf algebra
endomorphisms of H*(BU). Since y*(cy,) = (—1)"k, and y*(czs—y) = O for
n > 1, the reasoning of the proof of (a)(i) applies to this case too.

(ii) Dualize the problem as above and then apply the reasoning of the proof of
(2)(i)-

We now consider BSp X Z = Q(U/Sp). With the notation of Theorem 22,
H,(BSp X Z) = H,(BSp) ® Z,(Z) and the natural map BSp — BSp X Z in-
duces x — x ® [0] in homology. As in the case of BU X Z, we will know the -
action on H, (BSp X Z) as soon as we evaluate Q"(1 ® [1]) for n > 0. Similarly,
there is BO X Z = Q(U/O). H,(BO X Z) = H,(BO) ® Z,(Z) and the natural
map BO — BO X Z induces x — x ® [0] in homology. As above, we need to
calculate Q"(1 ® [1]) for n > 0 to know the action of the Dyer-Lashof algebra
on H,(BO X Z).

Theorem 33. (a) In H,(BSp X Z) forn > 0,
0"(1 ®[1]) = 2"va(P2yp-1)) ® [ 7]
[o*(1 e [1]) = b, ® [2]}
(b) In H(BOX Z) forn 2 0,
0"(1 ® [1]) = %y2yp-1n) ® (7]
[e"(1 ®[1]) =e ®[2]l
Proof. (a) Let @: BU X Z — B Sp X Z be the loops of the canonical projection
U—- U/Sp. Then @ = ax 1. For p an odd prime a,(y,(p2x)) = 2"v,(k).
Hence (a) follows from Theorem 22.

(b) Let fi: BUXZ — BO X Z be the loops of the canonical projection
U — U/O. Then ji(x,n) = (u(x),2n) for all x € BU and n € Z. Hence, as in (a),
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it follows from Theorem 22 that

Q"(] ® [2]) = ann(D(p-l)/z) ® [2p]
[e*(1e[2]) = & ®[4]l

Thus, 2"%,(P(p-1)s2) ® [2P) = Q"(1 ® [2]) = 3, Q' (1 @ [1]) - Q/(1 ® [1]),
and by induction on n we see that Q"(1 ® [1]) = v,(bp-1)2) ® [p). [Thus,
0"(1e1]=0"(18[2]) = 2 ®[4] = (¢, ® [2])*, and hence Q"(1® [1])
=e,®[2]]

Recall that

H*(BO; Z,) = P{w,|n > 1}

as algebras with {(w,) = S/ w; ® w,_; where w, € H,(BO;2Z,) is the nth
Stiefel-Whitney class. Define e, = (w])* and p, = w* in the dual basis of the
basis of monomials in the Stiefel-Whitney classes. Then H,(BO; Z,) = Pfe, | n
> 1} as algebras with Y(e,) = S/=o ¢; ® e,_; and PH,(BO;2Z,) = {p,|n > 1}.
v*(c,) = w? and p,(a,) = € are the values of the canonical maps. Let H
= p o », 50 H,(es,) = €2 and H,(es,-;) = 0, n > 1. Observe that H*(BSO; Z,)
= P{w, | n > 2} as a quotient Hopf algebra of H*(BO; Z,) and that H,(BSO;
Z,) is a sub-A<R-Hopf algebra of H, (BO; Z,). We write H,(BSO; Z,) = P{e, | n
> 2} as algebras with dege, = n. j: BSO — BO, p': BSU — BSO, v': BSO
— BSU and H’ = p’ o »' will denote the canonical maps.

Theorem 34. In H*(BO; Z,) forr > Oandn > 1,

O.w)=Mn-r—-12r—nw,,.

This equation is also valid in H*(BSO; Z,) if r # n — 1 since Q7 '(w,) = 0 in
H*(BSO; Z,).

Proof. By Theorem 7, Qi(w,)’ = »* o Q¥(c,) = (n — r — 1,2r — njw2.,.
H*(BO; Z,) is a polynomial algebra over Z,, and hence has unique square roots
of squares. Thus, Qi (w,) = (n — r — 1,2r — n)w,_,.

Corollary 35. In H,(BO; Z,) forr > Oandn > 1,

Qr(pn) = (n -Lr- ”)pr+n‘
Proof. This corollary is proved by dualizing Theorem 34.
Theorem 36. In H,(BO; Z,) forr > Oandn > 1,

Q'(e,) = (n,r — n— 1)e,,, modulo decomposables,
while in H,(BSO; Z,) forr > Oandn > 2,
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Q' (e) = (n,r —n— 1)e.,, modulo
decomposables if n is not a power of two, and Q'(e},) is always decomposable .

Proof. Combine the map p, (a,) = 2 with Theorem 6 and argue as in the proof
of Theorem 34.

Theorem 37. In H,(BO;2Z,) for r > 0 and n > 1, Q'(e,) has no monomial
summand of product filtration degree greater than r — n + 2 and the only monomial
summand of Q' (e,) of product filtration degree r — n + 2 is e2e{™". Furthermore, if

€y * ey Withn 2> -+ > n,is a summand of Q'(e,) then ny > n.

Proof. This theorem results from combining Theorem 8 with the fact p,(a,)
=e2forn> 1.

Theorem 38. (a) QJH*(BO; Zz) = {ezn | n> 0}.
(b) Q.o Hy(BSO) = {&msys | m > O and n > 0},

Proof. This theorem follows from Theorems 10 and 19 and the facts p,(a,)
=e,n> l,and p,(a) =€ n> 1.

Theorem 39. (a) Z,[[H,]] is the algebra of A-Hopf algebra endomorphisms of
H,(BO; Z,), and every element of Z,[[H,]] is a homomorphism of <R-modules.
(b) The vector space of U-Hopf algebra maps from H,(BU; Z,) to H,(BO; Z,) are
all =R-module homomorphisms and are equal to:
(i) The free left module with basis {y,} over the ring of N-Hopf algebra
endomorphisms of H,(BO; Z,).
(i) The free right module with basis {jn,} over the ring of N-Hopf algebra
endomorphisms of H,(BU; Z,).
(c) The vector space of %-Hopf algebra maps from H,(BO; Z,) to H,(BU; Z,) are
all =R-module homomorphisms and are equal to:
(i) The free left module with basis {v,} over the ring of N-Hopf algebra
endomorphisms of H,(BU; Z,).
(i) The free right module with basis {v,} over the ring of N-Hopf algebra
endomorphisms of H,(BO; Z,).
(d) The vector space of A-Hopf algebra maps from H,(BSO; Z,) to H,(BO; Z,)
are all =R-module homomorphisms and are equal to:
(i) The free left module with basis {j,} over the ring of N-Hopf algebra
endomorphisms of H,(BO; Z,).
(i) The free right module with basis {j,} over the ring of N-Hopf algebra
endomorphisms of H,(BSO; Z,).
(e) Z,[[H,]] is the algebra of A-Hopf algebra endomorphisms of H,(BSO; Z,),
and every element of Z,[[H]] is a homomorphism of =R-modules.

Proof. This theorem is proved in the same way as Theorems 20, 28 and 32.

Corollary 40. H,(BSO; Z,) and H,(BO; Z,) are both indecomposable %-Hopf
algebras.
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5. U, SU, Sp, O, SO, Spin and B Spin. We will use the results of §§3 and 4
together with various suspension maps to study the action of the Dyer-Lashof
algebra on the homology of the infinite classical groups, the infinite spinor group
and its classifying space.

We begin by considering U and SU. The Bott map from BU — Q(SU) induces
an isomorphism in homology. Thus, there is a suspension map o,: H,(BU)
- H,.,(SU) for n > 2. Define f,,, = o,(a,) for n > 1. Then H,(SU) = E{}, |
n > 2} as Hopf algebras and j: SU — U induces a monomorphism in homology.
For n > 1, let o¥: H,(U) = H,,,(BU) denote the suspension map induced by
the universal U-bundle. Then oY restricted to H,(U) is monic, and define
f € H(U) by o¥(f) =a. For n>1, of(f) = (-1)""p, Then H,(U)
= E{f, | n > 1} as Hopf algebras, and H*(U) = E{f* | n > 1} as Hopf alge-
bras using the dual basis of the basis of monomials in the f. H*(SU)
= E{f*|n > 2} as a quotient Hopf algebra of H*(U).

Theorem 41. In H,(U) forr > 0andn > 1,0rin H,(SU) forr > Oandn > 2,

Q) = D™= Lr = n) fourpy)
[Q*(£) = (n = Lr = n)f,).

Proof. The Dyer-Lashof operations send primitive elements to primitive
elements, commute with suspension, and o%(f,) = (—1)"*'p,. Hence this theorem
follows from Theorem 5.

Corollary 42. In H*(U) forr > Oand n > 1,

(D) =) —=r(p=1) = Lpr=n)fr
[Q¥(fR)=(m—-r—-12r—n)fr,]

The same result is valid in H*(SU) if n # 1 + r(p — 1) since Q4 (ft1r(,-1)) =0
[0¥(f%1) = 0]in H*(SU).

Theorem 43. (a) Q_oH, (U; Z,) = { f}.

() Qo Hy(SU; Zy) = {frrsr | n 2 0}

(c) For odd primes p, a Z,-basis for Q_oH,(SU; Z,) is given by { fyerss | B 2> 1,
h#£0modp, h=s(p—1)+r, 1 <r<p—-1, s=3"gsp, 0<s5<p
~l,andifs # Othenr > s > -+ > 5, > 1}.

(d) For odd primes p, a Z,-basis for Q_oH,(U; Z,) is given by { i} U { fens1 | h
>, h#0modp, h=s(p—1)+r, 1 <r<p-—2,and if s+# 0 then s
=Sl sipP'with0 < s, <p—landr> s>+ 25,2 1).

Proof. (a) 0¥(f,) = £, forn > 1.

(b), (c). The map o,: IH,(BU) - H,(SU) induces an isomorphism on inde-
composables. Hence f, € Q_oH,(SU) if and only if a,_;, € Q_oH,(BU). Thus,
(b) and (c) follow from Theorem 10.
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@ 0"(f) = (="' p—iyns for n > 1. Furthermore, if k % 0 modp — 1
then fi.y € Qo H,(U; Z,) if and only if fy; € Q¢ H,(SU; Z,). Thus, (d) follows
from (c).

If p is an odd prime and 0 < i < p — 2, then define H,(U),; = E{fpr | n
>0andn=imodp— 1} and H,(SU),; = E{fpy[n> 1 and n = i mod p
-1}

Theorem 44. (a) The algebra of A-Hopf algebra endomorphisms of H,(U; Z,) is
isomorphic to Z, X Z,.

(b) The identity and zero maps are the only NR-Hopf algebra endomorphisms of
H,(U; Z,).

(c) The identity and zero maps are the only N-Hopf algebra endomorphisms of
H,(SU; Z,).

(d) For p an odd prime, the algebra of %-Hopf algebra endomorphisms of H,(U),,
is isomorphic to Z, if 1 < i < p — 2 and is isomorphic to Z, X Z, if i = 0.

(e) For p an odd prime, the algebra of N-Hopf algebra endomorphisms of
H,(U; Z,) is isomorphic to [I!-, Z,.

(f) For p an odd prime, the algebra of A-Hopf algebra endomorphisms of H,(SU),;
is isomorphic to Z, for 0 < i < p — 2.

(g) For p an odd prime, the algebra of N-Hopf algebra endomorphisms of H,(SU)
is isomorphic to 1172} Z,.

(h) For p an odd prime, the algebra of N=R-Hopf algebra endomorphisms of
H,(U),, or of H,(SU),, is isomorphic to Z,.

(i) For p an odd prime, the algebra of UR-Hopf algebra endomorphisms of
H,(U; Z,) or of H,(SU; Z,) is isomorphic to TI’=} Z,.

Proof. (a) We identify the %{-Hopf algebra endomorphisms g of H*(U; Z,) with
Z, X Z, by mapping g to (a,y) where g(f%) = af% and g(f%) = yf%. We prove
by induction on n that g(f%) = yf%forn > 2. Oy H*(BU) = {cux | k > 0}, and
hence Qy H*(U) = {f% | k > 0}. Thus, it suffices to show inductively that
g(f3) = yf#$ for n > 1. However P*(f$) = f3,, for n > 1 and P*(f$_,)
= f3, for n > 2 from which our assertion follows.

(b) Since Q*(f;) = f, for all n > 1, an A=R-Hopf algebra endomorphism of
H,(U) is determined by its value on f,.

(d) This assertion is proved in the same way as (a) using the following
observations. First, a Z,-basis of Qy H*(U)is given by {f3$. |1 < i < p— land
n > 0}. Secondly,

PP foppr1) = ("' = D) f bnspogpnt
fl<i<p-Ln>220r2<i<p-1,n=1while

PEf8) = firuprgpn 1 <i<p-landn> 1.
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(h) Since Q"(fi) = (=1)™'f,—1yn for n > 1, an AR-Hopf algebra endomor-
phism of H,(U),, is determined by its value on f;.

Corollary 45. (a) H,(U; Z,) = H,(SU; Z,) ® Z,f, as %-Hopf algebras.

(b) H,(U; Z,) is an indecomposable N=R-Hopf algebra and H,(SU;Z,) is an
indecomposable N-Hopf algebra.

(c) If p is an odd prime, then

P2
H,(U; Z,)) = QH,.(U),, ® H,(SU),0 ® Z,f,

2
H,(SU;Z,) = @H,(SU),,

are decompositions of H,(U;Z,) and H,(SU;Z,)) into indecomposable %-Hopf
algebras.

(d) If p is an odd prime then H,(U;Z,) = QF2H,(U),; and H,(SU;Z,)
= ®L2H,(SU),,; are decompositions of H,(U; Z,) and H,(SU; Z,) into indecom-
posable N=R-Hopf algebras.

We will now consider the action of the Dyer-Lashof algebra on the homology
of Sp with Z, coefficients for all primes p and on the homology of SO with Z,
coefficients for odd primes p. Let y: Sp = U and a: U — Sp be the canonical
maps. y induces a monomorphism in homology and we define g, € H,,-,(Sp) for
n > 1by g, = v:'(f2,). Then H,(Sp) = E{g, | n > 1} as Hopf algebras, and
H*(Sp) = E{g* | n > 1} as Hopf algebras where we use the dual basis of the
basis of H,(Sp) given by monomials in the g,. Note that a,(f,) = 28, if n is
even and p is odd, while &, (f,) = 0if nis odd or p = 2. We now let p be an odd
prime, and we observe that the same situation occurs for H,(SO;Z,). Let
p: U > SO and »: SO — U be the canonical maps. Define k, € H,,(SO; Z,)
by h, = v7'(f,) for n > 1. Then H,(SO; Z,) = E{h, | n > 1} and H*(S0; Z,)
= E{h* | n > 1} as Hopf algebras. Furthermore, u,(f2,) = 2h, and p,(f2n-1)
=0forn 2> 1.

Theorems 46 through 51 will be stated for H,(Sp; Z,) and H*(Sp; Z,) for all
primes p. However, these theorems and their proofs for p an odd prime are also
valid for H,(SO; Z,) and H*(SO; Z,) if g,, « and y are replaced by 4,, u and »
respectively.

Theorem 46. In H,(Sp) forr > Oandn > 1,

0'(g,) = (=1)2n = 1,7 = 202,012y p-1)
[Qd'(gn) = (n - Lr- n)gn-o-r]'

Proof. This theorem follows from Theorem 41 and the facts that y, is a
monomorphism and v,(g,) = f, forn > 1.
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Corollary 47. In H*(Sp) forr > 0andn > 1,

0i(g%) = (=1Y@n —r(p— 1) = 1,pr = 2m)82 (/20 (-1
[O¥(g%) = (n—r—1,2r — n)gt,].

Theorem 48. (2) Q_oH,(Sp; Z,) = {&1}.

(b) For p an odd prime, a Z,-basis for Q_oH,(Sp, Z,) is given by {g,|2n— 1
=p'hh0modph=s(p—1)+r, 1 <r<p-2 and if s+# 0 then s
= osipwith0 <s;<p—Tlandr>s2>--- 25, 2 1}.

Proof. v,(g,) = fo, for n > 1. Hence g, € Q_-H,(Sp; Z,) if and only if
fin € QeH,(U). Thus, this theorem follows from Theorem 43.

If p is an odd prime and 0 < i < §(p — 3) then define H,(Sp),; = E{g,|n
> 1and n = i mod {(p — 3)}. Clearly v, induces an isomorphism of A=~~Hopf
algebras from H, (Sp),, to Hy(U)psi41-

Theorem 49. (a) The algebra of A-Hopf algebra endomorphisms of H,(Sp; Z,) is
isomorphic to Z, X Z,.

(b) The identity and zero maps are the only U=R-Hopf algebra endomorphisms of
H,(Sp; Z,).

(c) If p is an odd prime and 0 < i < 3(p — 3) then the algebra of A-Hopf algebra
endomorphisms of H,(Sp),, is isomorphic to Z,,.

(d) If p is an odd prime then the algebra of N-Hopf algebra endomorphisms of
H,(Sp; Z,) is isomorphic to TIY3X7> Z,.

Proof. (a) Observe that Oy H*(Sp; Z,) = {g% | n > 0}. If n > 2 then P*(g$)
= g, and P%(g$_,) = g3, Furthermore, P"(g%) = O for all » > 0. Hence
an %-Hopf algebra endomorphism of H*(Sp; Z,) is determined by its action on
& and g.

(b) 0*(g,) = gu+1 for all n > 1. Hence an AR-Hopf algebra endomorphism
of H,(Sp; Z,) is determined by its action on g;.

(c), (d). These statements follow from Theorem 44 and the fact that H,(Sp),,
= H,(U),2i+1 as AR-Hopf algebras for 0 < i < §(p — 3).

Corollary 50. (a) H,(Sp; Z,) = Z,8 ® E{g, | n > 2} as A-Hopf algebras.

(b) H,(Sp; Z,) is an indecomposable R-Hopf algebra.

(c) If p is an odd prime then H,(Sp),;, 0 < i < 4(p — 3), and H,(Sp; Z;) are
indecomposable N-Hopf algebras.

(d) If p is an odd prime and f is an A-Hopf algebra endomorphism of H,(Sp; Z,)
or of H,(Sp),;, 0 < i < §(p — 3), then f is a homomorphism of <R-modules.

Theorem 51. (a) The vector space of A-Hopf algebra maps from H,(U) to H,(Sp)
are all =R-module homomorphisms and are equal to:

(i) The free right module with basis {a,} over the ring of A-Hopf algebra
endomorphisms of @YD) H,(U),5+1 [He(SU)]
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(ii) The free left module with basis {a,} over the ring of U-Hopf algebra
endomorphisms of H,(Sp).

(b) The vector space of A-Hopf algebra maps from H, (Sp; Z,) to H,(U; Z,) is the
free right module with basis {y, } over the ring of %-Hopf algebra endomorphisms of
H,(Sp; Z,).

() v« and O are the only UR-Hopf algebra maps from H,(Sp; Z,) to H,(U; Z,).

(d) If p is an odd prime then the vector space of U-Hopf algebra maps from
H,(Sp; Z,) to H,(U; Z,) are all’<R-module homomorphisms and are equal to:

(i) The free right module with basis {y,} over the ring of A-Hopf algebra
endomorphisms of H, (Sp; Z,).

(ii) The free left module with basis {y,} over the ring of %-Hopf algebra
endomorphisms of @V2XP") H, (U ),i4:1.

Observe that f: H,(Sp; Z,) — H,(U; 2,), defined by f(g) = 0 and f(g,)
= fo,if n > 2, is a map of A-Hopf algebras. However, f cannot be written as ¥,
followed by an %-Hopf algebra endomorphism of H,(U; Z,).

We now consider H, (SO; Z,) where the action of the Dyer-Lashof algebra is
more complicated than on the homology of the other classical groups. Define
i, € H*1(S0; Z,) for n > 1 by i, = 0% (W,.) where o%,: IH*(BSO; Z,)
— H*(S0; Z,) is the suspension map induced from the universal SO-bundle.
Then H*(SO;Z,) = Pfi,| n > 1} as Hopf algebras. Recall that there are
indecomposable elements u, € H,(SO;Z,), n > 1, with u; =1 and {u,)
= 3o U ® u,_,. Then H,(SO; Z,) = E{u, | n > 1} as algebras, and PH, (SO;
Z,) = {p, | n > 1} where p, = 3™} u,u,,_,., has degree 2n — 1. Note that
v,: H,(S0; Z,) - H,(U; Z,) is the zero map and p,: H,(U; Z,) = H,(SO; Z,)
is given by p, (£) = b n > 1.

Theorem 52. In H*(SO; Z,) forr > 1 andn > 1,

0¥ (i) = (n—r— 1,2r — )iy,
and
o¥-'(i,) =(n-r2r—n-1)i¥
wheren — r = 2"1(2s — 1).
Proof. This theorem follows from Theorem 34 and the observations that
030(W2a) = iy and 030 (Warzn-1y41) = i7"
Theorem 53. In H,(SO; Z,) forr > O0and n > 1,

(a) er(pn) = (n - Lr- n)‘pn+r-
(b) @"(u,) = (n,r — n = V)u,,, modulo decomposables.

Proof. (a) This assertion is the dual statement of Theorem 52.
(b) This result follows from Corollary 35 and the fact 6§°(x,) = p,,, for
n> 1
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In Theorem 56 we will use Theorem 53(b), the comultiplicative Cartan formula
and various identities on binomial coefficients (see Lemma 55) to calculate the
monomial summands of Q"(u,) of product filtration degree two and three. Then
we will show that Q"(u,) has no monomial summands of product filtration degree
greater than three.

Notation 54. Recall J. Adem’s identities for binomial coefficients [2, Appendix].
For any integers a and b, define (7) as the coefficient of x* in the Taylor
expansion of (1 + x)”. Note that (§) = 0if b < 0 and if a > 0, b > 0 then
(¢) = (b,a — b) = a!/b!(a — b)!. J. Adem has proved the following relations:

o AT

for all integers a, b and c.

@ (3)=c(®757") moas

for p any prime, @ < 0 and b any integer.

3) é (‘:)( b ) = (a : b) for all integers a, b and c.

i=0 c—1

For example, (3) follows from the fact that the coefficient of x° in (1 + x)°
- (1 + x)® equals the coefficient of x° in (1 + x)°*°.

Lemma 55. For integers a, b and c the following identities are valid modulo 2:

W ) () weasao
o ()= ()) seraco
() ()

Proof. (A) St.o (7 (") = Shao (TN by (2) = Shao (TN
= (YT by (2) = ("““') by (1).
(B) -, (""')(”""') = { 6 (7)) where j=i—a = 32400
SN = S (EE) by () = S CTH(EES) = () by (2)
and (1).
(C) This identity follows from (1).

Theorem 56. In H,(SO; Z,) forr > 0andn 2> 1,

0, = M§>0 (n—a,r—n—->b-Duuu,.

a+b+c=r+n

e

©
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Proof. We prove this theorem by induction on r + n and for fixed r + n by
induction on r. The cases r = 0 are trivial. Now assume the induction hypothesis.
Let A, ..., be the coefficient of u, ---u;, in Q"(u,) if 1 <4 <---<i, and
Stiiy,=r+n.

We begin by calculating A,,.,-, for 1 < ¢ < [}(r + n)] which the theorem
asserts is (n,r —t—n—1)+ (n,t = 2n—~ 1) + (n — t,r — n — 1). Consider the
coefficient of ¥, ® u,,,_, in the equation

® Vo Q) =3 5 0'w) @ 0.

Npsnt + (mr—n = 1) = JmeC-L=0G ¢t — 2§ — N)n = iyr +2i—t—n-—1).
Hence

nof—i=1\[fr+i-t-1 -t-1
N G (Gr e Haral)

+(nt=2n-1)

ECTT0TTT) e

=mr—-t-n-ND)+@mt-2n-1)+Mm-t,r-n-1)

by (C), (B).

We next calculate Ajp,4pg-p for 1 Sa<b<r+n-a-b<r+n-2
which the theorem asserts is (n—b,r—a—n—1)+@n—-ar—-b-n-1)
+ (n—a,a+ b—2n—1). Consider the coefficient of #,,, ., ® 4,1, in (*)
above.

}‘a.b.r+n-a-b + Aa.r-'-n--a + Al’.H-»—b

min(n—1,r +n—a—b-1)
- b Gr+n—a-b-2i—1)
i=

‘n=-ib+2i-2n-1)+(n—ia+2i—-2n-1)
+(n—a-ia+b+2-2n-1)

Thus’ Aa.b.r-o-n-a—b = Aa.H-n—n + }‘b,r«m-b + 2:{'-0 "”T"'H)(b':ﬂ") + (n9b - 2n
~D+(r—n—a—-b-1) [+ i n2>b)

[+ Slarinas CNCRETY) i n2r+n—a-b] + 3L (")
(R +ma-2n-D)+(r-n-a-b-1) [+ S5
o) if n>al [+ s () i n2r+n—a-b]
+ 3o (YD) + (- a,a + b - 20— 1) [+ DB ()

* ('75:'-7') if n2 b] = Ac.r-o-n-a + Al’.M-»—b + ('-:-l) + (n9b -2n- l) + ('T-z")
+@EE A+ +ma-22- D+ () + (R + (RN +(n-aa
+b-2n-1)+ (5" by (O), (A), (B), (O), (A), (B), (C), (A)
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=m-br—-a-n-1)+(m—-ar-b-n-1)

+n—aa+b-2n-1) ifa+b<r
=Mn-aa+b-2n-1) ifa+b>r
=(m-br-a-n—-1)+@m—-ar-b—-n-1)+Mn-aa+b—-2n-1)

We finally calculate that A,y 4p-g-p-. = 0for 0 <a<b<c<r+n-—a
—b—c < r+ n-3.1Itis clear that our inductive method of calculation will

then imply that A, ,;, =0if 1 <4 <--- <ip Simyiy=r+nand 1> 4
Consider the coefficient of #,,,-4-5-. ® U, Uy u, in (*) above.

Aa.l:.c:,r-!-»-a-b—t: + >‘a,b,r+n-a-b + Aa,c:,r+rr—a—¢: + Ab.¢~.r+n—b—¢

min(n—1,r+n—a—b-c—1)
= > Gr+n—a—-b-c-2i-1)

‘(n-b-ib+c+2i-2n-1)+(n—a—-ia+c—-2n+2i-1)
+(m—a—ia+b-—2n+2i—-1)
Thus,

Aa,la,o:;-&»n-c—b—:: = Aa,b.H-n-a-b + )‘a.c.r-o-n-a-c + >‘lu:.r+n—b-t

"y tn—a-b-c—-i-1\fc-n+i-1
+2( i )( n—b-i

i=0

+(m—bb+c—-2n-1)

cfr+n—-a—-b-c—i-1\fc-n+i-1)\.
[+2( ; (NS ELEY]

+"§(r+n—a—b—c-i-l)(c—n+i—l)
< i n—a-i

+(n—aa+c—-2n-1)

cfr+n—a—-b—-—c—-i—-1\fc—n+i-1)\.
[+2( ; [N EEEY)

n-a -— pa— —_— —_—f -
[ + S (r +n-a b c—i—1 )
i=r+n—a—b—c i

(c_"+‘—l)ifr$b+c]

n—a-—i
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+"§‘(r+n—a—l?-c—i—l)(b—n-i—i-jl)

fr i n—a-i

+(n—aa+b—-2n-1)

n_b — —_ - __‘_ - .—
[+z(r+n a f) c—i l)(b”ﬁ:_'_il)ifan]
i=0

n-a r+n—a—b-—c—i-1)(b-—n+i—l)
[+ l-r+r§a—b—t( i n—a-i

ifrgb+c]

r—a—-b-1
= Aa,lb,r‘l-n—a--b + >‘a,c:.r+n«a-¢.- + >‘b¢c,r+n—b—a + ( n—>b )

+(n—b,b+c—2n-1)+("""")
n—=¢«

+(’_a—b—l)+@—am+c—2n—0
n—a
+ -b-c-1 c—n-—1
n-c b+c—r
+(r—a—c—l)+@—am+b 2n-1)
n—a
r—b—-—c—1 -n-—1
1 G B (A

by (), (A), (C), (A), (B), (C), (A), (B)

0 fr>b+c
(c+n—r) c+n-—r)_0
b+c—-r)

ifr <b+cby(2sincee>n>b.

[

Theorem 57. QGQH‘(SO; Zz) = {uzn I n 2 0}.

Proof. 0§°(1;) = bi4) for k > 1. Hence w;, € Q_oH,(SO; Z,) if and only if
Qi(W4y) = Oforall0 < i < k,i.e.if and only if (k — i,2i — k — 1) = O for all
0 < i < k. This occurs if and only if k is a power of two.

Theorem 58. (a) The algebra of N-Hopf algebra endomorphisms of H,(SO; Z,) is
isomorphic to Z, X Z,.
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(b) The identity and zero maps are the only NR-Hopf algebra endomorphisms of
H,(S0; Z,).

Proof. This theorem follows from Theorem 44(a) and the fact that p*(i,) = f*
forn > 1.

Corollary 59. (a) H*(S0; 2,) = P{i,} ® H*(Spin; Z,) is a decomposition of
H*(S0; 2,) into indecomposable N-Hopf algebras.
(b) H,(SO; Z,) is an indecomposable UR-Hopf algebra.

Theorem 60. (a) The vector space of U-Hopf algebra maps from H,(U; Z,) to
H,(SO; Z,) is equal to:
(i) The free right module with basis {j1,} over the ring of N-Hopf algebra
endomorphisms of H,(U; Z,).
(ii) The free left module with basis {p,} over the ring of N-Hopf algebra
endomorphisms of H,(SO; Z,).
(b) 1, and the zero map are the only maps of U=R-Hopf algebras from H,(U; Z,)
to H,(SO; Z,).
(c) The zero map is the only map of Hopf algebras from H, (SO; Z,) to H,(U; Z,).

Recall that H,(0; Z,) = H,(0; Z,) ® Z,(Z,) as Hopf algebras where Z,(Z,)
is the group algebra of Z, over Z,. For x € H,(S0), we write x and x ® [-1] to
designate elements in the homology of the two components of O where we
identify H,(SO) with its image in H,(O) under the canonical map. Since
x®[-1] = x- (1 ®[~1]) for x € H,(SO; Z,), we will know the action of the
Dyer-Lashof algebra on H,(0; Z,) from Theorems 46, 56 and the multiplicative
Cartan formula as soon as we compute Q"(1 ® [-1]) forn > 0.

Theorem 61. In H,(0; Z,) forn > 1,
°(1®[-1)=1®[-1] and Q"1 ®[-1])=0
[Q(1e[-1]=1 and Q"(1®[-1]) = u,]
Proof. We compute Q"(1 ® [-1]) by induction on n > 0. Q°(1 ® [-1])

=11 =01 [QUe[-1)=>0&[-1])>=1.If n>1 then
the induction hypothesis and the comultiplicative Cartan formula imply that

0"(1® [~1] = 1) = Myppm—y ® [-1] [@"(1 @ [=1] = 1) = 4, = Ab(y2)m+n)]

for some A € Z, [with the convention that A = 0 if n is even]. Now applying o2
to this equation, we see that A = 0 [by Corollary 35] since

1 @[-1]-1)=0[R(1@[-1]-1) = «]

and 02 (Ay/2np-1)) = (DY g sty [02(Dn) = P2, and 0Q(,) = Dpei]-
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Corollary 62. (2) Q_-H,(0; Z,) = {1 ® [-1]}.
(b) If p is an odd prime then

0.H(0;Z,)) = QH.(S0;Z,) U {1 ® [-1]}.

Let #: Spin — SO be the universal covering projection which induces Bn:
B Spin — BSO. In homology with Z,-coefficients for p an odd prime, 7, and B7,
are isomorphisms of A=R-Hopf algebras, and hence Theorems 24 through 32 and
46 through 49 describe the action of the Dyer-Lashof algebra in this case. In
cohomology with Z,-coefficients, n* and Bn* are epimorphisms. Thus, write
H*(Spin; Z,) = P{i, | n > 2}and H*(B Spin; Z,) = P{w, | n > 4,n + 2k + 1}
as quotient Hopf algebras of H*(SO; Z,) and H*(BSO; Z,) respectively. We can
write H,(Spin; Z,) = E{u,|n > 3 and n # 2% k > 2} and H,(B Spin; Z,)
= Ple}, | n > 4,n # 2% + 1} as algebras where n, () = u, and (B7).(¢?) = €,
modulo decomposables if n # 22 + 24,0 < a < b.

Theorem 63. (a) In H*(Spin; Z,) forn > r+ 12> 1,
Q%'(in) = (n -r-= 1’2’ - n)in—r and Qﬁ -I(in) = (n - ”2’ -n- 1)’:2'

wheren —r = 2"'(2s — 1) and iy = 0.
(b) In H*(B Spin; Z,) forn >r+3 > 3andn # 2* + 1,

Q;(Wn) =Mm-r-12r- nW,_,
with the convention that wy.,, = 0 for k > 2.

Proof. n* and (B7)* are epimorphisms, so this theorem follows Theorems 34
and 52.

Theorem 64. (a) In H,(Spin; Z,) forn > 3 andr > 0,

Q' () = (n,r — n— Du,,, modulo decomposables .
(b) In H,(B Spin; Z,) forn > 4,n * 2+ landr > 0,

Q'(e%) = (n,r — n — ey, modulo decomposables

if n is not a power of two or a sum of two powers of two, for in that case, Q' (e?) is
always decomposable.

Proof. If n = 2**' orn =2°+2%,0<a<b,and k > 1, and r > O then
Q4 (bps,) = 0 and hence Q’(e}) is decomposable where {p,,,} = PH"*(B Spin;
Z,). 14(4,) = u, modulo decomposables for n > 4 and (Bn,)(e”’)) = €, modulo
decomposables if n 5= 2¢+!, n = 2% + 2¢ for all 0 < a < b and k > 1. Hence
this theorem follows from Theorems 36 and 53.
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Theorem 65. (a) Q_oH, (Spin; Z,) = {thmn |0 < m < n}.
(b) Qo H,(B Spin; Z;) = {eyespp42: |0 < a < b <}

Proof. (a) From Theorem 64 we see thatif k = 2™ + 2"h with0 < m < nand
h odd then Q*2"~?"(uym,5) = u; modulo decomposables. Hence {tjmipn |0 < m
< n} generates H, (Spin; Z,) as an —R-algebra. By Theorem 64, it is easy to see
that u#jm 2 is «R-indecomposable for 0 < m + n.

(b) If n = 3., 2" with ¢t > 4 then Q*"(e/_,») = €’, modulo decomposables.
Hence {eje,2642 | 0 < a < b < ¢} generates H, (B Spin; Z,) as an R-algebra. By
Theorem 64 we see that ey, qs.,,c is R-indecomposable forall0 < a < b < c.

Let F”* be the locally nilpotent endomorphism of H*(B Spin; Z,) defined by
F"*(wy) = wi and F"*(wy.,,) = 0 for k > 2 with the usual conventions. Thus,
Z,[[F”*]] is a ring of A=~-Hopf algebra endomorphisms of H, (B Spin; Z,).

Theorem 66. (a) The identity and zero maps are the only N-Hopf algebra
endomorphisms of H, (Spin; Z,).

(b) The natural inclusion 1, and the zero map are the only N-Hopf algebra maps
from H,(Spin; Z,) to H,(SO; Z,).

(c) The algebra of N-Hopf algebra endomorphisms of H,(B Spin; Z,) are all
homomorphisms of <R-modules, and this algebra is isomorphic to Z,[[F7]].

(d) The vector space of A-Hopf algebra maps from H,(B Spin; Z,) to
H,(BSO0; Z,) are all homomorphisms of <R-modules, and this vector space is isomor-
Dphic to:

(i) The free right module with basis {Bvn,} over the ring of N-Hopf algebra
endomorphisms of H,(BSO; Z,).

(ii) The free left module with basis {Bn,} over the ring of %-Hopf algebra
endomorphisms of H,(B Spin; Z,).

Proof. (a), (b). These assertions follow from Theorems 58 and 59.

(c), (d). As in the proof of Theorem 20, one first proves (d)(i). It then follows
that conjugation by Bn* is a well-defined isomorphism from the algebra of -
Hopf algebra endomorphisms of H*(BSO; Z,) to the algebra of %-Hopf algebra
endomorphisms of H*(B Spin; Z,). Thus, (c) follows from Theorem 39(e). Now
(d)(ii) is clear.

Corollary 67. H,(Spin; Z,) and H,(B Spin; Z,) are indecomposable %-Hopf
algebras.

6. Homogeneous spaces of the classical groups. We will use the results of the
preceding sections to compute the action of the Dyer-Lashof algebra on the
homology of UfSp, SU/Sp, U/0O, U/SO, SU/SO, Sp/O, Sp/SO, Sp/U, Sp/SU,
S0/U, SO/SU, 0/SU, 0O/U, SO/Sp and O/Sp. As applications we compute the
<R-algebra indecomposables and the algebra of A~2Hopf algebra endomor-
phisms of the homology of each of these spaces. If H is a closed subgroup of a
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topological space G then we will let 7(G, H) denote the canonical projection from
G to homogeneous space of left cosets G/H.

Define Jn € iIMﬁJ(U/Sp) forn 21 b)’ Jn = "(Ua Sp)#(fb:—l)° Then Ht(U/Sp)
= E{j,| n > 1} as Hopf algebras and H,(SU/Sp) = E{jj,| n > 2} as Hopf
algebras. If p is an odd prime, define j, € H,,-3(U/0; Z,) by

jn = "(U’ O)t(on-l)'

Then H,(U/O;Z,) = H,(U/SO;Z,) = E{j,|n > 1} as Hopf algebras and
H,(SU/SO;Z,) = E{j,| n > 2} as Hopf algebras. We will state and prove
Theorems 69 through 70 for H,(U/Sp; Z,) and H,(SU/Sp; Z,) with p any prime.
However, if p is an odd prime, these theorems are also valid for H,(U/0O; Z,)
= H,(U/SO0; Z,) = H,(U/Sp; Z,) as U=R-Hopf algebras and for H, (SU/SO; Z,)
= H,(SU/Sp; Z,) as A=R-Hopf algebras.

Theorem 68. In H,(U/Sp) for n > 1, r > 0 and in H,(SU/Sp) for n > 2,
r>0,

QGa) = (1*'@n = 2,r = 2n + Djpryapiomy)
[Q"(jn) = (n -Lr- n)jn+r]'

Proof. This theorem follows from Theorem 41 and the definition
Jn = MU, Sp)e (f2n-1)-

Theorem 69. (2) Q_oH, (U/Sp; Z,) = {i}.

(b) Qo Ho(SUSSP; Z3) = {jprsa | n 2 0}.

(c) For p an odd prime, a Z,-basis for Q_oH,(U/Sp; Z,) is given by {j, | n > 2,
2n=-2=p'h h0modp, h=s(p—1)+r,2<r<p-landif s+0
thens = 3l o5;p,0 < 5; <p—1withr 252> - 252 1}U {ji}

(d) For p an odd prime, a Z,-basis for Q_oH,(SU/Sp; Z,) is given by { j, | n 2> 2,
n-2=ph h£0modp, h=s(p—1D)+r, 1 <r<p-lLandif s+#0
thens = 3k 05,00 < s5;<p—1withr > 55> -+ > 5,21}

Proof. Clearly Q_¢H,(U/Sp) = m(U,Sp)(QcH,(U)) and Q_¢H,(SU/Sp)
= m(SU,Sp)+(Q_oH,(SU)). Hence this theorem follows from Theorem 43.

Theorem 70. (a) The algebra of A-Hopf algebra endomorphisms of H,(U/Sp; Z,)
is isomorphic to Z, X Z,.

(b) The identity and zero maps are the only A=R-Hopf algebra endomorphisms of
H,(U/Sp; Z,).

(c) The identity and zero maps are the only N-Hopf algebra endomorphisms of
H,(SU/Sp; Z,).

(d) If p is an odd prime then the algebra of N-Hopf algebra endomorphisms of
H,(UfSp; Z,) is isomorphic to [[¥2X*~) Z,
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(e) If p is an odd prime then the algebra of NR-Hopf algebra endomorphisms of
H,(U/Sp; Z,) is isomorphic to TP Z,.

(f) If p is an odd prime then the algebra of N-Hopf algebra endomorphisms of
H,(SU/Sp; Z,) is all sR-module homomorphisms and is isomorphic to [[¥3X*) Z,,

Proof. (a) From Theorem 44(a), it is clear that the vector space of A-Hopf
algebra maps from H,(U; Z,) to H,(U/Sp; Z,) is isomorphic to Z, X Z,. This
vector space is clearly the free module with basis {m(U, Sp), } over the ring of %A-
Hopf algebra endomorphisms of H, (U/Sp; Z,).

(b) @*(ji) = ji,+1 for n > 1. Hence an A=~-Hopf algebra endomorphism of
H,(U/Sp; Z,) is determined by its value on j.

(c) This assertion follows from (a).

(d), (e), (f). #(U,Sp), induces an isomorphism of A~-Hopf algebras from
QWD H, (U),, to H,(U/Sp; Z,) while n(SU, Sp), induces an isomorphism of
AR-Hopf algebras from @V2XPVH,(SU),, to H,(SUSSp;Z,). Hence our
assertions follow from Theorem 44.

Corollary 71. (a) H,(U/Sp; Z,) = H,(SU/Sp; Z,) ® Z,j, as A-Hopf algebras,
and H,(SU/Sp; Z,) is an indecomposable U-Hopf algebra.

(b) H,(UfSp; Z,) is an indecomposable AR-Hopf algebra.

(c) If p is an odd prime, then

2Xp-3)

W
H(USD: Z,) = Z,j, @ Hu(SU)e ® @ Ha(U)ya

and

(/2 p-3)
H(SUSp;Z) = Q@  Ho(SU)p

as decompositions of H,(U/Sp; Z,) and H,(SU/Sp; Z,) into indecomposable %-Hopf
algebras.

(d) If p is an odd prime then H,(UfSp;Z,) = QVXr3)H,(U),y and
H,(SUSSp; Z,) = Q@V2X»)H,(SO), are decompositions of H,(U/Sp; Z,) and
H,(SU/Sp; Z,) into indecomposable AR-Hopf algebras.

Let A: U/O — BO be the canonical map. Then A induces a monomorphism in
homology with Z,-coefficients. Define k, € H,,_,(U/O; Z;) by k, = A3 (D2-1)
for n > 1. Then H,(U/O; Z;) = Plk, | n > 1} as Hopf algebras, H, (U/SO; Z,)
= P{kyy,k, | n > 2} ® E{x} as Hopf algebras and H,(SU/SO; Z,) = P{ky/,, k|
n > 2} as Hopf algebras where k;, = Ay'(p;), N': U/SO - BSO and x
= (U, $0).(f) € H(U/SO; Z,).

Theorem 72. In H,(U/0;Z,) if r>0, n>1 and in H,(U/O;Z,) or
H,(SU/SO;Z,) ifr>20,n > 1,

Q' (kspy) = (r+ DkF' and Q'(k,) = (n = 1,r = n)k}’
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where r+2n—1=2°Q2t - 1) in H(U/O;Z,) or if t > 1, and r+2n—1
= 251t = 3/2 otherwise. In H,(U/SO; Z,) all Dyer-Lashof operations on x are
zero.

Proof. This theorem for H, (U/O; Z,) and H, (SU/SO; Z,) follows from Corol-
lary 35 and the fact that A,, A, are monomorphisms. Since H,(SU/SO; Z,)
— H,(U/SO; Z,) is a monomorphism, Q' (k,) is as claimed in H, (U/SO; Z,). For
r > 0, Q'(x) is primitive and in the kernel of A,. Hence Q"(x) = 0.

Theorem 73. (2) Q0 H,(U/0; Z,) = {k}.
(b) Qo H,(U/SO; Z,) = {kyrsy | 1 > 0} U {kyjy, x}.
() Qo H,(SU/SO; Z,) = {kyrsy | m 2 O} U {kypp ).

Proof. (a) 0**(k;) = k,4, for n > 1. Hence k, generates H,(U/O; Z,) as an <<~
algebra.

(b)(c). As'oof? induces an isomorphism from Q_H,(SO;Z,) to
Q.+H,(SU/SO; Z,). Thus, (c) follows from Theorem 57. Clearly Q_H, (U/SO;
Z)) = Q4H.(SU/SO;Z,) U {x).

Theorem 74. (a) The identity and zero maps are the only U-Hopf algebra
endomorphisms of H,(U/O; Z,) and of H,(SU/SO; Z,).

(b) The algebra of A-Hopf algebra endomorphisms of H,(U/SO; Z,) are all R-
module homomorphisms and this algebra is isomorphic to Z, X Z,.

Proof. (a) A, is an isomorphism of %A-Hopf algebras from H,(U/O;Z,) to
PH,(BO; Z,). If f is an %-Hopf algebra endomorphism of H,(U/O; Z,) then
£ (k,) is primitive and hence equals either k, or zero. Hence the algebra of -
Hopf algebra endomorphisms of H, (U/O; Z,) is a product of Z,’s, one factor for
each k, which is annihilated by /%°. However, such k,’s correspond under A,
and dualization to elements of odd degree in Qy H*(BO; Z,) = {wy | k > 0}.
Now make this same argument with BO replaced by BSO to show that the
algebra of %-Hopf algebra endomorphisms of H, (SU/SO; Z,) is a product of Z,’s
one factor for each element of degree two or of odd degree in Qy H*(BSO; Z,)
= {wy |k > 1).

(b) H,(U/SO; Z,) is clearly isomorphic to H,(SU/SO;Z,) ® E{x} as AR-
Hopf algebras.

Corollary 75. (a) H,(U/O; Z,) and H,(SU/SO; Z,) are indecomposable N-Hopf
algebras.
(b) H,(U/SO; Z,) = H,(SU/SO; Z,) ® E{x} as AR-Hopf algebras.

The preceding considerations also apply to H,(Sp/O; Z,) and H, (Sp/SO; Z,).
Let A: Sp/O — BO and \: Sp/SO —> BSO be the canonical maps Then A, is a
monomorphism, and let a; = A,'(9yi,), i > 1, and v, = A;' (Yo (byy)), i > 1.
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Then H,(Sp/0O;2,) = Pla;,v;li > 1] as algebras with the a; primitive and
W) =v0®1+a,Qa+1®y,. Similarly, if y = (Sp,S0),(g) then
H,(Sp/S0; Z,) = Plai, ¥, 632, Ys2li > 2] ® E[y] with y, o} primitive and y(})
=v;® 1+ a;®a;+ 1® ¥;. Then by Corollary 35,

Q@) =02n—=2,r=2n+ 1)a? and Q'(v,) = 2n — 2,r — 2n + 1)y¥

forr> 1,n>1and r+2n—1 = 2'(2s — 1). The above formulas also hold
for Q'(a,) and Q’(y,) if n > 1 with the conventions that (a})* = a3/, and
(v1)* = v3. Also, note that y = m(Sp,SO),(g;), and hence Q"(y) = 0 for all
r>0.

Let & Sp/U — BU be the canonical map. Then §, is a monomorphism in
homology. Define n; € H,_,(Sp/U; Z,) for i > 1 by n, = £;'(by—1). Then
H,(Sp/U; Z,) = P{n; | i > 1} as Hopf algebras, and H, (Sp/SU; Z,) = P{ny/,n, |
i > 2} as Hopf algebras.

Theorems 76 through 79 are proved in exactly the same way as Theorems 72
through 75.

Theorem 76. In H,(Sp/U;2,) if r > 0 and k > | and in H,(Sp/SU; Z,) if
r>20 k22

0% (ny) = (r + D',
0¥(m) = (k — 1,r — k)n¥'

where r+2k —1=2°Q2t— 1) in H,(Sp/U;Z,) or if t > 1, and r + 2k~ 1
= 25*1 t = 3/2 otherwise.

Theorem 77. (a) Q_H,(Sp/U; Z,) = {m}.
() Qo H,(Sp/SU; Z,) = {nyyy | i 2> 0} U {ny,}.

Theorem 78. The identity and zero maps are the only U-Hopf algebra endomor-
Pphisms of H,(Sp/U; Z,) and of H,(Sp/SU; Z,).

Corollary 79. H,(Sp/U; Z,) and H,(Sp/SU;2,) are indecomposable %-Hopf
algebras.

If p is an odd prime then &: Sp/U — BU induces a monomorphism in
homology with Z, coefficients. Define m, € Hy._,(Sp/U; Z,) by induction on k.
Let m = &' (&) and myyy = &7 (@41 — Ziey May-2i42)- Then H,(Sp/U; Z,)
= P{m | k > 1} as algebras. £* is an epimorphism, and H*(Sp/U;Z,)
= H*(BU)/I where I is the ideal generated by {Zio (=1)'c;co | n > 1}.
Hence H*(Sp/U; Z,) is generated as an algebra by the images of the odd Chern
classes, so we know the action of <R on H*(Sp/U; Z,) by Theorem 7. Recall
that H,(Sp/SU; Z,) = P{m, | k > 2} as algebras and H*(Sp/SU; Z,) is isomor-
phic to the quotient algebra of H*(Sp/U; Z,) by the ideal generated by the first
Chern class. Thus, we also know the action of <°° on H*(Sp/SU; Z,). For p still
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an odd prime, H,(SO/U;Z,) = H,(Sp/U;Z,) as AR-Hopf algebras and
H,(SO/SU; Z,) = H,(Sp/SU; Z,) as A=R-Hopf algebras. Hence the preceding
remarks apply to H,(SO/U; Z,) and H,(SO/SU; Z,) as well.

Theorem 80. Let p be an odd prime. In H,(Sp/U;Z,) = H,(SO/U; Z,) for
r> 0,k > 1and in H,(Sp/SU; Z,) = H,(SO/SU; Z,) forr > 0,k > 2,

0*%(m,) = (2k — 1,4r — 2k)my,, modulo decomposables.

Proof. £, induces a monomorphism on indecomposables. Hence this theorem
follows from Theorem 6.

Theorem 81. Let p be an odd prime.

(@) A Z-basis for QoH.(Sp/U;Z,) = Q_oH,(SO/U; Z,) is given by {m, |
2k—1=hp', h#0modp, h=s(p—-1)+r,1<r<p-1,andifs+#0
thens = o850, 0< s; <p—1withr>55>--->5,2>1}.

(b) A Z,-basis for Q_oH,(Sp/SU; Z,) = Q_oH,(SO/SU; Z,) is given by {m; |
m, € QoH,(Sp/U; Z,) and k > 2} U {Myeqyp-iyeyy | € 2 0, s > 0, (e,5) # (0,
0)}.

Proof. This theorem follows from Theorems 10 and 19.

Recall from Theorem 14 that for p an odd prime H*(BU;Z,)
= QFr3H *(BU,,;; Z,) as A=R-Hopf algebras, and I is the ideal generated by the
image of a*: H*(B Sp; Z,) > H*(BU; Z,). That is, [ is the ideal generated by
QYINr-3) H*(BU,x; Z,). Hence H*(Sp/U; Z,) = Q@Y2XrIH*(BU,_,; Z,) as
AR-Hopf algebras. We thus have deduced the following theorem from Theorem
14.

Theorem 82, Let p be an odd prime. Every U-Hopf algebra endomorphism of
H,(Sp/U; Z,) = H,(SO/U; Z,) or of H,(Sp/SU; Z,) = H,(SO/SU; Z,) is a ho-
momorphism of <R-modules and this algebra is isomorphic in both cases to
Zp[[ﬁ’i.:h”-’F ’1;-2]]'

(SO, U)*: H*(SO/U; Z,) - H*(SO;Z,) is a monomorphism. Define s,
€ H*?*(SO/U;Z,) by s, = n(SO,U)*-'(i?). Then H*(SO/U;2Z,) = P{s, | ¢
> 1} as Hopf algebras. Let V¥, = m(SO,u);'(u,) € H,(SO/U;Z,). Then
H,(SO/U;Z;) = E{V;|t > 1} as algebras and W(¥;)) = /., ¥, ® V. Also,
recall that H*(SO/SU; Z,) = Piy,s, | t > 2} and H,(SO/SU; Z,) = E{u,u,, V; |
t > 2} as algebras with u primitive, Y(u;) = 4, ® 1 + 4, ® u; + 1 ® u, and
W¥) = Zj=o ¥, ® ¥_;. Note that for n > 1,

(SO, SU ) () = ¥,, m(SO,SU )y (uzo-1) = ¥y
with the convention that V] = u,.

Theorem 83. In H*(SO/U; Z,) for r > 0, t > 1 and in H*(SO/SU; Z,) for
r>0,12>2,

Q¥G)=@—-r—1L2r—09s._, and Q¥**s)=(—-r—1,2r—t+ 1)s*
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wheret + r = 2"'(2n - 1).

Proof. This theorem follows from Theorem 52 since #(SO,U)* and #(SO,
SU)* are monomorphisms.

Theorem 84. (a) In H,(SO/U; Z,) forr > 0,t > 1,
o*W)= 3 (t-ar-t=-b-1D)LRKY.

at+btc=r+t

(b) In H,(SO/SU; Z,) forr > 0, > 1,
QZ'(K)= 2 (""a.'—l—b"l)szK,

a+btc=r+t
Q"+'(V.)=':§’ S lt-j-lLr-t-b)

=1 a+b=t+r-j

+@=br—t—j-0D)+@-br-t-al%Vu,
Q¥ \w)=(+1) 3 VW and Q)= 3 VWu
a+b=r+1 a+b=r
with the convention Y = u,.

Proof. This theorem follows from Theorem 56 since #(SO, U), and #(SO, SU ),
are onto.

Theorem 85. (a) Q_0H,(SO/U; Z,) = (Vs | n > 0}
(b) Qo Hu(SO/SU; Z,) = (V3 | n > 1} U {1, uy).

Proof. Clearly Q_H,(SO/U;Z,) = #(SO,U),(QxH.(SO;Z,)) and
Q.-H,(SO/SU; Z,) = n(SO, SU ), (Q_¢H,(SO; Z,)). Hence this theorem is a
consequence of Theorem 57.

Theorem 86. (a) The identity and zero maps are the only U-Hopf algebra
endomorphisms of H,(SO/U; Z,).

(b) The algebra of N-Hopf algebra endomorphisms of H,(SO/SU; Z,) is isomor-
phic to Z, X Z,.

(c) The identity and zero maps are the only N=R-Hopf algebra endomorphisms of
H,(SO/U; Z,).

Proof. This theorem can be derived from Theorem 58.

Corollary 87. (a) H,(SO/U; Z,) is an indecomposable N-Hopf algebra.

(b) H*(SO/SU; Z,) = P{iy} ® P{V,| t > 2} is a decomposition of H*(SO/SU;
Z,) into indecomposable N-Hopf algebras.

(c) H,(SO/SU; Z,) is an indecomposable U R-Hopf algebra.

Note that H,(O/U) = H,(SO/U) ® Z,,(Zz) and H,(O/SU) = H,(SO/SU)
® Z,(Z,) as Hopf algebras, where Z,(Z,) is the group algebra of Z, over Z,. For
x an element of H,(O/U) or H,(O/SU) let x and x ® [—1] designate elements



HOMOLOGY OF THE CLASSICAL GROUPS 121

in the homology of the two components. We will have complete information
about the action of the Dyer-Lashof algebra on the homology of these two spaces
as soon as we know Q'(1 ® [-1]) for r > 0.

Theorem 88. In H,(0O/U) or H,(O/SU) forn > 1, 0°(1® [-1]) = 1 ® [-1]
and Q"(1® [-1]) = 0[Q*(1 ® [-1]) = ¥ and

0*'(18[-1]) =0 in H,(0/U; Z,)

while Q¥(1 ® [-1]) = ¥ and Q*'(1 ® [-1]) = ¥_,u, in H,(0O/SU;Z,) with
the convention V, = u,).

Proof. 7(0, U),(1 ® [-1]) = 1 ® [-1] and (0, SU),(1 ® [-1]) = 1 & [-1].
Hence this theorem follows from Theorem 61.

The preceding considerations also apply to H,(SO/Sp; Z,) and H,(0/Sp; Z,).
Note that 7(SO,Sp), is an epimorphism. Let u, = #(SO,Sp),(u,). Then
H,(SO/Sp; Z,) = E[ujjn > 1 and n # 3mod4] as algebras with (u))
= >0 u; ® u,_; using the convention ujy,; = 0,k > 0.

By Theorem 56, forr > Oand n > 1,

QW)= I @—-ar—n-b- Duuyu.

ab,c20
at+b+c=r+n

Observe that H,(0O/Sp; Z,) = H,(SO/Sp; Z,) ® Z,(Z,) and Q'(1 @ [-1]) = u;
for r > 0 by Theorem 61.

7.Im J, BIm J and BBSO. We will calculate the action of the Dyer-Lashof
algebra on H,(ImJ;Z,) and H,(BImJ;Z,) for p an odd prime and on
H,(BBSO; Z,) for all primes p. In particular, J. Stasheff [22] showed that
H*(BIm J;Z,) = H*(BO),, ® H*(SU),, and H*(ImJ;Z,) = H*(BO),,
® H*(S0), ,, as Hopf algebras over the subalgebra A’ of ¥ generated by
{" | n > 0}. We will show that these decompositions are also valid over the
subalgebra <R’ of # generated by {Q" | n > 0}. iy
"Recall from J. Stasheff [22] that there is a fibration BUQ, = BImJQ,
— BBUQ, and BBUQ,=~ SUQ, where BImJ = T]], yin BImJQ,,
H*BImJ;Z,) = H*(BIm JQ,; Z,) and

A*(BImJQ,;Z,) =0

if g is prime, ¢ # p. In both H*(BU; Z,) and H*(B Im J; Z,) there are defined
Whu classes g, of degree 2n(p — 1) forn > 1. If ¢t > n and

@, H'(BU()); Z,) > H**(MU(1); Z,)

is the Thom isomorphism given by ®,(x) = xU, then g, = & ¢ P" o P,(1). We
have that (BJ)*(q,) = g, forn > 1 and

H*BImJ;Z,) = P{q,|n > 1) ® E(Bg, | n > 1)
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as algebras with Y(g,) = 3.0 ¢; ® ¢a—;and go = 1. Let x, = BT*(f%,-1)1) for
n 2> 1, so the x, are primitive. Then H*(B Im J;Z,) = P{q, |n > 1} ® E{x, | n
> 1} which is Stasheff’s splitting of H*(B Im J; Z,) as Hopf algebras over o’
since BJ*: P{q, | n > 1} = H*(BO),, and BT*: H*(SU),o = E{x,|n > 1}.
We begin our investigation with the following useful lemma.

Lemma 89. In the basis of H*(BU; Z,) which is dual to the basis of monomials in
the ay, g, = (a-,)* forn > 1.

Proof. Observe that if y € H*(BU;Z,) and n = 0 mod p — 1 then ¢(»)
=Y y)-y®1—-18®y € H(BU,y; Z,) ® H*(BU,y; Z,) implies that y
€ H>(BU),o. Hence (a)_,)* and g, are in H*(BU),, for n > 1 because
ay, =P,y = q € H¥»"(BU,o;Z,). The last fact follows from ®&(g,)
=P(U) = Uf = o(cf) = @, (p,-y). Thus, H"(BUp,o;Zp) = P{g,|n2> 1}
= P{(ap-)* | n > 1} as algebras. Define a Hopf algebra automorphism S of
H*(BU,o; Z,) by S(g,) = (a;-;)* for n > 1. We will show below that S is a
homomorphism of A-modules. Hence S is the identity map by Theorem 30:
S = 1 + F}G because S is an invertible element in Z,[[F}]]. However, if G # 0
then S(g,) contains Acf'>~D for some + > 1 and 0 # A € Z, when S(g,) is
written out in the basis of H*(BU; Z,) consisting of monomials in the Chern
classes. This is clearly absurd since S(g,) = (aZ,)*. Thus, S is the identity map
and qn = (a;—l)"

It remains to show that S is a homomorphism of %-modules. Let  be large and
assume that r < (p — Dn. Then as in J. Milnor [20, p. 56] we see that

r-1
P'(g,)U, = P'(q, U) — go Pig,)P(U,)
r—1
=P o P() - go P(gn)q,-i U,
[r/p) iy . ) )
= j§0 )Y =pi(p—Dn—r+j— DP*i(q; U)

r=1
- igo 93'(‘1»)%—; Ijt

[rfp] r4n=j .
=23 3 )Y -pi(p=Dn=r+j— 1D)Pg)q s+ U

j=0 k=0
r=1 .
- i§0 (J-—)'(qn)q,_.- Ul .

From this equation it is easy to prove by induction on n + r that for n 2> 2,
P"(g,) when written as a polynomial in the g, does not contain a nonzero
multiple of g"*" as a summand. Hence if n > 2 then neither S o ?"(g,) nor
@"((ap-1)*) when written as a polynomial in the Chern classes contains a
nonzero multiple of ¢{"+™?=) as a summand. Now we can prove that S o P'(g,)
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= @’ o S(g,) for n > 1 and r > 0 by induction on r + n. The assertion is
clearly true if n=1or r=0. If n>1 and r > 0 then by the induction
hypothesis ¢ o S o P'(g,) =¥ o P o S(g,), and hence So P'(g,) — P
© 8(¢,) = aP(pinyp-1) fOr some @ € Z,. However, b,y ,-1) contains c+Xr-D as
a summand so by the above remarks & = 0. Thus, S is a homomorphism of -
modules.

Theorem 90. For p an odd prime,
H*(B1ImJ;Z,) = H¥BU,y; Z,) ® H*(SU),,

as W =R’'-Hopf algebras. In particular forr > 0 andn > 1,

(1) 0u(g) = (n=nN(p=1) = Lpr — n(p — 1))g,—.

((2) )Qi(x,.) =" == Dpr—nlp—1D)=Dx,, if r<n and
Q:(x,) = 0.

Proof. The value of Q,(x,) follows from Corollary 42 and the definition
BT*(f%p-1y+1) = X» We next show that in H*(B Im J; Z,), 04 (q,) is a polyno-
mial in the g;. This will prove that Stasheff’s splitting is a splitting as <°’-Hopf
algebras. We prove our assertion by induction on » and for fixed » by induction
onr. If n=10rr =0 then Qi(g,) = 0. By our induction hypothesis and the
comultiplicative Cartan formula, ¢ o Q,(g,) is a sum of tensor products of
polynomials in the ¢,. Hence Q}(g,) is also a polynomial in the g, because all
primitive elements in H™(BImJ;Z,) for m =0 mod p — 1 are in P{q,|n
> 1}. We now see that if (1) is valid in H*(BU; Z,) then this equation is also
valid in H*(B Im J; Z,). We prove (1) in H*(BU; Z,) by induction on n and for
fixed n by induction on 7. If n = 1 or r = 0 then Q(g,) = 0, while 02"(g,)
= (p = 2,n — p)g, by Theorem 7 since g, = (=1)""'c,(,—,) modulo decomposa-
bles. Now assume that n — 1 > r > 1. By the induction hypothesis and the
comultiplicative Cartan formula,

Q;(qn) - «n - ’)(p - l) - l,P" - "(p - l))qn-r = ap(n-r)(p—l)

for some a € Z,. Pj_typ-1) = @%-1y,p-1) and, by Lemma 89, g, = (a;-,)* and
4n-» = (a;77)*. Hence Q' (a(,y,-1)) contains aay_, as a summand in H, (BU; Z,).
Thus, « = 0 by Theorem 8 since (n —r)(p — 1) > p— 1.

The following is a summary of J. StashefPs computation of H*(Im J; Z,) for
odd primes p (see [22]). The following diagram commutes and the columns are

fibrations.

U <+ ImJ L BU

y y l
PBU - PImJ - PBBU
) y A

BU -2 BImJ £ BBU=~SU



124 S. 0. KOCHMAN

The Eilenberg-Moore spectral sequences which converge to the cohomology of
the fibers of the above fibrations collapse. Thus, H*(Im J; Z,) = P{;, | n > 1}
® Efs,|n > 1} as algebras where 5, € H*»)(ImJ; Z,) is defined by
= T*(g,) and s, € H¥»)-!(Im J; Z,) is defined by s, = of;,;(g,). Hence the
s, are primitive, and y(r,) = /.o 7 ® ,_; for n > 1. Clearly, J*(5,) = 0 and
J*(s,) = f¥p-1) for n > 1. As a consequence of all this, we have that

H*(Im J;Z,) = H%(BU,o;Z,) ® H*(U), >
as A'-Hopf algebras.
Theorem 91. For p an odd prime,
H*(Im J;Z,) = H*(BU,o; Z,) ® H*(U),

as W =R'-Hopf algebras. In particular, for k > 0andn > 1,

k() = (n = k)(p— 1) = Lpk — n(p = D))rs

and
Q“(Sn) = ("l)k((n - k)(p - l) - l9pk - ”(p - 1))sn—k'

Proof. We compute Q%(r,) by Theorem 90 and the definition r, = T*(g,) for
n > 1. s, is primitive, so Q¢(s,) is also primitive, and hence Q%(s,) is a Z,-
multiple of s, Thus, Q%(s,) is determined by applying J* and then using
Corollary 42.

We will now compute the action of the Dyer-Lashof algebra on H*(BBSO).
If pis an odd prime then H*(BBSO;Z,) = H*(SU/SO;Z,) as AR-Hopf
algebras, and hence Theorems 68 through 71 are applicable to H*(BBSO; Z,).
We recall some of the work of R. Clough [5] and J. Stasheff [23], on
H,(BBSO; Z,). There is a fibration

SU %> BBSO 1> B Spin .
Define e, € H"(BBSO; Z,) for n > 4 and n # 2% + 1 by e, = y*(w,). Clearly
V(e,) = 34 e ®e,; with the convention ey,, = 0 for k > 2. Define y*
€ H¥*(BBSO;Z,) for n > 1 by requiring that y% be primitive and that
a*(y:) = f3+141- Then
H*(BBSO;Z,) = E{e, |n > 4,n # 2+ 1} @ E{y* | n > 1}

as algebras and P4(y%) = y* for n > 2 where I, = (21,272, ...,4,2).
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Theorem 92. In H*(BBSO;Z,) for r >0, n >4, n# 2+ 1 and m > 1,
0.(¥*) =0 and Q,(e,) = (n—r — 1,2r — n)e,_, with the convention ¢ = 0,
ey, = 0fork > 0.

Proof. By induction on m, the Nishida relations and the fact that P=(y%)
= y* for m > 2, it is easy to show that Q,(y*) =0forr > 0and m > 1.
Q. (e,) is computed by using Theorem 63 and the definition e, = y*(w,).

Define y, € Hy, (BBSO;2Z,) for n > 1 by y, = ay(fos141). Let Z, be the
unique primitive element of H,(BBSO; Z,) forkoddork = 2" + 2, k > 4 and
n > 1. Then

H,(BBSO;Z,) = E{y,|n 2 1}
® P{Z, | kodd,k > 4,k #2"+ L,ork =2"+2,n > 1}

as Hopf algebras.

Theorem 93. In H,(BBSO;Z,) for r>0, n> 1, k odd, k # 2"+ 1, or
k=2"+2andk > 4,0 (y,) =0and Q"(Z,) = (k — \,r — k)Z} wherer + k
=2, H odd; h=H and t =1t if ¥ #2"+ 1 for all n > 1 and I # 1;
h=2Wandt =1t - 1ifW =2"+ 1 forsomen > 1;andh = 4andt = t' — 2
ifW = 1.

Proof. This theorem is obtained by dualizing Theorem 92.

Theorem 94. Qo Hy(BBSO; Z,) = {3, | n > 1} U {Zye120.110 < a < B,
Proof. This theorem follows from Theorem 65(b) and 93.

Corollary 95. H,(BBSO; Z,) is an indecomposable N-Hopf algebra.

Proof. P(y%) = y* for n > 2 and P'(y%) = e, Furthermore, Efe, | n
> 4,n # 2*¥ + 1} is an indecomposable %-Hopf algebra because H*(B Spin; Z,)
is an indecomposable A-Hopf algebra by Corollary 67. Thus, the %-Hopf algebra
H*(BBSO; Z,) cannot be decomposed.

8. Proofs of Theorems 5, 6 and 7. The preceding sections have been based on
Theorems 5, 6 and 7 which describe the action of the Dyer-Lashof algebra on
H,(BU) and H*(BU). We will prove these theorems in this section. We will give
a second proof of Theorems 5 and 6 in the case p = 2 which is based on
cobordism theory. As part of our proof of Theorem 7 we will produce an
algorithm for calculating the action of the Dyer-Lashof algebra on H,(BU) (see
Theorem 97). In conclusion, we illustrate this algorithm by computing 0¥ (a,) in
H,(BU; Z,) forr + n < 10. We begin by recalling the action of A°® on PH,(BU)
which we then use in proving Theorem 5.
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Lemma 96. In H,(BU) forr > Oandn > 1,

@;(pn) = (r’" = pr- l)‘:’n-r(p-l)
[@tzr(pn) = ("’n - 2r—- l)pn—r]'

Proof. Note that R/(a;) = ag with 0 # a € Z, if and only if k = p and
r=1[k=2 and r = 2] because P!(¢;) =cf and P(c;) =0 if r>2
[P%*(c;) = ¢t and P"(¢;) = O if r > 2]. Now for all k£ > 1, af is a summand of
b and the only monomial summand of p, that can hit af~"(~-) under & is
(r,n = p)n/[n — r(p — Dayai ™. Clearly

(r,n = pr)n/ln — r(p = 1)] = (r,n = pr — 1) mod p.

Proof of Theorem 5. Define A, € Z, by Q'(,) = Apbpurpny [Q¥(0))
= A, Pne,] if r and n are positive integers, and let A,, = 0 if r and # are rational
numbers which are not positive integers. There is the Nishida relation

FloQ=rg [RoQ¥?=rg¥)
Let r = 7 mod p with 1 < F < p. Iterate the above Nishida relation p — 7 times
C+p=F= DY - 1DIQ =Rl oo R0
[rQ¥ = R2 0 Q¥*2).
Evaluate this identity on p, to obtain
MabPirpy = (r = DY (r+p—F = DAy ia R © - -+ 0 R Opsiraprxpo-1y)
[P bner = Ai1a B Oprra))
By Lemma 96,
Ma=(@=Ln+p—F=1)/(n—=Lr+p—F—=1DA\psan
® [Ar.n = n\s2-1a):

Let n=nmodp with 1 <A <pand write n+p—n=np° with ' #0
mod p. We now show that if s > 1 and p divides s then

(++) A = }‘S/p‘.u‘
Let B, the Bott map, be given as the composite map
Hy(BU) => Hy (QSU) > Hy o (SU) 2> Hy i (U) 5 Hy15(BU)

for k > 1. Recall that B(a,) = (—1)"b,,;, and hence B(p,) = —np,,,. Since
Q°cB=Bo(Q,
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1™+ p =7 = DY (1 = D! Ap Dt sp-tyspn
= B o+ 0 B\pPprgp-1))
= Bo---0BQOp,) [Bo:-+0o Bo Q¥(,]
=D m+p-a= 1)Y= )0 Onpn)  [Q*®Busz-n)]
=(=)"'(n+p—7—DY0 = DA pipnDuts(ptyrpn-

Thus, Ay = Agpip-n = Ay SinCe n + p — 7t = p°n’ and py,e = 2. Thus, (++)
has been proved. We combine (*) and (*#) to prove Theorem 5 by induction on
r + n. The case r = n = 1 is clear. Assume that Theorem 5 is valid for Q"' (b,)
if ' +n <r+ n. (+) reduces the computation of A,, to the computation of

Ar4p-7n- However, (+#) is applicable to A,,,_;,, and hence we know A,., ;, by the
induction hypothesis. Thus,

A = CEDTr =Dt p—F = D)
M=) ntp-n-D—F-n+n)

If 7 = 7 then this equation becomes A,, = (=1)**(n — 1,7 — n). If 7 > 7 then

Ay = (1Y " = 1,r — n) 'ﬁ' ¢=n-i) ﬁ(n +p—T+i)
=(=)*"(n-1,r—n)

since for 0 <i<r—-Aa-lLr—-n-i=—-(n+p-n—(F—-n—i)) modp.
If 7<7 then Q'(p,) = Q"o Bo--+0B(a, ) =Bo-+0BoQ(ay) =0
since deg Q'(a,-z) = —2F mod p [Q¥*+'(p,,) = Q¥*!(p?) = 0]. Furthermore, if
F <7 then (n — 1,r — n) = 0 mod p. This completes the induction proof of
Theorem 5.

I am grateful to I. Madsen for noticing that the inductive procedure for
calculating the A,, which is given by () and (##) leads to binomial coefficients.

Proof of Theorem 6. Let Q'(a,) = @,,8p4,(,-1) + decomposables [Q*(a,)
= a,,4,,, + decomposables] for some a,, € Z,. Then

%n(=1) " Ppsr(pyr1 = B ° Q'(a,) [B o Q¥(a,)] = (=1)"Q"(bps1)
[Qb(pu‘l-l)] = (—l)'“(n” -n- l)pn+r(p-l)+l‘

Hence a,, = (=1)"*"*(n,r — n - 1).
Alternate proof of Theorems 5 and 6 when p = 2. By T. tom Dieck [6, Theorem
17.2), 8(P(r, n)) is the coefficient of w" in

[lgo whQHT o 0(RP")] [1 +3 a,'wi]_'.l
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where 8: N* - H,(BO; Z,) is the normal characteristic number map, w is an
indeterminate of degree 1 and P(r,n) is the Dold manifold defined to be a
suitable quotient of S” X CP". Thus,

0(P(r,n)) = Q"*" o 6(RP") + decomposables.

By R. Thom [25, Chapitre IV, §7], 6(RP?") = e,, + decomposables, and by A.
Dold [7), @(P(2r,2n)) = (n,r — n — 1)ey,,s, +decomposables. Applying »,:
H,(BO; Z,) - H,(BU; Z,) we see that modulo decomposables,

(n,r = n = Day,, = n((n,r = n = Dewsy) = 5 6(PQ2r,2n))
=5 0 Q¥+ 0 B(RP™) = Q¥*™ o py(er) = 0¥**(a,).

This proves Theorem 6, and the above proof that Theorem 5 implies Theorem 6
can be reinterpreted to show that Theorem 6 implies Theorem 5.

We next produce an algorithm for computing Q’(a,) [Q@¥(a,)] by induction on
n + r(p — 1) and for fixed n + r(p — 1) by induction on . In this procedure, the
coefficients of the monomial summands of Q’(a,) are determined by induction
on their product filtration degree. Theorem 5 gives us the leading coefficient, the
comultiplicative Cartan formula and the induction hypothesis gives us the
coefficient of any decomposable monomial except for those of the form af’,
e > 1, d > 1. The coefficients of such monomials can be determined by an
appropriate Nishida relation and the induction hypothesis. This algorithm will
employ eight properties of the =R-action on H,(BU). This observation will be
exploited to prove Theorem 7.

Theorem 97. There is an algorithm for computing Q'(a,) [0¥(a,)] by induction
on n+r(p—1) and for fixed n+ r(p — 1) by induction on n which uses the
Jollowing properties that the Q" satisfy on H,(BU).

(a) @": Hy(BU) = Hypipp-1)(BU) [Q¥: Hy,(BU) = Hipp,(BU)) are linear
maps forr > 0,n > 0.

(b) @@@,) =0 [0¥(a,) = 0lifn >r 2> 0.

(c) The Q' satisfy the multiplicative Cartan formula on H,(BU ).

(d) The Q' satisfy the comultiplicative Cartan formula on H,(BU ).

() 0"(a,) = a? [Q*(a,) = a}] forn 2> 1.

(f) The Q' satisfy the Nishida relations on H,(BU ).

(g) Q'(pn) = (—l)’+"(n - Lr- n)pn+r(p—l) [Qb(bn) = (” -Lr- n)pm-r]fo’ r
>0andn > 1.

(h) Q'(a,) = (=1Y*"*'(n,r — n — 1)ap,,(,~;) modulo decomposables [Q¥(a,)
= (n,r — n — 1)a,,, modulo decomposables) forr > 0 andn > 1.

Notes. (1) By the proofs of Theorems 5 and 6, this theorem is valid if conditions
(g) and (h) are replaced by (g’) Q" B = Bo Q' forallr > 0.

(2) The theorems of §§3 through 8 are valid for any homology operations Q’,
r > 0, which are defined on the spaces under consideration in those theorems
and
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(i) satisfy (a) through (h) (or (a) through (f) and (g')) above,
(ii) are natural with respect to the suspension maps defined on the homology
of the classical groups, and
(iii) are natural with respect to the canonical maps between the homology of
the various spaces discussed in these theorems.

Proof. By (d), 0'(a;) = af [Q%*(a,) = a}]). Now assume our induction hypoth-
esis for computing Q'(a,) (Q¥(a,)) Write Q'(a,) = Sy "M (0¥ (a,)
= Dy £{7" M] where £(;” € Z, and the sum is taken over all monomials M in
a, of degree 2n+2r(p—1). Let n+ r(p—1) =ep? withd > 0, ¢ > 1 and
e # 0 mod p. There are six cases for determining the £{;.

Case 1. M is arbitrary and n = 1.
a=psoQ(a)= (—l)’+lpr(p-l)+l (0¥ (@) = p,s1] by (2).

Case 2. M = a,,,(, ) and n is arbitrary.

By (h), £{” = (=1)"*"*'(n,r — n — 1) in this case.

Case 3. M = a7, 1 < f<dand if f=d then e cannot be written as
Pt + Sio(p—Dpforanyl <c<p-1landt > -1.

Let p® be the smallest power of p whose coefficient is not p — 1 in the p-adic
expansion of ep?”. In particular, p¥ = 1 if f < d. Now £ can be found by
considering the coefficient of @,,.s_ys(,-) in the Nishida relation

R o Q'(a,) = T (-1)"""(p#¥ — pi,r(p = 1) — p9*! + p)
- (i,n - pi)Qr—?* ~~N(a»-r(‘p-l))
[ o Q(a,) = 3 (26 = 2ir = 209141 +2i)
* (i’n -2 )Qz'-zﬂhl‘*”(a»—f)]'
Case 4. M is arbitrary and if d > 0 then e cannot be written as cp'*!
+dio(p—1Dpforanyl <c<p-landt> -1
We calculate £(” by induction on the product filtration degree of M, written
PFD(M). In Case 2 we computed £{;” when PFD(M) = 1. Now assume that
PFD(M) > 1 and that £{" is known if PFD(N) < PFD(M). If M = a,,.7' for
some 1 < f < d then we found £ in Case 3. If M +# a,,.7'forall1 < f< d
then Y{M) contains a summand M’ ® M” with deg M’ > 0, deg M” > 0 and
PFD(M’) + PFD(M”) = PFD(M). We can now evaluate £} by considering

the coefficient of M’ ® M” in the comultiplicative Cartan formula applied to
Q’(an) [er(an)]° We obtain

3,3, 06) © 0y = 3 ¢ U
[3 3 0*@) 8 072 = 3 elrvian)]
i=0 j=0 M

Case 5. M is arbitrary and d > 0, e = cp'*' + Jio(p— 1)p' with 1 < ¢
<p-landt >0.
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Define a Z,-basis B of Hy,y,-1)(BU) to consist of p#* = N, and all the
monomials in the a;, of degree 2n+ 2r(p— 1) except a?’. Let Q'(a,)
= Jves bwN [0¥(a,) = Snes mwN] where py € Z,. Use the method of Case
4 to find all of the py except for py. Let (n + r — p?)(p — 1) = gp* with h > 1,
g21 and g # 0 modp. Then we can determine py by considering the
coefficient of af" in the Nishida relation

R0 Q'(a,) = 3 (-1Y"(p? = pi,r(p = 1) — p**' + pi)
: (i’n - pi )Q’_pd+i(an-i(p-l))
[R¥ 0 Q¥(a,) = T (29 = 2i,r — 2941 + 2i) (i, n — 2i)Q¥~2*'+2(g, )],

Case 6. M is arbitraryandd > 0,1 < e < p.

The £(;” for M not equal to M, = a” can be found by the method of Case 4.
Let p” be the largest power of p that divides r. Use the methods of Cases 1
through 5 to determine £{***” for all M = a,%"* ---ag?* such that 1 < ¢
<p-14,d>d >0,k > 1 and all the ordered triples (d;,¢;k;) are distinct.
Observing that (p*,r(p — 1) — p*) # 0 mod p, we find £f}” by considering the
coefficient of a#‘ in the Nishida relation

R 0 Q7 (a,) = —(p",r(p — 1) — pP*)Q(a,) + Q""" (s ppi1(p-1)
[fp‘z’"' ° Q2’+2M (an) = er(an) + Qb+2*(a,,_2k—l)]

where the second summand is omitted if » = 0.

Proof of Theorem 7. Define Z,-linear maps R;: H*(BU) — H*-2(»-)(BU)
for n > 0 and s > 0 by Ri(c,) = (=1)""(ps — n,n — s(p — 1) = Depypy if
(s,n) # (0,0) and R2(1) = 1. Extend the domain of definition of these opera-
tions to all of H*(BU) by requiring that the R; satisfy the multiplicative Cartan
formula. Let R* = Hom(R],1) for s > 0. We will show that R* = Q° [R’
= Q%] as operations acting on H,(BU) by proving that the R’ satisfy properties
(a) through (h) of Theorem 97. This will prove Theorem 7. (a), (b), (d) and (g)
are immediate consequences of the definition of the R’.

(c) To prove that the comultiplicative Cartan formula is valid for the R; it
suffices to show that for ps > n > 1,

Vo RI(e) = 3 3 Ri(G) ® Ry ).
That is, we must show that

n-s(p-1)
(ps—nmn—s(p—1) = 1)c, ® Cps(p-1)-n

i=0 j=

=2 S (i-ij-ilp-D-1)
(ps—pi—n+jn—j—(s—-i)(p—-1)-1)

" Cmi(p=1) ® Cnmjmio-iXp-1)*
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This follows from the following computation:
S ((pi-jj-ilp=D)ps—pi—-n+jn-j—(s—i)(p-1D-1)

J=i(p=1)=h
Sfi-1 s—i—-1 i ]
= Eh (,‘- h)(ps JEN h) using Notation 54 (1)

5l k+h—l)(s—k—h—l
k=0 k ps—n—k

S E ()

=~k k+h-—l)(s—k—-h—l)
+k-p:2-n+l( k ps—n—k

by Notation 54 (2)

) where k =i—h

- (_l)m(S(p -- n)

ps—n
by Notation 54 (3) and the definition (§) = 0if 56 <0
= (=1)""*(ps = n,n = s(p — 1) — 1) by Notation 54 (2) .

(e) We prove that R"(a,) = a? by induction on n > 1. Clearly R'(q;) = af
since @, = p; and af = p,. R"(a,) = af + ap,, for some a € Z, by the comul-
tiplicative Cartan formula and the induction hypothesis. By definition, a,
= (c)* and p,, = c3. Hence a = 0 since, for n > 1, Ry(c,,) does not contain
a nonzero multiple of ¢{ as a summand.

(f) We show by induction on n > 1 that the R} satisfy the Nishida relations
when these relations are evaluated on ¢, This assertion implies (f) by the
multiplicative Cartan formula. The Nishida relations are clearly true modulo
decomposables because the R; and the Q; are equal modulo decomposables.
Since the Nishida relations do not raise degree in cohomology, there are no
nontrivial Nishida relationsonc,for1 < n<p-1LIfn—-(-k)(p-1) =1
then

Ry o PHe,) = (=)' (k,n = k = D)oy = (=1 (k,s(p = 1) = PL)R*(c,)
[Re o PX(c,) = (kyn = k = Dy = (k,s = 2k)R¥*(c,)).

If n = p then the only nontrivial Nishida relation on ¢, which is not of the above
form is

R o P?(c,) = ¢of = P! o RL(c,)
[R} o P4(c;) = ¢t = P2 o Ri(cy)).
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Now assume that n > p and that all Nishida relations are valid on ¢, for m < n.
By the induction hypothesis and the comultiplicative Cartan formula, if s > &
then

R o PX(c,) = 2 (~D)*"(k — pi,s(p — 1) = pk + pi)P' o RF*¥i(c,)
= D (a-k}p-1)
[R: ° prk(cn) - 2 (k =25 -2k + 2i)932‘ ° R:-kﬂ(cn) = apn-o-k—:]

for some a € Z,. If n — (s — k)(p — 1) is not divisible by p then p,_,_xy,-1) iS
indecomposable, and hence a = 0 in this case. If n — (s — k)(p — 1) > p then
a =0 by Lemma 23 since ap, (_iy,-1) has acf=¢-¥Xr-D as a summand. If
n— (s — k)(p — 1) = p then by the reasoning of the preceding cases, all the
Nishida relations are valid when they are evaluated on ¢,;for1 <i < p-2,0r
fori=p—1ifn+p—1—(s—k)(p—1) # p. Hence

VRS © Pr(cyyp) = 3 (1)K = pis(s + D(p = 1) = plk = i))P*
@ REE(c,,,))
=acf @ ¢, +ac, ®cf
[U{Rs*! 0 PH*(cpyp) = 2 (k — 2i,s + 1 = 2k + 2i)P¥ o RI*++1(c,,5)}
= act ® ¢ + ac; ® ).
Thus for some y € Z,,
3t o Prepp) = 2 (=D (k — pis(s + D(p = 1) — plk — i))P!
o REH41(G,,,)
= acf*' + YPpr1
[RE* o PH*(chyn) = 3 (k — 2i,s + 1 — 2k + 2i )P o RIk+i+1(c,,,)
= ac} + vp;).

However, y = 0 because b,,, is indecomposable. Hence a = 0 by Lemma 23
since p,,; has cf*' as a summand. Of course, for p = 2 use of the Wu formula
simplifies this proof.

(h) We prove the following which is equivalent to (h):

*) Ry (Dyp-iyen) = (=1 (m,5 = n = Dy,

Our proof is by induction on n > 1 and for fixed n by induction on r > 0. If
0 < r < n then both sides of (+) equal zero. Now assume the induction
hypothesis, and assume that r > n. If n % 0 mod p then p, = (-1)""'nc,
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modulo decomposables. Hence (#) follows from the definition of R; in this case.
If n=0 and s Imod p then Ry © P'(Dpyi-1yp-1))= (s = DRI (Dp4i0-1yp-1)
[R: ° -‘732(%“«-1) = Ri‘ |(pn+:—l)]' Hence

~(s = DR Pprsp-n) = (=1)™(s = D5 — n = 2)p,.

Thus since s — 1 = s — n — 1 mod p, Re(Dpsp-1) = (=1)™***(n,s = n — p,,
and (¢) is correct in this case. If n = 0 and s = 1 mod p then

RyWpisp-1y) = (= DY (s +p=2NRI* " o Pl o +-v 0 P(p,, 1)
[= R*' o P(p,,)]

= Rrp-l(pnﬂ»(.ﬁp—l)(p-l)) = (“D""“(n,s +p—n-— 2)p'

= (_l)n+:+l
(n,s — n — 1)p, by the induction hypothesis

SINCE Dppisrp-txp-1) = Pratgsixp-1) fOF # = pn’ and s = ps’ + 1 and (n',s" — n)
= (n,s — n + 1). This completes the proof of (»).

We have two methods for computing the Dyer-Lashof operations on the q, in
H,(BU). We know how these operations act on the basis of H,(BU) which
consists of the dual basis of the monomials in the Chern classes. Then we can
pass to the basis of monomials in the a, by using the techniques of R. Van de
Velde [27). This procedure, however, is prohibitively difficult. An alternative
method for calculating the Q"(a,) is given by Theorem 97. It is an easy algorithm
to use. In using either of these two methods, Theorem 8 reduces the work
involved substantially. The following is a list of Q¥(a,) in H,(BU; Z,) for
1 < n < rand n+ r < 10. Note that this list translates readily into a computa-
tion of Q% (b,) in H, (BSp; Z,) and of Q’(e,) in H,(BO; Z,) for 1 < n < r and
n + r < 10. More generally, the two methods of computation described above
also apply to H,(BSp) and to H,(BO).

0*a) = af
04a) = a3 + aya) + @}
Q@) = a}
0%(a) = at

0%(a,) = as + a,a) + aya;, + a}q
0%a) = as + asa) + aya, + asa} + aday + aya} + af
0%(a;) = a}

0%a,) = ag + asa, + a,a, + asat + ayaya, + a3 + dda}
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0"%a) =
0%(a;) =
0"%a,) =
0%a) =

0%ay) =
0"%a;) =
0%(a) =
0“(a) =
0"%a,) =
0'%(ay) =
0“(a) =
@) =
0%(as) =

0'%a,) =

0“(as) =
0(a;) =

0%(a) =
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a} + aia} + af
a; + agay + asa, + ayay + dla,
asat + a,a} + asayat + aia}
ar + agay + asay + asa; + asat + a3ay + aya3 + asa}
+ ayayat + aday + azaf + ayaf + a]
a3
asa; + agal + asa,a) + azasay + a3a, + aia}
asay + asayay + agazay + a3ay + asal + a,ayat
+ a} + a,af + ayaya} + ada} + adaf
af
ay + agay + a,a;, + agay + asa, + ala,
agay + agayay + asasay + asa} + asaza, + a3
+ agal + asayat + a,aza} + ala}
ay + aga) + a;a, + agay + asay + asal + ala
+ asa}a) + a;a3 + asaf + aia) + a,af + ayayaf + adaf
ay + agay + a;ay + agay + asa, + a;at + asal + ala,
+ad + agal + asa,at + ayazat + ayaia, + aza3 + ddayay
+ asaf + aia) + asayaf + ayaf + ayaf + aka} + aya] + &
a3
ay + agay + aga, + agay + agat + a;a,a) + agasa
+ asa,a) + a}a, + ala}
asasa} + a}a} + agat + asaya} + ayayat + ddayat + diat
ay + agay + agay + aga, + agat + a,a,a) + agal + agasq
+ asasa, + dla, + asasat + asala, + dia} + a a3
+ asa,a} + a,aza} + a,a}at + alayat + ayalay + a3

+ asa’ + agayaf + a}atayadal + aiat + a,af + ayaya) + ajaf

aly + ala} + a}a} + adat + aiat + a}af + al°.
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