Topology and its Applications 285 (2020) 107413

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The freeness theorem for equivariant cohomology of )
Rep(Cy)-complexes

Eric Hogle, Clover May *

ARTICLE INFO ABSTRACT
Article history: Let C2 be the cyclic group of order two. We show that the RO(C2)-graded Bredon
Received 15 May 2020 cohomology of a finite Rep(Cz)-complex is free as a module over the cohomology

Received in revised form 8 October
2020
Accepted 26 October 2020

of a point when using coefficients in the constant Mackey functor Fy. This paper
corrects some errors in Kronholm’s proof of this freeness theorem. It also extends

Available online 31 October 2020 the freeness result to finite type complexes, those with finitely many cells of each
fixed-set dimension. We give a counterexample showing the theorem does not hold

Keywords: for locally finite complexes.

Equivariant © 2020 Elsevier B.V. All rights reserved.

Homotopy

RO(G)-graded

Cohomology

Contents
1. Introduction . . . . .. oo 1
2. Preliminaries . . . . . . . ... 3
3. Computational tools . . . . . . . 5
4. Change of basis for free modules . ... ... ... . 10
5.  Change of basis for attaching a representation cell . . ... ... ... . ... ... . . 15
6. Freeness theorem . . . . . . . . 17
7. Kronholm shifts of free generators . . . . . . ... . . . e 24
8. Kronholm’s proof . . . . . e 28

References . . . . . . 30

1. Introduction

Let C5 be the cyclic group of order two. In this paper we are concerned with Rep(Cs)-complexes, a class
of Cy-spaces built using representations. Our main goal is to correct some subtle errors in Kronholm’s proof
[6] that finite Rep(C?2)-complexes have free RO(C)-graded Bredon cohomology in constant Fa-coefficients.

Having proved Kronholm’s theorem, we go on to extend the result to finite type complexes. A finite
type Rep(Cs)-complex is one with finitely many cells of each fixed-set dimension (and hence also of each
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topological dimension). The key to this proof is to filter cohomology by the fixed-set dimension of the
generators and argue the vanishing of the lggll term. The freeness theorem cannot be extended to all locally
finite complexes, which have finitely many cells of each topological dimension. A particular infinite wedge
of representation spheres is a counterexample. We show the generalized freeness theorem lifts to a splitting
at the spectrum level.

Nonequiviariantly, working with coefficients in the field Fo makes singular cohomology computations
rather straightforward. For one thing, as an Fo-module, every vector space is free. Moreover, when calculating
the induced map on cohomology for attaching a single cell, one only needs to consider generators from
one dimension lower. Computations in RO(C5)-Bredon graded cohomology of Cs-spaces are much more
challenging, even with coefficients in the equivariant analogue Fy. In fact, the RO(C3)-graded cohomology
of a point in Fa-coefficients is an infinite-dimensional non-Noetherian ring. This ring, M, has a complicated
module theory, making freeness theorems highly nontrivial. Furthermore, attaching maps for a cell can
involve cohomology generators from lower dimensions.

Kronholm’s theorem is a powerful computational tool. It shows the cohomology of a finite Rep(Cs)-
complex is free as an Ms-module. Moreover, it demonstrates freeness even in the presence of nonzero
differentials corresponding to the attaching maps for representation cells. This solves numerous extension
problems in computations. Even so, finding the degrees of free generators is often nontrivial. Kronholm’s
freeness theorem has been used by Dugger [1] to study a class of infinite Cs-equivariant Grassmannians that
are finite type Rep(C2)-complexes. It has also been used by the first author [5] to study some families of
finite Grassmannians.

Prior to Kronholm’s work on the freeness theorem, Lewis [7] proved a freeness theorem for the cohomology
of Rep(C))-complexes, where p is any prime. Lewis requires the complexes have only even-dimensional cells
with a further restriction on the fixed-set dimensions. These restrictions force all differentials to be zero
in the long exact sequence for attaching a cell. Ferland [2], building on the work of Lewis, generalized the
freeness theorem to finite type Rep(C),)-complexes with even-dimensional cells for p odd. Ferland’s result,
like Kronholm’s, allows for nonzero differentials. At odd primes, it is not possible to extend Ferland’s freeness
theorem to include all finite type Rep(C),)-complexes (see Counterexample 3.4). This makes it all the more
surprising that Kronholm’s freeness theorem holds for all finite type Rep(C2)-complexes.

The gap in Kronholm’s argument occurs during the inductive step, where he implies that we can reduce
to the case of a differential supported by a single free summand. In fact this is not always possible. The
mistake appears to arise from the similarity between spectral sequences for two different filtrations of the
space. One spectral sequence comes from the two-stage filtration for attaching a single cell to a complex,
while the other is for the ‘one-at-a-time’ cellular filtration. Kronholm’s paper appears to conflate these two
approaches and incorrectly apply reasoning from one spectral sequence to the other.

There are multiple approaches one might use to correct the proof. In this paper, we focus on the filtration
for attaching a single cell and complete the inductive step. Here the spectral sequence is really just the long
exact sequence associated to a cofiber sequence, and so we will simply refer to this as a long exact sequence
throughout the paper. An argument carefully extending Kronholm’s techniques to a differential supported
by n free summands would likely work, but would require extensive bookkeeping.

Our proof uses the second author’s recent Cy structure theorem [9], together with several localization
arguments. The structure theorem applies more generally to finite Co-CW complexes and says their coho-
mology can only have two types of direct summands: free modules, and shifted copies of the cohomologies
of antipodal spheres. In the context of this result, we need only show the antipodal spheres do not appear
in the cohomology of a Rep(Cs)-complex. While this may sound simple, it is still rather technical to prove
the inductive step.

Somewhat surprisingly, we prove the freeness theorem for cohomology without determining a basis of free
generators. However, in practice, a free basis is useful for computations. In Section 7, we explicitly compute
a basis for the cohomology of a Rep(Cs)-complex in the presence of a nontrivial differential. Kronholm
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observed that a nontrivial differential causes generators to appear to “shift” from their original positions
and we give formulas for these shifts.

1.1. Organization

In Section 2 we introduce the necessary background and notation, largely from [6] and [10]. In Section 3
we recall a number of computational tools from [6] and [9]. The main proof will require a change of basis of
a free module, the first algebraic steps of which are given in Section 4. A further restriction on the change of
basis for the cohomology of a space is given in Section 5. These two steps are similar to Kronholm’s change
of basis in [6]. In Section 6 we give a proof of Kronholm’s freeness theorem for finite complexes and extend
the result to finite type complexes. We also show the freeness theorem lifts to a splitting at the spectrum
level. In Section 7 we calculate the changes in the degrees of the generators after a nontrivial differential.
We also give an explicit basis. In Section 8 we explain in more detail the main error in Kronholm’s paper,
which led to this work.

1.2. Acknowledgments

The authors would like to thank Dan Dugger for introducing them to the beautiful subject of equivariant
topology and for his support throughout numerous revisions. Thanks also to Mike Hill for many helpful
conversations, particularly regarding the finite type and locally finite cases. Finally, thank you to the anony-
mous referee for helpful suggestions. This work was partially funded by the University of Oregon, UCLA,
and Gonzaga University.

2. Preliminaries

To begin, we set up some basic machinery and notation much as in [6] and [10] with a few small variations.
Let G be a finite group. Given an orthogonal real G-representation V, let D(V') and S(V') denote the unit
disk and unit sphere in V, respectively. Let SV = V denote the representation sphere given by the one-point
compactification of V. There are two important types of equivariant cell complexes.

Definition 2.1. A G-CW complex is a G-space X with a filtration, where X is a disjoint union of orbits
G/H and X, is obtained from X,,_; by attaching cells of the form (G/H,) x D™ along equivariant maps
fa: G/Hy X S"~1 5 X,,_1. The cells are attached via the usual pushout diagram

1, G/Hy x Sn=t Hedoy

I !

[,.G/Hy x D" —— X,
where D™ and S™~! have the trivial G-action.

We will mainly be interested in another type of cell structure, one that is built with representation cells,
called a Rep(G)-complex.

Definition 2.2. A Rep (G)-complex is a G-space X with a filtration X,, where X is a disjoint union of trivial
orbits! of the form G/G = x and X,, is obtained from X,,_; by attaching cells of the form D(V,,), where

1 Note that the definition in [6] allows for X to be made up of any G-orbits. However, Cs is itself a Ca orbit and does not have
free cohomology, which would contradict the freeness theorem.
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V. is an n-dimensional real representation of G. The cells are attached along maps f : S(V,) = X,,—1 via
the usual pushout diagram.

The space X, in either filtration is referred to as the n-skeleton of X and the filtration is referred to as a
cell structure. If the filtration is finite, then X is finite dimensional. If there are finitely many cells of each
dimension, then X is called locally finite. We call a Rep(C5)-complex finite type if it has finitely many cells
of each fixed-set dimension, as defined below. If X is a connected Rep(G)-complex, the filtration quotients
are wedges of representation spheres X,,/X,_1 =/, S"=.

Remark 2.3. Any Rep(G)-complex can be given the structure of a G-CW complex. The converse is false. In
particular, any G-space with a free action cannot be given the structure of a Rep(G)-complex. A Rep(G)-
complex has at least one fixed point because the origin of any real representation is fixed.

We now specialize to the group G = Cs. As in [6], we write a p-dimensional real Cy-representation V as
V = (RV0)P=9 ¢ (R = RPY

where R0 is the trivial 1-dimensional real representation of Cy and R*! is the sign representation. Allowing
p and ¢ to be integers if V' is a virtual representation, we call p the topological dimension and ¢ the weight
or twisted dimension of V = RP'9. We will also refer to the fixed-set dimension, which is p — ¢. This is
also referred to in the literature as coweight. We write SV = SP¢ for the (possibly virtual) representation
sphere given by the one-point compactification of V.

For the V-th graded component of the ordinary RO(C3)-graded Bredon equivariant cohomology of a
Cy-space X with coefficients in the constant Mackey functor Fa, we write HY (X;Fy) = HP4(X;Fy). We
often suppress the coeflicients and simply write HP9(X;Fy) = H?9(X). When we work nonequivariantly,
H:ing .
genuine equivariant Eilenberg-MacLane spectrum representing H**(—) is HF,. It has as its underlying

(X) denotes the singular cohomology of the underlying topological space X with Fa-coefficients. The

spectrum HFs. Given a homogeneous element © € HP?(X), we use the notation |x| = (p,q) for the
bidegree, top(z) = p for the topological dimension, wt(z) = ¢ for the weight, and fix(x) = p — ¢ for the
fixed-set dimension.? It is often convenient to plot the bigraded cohomology in the plane. We will always
plot the topological dimension p horizontally and the weight ¢ vertically.

With coefficients in the constant Mackey functor Fy, the cohomology of a point with the trivial Cy-action
is the ring My := H**(pt) pictured in Fig. 1. On the left is a more detailed depiction, however in practice
it is easier to work with the more succinct version on the right. Every lattice point inside the two “cones”
represents a copy of Fa. There are unique nonzero elements p € H!(pt) and 7 € H%*(pt). Considered as
an Fy[p, 7]-module, My splits as My = M;‘ @ M5 where the top cone M;r is a polynomial algebra with
generators p and 7. There is a unique nonzero element in bidegree (0, —2) of the bottom cone My . This
element § € H%~2(pt) is infinitely divisible by both p and 7 and satisfies §2 = 0. We say that every element
of the lower cone is both p-torsion and 7-torsion because it is killed by a multiple of p and some multiple of
T.

The RO(C5)-graded cohomology H**(X) is a bigraded My-module. By Ma-module we always mean
bigraded Ms-module, and any reference to an Ms-module map means a bigraded homomorphism. For a
free Ma-module with a single generator w with bidegree |w| = (p, q) we use the notation My(w) = XP9M,.

We write A,, for the cohomology of S}, the n-dimensional sphere with the antipodal action, as an Mos-
module. Notice that S has a free Cs-action, so this is not an example of Rep(Cs)-complex. The My-module

2 This is a departure from the usual notation. Kronholm [6], Shulman [11], and Ferland and Lewis [3] use the notation |z| to
denote the topological dimension p rather than the bidegree, and the notation |rG| to denote the fixed-set dimension p — gq.
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Fig. 1. Mo = H™ " (pt; F2).

Fig. 2. A,, = H**(S7;F).

A, plays an important role in the cohomology of Co-CW complexes, though we will see that it cannot appear
in the cohomology of a Rep(Cs)-complex.

A picture of A,, (actually of Ay) appears in Fig. 2. Once again, on the left is a more detailed depiction,
while in practice it is more convenient to use the succinct version on the right. Here every lattice point in
the infinite strip of width n + 1 represents an Fs. Diagonal lines represent multiplication by p and vertical
lines represent multiplication by 7, so that every nonzero element in A, is in the image of 7 and is not
7-torsion. We allow for n = 0 since C3 = S? has cohomology given by a single vertical line. As a ring
A, = Folr, 771 p]/(p"+1), where multiplication by p and 7 corresponds to the module multiplication by
the usual elements in My and where 77! has bidegree (0, —1).

3. Computational tools

In this section we present some tools for computing the RO(C3)-graded cohomology of Ca-equivariant
spaces. Let X be a connected Rep(Cs)-complex. Then X has a filtration coming from the cell structure
where the filtration quotients X,,/X,,_1 are wedges of n-dimensional representation spheres corresponding
to the representation cells that were attached.
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More generally, given any filtration of a Cy-space X
pt=Xo CX; C-- - CXp C X1 C--- =X
corresponding to each cofiber sequence

Xk — Xk-i—l — Xk-i—l/Xk

and for each weight ¢ there is a long exact sequence®

oo BP9 (X /X)) — HPY(Xiy) — HPY(X) S HPPYI( Xy /X)) — -

We often refer to the long exact sequences taken collectively for all ¢ as “the long exact sequence.” Then d,
taken collectively for all p and ¢, is a graded My-module map d : H**(X}) — H**'*(X}41/Xy), which we
call the “differential” in the long exact sequence. This gives a short exact sequence of graded Ms-modules

0 — cok(d) — H**(X}41) — ker(d) — 0.

In many cases cok(d) and ker(d) are relatively easily determined, but computing H** (X} 1) requires solving
the extension problem presented in this short exact sequence.

As in the previous section, we plot RO(C5)-graded cohomology in the plane with the topological dimen-
sion p along the horizontal axis and the weight ¢ along the vertical axis. The differential d in the long exact
sequence is depicted by a horizontal arrow since it increases topological dimension by one. When H *(Xg)
is free as a graded My-module, i.e. when

FI*7*(X/€) = M2<’717 e 7’71@) = @EHHM27

3

the differential is determined by its image d(+y;) on the basis elements or on any set of generators.

Before moving on we present an example that illustrates some common computational techniques as well
as some advantages of the main theorem. In the computation presented here we use the following fact from
Section 6 in [9], which says we can compute the p-axis of the RO(C5)-graded cohomology of a space using
singular cohomology of the quotient.

Lemma 3.1. Let X be a Ca-space. Then HPO(X) = HE L (X/Ca).

Example 3.2. In this example we compute the cohomology of the projective space RP2, = P(R*!) using
Lemma 3.1. A picture of RP?, is shown in Fig. 3. This is the usual depiction of a disk with opposite points
on the boundary identified. The Cs-action is given by rotating the picture 180°.

The long exact sequence associated to the cofiber sequence S1° — RP?2, — S22 is depicted on the left
side of Fig. 4. Recall that in these depictions every lattice point inside the cones represents an Fo. The map
d is determined by its image on the generator of H **(S10) =2 B LOM,. Tt is necessarily nonzero because the
quotient space RP?2,/C5 is the cone on S*, which is contractible. The modules cok(d) and ker(d) resulting
from this differential are on the right side of Fig. 4. Even knowing the differential, computing H **(RP2,)
requires solving the extension problem in the short exact sequence

0 — cok(d) — H**(RP?2,) — ker(d) — 0.

3 As Kronholm [6] points out, these long exact sequences sew together in the usual way to give a spectral sequence. See Propo-
sition 8.1 in Section 8.
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Fig. 3. A depiction of RP? .

ker(d)

cok(d)

N

Fig. 4. Differential in a long exact sequence for H**(RP2 ).

Fig. 5. Reduced cohomology of Rwa.

It is not at all obvious at this stage that the solution to this extension problem should be a free Ms-module.
However, since RP2, is a Rep(Cy)-complex H**(RP2,) must be free as a result of the freeness theorem in
Section 6.1. Thus the cohomology of R P2, as an My-module is H**(RP2,) = X1 My @ %2 My, as pictured
in Fig. 5.

Notice that in the cohomology of RP?, there are two copies of My generated in the same topological
dimensions as before, but they have “shifted.” One generator now has higher weight and the other lower
weight. This is an example of a more general behavior known as a “Kronholm shift,” described in Section 7.
We give formulas that precisely quantify these shifts in Theorem 7.1. The power of the freeness theorem and
the shifting formulas is that when a nonzero differential like the one above occurs, the resulting cohomology
must be free and the bidegrees of the free generators are determined.
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Fig. 6. A C3 analogue of RP? .

Aside 3.3. One might expect a similar freeness result to hold more generally for Rep(C),)-complexes. How-
ever, for odd primes one quickly discovers a space analogous to RP2, that does not have free cohomology.
This makes it rather surprising that the freeness theorem holds for all finite Rep(Cs)-complexes. For con-
creteness, we take p = 3 and give an example below of a Rep(C3)-complex whose cohomology is not free.

Counterexample 3.4. Let X be the Cs-space whose underlying space is a 2-simplex with edges identified as
pictured in Fig. 6. Here a generator of C'5 acts by rotating the picture 120°.

The space X can be realized as a Rep(Cs)-complex. Using techniques similar to those in Example 3.2,
one can compute the cohomology of X with constant F3-coefficients as a module over the cohomology of
a point. Of course, the cohomology of a point as a Cs-space with F3 coefficients is not M, but it shares
several properties with My and can also be depicted with two cones. One can readily verify the cohomology
of X is not free as a module over this ring.

We now return to the prime two and assemble a few more computational tools. We will use several
results from [9] to simplify the proof of the freeness theorem. In particular, from [9] we have the following
structure theorem for the RO(C2)-graded cohomology of C3-CW complexes. The structure theorem says
that as a module over the cohomology of the point, the RO(C5)-graded cohomology of a finite Cy-CW
complex decomposes as a direct sum of two basic pieces: shifted copies of the cohomology of a point and
shifted copies of the cohomologies of spheres with the antipodal action.

Theorem 3.5 (Structure Theorem). For any finite C2-CW complex X, there is a decomposition of the
RO(Cy)-graded cohomology of X as an My-module given by

H*’*(X;&) ~ (@ EpmqiM2> P @Erj,OAnj s
i J

where 0 < q; < p;, 0 <7y, and 0 < njy.

The goal of this paper is to show that for the special case of a finite Rep(Cs)-complex, the cohomology
is free. That is, we will show the cohomology contains only shifted copies of My and not any copies of A,,.

From the structure theorem we immediately obtain a description of the localizations of the cohomology
of a finite Co-CW complex. Notice that A,, is preserved by 7-localization while 77 "My = A, = Fy [Til, ]
On the other hand p-localization kills A,, and p~!M, = Fy[r, pt1].

Corollary 3.6. Let X be a finite Co-CW complex with
H*’*(X) ~ <® El)uq'iM2> @ @ Erj,OAnj
( J

Then
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Fig. 7. Vanishing regions and region containing My generators.

T (X) = (@ Zpi’OAoo> @ (D04,
i J
and
p_lH*’*(X) ~ @ Epi—qi,o (p—le) )

Remark 3.7. Thus for X a finite complex, H**(X) is free if and only if 77*H**(X) has no p-torsion.
Furthermore, p~' H**(X) depends only on the fixed-set dimensions of the free generators in H**(X).

In addition to knowing the cohomology is free, we would like to know where the free generators live.
The cohomology of any finite Co-CW complex has “vanishing regions” where the cohomology is zero. The
following proposition and corollary appear in [9)].

Proposition 3.8. Let X be a finite Co-CW complex of dimension m. Then HP1(X) = 0 whenever

(1) p<Oandq>p—2, or
(2) p>m and ¢ <p—m.

In particular, we have the immediate corollary specifying the region where My generators can lie, as
depicted by the triangle in Fig. 7.

Corollary 3.9. Any generator of a copy of Ml in the cohomology of a finite m-dimensional Co-CW complex X
must lie in a bidegree (p,q) corresponding to an actual representation with topological dimension p satisfying
0 <p<m and weight 0 < q < p.

To find M, generators we may use 6 as in the following lemma from [9].

Lemma 3.10. If a graded My-module contains a nonzero homogenous element x with Ox nonzero, then My (z)
is a graded free submodule.

In [9] it is also shown that My is self-injective.

Lemma 3.11. The regular module Ms is injective as a graded Ms-module.
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h

Fig. 8. A single generator A mapping to the upper cone of Mo (v).

Thus to find free summands of an Msy-module, it is often useful to find an element with a nontrivial
f-multiple. Such an element generates a free submodule, which splits off as a direct summand because My
is self-injective.

4. Change of basis for free modules

Following in Kronholm’s footsteps, in the proof of the freeness theorem in Section 6, we will induct on
the number of cells of a Rep(Cs)-complex and attach one cell at a time. For the inductive step, we will
need to consider differentials from a free module to a single shifted Ml; corresponding to the newly attached
cell. Kronholm’s paper includes a change of basis lemma that simplifies the differentials in this setting [6,
Lemma 3.1]. However, there is a small error* in the proof of this lemma. For completeness, we will first
prove two algebraic change of basis lemmas inspired by Kronholm’s argument. In Section 5, we use these
algebraic results and a fact about p-localization to easily deduce the change of basis lemma that appears in
[6].

The hypotheses of both lemmas in this section include restrictions on the topological dimensions and
weights of the generators of the free module and its target. These same constraints will appear in the change
of basis lemma in Section 5. They appear again in the inductive step of the main theorem and are due to
the ordering of the cells attached.

For the first change of basis, we consider a free module I' supporting a nonzero map d to the top cone
of ¥PIMy = My(v). We will show there is a change of basis for I" so that only one of the basis elements
A supports a nonzero map. The element A will map to M2+<V> An example of such a map is depicted in
Fig. 8. There is a single arrow shown in Fig. 8 because the Ms-module map d is determined by its image on
the generator A. However, the map is nonzero in infinitely many other bidegrees. For example, if d(\) = v
as depicted, then d(7)\) = 72v, d (gu) = 6v, and so on.

Lemma 4.1. Consider a nonzero graded My-module homomorphism with bidegree (1,0) of the form T' =

Mo (Y0, Y15+ -+ s Ym) 4 M, (v)y where |v| = (p, q). Assume for all i that top(v;) < p and whenever top(y;) = p
that wt(y;) < q.

4 A more significant error in Kronholm’s main proof will be explained in Section 8.
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Fig. 9. Nonzero images in the upper cone.

Suppose im(d) has a nonzero value in Mg (v). Then there is a change of basis for T so that

r= M2<>\7X17 e 7Xm>?
where

e d(X) is nonzero,
e d(x;) =0 for alli, and
e top(A) =p—1 and wt(A) > ¢q;

making \ the only basis element with a nonzero image.

Proof. Partition a basis for I', reordering if necessary, as

{0, Uy s b U mgs st st

where the basis elements 7, . . . , 7, have nonzero images in the top cone M; (v}, basis elements Y, 41, - - ., Yr4s
have nonzero images in the bottom cone My (v), and d is zero on Vrysi1,-.., Vrist+t- We allow for the
possibility that s = 0 if there are no basis elements supporting nonzero maps to the bottom cone, or t =0
if there are no basis elements mapped to zero. Set

A+ = M2<707 o 77T>
AT = M2<7?”+17 O 77T+S>
A? = M2<'Yr+s+1a e a7r+s+t>

sothat T 2 At @ A~ @ AO.

We will find a new basis {\, x1, ..., X} for A" satisfying d()\) # 0 and d(x;) = 0 for each 4. For degree
reasons, any -; with nonzero image in the top cone of v has top(v;) = p — 1. So for 0 < i < r, the image
d(7y;) = ™v for k; > 0. Reindexing if necessary, we can assume -y, is of minimal weight among o, ...,
Rename it A := 7 so that d(\) = 7%ov and k; > kg for all i. Since \ has the lowest weight, each remaining
v; lies in the upper cone of A as in Fig. 9.

Next we will use A to form the y;. For each i with 1 < i < r, replace ; with x; := 7; + 7F ko),
Notice that x; is a homogeneous element in the same bidegree as 7; and that x; € ker(d). The x; are all
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~

/]

Fig. 10. Images from A~ and AT,

independent, as a dependence among them would give rise to a dependence among the ~;. Indeed, suppose
there existed nonzero elements M; € My for 1 < ¢ < r such that each M;y; is in the same bidegree and
> M;x; = 0. Then

> Mivyi+ Y Mrh RN =" My + (Z MiTkik(J) Yo = 0.
i=1 i=1 i=1 i=1

The coefficient of vy could be zero, but there is at least one ~; with ¢ > 0 that has nonzero coefficient M;.
Thus we have a dependence among the basis elements 7;, a contradiction.” We can therefore include a free
module and quotient to get the short exact sequence

0= P Ma(xi) = AT = Q =0,

i=1

where @ = Mi3(\). So AT is isomorphic to Ma(\, x1, - - -, Xr) since My is self-injective. Now we have a basis
for AT with d()\) # 0 but d(x;) = 0 for each i.

We use a similar approach to make a change of basis for A~ = My (v,41, - .., Yr+s), DOW using A to modify
the basis elements with nonzero images in the bottom cone. For r +1 < i < r + s, we have d(y;) = ﬁy
for some j;, k; > 0 and it must be the case that top(y;) < p — 1 and wt(;) < g — 2. In particular, for
r+1<i<r+s, each basis element ; has a bidegree that lies inside the lower cone of A as in Fig. 10.

Recall that we defined A := v above so d()\) = 7¥v. Replace the basis element +; (for 7+ 1 < i < r+3s)
with x; ==~ + Wﬁ

generating an My in the same bidegree as v; and d(x;) = 0. As before, the y; are independent. Thus we

A. Again the coeflicient of A has been chosen so that x; is a homogenous element

have a new basis for A~ given by Xy+1, .-, Xr+s-

Finally, for A® = My (y,4 511, ---,Yr+s+t) N0 real change of basis is required. The map d is already zero
on each basis element, so simply define x; :=; for r + s+ 1 <i < r + s+ t. Taking the union of the new
bases, we now have a basis for I' =2 AT & A~ @ A® of the form A, x1,. .., Xm With only A having a nonzero
image. O

In the next case, a change of basis for the free module I" will produce a particularly nice subbasis of free
generators called a “ramp,” as described in [6] (also referred to as a “stairstep” pattern in [3]).

5 Not every M-combination of the «y; is independent. For example, {y1,v1 + 072} is dependent because 7y1 = 7(y1 + 672).
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wo w3 ws

Fig. 11. A ramp of length 5.

Fig. 12. A ramp of generators mapping to the bottom cone of My (v).

Definition 4.2. A collection wy,...,w, of homogeneous elements satisfies the ramp condition if top(w;) <
top(w;i+1) and fix(w;) < fix(w;41) for each 7. Such elements are referred to as a ramp of length n.

Note that the increasing topological dimension and increasing fixed-set dimension in the ramp condition
means each w;y1 is to the right of w; and on a lower diagonal. If wy,...,w, are generators of a free M-
module forming a ramp, no w; lies in a bidegree that sits inside the upper cone M; (wj;) for i # j. An example
of Ml; generators satisfying the ramp condition is depicted in Fig. 11. The details of the ramp condition
will not play a big role in the proof of the freeness theorem, however they will be crucial in Section 7 where
we determine the bidegrees of the free generators after a nontrivial differential.

Now we prove a change of basis for a free module I" supporting a nonzero map only to the bottom cone of
YPIMy = My (v). After the change of basis, there will be a ramp of generators supporting nonzero maps to
the bottom cone. An example is depicted in Fig. 12. Again, the image of d is determined on the generators,
so only these arrows are shown in Fig. 12. However, d is nonzero in (finitely many) other bidegrees. For

0

example, if d(w1) = p%u then also d(pw:) = Jv and d(p®w1) = Ov. As any product of elements in M, is

zero, d is zero on M, {(w1).
) 2

Lemma 4.3. Consider a nonzero graded Ma-module homomorphism with bidegree (1,0) of the form T' =
Mo (Y0, Y15 -+« s Yim) LN My (v) where [v| = (p,q). Assume for all i that top(v;) < p and whenever top(v;) = p
that wt(v;) < q.
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/

Fig. 13. Nonzero images in the lower cone.

Suppose im d takes nonzero values only in My (v). Then there is a change of basis for T so that

= M2<w17" <y Wny Xn+1, - "7X1’n+1>a

where

o d(w;) is nonzero for all i,

e d(xi) =0 for all i,

o wt(w;) < q—2 foralli, and
o Wi,...,wy forms a ramp.

That is, w1, ...,wy, are the only basis elements with nonzero images and they have increasing topological
dimension and increasing fived-set dimension.

Proof. As in the proof of Lemma 4.1, we partition a basis for I", reordering if necessary. Now, by assumption,
there are no nonzero images in M (v). Partition I' as

{707 o 778} U {’78-"-15 s afys-‘rt}a

where the basis elements ~g,...,7s have nonzero images in the bottom cone M (v), and d is zero on
Ysa1s- -+ Ystt- We allow for the possibility that ¢ = 0 if there are no basis elements mapped to zero. Set

AT = M2<707 cee 7PYS>
AO = M2<Pys+17 ) 7’YS+t>

so that T =2 A~ @ A°.

We will find a new basis w1, ...,w, forming a ramp and supporting nonzero maps to the bottom cone.
Consider any two distinct basis elements v, and 4, 0 < a,b < s. Since v, and -, support nonzero images
. . 2] 0
in the bottom cone of v, we can write d(v.) = v and d(n) = pi=
the ramp condition, then one lies inside the range of the upper cone of the other, as shown in Fig. 13.
Without loss of generality, we can assume -, lies inside the upper cone of -, so that top(v,) < top(ys) and
fix(7) > fix(3).

Multiplication by p preserves fixed-set dimension but increases topological dimension by one. Multipli-

v. If v, and =, do not satisfy

cation by 7 preserves topological dimension but decreases fixed-set dimension by one. Thus j, > j, and
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ko > kp. In the basis for A~ replace v, with y; = ple—Jorke=kon 4+ ~; Once more Y, is defined to be
homogeneous in the same bidegree as 4, and d(xp) = 0. As in the proof of Lemma 4.1, the independence of
~Ya and 7y, will imply that -y, and x; are independent as well. So Ma(va,Vp) = Ma(Va, Xb)-

Continue to reduce the set of v; supporting nonzero images in the bottom cone in this way until no
lies in the upper cone region of any ~,. The remaining ~; with d(+;) # 0 satisfy the ramp condition up to
reindexing. Let n be the number of such ~; with nonzero images remaining, reindex these to have increasing
topological dimension and rename them w; := ~y; for 1 < 4 < n. Then reindexing the y; as necessary, we
now have a basis for A~ of the form wy,...,wWn, Xnt1,-- -, Xs-

Finally for A® = M {7511, ...,7Vs+t), no real change of basis is required as d is already zero on each basis
element. Define x; := ~; for s + 1 < ¢ < s + t. Taking the union of the new bases, we have a basis for
'~ A~ @ AP of the form wy, ..., wWn, Xnil,-- > Xme1 as desired. O

5. Change of basis for attaching a representation cell

In the previous section, we introduced two algebraic changes of basis motivated by Kronholm’s argument.
In this section we will deduce some consequences for the cohomology of a Rep(Cs)-complex as an Mao-module,
completing the proof of Lemma 3.1 from [6].

Here we show that when attaching a single cell to a Rep(Csy)-complex, up to a change of basis, a nonzero
differential in the long exact sequence takes one of only two forms. The first looks much like the result
of Lemma 4.1, where a single basis element A supports a nonzero differential to the top cone. In the
topological setting, we obtain a further restriction on the weight of A using p-localization. The second form
follows directly from Lemma 4.3, where basis elements satisfying the ramp condition (see Definition 4.2)
support nonzero differentials to the bottom cone.

To begin, recall the following lemma and subsequent remark that appear in [9, Lemma 4.3 and Remark
4.4] relating the p-localization of equivariant cohomology to the singular cohomology of the fixed set.

Lemma 5.1. (p-localization) Let X be a finite Co-CW complex. Then

p_lH*’*(X) ~ p_lH*)*(XCQ) ~ H*

sing

(X9) ®p, p~' M.

Remark 5.2. An important consequence of the previous lemma is that pflﬁf **(X) does not have any
T-torsion, since p~ My = Fy[r, p*] and p~ ' H**(X) is free as a p~'My-module.

We will use this fact to show the long exact sequence for attaching a single cell to a Rep(Cs)-complex
cannot have any non-surjective differentials into the top cone. That is, if there is a nontrivial differential
into the top cone as in Lemma 4.1, so that d()\) = 7%v for some k, then in fact wt(\) = wt(v), k = 0, and
the restriction My(\) — My (v) is an isomorphism.

The following result is quite similar to [6, Lemma 3.1] although the proof differs slightly. Our proof
uses Lemmas 4.1 and 4.3, together with Remark 5.2 to further restrict differentials to the top cone. As in
Section 4, the hypotheses involving topological dimensions and weights are motivated by the inductive step
of the main theorem. Recall from the proofs of Lemmas 4.1 and 4.3, every change of basis we made preserved
the bidegrees of the free generators. As these are the only change of bases used to prove the following result,
the topological dimensions and weights of basis elements are preserved.

Lemma 5.3. Let B be a Rep(Cq)-complex with reduced cohomology given by a graded free Mo-module with
basis Yo, - - . s Ym $0 H**(B) = My (Y0, ..., Vm). Suppose X is obtained from B by attaching a single (p,q)
cell and let v denote the generator for the reduced cohomology of X/B = SP9. Assume further that for all
i, top(vi) < p and whenever top(v;) = p then wt(v;) < q.
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~

cok(d)

ker(d)

Fig. 14. Differential to the upper cone. Note d surjects onto M3 (v).

The cofiber sequence
B 5 X 5 gpa

gives rise to the differential d : H**(B) — H*T1L*(SP9) in the long ezact sequence. After an appropriate
change of basis, one of the following is true:

(a) the differential d = 0;

(b) the differential is zero on every basis element except A, where |\| = (p — 1,q) and the restriction of the
differential to Miy(\) — My (v) is an isomorphism; or

(c) the basis elements supporting nonzero differentials wy,...,w, satisfy the ramp condition and map to
M (v).

Proof. If d = 0, we are done. Otherwise, d either has nonzero image in Mg (v) or not. If d does have
nonzero image in My (v), then Lemma 4.1 shows we can rewrite H**(B) 2 May(\, X1,...,Xm) where
top(A) = p—1, wt(A) > ¢, and d(x;) = 0 for all i. If wt(A\) = ¢, then the restriction of d to Miy(\) — M (v)
is an isomorphism. For case (b), it remains to show this is the only possible weight. Suppose instead that
wt()\) > ¢ so that d(\) = 7%v for some k > 0. Then the following equation holds.

d( o A) = id(A) =0k gy
T

Tk

A portion of cok(d) and ker(d) are depicted in Fig. 14. (All of the x; are also in ker(d) but are not depicted
here.)

To actually compute H **(X) would require solving an extension problem of graded My-modules as
H**(X) is in the middle of the short exact sequence

0 — cok(d) — H**(X) — ker(d) — 0.
However, we do not need to solve this extension problem because the p-localization of H**(X) is actually

independent of the resolution. By Remark 5.2, we know p~'H**(X) cannot have any 7-torsion. Since
=1y ¢ im(d), by exactness we have 7F1v ¢ ker(7*) and hence a nonzero class 7* (7%~ 1v) € H**(X).

8 Here we deviate from Kronholm, as there is a small error in the calculation of cok(d) and ker(d) in [6].
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This class has no p-torsion and thus survives p-localization.” Yet it does have T-torsion since 7-7*(7¢~1v) =
7*(tkv) = 0, contradicting Lemma 5.1. Thus the basis given by Lemma 4.1 reduces to case (b).

Finally, the remaining possibility is that d is nonzero but does not have nonzero image in M (v). Then
the assumptions of Lemma 4.3 are met and, after a change of basis for H **(B), a ramp of basis elements
w1, ..,wy support nonzero differentials to M3 (v), as stated in case (¢). O

6. Freeness theorem

We are now ready to prove Kronholm’s freeness theorem for finite Rep(Cs)-complexes. The proof will
proceed by induction on the number of representation cells and consider the attaching map for a single cell.
The bulk of the proof will involve case (¢) of Lemma 5.3, with a ramp (see Definition 4.2) of My generators
supporting differentials to the lower cone of another generator. This will lead to the cohomology being a
free module with the same number of My generators, but in shifted bidegrees from their original positions.

In this main case, we use 7-localization to show that the cohomology is free. However, we will need to
show the inductive hypothesis holds, namely that any generators in the highest topological dimension are
below a certain weight. For that, we use 7-localization together with p-localization. Despite the generators
appearing in new bidegrees, the set of topological dimensions of the generators as well as the set of fixed-set
dimensions are preserved. This will give us the constraint on the weights required to complete the inductive
step.

Somewhat surprisingly, in this main case we prove the cohomology is free without ever identifying the
free generators or the shifts. For the purpose of computations, a choice of free basis and a precise formula
for calculating the Kronholm shifts are given in Section 7.

Theorem 6.1. (Freeness theorem) If X is a finite Rep(Cy)-complex then H**(X;Fy) is free as a graded
My -module, where My = H**(pt; Fa).

Proof. Attaching one cell at a time, we can filter X so that each X1 is formed from X by attaching a
single Rep(Cs)-cell, ep41. Order the representation cells ey, es, ..., ex by increasing topological dimension
and increasing weight so that if e; 2 D(RP#%) then p; < p;+1 for all 4, and if p; = p;+1 then ¢; < giy1. We
proceed by induction on the spaces in the ‘one-at-a-time’ cellular filtration®

pt=XgCX1C-- - CXp C X1 € CXg=X.

The base case is trivial.

We will inductively prove that each H **(X}) is a free My-module, where all the generators have topolog-
ical dimensions between zero and p; and any generators in topological dimension p; have weights between
zero and ¢i. For the inductive step we will form Xy, from X by attaching a single (pgy1, gx+1)-cell. In
the course of the inductive step we will see that the generator of H**(X, 1) corresponding to this new cell
may remain in bidegree (pg+1, qx+1), “shift” to a lower weight, or vanish.

Now assume the inductive hypothesis holds for H **(X%). To simplify notation we set p = pr41 and
q = qx+1- We will show H **(Xg41) is free with all generators in topological dimension p having weight at
most q.

7 Without the assumption that for all i top(y;) < p and if top(y:) = p then wt(y;) < g, it is possible to have differentials that
introduce p-torsion in H**(X). See Example 6.6 in [9].

8 Although we filter X using the ‘one-at-a-time’ cellular filtration as in Kronholm’s proof [6], we prove the theorem using the
long exact sequence associated to a cofiber sequence with no reference to the cellular spectral sequence. This is addressed in more
detail in Section 8.
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The cofiber sequence
X 5 X1 = Xiy1/ Xy = SP1

induces the long exact sequence

*

L (S T O (Xg)  HO(X) S H (5 T

Let v denote the free generator of H**(Xyy1/Xy) = H**(SP?) = ¥P9M, in bidegree (p, q). To show that
H **(Xk41) is a free Mg-module we will solve the extension problem of graded My-modules that appears
in the short exact sequence

0 — cok(d) — H**(Xp41) — ker(d) — 0.

We proceed by investigating the differential d : H**(X}) — H*t1*(SP9).
Lemma 5.3 enumerates the possibilities. In case (a), the differential d = 0 and the extension problem is
easily solved. The short exact sequence becomes

0 — My(v) = H**(Xpy1) — H**(X}) — 0,

which splits since H**(X}) is free by inductive assumption. Hence H** (X, 1) 2 H**(X) @ My (v) is free
and there are no shifts. That is, the generators of H **(Xg41) are in the same bidegrees as the generators of
H **(X%), with a single new generator in bidegree (p, ¢). In particular, since the inductive hypothesis holds
for the generators of H**(X}), any free generators of H**(X;,;) with topological dimension p will have
weight not exceeding ¢. Thus H **(Xk+1) satisfies the inductive hypothesis.

In case (b), the extension problem is again easily solved. Recall that after the change of basis, H**(X},) 2
Mo (A, X1, -5 Xm) With [A] = (p — 1, ¢q) and d(x;) = 0 for all i. As the differential is surjective, cok(d) = 0
and the short exact sequence becomes

0— g*’*(X]H_l) — IM:[2<X17 A ,Xm> — 0,

SO H*’*(Xk_H) > Ma(x1,--.,Xm) is free. Here we say A kills v, making g*’*<Xk+1) the same as fI*’*(Xk),
but with a single copy of My generated in bidegree (p — 1,q) removed. Again, any free generators of
H **(Xgp41) with topological dimension p have weight not exceeding ¢, satisfying the inductive hypothesis.

It remains to solve the extension problem arising in case (c¢), which is significantly more labor-intensive.
Under these circumstances the usual short exact sequence

0 — cok(d) — H**(Xj41) — ker(d) — 0

does not split, yet we will still show that H**(X}, 1) is a free My-module.

In this case we can write H**(X},) = Ma(wi, ..., Wns Xnt1s - - - » Xma1) Where wy, ..., w, satisfy the ramp
condition, each w; supports a nonzero differential to the bottom cone M3 (v), and d(x;) =0 for all n +1 <
1 < m+ 1. The image under d of each w; is

0
d(wl) = WV

for some integers j;, k; > 0. It follows from the ramp condition that j; > j;4+1 and k; < k;41. That is, each
w;+1 is to the right of w; and lies on a lower diagonal. An example of such a differential (with the x; omitted)
is pictured in Fig. 15.
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Fig. 15. Ramp of differentials (x; omitted and n = 5).

We will use 7-localization to show the solution to the extension problem in this case must be free. Since
localization preserves exactness for finite sequences, we may consider the long exact sequence

~ ~ —1 ~
e TV (X)) = V(X)) T r LR (8P
Notice that im(d) C M (v) so 771d = 0. Thus this long exact sequence reduces to a short exact sequence
0— 7 YH*(SPY) = 7 H** (Xpy1) — 7 PH™* (X)) — 0,

which we can rewrite as

0— XPIA L — 7 L H Y (Xpp1) — <€B E'“’”AOO> o |@Plas | —o.

i J

As modules over 77!M, = A, both the left and right terms are free. So this short exact sequence splits
and the middle term is also free. Notice Xy is also a finite Co-CW complex so the structure theorem
applies. By Remark 3.7, fI*’*(XkH) has no copies of A,, for any n, making it a free Ms-module.

At this point it may seem that we are done, but in fact we still need to verify the inductive hypothesis
about the topological dimensions of the generators and that the weight of any generator in dimension p
is no more than ¢. The splitting of the short exact sequence above implies that all the free generators of
H**(X}41) are in the same topological dimensions as the free generators of H**(SP9) and H**(X},). This
might seem to suggest the generators have not shifted at all, but a shift up or down would not be witnessed
by 7-localization.

Knowing the topological dimensions of the generators, we use p-localization to prove the constraint on the
weight of any generators in dimension p. First, we split off the less interesting free generators corresponding
to the x; € H**(X}). The y; are elements of ker(d) so we can lift them back to H**(X}1). Since d(x;) = 0,
by exactness we can choose b; in the preimage (¢*)~!(;), though this choice is not necessarily unique. It
is fairly easy to see that 6b; # 0 for all i. This follows because My (Xn+t1,- .-, Xm+1) iS @ free submodule of
H**(X}) so 0x; # 0 for each i. Since +* is an My-module map, ¢*(0b;) = 0c*(b;) = Ox; # 0. So it must
be that 6b; # 0. Then by Lemma 3.10 each My (b;) includes as a free submodule of H**(X}41). Using the
independence of the x;, we can take all the b; together and include My (b, 11, ..., bmt1) as a free submodule.
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We now have a short exact sequence

0= Ma(bns1, .- bms1) = H**(Xpq1) = N =0,

where N is the quotient. By Lemma 3.11, we know that M is self-injective. So this short exact sequence
splits, making N a direct summand of H**(X}1). Moreover, since we already know H** (X} 1) is free, N
is also free.”

Now we will p-localize the original long exact sequence. As with 7-localization, p-localization is exact
here and since im(d) C M (v) we have that p~1d = 0. So we have the short exact sequence

0 — p L (SP) = p L (Xigr) — p L (Xy) — 0.

Into this short exact sequence we can include the p-localization of the isomorphism € M (b;) = € Ma(x;),
and quotient to obtain a short exact sequence of short exact sequences as in the diagram below. Everything
in the following diagram is a free p~!M-module so all the short exact sequences split.

0

|

@i(pilMﬂbi» — @i(pilM2<Xi>) —0

|

(Xip1) —— p T (Xp) — 0

! !

+—— O

o
—— O +— O
*

0 —— p LH**(SP9) —— p~'H*

—

0 —— p tH*"(SP9) p 'N @D, (p~ ' Ma(wi)) —— 0
| | |
0 0 0

In particular, from the last row we have that

PN (p B (S) @ (@wlmm») :

i=1

Thus, making use of Remark 3.7, the fixed-set dimensions of the free generators of NV are the same as the
fixed-set dimensions of the free generators of My(wy, ..., w,) together with that of H**(SP:9).

Again, it seems plausible at this point that we simply have a new generator in the bidegree of v with no
shifts. Regardless, we claim any free generator of IV in topological dimension p must have fixed-set dimension
at least p — ¢ and so have weight at most ¢ (but possibly lower). This is because each of the w; maps to the
lower cone of v, so fix(v) = p — ¢ is the lowest fixed-set dimension of the generators of N. The generators
b; are in precisely the same bidegrees as the original generators ;. Thus all free generators of H *( Xgt1)
having topological dimension p have weight at most ¢. This completes the inductive step and hence the
proof of the freeness theorem for finite Rep(C5)-complexes. O

9 Note that My is a graded local ring with unique maximal ideal (p, 7). Thus every finitely generated projective Mz-module is
free. See [8].
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Fig. 16. Vanishing region for H** (X/ X k)

6.2. Finite type freeness theorem

As a consequence of the finite case, we can extend Kronholm’s freeness theorem to infinite complexes of
finite type. Recall, we say that a Rep(Cs)-complex is finite type if it is built with finitely many cells of each
fixed-set dimension.

Theorem 6.3. If X is a finite type Rep(Cs)-complex then ﬁ*’*(X;&) is free as a graded Ms-module.

Proof. As in the proof of Theorem 6.1, we begin by filtering X as a sequence of subcomplexes X where
each Xy is formed from X} by attaching a single Rep(Cs)-cell er41. We assume the cells are attached
by increasing topological dimension and, within each topological dimension, by increasing weight. We will
show the 1&211 term vanishes and find a free basis for the inverse limit.

Because X is finite type, for each i > 0 we can choose a subcomplex Xj(;) that contains every cell of
fixed-set dimension less than or equal to i by defining

k(i) = max{k : e, = D(RP*) and pr — qi < i}.

Note that H**(X ;) is free by Theorem 6.1 because Xj(; is a finite Rep(C2)-complex. Recall from the
proof of Theorem 6.1 that the My generators of the cohomology may lie in different bidegrees than the
cells forming Xj(;) and there may be fewer My generators than cells. However, each My generator of the
cohomology will have the same fixed-set dimension as one of the cells used in constructing the space.

Now we will consider the cofiber sequence Xj;) — X — X/Xj ;). As usual, this induces a long exact
sequence in cohomology

oo HY (X X)) = (X)) = H (Xgy) = H (X X)) =

Observe that, aside from the basepoint, all the cells of the quotient X/Xj;) have fixed-set dimension
greater than 7. Thus the reduced cohomology of the quotient vanishes for all bidegrees (p, ¢) with p <4 and
q>p—1—2asin Fig. 16.

Fix any bidegree (p,q). There exists an ¢ such that ¢ > p and i > p — ¢ — 2. This implies both (p, q)
and (p+ 1, q) lie in the vanishing region for X/Xj;). So in the long exact sequence for the cofiber sequence
Xk(i) - X — X/Xk(i) we have

s 0= HPU(X) — HP (X)) =0 — -+
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and we see that f{p’q(X) ~ [ra (Xk(i)). Similarly, if n > k(4) and we consider the cofiber sequence
Xy = Xn = Xn/Xk(l-), we have that ﬁp’q(Xn) = (Xk(i)). This tells us that, as a vector space, every
bidegree of the cohomology of X stabilizes by some finite stage k(7). Of course, this value depends on both
p and q.

Recall, as X = colim X}, we have the Milnor exact sequence

0 — lim' H*~1*(X;) — H**(X) — lim H**(Xy) — 0,

where the inverse limit is taken for the tower

*

7 (Xo) 45 B (Xy) &5 o &8 e (Xg) 48 " (X ) &5 o
(see for example Section 3F of [4]). In particular, for each p and ¢ we have the short exact sequence
0 — lim' HP~19(X}) — HP9(X) — lim H”9(X},) — 0.

Fix (p,q) and choose i such that ¢ > p and i > p— ¢ — 2 as above. Truncating the sequence does not change
the value of liill or the inverse limit, so we have

lgLnlpr_l’q(Xk) o IJLH 1gpr—1.4q (X,)

k n>k(i)

and

b
n>k(4)

lgLnﬁp’q(Xk) =~ lim HP (X,).
k

As shown above, the maps in the truncated tower

*

HP1 (Xk(z)) (i HP1 (Xk(i)Jrl) (i HP1 (Xk:(/i)JrQ) <L—

are all isomorphisms.

Recall that liLnl vanishes whenever all the maps in the tower are surjective and thus lil_nlﬁ P=La (X)) = 0.
The same argument can be made for any bidegree (p, q), hence leiglllf[*’lv*(Xk) = 0, making H**(X) —

mﬁ**(Xk) an isomorphism of bigraded vectors spaces. Since this is an My-module map, H**(X)
lim H**(Xy) as My-modules. )

It remains to show that lim A **(X}) is free. For that we use a stabilization phenomenon of the coho-
mologies as My-modules to find a basis for the inverse limit. Fix an ¢ > 0 and consider H** (Xk(,-_H)) as
an M-module. If we attach the next cell to form Xy 41)41 and compute its cohomology via the usual
cofiber sequence, any My generators with fixed-set dimension i will be sent to zero by the differential in
the long exact sequence. This is simply for degree reasons, as an My generator with fixed-set dimension
1 cannot support a nonzero differential to an My generated by an element with fixed-set dimension i + 2
or greater. Furthermore, the generators of fixed-set dimension ¢ will continue to support zero differentials
when computing the cohomology of X, for any n > k(i + 1).

Now for each i > 0, choose a graded free basis for H** (Xk(iﬂ)) and let 3; be a subset of that basis
consisting only of generators of fixed-set dimension i. The union of all such §; will form our graded free
basis for H**(X). For any index i, we can define a map My(8;) — liLan*’*(Xk) by including M (5;) —
H** (Xk(i+1))- In fact, we have an inclusion My (3;) — H**(X,) for any n > k(i+1) since if a generator in
B; has bidegree (a,b), then H*® (X ;41)) = H**(X,,). Thus we can define a cone over the inverse system
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H** (Xk(is1) Y A (X(i+1)+1) Y A (Xp(ig1)t2) — -

Ma(8;)

and so we get a map to the inverse limit

i s M2 (Bi) — lim A" (Xg(iy1y45) = lim B (X).

J

Finally taking the direct sum over all f; we have a map
£ @PMa(Bi) — lim H**(X,,) = H*(X).
i=0

As above, for any bidegree (p, ¢), the map f factors through a finite stage where HP:9 (Xk(i)) =~ AP9(X) for
some appropriate choice of ¢. Thus the My-module map f is an isomorphism because it is an isomorphism
in every bidegree, and hence H**(X) is free. O

Counterexample 6.4. The freeness theorem does not hold for all locally finite Rep(C3)-complexes. Consider
the space Y = \/;"LOZ0 S™™. By the wedge axiom

oo oo
ﬁ*,*(y) o~ H g*,*(sn,n) ~ H E"’nMg.
n=0 n=0

Nonequivariantly, the singular cohomology of the underlying space is a free Fo-module because Fs is a field.
However, M is not a field and H**(Y") is not a free Ms-module. Suppose v, is the generator of the My in
bidegree (n,n) of the infinite product. Then there is an element in bidegree (0, —2) of H**(Y) of the form

0 0 0
Tr = 9'}/0’_’71;_2’727_3737--- .
p' 2 p

Notice that x is not p-torsion since for any k we have p*x # 0. However 72 = 0. In My, and indeed in any
free module, an element that is not p-torsion is also not 7-torsion. Hence H**(Y) cannot be free.

As a corollary to the freeness theorem, we have a splitting at the spectrum level.
Corollary 6.5. Suppose X is a finite type Rep(Ca)-complex. Then

F(S®Xy, HFy) ~ \/ (S77"7% A HF,)
i€l

where I is a countable set indexing the elements in any free basis for H**(X).

Proof. Let 8 be a free basis for H**(X) with each generator v; having bidegree (p;,¢;) for i € I. By
adjunction H**(X) = n_, _F(X*°X,, HF,) via
HPI(X) = [S°X,, SP9 A HF,]
> [S° X, A STP9, HIF,]
= [§74, F(E™ X, HFy)]
=7_p_oF(S°X,, HF,).
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Each v; € m_p, —q, F (XX, HF,) gives rise to a map of spectra

viNid

STPis—di A H& IRAAkaiN F(EOOXJMH&) A H& i) H&7

where F(X*°X, HF;) is an HF;-module via the structure map . Taking all of these maps together, we
get a map

\/ (§7797% A HFy) — F(S® X, HFy).
i€l

By construction this map induces an isomorphism on bigraded homotopy. Since RO(Cs)-graded homotopy
groups detect weak equivalences (see for example Section 6.10 of [9]), the map is a weak equivalence. O

7. Kronholm shifts of free generators

In this section we specify the shifting of free generators that occurs when attaching a single cell to a
Rep(Cs)-complex with an interesting differential. By interesting differential, we mean a differential of the
last type that shows up in the proof of the freeness theorem in Section 6.1, where a ramp (Definition 4.2)
of generators map to the bottom cone. The setup of the following theorem is the same as case (c) in the
proof, with X playing the role of X} and Y playing the role of Xjy1. The result is that we can precisely
specify the bidegrees of free generators in cohomology after such a differential.

Theorem 7.1. Let X be a finite Rep(Cs)-complex of dimension less than or equal to p. Let Y be the space
formed by attaching a single Rep(Cs)-cell D(RP9) to X where any cells of X with dimension p have weight
less than or equal to q. The cofiber sequence X —Y — Y /X = SP1 induces a long exact sequence in reduced
cohomology with differential d : H**(X) — H*t1*(5P9).

Assume there exists a basis for ﬁ**(X) > Mo (Wi, vy Wiy X ls -« s Xmt1)s WHere wi, ..., wy Satisfy
the ramp condition and let v denote the free generator of ﬁ*’*(Sp’q). Suppose each w; supports a monzero
differential to M3 (v) with

0
dw;) = ———
(wi) pliTki v

for some integers j;, ki > 0 and d(x;) =0 forn+1<i<m—+1. Then

n m+1
H*’*(Y) ) (@ Elwi|+(0,8i)M2> e (E‘V|7(0751+82+-..+37L)M2) e @ Z|X1|M2
i=1 j=n+1

where the shifts in weight are given by

81:]€1+1
82:k2_k1
83:k3—k2

Sp = kn — kn—l-

An example is depicted in Fig. 17.
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Fig. 17. Example of Kronholm shifts predicted by Theorem 7.1, corresponding to Figs. 15, 18, and 19.

Proof. The cofiber sequence X — Y — SP'? induces a long exact sequence in cohomology

* *
™

o ey T oY) s BR(X) & JrHLr(spay T

as usual.
In the proof of Theorem 6.1, we investigated the short exact sequence

0 — cok(d) — H**(Y) — ker(d) — 0.

Recall from part (c) of the proof, using 7-localization we know the topological dimensions of the free
generators of H**(Y') are the same as those of H**(X) together with H**(S4). Similarly, we know from
p-localization that the fixed-set dimensions of the free generators are preserved. Furthermore, we know that
the generator in topological dimension p of H**(Y') that “corresponds” to v has fixed-set dimension at least

p — q. We also had the following split short exact sequence
0 — My (bpits..sbmir) = H**(Y) = N =0,

where ¢*(b;) = x;, making the quotient N a free direct summand.

Including the isomorphism @ Mo (b;) = @ My (x;) and quotienting, we have a short exact sequence of

short exact sequences as below.

25
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q—2 q—2
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RN

Fig. 18. Shifts along the slanted grid.

Here d is the restriction of the differential to the direct summand Mo (ws,...,wy). An example of the
restricted differential d was shown in Fig. 15. For ease of reference, the same example appears again on the
left in Fig. 19.

Now fix 7 and consider an element x € N with bidegree |z| = |w;|. As a consequence of the ramp condition
and the fact that each w; supports a nonzero differential, the kernel of d in bidegree |w;| is always zero. So
& must be sent to zero in ker(d) and thus lift to an element of cok(d). Because im(d) C M (v), any element
of cok(d) in this bidegree has 7-torsion.

We know there is a single free generator of N with topological dimension top(w;), but no element of M;
has 7-torsion. So this free generator of N must have higher weight (and so lower fixed-set dimension). This
same argument holds for each w;. So every generator in these topological dimensions must have “shifted
up,” that is, it lies at a higher weight. In order to preserve fixed-set dimensions, the generator in topological
degree p that corresponds to v must have “shifted down.” O

To clarify with an example, Fig. 18 shows a slanted grid corresponding to the topological and fixed-set
dimensions of the generators for the differential pictured in Fig. 15 (and again on the left in Fig. 19). On
the left of Fig. 18 we see the original positions of the generators and on the right the positions of the
shifted generators. The red generators correspond to wy, .. .,w, and the blue generator corresponds to v. A
combinatorial argument allows us to identify the positions of the shifted generators shown on the right.

As there is at most one generator in each topological dimension and each fixed-set dimension, we must
have a single generator on each vertical line and a single generator on each diagonal line, both before
and after the differential. We have just argued above that all the red generators, those corresponding to
w1, . .. ,wn, must shift up. If we consider the generators from left to right, each will have a unique unoccupied
diagonal above it on the slanted grid. So finally the blue generator corresponding to v must shift down as
pictured in Fig. 18.

In general, since we have shown each w; shifts up, again if we consider each topological dimension from
left to right, each generator has a unique position available to it on the slanted grid. These shifts of the w;
and v are precisely as calculated in the theorem statement.

Identifying shifted generators. So far we have shown the free generators “shift” in the case of a ramp
differential, but the new generators remain a bit mysterious. For the interested reader, we will precisely
identify a choice of basis. To do so we pick out a collection of distinguished elements in the kernel of
the differential. These are the lowest-weight elements in M (w1, ..., w,) in each of the topological degrees
top(w1), . .., top(wy ), top(v) supporting zero differentials. We will use these to define elements in H**(Y).
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Fig. 19. Identifying shifted generators.

The following chart is useful for reference as we define these elements.

~ * ~ d ~
H*’*(Y) L_> H*’*(X) N H*+l,*(5p,q)
ao > rhitly, — 0
a; — pjz ikl + Tki+1_k1iwi+1 — 0
ap, — P tlw, — 0
b; — Xi — 0

We revisit our sample (restricted) differential in Fig. 19, now indicating the a; on the right.

Notice 7711w, as well as pliT i1, + Tki“*kiwi“ for 1 <i<n-—1and pj"Hwn are all elements of
ker(d). The differential is zero on the first and last of these elements for degree reasons, while d(p7i ~Ji+1w; +
rhit1=kig; 1) = 0 because we are working mod 2. Since each of these elements is nonzero in H**(X), by
exactness we can define ag, ... ,a, to be their preimages in H **(Y) as in the chart above. These a; are free
generators and N = Mo/(ag, ..., an).

Each a; is uniquely determined because ¢* is injective in bidegree |a;|. This follows because in the long

exact sequence

*

e =10 () 4 flad(gray T frlasl(yy L fled(x) o

the map d : HI%I-(10)(X) — Hl*l(SP9) is surjective'” making 7* zero in bidegree |a;| and hence ¢*
injective.

As the a; are uniquely determined and we already know N has free generators in the same bidegrees as
the a;, each a; is indeed a free generator. The other distinguished elements of the kernel that we can lift back
to H**(Y) are the y;. Since H**(Y) 2 N ® Ma(bps1,...,bmy1), the elements ag, ..., an,bui1, ..., bmi1
give a free basis for H**(Y).

10 :I‘his is clear from Fig. 19 and follows from the image under d of pjﬁj”lflrwi forany 1 <i<n-—1and pj"‘rwn since the rank
of H**(SP 1) is at most one in any bidegree.



28 E. Hogle, C. May / Topology and its Applications 285 (2020) 107413

8. Kronholm’s proof

In this section, we discuss the subtle error in Kronholm’s proof of the freeness theorem. The main error is
in not completing the inductive step. The problem appears to arise from the similarity of spectral sequences
for two different filtrations of the space. To describe the issue, we adapt Kronholm’s language and notation
to match ours.

As a precursor, in Theorem 3.1 of [6], Kronholm considers attaching a single cell to a complex whose re-
duced cohomology is a free module with one generator. He proves, under some assumptions, the cohomology
of the newly formed complex is free.

Kronholm’s main argument [6, Theorem 3.2] proceeds by induction on the representation cells. He con-
siders a finite Rep(Cs)-complex X together with the ‘one-at-a-time’ cellular filtration Xy C --- C X C

- C X, where each Xjy; is formed from X by attaching a single cell. He assumes by induction that
H**(X},) is free and aims to show that H** (X ) is free.

He applies a change of basis [6, Lemma 3.1], much like our Lemma 5.3, to H**(X}). After the change of
basis, there is a ramp of generators mapping to the bottom cone of a shifted copy of M. He then mistakenly
implies one can reduce to the case of a differential supported by a single free summand, presumably to apply
[6, Theorem 3.1]. This is not always possible and thus he did not complete the inductive step.

It is likely the error in Kronholm’s argument came from conflating two deceptively similar spectral
sequences. Kronholm’s proof uses the following spectral sequence (see Proposition 3.1 in [6]).

Proposition 8.1. Let X be a filtered Cs-space. Then there is a spectral sequence with
EPOn — f9(X, 11, X,)
converging to HP9(X).

This is a spectral sequence of bigraded Ms-modules. As Kronholm explains, in order to depict the spectral
sequence in the plane, we typically use colors to represent the filtration degrees. The differentials increase
topological degree by one as before, but also reaches farther up in the filtration on each page.

For clarity, we use Proposition 8.1 to define two distinct spectral sequences converging to the cohomology
of Xk+1.

e Let E be the spectral sequence for the ‘one-cell-at-a-time’ filtration,
XoC X1 C-- C Xy C Xpoy1.
e Let £ be the spectral sequence for the two-stage filtration X C X 1.

In both cases, we write v for the free generator corresponding to the last attached cell. The pictures one
would draw of the two spectral sequences are very similar, with some subtle differences. An example of each
is shown in Fig. 20.

On the E; page of the spectral sequence corresponding to the ‘one-at-a-time’ cellular filtration (shown on
the left in Fig. 20), the only possible differential to M (v) comes from one filtration degree lower. However,
each intermediate copy of My on the F; page may both support and receive a nonzero differential. Such
differentials give rise to non-free “Jack-o-lantern” modules on the Ey page, as studied in [5].

On the other hand, the differential on the £ page for the two-stage filtration is quite different. As shown
on the right in Fig. 20, depending on their bidegrees, any copy of Ml in H**(X},) may support a differential
to Mia(v). The & = & page is typically not free. Rather, as a consequence of the main theorem, it is an
associated graded module of a filtration for a free Mls-module.
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Fig. 20. Examples of spectral sequences for the two filtrations.
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Fig. 21. E for Gry (RTT+7).

Kronholm’s proof uses the two-stage spectral sequence &£, where a ramp of generators supports a differ-
ential. If the ramp had length one, then [6, Theorem 3.1] would apply. It seems likely he was imagining
iteratively applying this theorem one filtration degree at a time. However in £ these maps are simultaneous,
so the theorem does not apply. Switching from £ to E does not help. On the E; page, My (v) receives a
differential from a single My. However, E; filtrations can both support and receive differentials. Moreover,
as noted before, Fs is in general not free, so [6, Theorem 3.1] once again does not apply.

We end with an example demonstrating an E in which a non-free module receives a differential after the
FE1 page.

Example 8.2. Consider the equivariant Grassmannian P(R*1) = Gr; (R*!), using the Schubert cell decom-
positions for Gry (RT17) (see [6], [1], or [5] for more details).

This Rep(Cs)-complex has cells with bidegrees (0,0), (1,0), (2,0), and (3,3). Working with reduced
cohomology, we have the one-cell-at-a-time spectral sequence E shown in Fig. 21. Note that on the second
page, we have a differential from a X1°M, to an non-free My-module, a scenario which is not accounted
for in [6].
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