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 THE BROWN-PETERSON HOMOLOGY OF

 ELEMENTARY p-GROUPS

 By DAVID COPELAND JOHNSON and W. STEPHEN WILSON

 1. Introduction. For twenty years, oriented bordism and complex

 bordism have been under active investigation as generalized homology the-

 ories ([At], [CF]). Despite deep applications (e.g. [MRW]) and the many

 beautiful papers on the structure of bordism, researchers have computed

 the bordism groups for few spaces: for some artifically constructed exam-

 ples, for complexes withi few cells, for spaces for which the Atiyah-Hirze-

 bruch spectral sequence collapses. And for little else. The n-fold product

 of BZ/p's-the classifying space for the elementary p-group of rank n-

 played a central role in Conner and Floyd's work [CF]. Ever since, its bord-

 ism has stood out as a desirable candidate for computation. Here, we com-

 pute these bordism groups of the n-fold products of BZ/p's, producing the

 first example of a sequence of standard spaces with increasingly compli-

 cated, but known, bordism groups.

 Conner and Floyd computed the first two cases [CF]. In his thesis,

 Landweber gave an elegant treatment of the bordism of BZ/p X BZ/p

 [L3]. Stong [unpublished] computed the n = 3 case. These computations

 are equivalent to computing the reduced Brown-Peterson homology of the

 n-fold smash product of BZ/p with itself, BP* An BZ/p ([A3], [BP], [Q]).

 Let p be the prime associated with BP. Let L k be the free BP* -module
 on generators of degree 2i, 0 < i < pk. For BP* -modules M and N, de-

 note M ?BP* N by MN and M (0BP* ... ?*BP* M (k factors) by Mk or by
 0kM. Adopt the convention that MO is the free BP* -module on one gener-
 ator in degree zero. Our main theorem is:

 THEOREM 5.1. There is a BP*-module filtration on the reduced

 Brown-Peterson homology of the n-fold smash product of the classifying

 space of Z/p with itself, BP* An BZ/p, such that the associated graded
 BP*-module is:

 till . . 0. Lkk sk BP*BZ/p. C
 i+* * +ik=n-k

 427
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 428 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 The proof is by induction on n using Landweber's short exact

 sequence:

 (2.19) 0 BP*BZ/p ?BP* BP*X -+ BP*(BZ/p A X)

 , TorBP*(BP*BZ/p, BP*X) - 0.

 The surprisingly nice answer in Theorem 5.1 derives from the follow-

 ing result which conflicts with TorBP*,s reputation of being indescribable

 and intractable.

 THEOREM 4.1. Denote BP*BZ/p by N. Then there is an isomor-

 phism of BP*-modules

 E Tor BP *(N, Nn ) - L n Nn. C]I

 The filtration of Theorem 5.1 comes from the iterated use of (2.19). If

 the sequence (2.19) were split-and it may well be-then Theorem 5.1

 would follow from Theorem 4.1 and (2.19) inductively. However, there are

 serious difficulties in forcing (2.19) to have a split-like behavior.

 To complete our description, we must study 0onBP*BZ/p. As a

 BP*-module, BP*BZ/p is generated by elements Zm E BP2m_iBZ/p,
 m > 0. For I = (i1, ..., in ), define z1 E (0 nBP*BZ/p to be
 Zil ( z* i Recall that BP* Z(p) [v l, v2, ] andIn = (p, vl,

 * ,Vn -1l) (with I, = (p)) .

 THEOREM 3.2. There is a BP*-module filtration on 0onBP*BZ/p

 with associated graded object free over BP*1In on classes represented by
 the ZI. C]

 For odd primes, Theorem 5.1 determines the oriented bordism of

 XnBZ/p - B(Z/p)n, MSO* X n BZ/p. ((Z/p)n = Z/p X X Z/p, n
 times.) This is the group of bordism classes of free (Z/p)n-actions on ori-

 ented manifolds [CF]. From the time of the publication of Conner and

 Floyd's monograph [CF] to now, the toral element [S' X ... X S 1 -

 X nBZ/p] E MSOn X n BZ/p has been of paramount interest. There is a

 corresponding fundamental class 'Yn E BPn An BZ/p. Conner and Floyd's
 book ends with a conjecture settled by the following.

 THEOREM 1.1. (Conner-Floyd Conjecture [CF], Ravenel-Wilson

 [RW]).
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 429

 In= {x EBP*: XYn = O} D

 We give two separate computations of BP* An BZ/p. The first-the
 one we have described above-builds on Theorems 3.2 and 4.1. Both 3.2

 and 4.1 rely heavily on the Conner-Floyd Conjecture. Our second compu-

 tation, described below, uses the Adams spectral sequence and gives a new

 proof of Theorem 1.1 making this paper formally independent of [RW].

 The original Ravenel-Wilson proof of the Conner-Floyd Conjecture [RW]

 was circuitous. Steve Mitchell [Mit] has a direct proof which reduces the

 Ravenel-Wilson theorem to four pages of elegance. But our new proof is

 conceptually simple: give a quick computation of BP* An BZ/p and then

 read off the annihilator ideal of the fundamental class.

 Historically, the two computations of BP* An BZ/p were thoroughly
 intertwined. Originally, we used the Conner-Floyd Conjecture to show the

 collapse of the Adams spectral sequence for -r*(BP An BZ/p). Our work
 with that spectral sequence led us to conjecture the otherwise unexpected

 Theorem 4. 1.

 The second computation of BP* An BZ/p proceeds in a rather curious
 fashion. We compute the E2 terms for the Adams spectral sequences for

 both BP* An BZ/p and BP* An BZ/p. The spectral sequence for the latter

 collapses because itsE2 term is concentrated in even degrees. To show that

 the Adams spectral sequence for the first collapses, we use the duality

 spectral sequence

 (2.35) E = Ext p*(BP*X, BP*) BP*X.

 Applied to the E2 term of the Adams spectral sequence for BP* An BZ/p,

 we get the correct E2 term for the spectral sequence for BP* An BZ/p. This

 forces both spectral sequences-the remaining Adams and the duality-to

 collapse.

 We get several by-products of our computations. Following [JW], it is

 easy to show that for k > n, the long exact sequences relating the

 BP(k>*(-) all become short exact:

 Vk

 (1 .2) 0 > BP(<k >* A n BZ/p BP(<k >* A nBZIp

 BP(k- 1>*AnBZ/p >0.

 This implies that the projective dimension of BP* An BZ/p as a BP*-mod-
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 430 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 ule is n. Perhaps of more significance is the mod p Brown-Peterson homol-

 ogy of AnBZ/p. This fits into a short exact sequence

 (1.3) 0 ' EBP*(ABn-BZ/p, Z/p) - BP* An BZ/p

 1 ~22BP* An BZ/p 1 0.

 See the paragraph following Remark 6.2. Also, we obtain an explicit de-

 scription of BP* An BZ/p which nicely complements Landweber's elegant

 computation of this group [L2].

 We hope this paper inspires many future computations of bordism

 groups for spaces of interest thus increasing the usefulness of BP to homo-

 topy theory problems. The second author has already used these tech-

 niques and results to compute BP*X and BP*X for X = BOn and

 MOn (p = 2). At present, these computations rely heavily on the Adams
 spectral sequence computations of this paper's Section 6. See [W2].

 A number of open problems remain. We believe that Theorem 5.1's

 filtration is unnecessary, but we have been unable to eliminate it. We have

 not attempted the analogous computations for finite dimensional lens

 spaces or arbitrary abelian p-groups. Possibly, our techniques may go

 through with only modest modifications. The n-fold tensor product could

 be described in much greater detail than what we give. What is the action

 of the symmetric group on n letters on BP* An BZ/p? Our results are al-

 ways as BP*-modules. Never as BP*BP-comodules. Steve Mitchell has
 fresh insights to many of the interesting questions here. We are publishing

 at this point to encourage Mitchell and others to build on our computa-

 tions.

 Section 2 reviews the basic facts that we need in the rest of the paper.

 Theorems 3.2, 4. 1, and 5.1 are proven in Sections 3, 4, and 5, respectively.

 Section 6 contains the Adams spectral sequence approach. A short appen-

 dix shows how the work of Ravenel and Wilson [RW] goes through for

 p = 2.

 We thank Mark Mahowald, Steve Mitchell, Doug Ravenel, and Bob

 Stong for useful conversations during this paper's research. The second

 author would like to thank Osaka City University, Japan, and the Univer-

 sity of Porto, Portugal, for their hospitality and support during some of the

 research and/or writing of this paper. The second author was partially

 supported by the National Science Foundation and the Sloan Foundation
 as well.
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 431

 2. Preliminaries. The basic references for Brown-Peterson homol-

 ogy are [A3j, [BP], and [Q]. We review the facts we need. The coefficient
 ring is

 (2.1) BP-* - BP* Z(p)[Vl, V2, **] Vnl = 2pn -2.

 (2.2) BP*CP" BP*[[x]], where x E BP2CP,

 is the first Conner-Floyd Chern class. The induced map, p*, from the fi-

 bration,

 (2.3) BZ/p - CP -0 p CP ,

 defines

 (2.4) p*(x) = [p](x) E aixi+, ajeBP2i.

 Applying BP* to (2.3), we have a short exact sequence with

 (2.5) BP*BZ/p - BP*[[x]]/[p](x).

 This is easy to see from the Atiyah-Hirzebruch spectral sequence. It is con-

 venient to let

 (2.6) x stand for -r*x.

 For dimensional reasons,

 (2.7) ai EIn (p, v .*. ., v ) Vn- i < pn-1

 We also need

 (2.8) vn apnl moduloI([Ar], [CF], [Mo], [R]).

 The reduced Brown-Peterson homology of BZ/p, BP*BZ/p, is gener-

 ated by

 (2.9) Zm EBP2m_1BZ/p, m > O,
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 432 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 subject to the relations

 (2.10) aizm-i = 0.
 O<i<m

 This is proven using the Gysin sequence, which happens to be short exact

 here:

 (2.11) 0 [p(x)fl- BP2m (CP )

 BP2m+iBZ/p - 0.

 The map t has a realization as a stable transfer,

 (2.12) ECPi-+ BZ/p.

 The inclusion tm : CPm CP?? gives the bordism class [tm] EBP2mCP?;
 Zm+1 t([tm]).

 (2.13) x n [tm] = [tm-1] and w*(x) n Zm+l = Zm.

 We define an algebraic Smith homomorphism, [CF], a: BP2m+iBZ/p
 BP2m_ 1BZ/p, by

 (2.14) a(Zm+) =zm, a(z1) =0.

 This is a BP*-homomorphism, because a preserves the relations (2.10):

 (2.15) a( E aizmi) = E ai(zm-i)
 O<i<m O<i<m

 = E aizm-1-i = 0.
 O<i<m-1

 Observe that

 (2.16) E aia1 0.
 O'i
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 433

 When the functional equation (2.16) is applied to Zm, we get (2.10). Mark
 Mahowald pointed out to us that this Smith homomorphism occurs

 geometrically. Mahowald's observation was essential to our original ap-

 proach to BP* A' BZ/p.

 Definition 2.17. A Landweber filtration of a BP* (or BP*) module

 M is a filtration-possibly infinite-of M by BP*-submodules

 0 = M_1 C Mo C ... C Mi_l C Mi C ... C M

 withMi/Mi-1 - EkiBP*/Ini. We call the associated graded BP*-module
 a Landweber presentation. In [L 1 ], Landweber showed that BP*X always
 has a finite Landweber presentation when X is a finite complex.

 We compute using the Kuinneth-type spectral sequence of [CS],

 (2.18) E2t - Tor BP*(BP*X, BP*Y) X BP*(X A Y).

 BP*BZ/p has BP*-projective dimension 1 (see (2.11)). Thus for
 X = BZ/p, (2.18) collapses to the short exact sequence of [L3]

 (2.19) 0 BP*BZ/p 0BP* BP* Y -- BP*(BZ/p A Y)

 -~ S Tor4BP*(BP*BZ/p, BP*Y) -+ 0.

 We only use the form (2.19) and, indeed, we reconstruct an explicit proof

 of (2.19) in Section 5.

 Let R be a ring; R could be a sub-algebra of the mod p Steenrod alge-

 bra or R could be BP*. Let M and N be R-modules. Often we must deal
 with M knowing no more than the associated graded object (e.g. a

 Landweber presentation) of a specific filtration of M. In such a situation,

 our approach to TorR(N, M) or to ExtR (N, M) must be indirect. Filter m:

 (2.20) 0 = M-1 c Mo C C cM i_ C Mj C ... C M.

 Apply Tor4R(N, -) to the short exact sequences

 (2.21) 0 - Mi- Mi Mi/MiI 0

This content downloaded from 
������������128.151.113.25 on Tue, 16 Sep 2025 10:28:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 434 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 to obtain a homology spectral sequence:

 (2.22) Esr TorsR+t(N, M)

 Es1t TorsRt (N, Ms IMs-

 dr r: Esrt E r-r,t +r- 1.

 Note that differentials lower homological degree by one (just enough to

 affect (2.19)). Let M be the graded module associated to (2.21) with M=

 Mil/Mi1. We have analogous cohomological spectral sequences; their
 differentials raise cohomological degree by one.

 (2.23) E ** - Ext *(M, N) Ext *(M, N)
 (2.24) E1** Ext *(N, M) XExt * (N, M).

 This ends the review of material prerequisite to the proof of the main

 theorem. The rest of this section prepares for Section 6's Adams spectral
 sequence computations.

 Let H*X be the mod p cohomology of X. Let Zp be the p-adic integers
 and A be the mod p Steenrod algebra. By a powerful change of rings, the
 Adams spectral sequence [A2]

 (2.25) E** Ext **(H*X, H*Y) {Y, X}* ( Zp

 can be adapted to compute

 (2.26) BP*Y {Y, BP}) and BP*X {?S, BP AX}*.

 Let

 (2.27) Es E[QS, Qs+1 9 * I

 be the exterior algebra on the indicated Milnor primitives [Mi]. E = Eo is
 a normal subalgebra of A and we have

 (2.28) E A - AIIE H*BP.
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 435

 By the Cartan-Eilenberg change of rings spectral sequence we can replace:

 (2.29) Ext**(H*(BP A X), H*Y) with Ext**(H*X, H*Y).

 (See [CE] or, for this particular case, [M].) So the forms of the Adams

 spectral sequence we use are

 (2.30) Ext**(H*X, Z/p) BP*X

 and

 (2.31) Ext**(Z/p, H*Y) BP-*Y.

 In our Adams spectral sequence computations, we need two more

 forms of the Cartan-Eilenberg change of rings spectral sequence [CE].

 From the sequence,

 (2.32) E[Qs] - s - Ess+, Esl/E[Qs],

 we have

 (2.33) Ext~1E(TorX[Qs](M, Z/p), Z/p) X Ext* (M, Z/p)

 and

 (2.34) EXtES+1(Z/p, Ext[Qs ] (Z/p, M)) X Ext *Es(Z/p, M).

 Finally, we need the duality spectral sequence of [A 1 ], [CS], and [JW,

 5.17]

 (2.35) Es ExtBP*(BP*X, BP*) X BP*X.

 3. Tensor products. Our subject is (0)BP*BZ/p, the n-fold BP*-

 tensor product of the reduced Brown-Peterson homology of BZIp. BZip is
 the classifying space for Z/p where p is the prime associated with BP. Our

 goal is to give a Landweber presentation (2.17) of this, our subject. Recall

 the BP*-generators Zm E BP2mniBZip, m > 0 (2.9). For each n-tuple of
 positive integers I = (i 1, . . ., in), let
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 436 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 (3.1) ZI Zi1 ... * Zin E0 (3nBP*BZ/p.

 THEOREM 3.2. The tensor product (0n BP*BZ/p has a Landweber

 presentation which is free over BP*lIn on classes represented by the z1.
 Hence the BP*/In-basis of the Landweber presentation of

 ?onBP*BZ/p is indexed by the n-tuples of positive integers. We delay the
 proof of Theorem 3.2 until after that of its corollary.

 COROLLARY 3.3. The iterated Kunneth homomorphism,

 X ?fnBp*BZ/p -+ BP* An BZ/p,

 is injective.

 Proof of 3.3. Suppose z is in the kernel of X. By Theorem 3.2, we can

 write z = Ec1z1, c, E BP*. We may assume either c, = 0 or c, # 0
 moduloIn . Choose an n-tuple J = (jI + 1, . j . ,in + 1), ik 2 0, such that
 the degree of zj is maximal for those z1 in z with nonzero c1. Let xi =
 1 X *... 0 *x*(x) .. 01 with the r*(x) in the ith factor; xi E ?n BP*BZ/
 p. Then

 0 xi. xJn n X(z) = X(XJ1 XJn n z)

 = cJX(Z(1,..,1)).

 By the solution to the Conner-Floyd Conjecture (1.1), cj 0 modulo In.
 By our choices of the c, and of J, this means z must be zero. D

 Remark 3.4. Theorem 3.2 has a different phrasing. Every element z

 of ?onBP*BZ/p has an expression of the form z = IcI,LvLzI, vL =
 v/nv vnl ... forL =Q?n En+1' . . n+ic 0, 0, .. .). Here CI,L is one of
 the integers 0, 1, ..., p - 1. And this expression is unique. Back in the

 1960's, Bob Stong knew that z has such an expression. But the uniqueness

 of the expression-the BP*/In -free statement of (3.2)-depends on the
 solution of the Conner-Floyd Conjecture. Corollary 3.3 appears in [CF] as

 44.4, but the earlier 44.4's argument has a flaw first noticed by Larry

 Smith. The lack of a Corollary 3.3 was a major obstacle in the computation

 of various interpretations of BP* An BZ/p. Steve Mitchell suggested the
 present derivation of Corollary 3.3 from Theorem 3.2; his argument im-
 proves on our original one.
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 437

 Proof of Theorem 3.2. Order n-tuples of positive integers lexico-

 graphically: I < J if i1 = ilt *. * * ik=1 = ik-1 ik < ik. Define FJ C
 o8nBP*BZ/p to be the BP*-submodule generated by all z1, I c J. This
 gives a filtration of 0onBP*BZ/p which is indexed by the n-tuples J. Let

 EO,n= Eo(0nBP*BZ/p) be the graded BP*-module associated to the fil-
 tration. We must show that E0,n is a BP*/In -module, i.e. that InEO,n = 0.

 The proof that Eo,n is BP*/In -free is the same as Corollary 3.3's proof.
 We prove that In+,Eo,n+l = 0 using the inductive assumption that

 InEo,n = 0. (Induction begins with the n = 0 vacuous case.) We must
 show that In+1 (zI X z1) = 0 in EO,n+1 where I is an n-tuple. By (2.7) and
 (2.8), In+ =IIn + (apn ). Byourinduction, (InZ I)0zi = 0inEO,n+1. It
 remains to consider apn-1 (z1 0 zi). By (2.10),

 -apn_jZI (0zi = 0E apn-l-jZi(Ozi+j + 0E apnij+jZIOzi-j.

 By(2.7), apn1 jeIn and a pn -1z10zi+j = 0 inEO,n+1. Butz Izij is
 of lower filtration than zI 0 zi . Thus in Eo,n+i, -apn-1zI 0 zi = 0 as
 desired. C]

 This proof of Theorem 3.2 has, as a corollary, the following result of

 Conner and Floyd.

 COROLLARY 3.5. [CF, 46.4]. InZ(l,. = 0 in onBP*BZ/p. C]

 4. Torsion products. We compute Tor BP*(BP*BZ/p, 0nBP*BZ/p)
 where the n-fold tensor product is as in the beginning of Section 3. Let M

 be any BP*-module. We use the following simplified notation in this sec-
 tion.

 N BP*BZ/p

 N N? ... ON, the n-fold BP*-tensor product

 EM the suspension of M (-BP*(Sl) ?BP* M)

 MN M ?BP* N

 N*M = Tor BP*(N, M)
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 438 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 Let Lnbe the free BP*-module on generators yi in degrees 2i,0 < i < pn.
 In this notation, our goal is to compute EN*Nn and our result is surpris-

 ingly elegant.

 THEOREM 4. 1. EN*N LnN
 Bob Stong proved the n = 1, p = 2, case of Theorem 4.1 during

 someone's talk at the 1970 Madison conference.

 Following 2.11, we construct a free BP*-resolution of EN.

 (4.2) 0 - F1 f Fo 0 EN 0.

 The element z m is now in (EN)2m. Both F1 and Fo are formally isomorphic
 to BP*CP'. We have the BP*-basis elements:

 (4.3) Ym E(F1)2m , (FO)2m, m > 0.

 Then f 1(ym) = Eiaiym-i and fo(ym) = Zm. Tor*BP*(-, M) applied to
 (4.2) gives us the four term exact sequence for any M (e.g. M = Nn):

 (4.4) 0 > EN*M > FIM f &I - FoM foi1- ENM 0

 Our approach to Theorem 4.1 is to construct a map L -Nn F1Nn

 whose image is in ft X l's kernel. This gives a map

 (4.5) :LnN -+ EN*N .

 Our construction will guarantee injectivity; a counting argument will then

 give surjectivity.

 Recall the Smith homomorphism a: N -+ N of (2.14). Let a3: Nn

 N nbe ai = 1 0 * * 1 ( a 1 *,the Smith homomorphism in the
 i-th factor of Nn. In the obvious way, extend ai to a homomorphism

 ai:MNn -+ MNn (=M0BP* Nn).

 LEMMA 4.6. Let E be a free BP*-module. To define a BP*-homo-

 morphism

 O:L N:n -+EN n

 it suffices to define o(Yk (0 z) for all k and I satisfying ai 0 = ai
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 439

 i = 1, ..., n. (Note that k ranges over integers, 0 < k < pn . The symbol I

 ranges over all n-tuples of positive integers.)

 Proof. We have 00 defined on generators; we extend 1 O's definition
 linearly, but we must check that the resulting extension X is well-defined

 and multilinear. We must check that X preserves the relations (2.10). By

 symmetry, it is enough to check linearity in the n-th coordinate. Write

 ZI = zj0 zj (i.e. (il, .. *, in) = (i, . .,I n-, ])). We compute:

 O(Yk 0 ZJ 0 Eiaizj_i) = EiaiOo(Yk 0 ZJ 0 Zj-i)

 = Eiai0O(an)(Yk O ZJ O Zj)

 = EOai(anYO (A ZJ O Zj)

 = 0 by (2.16). C]

 LEMMA 4.7. There is a BP*-homomorphism

 O: L nNn +FIN Nn

 which satisfies for all k, 0 < k < pn:

 (i) (yk ZJ) Yk 0ZJ + Ep?si yi Xwi, Wi E n
 (ii) ait = 0ai, i = 1, ...,n; and
 (iii) (ft 0 1) = 0.

 Proof of Theorem 4.1 (assuming 4.7). From 4.7(iii), we have a map

 (4.5). From 4.7(i), 1 is injective. All groups in (4.4) for M = Nn are finite

 in each degree. Since F, Nn and FONn are formally isomorphic, the kernel
 of ft 03 1, EN*N , and the cokernel, EN +, must each have the same
 order in each degree. From 3.2, we know the orders of LnNn and ENn+l.
 If they coincide, our injection is a surjection. Let B be the Z/p-vector space

 generated by the Zm , m > 0, ENn+l and 2Bn+l OZ/p BP*/In+l have the

 same orders. The order of LnNn is the same as the order of L n p* B n ?Z/p
 BP*/In. As free right Z/p[vn+l, Vn+29 . . .]-modules: EB Oz/p
 BP*/In+1 has a basis given by the Zm , m > 0; Ln pBP* BP*/In has a basis
 given byyi($ 0vi , 0 < i < p nf, 0 j. Each basis has a single element in each
 even positive degree. If we decorate these two free right Zip[vn+l1
 Vn+2, ... ]-modules with B n OZ/p -, their orders remain equal. We have a
 sequence of four graded groups with equal orders:
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 440 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 ENn+l , EBn+l ?Z/p BP*/In+i , Ln L BP* Bn ?Z/p BP*/In, L LNn. D

 Proof of Lemma 4.7. By 4.6, it is enough to define Xo(Yk OzI) such

 that (i), (ii), and (iii) hold for o0. We define 0o(Yk 0 z1) by induction on

 thedegreeofz1. ForI= (1, ..., 1), defineo(ykOzI) = yk0zIeF,Nn.
 Parts (i) and (ii) are trivial. To get (iii), we check that

 (fl X 1)(Yk OZI) = Eiaiyk-i 0ZI = 0

 because ai E In (recall k < pfn, (2.7)) and by Corollary 3.5.
 Assume that we have defined fo(Yk 0 ZJ) satisfying (i), (ii), and (iii)

 for all Zj's with degree less than z1. Think of the Smith homomorphisms,

 ai, as partial derivatives a/axi. We want to solve the "exact partial differ-
 ential equations":

 d0o(Yk (0zI) = E aiXO(Yk 0 ZI)dXi = E 0oai(Yk ? ZI)dXiX
 1 iSn 1 i<n

 Because aiaj = ajai, this can be solved up to an "integration constant":

 400(Yk (O ZI) = 0 1(Yk OZI) + C Z(l,..Zl)

 Here 1 (Yk 0zZ) satisfies (i) and (ii) and has z( .1)-coefficient zero. Part

 (ii) holds for Xo(Yk 0) z1) no matter the choice of c. We must choose c so

 that both (i) and (iii) hold. For (iii), we want (ft 0 l)0o(Yk 0 z1) = 0.
 Well, x (ft? l)I1(Yk O zi) has

 ai(fl ? 1)l(Yk 0ZI) = (fl X )1lai(Yk 0ZI) = 0

 by induction on the degree of z1. Since the aix = 0, x = w 0 Z(1.
 w E F1. By the exactness of (4.4) (M = Nn), 0 = (fo 0 t)(x) =

 (fO t 1)(fl i 1)& (Yk (O zi). By Lemma 4.8 (following), we have

 W 0 Z(,...,1) = (f1 t? 1)( nE CiYi C) Z(t,...,1)).

 To complete the proof, we define our integration constant c to be

 M 4Pn<i CiYi Le

 LEMMA 4.8. Let z = z(,,.. I) * If (fo (S 1)(w (S z) = 0, then
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 441

 w O z = (fi l 1)( E, ci iY10 Z), ci E BP*.

 Proof. Write w (g z in the form

 E divnyiz?+ eiyi 0z, di,eieBP*.
 l sism i

 By Theorem 3.2, we can do this with the non-zero ei not in In+, and the
 non-zero di not inIn. If m = 1,

 0 = (fo ?D 1)(w 0 z) = d, VnZl ? Z + eizi ( z.

 By Corollary 3.5, the first term is zero, but by Theorem 3.2 (and our as-

 sumptions about the ei), all the ei must be zero. By Corollary 3.5, by (2.7)
 and (2.8),

 w0z = d,Vny1 Z = diapnlyl Y0z

 =(ft 0 1)(dyIpn 0z).

 Now suppose m > 1.

 (ft? 1)(dmym+pn -I (Z) = ip-1 dm aiym+pn I-i(Z

 + dmapn-lym 0Z

 + E dmaiym+pn-I-i (0 Z.

 The first terms are zero because aiz = 0 ((2.7) and Corollary 3.5). The
 second term is equal to dmVnYm 0z. For i 2 pn, write dmai as before:

 dmai dM+pn_j_iVn + eM+pnj_i.
 So

 (w f(dm ym +pn - 1)) (0 Z (di - d')VnYi ( Z
 O<i<m

 + E (ei - ej')yi z.
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 442 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 This element satisfies the lemma's hypothesis. By induction on m, we are

 done. DG

 Once upon a time, an "algebraic Conner-Floyd conjecture" had a cer-

 tain popularity. This conjecture asked that the annihilator ideal of

 z1 (0 ... 0E z1 in the n-fold tensor product (0nBP*BZ/p be In . Well, it is.
 The dream was to prove this weaker, algebraic analog of the Conner-Floyd

 Conjecture and to then prove a Corollary 3.3. The two would solve the Con-

 ner-Floyd Conjecture (Theorem 1.1). History did not happen that way.

 Observe that Theorem 3.2 and Theorem 4.1 only depend on the "algebraic

 Conner-Floyd conjecture." (And note that Corollary 3.3 is no mere corol-

 lary.) It would interest us to see a simple, direct approach to Theorems 3.2

 and 4.1 which would circumvent the full strength of Theorem 1.1.

 5. The main theorem. We complete the computation of the reduced

 Brown-Peterson homology of the n-fold smash product of BZ/p with itself,

 BP* An BZ/p. Recall that Lk is the free BP* -module on generators of de-
 k

 gree 2i, 0 < i < p

 THEOREM 5.1. There is a BP*-module filtration of BP* An BZ/p
 such that the associated graded BP*-module is isomorphic to

 (8 Jn (BP* ... ?BP* J1.

 The direct sum is over all such tensor products where each Ji is either Lk or

 BP*BZ/p - N. Here k is the number of Jj, j < i, which are N.
 This is an equivalent rephrasing of the introduction's version of Theo-

 rem 5.1. Some examples:

 Module Associated Graded Module

 BP*BZ/p N

 BP* A2BZ/p (N0N)? (L1I N)
 BP* A3BZ/p (N0NON) ?(N0L10N)33(L20NON)

 i) (L1 0 L1 ON)

 Here, as throughout this section, N O N means N (BP* N, etc. Note that
 when n c 2p - 2 (e.g. n = 2), BP* An BZ/p is isomorphic to its associated

 graded module [L3]. By Theorem 4. 1, the above associated graded module

 for BP* A3 BZ/p is isomorphic to:
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 443

 (N ?D BP* A2 BZ/p) 0 (E TorBP*(N, BP* A2 BZ/p)).

 The two summands are the two end terms in Landweber's short exact se-

 quence (2.19). This example suggests the proof of our main theorem. Com-

 plications arise since we do not identify BP* An BZ/p with its associated
 graded module. Theorem 5.1's proof occupies the rest of this section.

 We need a geometric realization of the resolution (4.2) and an explicit

 proof of the short exact sequence (2.19). Let C be the stable cofibre of the

 Bockstein r (in the cofibration)

 (5.2) BZ/p CPw -) C.

 Using the long exact sequence for integral and mod p homology, we see

 that H*(C, Z) is free abelian on one generator in each positive even dimen-

 sion. The homomorphism BP*(-X) is zero; so we get the free resolution

 (4.2).

 (5.3) 0 BP*CPw BP*C BP*EBZ/p 0

 0 O1- F1 -f- Fo -E- EN - 0.

 Smash Y with the stable cofibration (5.2) and apply BP*(-) to obtain:

 (5.4) BP*CP0 (9BP*Y f BP*COBP*Y

 BP*(CPf A Y) BP*(CA Y)

 (7rAl)*

 BP*(BZ/p A Y)

 From (5.4), we get the short exact sequence

 (5.5) 0 Image (ft 0 1) BP*(BZ/p A Y)

 Kernel (f 01) 0.
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 444 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 By (5.3) and the four-term exact sequence (4.4) (M = BP*Y), (5.5) be-

 comes (2.19):

 (5.6) 0 BP*BZ/p (O BP*Y -+ BP*(BZ/p A Y)

 E Tor04P*(BP*BZ/p, BP*Y) - 0.

 We have now proven:

 LEMMA 5.7. The image of (r A 1)* is Tor4BP*(BP*BZ/p, BP*Y). D

 We use (5.6) to filter BP* A' BZ/p inductively with 2'- 1 BP*-mod-
 ules. The first half (2n-2 many) of these terms come from the tensor prod-

 uct, the second half from the torsion product.

 We need an inductive computation of

 (5.8) TorB*P*(Bp*Bz/p, BP* A n- 1 BZ/p)

 = {TorgBP*(BP*BZ/p, BP* An 1 BZ/p),

 Tor4BP*(BP*BZ/p, BP* An-l BZ/p), 0, 0, **

 By induction, we know the associated graded module of BP* An- 1 BZ/p as

 in Theorem 5.1. To compute (5.8), we must use the spectral sequence

 (2.22). By Theorem 4. 1, the E1 term of the spectral sequence is isomorphic

 to

 G)Jn ( (8) J1

 where each Ji, 1 < i < n, is either Lk or N. And k is the number of Jj,
 j < i, which are N. The Jn = N terms give Toro; the Jn = Lk ones give
 Tor1. The differentials of the spectral sequence (2.22) can go only from

 Tor1 to Toro. So it suffices to show that no element of Toro is ever hit by a
 differential in (2.22).

 For i = 1, . .., n, define

 (5.9) Xi = (A 'BZ/p) A CPO A (A''BZ/p),

 and maps

 (5.10) 2ri =A .. A 1 A 7rA 1 A * *:A nBZ/p- Xi
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 445

 induced by the Bockstein r (5.2) on the i-th coordinate from the right. We

 define a BP*-filtration on BP*Xi, using 2` 1 BP*-modules in almost the
 same way as with BP* A' BZ/p. However at the stage

 (5.11) BP*(CPX A-l BZ/p) - BP*CPX OBP* Ai-l BZ/p

 where no Tor1 term appears, we use zero for the first 2i-2 modules and

 then index the 2i-2 modules coming from (5.11) between 2i-2 + 1 and

 21-1. The maps ri*: BP* A' BZ/p -+ BP*Xi now preserve filtration and
 we can use 5.7.

 Assume the following for BP* A'-1 BZ/p: (i) that Theorem 5.1 holds

 and (ii) that the spectral sequence (2.22) collapses. Since BP*CP' is BP*-

 free, the spectral sequences for BP*Xi corresponding to (2.22) collapse,

 1 c i c n. For BP* An BZ/p, 2n-2 - 1 of the terms of Toro-all but
 one-are of the form

 (5.12) No ... ONOLk ( Ji-I1 0 .. 0 J1

 with an Lk in the i-th factor and NMs to its left. The filtration-preserving

 homomorphism (-i)*: BP* An BZ/p -+ BP*Xi carries (5.12) injectively
 into the corresponding factor

 (5.13) N 0 * * N 0 BP*CP 0 Ji- 1 * J1

 of BP*Xi. This is by (5.7) and the proof of Theorem 4.1. This injection of
 the term (5.12) into the term (5.13) of the collapsed spectral sequence for

 BP*Xi means that (5.12) contains no target of a differential.

 One term of Toro remains: NO ... ON. By Corollary 3.3, it injects
 into BP* An BZ/p and thus contains no target of a differential. Once
 again, we need the solution of the Conner-Floyd Conjecture (in its strong-

 est form here) at a critical point in a proof. D

 6. The Adams spectral sequence approach. We compute two Ad-

 ams spectral sequences: for BP* An BZ/p and for BP* An BZ/p. Both col-
 lapse. The second one collapses for the simple reason that its E2 term is

 concentrated in even degrees. A surprising argument shows how the sec-

 ond's collapse implies the collapse of the Adams spectral sequence of cen-

 tral interest: that for BP* An BZ/p. Our original proof used the Conner-
 Floyd Conjecture and an inductive comparison with the spaces Xi as in
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 446 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 Section 5. This present proof has the great advantage of solving the Con-

 ner-Floyd Conjecture as a corollary. Thus our paper becomes self-con-

 tained and formally does not depend on [RW]. (We first started thinking

 about this problem a decade ago; we should have been able to write this

 paper then.)

 We use reduced homology and cohomology with coefficients in Fp,
 the field with p elements (whose additive group is Z/p). All tensor prod-

 ucts are over Fp . For any graded module N*, let N* be its vector space dual
 andN-* be the dual with negative grading. Let M* = H*BZ/p and let B*

 be the odd-degree part of M*. Define L,* C M* to be the even-degree part

 in degrees less than 2pS. Let M,* = M*/L * and C,* = M*/(B* ?)L *). To
 summarize, these graded vector spaces have single basis elements in the

 following dimensions:

 M* 1, 2, 3, 4, 5, 6, 7,...

 B* 1, 3, 5, 7, ...

 Ls 2, 4, ... 2ps - 2

 Ms* I, 3, ..., 2ps - 1, 2ps, 2ps + 1 2ps + 2...

 Cs* 2ps, 2ps + 2, 2ps + 4.

 Note in the following that we compute BP-* A' BZ/p and then have to

 change the grading to get BP* A' BZ/p. Both Adams spectral sequences

 which we compute are modules over Fp [vo, v1, ...] ExtE(Fp, Fp), v, E

 Ext 2pn - I(Fp Fp ).

 THEOREM 6.1. The Adams spectral sequence converging to

 7r*(BP An BZ/p) = BP* An BZ/p ({AnBZ/p; BP}* BP-* An BZ/p)
 collapses. There is a filtration on the E2-term with associated graded ob-

 ject given by

 ( Ji ** Jn Fp[v'm, vm+1 *... ].

 Here Ji is either Lk* (Lk-*) or B* (C -*) and k is the number of Jj, j < i,
 which are B* (C *, for various s) and m is the number of Jj j S n, which
 are B* (Cs-*, for various s).
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 447

 Remark 6.2. This confirms the Conner-Floyd Conjecture (1.1), be-

 cause it is now clear that (B*)n 0 BP*/In injects.
 Let V(0) be the mod p Moore spectrum. The Adams spectral se-

 quence converging to the mod p Brown-Peterson homology of An- 1BZ/p,

 r*(BP A V(O) A'-' BZ/p) - BP*(A n-BZ/p, Z/p), collapses. The
 graded object associated to the E2 term has the same description as that of

 Theorem 6.1 except that the B* in the J1 -place is just a one-dimensional

 vector space in degree zero. The proof proceeds exactly as that of Theorem
 6.1. The exact sequence (1.3) of the introduction follows.

 Since H* An BZ/p O OnM*, the E2 terms of the two Adams spectral
 sequences are (by (2.30) and (2.31)):

 (6.3) Ext**(0nM*, Z/p) w BP* An BZ/p

 and

 ExtE*(Z/p, (OnM*) w BP-* An BZ/p.

 These Ext groups are contained in this more general computation. Recall

 that E. = E[Qs 9 Qs+ l, . ... ] (2.27).

 LEMMA 6.4. There is a filtration on Ext**(0nM*, Z/p) (Ext**(Z/p,
 (?nM*)) such that the associated graded object is given by

 (DJ, i * *0 Jn (0F Fp [Vm, Vm + I , ...]

 where Ji is either Lk* (Lk *) or B* (Ck *) and k -s is the number of Jj,
 j < i, which are B* (Cu *, for various u). And m -s is the number of Jj,
 j < n, which are B* (Cu*, for various u).

 We defer the proof of Lemma 6.4. Before confirming the collapse part
 of Theorem 6.1, we prove two simple lemmas.

 LEMMA 6.5. Extg**(BP*/Im9 BP*) = EXtmg!(BP*/Im9 BP*)
 ESBP*/Im where S = EO<i<m 2pi - 2.

 Proof. Induct on m. Apply Ext**( - BP*) to the short exact
 sequence

 0 S2Pm-2BP*/Im BP*/Im BP*/Im +I 0.
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 448 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 The resulting long exact sequence degenerates to:

 O~ ExtmP*(BP*/Im , BP*) vm Extmg*(FPm-2BP / BP*)

 Vm

 O Y2SBP*/I m 2S+2Pm-2BP*/Im

 Extgmp+* (BP*hIm +1 BP*) O

 r S+2pm-2p*I + R

 LEMMA 6.6. Consider Extp**(JI 0 (8) Jn 0 Fp[vm, .., BP )
 where each Ji is eitherLk*or B*andk - s is the number of Jj,]j < i, which
 are B*. And m is the number of Jj, j < n, which are B*. Then this Ext
 module is isomorphic to J1 * (0 Jn* ( Fp[vm, ] If Ji is Lk* Ji* is
 Lk*. If Ji is B*, Ji* iS Ck

 Proof. Observe that a typical element of C7 is of the form Qjzij for
 Zij e B*. Define a correspondence

 co* (g) .. * ()Cm*-,O )Fp [vm, .. I

 Ext*t*(0mB *0 Fp [vm, . .. ], BP*)

 (0mB * 0 Extmp* (Fp [vm . . .. ] BP*)

 (mB* (y ESFp[Vm ...]

 by Qoz1i 0 ... Qm-lzim (1 Zil 0 ... Zim (8 y S1 =z (8 zi S1.
 Note that zI 0 Es1 has bidegree (mi, (z( + S) and a total degree
 |z, I + S + m, the same as its preimage. This gives a vector space isomor-
 phism. The L* and Lk* correspond directly; so their insertion preserves

 this isomorphism. O

 We introduce a third spectral sequence (2.35)

 (6.7) Est Ext,*(BP*X, BP*) * BP*X
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 449

 of [JW, 5.17]. Let X stand for A'BZ/p. Consider our three spectral se-

 quences in a triangle

 (6.8) ExtE(0fnM*, Z/p) ExtE(Z/p, (0nM*)

 BP*X BP-*X

 Ext*p*(BP*X, BP*) w BP*X.

 To compute BP*X from data on ?nM*, we have a direct route:

 ExtE(Z/p, (0nM*) w BP-*X. Lemma 6.4 (to be proved) tells that

 ExtE(Z/p, 0nM*) is concentrated in even dimensions and so this Adams

 spectral sequence collapses. Thus any Landweber presentation (2.17) of

 ExtE(Z/p, 0nM*) serves as one for BP *X. Lemma 6.4 also gives a

 Landweber presentation for EXtE((0fnM*, Z/p). Lemma 6.6 shows that if

 we apply Ext** ( -, BP*) to the Landweber presentation for ExtE(OfnM*,

 Zlp), we get a suitable Landweber presentation for ExtE(Z/p,

 (0nM *)-which must serve as one for BP*X. We can only conclude that
 there are no differentials in the two spectral sequences in the indirect route

 to BP*X in (6.8) (as well as the spectral sequence of the Landweber presen-

 tation (2.23)). All three spectral sequences in (6.8) collapse. In particular

 ExtE(H* An BZ/p, Z/p) =* BP* An BZ/p) collapses. Modulo Lemma 6.4,

 this concludes the proof of Theorem 6.1. After a pause to reminisce, we

 shall prove Lemma 6.4. 0

 The philosophy behind this collapse proof goes back to Remark 5.19

 of [JW] where we muse that "it may be possible to play one (of BP*(X) and

 BP*(X)) against the other." We failed to pursue this tack and promptly

 forgot it. Recently, Douglas Ravenel suggested this section's approach to

 proving collapse. We are grateful to Ravenel and we are grateful to have

 (6.7) so useful in its first application. It completely clarifies the "perverted

 duality" discussed in [WI ]. Quite possibly, this technique can be repeated
 in other applications, but don't hope for too much. Look at the three-cell

 complex (cells in dimensions 1, 2, 4) with non-trivial Sq I and Sq2: X. The

 two Adams spectral sequences converging to BP*X and to BP- *X col-
 lapse, but the duality spectral sequence (6.7) does not.

 Proof of Lemma 6.4. The proof is by induction on n. We compute

 Ext**((0)n+ M*, Z/p)

This content downloaded from 
������������128.151.113.25 on Tue, 16 Sep 2025 10:28:55 UTC������������� 

All use subject to https://about.jstor.org/terms



 450 DAVID COPELAND JOHNSON AND W. STEPHEN WILSON

 assuming the lemma. Observe that

 0- LS* M* - MS* 0

 is split as Es -modules. So

 (6.9) Ext**((0n + lM*, Z/p) ExtE*(L0* (8n M*, Z/p)

 i ExtE*(M* (0n M*, Z/p).

 ExtE*(L * (8n M*, Z/p) is justLs* 0 ExtE ((0nM*, Z/p) which is computed
 by the induction hypothesis.

 Dealing with Ext**(M* 0$n M*, Z/p) is harder. Filter M* by

 Fk = {x: (xI odd 2 k, IxI even 2 k + 2ps -1.

 As anEs -module, the associated graded module M* becomes E[Qs] OB*,

 where B* has trivial Es -structure. Tensor this with 0nM* to obtain the
 spectral sequence (2.23)

 (6.10) EXtE (M* 0$n M*, Z/p) > Ext**(Ms* ?) M*, Z/p).

 We use the change of rings spectral sequence (2.33) to compute

 (6.11) ExtE*(M* (nM*, Z/p)

 ,4-ExtE** (TorE*[* ]Ms*()n M*,Z/p), Z/p).

 M* 0g M* (E[Qs] 0B*) OfnM* is E[Qs ]-free; so the spectral sequence
 (6.11) collapses. The Tor term is just

 (6.12) Z/P OE[Qj(Ms* 0$n M*) = ES+, ?E (M * (*n M*).

 The use of this spectral sequence costs us vs -module information. It is easy

 to see that (6.12) is isomorphic to B* on M* as Es+I-modules (trivial
 structure on B*). Thus (6.11) becomes

 (6.13) ExtE* l(B* en M*, Z/p) = B* (0 ExtE*1 ((nM*, Z/p).
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 BROWN-PETERSON HOMOLOGY OF p-GROUPS 451

 We know (6.13) by our inductive hypothesis, but this is just the E1 term of

 the spectral sequence (6.10). Over BP*, (6.13) is generated by

 (6.14) B* O Ext?+ ((?nM*, Z/P).

 The differentials are BP*-module maps and raise cohomological degree by

 one. Any non-trivial differential must eliminate one element of (6.14); so if

 the spectral sequence does not collapse, someEs+I -generator of B*0(gn M*
 (B* trivial) is not an ES -generator of MS*n M*. But Ms* is E[Qs ]-free with
 basis B*; so this is impossible.

 To compute

 (6.15) Ext**(Z/p, 0nn+lM*)

 we use the same basic argument. This becomes

 (6.16) Ext**(Z/p, LS* &n M*) i) Ext**(Z/p, Ms* (0n M*).

 The first term of (6.16) is L* 0 ExtE*(Z/p, (0nM*). We use (2.24) and

 (2.34) to get the second term as

 (6.17) Ext**+ (Z/p, Ext*21 (Z/p, Ms* 0n M*))

 Ext** (Z/P, CS* (n M*) Cs'* ( ExtE**(Z/p, (0n M*).

 This time the spectral sequence is concentrated in even degrees. D

 Appendix. K(n)*K*, p = 2. The paper [RW] solving the Conner-
 Floyd Conjecture is restricted to odd primes. We sketch how most of the

 results hold as stated for p = 2. In particular, Theorem 1.1 of the present

 paper is true. These results are due to Urs Wurgler. We present our inter-

 pretation of them as communicated to us by Douglas Ravenel.

 In Remarks 5.7 (p. 474) and 7.3 (p. 479) of [Wii], it is observed that
 there are several products on the mod 2 Morava K-theories, K(n)*(-), but

 they are not necessarily commutative. Pick a multiplication m. The ob-

 struction to commutativity, m - mT, is computed explicitly [Wii, 4.12] to

 be in degree zero (but not equal to 1) of the exterior algebra
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 K(n)*(ao, ..., an-I , bog ... 9 bn-1)

 C K(n)*(K(n) A K(n)) = K(n)*K(n) OK(n)*K(n),

 where

 lail = ibil = 2i+1 - 1 and (vnl = -(2n+1 -2).

 For dimensional reasons, our obstruction must be

 m - mT = vn m(a' X bJ)
 I,j

 with Iand J nonzero. Since the ai and bi are odd degree, it follows immedi-
 ately that if X is a commutative H-space with K(n)*X concentrated in even

 degrees, then K(n)*X is a bicommutative Hopf algebra.

 We turn now to the computation of K(n)*K* in [RW]. Computing
 K(n)*K* is easy and the above argument shows it is bicommutative. The

 same argument gives o-product commutativity on the generators a(i) E

 K(n)*Kl. Assuming K(n)*1i is as described in [RW], the computation of
 K(n)*Ki+I is exactly the same, because the bar spectral sequence is com-
 mutative. Since K(n)*Ki+l is concentrated in even degrees, there are no
 non-commutativity extension problems and we are done.

 Everything else proceeds as in [RW], including Theorem 1.1 of this

 paper, with the exception of the "global" description of K(n)*K4 as the

 free Hopf ring on K(n)*Kl. The o-product commutativity for odd primes,

 a(j) o a(j) = -a(j) o a(j) forced a(j) o a(j) to be zero, but not for p = 2. A
 simple inductive proof shows that a(E) o a(E) is zero in K(n)*K2: if a(i 1) o

 a(i-1) = 0, then a(j) o a(j) is a primitive in a degree with no primitives. Thus
 the free Hopf ring on K(n)*KLI is too big and the relations a(i) o a(i) = 0
 must be imposed.

 UNIVERSITY OF KENTUCKY

 JOHNS HOPKINS UNIVERSITY
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