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1. Introduction

Since their inception in the 1980s, topological Hochschild homology (THH) and topological cyclic homol-
ogy (TC) have served as very useful tools for studying algebraic K-theory; see, for instance, foundational 
work of Hesselholt–Madsen on the K-theory of local fields [17] or the very recent work of Hahn–Wilson 
on Quillen–Lichtenbaum phenomena in the K-theory of ring spectra [18]. Each of these invariants are lo-
calizing in the sense that they carry exact sequences of small idempotent complete stable ∞-categories to 
cofiber sequences.1 One very useful consequence of this property, originally observed by Thomason in [30], 
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1 It is worth remarking that THH and K are additionally finitary, in that they preserve filtered colimits. On the other hand, TC

notably lacks this property, as it is constructed via limits rather than colimits.
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is that such invariants satisfy a form of excision for (spectral) schemes called Nisnevich descent. In practice, 
this allows one to decompose calculations with these invariants into more manageable pieces; e.g., for X a 
scheme, the value of K(X), THH(X), or TC(X) may be determined by gluing together the values of these 
invariants on an affine chart. However, algebraic K-theory rather famously fails to satisfy étale descent, 
which is strictly stronger than Nisnevich descent. The étale (hyper)sheafification of algebraic K-theory is an 
extremely rich object, studied by Thomason in [29], and revisted by Clausen–Mathew in [8]. By contrast to 
algebraic K-theory, THH actually satisfies étale base-change, meaning that if A → B is an étale extension 
of commutative rings, then there is a natural equivalence B ⊗A THH(A) � THH(B); note that étale base 
change implies étale descent by quasicoherent descent. As TC is constructed from THH via a limiting proce-
dure, it is automatic that TC also satisfies étale descent. This was originally observed by Geisser–Hesselholt 
in [13] and later extended to E∞ and E2-ring spectra by Mathew [22] and Clausen–Mathew [8], respectively. 
The algebraic precursor of this property for Hochschild homology was originally studied and established by 
Geller–Weibel [31].

Over the past few years, THH and TC have seen fantastic application to other areas of mathematics, 
such as p-adic Hodge theory. In their breakthrough work [6], Bhatt–Morrow–Scholze used THH, TC, and 
variants thereof to introduce a new mixed characteristic cohomology theory called prismatic cohomology, 
which recovers de Rham cohomology, étale cohomology, and crystalline cohomology in special cases. One of 
the key technical results of [6] is the fact that THH and all of its variants satisfy faithfully flat descent for 
commutative rings. This is used in an essential way to construct “motivic” filtrations on THH, TC−, TP, 
and TC, which are in turn used to define the (Nygaard completed) prismatic cohomology and the syntomic 
cohomology of rings which satisfy mild torsion and smoothness hypotheses.

Given the above results and their fruitful applications, it is natural to ask whether these invariants 
satisfy faithfully flat descent for suitably commutative ring spectra. In this article, we will primarily work 
with E2-ring spectra, as they have the property that their homotopy groups behave somewhat like ordinary 
commutative rings and modules. To state our main results, we first recall a few notions from stable homotopy 
theory and spectral algebraic geometry.

Definition 1.1. A map of connective E2-ring spectra f : A → B is said to be faithfully flat, provided that

1. The induced map of commutative rings π0f : π0A → π0B is faithfully flat.
2. The induced map π0B ⊗π0A πkA → πkB is an isomorphism of π0B-modules for all k ≥ 0.

As we shall see later in Section 3, given a map of E2-ring spectra f : A → B one can form the coaugmented 
cobar construction of f

CB•(f) : A B B ⊗A B · · ·←→ ←→

←→ ←→←→

←→

which is a diagram of E1-ring spectra.

Definition 1.2. Let C be a presentable ∞-category. Given a functor E : AlgE1
(Sp) → C, we say that E

satisfies faithfully flat descent for connective E2-rings provided that the natural map

E(A) → lim
Δ

E(CB•(f)),

in C is an equivalence.

We are now able to state our main theorem.

Theorem A. Topological Hochschild homology, viewed as a functor THH : AlgE1
(Sp) → CycSp, satisfies 

faithfully flat descent for connective E2-rings. Consequently, so does TC.
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The rough idea behind the proof of Theorem A is a reduction to the discrete case, by using the May filtration
on THH, denoted by Fil∗May THH(A), which was originally introduced and studied by Angelini-Knoll–Salch 
in [3]. Combining an analysis of the May filtration together with our second main result below, we can 
reduce Theorem A to the aforementioned result of Bhatt–Morrow–Scholze [6, Corollary 3.3].

Theorem B. Let f : A → B be a 1-connective map of connective E2-ring spectra, i.e. fib(f) is 1-connective. 
Then, for E = THH or TC the induced map

E(A) → lim
Δ

E(CB•(f))

is an equivalence.

Remark 1.3. Theorem B can be viewed as a sort of generalization of [11, Theorem 1.2], due to Dundas–
Rognes. Strictly speaking, however, the precise statement of Theorem B does not literally generalize [11, 
Theorem 1.2]. However, our work in Section 3 does provide an exact generalization. For further details, we 
refer to the reader to Remark 3.26.

Outline. We now provide a brief outline of the article. In Section 2 we review and carefully prove several 
folklore results we will need to establish the basic properties of the May filtration. In Section 3, we review the 
cobar construction and its basic properties and use these to establish Theorem B. In Section 4 we establish 
Theorem A in the case of generalized Eilenberg–MacLane spectra. In Section 5 we review filtered THH and 
some of its basic properties and give an ∞-categorical treatment of the May filtration on THH. Section 6
is devoted to proving Theorem A and collecting some consequences of the proof.

Notation. Throughout this article, we freely use the theory of ∞-categories, incarnated via quasicategories, 
as developed in [19] and [21]. For consistency, wherever possible, we also follow the notation therein. We also 
handle all set-theoretic issues as is done in [19, 1.2.15], assuming the existence of a Grothendieck universe 
of κ-small objects, and whenever necessary choosing a larger Grothendieck universe of κ′-small objects, in 
which the previous universe now resides. Throughout, we refer to the ∞-category of spaces by S and the 
∞-category of spectra by Sp.

A spectrum X is called n-connective provided that πmX ∼= 0 for m < n, and a map f : X → Y of spectra 
is n-connective provided that the fiber of f is n-connective, i.e. πmf is an isomorphism in degrees m < n and 
a surjection when n = m. The ∞-category of n-connective spectra will be denoted by Sp≥n where n ∈ Z. 
We will make frequent use of the ∞-categorical treatment of topological Hochschild homology, topological 
cyclic homology, topological restriction homology, and cyclotomic spectra found in work of Nikolaus–Scholze 
[27, III.2.3, II.1.8, II.1.6], Antieau–Nikolaus [2], and McCandless [23].

In the intervening time between the original version of this article and the published version, the theories 
of filtered objects and filtered cyclotomic spectra have become more well-documented in the literature; we 
direct the interested reader to [28] and [1] for example. However, for completeness, we have opted to include 
our own account which originally appeared in a previous version of this article.

Acknowledgments. This article comprises a portion of the author’s Ph.D. thesis, and they would like to 
thank their advisor, Tyler Lawson, for years of support, mathematical and otherwise. John Rognes made a 
critical suggestion on MathOverflow that his joint work with Dundas in [11] might be pertinent to a proof of 
Theorem A. Additionally, the material of [11] inspired the writing of Section 3. Joel Stapleton and Martin 
Speirs provided very helpful feedback on a draft back in 2020, and it is a pleasure to thank them both. 
Finally, many thanks to an anonymous referee for their sharp eye and helpful comments.
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2. Filtered spectra

Our main technical tool is the May filtration on THH, as defined in [3], which we import into the ∞-cate-
gorical context. To do so, we need to establish some basic facts regarding Z-filtered and Z≥0-filtered spectra. 
Unless otherwise specified, we view Zop and Zop

≥0 as categories via the partial order, ≤, and as symmetric 
monoidal categories via addition. By abuse, we use the same notation for the associated symmetric monoidal 
∞-categories.

Definition 2.1. The ∞-category of filtered spectra is Fil(Sp) = Fun(Zop, Sp), and the ∞-category of N-
filtered spectra is fil(Sp) = Fun(Zop

≥0, Sp).

It is readily checked that both of these ∞-categories are presentably symmetric monoidal and stable 
where the symmetric monoidal product in both cases is Day convolution; see [19, 5.5.3.6], [21, 1.1.3.1], [15, 
2.13]. Throughout, we will let � denote the Day convolution product and allow context to dictate exactly 
which product we mean. The unit object in Fil(Sp), denoted by 1Fil, is the filtered spectrum

· · · → 0 → 0 → S → S → · · ·

which is S in degrees n ≤ 0 with identity maps in negative degree. The unit object of fil(Sp), denoted by 
1fil, is the Z≥0-filtered spectrum which is S in degree 0, and 0 otherwise, diagrammatically given by

· · · → 0 → 0 → S.

Note for instance that the restriction of 1Fil to Zop
≥0 is 1fil. Because Fil(Sp) and fil(Sp) are symmetric 

monoidal, we may consider the ∞-categories of O-algebras, where O is an ∞-operad, and we use notation 
AlgFil

O and Algfil
O , leaving Sp implicit. These categories will appear later when we discuss variants of THH. 

Here are the folklore claims we establish in this section.

1. Restriction along the inclusion Zop
≥0 ⊆ Zop exhibits fil(Sp) as a symmetric monoidal subcategory of 

Fil(Sp).
2. The functors colimZop and ev0 are colimit-preserving symmetric monoidal functors Fil(Sp) → Sp and 

these agree upon restriction to fil(Sp).
3. The associated graded functor gr∗ : fil(Sp) → Sp is colimit-preserving and symmetric monoidal functor.
4. The Whitehead tower functor τ≥∗ : Sp → Fil(Sp) is lax symmetric monoidal.

Remark 2.2. Claims (1)-(3) hold for any stable presentably symmetric monoidal ∞-category C by the fol-
lowing observation; if F : C → D is a colimit-preserving (lax) symmetric monoidal functor, then for any 
stable presentably symmetric monoidal ∞-category E, the induced functor F ⊗ idE : C ⊗ E → D ⊗ E is 
(lax) symmetric monoidal. A variant of claim (4) will hold if C is additionally equipped with a nice enough 
t-structure compatible with the symmetric monoidal structure on C, in the sense of [21, Example 2.2.1.3]. 
However, we will not need such a result.

2.1. Properties of Fil(Sp), fil(Sp), and Day convolution

Definition 2.3. For C a stable ∞-category, an object X is said to generate C provided that

π0 MapC(X,Y ) = 0 implies Y � 0.

Similarly, given a collection of objects, {Xi}i∈I , this collection is said to jointly generate C, provided that 
π0 Map(Xi, Y ) � 0 for all i ∈ I implies Y � 0.
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Remark 2.4. Note that X being a generator for C is equivalent to the functor mapC(X, −) : C → Sp
being conservative; here, mapC denotes the mapping spectrum in C. A similar statement is true for a jointly 
generating collection, replacing Sp with 

∏
i∈I Sp and mapC(X, −) with 

∏
i∈I mapC(Xi, −). In the case where 

C admits infinite coproducts, having a jointly generating collection of objects is equivalent to 
⊕

i∈I Xi being 
a generator.

Lemma 2.5. Let K be a simplicial set and let evk : Fun(K, Sp) → Sp denote evaluation at k ∈ K. For all 
objects k ∈ K, the functors evk admit left adjoints, Lk : Sp → Fun(K, Sp) given on vertices by LkX : k′ �→
X⊗MapK(k,k′). Additionally, the objects 1K(k) = LkS have the following properties:

1. 1K(k) is compact for all k ∈ K;
2. the 1K(k)’s jointly generate Fun(K, Sp); and
3. the collection {Σn1K(k)}n∈Z,k∈K generates Fun(K, Sp) under small colimits.

Proof. Since evk preserves small limits and colimits, it admits a left adjoint Lk : Sp → Fun(K, Sp). The 
compactness of 1K(k) follows from the fact that S is compact in Sp and evk preserves colimits. To explicitly 
identify Lk, we use the following chain of natural equivalences obtained from the end formula, which appears 
for example, in [14, 5.2]

MapFun(K,Sp)(X⊗MapK(k,−), E•) � lim←−−
i→j∈Tw(K)

MapSp
(

lim−−→
MapK(k,i)

X,Ej

)
� lim←−−

i→j∈Tw(K)
lim←−−

MapK(k,i)
MapSp(X,Ej)

� MapSp(X, lim←−−
i→j∈Tw(K)

E
MapK(k,i)
j )

As the exponential object EMapK(k,i)
j is equivalent to the mapping spectrum mapSp(Σ∞

+ MapK(k, i), Ej), an 
application of the end formula and the spectral co-Yoneda lemma yield:

MapSp(X, lim←−−
i→j∈Tw(K)

E
MapK(k,i)
j ) � MapSp

(
X,mapFun(K,Sp)(Σ∞

+ MapK(k,−), E•)
)

� MapSp(X,Ek).

This proves that Lk is given on vertices as claimed.
To prove the final assertions, note that as MapFun(K,Sp)(1K(k), E•) � Ek, the collection {1K(k)}k∈K

jointly generates the stable ∞-category Fun(K, Sp). This allows us to mimic the proof of [21, 1.4.4.2] to 
show that the objects Σn1K(k) generate Fun(K, Sp) under small colimits. �

Note that in the case of Fil(Sp) (resp. fil(Sp)) the objects 1K(k) are shifts of 1Fil into higher filtration 
degrees, and we denote these objects by 1Fil(k).

Example 2.6. The object 1Fil(k) is given by

· · · 0 0 S S · · ·←→id←→←→ ←→id←→

where the leftmost copy of S is in degree k. Similarly, if K = Zop
≥0, the object 1Fil(k) is given by

· · · 0 0 S S · · · S←→id←→←→ ←→id←→ ←→id
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where the leftmost copy of S is in degree k.

Lemma 2.7. In Fil(Sp), there are natural equivalences

1Fil(n) �1Fil(m) ∼−→ 1Fil(n + m).

Proof. By the construction of 1Fil(n) = LnS, it follows that 1Fil(n) is given by

S⊗MapZ(−,n) � Σ∞
+ MapZ(−, n) : Zop → Sp

However, by the universal property of Day convolution, see [15, Section 3] and [26, Corollary 3.7] the functor

Z → Fun(Zop,S)
Σ∞

+−−→ Fun(Zop,Sp)

is symmetric monoidal, so that we have the desired natural equivalence

1Fil(n) �1Fil(m) � Σ∞
+ MapZ(−, n) � Σ∞

+ MapZ(−,m) ∼−→ Σ∞
+ MapZ(−, n + m) � 1Fil(n + m). �

Remark 2.8. More generally, if I is a small symmetric monoidal ∞-category, then Fun(I, Sp) is presentably 
symmetric monoidal under the Day convolution product and the functor

I
y−→ Fun(Iop,S)

Σ∞
+−−→ Fun(Iop,Sp)

is symmetric monoidal, where y denotes the Yoneda embedding. In other words, we have a natural equiva-
lence

Σ∞
+ MapI(−, i) � Σ∞

+ MapI(−, j) � Σ∞
+ MapI(−, i⊗ j).

Remark 2.9. One can alternatively prove Lemma 2.7 by using the lax transformation

1Fil(n) �1Fil(m) → 1Fil(n + m)

and directly calculating the Day convolution product. This calculation may be carried out by appealing to 
the following lemma.

Lemma 2.10. Let ⊕ : Zop×Zop → Zop denote the monoidal product and let Ak ⊆ Bk = (Zop×Zop) ×Zop Zop
/k

denote the full subcategory of those pairs (n, m) such that k + 1 ≥ n + m ≥ k. Then the inclusion Ak ⊆ Bk

is cofinal.

Proof. By Joyal’s ∞-categorical version of Quillen’s Theorem A (see [19, 4.1.3.1]), it will suffice to verify 
that for all (r, s) ∈ Bk, Ak ×Bk

(Bk)(r,s)/ is weakly contractible. By definition, this category is given by 
the collection of tuples (i, j) in Zop × Zop such that r ≥ i, s ≥ j, and k + 1 ≥ i + j ≥ k; this is because 
there must be a path in Zop × Zop from (r, s) to (i, j). As a simplicial set, the category Ak ×Bk

(Bk)(r,s)/
is isomorphic to the colimit of the diagram

Δ0 · · · Δ0

Λ2 Λ2 · · · Λ2 Λ2

←→i1

←

→
i2 ←→i1

←

→
i2 ←→i1

←

→
i2
2 2 2 2
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where i1 denotes the inclusion of the vertex 1 in Λ2
2 and i2 denotes the inclusion of the vertex 2 in Λ2

2. Since 
anodyne morphisms of simplicial sets are closed under pushouts, the morphism

Λ2
2 �Δ0 · · · �Δ0 Λ2

2 → Δ2 �Δ0 · · · �Δ0 Δ2

is anodyne, hence a weak homotopy equivalence. Now, observe that Δ2�Δ0 · · ·�Δ0 Δ2 is weakly contractible, 
whence the claim. �
Remark 2.11. An analogue of Lemma 2.10 holds for Zop

≥0 as well.

Proposition 2.12. Let E ⊆ Fil(Sp) denote the full subcategory of those filtered spectra with the property that 
the maps Xn → Xn−1 are equivalences for n ≤ 0. Then, E is a symmetric monoidal subcategory of Fil(Sp), 
and the restriction map Fil(Sp) → fil(Sp) induced by the inclusion i : Zop

≥0 ⊆ Zop is a symmetric monoidal 
equivalence E → fil(Sp).

Proof. By [19, 4.3.2.15], there is an equivalence of ∞-categories i∗|E : E → fil(Sp) given by precomposition 
with i : Zop

≥0 ⊆ Zop. It will suffice to show that E is a symmetric monoidal subcategory and that i∗ :
Fil(Sp) → fil(Sp) is symmetric monoidal upon restriction to E.

By Lemma 2.5, the objects 1fil(n) generate fil(Sp) under desuspensions and small colimits and since 
the functor i∗|E is an equivalence, we see that the collection {1Fil(n)}n≥0 generates E under desuspensions 
and small colimits as well. It is clear that E is stable under the formation of desuspensions and colimits in 
Fil(Sp), so we can reduce to checking that for n, m ≥ 0, the object 1Fil(n) �1Fil(m) ∈ E, but this follows 
immediately from Lemma 2.7.

To check i∗ is symmetric monoidal upon restriction to E, we first note that by [26, Corollary 3.8], i∗ is a 
lax symmetric monoidal functor. Therefore, it remains to prove that for all X, Y ∈ E, the canonical map

i∗(X) � i∗(Y ) → i∗(X �Y )

is an equivalence. Since i∗ preserves all small limits and colimits, it is stable under desuspensions and small 
colimits separately in each variable, so we may reduce to the case where X = 1Fil(n) and Y = 1Fil(m) for 
n, m ≥ 0, in which case the result follows from Lemma 2.7. �
2.2. Colimit and evaluation functors

Proposition 2.13. Let C be a presentably symmetric monoidal ∞-category. Then, the functor

colim
Zop

: Fil(C) → C

is symmetric monoidal for the Day convolution product on Fil(C). Additionally, the functor

colim
Zop

≥0

: fil(C) → C

is symmetric monoidal for the Day convolution product on fil(C), and colimZop
≥0

� ev0, where ev0 denotes 
precomposition by 0 : Δ0 → Zop

≥0.

Proof. It suffices to prove the claim for Fil(C) as the case of fil(C) is identical. Let p : Zop → Δ0 be 
the unique map to the point, and observe that it is symmetric monoidal, where Δ0 carries the trivial 
symmetric monoidal structure; alternatively p can be obtained by observing that CAlg(Cat∞) admits a 
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terminal object, given by Δ0. Now, by our presentability assumption, we can apply [26, Corollary 3.8] to 
conclude that precomposition by p induces a symmetric monoidal operadic left adjoint

p⊗! : Fun(Zop,C)⊗
p⊗
!−−→ C⊗,

such that (p⊗! )〈1〉 is the left adjoint of p∗, which shows that colim = p! is indeed symmetric monoidal.
The only claim which remains is to verify that colimZop

≥0
� ev0. However, this follows from the fact that 

Zop
≥0 has a terminal object given by 0 ∈ Zop

≥0. �
Remark 2.14. By [26, Corollary 3.8], the functor ev0 : Fil(C) → C is lax symmetric monoidal, but will 
in general fail to be symmetric monoidal as the following example illustrates. Consider the natural map 
induced by the lax symmetric monoidal structure on ev0;

ev0(1Fil(C)(1)) ⊗ ev0(1Fil(C)(−1)) → ev0(1Fil(C)(1) �1Fil(C)(−1)) � 1C.

However, ev0(1Fil(−1)) � 0, so the map above cannot be an equivalence.

2.3. The associated graded functor

Before commencing, we recall some generalities on graded spectra. Let Zds denote the integers viewed as 
a discrete space, and note that Zds (and thus (Zds)op) is a symmetric monoidal category with addition as 
the monoidal product. Similarly, we have the nonnegative variant as well, Zds

≥0. Note that these symmetric 
monoidal categories are canonically equivalent to their opposites, and upon occasion we may leave this 
identification implicit.

Definition 2.15. The ∞-category of Z-graded spectra is given by

Gr(Sp) = Fun((Zds)op,Sp),

and the ∞-category of Z≥0-graded spectra is given by

gr(Sp) = Fun((Zds
≥0)op,Sp).

Both of these ∞-categories are stable and presentably symmetric monoidal, with monoidal product given 
by Day convolution, and by abuse of notation, we also let � denote the Day convolution product, allowing 
context to dictate whether we are Day convolving filtered or graded spectra. The unit object in Gr(Sp), 
denoted by 1Gr, is the graded spectrum given by

(1Gr)n =
{
S, if n ≤ 0
0, otherwise

Similarly, the unit object in gr(Sp) is the nonnegatively graded spectrum given by

(1gr)n =
{
S, if n = 0
0, otherwise

For each i ∈ Z, we have a functor gri : Fil(Sp) → Sp which sends a filtered spectrum X∗ to 
cofib (Xi+1 → Xi), furnishing a functor
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gr : Fil(Sp) →
∏
i∈Z

Sp � Gr(Sp);

the functor gr clearly preserves small colimits and is additionally symmetric monoidal by [20, 3.2.1]. Every 
graded spectrum has an associated “underlying spectrum” which is given by the functor

und = colim
Zds

: Gr(Sp) → Sp,

or, in the nonnegatively graded case,

und = colim
Zds

≥0

: gr(Sp) → Sp .

Explicitly, these functors are given by und(X∗) =
⊕

i∈ZXi and und(X∗) =
⊕

i∈Z≥0
Xi, respectively. Given 

a filtered or nonnegatively filtered object X∗ we will sometimes abuse notation and refer to both gr∗(X∗)
and und(gr∗(X∗)) as the “associated graded” of the filtration X∗.

Proposition 2.16. The functors

und ◦ gr∗ : Fil(Sp) → Sp

and

und ◦ gr∗ : fil(Sp) → Sp

are colimit-preserving and symmetric monoidal. The same statement is true if we replace Sp by any stable 
presentably symmetric monoidal ∞-category C.

Proof. By Proposition 2.12, the inclusion fil(Sp) → Fil(Sp) is colimit-preserving and symmetric monoidal, 
so it suffices to prove the claim for gr∗ : Fil(Sp) → Sp. The fact that und ◦ gr∗ is colimit-preserving is clear, 
as both gr and und preserve small colimits. By [20, 3.2.1], it will suffice to show that und is symmetric 
monoidal. However, as und can be expressed as a left Kan extension, this holds by an identical proof to 
that of Proposition 2.13 �
2.4. The Whitehead tower

Recall, that for each n ∈ Z, we have an n-connective cover functor τ≥n : Sp → Sp≥n, which is right 
adjoint to the inclusion in : Sp≥n ⊆ Sp; for more details, see [21, 1.2.1.7] for instance. Moreover, for each 
n ∈ Z, we let in,n−1 : Sp≥n → Sp≥n−1 denote the inclusion of n-connective spectra into (n − 1)-connective 
spectra, and observe there is a canonical equivalence in−1 ◦ in,n−1 � in. As both in and in−1 admit right 
adjoints, given by τ≥n and τ≥n−1, respectively, there is an induced Beck–Chevallay transformation

in,n−1 ◦ τ≥n → τ≥n−1,

which, after post-composing by the functor in−1, gives a natural transformation

in ◦ τ≥n → in−1 ◦ τ≥n−1.

Stitching these transformations together induces a functor Zop → Fun(Sp, Sp),2 which can be displayed as

2 This is possible via the following fact; the map · · ·Δ1 ∐
Δ0 Δ1 ∐

Δ0 Δ1 · · · → Zop, induced by the maps Δ1 → Zop which pick 
out the unique arrow n → n − 1, is an equivalence of ∞-categories.
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· · · → in ◦ τ≥n → in−1 ◦ τ≥n−1 → · · · → i0 ◦ τ≥0 → i−1 ◦ τ≥−1 → · · ·

Equivalently, this gives a functor τ≥∗ : Sp → Fil(Sp), which takes a spectrum X to its Whitehead tower.
For our purposes, there is a more convenient construction of τ≥∗. Let W ⊆ Fil(Sp) denote the full 

subcategory of filtered spectra spanned by X∗ with the property that for all n ∈ Z, the spectrum Xn is 
n-connective.

Lemma 2.17. The ∞-category W is presentable and the inclusion W → Fil(Sp), preserves small colimits, 
thereby admitting a right adjoint R : Fil(Sp) → W. Furthermore, W is a symmetric monoidal subcategory 
of Fil(Sp) and R is lax symmetric monoidal.

Proof. To see presentability, note that W can be expressed as the pullback of ∞-categories

W Fil(Sp)

∏
n∈Z Sp≥n

∏
n∈Z Sp

← →

←→

← →
(in)n∈Z

←→ (evn)n∈Z

and each of the categories involved is presentable, and the functors (in)n∈Z and (evn)n∈Z preserve small 
colimits. Therefore, by [19, 5.5.3.12], W is presentable. The fact that W is closed under small colimits in 
Fil(Sp) is immediate since colimits in Fil(Sp) are calculated pointwise and each ∞-category Sp≥n is closed 
under the formation of small colimits in Sp. Therefore, by the adjoint functor theorem, we can deduce the 
existence of R.

To prove the remaining claims, it will suffice, by [21, 2.2.1.1] and [21, 2.2.1.2], to demonstrate that W
contains the unit of Fil(Sp) and is closed under the formation of Day convolution. Certainly, 1Fil ∈ W, and 
if X∗, Y∗ ∈ W, we have that

(X∗ �Y∗)n = colim
p+q≥n

Xp ⊗ Yq ∈ Sp≥n

since Xp ⊗ Yq ∈ Sp≥p+q ⊆ Sp≥n, and since Sp≥n is closed under small colimits in Sp. �
Remark 2.18. Unraveling the construction of R in Lemma 2.17, we see that R can be described as

R(X∗) = · · · → τ≥n+1Xn+1 → τ≥nXn → τ≥n−1Xn−1 → · · · .

Proposition 2.19. The Whitehead tower functor τ≥∗ : Sp → Fil(Sp) is canonically lax symmetric monoidal.

Proof. By Lemma 2.17, the composition Fil(Sp) R−→ W i−→ Fil(Sp) is lax symmetric monoidal. Additionally, 
as we have seen above, the constant diagram functor δ : Sp → Fil(Sp) is also lax symmetric monoidal. As 
the functor τ≥∗ is given by the composite i ◦R ◦ δ, we are done. �
Remark 2.20. Since τ≥∗ is lax symmetric monoidal, we have induced functors AlgE1

→ AlgFil
E1

and CAlg →
CAlgFil. In particular, for A an E1-ring, the associated Whitehead tower

· · · → τ≥nA → τ≥n−1A → · · · → τ≥0A → τ≥−1A → · · ·

is an E1-algebra in Fil(Sp). As a consequence, by Proposition 2.16, the associated graded

gr∗ τ≥∗A �
⊕

ΣkHπkA,

k∈Z
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is an E1-ring spectrum.

3. The cobar construction

In this section, we review the cobar construction in the setting of ∞-categories, and establish some of 
its basic features such as functoriality with respect to lax monoidal functors, base-change, and monoidal 
refinements.

3.1. O-monoidal envelopes

In this subsection, we review the theory of O-monoidal envelopes as developed in [21, 2.2.4], which we will 
use to define the cobar, and later on, the cyclic bar construction. Recall that if O⊗ is an ∞-operad, an O-
monoidal ∞-category C is a morphism of ∞-operads C⊗ → O⊗ which is additionally a coCartesian fibration. 
Informally, such a gadget is an ∞-category equipped with a coherent collection of ways to tensor together 
objects, indexed by the multimorphisms in O. A lax O-monoidal functor F : C → D is a commutative 
diagram of ∞-operads

C⊗ D⊗

O⊗

← →F⊗

←

→p
←→

q

and we say that F is O-monoidal if F⊗ additionally carries p-coCartesian arrows to q-coCartesian arrows.

Definition 3.1. [21, 2.2.4.1] Let p : C⊗ → O⊗ be an O-monoidal ∞-category. The O-monoidal envelope of 
C⊗, is defined as the fiber product

EnvO(C)⊗ = C⊗ ×Fun({0},O⊗) Act(O⊗)

where Act(O⊗) ⊆ Fun(Δ1, O⊗) is the full subcategory spanned by the active morphisms, and Act(O⊗) → O⊗

is the projection onto the first factor.

By [21, 2.2.4.4], evaluation at {1} ⊆ Δ1 induces a coCartesian fibration of ∞-operads p′ : EnvO(C)⊗ →
O⊗. Additionally, the pullback of the diagonal embedding O⊗ → Act(O⊗) along C⊗ induces a lax O-monoidal 
inclusion

iC : C⊗ → EnvO(C)⊗;

i.e. iC is a map of ∞-operads such that p′ ◦ iC = p. The following proposition characterizes O-monoidal 
functors out of EnvO(C)⊗.

Proposition 3.2. [21, 2.2.4.9] Let p : C⊗ → O⊗ and q : D⊗ → O⊗ be O-monoidal ∞-categories. The inclusion 
iC : C⊗ ⊆ EnvO(C)⊗ induces an equivalence of ∞-categories

Fun⊗
O(EnvO(C),D) ∼−→ AlgC(D).

Here, Fun⊗
O(EnvO(C), D) denotes the ∞-category of O-monoidal functors and AlgC(D) is the full subcategory 

of FunO⊗(C⊗, D⊗) spanned by the maps of ∞-operads.
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In the proof of [21, 2.2.4.9], it is shown that restriction along iC is a trivial fibration, with inverse given by 
q-left Kan extension along the map iC. We now fix some notation for the lemma below. Given F⊗ : C⊗ → D⊗

a lax O-monoidal functor, we write EnvO(F )⊗ : EnvO(C)⊗ → EnvO(D)⊗ for the q′-left Kan extension of 
iD ◦ F⊗ along the map iC, where q′ : EnvO(D)⊗ → O⊗. In the case where F⊗ is already O-monoidal, 
EnvO(F )⊗ is given by F⊗ ×O⊗ Act(O⊗). Because the identity functor id : C⊗ → C⊗ is a lax O-monoidal 
functor, we can form the p-left Kan extension of id along iC, and we denote this O-monoidal functor by 
⊗C : EnvO(C)⊗ → C⊗.

Lemma 3.3. Let F : C → D be a lax O-monoidal functor. Then, there is an essentially unique lax O-monoidal 
natural transformation

⊗D ◦ EnvO(F )⊗ → F⊗ ◦ ⊗C,

which is an equivalence when F is O-monoidal.

Proof. We first establish the existence of this lax O-monoidal natural transformation. To do so, note that 
there is a commutative diagram of the form

C⊗ D⊗

EnvO(C)⊗ O⊗

← →F⊗

←

→iC

←

→
F⊗◦⊗C

←

→

q

← →

Therefore, by the universal property of q-left Kan extensions, it will suffice to show that ⊗D ◦EnvO(F )⊗ is 
the q-left Kan extension of F⊗ along iC. However, this follows from [21, 2.2.4.9], using the equivalences

⊗D ◦ EnvO(F )⊗ ◦ iC � ⊗D ◦ iD ◦ F⊗ � F⊗.

To see this unique natural transformation is an equivalence when F⊗ is O-monoidal, first note that F⊗ ◦⊗C

is also O-monoidal. The desired claim now follows from [21, 2.2.4.9] combined with the observation that 
F⊗ ◦ ⊗C ◦ iC � F⊗. �

We will now restrict our attention to the cases where O⊗ = Fin∗ or E⊗
1 , and offer a brief summary 

of [21, 2.2.4.3, 2.2.4.6]. In the case where O⊗ = Fin∗, we write Env(C)⊗ in place of EnvO(C)⊗, and we 
call this the symmetric monoidal envelope. Additionally, we can identify Env(C)⊗〈1〉 with the subcategory of 
C⊗

act ⊆ C⊗ spanned by the active morphisms, and this ∞-category carries a canonical symmetric monoidal 
structure. Objects in this ∞-category can be identified with finite tuples of objects in C, and the symmetric 
monoidal structure can be informally described as concatenation of tuples. From this, we can also see that 
the underlying functor of ⊗C : Env(C)⊗ → C⊗ is informally given by sending (X1, . . . , Xn) �→ X1⊗· · ·⊗Xn.

As we will see below, similar results are true in the case when O⊗ = E⊗
1 . Recall that by [21, 5.1.0.7], we 

have an equivalence of ∞-operads E⊗
1 � Assoc⊗, which means there is no loss of generality in identifying 

EnvE1(C)⊗ � EnvAssoc(C)⊗. Moreover, we have an Assoc-monoidal functor EnvAssoc(C)⊗ → C⊗ whose 
underlying functor is given by sending (X1, . . . , Xn) �→ X1 ⊗ · · · ⊗Xn. We will conclude this subsection be 
describing EnvAssoc(Assoc) which we will need to form the cobar construction. Now, consider

Act(Assoc⊗) ×Assoc⊗ {〈1〉}

whose objects are active maps α : 〈n〉 → 〈1〉 in Assoc⊗, and whose morphisms are commutative diagrams
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〈n〉 〈m〉

〈1〉

← →f

←

→β
←→

α

in Assoc⊗; note that as both α and β are active, this implies that f is active as well. Because α and 
β are active, we have total orderings on 〈n〉◦ and 〈m〉◦, and f must restrict to an order preserving map 
〈n〉◦ → 〈m〉◦.

3.2. The cobar construction of E1-algebras

To give a rigorous definition of the cobar construction in the language of higher categories, we produce 
the “universal example” of the cobar construction in an E1-monoidal category by appealing to the theory of 
monoidal envelopes as found in [21, 2.2.4]. This construction essentially appears as [24, Construction 2.7], 
where it is phrased for symmetric monoidal ∞-categories.

Construction 3.4. Recall that we have an equivalence of ∞-operads E⊗
1 � Assoc⊗ by [21, 5.1.0.7]. By [21, 

Construction 2.2.4.1], we have that EnvE1(E1) = EnvE1(E1)⊗〈1〉 can be described as the full subcategory of 
Act(E⊗

1 ) spanned by the active morphisms 〈n〉 → 〈1〉 in E⊗
1 . By the equivalence of ∞-operads E⊗

1 � Assoc⊗

from [21, 5.1.0.7], we can identify EnvE1(E1) � EnvAssoc(Assoc). Now, let Δ+ denote the augmented simplex 
category, with initial object [−1] = ∅. In order to define the desired functor

cb : Δ+ → EnvAssoc(Assoc),

it will suffice to specify a 1-categorical functor since both the source and target are 1-categories. On objects, 
this functor is given by sending [n] to 〈n + 1〉 ∼= {0 < 1 < · · · < n − 1} 

∐
{∗} → [0] 

∐
{∗} ∼= 〈1〉, where 

[n] → [0] is the unique map to the terminal object. Each map of finite ordered sets f : [n] → [m] is sent to

〈n + 1〉 ∼= {0 < 1 < · · · < n− 1}
∐

{∗} f
∐
{∗}−−−−→ {0 < 1 < · · · < m− 1}

∐
{∗} ∼= 〈m + 1〉,

and it is clear from the definition that cb preserves composition and the identity. Because f is a map of 
finite ordered sets cb(f) is an active map in Assoc⊗, which provides the desired functor

cb : Δ+ → EnvAssoc(Assoc).

Definition 3.5. Let C be an ∞-category and let T be a monad in C, i.e. T ∈ AlgE1
(Fun(C, C)). Then, the 

(coaugmented) T -cobar construction of an object X ∈ C is given by the following composition

Δ+
cb−→ EnvE1(E1)

EnvE1 (T )−−−−−−→ EnvE1(Fun(C,C)) ◦−→ Fun(C,C) × {X} ⊆ Fun(C,C) × C
ev−→ C.

We denote this coaugmented cosimplicial object as CB•(T ; X) and note that it can be displayed diagram-
matically as follows:

X TX T 2X · · ·←→

←→←→ ←→

←→←→

Example 3.6. If (L � R) : C → D is an adjunction of ∞-categories, then T = RL defines a monad on C, and 
any object X ∈ C admits a monadic resolution CB•(T ; X).

While the definition we have offered is quite general, in the sequel, we only deal with examples of the 
following form.
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Example 3.7. Let f : A → B be a morphism of E1-algebras in a presentably symmetric monoidal ∞-cate-
gory C The extension and restriction of scalars adjunction f! � f∗ determines a monad f∗f! : LModA(C) →
LModA(C). In fact, the adjunction above is monadic and consequently we have an equivalence

LModT (LModA(C)) � LModB(C).

Now, we can form the f∗f! - cobar construction of any object M ∈ LModA(C), and in the case where 
A ∈ LModA(C) we recover a coaugmented cosimplicial object which serves as the analogue of the cobar 
construction from commutative algebra;

A B B ⊗A B · · ·←→ ←→

←→ ←→←→

←→

We call this the cobar construction associated to f , and we denote it by CB•(f). In the case when we apply 
the cobar construction to a left A-module M , we shall use the notation CB•(f ; M).

Given a morphism of E1-algebras f : A → B, there is an alternative way to produce the object CB•(f)
using the theory of bimodules. In fact, this construction will produce CB•(f) as a coaugmented cosimplicial 
object in ABModA. Recall that by [21, 3.4.1.7], the morphism of E1-algebras f : A → B in a presentably 
E1-monoidal ∞-category C determines an E1-algebra in ABModA under the relative tensor product ⊗A; 
i.e. B is an E1-algebra in (A, A)-bimodules, with left and right action given by multiplying on the left or 
the right via the morphism f .

Δ+ EnvE1(ABModA(C)) ABModA(C) LModA(C)←→⊗ ←→(−)⊗AM← →
EnvE1 (f) ◦ cb

(3.8)

Now, recall that by [4, Theorem 4.2], there is an equivalence of E1-monoidal ∞-categories

ABModA → FunL(LModA,LModA),

which carries M to the functor M ⊗A (−), and whose inverse is given by evaluation at A. With suitable 
modifications to the proof of [4, Theorem 4.2], this result is true C-linearly, for C a presentably symmetric 
monoidal stable ∞-category. That is, there is an equivalence of E1-monoidal ∞-categories

ABModA(C) ∼−→ FunL
C(LModA(C),LModA(C)),

where FunL
C denotes colimit-preserving C-linear functors, and the target is equipped with the composition 

monoidal structure. Furthermore, we note that the forgetful functor

FunL
C(LModA(C),LModA(C)) → Fun(LModA(C),LModA(C))

is one of E1-monoidal ∞-categories. Consequently, we obtain a commutative diagram

EnvE1(ABModA(C)) ABModA(C)

EnvE1(Fun(LModA(C),LModA(C))) Fun(LModA(C),LModA(C))

← →⊗

←→ ←→

←→◦

The next lemma is now immediate from the preceding discussion.

Lemma 3.9. Let f : A → B be a morphism of E1-algebras in a presentably symmetric monoidal stable 
∞-category C. Then, the f∗f!-cobar construction of an object M ∈ LModA(C) is naturally equivalent to 
Diagram (3.8).
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We now establish two basic lemmas about the f∗f!-cobar construction using the bimodule perspective 
above. The first lemma is an “Ur-base change” statement and the second deals with multiplicative refine-
ments of the cobar construction.

Lemma 3.10. Let C and D be E1-monoidal categories whose tensor products preserve geometric realizations 
separately in each variable, and let F : C → D be a lax E1-monoidal functor. Let f : A → B be a morphism 
of E1-algebras in C and let g = F (f) : F (A) → F (B) be the induced map of E1-algebras in D. Then, for 
any M ∈ LModA(C), there is a canonical natural transformation

CB•(g;F (M)) → F (CB•(f ;M)) (3.11)

of coaugmented cosimplicial objects in LModA, which is an equivalence when F is E1-monoidal and preserves 
geometric realizations.

Proof. Our assumptions about C and D guarantee that both ABModA(C) and F (A)BModF (A)(D) are E1-
monoidal ∞-categories, and that the induced functor

BMod(F ) : ABModA(C) → F (A)BModF (A)(D)

is lax E1-monoidal; see [21, 4.4.3.12]. Applying Lemma 3.3 to the lax E1-functor ABModA(C) →
F (A)BModF (A)(D), we obtain a natural transformation

α : ⊗ ◦ EnvE1(BMod(F )) → BMod(F ) ◦ ⊗.

Now, let M be a left A-module, and note that as F is lax E1-monoidal we have a natural transformation

β : (−) ⊗F (A) F (M) ◦ BMod(F ) → LMod(F ) ◦ (−) ⊗A M.

Both of these fit into the diagram below, furnishing the desired natural transformation

Δ+ EnvE1(ABModA(C)) ABModA(C) LModA(C)

EnvE1( F (A)BModF (A)(D)) F (A)BModF (A)(D) LModF (A)(D)

← →← →
EnvE1 (f) ◦ cb

←→ ←→

←→

⇐

⇒
α

← →

←→

←→⇐ ⇒
β

The assumption that F is E1-monoidal and preserves geometric realizations implies that BMod(F ) is an 
E1-monoidal functor. This implies that α and β are invertible transformations, whence the claim. �
Lemma 3.12. For 1 ≤ n ≤ ∞, we let C be an En+1-monoidal category which admits geometric realizations 
and whose tensor product preserves geometric realizations separately in each variable. If f : A → B is 
a map of En+1-algebras in C then the (coaugmented) cobar construction for f refines to a coaugmented 
cosimplicial object in ABModA(AlgEn

(C)). Moreover, if we have a lax En+1-monoidal functor F : C → D, 
and g = F (f), the transformation

CB•(g) → F (CB•(f))

is a map of (F (A), F (A))-bimodules in AlgEn
(D), which is an equivalence when F is En+1-monoidal and 

preserves geometric realizations.
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Proof. By Dunn additivity [12] and [21, 3.4.1.7], we have a chain of equivalences

(
AlgEn+1

(C)
)
A/

�
(
AlgE1

(AlgEn
(C))

)
A/

� AlgE1

(
ABModA(AlgEn

(C))
)
,

so we may view f : A → B as an E1-algebra in ABModA(AlgEn
(C)) and form the f -cobar construction, 

producing the desired coaugmented cosimplicial object in ABModA(AlgEn
(C)). To see this the desired 

refinement we apply Lemma 3.10 to the forgetful functor AlgEn
(C) → C, which is En-monoidal; this implies 

that the cobar construction formed in ABModA(AlgEn
(C)) agrees with the one formed in ABModA(C). 

That this transformation is an equivalence follows similarly to the proof of Lemma 3.10. �
We now specialize the results above to a more restrictive use-case. Throughout, fix C stable and pre-

sentably symmetric monoidal. Recall that by [21, 4.8.5.16], there is a symmetric monoidal functor

LMod : AlgE1
(C) → ModC(PrSt).

Consequently, for A an En+1-algebra in C, the ∞-category LModA(C) is presentably En-monoidal. This 
product admits an explicit description as the composite

LModA(C) × LModA(C) → LModA(C) ⊗C LModA(C) � LModA⊗A(C) m!−−→ LModA(C),

where m! is the extension of scalars functor associated to the En-algebra map m : A ⊗ A → A. Similarly, 
any map of En+1-algebras f : A → B determines an En-monoidal functor f! : LModA(C) → LModB(C).

Now, for any E2-algebra A, the forgetful functor ABModA(LModA(C)) ∼−→ LModA(C) induces an equiv-
alence of E1-monoidal categories, and the composition

LModA(C) � ABModA(LModA(C)) → ABModA(C)

is an E1-monoidal functor since the monoidal product in LModA(C) can be calculated as the relative tensor 
product. Therefore, given an E1-A-algebra B, we can calculate the cobar construction in either LModA(C)
or ABModA(C); in particular, we may do this for a map of E2-algebras A → B.

Corollary 3.13. Let f : A → B be a map of E2-algebras in C, and let C ∈ AlgE1
(LModA(C)), with unit map 

given by g : A → C. Then there is a canonical equivalence

B ⊗A CB•(g) ∼−→ CB•(B ⊗A g).

For all n ≥ 2, if f : A → B is a map of En+1-algebras and C is an Em-algebra for 2 ≤ m ≤ n, this 
equivalence refines to an equivalence of Em−1-algebras.

Proof. By the discussion preceding the statement of the Corollary, we have an E1-monoidal functor B ⊗A

(−) : LModA(C) → LModB(C). Therefore, given C ∈ AlgE1
(LModA(C)), we can apply the same argument 

appearing in Lemma 3.12 to conclude the natural map

B ⊗A CB•(g) ∼−→ CB•(B ⊗A g)

is an equivalence of coaugmented cosimplicial left B-modules. The fact that this refines to a multiplicative 
equivalence follows similarly as in the proof of Lemma 3.12. �
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3.3. Applications to THH

Before applying the results from the previous section to THH, we recall the following well-known lemma 
regarding 1-connective descent, of which Adams–Novikov descent is a consequence.

Lemma 3.14. Let f : A → B be a map of connective E1-rings which is 1-connective. Then, for any left 
A-module M which is bounded below, the natural map

M → lim
Δ

CB•(f ;M)

is an equivalence.

Proof. By suspending, we can reduce to the case where M is connective. Using the ∞-categorical Dold–Kan 
correspondence, it suffices to check that the natural map

M → lim
n

Totn(CB•(f ;M))

is an equivalence. However, by [24, 2.11] and the proof of [24, 2.14], the fiber of this map can be identified 
with the limit of a tower whose n-th term is

fib
(
M → Totn(CB•(f ;M))

)
� I⊗A(n+1) ⊗A M,

where I = fib(f) ∈ Sp≥1, by assumption. Observe that I⊗A(n+1) ⊗A M ∈ Sp≥n+1 by the connectivity 
assumption on M , and connectivity tends to ∞ linearly in n. The t-structure on Sp is left separated, so the 
limit over the objects I⊗A(n+1) ⊗A M is zero, whence the claim. �
Lemma 3.15. Let f : A → B be a map of E2-rings. Then, the natural map

CB•(THH(f)) → THH(CB•(f))

in THH(A)BModTHH(A)(CycSp) is an equivalence. Moreover, if f : A → B is a map of En+1-rings, for 
1 ≤ n ≤ ∞, then this is an equivalence of En−1-algebras in CycSp.

Proof. By [27, IV.2], the functor THH : AlgE1
(Sp) → CycSp is symmetric monoidal. By Lemmas 3.10 and 

3.12, we have the desired claim. �
In [11] the authors verify that E = K, THH, TC, and their variants all satisfy 1-connective descent. 

In particular, for A a connective E∞-ring and B a connective E1-A-algebra with 1-connective unit map 
η : A → B, Dundas and Rognes show (see [11, Theorem 3.14]) that we have an equivalence

E(A) ∼−→ lim
Δ

E(CB•(f)).

To prove our flat descent result, we require a generalization of [11, Theorem 3.14], removing the E∞ assump-
tion on A, and whose proof is similar to that of [11]. Before commencing, we recall the following standard 
lemma, whose proof is essentially identical to [2, Lemma 2.1]. We would like to thank the anonymous referee 
for suggestions which have helped to improve the clarity of the following argument.

Lemma 3.16. Let I be a small ∞-category, and let G be a finite group or T. Assume there exists some 
natural number d ≥ 0 such that limI carries objects of (Sp≥0)I to Sp≥−d, then:
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1. Both (−)hG and (−)tG preserve limits of uniformly bounded below I-shaped diagrams in Sp.
2. The forgetful functor CycSp → SpBT preserves and reflects limits of uniformly bounded below I-shaped 

diagrams of cyclotomic spectra.

Proof. For (1), using the norm cofiber sequence (and desuspending if G = T) it is enough to prove the 
claim for (−)hG. We do so by producing a convenient formula for the homotopy orbits of a connective 
spectrum with G-action. Write BG � colimn BG(n) where BG(n) is an n-skeleton of BG, and hence a finite 
CW complex; we will also write BG = BG(∞) for convenience below. Recall that by the convergence of 
Postnikov towers of spectra, we have an equivalence

Sp≥0
∼−→ lim

m
τ≤m(Sp≥0),

where τ≤m(Sp≥0) denotes the full subcategory of m-truncated connective spectra in the sense of [19, 5.5.6]; 
by [21, 1.2.1.9], this is equivalent to Sp≥0 ∩ Sp≤m. Moreover, this equivalence is given by sending a spectrum 
X to (τ≤mX)m≥0 with inverse (Xm)m≥0 �→ limm Xm. Observe that for any pair of positive integers m, n
with 0 ≤ m ≤ n ≤ ∞, we have a commuting square of functors of the form SpBG

≥0 → τ≤m(Sp≥0):

colimBG(n) τ≤m τ≤m colimBG(n)

colimBG(m) τ≤m τ≤m colimBG(m)

←→∼

←→∼ ←→ ∼

←→∼

The horizontal maps are equivalences by uniqueness of left adjoints. The vertical maps are equivalences 
because any functor BG(n) → τ≤m(Sp≥0) is uniquely determined by its restriction BG(m); this implies the 
colimit indexed by BG(n) is the same as the colimit indexed by BG(m). Therefore, as a functor SpBG

≥0 → Sp, 
we have

(−)hG � lim
m

τ≤m(−)hG � lim
n

lim
m

τ≤m

(
colim
BG(n)

(−)
)

� lim
n

colim
BG(n)

(−).

With our formula in hand, let X be an I-indexed diagram of uniformly bounded below spectra with G-
action. By shifting, we may assume that X has the form I → SpBG

≥d , and we set X = limi Xi ∈ SpBG
≥0 . As 

each BG(n) is a finite CW complex and Sp is stable, colimBG(n) commutes with small limits. Because the 
formula for (−)hG is valid for each Xi and for X, the claim follows.

For the second claim, by [27, II.1.5(v)], it suffices to show that (−)tCp preserves limits of this form, which 
follows immediately from (1). �
Example 3.17. We enumerate a few examples of ∞-categories which satisfy the hypothesis of Lemma 3.16.

1. The “punctured n-cube” given by removing the initial vertex of (Δ1)×n has this property for d = n. This 
can be proved by induction together with the following standard technique from Goodwillie calculus. If 
X is an n-cube, it can be expressed as a natural transformation of two (n −1)-cubes X0 → X1. Moreover, 
we have a fiber sequence of the form

tfib(X) � fib (tfib(X0) → tfib(X1)) .

2. The diagrams I = Zop and Zop
≥0 have this property for d = 1. This can be deduced from the following 

fact: given a I as above and given a diagram X : I → Sp, we have a fiber sequence of the form

lim
I

(X) →
∏

X(i) →
∏

X(i).

i∈I i∈I
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3. The diagram I = T = BZ has this property when d = 1. This follows by observation that limBZ can 
be identifed with taking the homotopy fixed points with respect to the endomorphism determined by a 
diagram BZ → Sp.

Theorem 3.18. Let f : A → B be a 1-connective map of connective E2-ring spectra. Then, for any bounded 
below left THH(A)-module M , the induced map of left THH(A)-modules in CycSp

M → lim
Δ

(
THH(CB•(f)) ⊗THH(A) M

)
� lim

Δ
CB•(THH(f);M)

is an equivalence. Additionally, for F any of the functors TC, TR, (−)hG, (−)hG, or (−)tG (where G is 
either T or a finite subgroup thereof), the induced map

F (M) → lim
Δ

F
(
THH(CB•(f)) ⊗THH(A) M

)
is an equivalence as well.

Proof. The fact that the natural map above is an equivalence of spectra with T-action follows immediately 
from Lemmas 3.14 and 3.15 together with the observation that for f as above, the induced map THH(A) →
THH(B) is 1-connective. To show this is an equivalence of cyclotomic spectra, by [27, II.1.5(v)], we only 
need to verify that the Cp-Tate construction preserves the limit limΔ CB•(THH(f); M). In fact, we will 
prove something stronger, namely that (−)hG, (−)hG, and (−)tG preserve this limit, for G any subgroup of 
T. The claim for (−)hG is immediate, and by the norm cofiber sequence the claim for (−)tG follows from 
the claim for (−)hG. Writing I = fib(THH(f)), we have an equivalence of spectra with T-action

lim
Δ

CB•(THH(f);M) � lim
n

cofib
(
I⊗THH(A)n ⊗THH(A) M → M

)
,

just as in the proof of Lemma 3.14. Suspending M if necessary, our assumptions imply that

cofib
(
I⊗THH(A)n ⊗THH(A) M → M

)
is connective for all n, so that the claim follows by Example 3.17 and Lemma 3.16.

The claims for TC and TR follow immediately since both are limit-preserving functors with codomain 
CycSp. �
As an immediate consequence, we are able to deduce an analogous result for algebraic K-theory.

Corollary 3.19. Let f : A → B be a 1-connective map of connective E2-ring spectra. Then, for any connective 
E1-A-algebra C, the induced map

K(A) → lim
Δ

K(CB•(f);C),

is an equivalence.

Proof. This is a direct consequence of the Dundas–Goodwillie–McCarthy theorem [10] combined with The-
orem 3.18. Indeed, it will suffice to prove the analogous claim for, Kinv, the fiber of the cyclotomic trace. 
However, by the Dundas–Goodwillie–McCarthy theorem, we have an equivalence Kinv(R) � Kinv(π0R)
for R a connective E1-ring. Consequently, as f is 1-connective, the diagram Kinv(CB•(f ; C)) is constant, 
whence the claim. �
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To conclude this subsection, we will examine the ways in which TC and TR effect the connectivity of 
maps between cyclotomic spectra. This will allow us to deduce some decent results of a similar flavor to 
Theorem 3.18. For this, we need to understand to what extent the functors TR and TC preserve connectivity. 
In the case where X is bounded below and p-complete, this has been documented in [9, Lemma 2.5 or Remark 
2.14], which we restate for the convenience of the reader. We claim no originality for this observation. As we 
were unable to find the desired statement for integral TR in the literature, we provide the argument below.

Lemma 3.20. Let X be a cyclotomic spectrum.

1. If X ∈ CycSp≥n, then TR(X) ∈ Sp≥n.
2. [9, Lemma 2.5 or Remark 2.14]: If X ∈ CycSp≥n is p-complete, then TC(X) ∈ Sp≥(n−1).

Proof. By shifting, we may assume X is connective. Recall that by [27, II.3.8], [23, 3.3.10], and [23, 3.3.12], 
we have natural equivalences

TR(X) � TRgen(X) � lim
n

XCn! ,

where we view X as a genuine cyclotomic spectrum, and the limit is taken over the maps

XCn! � (XCn)C(n−1)! → (ΦCnX)C(n−1)! � XC(n−1)! .

The isotropy separation sequence guarantees a cofiber sequence of the form

(XhCn
)C(n−1)! → XCn! � (XCn)C(n−1)! → (ΦCnX)C(n−1)! � XC(n−1)! .

Using the fact that XhCn
preserves connectivity, induction combined with a Milnor sequence argument 

establishes the desired claim. We note that an identical proof works for p-typical topological restriction 
homology. The second part of the lemma is [9, Lemma 2.5 or Remark 2.14]. �
Remark 3.21. Lemma 3.20 is very much false for TC in the integral setting. For example, we have an 
equivalence TC(HQtriv) � map(CP∞, HQ), which by the Atiyah–Hirzebruch spectral sequence, is a power 
series ring on a generator of degree −2.

Proposition 3.22. Let n ∈ Z and let f : X → Y be an n-connective map of bounded below cyclotomic spectra.

1. The induced map TR(X) → TR(Y ) is n-connective.
2. If X and Y are both p-complete, then the induced map TC(X) → TC(Y ) is (n − 1)-connective.
3. Let n ≥ 1. If f is of the form THH(A) → THH(B), induced by an n-connective map of connective 

E1-rings A → B, then TC(A) → TC(B) is (n + 1)-connective.3

Proof. Both (1) and (2) follow immediately from Lemma 3.20 since a map is n-connective if and only if 
the fiber is n-connective. To complete the argument, assume f is of the form THH(A) → THH(B) where 
A → B is an n-connective map of connective ring spectra. By the Dundas–Goodwillie–McCarthy theorem 
[10], we have an equivalence

fib (K(A) → K(B)) � fib (TC(A) → TC(B)) ,

3 We are grateful to Georg Tamme for making us aware of this fact.
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where K denotes the connective algebraic K-theory of these ring spectra. Therefore, it will suffice to show 
that K(f) is an (n +1)-connective map, which is a classical fact, originally proved in [5, Proposition 10.9]. �
Remark 3.23. The discrepancy between (2) and (3) is somewhat surprising to the author. We believe it 
would be very interesting to identify other maps of cyclotomic spectra for which TC either preserves or 
increases connectivity.

Proposition 3.24. Let n ≥ 1, let f : R → S be an n-connective map of connective E1-algebras in CycSp, and 
let M ∈ LModA(CycSp) be bounded below.

1. The natural map

TR(M) → lim
Δ

CB•(TR(f); TR(M)),

is an equivalence.
2. If n ≥ 2 and both R and S are p-complete, then the natural map

TC(M) → lim
Δ

CB•(TC(f); TC(M)),

is an equivalence.
3. If f is of the form THH(A) → THH(B) for A → B an n-connective map of connective E2-rings, then 

the natural map

TC(M) → lim
Δ

CB•(TC(f); TC(M))

is an equivalence.

Proof. Each of these results will follow immediately from Lemma 3.14 once we verify that the maps 
TC(R) → TC(S) and TR(R) → TR(B) are at least 1-connective. This claim follows immediately from 
Proposition 3.22. �
Remark 3.25. Interestingly, while TC (and TR) will fail to be symmetric monoidal, Theorem 3.18 and 
Proposition 3.24 imply that for A → B a 1-connective map of connective E2-rings the natural map

lim
Δ

TC(B)⊗TC(A)•+1 → lim
Δ

TC(B⊗A•+1)

is an equivalence.

Remark 3.26. We now carefully explain how our work in this subsection directly generalizes [11, Theorem 
1.2]. Following the notation of [11], Dundas–Rognes show that if R → B a 1-connective map of connective 
E∞-rings and A is a connective E1-R-algebra, the induced map

F (A) → lim
Δ

F (A⊗R CB•(f))

is an equivalence, for F = THH, TC, or K. Clearly, Theorem 3.18 implies this result when F is either THH
or TC, and Corollary 3.19 does so for F = K.
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4. A special case of the descent result

In this section, we prove a special case of our main theorem by combining Theorem 3.18 together with the 
fact that THH satisfies flat descent for discrete rings as shown by Bhatt–Morrow–Scholze in [6, Corollary 
3.4, Remark 3.5].

Theorem 4.1. Let f : A → B be a faithfully flat map of connective E2-rings. Then, the induced map

THH(Hπ∗A) → lim
Δ

THH(CB•(Hπ∗f))

is an equivalence of cyclotomic spectra.

Proof. By Lemma 3.12, the coaugmented cobar construction associated to the map of E∞-rings π0f :
Hπ0A → Hπ0B, refines to a coaugmented cosimplicial object in CAlg(LModHπ0A); similarly, the coaug-
mented cobar construction associated to the Postnikov truncation p : Hπ∗A → Hπ0A refines to a 
coaugmented cosimplicial object in AlgE1

(LModHπ∗A), which, using the E2-map Hπ0A → Hπ∗A, gives 
a diagram Δ+ → AlgE1

(LModHπ0A). Forming the relative tensor product, and applying THH we obtain 
the following diagram

THH
(
CB•(π0f) ⊗Hπ0A CB•(p)

)
: Δ+ × Δ+ → AlgE1

(LModHπ0A) THH−−−→ Sp .

By Lemma 3.10, this is equivalent to the diagram

THH(CB•(π0f)) ⊗THH(Hπ0A) THH(CB•(p)).

To proceed, we will make a few observations about this augmented bicosimplicial object.

1. Our flatness assumption guarantees the natural map Hπ0B ⊗Hπ0A Hπ∗A → Hπ∗B is an equivalence 
of connective E2-rings. Combining this with Corollary 3.13 we have an equivalence of coaugmented 
cosimplicial objects

THH(CB•(π0f)) ⊗THH(Hπ0A) THH(CB−1(p)) � THH(CB•(Hπ∗f)).

2. We claim that the coaugmented cosimplicial object

THH(CBm(π0f)) ⊗THH(Hπ0A) THH(CB•(p))

is a limit diagram for all [m] ∈ Δ+. This, however, follows immediately from Theorem 3.18.
3. We now claim that for all m ≥ 0 coaugmented cosimplicial object

THH(CB•(π0f)) ⊗THH(Hπ0A) THH(CBm(p))

is also a limit diagram, and we argue by induction. The case m = 0 follows from the [6, Corollary 3.4], and 
the inductive step follows from the fact that for each m ≥ 1, THH(CBm(p)) � THH((Hπ0A)⊗Hπ∗Am)
is a retract of THH(CBm−1(p)).

Now, write X•,• = THH(CB•(π0f)) ⊗THH(Hπ0A) THH(CB•(p)). Now, consider the following commutative 
diagram
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X−1,−1 lim[n]∈Δ Xn,−1

lim[m]∈Δ X−1,m lim[n]∈Δ lim[m]∈Δ Xn,m

← →

←→ ←→

←→

By observation (1) above, we wish to show the top horizontal map is an equivalence. Therefore, it will be 
enough to show the other three are equivalences. The left vertical map is an equivalence by observation (2), 
and the right vertical map can be obtained by taking the limit over the equivalences

Xn,−1 ∼−→ lim
[m]∈Δ

Xn,m,

which are also guaranteed by observation (2). Finally, a similar argument but using observation (3) shows 
the bottom horizontal map is an equivalence, whence the claim. �
5. Filtered THH and the May filtration

In this section, we review the construction and basic properties of filtered topological Hochschild ho-
mology. These notions were originally considered by Brun in [7]. A more modern account also appears in 
[1]. We will also offer a ∞-categorical construction and account of the May filtration which was originally 
considered by Angelini-Knoll and Salch in [3].

Before proceeding, we briefly indicate these constructions and introduce some relevant notation. Let A∗ ∈
AlgFil

E1
(or Algfil

E1
for a nonnegatively filtered variant). Then, the filtered topological Hochschild homology of 

A∗, denoted by THHFil(A∗) is geometric realization of the cyclic bar construction

A∗ A∗ �A∗ A∗ �A∗ �A∗ · · ·←→←

→

←→←→

←→ ←→←

→

←→←

→

formed in the category Fil(Sp). Given an E1-ring A, the May filtration on THH is obtained by taking filtered 
THH of the Whitehead tower of A, and we will write

Fil∗May THH(A) = THHFil(τ≥∗A) and gr∗May THH(A) = gr∗ Fil∗May THH(A)

for this filtered object and its associated graded, respectively.

Remark 5.1. The cyclic bar construction can be performed for any associative algebra in a symmetric 
monoidal ∞-category which admits geometric realizations and whose monoidal product preserves these 
realizations separately in each variable. Since we are primarily interested in the Whitehead towers of ring 
spectra and the Day convolution product, we will not work in such general terms, though many of the 
results in this section will hold in greater generality.

5.1. Recollections on filtered THH

Definition 5.2. Let A∗ ∈ AlgFil
E1

, given by a map A⊗
∗ : E⊗

1 → Fil(Sp)⊗. We let THHFil(A∗) denote the filtered 
spectrum with T-action obtained as the geometric realization of the diagram

N(Λop) V o

−−→ Env(E1)
Env(A⊗

∗ )−−−−−−→ Env(Fil(Sp)) �−→ Fil(Sp),

where V o is the map appearing in [27, B.1].
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Remark 5.3. This is essentially the definition of THH as given in [27], the only salient difference being that 
we are using the Day convolution of filtered spectra to form the cyclic bar construction as opposed to the 
smash product. Additionally, we know that THHFil acquires a circle action by the well-known fact that the 
geometric realization of any cyclic object admits such an action [27, B.5].

We now establish a few basic properties of filtered THH.

Proposition 5.4. The functor THHFil : AlgFil
E1

→ Fil(Sp)BT is symmetric monoidal. Consequently, if A∗ is 
an Ek+1-algebra in Fil(Sp), then THHFil(A∗) is an Ek-algebra in Fil(Sp)BT.

Proof. The first claim essentially follows from the fact that Day convolution preserves geometric realiza-
tions separately in each variable and that Δop is a sifted ∞-category. The second claim is an immediate 
consequence of the first. �
Next, we establish that filtered THH is compatible with ordinary THH, via the functor colimZop : Fil(Sp) →
Sp.

Proposition 5.5. There is a natural symmetric monoidal equivalence of functors AlgFil
E1

→ SpBT,

colim
Zop

◦THHFil ∼−→ THH ◦ colim
Zop

.

Proof. Let A∗ be a filtered E1-ring and let A = colimZop(A∗). By Proposition 2.13 and Lemma 3.10, we 
have a commutative diagram of symmetric monoidal functors

Env(E1) Env(Fil(Sp)) Fil(Sp)

Env(Sp) Sp

← →Env(A⊗
∗ )

←

→Env(A⊗)

←→�

←
→Env(colimZop )

←

→ colimZop

← →⊗

Precomposing by the functor V o, and taking the geometric realization yields the result. �
Remark 5.6. Note that we have actually proved a slightly stronger statement, namely that the cyclic bar 
construction is compatible with colimZop rather than just THHFil. Moreover, an identical proof to the one 
above shows that the cyclic bar construction (in any presentably symmetric monoidal ∞-category C) is 
compatible with symmetric monoidal functors.

We note the following useful corollary of Proposition 5.5 regarding nonnegatively filtered THH, which follows 
directly by consideration of Proposition 2.13.

Corollary 5.7. Let i : Algfil
E1

→ AlgFil
E1

denote the symmetric monoidal inclusion of nonnegatively filtered 
E1-algebras into filtered E1-algebras. Then, there is a natural symmetric monoidal equivalence of functors 
Algfil

E1
→ Fil(Sp)BT

i ◦ THHfil → THHFil ◦i,

consequently, by applying colimZop , we also obtain an equivalence

ev0 ◦THHfil ∼−→ THH ◦ ev0 .
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There is also a graded variant of THH which we will need in the sequel.

Definition 5.8. Let A∗ ∈ AlgGr
E1

, given by a map A⊗
∗ : E⊗

1 → Gr(Sp)⊗. We let THHGr(A∗) denote the filtered 
spectrum with T-action obtained as the geometric realization of the diagram

N(Λop) V o

−−→ Env(E1)
Env(A⊗

∗ )−−−−−−→ Env(Gr(Sp)) �−→ Gr(Sp).

The next proposition shows that filtered and graded THH can be intertwined by the associated graded 
functor.

Proposition 5.9. There is a natural symmetric monoidal equivalence of functors AlgFil
E1

→ Gr(Sp)BT

gr ◦THHFil ∼−→ THHGr ◦ gr

Proof. The proof is identical to that of Proposition 5.5. �
Finally, we show that THHGr and THH may be intertwined via the underlying spectrum functor.

Proposition 5.10. There is a natural symmetric monoidal equivalence of functors AlgGr
E1

→ SpBT

und ◦ THHGr ∼−→ THH ◦ und

Proof. The proof is identical to that of Proposition 5.5. �
Remark 5.11. The observant reader will notice that the proof of Proposition 5.5 may be easily generalized to 
establish the following well-known fact: if F : C → D is a symmetric monoidal functor between presentably 
symmetric monoidal ∞-categories, then for any A ∈ AlgE1

(C), the natural map

HH(F (A)/D) → F (HH(A/C)),

is an equivalence; here HH(−/C) and HH(−/D) denote the Hochschild homologies computed in C and D, 
respectively.

Remark 5.12. All of the folklore results above were also independently established by Antieau–Mathew–Mor-
row–Nikolaus in [1]. However, the results of [1] are strictly stronger than those we have presented as they 
also establish compatibility between various kinds of graded and filtered cyclotomic structures.

We conclude this subsection by establishing several basic properties of filtered THH. Before commencing, 
we recall a bit of notation related to filtered objects. If X ∈ Sp is equipped with a descending filtration 
Fil∗ X ∈ Fil(Sp), i.e. if we have a map

colim
Zop

Fil∗ X → X,

we say that Fil∗ X is exhaustive provided that colimZop Fil∗ X → X is an equivalence, and we say that Fil∗ X
is complete provided that limZop Fil∗ X � 0. We direct the reader to [16] for more details on complete filtered 
objects.

Proposition 5.13. Let A∗ ∈ AlgFil
E1

.

1. THHFil(A∗) defines an exhaustive filtration on THH(A).
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2. If the connectivity of Ai tends to ∞ linearly in i, and if each Ai is connective, then THHFil(A∗) is 
complete.

Proof. The first claim is precisely the content of Proposition 2.13. The second claim will follow if we can show 
that the connectivity of THHFil(A∗)i tends to infinity linearly in i. Let f : Z → Z≥0 be the nondecreasing 
function determined by f(i) = conn(Ai). Because connective objects are closed under colimits in Sp, the 
claim will follow if we can verify that the spectrum

evn(A� k
∗ ) = colim

n+1≥i1+···+ii≥n
Ai1 ⊗ · · · ⊗Aik

is n-connective. However, because each Aij is f(ij)-connective, and f is non-decreasing, we have that

n ≤ i1 + · · · + ik ≤ f(i1) + · · · + f(ik) = conn (Ai1 ⊗ · · · ⊗Aik) ,

where the final equality follows from the fact that the smash product of spectra is compatible with the 
t-structure. �
Remark 5.14. In general, it is extremely useful to have filtrations which are complete. For example, a map 
X∗ → Y∗ of complete filtered objects is an equivalence if and only if the induced map gr(X∗) → gr(Y∗) of 
graded objects is an equivalence; see [16, Theorem 1.11]. This observation will (essentially) be used to prove 
our main theorem.

5.2. The May filtration and variants

We now turn to the following ∞-categorical analogue of the May filtration, originally considered in [3].

Definition 5.15. Let A be an E1-ring spectrum. The May filtration on THH(A), which we denote by 
Fil∗May THH(A), is defined to be the filtered spectrum given by THHFil(τ≥∗A), where τ≥∗A denotes the 
Whitehead tower of A. Additionally, we let gr∗May THH(A) denote the associated graded object in Gr(Sp)BT. 
By abuse of notation, we will sometimes use the notation gr∗May THH(A) for the underlying spectrum with 
T-action determined by this graded object.

Remark 5.16. In the case where A is an E∞-ring spectrum, there is an alternative means to define this 
filtration, following [3]. Recall that CAlgFil = CAlg(Fil(Sp)) is a presentable ∞-category, so that it is 
tensored over the ∞-category of spaces by [19, 4.4.4]. Using this, fact, combined with the main result of 
[25], we could alternatively define Fil∗May THH(A) via the formula τ≥∗A �T, where (−) �T denotes the 
tensor with the circle; indeed writing T as a colimit of its simplices, shows that this object is precisely the 
cyclic bar construction. In fact, one can make an even more general construction, as was done in [3, 3.3.3]. 
In particular, if A∗ ∈ CAlgFil, then given some finite CW complex X, one can form A∗ �X. In the case 
where X = Tn or Sn, then this construction produces a filtration on iterated and higher THH, respectively.

We now establish some of the basic properties of the May filtration.

Proposition 5.17. Let A be an E1-ring spectrum, and let Hπ∗A denote gr∗ τ≥∗A =
⊕

i∈Z ΣiHπiA.

1. There is a natural T-equivariant equivalence colimZop Fil∗May THH(A) � THH(A), i.e. the May filtration 
is exhaustive.

2. There is a natural T-equivariant equivalence und
(
gr∗May THH(A)

)
� THH(Hπ∗A).

3. If A is additionally connective, then Fil∗May THH(A) is a complete filtered object.
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If, in addition, A is an Ek+1-ring spectrum for k ≥ 1, the equivalences of (1) and (2) are equivalences of 
Ek-ring spectra.

Proof. Parts (1) and (2), as well ask the Ek+1-algebra variants, follow immediately from Propositions 5.5, 
5.9, and 5.10. Part (3) follows from Proposition 5.13. �
We conclude this section by discussing some variants of the May filtration and their properties. Before 
making our definitions, recall that if A is an E1-ring, we write TC−(A) = THH(A)hT and TP(A) =
THH(A)tT.

Definition 5.18. Let A be an E1-ring. For G a subgroup of T, we define the May filtration of THH(A)hG
to be Fil∗May THH(A)hG = (Fil∗May THH(A))hG, and similarly for THH(A)hG and THH(A)tG. In the case 
where G = T, we use the special notation

Fil∗May TC−(A) = (Fil∗May THH(A))hG and Fil∗May TP(A) = (Fil∗May THH(A))tG

Remark 5.19. We stress that each of these filtrations, except for Fil∗May THH(A)hG, may fail to be exhaustive 
without additional connectivity assumptions on A.

We now establish an analogue of Proposition 5.17 for the May filtration of THH(A)hG.

Proposition 5.20. Let A be an E1-ring spectrum and let G be a subgroup of T. Then Fil∗May THH(A)hG is an 
exhaustive filtration of THH(A)hG, and the underlying spectrum of gr∗May THH(A)hG is naturally equivalent 
to THH(Hπ∗A)hG. If, additionally, A is assumed to be connective, then Fil∗May THH(A)hG is complete.

Proof. This follows immediately from Proposition 5.17 together with the observations that homotopy orbits 
commute with all small colimits and preserve connectivity. �
6. Proof of Theorem A and consequences

In this section we prove our main result. This is achieved by combining Theorem 4.1 with some of the 
basic properties of the May filtration.

Proposition 6.1. Let f : A → B be a faithfully flat map of connective E2-ring spectra, and let Hπ∗f :
Hπ∗A → Hπ∗B denote the induced map. Then, the natural map

CB•(Hπ∗f) ∼−→ Hπ∗ CB•(f)

is an equivalence of coaugmented cosimplicial E1-ring spectra. Consequently, the induced map of coaugmented
cosimplicial objects

THH(CB•(Hπ∗f)) ∼−→ gr∗May THH(CB•(f))

is an equivalence.

Proof. As the functor Hπ∗ : Sp → Sp can be factored into a composite of lax symmetric monoidal functors, 
it too is lax symmetric monoidal. Therefore, by Lemma 3.10, we obtain the desired multiplicative map

CB•(Hπ∗f) → Hπ∗ CB•(f).
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It will suffice to show that at each level, the induced map

Hπ∗B ⊗Hπ∗A · · · ⊗Hπ∗A Hπ∗B → Hπ∗ (B ⊗A · · · ⊗A B) ,

is an equivalence. However, this follows from our flatness assumption by a Tor spectral sequence computa-
tion. �
Corollary 6.2. The functors gr∗May THH(−) and gr∗May THH(−)hG satisfy faithfully flat descent, for G = T
or any finite subgroup thereof. Consequently, so do the functors griMay THH(−) and griMay THH(−)hG.

Proof. By Theorem 4.1, Proposition 5.17, and Proposition 6.1, we have the following commutative diagram 
with labeled equivalences

THH(Hπ∗A) gr∗May THH(A)

limΔ THH(CB•(Hπ∗f)) limΔ gr∗May THH(CB•(f))

← →∼

←→∼ ←→

←→∼

which proves the first claim. The proof for gr∗May THH(−)hG follows similarly, but now we use Proposi-
tion 5.20. Since each griMay is naturally a retract of the underlying spectrum, our last claim follows. �
Before commencing with the proof of our main theorem, we recall the following standard lemma regarding 
cyclotomic spectra.

Theorem 6.3. Let f : A → B be a faithfully flat map of connective E2-ring spectra. Then, the induced map

THH(A) → limΔ THH(CB•(f))

is an equivalence of cyclotomic spectra. Additionally, the same is true for any of the functors TC, TR, 
THH(−)hG, THH(−)hG, and THH(−)tG, for G = T or any finite subgroup thereof.

Proof. First, we prove that the map above is an equivalence of spectra with T-action. By Corollary 6.2, 
we know that the theorem is true for the associated graded terms of the May filtration. Now, consider the 
following cofiber sequences of filtrations

Fil∗May THH(−) → THH(−) → THH(−)/Fil∗May THH(−),

where we view THH(−) as a constant filtered object. Restricting to connective E1-rings, and taking the 
limit of these filtrations, we obtain an equivalence

THH(−) ∼−→ lim
Zop

THH(−)/Fil∗May THH(−),

in virtue of Proposition 5.17. Therefore, it will suffice to exhibit the claim for each

THH(−)/FiliMay THH(−)

with i ≥ 1. For this, observe that for all i ≥ 0, we have a cofiber sequence of the form

griMay THH(−) → THH(−)/Fili+1
May THH(−) → THH(−)/FiliMay THH(−),
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which, by induction combined with Corollary 6.2 proves the claim.
Now, as limits commute with limits, the claim for THH(−)hG follows immediately for all subgroups of 

T. By the Norm cofiber sequence for G, the claims for THH(−)tG and THH(−)hG are equivalent, and by 
Lemma 3.16, we can reduce the remainder of the claims to THH(−)hG. However, this essentially follows by 
the same reasoning as above by applying Proposition 5.20 and Corollary 6.2, whence the claim. �
Remark 6.4. From our work above, it is not hard to show that Fil∗May THH(−), Fil∗May THH(−)hG, 
Fil∗May THH(−)tG, and Fil∗May THH(−)hG, viewed as functors Algcn

E2
→ Fil(Sp), also satisfy faithfully flat 

descent.
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