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Let C2 be the cyclic group of order two. We show that the RO(C2)-graded Bredon 
cohomology of a finite Rep(C2)-complex is free as a module over the cohomology 
of a point when using coefficients in the constant Mackey functor F2. This paper 
corrects some errors in Kronholm’s proof of this freeness theorem. It also extends 
the freeness result to finite type complexes, those with finitely many cells of each 
fixed-set dimension. We give a counterexample showing the theorem does not hold 
for locally finite complexes.
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1. Introduction

Let C2 be the cyclic group of order two. In this paper we are concerned with Rep(C2)-complexes, a class 
of C2-spaces built using representations. Our main goal is to correct some subtle errors in Kronholm’s proof 
[6] that finite Rep(C2)-complexes have free RO(C2)-graded Bredon cohomology in constant F2-coefficients.

Having proved Kronholm’s theorem, we go on to extend the result to finite type complexes. A finite 
type Rep(C2)-complex is one with finitely many cells of each fixed-set dimension (and hence also of each 
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topological dimension). The key to this proof is to filter cohomology by the fixed-set dimension of the 
generators and argue the vanishing of the lim←−−

1 term. The freeness theorem cannot be extended to all locally 
finite complexes, which have finitely many cells of each topological dimension. A particular infinite wedge 
of representation spheres is a counterexample. We show the generalized freeness theorem lifts to a splitting 
at the spectrum level.

Nonequiviariantly, working with coefficients in the field F2 makes singular cohomology computations 
rather straightforward. For one thing, as an F2-module, every vector space is free. Moreover, when calculating 
the induced map on cohomology for attaching a single cell, one only needs to consider generators from 
one dimension lower. Computations in RO(C2)-Bredon graded cohomology of C2-spaces are much more 
challenging, even with coefficients in the equivariant analogue F2. In fact, the RO(C2)-graded cohomology 
of a point in F2-coefficients is an infinite-dimensional non-Noetherian ring. This ring, M2, has a complicated 
module theory, making freeness theorems highly nontrivial. Furthermore, attaching maps for a cell can 
involve cohomology generators from lower dimensions.

Kronholm’s theorem is a powerful computational tool. It shows the cohomology of a finite Rep(C2)-
complex is free as an M2-module. Moreover, it demonstrates freeness even in the presence of nonzero 
differentials corresponding to the attaching maps for representation cells. This solves numerous extension 
problems in computations. Even so, finding the degrees of free generators is often nontrivial. Kronholm’s 
freeness theorem has been used by Dugger [1] to study a class of infinite C2-equivariant Grassmannians that 
are finite type Rep(C2)-complexes. It has also been used by the first author [5] to study some families of 
finite Grassmannians.

Prior to Kronholm’s work on the freeness theorem, Lewis [7] proved a freeness theorem for the cohomology 
of Rep(Cp)-complexes, where p is any prime. Lewis requires the complexes have only even-dimensional cells 
with a further restriction on the fixed-set dimensions. These restrictions force all differentials to be zero 
in the long exact sequence for attaching a cell. Ferland [2], building on the work of Lewis, generalized the 
freeness theorem to finite type Rep(Cp)-complexes with even-dimensional cells for p odd. Ferland’s result, 
like Kronholm’s, allows for nonzero differentials. At odd primes, it is not possible to extend Ferland’s freeness 
theorem to include all finite type Rep(Cp)-complexes (see Counterexample 3.4). This makes it all the more 
surprising that Kronholm’s freeness theorem holds for all finite type Rep(C2)-complexes.

The gap in Kronholm’s argument occurs during the inductive step, where he implies that we can reduce 
to the case of a differential supported by a single free summand. In fact this is not always possible. The 
mistake appears to arise from the similarity between spectral sequences for two different filtrations of the 
space. One spectral sequence comes from the two-stage filtration for attaching a single cell to a complex, 
while the other is for the ‘one-at-a-time’ cellular filtration. Kronholm’s paper appears to conflate these two 
approaches and incorrectly apply reasoning from one spectral sequence to the other.

There are multiple approaches one might use to correct the proof. In this paper, we focus on the filtration 
for attaching a single cell and complete the inductive step. Here the spectral sequence is really just the long 
exact sequence associated to a cofiber sequence, and so we will simply refer to this as a long exact sequence 
throughout the paper. An argument carefully extending Kronholm’s techniques to a differential supported 
by n free summands would likely work, but would require extensive bookkeeping.

Our proof uses the second author’s recent C2 structure theorem [9], together with several localization 
arguments. The structure theorem applies more generally to finite C2-CW complexes and says their coho-
mology can only have two types of direct summands: free modules, and shifted copies of the cohomologies 
of antipodal spheres. In the context of this result, we need only show the antipodal spheres do not appear 
in the cohomology of a Rep(C2)-complex. While this may sound simple, it is still rather technical to prove 
the inductive step.

Somewhat surprisingly, we prove the freeness theorem for cohomology without determining a basis of free 
generators. However, in practice, a free basis is useful for computations. In Section 7, we explicitly compute 
a basis for the cohomology of a Rep(C2)-complex in the presence of a nontrivial differential. Kronholm 
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observed that a nontrivial differential causes generators to appear to “shift” from their original positions 
and we give formulas for these shifts.

1.1. Organization

In Section 2 we introduce the necessary background and notation, largely from [6] and [10]. In Section 3
we recall a number of computational tools from [6] and [9]. The main proof will require a change of basis of 
a free module, the first algebraic steps of which are given in Section 4. A further restriction on the change of 
basis for the cohomology of a space is given in Section 5. These two steps are similar to Kronholm’s change 
of basis in [6]. In Section 6 we give a proof of Kronholm’s freeness theorem for finite complexes and extend 
the result to finite type complexes. We also show the freeness theorem lifts to a splitting at the spectrum 
level. In Section 7 we calculate the changes in the degrees of the generators after a nontrivial differential. 
We also give an explicit basis. In Section 8 we explain in more detail the main error in Kronholm’s paper, 
which led to this work.

1.2. Acknowledgments

The authors would like to thank Dan Dugger for introducing them to the beautiful subject of equivariant 
topology and for his support throughout numerous revisions. Thanks also to Mike Hill for many helpful 
conversations, particularly regarding the finite type and locally finite cases. Finally, thank you to the anony-
mous referee for helpful suggestions. This work was partially funded by the University of Oregon, UCLA, 
and Gonzaga University.

2. Preliminaries

To begin, we set up some basic machinery and notation much as in [6] and [10] with a few small variations. 
Let G be a finite group. Given an orthogonal real G-representation V , let D(V ) and S(V ) denote the unit 
disk and unit sphere in V , respectively. Let SV = V̂ denote the representation sphere given by the one-point 
compactification of V . There are two important types of equivariant cell complexes.

Definition 2.1. A G-CW complex is a G-space X with a filtration, where X0 is a disjoint union of orbits 
G/H and Xn is obtained from Xn−1 by attaching cells of the form (G/Hα) ×Dn along equivariant maps 
fα : G/Hα × Sn−1 → Xn−1. The cells are attached via the usual pushout diagram

∐
α G/Hα × Sn−1 Xn−1

∐
α G/Hα ×Dn Xn

�αfα

where Dn and Sn−1 have the trivial G-action.

We will mainly be interested in another type of cell structure, one that is built with representation cells, 
called a Rep(G)-complex.

Definition 2.2. A Rep (G)-complex is a G-space X with a filtration Xn where X0 is a disjoint union of trivial 
orbits1 of the form G/G = ∗ and Xn is obtained from Xn−1 by attaching cells of the form D(Vα), where 

1 Note that the definition in [6] allows for X0 to be made up of any G-orbits. However, C2 is itself a C2 orbit and does not have 
free cohomology, which would contradict the freeness theorem.



4 E. Hogle, C. May / Topology and its Applications 285 (2020) 107413
Vα is an n-dimensional real representation of G. The cells are attached along maps fα : S(Vα) → Xn−1 via 
the usual pushout diagram.

The space Xn in either filtration is referred to as the n-skeleton of X and the filtration is referred to as a
cell structure. If the filtration is finite, then X is finite dimensional. If there are finitely many cells of each 
dimension, then X is called locally finite. We call a Rep(C2)-complex finite type if it has finitely many cells 
of each fixed-set dimension, as defined below. If X is a connected Rep(G)-complex, the filtration quotients 
are wedges of representation spheres Xn/Xn−1 ∼=

∨
α SVα .

Remark 2.3. Any Rep(G)-complex can be given the structure of a G-CW complex. The converse is false. In 
particular, any G-space with a free action cannot be given the structure of a Rep(G)-complex. A Rep(G)-
complex has at least one fixed point because the origin of any real representation is fixed.

We now specialize to the group G = C2. As in [6], we write a p-dimensional real C2-representation V as

V ∼= (R1,0)p−q ⊕ (R1,1)q = Rp,q

where R1,0 is the trivial 1-dimensional real representation of C2 and R1,1 is the sign representation. Allowing 
p and q to be integers if V is a virtual representation, we call p the topological dimension and q the weight
or twisted dimension of V = Rp,q. We will also refer to the fixed-set dimension, which is p − q. This is 
also referred to in the literature as coweight. We write SV = Sp,q for the (possibly virtual) representation 
sphere given by the one-point compactification of V .

For the V -th graded component of the ordinary RO(C2)-graded Bredon equivariant cohomology of a 
C2-space X with coefficients in the constant Mackey functor F2, we write HV

G (X; F2) = Hp,q(X; F2). We 
often suppress the coefficients and simply write Hp,q(X; F2) = Hp,q(X). When we work nonequivariantly, 
H∗

sing(X) denotes the singular cohomology of the underlying topological space X with F2-coefficients. The 
genuine equivariant Eilenberg–MacLane spectrum representing H̃∗,∗(−) is HF2. It has as its underlying 
spectrum HF2. Given a homogeneous element x ∈ Hp,q(X), we use the notation |x| = (p, q) for the 
bidegree, top(x) = p for the topological dimension, wt(x) = q for the weight, and fix(x) = p − q for the 
fixed-set dimension.2 It is often convenient to plot the bigraded cohomology in the plane. We will always 
plot the topological dimension p horizontally and the weight q vertically.

With coefficients in the constant Mackey functor F2, the cohomology of a point with the trivial C2-action 
is the ring M2 := H∗,∗(pt) pictured in Fig. 1. On the left is a more detailed depiction, however in practice 
it is easier to work with the more succinct version on the right. Every lattice point inside the two “cones” 
represents a copy of F2. There are unique nonzero elements ρ ∈ H1,1(pt) and τ ∈ H0,1(pt). Considered as 
an F2[ρ, τ ]-module, M2 splits as M2 = M+

2 ⊕ M−
2 where the top cone M+

2 is a polynomial algebra with 
generators ρ and τ . There is a unique nonzero element in bidegree (0, −2) of the bottom cone M−

2 . This 
element θ ∈ H0,−2(pt) is infinitely divisible by both ρ and τ and satisfies θ2 = 0. We say that every element 
of the lower cone is both ρ-torsion and τ -torsion because it is killed by a multiple of ρ and some multiple of 
τ .

The RO(C2)-graded cohomology H∗,∗(X) is a bigraded M2-module. By M2-module we always mean 
bigraded M2-module, and any reference to an M2-module map means a bigraded homomorphism. For a 
free M2-module with a single generator ω with bidegree |ω| = (p, q) we use the notation M2〈ω〉 = Σp,qM2.

We write An for the cohomology of Sn
a , the n-dimensional sphere with the antipodal action, as an M2-

module. Notice that Sn
a has a free C2-action, so this is not an example of Rep(C2)-complex. The M2-module 

2 This is a departure from the usual notation. Kronholm [6], Shulman [11], and Ferland and Lewis [3] use the notation |x| to 
denote the topological dimension p rather than the bidegree, and the notation |xG| to denote the fixed-set dimension p − q.
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Fig. 1. M2 = H∗,∗(pt;F2).
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Fig. 2. An = H∗,∗(Sn
a ;F2).

An plays an important role in the cohomology of C2-CW complexes, though we will see that it cannot appear 
in the cohomology of a Rep(C2)-complex.

A picture of An (actually of A4) appears in Fig. 2. Once again, on the left is a more detailed depiction, 
while in practice it is more convenient to use the succinct version on the right. Here every lattice point in 
the infinite strip of width n + 1 represents an F2. Diagonal lines represent multiplication by ρ and vertical 
lines represent multiplication by τ , so that every nonzero element in An is in the image of τ and is not 
τ -torsion. We allow for n = 0 since C2 = S0

a has cohomology given by a single vertical line. As a ring 
An

∼= F2[τ, τ−1, ρ]/(ρn+1), where multiplication by ρ and τ corresponds to the module multiplication by 
the usual elements in M2 and where τ−1 has bidegree (0, −1).

3. Computational tools

In this section we present some tools for computing the RO(C2)-graded cohomology of C2-equivariant 
spaces. Let X be a connected Rep(C2)-complex. Then X has a filtration coming from the cell structure 
where the filtration quotients Xn/Xn−1 are wedges of n-dimensional representation spheres corresponding 
to the representation cells that were attached.
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More generally, given any filtration of a C2-space X

pt = X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ Xk+1 ⊆ · · · ⇒ X

corresponding to each cofiber sequence

Xk ↪→ Xk+1 → Xk+1/Xk

and for each weight q there is a long exact sequence3

· · · → H̃p,q(Xk+1/Xk) → H̃p,q(Xk+1) → H̃p,q(Xk)
d−→ H̃p+1,q(Xk+1/Xk) → · · · .

We often refer to the long exact sequences taken collectively for all q as “the long exact sequence.” Then d, 
taken collectively for all p and q, is a graded M2-module map d : H̃∗,∗(Xk) → H̃∗+1,∗(Xk+1/Xk), which we 
call the “differential” in the long exact sequence. This gives a short exact sequence of graded M2-modules

0 → cok(d) → H̃∗,∗(Xk+1) → ker(d) → 0.

In many cases cok(d) and ker(d) are relatively easily determined, but computing H̃∗,∗(Xk+1) requires solving 
the extension problem presented in this short exact sequence.

As in the previous section, we plot RO(C2)-graded cohomology in the plane with the topological dimen-
sion p along the horizontal axis and the weight q along the vertical axis. The differential d in the long exact 
sequence is depicted by a horizontal arrow since it increases topological dimension by one. When H̃∗,∗(Xk)
is free as a graded M2-module, i.e. when

H̃∗,∗(Xk) ∼= M2〈γ1, . . . , γk〉 =
⊕
i

Σ|γi|M2,

the differential is determined by its image d(γi) on the basis elements or on any set of generators.
Before moving on we present an example that illustrates some common computational techniques as well 

as some advantages of the main theorem. In the computation presented here we use the following fact from 
Section 6 in [9], which says we can compute the p-axis of the RO(C2)-graded cohomology of a space using 
singular cohomology of the quotient.

Lemma 3.1. Let X be a C2-space. Then H̃p,0(X) ∼= Hp
sing(X/C2).

Example 3.2. In this example we compute the cohomology of the projective space RP 2
tw = P (R3,1) using 

Lemma 3.1. A picture of RP 2
tw is shown in Fig. 3. This is the usual depiction of a disk with opposite points 

on the boundary identified. The C2-action is given by rotating the picture 180◦.
The long exact sequence associated to the cofiber sequence S1,0 ↪→ RP 2

tw → S2,2 is depicted on the left 
side of Fig. 4. Recall that in these depictions every lattice point inside the cones represents an F2. The map 
d is determined by its image on the generator of H̃∗,∗(S1,0) ∼= Σ1,0M2. It is necessarily nonzero because the 
quotient space RP 2

tw/C2 is the cone on S1, which is contractible. The modules cok(d) and ker(d) resulting 
from this differential are on the right side of Fig. 4. Even knowing the differential, computing H̃∗,∗(RP 2

tw)
requires solving the extension problem in the short exact sequence

0 → cok(d) → H̃∗,∗(RP 2
tw) → ker(d) → 0.

3 As Kronholm [6] points out, these long exact sequences sew together in the usual way to give a spectral sequence. See Propo-
sition 8.1 in Section 8.
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Fig. 3. A depiction of RP 2
tw.
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Fig. 4. Differential in a long exact sequence for H̃∗,∗(RP 2
tw).
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Fig. 5. Reduced cohomology of RP 2
tw.

It is not at all obvious at this stage that the solution to this extension problem should be a free M2-module. 
However, since RP 2

tw is a Rep(C2)-complex H̃∗,∗(RP 2
tw) must be free as a result of the freeness theorem in 

Section 6.1. Thus the cohomology of RP 2
tw as an M2-module is H̃∗,∗(RP 2

tw) = Σ1,1M2⊕Σ2,1M2, as pictured 
in Fig. 5.

Notice that in the cohomology of RP 2
tw there are two copies of M2 generated in the same topological 

dimensions as before, but they have “shifted.” One generator now has higher weight and the other lower 
weight. This is an example of a more general behavior known as a “Kronholm shift,” described in Section 7. 
We give formulas that precisely quantify these shifts in Theorem 7.1. The power of the freeness theorem and 
the shifting formulas is that when a nonzero differential like the one above occurs, the resulting cohomology 
must be free and the bidegrees of the free generators are determined.
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Fig. 6. A C3 analogue of RP 2
tw.

Aside 3.3. One might expect a similar freeness result to hold more generally for Rep(Cp)-complexes. How-
ever, for odd primes one quickly discovers a space analogous to RP 2

tw that does not have free cohomology. 
This makes it rather surprising that the freeness theorem holds for all finite Rep(C2)-complexes. For con-
creteness, we take p = 3 and give an example below of a Rep(C3)-complex whose cohomology is not free.

Counterexample 3.4. Let X be the C3-space whose underlying space is a 2-simplex with edges identified as 
pictured in Fig. 6. Here a generator of C3 acts by rotating the picture 120◦.

The space X can be realized as a Rep(C3)-complex. Using techniques similar to those in Example 3.2, 
one can compute the cohomology of X with constant F3-coefficients as a module over the cohomology of 
a point. Of course, the cohomology of a point as a C3-space with F3 coefficients is not M2, but it shares 
several properties with M2 and can also be depicted with two cones. One can readily verify the cohomology 
of X is not free as a module over this ring.

We now return to the prime two and assemble a few more computational tools. We will use several 
results from [9] to simplify the proof of the freeness theorem. In particular, from [9] we have the following 
structure theorem for the RO(C2)-graded cohomology of C2-CW complexes. The structure theorem says 
that as a module over the cohomology of the point, the RO(C2)-graded cohomology of a finite C2-CW 
complex decomposes as a direct sum of two basic pieces: shifted copies of the cohomology of a point and 
shifted copies of the cohomologies of spheres with the antipodal action.

Theorem 3.5 (Structure Theorem). For any finite C2-CW complex X, there is a decomposition of the 
RO(C2)-graded cohomology of X as an M2-module given by

H∗,∗(X;F2) ∼=
(⊕

i

Σpi,qiM2

)
⊕

⎛⎝⊕
j

Σrj ,0Anj

⎞⎠ ,

where 0 ≤ qi ≤ pi, 0 ≤ rj, and 0 ≤ nj.

The goal of this paper is to show that for the special case of a finite Rep(C2)-complex, the cohomology 
is free. That is, we will show the cohomology contains only shifted copies of M2 and not any copies of An.

From the structure theorem we immediately obtain a description of the localizations of the cohomology 
of a finite C2-CW complex. Notice that An is preserved by τ -localization while τ−1M2 ∼= A∞ ∼= F2[τ±1, ρ]. 
On the other hand ρ-localization kills An and ρ−1M2 ∼= F2[τ, ρ±1].

Corollary 3.6. Let X be a finite C2-CW complex with

H∗,∗(X) ∼=
(⊕

i

Σpi,qiM2

)
⊕

⎛⎝⊕
j

Σrj ,0Anj

⎞⎠ .

Then
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Fig. 7. Vanishing regions and region containing M2 generators.

τ−1H∗,∗(X) ∼=
(⊕

i

Σpi,0A∞

)
⊕

⎛⎝⊕
j

Σrj ,0Anj

⎞⎠
and

ρ−1H∗,∗(X) ∼=
⊕
i

Σpi−qi,0
(
ρ−1M2

)
.

Remark 3.7. Thus for X a finite complex, H∗,∗(X) is free if and only if τ−1H∗,∗(X) has no ρ-torsion. 
Furthermore, ρ−1H∗,∗(X) depends only on the fixed-set dimensions of the free generators in H∗,∗(X).

In addition to knowing the cohomology is free, we would like to know where the free generators live. 
The cohomology of any finite C2-CW complex has “vanishing regions” where the cohomology is zero. The 
following proposition and corollary appear in [9].

Proposition 3.8. Let X be a finite C2-CW complex of dimension m. Then Hp,q(X) = 0 whenever

(1) p < 0 and q > p − 2, or
(2) p > m and q < p −m.

In particular, we have the immediate corollary specifying the region where M2 generators can lie, as 
depicted by the triangle in Fig. 7.

Corollary 3.9. Any generator of a copy of M2 in the cohomology of a finite m-dimensional C2-CW complex X
must lie in a bidegree (p, q) corresponding to an actual representation with topological dimension p satisfying 
0 ≤ p ≤ m and weight 0 ≤ q ≤ p.

To find M2 generators we may use θ as in the following lemma from [9].

Lemma 3.10. If a graded M2-module contains a nonzero homogenous element x with θx nonzero, then M2〈x〉
is a graded free submodule.

In [9] it is also shown that M2 is self-injective.

Lemma 3.11. The regular module M2 is injective as a graded M2-module.
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Fig. 8. A single generator λ mapping to the upper cone of M2〈ν〉.

Thus to find free summands of an M2-module, it is often useful to find an element with a nontrivial 
θ-multiple. Such an element generates a free submodule, which splits off as a direct summand because M2

is self-injective.

4. Change of basis for free modules

Following in Kronholm’s footsteps, in the proof of the freeness theorem in Section 6, we will induct on 
the number of cells of a Rep(C2)-complex and attach one cell at a time. For the inductive step, we will 
need to consider differentials from a free module to a single shifted M2 corresponding to the newly attached 
cell. Kronholm’s paper includes a change of basis lemma that simplifies the differentials in this setting [6, 
Lemma 3.1]. However, there is a small error4 in the proof of this lemma. For completeness, we will first 
prove two algebraic change of basis lemmas inspired by Kronholm’s argument. In Section 5, we use these 
algebraic results and a fact about ρ-localization to easily deduce the change of basis lemma that appears in 
[6].

The hypotheses of both lemmas in this section include restrictions on the topological dimensions and 
weights of the generators of the free module and its target. These same constraints will appear in the change 
of basis lemma in Section 5. They appear again in the inductive step of the main theorem and are due to 
the ordering of the cells attached.

For the first change of basis, we consider a free module Γ supporting a nonzero map d to the top cone 
of Σp,qM2 = M2〈ν〉. We will show there is a change of basis for Γ so that only one of the basis elements 
λ supports a nonzero map. The element λ will map to M+

2 〈ν〉. An example of such a map is depicted in 
Fig. 8. There is a single arrow shown in Fig. 8 because the M2-module map d is determined by its image on 
the generator λ. However, the map is nonzero in infinitely many other bidegrees. For example, if d(λ) = τν

as depicted, then d(τλ) = τ2ν, d 
(
θ
τ ν

)
= θν, and so on.

Lemma 4.1. Consider a nonzero graded M2-module homomorphism with bidegree (1, 0) of the form Γ =
M2〈γ0, γ1, . . . , γm〉 d−→ M2〈ν〉 where |ν| = (p, q). Assume for all i that top(γi) ≤ p and whenever top(γi) = p

that wt(γi) ≤ q.

4 A more significant error in Kronholm’s main proof will be explained in Section 8.
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Fig. 9. Nonzero images in the upper cone.

Suppose im(d) has a nonzero value in M+
2 〈ν〉. Then there is a change of basis for Γ so that

Γ ∼= M2〈λ, χ1, . . . , χm〉,

where

• d(λ) is nonzero,
• d(χi) = 0 for all i, and
• top(λ) = p − 1 and wt(λ) ≥ q;

making λ the only basis element with a nonzero image.

Proof. Partition a basis for Γ, reordering if necessary, as

{γ0, . . . , γr} ∪ {γr+1, . . . , γr+s} ∪ {γr+s+1, . . . , γr+s+t},

where the basis elements γ0, . . . , γr have nonzero images in the top cone M+
2 〈ν〉, basis elements γr+1, . . . , γr+s

have nonzero images in the bottom cone M−
2 〈ν〉, and d is zero on γr+s+1, . . . , γr+s+t. We allow for the 

possibility that s = 0 if there are no basis elements supporting nonzero maps to the bottom cone, or t = 0
if there are no basis elements mapped to zero. Set

Δ+ = M2〈γ0, . . . , γr〉
Δ− = M2〈γr+1, . . . , γr+s〉
Δ0 = M2〈γr+s+1, . . . , γr+s+t〉

so that Γ ∼= Δ+ ⊕ Δ− ⊕ Δ0.
We will find a new basis {λ, χ1, . . . , χr} for Δ+ satisfying d(λ) �= 0 and d(χi) = 0 for each i. For degree 

reasons, any γi with nonzero image in the top cone of ν has top(γi) = p − 1. So for 0 ≤ i ≤ r, the image 
d(γi) = τkiν for ki ≥ 0. Reindexing if necessary, we can assume γ0 is of minimal weight among γ0, . . . , γr. 
Rename it λ := γ0 so that d(λ) = τk0ν and ki ≥ k0 for all i. Since λ has the lowest weight, each remaining 
γi lies in the upper cone of λ as in Fig. 9.

Next we will use λ to form the χi. For each i with 1 ≤ i ≤ r, replace γi with χi := γi + τki−k0λ. 
Notice that χi is a homogeneous element in the same bidegree as γi and that χi ∈ ker(d). The χi are all 
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Fig. 10. Images from Δ− and Δ+.

independent, as a dependence among them would give rise to a dependence among the γi. Indeed, suppose 
there existed nonzero elements Mi ∈ M2 for 1 ≤ i ≤ r such that each Miχi is in the same bidegree and ∑

Miχi = 0. Then

r∑
i=1

Miγi +
r∑

i=1
Miτ

ki−k0λ =
r∑

i=1
Miγi +

(
r∑

i=1
Miτ

ki−k0

)
γ0 = 0.

The coefficient of γ0 could be zero, but there is at least one γi with i > 0 that has nonzero coefficient Mi. 
Thus we have a dependence among the basis elements γi, a contradiction.5 We can therefore include a free 
module and quotient to get the short exact sequence

0 →
r⊕

i=1
M2〈χi〉 → Δ+ → Q → 0,

where Q ∼= M2〈λ〉. So Δ+ is isomorphic to M2〈λ, χ1, . . . , χr〉 since M2 is self-injective. Now we have a basis 
for Δ+ with d(λ) �= 0 but d(χi) = 0 for each i.

We use a similar approach to make a change of basis for Δ− = M2〈γr+1, . . . , γr+s〉, now using λ to modify 
the basis elements with nonzero images in the bottom cone. For r + 1 ≤ i ≤ r + s, we have d(γi) = θ

ρjiτki
ν

for some ji, ki ≥ 0 and it must be the case that top(γi) ≤ p − 1 and wt(γi) ≤ q − 2. In particular, for 
r + 1 ≤ i ≤ r + s, each basis element γi has a bidegree that lies inside the lower cone of λ as in Fig. 10.

Recall that we defined λ := γ0 above so d(λ) = τk0ν. Replace the basis element γi (for r+ 1 ≤ i ≤ r+ s) 
with χi := γi + θ

ρjiτki+k0 λ. Again the coefficient of λ has been chosen so that χi is a homogenous element 
generating an M2 in the same bidegree as γi and d(χi) = 0. As before, the χi are independent. Thus we 
have a new basis for Δ− given by χr+1, . . . , χr+s.

Finally, for Δ0 = M2〈γr+s+1, . . . , γr+s+t〉 no real change of basis is required. The map d is already zero 
on each basis element, so simply define χi := γi for r + s + 1 ≤ i ≤ r + s + t. Taking the union of the new 
bases, we now have a basis for Γ ∼= Δ+ ⊕ Δ− ⊕ Δ0 of the form λ, χ1, . . . , χm with only λ having a nonzero 
image. �

In the next case, a change of basis for the free module Γ will produce a particularly nice subbasis of free 
generators called a “ramp,” as described in [6] (also referred to as a “stairstep” pattern in [3]).

5 Not every M2-combination of the γi is independent. For example, {γ1, γ1 + θγ2} is dependent because τγ1 = τ(γ1 + θγ2).
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Fig. 12. A ramp of generators mapping to the bottom cone of M2〈ν〉.

Definition 4.2. A collection ω1, . . . , ωn of homogeneous elements satisfies the ramp condition if top(ωi) <
top(ωi+1) and fix(ωi) < fix(ωi+1) for each i. Such elements are referred to as a ramp of length n.

Note that the increasing topological dimension and increasing fixed-set dimension in the ramp condition 
means each ωi+1 is to the right of ωi and on a lower diagonal. If ω1, . . . , ωn are generators of a free M2-
module forming a ramp, no ωi lies in a bidegree that sits inside the upper cone M+

2 〈ωj〉 for i �= j. An example 
of M2 generators satisfying the ramp condition is depicted in Fig. 11. The details of the ramp condition 
will not play a big role in the proof of the freeness theorem, however they will be crucial in Section 7 where 
we determine the bidegrees of the free generators after a nontrivial differential.

Now we prove a change of basis for a free module Γ supporting a nonzero map only to the bottom cone of 
Σp,qM2 = M2〈ν〉. After the change of basis, there will be a ramp of generators supporting nonzero maps to 
the bottom cone. An example is depicted in Fig. 12. Again, the image of d is determined on the generators, 
so only these arrows are shown in Fig. 12. However, d is nonzero in (finitely many) other bidegrees. For 
example, if d(ω1) = θ

ρ2 ν then also d(ρ ω1) = θ
ρν and d(ρ2ω1) = θν. As any product of elements in M−

2 is 
zero, d is zero on M−

2 〈ω1〉.

Lemma 4.3. Consider a nonzero graded M2-module homomorphism with bidegree (1, 0) of the form Γ =
M2〈γ0, γ1, . . . , γm〉 d−→ M2〈ν〉 where |ν| = (p, q). Assume for all i that top(γi) ≤ p and whenever top(γi) = p

that wt(γi) ≤ q.
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Fig. 13. Nonzero images in the lower cone.

Suppose im d takes nonzero values only in M−
2 〈ν〉. Then there is a change of basis for Γ so that

Γ ∼= M2〈ω1, . . . , ωn, χn+1, . . . , χm+1〉,

where

• d(ωi) is nonzero for all i,
• d(χi) = 0 for all i,
• wt(ωi) ≤ q − 2 for all i, and
• ω1, . . . , ωn forms a ramp.

That is, ω1, . . . , ωn are the only basis elements with nonzero images and they have increasing topological 
dimension and increasing fixed-set dimension.

Proof. As in the proof of Lemma 4.1, we partition a basis for Γ, reordering if necessary. Now, by assumption, 
there are no nonzero images in M+

2 〈ν〉. Partition Γ as

{γ0, . . . , γs} ∪ {γs+1, . . . , γs+t},

where the basis elements γ0, . . . , γs have nonzero images in the bottom cone M−
2 〈ν〉, and d is zero on 

γs+1, . . . , γs+t. We allow for the possibility that t = 0 if there are no basis elements mapped to zero. Set

Δ− = M2〈γ0, . . . , γs〉
Δ0 = M2〈γs+1, . . . , γs+t〉

so that Γ ∼= Δ− ⊕ Δ0.
We will find a new basis ω1, . . . , ωn forming a ramp and supporting nonzero maps to the bottom cone. 

Consider any two distinct basis elements γa and γb, 0 ≤ a, b ≤ s. Since γa and γb support nonzero images 
in the bottom cone of ν, we can write d(γa) = θ

ρjaτka
ν and d(γb) = θ

ρjbτkb
ν. If γa and γb do not satisfy 

the ramp condition, then one lies inside the range of the upper cone of the other, as shown in Fig. 13. 
Without loss of generality, we can assume γb lies inside the upper cone of γa so that top(γa) ≤ top(γb) and 
fix(γa) ≥ fix(γb).

Multiplication by ρ preserves fixed-set dimension but increases topological dimension by one. Multipli-
cation by τ preserves topological dimension but decreases fixed-set dimension by one. Thus ja ≥ jb and 
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ka ≥ kb. In the basis for Δ− replace γb with χb := ρja−jbτka−kbγa + γb. Once more χb is defined to be 
homogeneous in the same bidegree as γb and d(χb) = 0. As in the proof of Lemma 4.1, the independence of 
γa and γb will imply that γa and χb are independent as well. So M2〈γa, γb〉 ∼= M2〈γa, χb〉.

Continue to reduce the set of γi supporting nonzero images in the bottom cone in this way until no γb
lies in the upper cone region of any γa. The remaining γi with d(γi) �= 0 satisfy the ramp condition up to 
reindexing. Let n be the number of such γi with nonzero images remaining, reindex these to have increasing 
topological dimension and rename them ωi := γi for 1 ≤ i ≤ n. Then reindexing the χi as necessary, we 
now have a basis for Δ− of the form ω1, . . . , ωn, χn+1, . . . , χs.

Finally for Δ0 = M2〈γs+1, . . . , γs+t〉, no real change of basis is required as d is already zero on each basis 
element. Define χi := γi for s + 1 ≤ i ≤ s + t. Taking the union of the new bases, we have a basis for 
Γ ∼= Δ− ⊕ Δ0 of the form ω1, . . . , ωn, χn+1, . . . , χm+1 as desired. �
5. Change of basis for attaching a representation cell

In the previous section, we introduced two algebraic changes of basis motivated by Kronholm’s argument. 
In this section we will deduce some consequences for the cohomology of a Rep(C2)-complex as an M2-module, 
completing the proof of Lemma 3.1 from [6].

Here we show that when attaching a single cell to a Rep(C2)-complex, up to a change of basis, a nonzero 
differential in the long exact sequence takes one of only two forms. The first looks much like the result 
of Lemma 4.1, where a single basis element λ supports a nonzero differential to the top cone. In the 
topological setting, we obtain a further restriction on the weight of λ using ρ-localization. The second form 
follows directly from Lemma 4.3, where basis elements satisfying the ramp condition (see Definition 4.2) 
support nonzero differentials to the bottom cone.

To begin, recall the following lemma and subsequent remark that appear in [9, Lemma 4.3 and Remark 
4.4] relating the ρ-localization of equivariant cohomology to the singular cohomology of the fixed set.

Lemma 5.1. (ρ-localization) Let X be a finite C2-CW complex. Then

ρ−1H∗,∗(X) ∼= ρ−1H∗,∗(XC2) ∼= H∗
sing(XC2) ⊗F2 ρ

−1M2.

Remark 5.2. An important consequence of the previous lemma is that ρ−1H̃∗,∗(X) does not have any 
τ -torsion, since ρ−1M2 ∼= F2[τ, ρ±] and ρ−1H̃∗,∗(X) is free as a ρ−1M2-module.

We will use this fact to show the long exact sequence for attaching a single cell to a Rep(C2)-complex 
cannot have any non-surjective differentials into the top cone. That is, if there is a nontrivial differential 
into the top cone as in Lemma 4.1, so that d(λ) = τkν for some k, then in fact wt(λ) = wt(ν), k = 0, and 
the restriction M2〈λ〉 → M2〈ν〉 is an isomorphism.

The following result is quite similar to [6, Lemma 3.1] although the proof differs slightly. Our proof 
uses Lemmas 4.1 and 4.3, together with Remark 5.2 to further restrict differentials to the top cone. As in 
Section 4, the hypotheses involving topological dimensions and weights are motivated by the inductive step 
of the main theorem. Recall from the proofs of Lemmas 4.1 and 4.3, every change of basis we made preserved 
the bidegrees of the free generators. As these are the only change of bases used to prove the following result, 
the topological dimensions and weights of basis elements are preserved.

Lemma 5.3. Let B be a Rep(C2)-complex with reduced cohomology given by a graded free M2-module with 
basis γ0, . . . , γm so H̃∗,∗(B) ∼= M2〈γ0, . . . , γm〉. Suppose X is obtained from B by attaching a single (p, q)
cell and let ν denote the generator for the reduced cohomology of X/B ∼= Sp,q. Assume further that for all 
i, top(γi) ≤ p and whenever top(γi) = p then wt(γi) ≤ q.
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Fig. 14. Differential to the upper cone. Note d surjects onto M−
2 〈ν〉.

The cofiber sequence

B
ι−→ X

π−→ Sp,q

gives rise to the differential d : H̃∗,∗(B) → H̃∗+1,∗(Sp,q) in the long exact sequence. After an appropriate 
change of basis, one of the following is true:

(a) the differential d ≡ 0;
(b) the differential is zero on every basis element except λ, where |λ| = (p − 1, q) and the restriction of the 

differential to M2〈λ〉 → M2〈ν〉 is an isomorphism; or
(c) the basis elements supporting nonzero differentials ω1, . . . , ωn satisfy the ramp condition and map to 

M−
2 〈ν〉.

Proof. If d ≡ 0, we are done. Otherwise, d either has nonzero image in M+
2 〈ν〉 or not. If d does have 

nonzero image in M+
2 〈ν〉, then Lemma 4.1 shows we can rewrite H̃∗,∗(B) ∼= M2〈λ, χ1, . . . , χm〉 where 

top(λ) = p − 1, wt(λ) ≥ q, and d(χi) = 0 for all i. If wt(λ) = q, then the restriction of d to M2〈λ〉 → M2〈ν〉
is an isomorphism. For case (b), it remains to show this is the only possible weight. Suppose instead that 
wt(λ) > q so that d(λ) = τkν for some k > 0. Then the following equation holds.6

d

(
θ

τk
λ

)
= θ

τk
d(λ) = θ

τk
τkν = θν

A portion of cok(d) and ker(d) are depicted in Fig. 14. (All of the χi are also in ker(d) but are not depicted 
here.)

To actually compute H̃∗,∗(X) would require solving an extension problem of graded M2-modules as 
H̃∗,∗(X) is in the middle of the short exact sequence

0 → cok(d) → H̃∗,∗(X) → ker(d) → 0.

However, we do not need to solve this extension problem because the ρ-localization of H̃∗,∗(X) is actually 
independent of the resolution. By Remark 5.2, we know ρ−1H̃∗,∗(X) cannot have any τ -torsion. Since 
τk−1ν /∈ im(d), by exactness we have τk−1ν /∈ ker(π∗) and hence a nonzero class π∗(τk−1ν) ∈ H̃∗,∗(X). 

6 Here we deviate from Kronholm, as there is a small error in the calculation of cok(d) and ker(d) in [6].
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This class has no ρ-torsion and thus survives ρ-localization.7 Yet it does have τ -torsion since τ ·π∗(τk−1ν) =
π∗(τkν) = 0, contradicting Lemma 5.1. Thus the basis given by Lemma 4.1 reduces to case (b).

Finally, the remaining possibility is that d is nonzero but does not have nonzero image in M+
2 〈ν〉. Then 

the assumptions of Lemma 4.3 are met and, after a change of basis for H̃∗,∗(B), a ramp of basis elements 
ω1, . . . , ωn support nonzero differentials to M−

2 〈ν〉, as stated in case (c). �
6. Freeness theorem

We are now ready to prove Kronholm’s freeness theorem for finite Rep(C2)-complexes. The proof will 
proceed by induction on the number of representation cells and consider the attaching map for a single cell. 
The bulk of the proof will involve case (c) of Lemma 5.3, with a ramp (see Definition 4.2) of M2 generators 
supporting differentials to the lower cone of another generator. This will lead to the cohomology being a 
free module with the same number of M2 generators, but in shifted bidegrees from their original positions.

In this main case, we use τ -localization to show that the cohomology is free. However, we will need to 
show the inductive hypothesis holds, namely that any generators in the highest topological dimension are 
below a certain weight. For that, we use τ -localization together with ρ-localization. Despite the generators 
appearing in new bidegrees, the set of topological dimensions of the generators as well as the set of fixed-set 
dimensions are preserved. This will give us the constraint on the weights required to complete the inductive 
step.

Somewhat surprisingly, in this main case we prove the cohomology is free without ever identifying the 
free generators or the shifts. For the purpose of computations, a choice of free basis and a precise formula 
for calculating the Kronholm shifts are given in Section 7.

Theorem 6.1. (Freeness theorem) If X is a finite Rep(C2)-complex then H̃∗,∗(X; F2) is free as a graded 
M2-module, where M2 = H∗,∗(pt; F2).

Proof. Attaching one cell at a time, we can filter X so that each Xk+1 is formed from Xk by attaching a 
single Rep(C2)-cell, ek+1. Order the representation cells e1, e2, . . . , eK by increasing topological dimension 
and increasing weight so that if ei ∼= D(Rpi,qi) then pi ≤ pi+1 for all i, and if pi = pi+1 then qi ≤ qi+1. We 
proceed by induction on the spaces in the ‘one-at-a-time’ cellular filtration8

pt = X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ Xk+1 ⊆ · · · ⊆ XK = X.

The base case is trivial.
We will inductively prove that each H̃∗,∗(Xk) is a free M2-module, where all the generators have topolog-

ical dimensions between zero and pk and any generators in topological dimension pk have weights between 
zero and qk. For the inductive step we will form Xk+1 from Xk by attaching a single (pk+1, qk+1)-cell. In 
the course of the inductive step we will see that the generator of H̃∗,∗(Xk+1) corresponding to this new cell 
may remain in bidegree (pk+1, qk+1), “shift” to a lower weight, or vanish.

Now assume the inductive hypothesis holds for H̃∗,∗(Xk). To simplify notation we set p = pk+1 and 
q = qk+1. We will show H̃∗,∗(Xk+1) is free with all generators in topological dimension p having weight at 
most q.

7 Without the assumption that for all i top(γi) ≤ p and if top(γi) = p then wt(γi) ≤ q, it is possible to have differentials that 
introduce ρ-torsion in H̃∗,∗(X). See Example 6.6 in [9].
8 Although we filter X using the ‘one-at-a-time’ cellular filtration as in Kronholm’s proof [6], we prove the theorem using the 

long exact sequence associated to a cofiber sequence with no reference to the cellular spectral sequence. This is addressed in more 
detail in Section 8.
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The cofiber sequence

Xk
ι−→ Xk+1

π−→ Xk+1/Xk
∼= Sp,q

induces the long exact sequence

· · · d−→ H̃∗,∗(Sp,q) π∗
−→ H̃∗,∗(Xk+1)

ι∗−→ H̃∗,∗(Xk)
d−→ H̃∗+1,∗(Sp,q) π∗

−→ · · · .

Let ν denote the free generator of H̃∗,∗(Xk+1/Xk) ∼= H̃∗,∗(Sp,q) ∼= Σp,qM2 in bidegree (p, q). To show that 
H̃∗,∗(Xk+1) is a free M2-module we will solve the extension problem of graded M2-modules that appears 
in the short exact sequence

0 → cok(d) → H̃∗,∗(Xk+1) → ker(d) → 0.

We proceed by investigating the differential d : H̃∗,∗(Xk) → H̃∗+1,∗(Sp,q).
Lemma 5.3 enumerates the possibilities. In case (a), the differential d ≡ 0 and the extension problem is 

easily solved. The short exact sequence becomes

0 → M2〈ν〉 → H̃∗,∗(Xk+1) → H̃∗,∗(Xk) → 0,

which splits since H̃∗,∗(Xk) is free by inductive assumption. Hence H̃∗,∗(Xk+1) ∼= H̃∗,∗(Xk) ⊕M2〈ν〉 is free 
and there are no shifts. That is, the generators of H̃∗,∗(Xk+1) are in the same bidegrees as the generators of 
H̃∗,∗(Xk), with a single new generator in bidegree (p, q). In particular, since the inductive hypothesis holds 
for the generators of H̃∗,∗(Xk), any free generators of H̃∗,∗(Xk+1) with topological dimension p will have 
weight not exceeding q. Thus H̃∗,∗(Xk+1) satisfies the inductive hypothesis.

In case (b), the extension problem is again easily solved. Recall that after the change of basis, H̃∗,∗(Xk) ∼=
M2〈λ, χ1, . . . , χm〉 with |λ| = (p − 1, q) and d(χi) = 0 for all i. As the differential is surjective, cok(d) = 0
and the short exact sequence becomes

0 → H̃∗,∗(Xk+1) → M2〈χ1, . . . , χm〉 → 0,

so H̃∗,∗(Xk+1) ∼= M2〈χ1, . . . , χm〉 is free. Here we say λ kills ν, making H̃∗,∗(Xk+1) the same as H̃∗,∗(Xk), 
but with a single copy of M2 generated in bidegree (p − 1, q) removed. Again, any free generators of 
H̃∗,∗(Xk+1) with topological dimension p have weight not exceeding q, satisfying the inductive hypothesis.

It remains to solve the extension problem arising in case (c), which is significantly more labor-intensive. 
Under these circumstances the usual short exact sequence

0 → cok(d) → H̃∗,∗(Xk+1) → ker(d) → 0

does not split, yet we will still show that H̃∗,∗(Xk+1) is a free M2-module.
In this case we can write H̃∗,∗(Xk) ∼= M2〈ω1, . . . , ωn, χn+1, . . . , χm+1〉 where ω1, . . . , ωn satisfy the ramp 

condition, each ωi supports a nonzero differential to the bottom cone M−
2 〈ν〉, and d(χi) = 0 for all n + 1 ≤

i ≤ m + 1. The image under d of each ωi is

d(ωi) = θ

ρjiτki
ν

for some integers ji, ki ≥ 0. It follows from the ramp condition that ji > ji+1 and ki < ki+1. That is, each 
ωi+1 is to the right of ωi and lies on a lower diagonal. An example of such a differential (with the χi omitted) 
is pictured in Fig. 15.
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Fig. 15. Ramp of differentials (χi omitted and n = 5).

We will use τ -localization to show the solution to the extension problem in this case must be free. Since 
localization preserves exactness for finite sequences, we may consider the long exact sequence

· · · → τ−1H̃∗,∗(Xk+1) → τ−1H̃∗,∗(Xk)
τ−1d−−−→ τ−1H̃∗+1,∗(Sp,q) → · · · .

Notice that im(d) ⊆ M−
2 〈ν〉 so τ−1d ≡ 0. Thus this long exact sequence reduces to a short exact sequence

0 → τ−1H̃∗,∗(Sp,q) → τ−1H̃∗,∗(Xk+1) → τ−1H̃∗,∗(Xk) → 0,

which we can rewrite as

0 → Σp,qA∞ → τ−1H̃∗,∗(Xk+1) →
(⊕

i

Σ|ωi|A∞

)
⊕

⎛⎝⊕
j

Σ|χj |A∞

⎞⎠ → 0.

As modules over τ−1M2 ∼= A∞, both the left and right terms are free. So this short exact sequence splits 
and the middle term is also free. Notice Xk+1 is also a finite C2-CW complex so the structure theorem 
applies. By Remark 3.7, H̃∗,∗(Xk+1) has no copies of An for any n, making it a free M2-module.

At this point it may seem that we are done, but in fact we still need to verify the inductive hypothesis 
about the topological dimensions of the generators and that the weight of any generator in dimension p
is no more than q. The splitting of the short exact sequence above implies that all the free generators of 
H̃∗,∗(Xk+1) are in the same topological dimensions as the free generators of H̃∗,∗(Sp,q) and H̃∗,∗(Xk). This 
might seem to suggest the generators have not shifted at all, but a shift up or down would not be witnessed 
by τ -localization.

Knowing the topological dimensions of the generators, we use ρ-localization to prove the constraint on the 
weight of any generators in dimension p. First, we split off the less interesting free generators corresponding 
to the χi ∈ H̃∗,∗(Xk). The χi are elements of ker(d) so we can lift them back to H̃∗,∗(Xk+1). Since d(χi) = 0, 
by exactness we can choose bi in the preimage (ι∗)−1(χi), though this choice is not necessarily unique. It 
is fairly easy to see that θbi �= 0 for all i. This follows because M2〈χn+1, . . . , χm+1〉 is a free submodule of 
H̃∗,∗(Xk) so θχi �= 0 for each i. Since ι∗ is an M2-module map, ι∗(θbi) = θι∗(bi) = θχi �= 0. So it must 
be that θbi �= 0. Then by Lemma 3.10 each M2〈bi〉 includes as a free submodule of H̃∗,∗(Xk+1). Using the 
independence of the χi, we can take all the bi together and include M2〈bn+1, . . . , bm+1〉 as a free submodule.
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We now have a short exact sequence

0 → M2〈bn+1, . . . , bm+1〉 → H̃∗,∗(Xk+1) → N → 0,

where N is the quotient. By Lemma 3.11, we know that M2 is self-injective. So this short exact sequence 
splits, making N a direct summand of H̃∗,∗(Xk+1). Moreover, since we already know H̃∗,∗(Xk+1) is free, N
is also free.9

Now we will ρ-localize the original long exact sequence. As with τ -localization, ρ-localization is exact 
here and since im(d) ⊆ M−

2 〈ν〉 we have that ρ−1d ≡ 0. So we have the short exact sequence

0 → ρ−1H̃∗,∗(Sp,q) → ρ−1H̃∗,∗(Xk+1) → ρ−1H̃∗,∗(Xk) → 0.

Into this short exact sequence we can include the ρ-localization of the isomorphism 
⊕

M2〈bi〉 ∼=
⊕

M2〈χi〉, 
and quotient to obtain a short exact sequence of short exact sequences as in the diagram below. Everything 
in the following diagram is a free ρ−1M2-module so all the short exact sequences split.

0 0 0

0 0
⊕

i(ρ−1M2〈bi〉)
⊕

i(ρ−1M2〈χi〉) 0

0 ρ−1H̃∗,∗(Sp,q) ρ−1H̃∗,∗(Xk+1) ρ−1H̃∗,∗(Xk) 0

0 ρ−1H̃∗,∗(Sp,q) ρ−1N
⊕

i(ρ−1M2〈ωi〉) 0

0 0 0

In particular, from the last row we have that

ρ−1N ∼=
(
ρ−1H̃∗,∗(Sp,q)

)
⊕
(

n⊕
i=1

(ρ−1M2〈ωi〉)
)
.

Thus, making use of Remark 3.7, the fixed-set dimensions of the free generators of N are the same as the 
fixed-set dimensions of the free generators of M2〈ω1, . . . , ωn〉 together with that of H̃∗,∗(Sp,q).

Again, it seems plausible at this point that we simply have a new generator in the bidegree of ν with no 
shifts. Regardless, we claim any free generator of N in topological dimension p must have fixed-set dimension 
at least p − q and so have weight at most q (but possibly lower). This is because each of the ωi maps to the 
lower cone of ν, so fix(ν) = p − q is the lowest fixed-set dimension of the generators of N . The generators 
bi are in precisely the same bidegrees as the original generators χi. Thus all free generators of H̃∗,∗(Xk+1)
having topological dimension p have weight at most q. This completes the inductive step and hence the 
proof of the freeness theorem for finite Rep(C2)-complexes. �
9 Note that M2 is a graded local ring with unique maximal ideal (ρ, τ). Thus every finitely generated projective M2-module is 

free. See [8].
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Fig. 16. Vanishing region for H̃∗,∗ (
X/Xk(i)

)
.

6.2. Finite type freeness theorem

As a consequence of the finite case, we can extend Kronholm’s freeness theorem to infinite complexes of 
finite type. Recall, we say that a Rep(C2)-complex is finite type if it is built with finitely many cells of each 
fixed-set dimension.

Theorem 6.3. If X is a finite type Rep(C2)-complex then H̃∗,∗(X; F2) is free as a graded M2-module.

Proof. As in the proof of Theorem 6.1, we begin by filtering X as a sequence of subcomplexes Xk where 
each Xk+1 is formed from Xk by attaching a single Rep(C2)-cell ek+1. We assume the cells are attached 
by increasing topological dimension and, within each topological dimension, by increasing weight. We will 
show the lim←−−

1 term vanishes and find a free basis for the inverse limit.
Because X is finite type, for each i ≥ 0 we can choose a subcomplex Xk(i) that contains every cell of 

fixed-set dimension less than or equal to i by defining

k(i) = max{k : ek ∼= D(Rpk,qk) and pk − qk ≤ i}.

Note that H̃∗,∗(Xk(i)) is free by Theorem 6.1 because Xk(i) is a finite Rep(C2)-complex. Recall from the 
proof of Theorem 6.1 that the M2 generators of the cohomology may lie in different bidegrees than the 
cells forming Xk(i) and there may be fewer M2 generators than cells. However, each M2 generator of the 
cohomology will have the same fixed-set dimension as one of the cells used in constructing the space.

Now we will consider the cofiber sequence Xk(i) → X → X/Xk(i). As usual, this induces a long exact 
sequence in cohomology

· · · → H̃∗,∗ (X/Xk(i)
)
→ H̃∗,∗(X) → H̃∗,∗ (Xk(i)

)
→ H̃∗+1,∗ (X/Xk(i)

)
→ · · · .

Observe that, aside from the basepoint, all the cells of the quotient X/Xk(i) have fixed-set dimension 
greater than i. Thus the reduced cohomology of the quotient vanishes for all bidegrees (p, q) with p ≤ i and 
q ≥ p − i − 2 as in Fig. 16.

Fix any bidegree (p, q). There exists an i such that i > p and i > p − q − 2. This implies both (p, q)
and (p + 1, q) lie in the vanishing region for X/Xk(i). So in the long exact sequence for the cofiber sequence 
Xk(i) → X → X/Xk(i) we have

· · · → 0 → H̃p,q(X) → H̃p,q
(
Xk(i)

)
→ 0 → · · ·
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and we see that H̃p,q(X) ∼= H̃p,q
(
Xk(i)

)
. Similarly, if n > k(i) and we consider the cofiber sequence 

Xk(i) → Xn → Xn/Xk(i), we have that H̃p,q(Xn) ∼= H̃p,q
(
Xk(i)

)
. This tells us that, as a vector space, every 

bidegree of the cohomology of X stabilizes by some finite stage k(i). Of course, this value depends on both 
p and q.

Recall, as X = colimXk, we have the Milnor exact sequence

0 → lim←−−
1H̃∗−1,∗(Xk) → H̃∗,∗(X) → lim←−− H̃∗,∗(Xk) → 0,

where the inverse limit is taken for the tower

H̃∗,∗(X0)
ι∗←− H̃∗,∗(X1)

ι∗←− · · · ι∗←− H̃∗,∗(Xk)
ι∗←− H̃∗,∗(Xk+1)

ι∗←− · · ·

(see for example Section 3F of [4]). In particular, for each p and q we have the short exact sequence

0 → lim←−−
1H̃p−1,q(Xk) → H̃p,q(X) → lim←−− H̃p,q(Xk) → 0.

Fix (p, q) and choose i such that i > p and i > p − q− 2 as above. Truncating the sequence does not change 
the value of lim←−−

1 or the inverse limit, so we have

lim←−−
k

1H̃p−1,q(Xk) ∼= lim←−−
n≥k(i)

1H̃p−1,q (Xn)

and

lim←−−
k

H̃p,q(Xk) ∼= lim←−−
n≥k(i)

H̃p,q (Xn) .

As shown above, the maps in the truncated tower

Hp,q
(
Xk(i)

) ι∗←− Hp,q
(
Xk(i)+1

) ι∗←− Hp,q
(
Xk(i)+2

) ι∗←− . . .

are all isomorphisms.
Recall that lim←−−

1 vanishes whenever all the maps in the tower are surjective and thus lim←−−
1H̃p−1,q (Xk) = 0. 

The same argument can be made for any bidegree (p, q), hence lim←−−
1H̃∗−1,∗(Xk) ≡ 0, making H̃∗,∗(X) →

lim←−− H̃∗,∗(Xk) an isomorphism of bigraded vectors spaces. Since this is an M2-module map, H̃∗,∗(X) ∼=
lim←−− H̃∗,∗(Xk) as M2-modules.

It remains to show that lim←−− H̃∗,∗(Xk) is free. For that we use a stabilization phenomenon of the coho-
mologies as M2-modules to find a basis for the inverse limit. Fix an i ≥ 0 and consider H̃∗,∗ (Xk(i+1)

)
as 

an M2-module. If we attach the next cell to form Xk(i+1)+1 and compute its cohomology via the usual 
cofiber sequence, any M2 generators with fixed-set dimension i will be sent to zero by the differential in 
the long exact sequence. This is simply for degree reasons, as an M2 generator with fixed-set dimension 
i cannot support a nonzero differential to an M2 generated by an element with fixed-set dimension i + 2
or greater. Furthermore, the generators of fixed-set dimension i will continue to support zero differentials 
when computing the cohomology of Xn for any n > k(i + 1).

Now for each i ≥ 0, choose a graded free basis for H̃∗,∗ (Xk(i+1)
)

and let βi be a subset of that basis 
consisting only of generators of fixed-set dimension i. The union of all such βi will form our graded free 
basis for H̃∗,∗(X). For any index i, we can define a map M2〈βi〉 → lim←−− H̃∗,∗(Xk) by including M2〈βi〉 →
H̃∗,∗ (Xk(i+1)

)
. In fact, we have an inclusion M2〈βi〉 → H̃∗,∗(Xn) for any n > k(i +1) since if a generator in 

βi has bidegree (a, b), then H̃a,b
(
Xk(i+1)

) ∼= H̃a,b(Xn). Thus we can define a cone over the inverse system
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H̃∗,∗ (Xk(i+1)
)

H̃∗,∗ (Xk(i+1)+1
)

H̃∗,∗ (Xk(i+1)+2
)

· · ·

M2〈βi〉

ι∗ ι∗ ι∗

and so we get a map to the inverse limit

fi : M2〈βi〉 → lim←−−
j

H̃∗,∗ (Xk(i+1)+j

) ∼= lim←−− H̃∗,∗(Xk).

Finally taking the direct sum over all fi we have a map

f :
∞⊕
i=0

M2〈βi〉 −→ lim←−− H̃∗,∗(Xk) ∼= H̃∗,∗(X).

As above, for any bidegree (p, q), the map f factors through a finite stage where H̃p,q
(
Xk(i)

) ∼= H̃p,q(X) for 
some appropriate choice of i. Thus the M2-module map f is an isomorphism because it is an isomorphism 
in every bidegree, and hence H∗,∗(X) is free. �
Counterexample 6.4. The freeness theorem does not hold for all locally finite Rep(C2)-complexes. Consider 
the space Y =

∨∞
n=0 S

n,n. By the wedge axiom

H̃∗,∗(Y ) ∼=
∞∏

n=0
H̃∗,∗(Sn,n) ∼=

∞∏
n=0

Σn,nM2.

Nonequivariantly, the singular cohomology of the underlying space is a free F2-module because F2 is a field. 
However, M2 is not a field and H̃∗,∗(Y ) is not a free M2-module. Suppose γn is the generator of the M2 in 
bidegree (n, n) of the infinite product. Then there is an element in bidegree (0, −2) of H̃∗,∗(Y ) of the form

x =
(
θγ0,

θ

ρ
γ1,

θ

ρ2 γ2,
θ

ρ3 γ3, . . .

)
.

Notice that x is not ρ-torsion since for any k we have ρkx �= 0. However τx = 0. In M2, and indeed in any 
free module, an element that is not ρ-torsion is also not τ -torsion. Hence H̃∗,∗(Y ) cannot be free.

As a corollary to the freeness theorem, we have a splitting at the spectrum level.

Corollary 6.5. Suppose X is a finite type Rep(C2)-complex. Then

F (Σ∞X+, HF2) �
∨
i∈I

(
S−pi,−qi ∧HF2

)
,

where I is a countable set indexing the elements in any free basis for H∗,∗(X).

Proof. Let β be a free basis for H∗,∗(X) with each generator γi having bidegree (pi, qi) for i ∈ I. By 
adjunction H∗,∗(X) ∼= π−∗,−∗F (Σ∞X+, HF2) via

Hp,q(X) = [Σ∞X+, S
p,q ∧HF2]

∼= [Σ∞X+ ∧ S−p,−q, HF2]
∼= [S−p,−q, F (Σ∞X+, HF2)]

= π−p,−qF (Σ∞X+, HF2).
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Each γi ∈ π−pi,−qiF (Σ∞X+, HF2) gives rise to a map of spectra

S−pi,−qi ∧HF2
γi∧id−−−→ F (Σ∞X+, HF2) ∧HF2

μ−→ HF2,

where F (Σ∞X+, HF2) is an HF2-module via the structure map μ. Taking all of these maps together, we 
get a map ∨

i∈I

(
S−pi,−qi ∧HF2

)
−→ F (Σ∞X+, HF2).

By construction this map induces an isomorphism on bigraded homotopy. Since RO(C2)-graded homotopy 
groups detect weak equivalences (see for example Section 6.10 of [9]), the map is a weak equivalence. �
7. Kronholm shifts of free generators

In this section we specify the shifting of free generators that occurs when attaching a single cell to a 
Rep(C2)-complex with an interesting differential. By interesting differential, we mean a differential of the 
last type that shows up in the proof of the freeness theorem in Section 6.1, where a ramp (Definition 4.2) 
of generators map to the bottom cone. The setup of the following theorem is the same as case (c) in the 
proof, with X playing the role of Xk and Y playing the role of Xk+1. The result is that we can precisely 
specify the bidegrees of free generators in cohomology after such a differential.

Theorem 7.1. Let X be a finite Rep(C2)-complex of dimension less than or equal to p. Let Y be the space 
formed by attaching a single Rep(C2)-cell D(Rp,q) to X where any cells of X with dimension p have weight 
less than or equal to q. The cofiber sequence X → Y → Y/X ∼= Sp,q induces a long exact sequence in reduced 
cohomology with differential d : H̃∗,∗(X) → H̃∗+1,∗(Sp,q).

Assume there exists a basis for H̃∗,∗(X) ∼= M2〈ω1, . . . , ωn, χn+1, . . . , χm+1〉, where ω1, . . . , ωn satisfy 
the ramp condition and let ν denote the free generator of H̃∗,∗(Sp,q). Suppose each ωi supports a nonzero 
differential to M−

2 〈ν〉 with

d(ωi) = θ

ρjiτki
ν

for some integers ji, ki ≥ 0 and d(χi) = 0 for n + 1 ≤ i ≤ m + 1. Then

H̃∗,∗(Y ) ∼=
(

n⊕
i=1

Σ|ωi|+(0,si)M2

)
⊕

(
Σ|ν|−(0,s1+s2+···+sn)M2

)
⊕

⎛⎝ m+1⊕
j=n+1

Σ|χj |M2

⎞⎠
where the shifts in weight are given by

s1 = k1 + 1

s2 = k2 − k1

s3 = k3 − k2

...

sn = kn − kn−1.

An example is depicted in Fig. 17.
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Fig. 17. Example of Kronholm shifts predicted by Theorem 7.1, corresponding to Figs. 15, 18, and 19.

Proof. The cofiber sequence X → Y → Sp,q induces a long exact sequence in cohomology

· · · d−→ H̃∗,∗(Sp,q) π∗
−→ H̃∗,∗(Y ) ι∗−→ H̃∗,∗(X) d−→ H̃∗+1,∗(Sp,q) π∗

−→ · · ·

as usual.
In the proof of Theorem 6.1, we investigated the short exact sequence

0 → cok(d) → H̃∗,∗(Y ) → ker(d) → 0.

Recall from part (c) of the proof, using τ -localization we know the topological dimensions of the free 
generators of H̃∗,∗(Y ) are the same as those of H̃∗,∗(X) together with H̃∗,∗(Sp,q). Similarly, we know from 
ρ-localization that the fixed-set dimensions of the free generators are preserved. Furthermore, we know that 
the generator in topological dimension p of H̃∗,∗(Y ) that “corresponds” to ν has fixed-set dimension at least 
p − q. We also had the following split short exact sequence

0 → M2〈bn+1, . . . , bm+1〉 → H̃∗,∗(Y ) → N → 0,

where ι∗(bi) = χi, making the quotient N a free direct summand.
Including the isomorphism 

⊕
M2〈bi〉 ∼=

⊕
M2〈χi〉 and quotienting, we have a short exact sequence of 

short exact sequences as below.

0 0 0

0 0
⊕

i M2〈bi〉
⊕

i M2〈χi〉 0

0 cok(d) H̃∗,∗(Y ) ker(d) 0

0 cok(d̃) N ker(d̃) 0
0 0 0
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Fig. 18. Shifts along the slanted grid.

Here d̃ is the restriction of the differential to the direct summand M2〈ω1, . . . , ωn〉. An example of the 
restricted differential d̃ was shown in Fig. 15. For ease of reference, the same example appears again on the 
left in Fig. 19.

Now fix i and consider an element x ∈ N with bidegree |x| = |ωi|. As a consequence of the ramp condition 
and the fact that each ωi supports a nonzero differential, the kernel of d̃ in bidegree |ωi| is always zero. So 
x must be sent to zero in ker(d̃) and thus lift to an element of cok(d̃). Because im(d) ⊆ M−

2 〈ν〉, any element 
of cok(d) in this bidegree has τ -torsion.

We know there is a single free generator of N with topological dimension top(ωi), but no element of M+
2

has τ -torsion. So this free generator of N must have higher weight (and so lower fixed-set dimension). This 
same argument holds for each ωi. So every generator in these topological dimensions must have “shifted 
up,” that is, it lies at a higher weight. In order to preserve fixed-set dimensions, the generator in topological 
degree p that corresponds to ν must have “shifted down.” �

To clarify with an example, Fig. 18 shows a slanted grid corresponding to the topological and fixed-set 
dimensions of the generators for the differential pictured in Fig. 15 (and again on the left in Fig. 19). On 
the left of Fig. 18 we see the original positions of the generators and on the right the positions of the 
shifted generators. The red generators correspond to ω1, . . . , ωn and the blue generator corresponds to ν. A 
combinatorial argument allows us to identify the positions of the shifted generators shown on the right.

As there is at most one generator in each topological dimension and each fixed-set dimension, we must 
have a single generator on each vertical line and a single generator on each diagonal line, both before 
and after the differential. We have just argued above that all the red generators, those corresponding to 
ω1, . . . , ωn, must shift up. If we consider the generators from left to right, each will have a unique unoccupied 
diagonal above it on the slanted grid. So finally the blue generator corresponding to ν must shift down as 
pictured in Fig. 18.

In general, since we have shown each ωi shifts up, again if we consider each topological dimension from 
left to right, each generator has a unique position available to it on the slanted grid. These shifts of the ωi

and ν are precisely as calculated in the theorem statement.
Identifying shifted generators. So far we have shown the free generators “shift” in the case of a ramp 

differential, but the new generators remain a bit mysterious. For the interested reader, we will precisely 
identify a choice of basis. To do so we pick out a collection of distinguished elements in the kernel of 
the differential. These are the lowest-weight elements in M+

2 〈ω1, . . . , ωn〉 in each of the topological degrees 
top(ω1), . . . , top(ωn), top(ν) supporting zero differentials. We will use these to define elements in H̃∗,∗(Y ).
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Fig. 19. Identifying shifted generators.

The following chart is useful for reference as we define these elements.

H̃∗,∗(Y ) ι∗−→ H̃∗,∗(X) d−→ H̃∗+1,∗(Sp,q)

a0 �→ τk1+1ω1 �→ 0
ai �→ ρji−ji+1ωi + τki+1−kiωi+1 �→ 0
an �→ ρjn+1ωn �→ 0

bi �→ χi �→ 0

We revisit our sample (restricted) differential in Fig. 19, now indicating the ai on the right.
Notice τk1+1ω1, as well as ρji−ji+1ωi + τki+1−kiωi+1 for 1 ≤ i ≤ n − 1 and ρjn+1ωn are all elements of 

ker(d). The differential is zero on the first and last of these elements for degree reasons, while d(ρji−ji+1ωi +
τki+1−kiωi+1) = 0 because we are working mod 2. Since each of these elements is nonzero in H̃∗,∗(X), by 
exactness we can define a0, . . . , an to be their preimages in H̃∗,∗(Y ) as in the chart above. These ai are free 
generators and N ∼= M2〈a0, . . . , an〉.

Each ai is uniquely determined because ι∗ is injective in bidegree |ai|. This follows because in the long 
exact sequence

· · · → H̃ |ai|−(1,0)(X) d−→ H̃ |ai|(Sp,q) π∗
−→ H̃ |ai|(Y ) ι∗−→ H̃ |ai|(X) → · · ·

the map d : H̃ |ai|−(1,0)(X) → H̃ |ai|(Sp,q) is surjective10 making π∗ zero in bidegree |ai| and hence ι∗

injective.
As the ai are uniquely determined and we already know N has free generators in the same bidegrees as 

the ai, each ai is indeed a free generator. The other distinguished elements of the kernel that we can lift back 
to H̃∗,∗(Y ) are the χi. Since H̃∗,∗(Y ) ∼= N ⊕ M2〈bn+1, . . . , bm+1〉, the elements a0, . . . , an, bn+1, . . . , bm+1

give a free basis for H̃∗,∗(Y ).

10 This is clear from Fig. 19 and follows from the image under d of ρji−ji+1−1τωi for any 1 ≤ i ≤ n − 1 and ρjnτωn since the rank 
of H̃∗,∗(Sp,q) is at most one in any bidegree.
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8. Kronholm’s proof

In this section, we discuss the subtle error in Kronholm’s proof of the freeness theorem. The main error is 
in not completing the inductive step. The problem appears to arise from the similarity of spectral sequences 
for two different filtrations of the space. To describe the issue, we adapt Kronholm’s language and notation 
to match ours.

As a precursor, in Theorem 3.1 of [6], Kronholm considers attaching a single cell to a complex whose re-
duced cohomology is a free module with one generator. He proves, under some assumptions, the cohomology 
of the newly formed complex is free.

Kronholm’s main argument [6, Theorem 3.2] proceeds by induction on the representation cells. He con-
siders a finite Rep(C2)-complex X together with the ‘one-at-a-time’ cellular filtration X0 ⊆ · · · ⊆ Xk ⊆
· · · ⊆ X, where each Xk+1 is formed from Xk by attaching a single cell. He assumes by induction that 
H̃∗,∗(Xk) is free and aims to show that H̃∗,∗(Xk+1) is free.

He applies a change of basis [6, Lemma 3.1], much like our Lemma 5.3, to H̃∗,∗(Xk). After the change of 
basis, there is a ramp of generators mapping to the bottom cone of a shifted copy of M2. He then mistakenly 
implies one can reduce to the case of a differential supported by a single free summand, presumably to apply 
[6, Theorem 3.1]. This is not always possible and thus he did not complete the inductive step.

It is likely the error in Kronholm’s argument came from conflating two deceptively similar spectral 
sequences. Kronholm’s proof uses the following spectral sequence (see Proposition 3.1 in [6]).

Proposition 8.1. Let X be a filtered C2-space. Then there is a spectral sequence with

Ep,q,n
1 = H̃p,q

(
Xn+1, Xn

)
converging to H̃p,q(X).

This is a spectral sequence of bigraded M2-modules. As Kronholm explains, in order to depict the spectral 
sequence in the plane, we typically use colors to represent the filtration degrees. The differentials increase 
topological degree by one as before, but also reaches farther up in the filtration on each page.

For clarity, we use Proposition 8.1 to define two distinct spectral sequences converging to the cohomology 
of Xk+1.

• Let E be the spectral sequence for the ‘one-cell-at-a-time’ filtration,

X0 ⊆ X1 ⊆ · · · ⊆ Xk ⊆ Xk+1.

• Let E be the spectral sequence for the two-stage filtration Xk ⊆ Xk+1.

In both cases, we write ν for the free generator corresponding to the last attached cell. The pictures one 
would draw of the two spectral sequences are very similar, with some subtle differences. An example of each 
is shown in Fig. 20.

On the E1 page of the spectral sequence corresponding to the ‘one-at-a-time’ cellular filtration (shown on 
the left in Fig. 20), the only possible differential to M2〈ν〉 comes from one filtration degree lower. However, 
each intermediate copy of M2 on the E1 page may both support and receive a nonzero differential. Such 
differentials give rise to non-free “Jack-o-lantern” modules on the E2 page, as studied in [5].

On the other hand, the differential on the E1 page for the two-stage filtration is quite different. As shown 
on the right in Fig. 20, depending on their bidegrees, any copy of M2 in H̃∗,∗(Xk) may support a differential 
to M2〈ν〉. The E2 ∼= E∞ page is typically not free. Rather, as a consequence of the main theorem, it is an 
associated graded module of a filtration for a free M2-module.
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Fig. 20. Examples of spectral sequences for the two filtrations.
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Fig. 21. E for Gr1(R+++−).

Kronholm’s proof uses the two-stage spectral sequence E , where a ramp of generators supports a differ-
ential. If the ramp had length one, then [6, Theorem 3.1] would apply. It seems likely he was imagining 
iteratively applying this theorem one filtration degree at a time. However in E these maps are simultaneous, 
so the theorem does not apply. Switching from E to E does not help. On the E1 page, M2〈ν〉 receives a 
differential from a single M2. However, E1 filtrations can both support and receive differentials. Moreover, 
as noted before, E2 is in general not free, so [6, Theorem 3.1] once again does not apply.

We end with an example demonstrating an E in which a non-free module receives a differential after the 
E1 page.

Example 8.2. Consider the equivariant Grassmannian P (R4,1) = Gr1(R4,1), using the Schubert cell decom-
positions for Gr1(R+++−) (see [6], [1], or [5] for more details).

This Rep(C2)-complex has cells with bidegrees (0, 0), (1, 0), (2, 0), and (3, 3). Working with reduced 
cohomology, we have the one-cell-at-a-time spectral sequence E shown in Fig. 21. Note that on the second 
page, we have a differential from a Σ1,0M2 to an non-free M2-module, a scenario which is not accounted 
for in [6].
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