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CENTRALIZERS OF ELEMENTARY ABELIAN
p-SUBGROUPS AND MOD-p COHOMOLOGY OF

PROFINITE GROUPS

HANS-WERNER HENN

1. Introduction

1.1. Let G be a profinite group and p be a fixed prime. In this paper we will
be concerned with H(G; lFp), the continuous cohomology of G with coefficients
in the trivial module lFp. We will abbreviate H(G; IF) by H*(G;IFp), or simply
by H*G if p is understood from the context. We recall that if G is the (inverse)
limit of finite groups Gi, then H*G colimH*G.
Throughout this paper we will assume that H*G is finitely generated as an lFp-

algebra. By work of Lazard [La], it is known that this holds for many interest-
ing groups, for example, for profinite p-adic analytic groups like GL(n, Tl.p), the
general linear groups over the p-adic integers. In case H*G is finitely generated
as an lFp-algebra, Quillen has shown [Q1] that there are only finitely many con-
jugacy classes of elementary abelian p-subgroups of G (i.e., groups isomorphic to
(TZ/p)n for some natural number n). In other words, the following category (G)
is equivalent to a finite category: objects of (G) are all elementary abelian
p-subgroups of G; if E1 and E2 are elementary abelian p-subgroups of G, then
the set of morphisms from E1 to E2 in (G) consists precisely of those homo-
morphisms E E2 of abelian groups for which there exists an element g e G
with (e) geg- for all e in E. The category (G) plays an important role
both in Quillen’s results and in the work presented here.

This category entered into Quillen’s work as follows. The assignment E
H*E extends to a functor from the opposite category sO(G)p to graded lFp-
algebras and the restriction homomorphisms H*G H*E (for E running
through the elementary abelian p-subgroups of G) induce a canonical map of
algebras q H*G lim()op H*E.

TI-mOedM 1.2 [Q1]. Let G be a profinite group and assume that H*G is a

finitely generated lFp-algebra. Then the canonical map q H*G limc()op H*E is
an F-isomorphism; in other words, q has the following properties.

If x Ker q, then x is nilpotent.
Ify limc()op H’E, then there exists an integer n with ypn Imq.

1.3. In our main result we use the full subcategory .(G) of (G) whose
objects are all elementary abelian p-subgroups except the trivial subgroup. The
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centralizer Ca(E) of an elementary abelian p-subgroup E is a closed subgroup,
and hence it inherits a natural profinite structure from G. The assignment
E H’Ca(E) extends to a functor from zC,(G) to graded lFp-algebras, and the
restriction homomorphisms H*G H’Ca(E) (for E running through the non-
trivial elementary abelian p-subgroups of G) induce a canonical map p:H*G
limc,(a) H*Ca(E). Our main result reads as follows.

THEOREM 1.4. Let G be a profinite group and assume that H*G is a finitely
generated IFp-algebra. Then the canonical map p H*G -- limc,(a)H’Ca(E) has
finite kernel and cokernel.

1.5. Remarks (a) The map p of Theorem 1.4 is an actual iso-
morphism if G is a finite group or a compact Lie group (in the latter case H*G
has to be interpreted as the mod-p cohomology of the classifying space BG) pro-
vided G contains any elements of order p. This was first proved by Jackowski
and McClure [JM] and then reproved and extended to certain classes of un-
stable algebras over the Steenrod algebra by Dwyer and Wilkerson [DW]. One’s
first reaction might be that because the continuous cohomology of a profinite
group is the colimit of the cohomology of finite groups, the profinite case should
be a direct consequence of the finite case by passing to appropriate (co)limits.
However, one gets confronted with a subtle problem of interchanging limits and
colimits, and this has the effect that p need not be an isomorphism for a profinite
group.

In fact, our proof requires a different approach: in [He] we investigated an
appropriately defined map p for any unstable algebra K over the Steenrod alge-
bra which is finitely generated as an lFp-algebra and showed that this map
always has a finite kernel and cokernel (see Theorem 2.5). In Section 2 we
explain this algebraic result and show how Theorem 1.4 can be deduced from it.
We emphasize that we do not know any proof of Theorem 1.4 which does not
use the Steenrod algebra, in particular, Lannes’ T-functor, in a crucial way.

(b) Obviously, Theorem 1.4 gives more precise information than Theorem 1.2,
but on the other hand, its applicability is more limited. For example, a major
reason for working with ,(G) instead of (G) was to avoid the appearance of
H*G in the limit. However, if G contains central elements of order p, then H*G
does appear in the limit anyway, and Theorem 1.4 is not very useful. In other
cases the functor E H’Ca(E) may be too complicated to be evaluated. How-
ever, in these cases Theorem 1.4 may still be of some theoretical interest (see
Sections 2.10 and 2.11 for examples).

(c) Theorem 1.4 says, in particular, that there is a minimal integer d such that
p is an isomorphism in cohomological degrees greater than d. It would be inter-
esting to have effective upper bounds for d in group-theoretical terms. For pro-
finite p-analytic groups, the work of Lazard [La] suggests the dimension of such
a group as a candidate for an upper bound for the number d. In fact, if such a
group does not contain any elements of order p, as well as in the examples dis-
cussed in Sections 4 and 5, this actually gives a correct upper bound.
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1.6. If G does not contain elements of order p, then the target of p is the
trivial algebra, and Theorem 1.4 says that H*G is a finite algebra. Of course, this
could have also been directly deduced from Theorem 1.2.
However, Theorem 1.4 may already be quite interesting in case the p-rank of

G is equal to one. We recall that the p-rank rp(G) of G is defined as the
supremum of all natural numbers n such that G contains an elementary abelian
p-subgroup E of rank n, that is, E - (,/p)n. In the case rp(G) 1, the inverse
limit simplifies substantially because .(G) is equivalent to the following dis-
crete category: objects are in one-to-one correspondence with conjugacy classes
of subgroups E 7Z/p; the only morphisms of this category are automorphisms
and the automorphism group of an object E identifies with N(E)/CG(E), with
N(E) denoting the normalizer of E in G. In particular, we get the following
corollary.

COROLLARY 1.7. Let G be a profinite Troup and assume that H*G is a finitely
Tenerated ]Fp-al#ebra and rp(G) 1. Then the restriction maps induce a map

with finite kernel and cokernel. (Here the product is taken over conjugacy classes of
elementary abelian p-subTroups ofrank 1.) [--1

Note that the group NG(E)/C(E) is.0f order prime to p if E is of rank 1.
Therefore the invariants (H*C(E))v(’) are isomorphic to H*N(E) and
Corollary 1.7 can be considered as a "profinite analogue" of Brown’s result
[B] on the Farell cohomology of discrete groups of p-rank 1. In this case, the
number d introduced in Section 1.5(c) above corresponds to the virtual cohomo-
logical dimension of G.

1.8. As mentioned above, Section 2 will be concerned with the proof of Theo-
rem 1.4 and related results. In Sections 3 and 4 we will study certain subgroups
of the group of units in p-adic division algebras, and in Section 5 we will touch
upon the general linear group over the p-adic integers.
To get more explicit, we fix a prime p and a natural number n. Consider lDn,

the division algebra with invariant 1In over the field of p-adic numbers p and
0n, the maximal compact subring of lDn. 60 is a local ring and reducing modulo
its maximal ideal gives a homomorphism from (-On to the finite field lFq with
q pn. Let 60nX denote the units of (9n, and let Sn denote the kernel of the map

In stable homotopy theory these groups are known as MoravaC0 - lFq.
stabilizer groups, and their cohomology is known to play a central role in the
chromatic theory of stable homotopy (see [M], [Ra2], IRa3], [D], and [HG],
for example).

It is well known that rp(Sn) rp((gnx) < 1 and equality holds if and only if
n 0mod (p- 1). Our results give new insight if n 0 mod (p- 1). Using stan-
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dard facts about division algebras, we determine the categories a’.((gnx) and
.(Sn) for n 0mod (p- 1) and describe the structure of the centralizers of the
elementary abelian p-subgroups (Theorem 3.2.2). Furthermore, for n p- 1 the
centralizers turn out to be abelian, and we can compute the target of p explicitly;
hence H*Sn up to finite ambiguity. In particular, we obtain in Section 3.3 the
following result in which E(-) denotes an exterior algebra over lFp on the speci-
fied elements. The elements yi are of degree 2 and the elements xi and ai,j are of
degree 1. For more details about the definition of these elements the reader is
referred to Sections 3.3 and 3.4.

THEOREM 1.9. Let p be an odd prime, n p- 1, and s (pn_ 1)/(p- 1)2.
Then there is a homomorphism

p’H*Sn -- H lFp[y,] (R) E(x,) (R) E(a,,,,...,
i=1

with finite kernel and cokernel.

We remark that previously the mod-p cohomology of Sn was computed by
Ravenel [Ral] in the following cases: H1Sn and H2Sn for all n and p; all of H*S
if either n < 2 and p arbitrary, or if n 3 and p > 5. So the only overlap between
Ravenel’s computation and Theorem 1.9 occurs for p 3 and n 2 [Ral,
Thm 3.3]. In Section 4 we use Theorem 1.9 together with some more
detailed group-theoretical analysis of $2 to give an independent computation of
H*Sn if p 3 and n-- 2. In this case, we find that p is injective, and we use this
to describe H’S2 as an explicit subalgebra of 1-Ii2__ ]F3[Yi] () E(Xi) E(ai,, ai,2)
(Theorem 4.2). The multiplicative structure of the result derived here differs from
that of Ravenel, although additively the two results agree. Ravenel has informed
me that he now believes that there is a mistake in his calculation. Finally, we
remark that Gorbounov, Siegel, and Symonds [GSS] have independently and
with very different methods confirmed the calculation in Theorem 4.2.
The calculations of H’S2 for primes p > 3 have been used by Shimomura and

Yabe [SY] to determine the stable homotopy groups of L2, the second stage
in the chromatic tower of the p-local sphere. The computation of H’S2 at the
prime 3 will be relevant for understanding L2Sp if p 3, and for this reason we
have decided to give a rather detailed presentation in Section 4. In fact, Shimo-
mura IS] has already used the corrected computation of H’S2 to compute the
homotopy groups of the L2-1ocalization of the Toda-Smith complex V(1) at the
prime 3 up to a certain ambiguity. This ambiguity will be settled in a joint work
with Mahowald [HM] using the approach towards H’S2 via centralizers of ele-
mentary abelian p-subgroups that we introduce in this paper.

1.10. Our second application concerns the mod-p cohomology of the general
linear groups GL(n, Zp). The following result should be compared with Ash’s
computations [A] of the Farrell cohomology of GL(n, Z). As above, the element
y has degree 2 while all other elements are of degree 1.
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THEOREM 1.10.
homomorphism

Let p be an odd prime and let n p-1. Then there is a

p H*GL(n, TZp) (]Fp[y] ( E(x) () E(al,... ,an))/n

with finite kernel and cokernel. (Here (_)Z/n denotes the invariants with respect to
the followin# action of /n by al#ebra homomorphisms. After choosin# a suitable

this action is #iven by #y z(#)y, #x (#)x, andisomorphism z. Tl./n ]Fp,
gay z(g)Jaj for j 1,..., n if

This result looks very similar to Theorem 1.9. In fact, the similarity becomes
even stronger if one compares (for n p- 1) the groups (9nx and GL(n, 7Zp). In
this case, the targets of the two maps p agree (cf. Thm 3.2.2 and Thm 5.2).
As in the case of Sn, we give the complete computation for p 3 and n 2

(Proposition 5.5).

Acknowledgements. The author was partially supported by a Heisenberg
fellowship of the Deutsche Forschungsgemeinschaft. The origin of this paper can
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then pushed further during a three-month visit at the Mittag Lettter Institute in
the fall of 1993. I would like to thank the staff at both institutions for providing
such pleasant and stimulating working conditions. It is a pleasure to express
special thanks to Bob Oliver on both occassions.

2. The proof of Theorem 1.4 and related results. As already indicated in the
introduction, Theorem 1.4 is deduced from a general result about certain un-
stable algebras over the Steenrod algebra A (see [He]). We will begin by recall-
ing some facts about Lannes’ T functor that are necessary to explain the main
algebraic result of [He] and to deduce Theorem 1.4 from it.

2.1. Let o//(resp., :C) denote the category of unstable modules (resp., unstable
algebras) over the mod-p Steenrod algebra A (see [L1]). The cohomology of a
space is an unstable algebra; in particular, the cohomology of any finite group
and then also the cohomology of any profinite group is such an algebra. The
Steenrod algebra is actually a Hopf algebra, and its diagonal gives rise to a ten-
sor product on the categories a//(resp., F).
Now let V be an elementary abelian p-group with mod-p cohomology H* V.

Lannes ILl] has introduced the functor Tv :0// . It is left adjoint to tensor-
ing with H’V, that is, Hom(T,M,N) Hom(M,H*V(R) N) for all unstable
modules M and N. T, has a number of remarkable properties. In particular, Tv
lifts to a functor from to itself, and the adjunction relation continues to hold
in F: Homr(TvK, L) - Homer(K, H*V (R) L) for all unstable algebras K and L.

2.2. Now let G be a finite group. The following computation of TvH*G in
[L2] (for a more accessible reference see also [L1, 3.4]) is quite crucial for the
proof of Theorem 1.4.
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Denote by Rep(V, G) the set of G-conjugacy classes of homomorphisms from
V to G. For each conjugacy class choose a representative f0 and denote the cen-
tralizer of Imp0 in G by CG(0). The homomorphism c,:V x Cc(fO)- G,

*" H*G ---, H* V (R) H*C6(q)(v, g) vq(g) induces a map of unstable algebras c
that is adjoint to a map of unstable algebras ad(c) TvH*G -- H*C6(q).

THEOREM 2.2 [L2]. The homomorphism ofunstable algebras

I-[
eRep(V,G)

whose components are the maps ad(c$) is an isomorphism for each finite group
G.

Note that the theorem shows in particular that the natural map from
Rep(V,G) to Homc(H*G,H*V), which sends ( to its induced map *, is a
bijection.
We also see that the terms in the inverse limit occuring in Theorem 1.4 appear

in the computation of T,H*G. Dwyer and Wilkerson [DW] noticed that this
allows a purely algebraic approach to the map p of Theorem 1.4 which makes
sense for a much larger class of unstable algebras. In order to explain this, we
need some more preparations (see [DW] and [HLS, 1.4 and 1.5]).

2.3. To an unstable algebra K we associate a category (K) as follows. Its
objects are the morphisms of unstable algebras : K -, H* V, V an elementary
abelian p-group for which H*V becomes a finitely generated K-module via
sometimes it will be convenient to denote such an object by the pair (V, (). Then
the set of morphisms from (1, 1) to (l, 2) are all homomorphisms 1 - 1/2 of
abelian groups such that (1 *2. If K is Noetherian, the opposite of this cate-
gory was first investigated by Rector [Rc]. The full subcategory of (K) having as
objects all (V, ) with V nontrivial will be denoted by .(K).

If K H*BG, then (K) is equivalent to Quillen’s category (G) and
.(K) is equivalent to .(G). In fact, in this case, the computation of
Homc(H*G,H*V) (see Section 2.2 above) can be used to identify the objects of
(K) with the monomorphic representations of elementary abelian p-groups in
G, and an equivalence between (K) and a skeleton of s’(G) is induced by
associating to a homomorphism " V G the unique object in the skeleton of
(G) that is isomorphic to the image of (see [HLS, 1.5.3]).

2.4. Now consider the unstable algebra T,K. For a morphism : K - H*V
we obtain a connected component T,(K;) of T,K; it is defined as
Tv(K; o):= lFp()(R)..t,: TvK, where lFp(0) denotes lFp considered as a module

0 w
over T,K, the subalgebra of elements of degree 0 in TvK, via the adjoint of 0.
More generally, we can consider the category K- q/whose objects are un-

stable A-modules M with A-linear K-module structure maps K (R) M ---. M, and
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whose morphisms are all A-linear maps which are also K-linear. The full sub-
category of K- q/ consisting of those objects which are finitely generated as
K-modules is denoted by Kfo -ql.

If M is in K- og, then TvM is in TvK- ql, and one can define components
Tv(M; to) := ]Fp(0) (R)T0r TvM that are modules over the corresponding compo-
nents Tv(K; tp). From the adjoint of the identity of TvK, we obtain canonical
algebra morphisms ,OK,(V,,) from K to Tv(K; tp). Hence, Tv(M; ) can be con-
sidered as a K-module, and the assignment (V,0) Tv(M;tp) gives rise to a
functor from (K) to K- q/. Furthermore, the adjoint of the identity of TvM
gives rise to maps PM,(V,,) from M to Tv(M; ) that are all K-linear, and we
obtain a natural transformation between the constant functor from (K) to
K q/with value M and the functor (V, 0) Tv(M; tp).

If G is a finite group and K M H’G, then Theorem 2.2 implies that the
functor (V, 0) Tv(M; tp) corresponds via the equivalence between (K) and
(G) to the functor E H’Co(E) that appears in Theorem 1.4. Furthermore,
the maps PM,(V,,) correspond to the restriction maps H*G H*CG(Cp).
Now we are ready to formulate the general algebraic theorem from which

Theorem 1.4 is deduced.

TI-IEOIE 2.5 [He, Cor. 3.10]. Let K be a Noetherian unstable aloebra, and let
M be an object in Kfo ql. Then the maps PM,(V,,) induce a map

p M lim Tv(M;tp)
,(r)

that has finite kernel and cokernel.

In fact, it is shown in [He] that this map is localization away from finite
objects in Kfo
Theorem 2.5 together with Theorem 2.2 yields Theorem 1.4 in the case of a

finite group (in which case p is even an isomorphism by [JM] and [DW]). To
prove Theorem 1.4 for profinite groups G for which H*G is a finitely generated
IFp-algebra, it suffices to extend Theorem 2.2 to this setting. We recall that a
profinite group G is given as the (inverse) limit limi Gi of finite groups Gi along a
directed partially ordered set (J, <), which we think of as a category (denoted
J for simplicity) in the usual way. Then H*G can be identified with colimi H*Gi.
Here is the extension of Theorem 2.2.

TI-mOREM 2.6. Assume that G is a profinite 9roup such that H*G is a finitely
9enerated IFp-algebra. Then the homomorphism ofunstable algebras

--, l-I
eRCp(V,G)

whose components are the maps ad(c), is an isomorphism.
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In this result, the set Rep(V, G) of representations is defined as before, that is,
the topology on G does not play any role. However, the centralizer of an ele-
mentary abelian p-subgroup of a profinite group inherits a natural structure of a
profinite group, and this structure is used in Theorem 2.6.

Proof We deduce Theorem 2.6 from Theorem 2.2. For this we note that Tv
commutes with arbitrary colimits, that is, we get

TvH*G colim TvH*Gi colim H H*Ca, (().
Ce Rep(V, Gi)

Let us look more carefully at the maps in the inverse system. For a morphism
2" j in J, we use the same letter for the associated maps from Gj to Gi and
from Caj(tp) to Ca, (2) (with (p Rep(V, Gj)). If we identify TvH*Gi as in Theorem
2.2, then the map T,2*:TrH*Gi TvH*Gj is given as follows: the (th com-
ponent of it ((pc Rep(V,G)) sends the family {x} I-L, eRep(V,a,)n*ca,(q9t)
to the element 2*(xx) e H*Caj(). Here, 2" is the induced map from
to H*Ca(). In fact, in the same way, we get maps T,n; from
HRep(V,a,)H*Ca,(q’) to 1-Igep(V,a) H*Ca() if ri denotes the canonical map
from G to Gi. These maps fit together and thus give a map

colim II H*Ca,(’) II H*Ca()

’ e Rep(V,G,) eRep(V,G)

which we denote Tvn* by abuse of notation, and which we claim to be an iso-
morphism. In order to show this, we need the following lemmas.

LEMMA 2.7. Let G lim Gi be any profinite group.
(a) Then the maps n G - G induce a bijection Rep(V, G) --. lim Rep(V, G)

ofprofinite setsfor each elementary abelian p-group V.
(b) For any homomorphism tp from an elementary abelian p-group V into G,

the maps hi: G - Gi induce an isomorphism Ca(tp) -- limi Ca,(nitp) of profinite
groups.

LEMMA 2.8. Let G be any profinite groupfor which H*G is a finitely generated
]Fp-algebra. Then the set Rep(V, G) is finite for each elementary abelian p-group
V.

We postpone the proofs of Lemmas 2.7 and 2.8 and continue with the proof of
Theorem 2.6.

First we show that Tvn* is epi. Let x (x} 1-[Rep(V,a)H*Ca() be

given. For each tp e Rep(V, G) we find by Lemma 2.7(b) an object i= i(tp) of
and an element Yi H*Ca,(ni) such that x (ri)*yi. By Lemma 2.8 there are
only finitely many (, and therefore we can assume that is independent of . Fur-
thermore, by Lemmas 2.7(a) and 2.8, we can choose such that, in addition, the
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natural map Rep(V, G) Rep(V, Gi) is injective. For such an and any
9’ c Rep(V, G), let z c H*CG,(9’) be equal to Yi() if 9’ ri9 for some (neces-
sarily unique) 9, and arbitrarily choose elements z if there is no 9 such that
9’= hi9. Then the family z {z} c Htp’eRep(V,G,)H*CG,(9’) satisfies Tvrc(z)=
x, and hence Tvrc* is epi.
To see that Tvrr* is mono, we show that for any element z= {z}

I-IRep(V,,)H*C6,(9’) with Tvrc*(z)-0, there is #’i j in J such that

Tv#*(z) 0. Now Tvr*(z) 0 implies by Lemma 2.7(b) that for each 9’ there is

2 J(9’) such that for each lift 9 of 9’ to Rep(V, Gj()), which further lifts to
Rep(V, G), we get (2)*(z) -0 in H*C6j) (9). As there are only finitely many
9’, we can choose a common 2:i j such that 2"(z) 0 in H*Cj(9) for each
9’ and each lift 9 of 9’ to Rep(V, Gj), which further lifts to Rep(V, G). Further-
more, by Lemma 2.7(a), we can find 2’ "j-j’ such that each element
9 Rep(V, G) that does not lift to Rep(V, G) does not lift to Rep(V, Gj,) either. If
# 2’2 j’, then it is clear that Tv#*(z) O.

Proof of Lemma 2.7. The proof is an exercise in elementary point set
topology. We sketch part (a) and leave part (b) to the reader.

Let us first show surjectivity. So assume we have a compatible family of ele-
ments 9i e Rep(V, Gi). For a subset of let Repj be the set of families of
homomorphisms {bi} c I-Iij Hom(V, Gi) such that the conjugacy class of bi is
equal to 9i whenever e a and such that the
We have to show that Repj is nonempty. Because any two elements of J have
an upper bound, it is clear that Repj is nonempty whenever is finite. Further-
more, Rep, is easily seen to be closed for any a. Now we use that the inter-
section of closed sets in a compact space is nonempty if every finite intersection
is nonempty, and we are done.
Next assume that we have two elements 9 and 9’ in Rep(V, G) represented by

homomorphisms and ’ such that ri and ri’ are conjugate for each i; that is,
there is an element gi Gi with rcib(v) girq’(v)tf- for all v V. For injectivity
in (a), it is enough to show that the family #i can be chosen to be compatible.
Again, this is easy for any finite subset of , and the general case follows again
from the fact that an intersection of closed sets in a compact space is nonempty
if every finite intersection is nonempty.

Proof of Lemma 2.8.
Lemma 2.7(a)

For any profinite G, we have by Theorem 2.2 and

Rep(V, G) lim Rep(V, G) lim Hom(H*G,H*V).

Furthermore, we can identify limiHomc(H*Gi, H*V) with Homr(H*G, H* V).
Finally, if H*G is a finitely generated lFp-algebra, then the set Homar(H*G, H’V)
is clearly finite, and hence we are done. U]
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2.9. We would like to point out that Theorem 2.2 can be used to derive
numerous qualitative results on cohomology of finite groups. Among them are
results concerning detection of H*G on certain subgroups, results giving bounds
for the nilpotence degree of elements in H*G and results on the existence of ele-
ments in H*G with particular restriction behavior to elementary abelian p-sub-
groups (cf. [HLS, 1.5] and [CH]). Because of Theorem 2.6, all these results have
anologues for continuous cohomology of profinite groups G as long as H*G is a
finitely generated lFp-algebra. We list here only the following result which is a
special case of the profinite analogue of Theorem 2 of [CH].

PROPOSITION 2.10. Let G be profinite with p-rank 1 and assume that H*G is
finitely tenerated as an lFp-al#ebra. Then the map

(cf. Cot. 1.7) is a monomorphism if and only if H*G is free over a polynomial sub-
algebra ofH*G with one generator.

Proof. Assume that H*G is free over a polynomial subalgebra on one gen-
erator. Then the same is true for any nontrivial ideal in H’G, in particular for
the kernel of the map p. However, by Corollary 1.7, this ideal is finite; hence, it
must be trivial.

Conversely, assume that p is a monomorphism. Take any element x in H*G
that restricts to a nonnilpotent element on all nontrivial elementary abelian p
subgroups of rank 1. Such an x exists by Theorem 1.2. We can consider the
cohomology of H*CG(E) as a module over the polynomial subalgebra of H*G
generated by x (again via a restriction homomorphism). Now the proof of Theo-
rem 1.1 in [BH] (see also Remark 2.3 in the same paper) shows that H*CG(E) is
free over this polynomial subalgebra. By assumption, H*G is a submodule of the
free module 1-I(g) H*C(E), and hence it is also free.

2.11. Finally we want to point out that Theorem 1.4 can also be used to get
information on cohomology with nontrivial coefficients. For example, assume M
is a finite continuous G-module with a composition series for which all suc-
cessive subquotients are trivial modules. (Such composition series exist always
if G is a pro-p group.) Furthermore, assume that the p-rank of G is 1

p" H*G 1-I()(H*C(E))N(E) is an isomorphism in degrees greaterand than
d. Then playing with the long exact sequences in cohomology associated to short
exact sequences of coefficient modules shows that the map p:H*(G;M)
rI(g)(H*(C(E); M))v(E) is an isomorphism in all degrees greater than d + 1.

3. The case of the stabilizer groups

3.1. In this section we will apply our general results to certain subgroups of
p-adic division algebras that play an important role in stable homotopy theory.
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We begin by recalling the definition and basic properties of these groups. The
reader is referred to [Rn, Chaps. 3 and 7] and [Ha, 20.2.16 and 23.1.4] for
background information on division algebras.

3.1.1. Let p be a prime. For each integer n let n be the ring of Witt vectors
of the finite field IFq with q pn elements, and let a Wn /n, w - w be the
lift of the Frobenius automorphism x xP on IFq. Adjoin an element S to Wn
subject to the relations Sn= p, Sw w’S for each w Vn. The resulting non-
commutative ring will be denoted by 6on. It is the maximal order in the central
division algebra lDn over the field p of p-adic numbers with invariant 1/n and is
a free module over /n of rank n with generators the elements Si, 0 < < n. An
important property of Dn that we will use below is that the degree (over p) of
each commutative subfield of lDn divides n, and each extension of p whose
degree divides n can be embedded as a commutative subfield of lDn.
We recall that 6O can be identified with the endomorphism ring of a certain

formal group law over lFq of height n [Ha, Thm. 20.2.13]. Its group of units 6O
is often called the nth (full) Morava stabilizer group. The element S generates a
two-sided maximal ideal m in 6On with quotient 6O,/m ]Fq. The kernel of the
resulting epimorphism of groups 6Onx (IFq) will be denoted by Sn and is also
called the (strict) Morava stabilizer group; it can be identified with the group of
strict automorphisms of the same formal group law over IFq height n.

3.1.2. The groups 6O,x and Sn have natural profinite structures which can be
described as follows. The valuation v on p (normalized such that v(p)= 1)
extends uniquely to a valuation on lDn such that v(S)= 1In and 6On--
{xlD,lv(x >0}. The two-sided maximal ideal m is given by m=
{x Dnlv(x) > 0}. The valuation gives subgroups

FiSh :: {x SIv(1 x) > i} {x S,,Ix =- l mod Shi}

for positive multiples of 1In with

The intersection of all these subgroups contains only the element 1 and S, is
complete with respect to this filtration, that is, we have Sn limi Sn/FiSn. Fur-
thermore, we have canonical isomorphisms

induced by

FiSn/Fi+l/nSn ’ lFq

x-- 1-b aSi -- t.

Here a is an element in 6O,, that is, x FiSh and is the residue class of a in
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(gn/m ]Fq In particular, all the quotients Sn/FiSn are finite p-groups, and hence
Sn is a profinite p-group which is the p-Sylow subgroup of the profinite group (gnx

3.1.3. The associated graded object gr Sn with griSn FiSn/Fi+l/nSn becomes
a graded Lie algebra with Lie bracket [,b] induced by the commutator
xyx-ly-1 in S,. Furthermore, if we define a function 0 from the positive real
numbers to itself by 0(i):= min{i + 1,pi}, then the pth power map on Sn
induces maps P’griSn gr(i)S, that define on gr S, the structure of a mixed
Lie algebra in the sense of Lazard [La, Chap. II.1]. If we identify the filtration
quotients with IFq as in Section 3.1.2 above, then the Lie bracket and the map P
are explicitly given as follows.

LEMMA 3.1.4. (a) Let griSn, b grjSn. Then

_phi
[, b] b "’ e gr+S,.

(b) Let griSn. Then

+pni+...+p(t- ni

P t + ll+pn+’’’+p(t-l)n

a

/f i< (p-- 1) -1,
ifi=(p-- 1)-1,
/fi>(p--1)-1.

Proof (a) Write i= k/n, j l/n and choose representatives x 1 + aSk
FiSh, y 1 + bSt FiSh. Then x-1 1- aSk modSk+l, y-1 1- bS modS1+1,
and the formula

xyx-ly-1 1 + ((x- 1)(y- 1)- (y- 1)(x- 1))x-ly-1

shows

xyx-ly-1 1 + (aSkbSl- bSlaSk) modSk+l+l.

Because (gnlm Ygnl(P), we can choose a and b from Vn. Then Sw was and
w =- wp rood (p) give the stated formula.

(b) Again we write i= kin and choose a representative x 1 + aSk with
a ,. Consider the expression xP r (P)(aSk). Because (P) is divisible by p
for 0 < r < p, and because S" p, we get

xp =- 1 + aSn+k +... -I- (aSk)p mod S2k+n.

Furthermore,

(aSk)p aa aa(-kSpk aapk ap(n-)k Spk al+pk+’’’+p(g-)k Spk mod Spk+l.
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Now we only have to determine whether pk is smaller (resp., equal; resp., larger)
than n + k, that is, whether pi is smaller (resp., equal; resp., larger) than 1 + i. These
cases are equivalent to < (p 1) -1 (resp., (p 1)-1; resp., > (p 1)-1), and
hence we are done.

Remark. One can use Lemma 3.1.4 to compute HI(FiSh), respectively,
H1 (FiSh). (Coefficients are, as always, in lFp.) For example, by using [La, 111.2.1;
in particular, 111.2.1.8] we can derive the following. If i> (p- 1) -1, then the
quotient map FiSh FiSn/Fi+lSn induces an isomorphism on H1. Furthermore,
if i> 1, then FiSn/Fi+lSn is elementary abelian of rank n2 and, if p is odd and
i> 1, then H’FiSh is an exterior algebra on H1FiSn (see [La, V.2.2.7]). Ravenel
claims in IRa2, Thm 6.3.7] that H’FiSh is exterior on n2 generators in dimension
1 as soon as > p/2(p 1). (Note that Ravenel’s corresponds to i/n in our nota-
tion!) However, if p 5, n 4, and 3/4, it is not hard to show (using Lemma
3.1.4) that the abelianization of FiSn/Fi+lSn is FiSn/Fi+((n_l)/n)Sn which is elemen-
tary abelian of rank 12. Hence HIFiSn and H1FiSn are also of dimension 12 only.

3.2. The algebras H*((gnx) and H*Sn are known to be finitely generated lFp-
algebras (e.g., because they have a finite-index normal subgroup, say F1Sn, whose
cohomology algebra is even finite); hence Theorem 1.4 and its consequences can
be applied to both groups. In order to do this we need to determine the cate-
gories .(G), G (gnx or G Sn. The first step to determine these categories is
given by the following well-known theorem. For the convenience of the reader
we repeat its short proof.

THEOREM 3.2.1. The groups (xn (resp., Sn) have elements of order p if and only
if n =- 0mod (p- 1), in which case both groups have p-rank 1.

Proof. If A is any finite abelian subgroup of IDnx, then A generates a commu-
tative subfield K of Dn, and A is a finite subgroup of its roots of unity. However,
for any commutative field the roots of unity form a cyclic subgroup, and hence
the p-rank is at most 1. Furthermore, the p-rank of the units IDx is 1 if and
only if lDn contains the cyclotomic field p((p) of degree p- 1 over p, which
happens if and only if n is a multiple of p- 1. Finally, any element of finite
order in D must have valuation zero; that is, it is contained in (9. Fur-
thermore, if the order of the element is a power of p, it must be in the p-Sylow
subgroup Sn.

Remark. Lemma 3.1.4(b) implies directly that an element of order p can exist
in S, only if 1/(p- 1) is of the form k/n, that is, if n k(p- 1). In fact, in this
case any nontrivial element x of order p is necessarily contained in F1/(p-1)Sn, and
x 1 / aSk satisfies + I+Pk+"’+P(P-Ik 0 with 0. One can show that for
any 0 satisfying + I+pk+’’’+p(p-Ik O, one can find a (gn such that 1 + aSk

is of order p.

The following more precise result gives the complete description of the cate-
gories .(G) and of the centralizers of each object.
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THEOREM 3.2.2. Let n k(p- 1).
(a) Any two subgroups of (9 which are isomorphic to ,/p are conjugate in

and each abstract automorphism of such a subgroup E is induced by conju#ation
by an element in (9, that is, Autc,()(E) Aut(E) 7Z/(p- 1). Furthermore,
the centralizer C (E) is #iven as the troup of units in the maximal order in the
central division allebra over p((p) ofdimension k2 and invariant 1/k.

(b) There are exactly (pn_ 1)/(p-1)(pk- 1) conjutacy classes of subgroups
isomorphic to 7Zip in Sn, and for each such subgroup E the group Autc,(s)(E) is
trivial. Furthermore, the centralizer Cs(E) is normal in C (E) with cyclic quo-
tient of order pk 1.

Proof. (a) First note that the group of field automorphisms of p(p) maps
via restriction isomorphically to the group of all abstract automorphisms of the
multiplicative subgroup of order p generated by p. Furthermore, by the Skolem-
Noether theorem, any two embeddings (, 0’ of p(p) in IDn are conjugate; that
is, there exists u IDnx such that 0(x) utp’(x)u- for each x lp((p). These two
facts imply immediately that the assertion on conjugacy classes and auto-
morphisms in part (a) hold if (9x is replaced by IO. To show them for (9 it
suftiees therefore to show that in the Skolem-Noether theorem one can take u of
valuation zero. To see this, it is enough to note that the valuation on lDn and
its restriction to the centralizer C.(tp(p(p))) take the same values. Now
C.(tp(p(p))) is again a division algebra which is a central division algebra
over v(p) of dimension k2 and of invariant 1/k (see [Ha, 20.2.16, 23.1.4]).
Then the required property of the value groups follows easily from Theorem
14.3 in [Rn].

If E 7Zip (_gx, then E generates a subfield which we can identify with
p((p). Furthermore, C; (E) is just the intersection 60n c C(E) - (9 c
C,(p((p)) which is precisely the group of units in the maximal order of

C.(p((p)). Thus the proof of (a) is complete.
(b) First we observe that for any E g/p in S the group AuLc.(s)(E) is iso-

morphic to Ns(E)/Cs(E), so it is a subquotient of a profinite p-group, and
hence a p-group. However, the abstract isomorphism group is of order p 1 (i.e.,
of order prime to p) so we see that Autc.(s)(E) is trivial.
The remaining parts of (b) are now deduced from (a). We know from (a) that

IFq acts transitively on the set of Sn-eonjugaey classes of subgroups E - /p. So
in order to determine the number of S-eonjugacy classes, it suftiees to show that
the order of the isotropy group of this action is (p- 1)(pk- 1). Now the iso-
tropy subgroup of E is equal to the image of the normalizer N; (E) under the
quotient map (9 lFff. The image of the centralizer is of order pk 1 because
C(E) is of dimension k2 over p((p), and hence the residue field of the maxi-
mal order ofC(E) has order pk. Again by (a), the quotient N; (E)/C; (E) has
order p- 1. We claim that the image of C; (E) in IF continues to have index
p- 1 in the image of N;(E), and therefore the isotropy group has order as
claimed.
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So assume the image of C; (E) in IF has index less than p 1 in the image of
N; (E). By (a) again there would be a nontrivial automorphism of E induced
by conjugation by an element y N;(E), and y zx with z C;(E) and
x Sn. However, then we would even have x Sn n Nt; (E) Nsn (E) Csn (E);
hence y C; (E), and this is in contradiction to the nontriviality of

Finally, Cs, (E) is normal in C; (E) with cyclic quotient of order pk-1 because
Csn (E) is the kernel of the surjective map from the units in C (E) to the units in
the residue field of C (E), which is of order pk.
Remark. We remark that in the case p--2, Theorem 3.2.2 becomes trivial

because there is a unique central element of order 2, namely the element
-1 6%. However, in this case Proposition 2.10 implies that H*Sn is finitely
generated and free over a polynomial subalgebra on one generator.

If p is odd, the number of conjugacy classes grows quickly with p and n; for
example, if p 3 and n 2 we get two classes, and if p 5 and n 4 we get 39
classes. We will see in the remark after the proof of Proposition 4.3 below that
for p > 3 and n p- 1 the map p of Proposition 2.10 is not mono in dimension
2, and hence H*Sn cannot be free over a polynomial subalgebra on one gen-
erator as it was claimed in IRa2, 6.2.10(b)].

3.3. We will now consider our main theorem for Sn in the case n p 1, and
we will assume that p is odd, the case p 2 being trivial.

Let E be a cyclic subgroup of order p in Sn. By Theorem 3.2.2 we know that
C; (E) is given as the group of units in the maximal order of {lp((p), which is

equal to Zp[(p]’ in particular, C; (E) is abelian. In fact, the units 7Zp[(p] x are well
known to be (noncanonically) isomorphic to Zip (TZp) x 7Z/n, and hence The-
orem 3.2.2 yields Cs,(E) Zip x (7Zp)" (see also the remark after Proposition
3.4 below). So the cohomology of Cs. (E) is isomorphic to H*(Z/p) (R) H*(7Zp) (R)n

and can be written as IFp[y] (R) E(x)(R) E(al,..., a,), where y has degree 2 and x
and the elements a have degree 1. The following result (Theorem 1.9 of the
introduction) is now an immediate consequence of Corollary 1.7 and of Theorem
3.3.2.

THEOREM 3.3. Let p be an odd prime and n=p-1. Then Sn has
(pn 1)/(p- 1)2 conjugacy classes of subgroups which are isomorphic to 7Zip and
whose centralizers are all isomorphic to Zip x (7Zp)n. Choose representatives El,
i= 1,..., (pn 1)/(p- 1)2from each conju#acy class. Then the map

p H*Sn -- HH*Csn(Ei) H]Fp[yi] (R) E(xi) (R) E(ai,,,...,ai,n)

induced by the restriction maps has finite kernel and cokernel.

3.4. Now assume again that n k(p- 1) with k arbitrary. The conjugation
action of 60ff on S induces an action of (lFq) on H*S, which is important in
applications in homotopy theory. The group (IFq) acts also on 1-Ig)H*Cs,(E)
in such a way that the map p is (lFe)-linear. This action can be described as
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follows. Let E1 be a fixed cyclic subgroup of Sn of order p. The action ofN (El)
on H*Csn(E1) induces an action of the image of N(E1) in (lFq). We denote
this image by N. The product I-[()H*Csn(E) can be identified with the repre-
sentation of (IFq) which is induced from that of/ on H*Cs(E). With this IF-
action on its target the map p is linear.
The following result explicitly describes the action of N on Cs(E) in case

n p- 1, and hence it gives an explicit description of the action of lFq on

I-I() H*Csn(E) in this case. Note that in the case n (p- 1), we have iso-
morphisms/ g ]E/n2 and Cs(E)

PROPOSITION 3.4. Let n p- 1. The action of ,/n2 on Csn(E) factors
throuth an action of the quotient ]E/n. With respect to this ]E/n-action
Cs(EI) - ]E/p x (]Ep)n splits as the direct sum of ]E/p (with the natural action of
]E/n Aut(]E/p)) and the n different 1-dimensional representations of ]E/n over
the rin#

Proof. The first statement follows because the image C of C(E) (which is
isomorphic to ]E/n) acts clearly trivially, and hence the action factors through
/ - ]E/n. This action agrees by the Skolem-Noether theorem with the action
of the Galois group of the cyclotomic extension which is well understood in
number theory (see [W, p. 301]). [2]

Remark. By Proposition 3.4 it is clear that for a suitable choice of an iso-
xmorphism z.7Z/n-o IFp and of elements y, x, and aj, the action of ]E/n on

H*(]E/p x (]Ep)n)
_

IFp[y] (R) E(x) (R) E(a,...,an) is described by the formula
given in Theorem 1.10 of the introduction. In the next section we will have to be
even more specific with the choice of these generators, so we take the time now
to explain this.

The valuation on IDn restricts to one on C)n(E), and, as in Section 3.1.2, we
get a filtration on the group Cs(E). If we identify C(E) with lp((p), then the
maximal ideal in the maximal order of C, (E) is generated by the element p 1
of valuation 1/(p- 1). Using the pth power map on the associated graded
mixed Lie algebra of this filtration, one sees that a minimal set of topo-
logical generators for Cs,(E) is given by the element p of order p and any
choice of elements rlj, j=2,...,n+ 1 with the property that j
l+((p 1)jmod((p 1)+1 Furthermore, the filtration is ]E/n-invariant, and
because n is prime to p, the elements r/j can be chosen to generate the different 1-
dimensional representations of_]E/n over Zp. With such a choice, modp reduc-
tion gives a set of generators (p, g/2,... ,/n+ of H(]Ep[(]x). If we take for x,
a2,..., an, an+l =" al the dual basis in H1, and for y the Bockstein of x, then the
formula given in Theorem 1.10 holds.

4. The case p 3 and n 2

4.1. In this section we will consider the case p 3 and n 2 in fair detail.
This is the first nontrivial case where our main theorem can be applied to get
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information on H*Sn. By Theorem 3.3 we find two conjugacy classes of Z/3’s in
$2 whose centralizers are isomorphic to /3 x (7z3)2. We will compute H’S2; in
particular, we will show that the map p of Proposition 2.10 is a monomorphism,
and we will describe H’S2 as a subalgebra of 21-[i=l ]F3[Yi] t) E(xi) ( E(ai,1, ai,2).

First we recall a product decomposition of the group Sn. The algebra (gn has
Zp as its center, and hence Zp Z/(p- 1) x Zp is central in (gnx, that is, Zp is
central in Sn. Furthermore, the reduced norm, which is a homomorphism from

lDnx to , induces a homomorphism from Sn back to Zp, which is left inverse to
the inclusion of the central Zp as long as n 0 modp. In other words, the group
Sn splits as a product Zp x Sn of the central Zp with the kernel of the reduced
norm. Following Ravenel [Ra2] we will call this kernel S. Similarly, the cen-
tralizers Csn (E), E Z/p, split as Csn (E) - Cs (E) x Zp, and Csl (E) - Z/3 x 7Z3
if n p- 1 2. The action of the group Z/2 of Proposition 3.4 respects this
splitting. In fact, Z/2 acts trivially on the central ’3 and by -1 on Cs (E).
We need to specify the elements Yi, xi, ai,1, and ai,2. For this we pick a repre-

sentative E1 of one of the two conjugacy classes and choose elements y, x, al,1,
and a1,2 of H*Cs2 (El), as in the remark after Proposition 3.4. If (D generates lF,
then (DE generates the group / of Proposition 3.4 and acts on H*CsE(E1) by
(DE(yl) --Yl, (DE(x1) --Xl, (DE(al,1) --al,1, and (DE(al,2) al,2. Furthermore,
p will be linear with respect to the action of IF if we choose the classes y2, x2, a2,1,
and a2,2 such that (D(yl)= y2, (D(x)= x2, (D(al,)= a2,1, and (D(al,2)= a2,2. In
H*Cs (Ei) the class ai,2 is missing, but otherwise the same formula holds. In the
discussion below we will change notation and write ai instead of ai,, and ai’
instead of a,2.
With these preparations we can finally formulate the main result of this

section.

THEOREM 4.2. Let p 3 and n 2.
(a) Then the map p ofProposition 2.10 is a monomorphism and identifies H’S2

with the subalgebra of 2Hi=I ]Fa[yi] () E(xi) (R) E(ai, ai’) generated by the classes
x, x2, y, y2, a + a2, xlal x2a2, yal, and y2a2.

(b) In particular, H’S2 is a finitely generated free module over
IF3[Yl + Y2] (R) E(a’ + a2’) with eight generators which we can choose as follows:
1, x, x2, y, xla x2a2, yal, y2a2, and yxal.

Before we begin with the proof, we compare this calculation with the one of
Ravenel in [Ral, Thm 3.3]. After extension of scalars to IF9, the two results have
to agree. However, they do not. For example, according to Ravenel, H’S2 would
be multiplicatively generated by classes in degree 1 and 2, while in our com-
putation the classes ya and y2a2 are indecomposable classes of degree 3. Fur-
thermore, it is easy to see that if one extends scalars to IF9 in Ravenel’s

2calculation, then the resulting algebra cannot be embedded into I]i= ]F9[Yi] t)
E(xi) (R) E(ai, ai’).
The two computations both give the same Poincar6 series, however. Further-

more, both computations give free modules over a polynomial generator of
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degree 2, which means that Ravenel’s computation is not compatible with Prop-
osition 2.10.

Because of the decomposition Sn 7zp x S it suffices to prove the following
analogous result for the group S.

PROPOSITION 4.3. Assume that p 3 and n 2.
(a) The map p of Proposition 2.10 is a monomorphism and identifies H*SI with

the subaloebra of I=1 ]Fa[Yi] () E(xi) E(ai) #enerated by the classes xl, x2, y,
y2, xlal x2a2, ylal, and y2a2.

(b) In particular, H*SI is a finitely #enerated free module over ]F3[Yl q- )’2] with
ei#ht #enerators which we can choose as follows: 1, Xl, x2, yl, xla -x2a2, ya,
y2a2, and ylxla.

The crucial step in the proof of Proposition 4.3 is given by the following
proposition.

PROPOSITION 4.4. Assume that p--3 and n 2. There is a homomorphism
S Z/3 whose kernel K is torsion free and such that S is isomorphic to the
semidirect product K >/3. Furthermore, H*K is a Poincar duality aloebra of
dimension 3, and as a /3 module, HIK (1173)2 is isomorphic to the auomenta-
tion ideal I(Z/3) in the group aloebra IF3[Z/3].

Proof of Proposition 4.4. We will make use of the filtration on S which is
induced from the filtration on Sn that we discussed in Section 3.1. The central
in Sn is topologically generated by 1 + p F1Sn. Furthermore, an inspection of
the formula for the reduced norm (ef. [M]) shows that it sends FiSn onto
where [i] denotes the smallest integer which is bigger than or equal to i, and that
it induces the trace map Tr" griSn " ]Fq ]Up - p[i]TZp/p[i]+lp if is an integer.
In particular, we obtain

griS1n ( ]Uq if IN,
Ker Tr" ]Uq ]Up if ]hi.

Furthermore, the Lie bracket as well as the map P are given on gr Sn by the for-
mula of Lemma 3.1.4.

So far, p and n were general. Now assume that p 3 and n 2. As we have
noted in the remark after the proof of Theorem 3.2.1, all nontrivial elements of
order 3 in $2 have the form 1 + aS, with 0 and 8 + t1+3+9 0, that is,
a-4 1. (Recall that ]U9 denotes the residue class of a e (92.) In particular,
there is no 8 ]U3 with this property. Therefore, if we identify ]U9 with (/3)2,
and if we divide out by ]U3, we get a homomorphism $2 gq/2S Z/3 whose
kernel K is torsion free. Furthermore, as $21 contains elements of order 3, the
group $1 is isomorphic to the semidirect product K > Z/3.
The group $2 is an analytic pro 3-group of dimension 4, and hence $12 and K

are analytic pro 3-groups of dimension 3; so by [La, V.2.5.8] H*K is a Poincar6
duality algebra of dimension 3. To finish, it suffices to show that HIK (Z/3)2
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and that there are elements gl and Z2 in K which project to a basis gl and g2
of H1K, and such that, if x $1 is a suitable nontrivial element of order 3,
then XZlx-l= ZlZ2 modO(K) and xz2x-l= z2 mode(K), where denotes the
Frattini subgroup.
Now it follows from Lemma 3.1.4 (by using [La, 111.2.1.8]) that all elements in

F2S2 K are third powers, and hence HIK HIK, where K denotes the group
K/F2S2 K. The filtration of $2 induces one on/, and we obtain

IF3 if i= 1/2,

gri KerTr" lF9 --, IF if i-- 1,
IF9 if i= 3/2,
0 otherwise.

Furthermore, the Lie bracket_gru2x grl/ gr3/2/ and the map P:
grl/2/ -- gr3/2/ are given_by [a, b] 8b 8 and Pa + 1+3+9. With this it
is easy to check that gr3/2K is generated by commutators and third powers and

HK g/g 3/2
g (Z/3)2

The action of an element x e /3 on HK can now be read off from the com-
mutator formula in Lemma 3.1.4. Let z K and z2 K be elements in the
appropriate filtration which project nontrivially to grl/2K (resp., grlK). The ele-
ment x is represented by an element grl/2S2 with 4 -1. Then XZ2X-1Z
K F3/2S2, and hence gives zero in H1K. Furtheore [, gl] g g13. This is
nontrivial and can be made equal to g2 if x is chosen appropriately. In other words,
XZlX- ZlZ2 mod O(K), and we are done.

Proof of Proposition 4.3. We consider the spectral sequence of the group
extension 1 K S Z/3 1 with E2-term E’q - H*(Z/3; nqK). This is
a spectral sequence of modules over H*Z/3, and the lines q 0 and q 3 are
free H*Z/3-modules on one generator on the vertical edge. Furthermore,
H2K HK as 7z/3-module by Poincar6 duality. The exact sequence 0-
I(/3) ]F3[Z/3] IF3 0 shows that for 0 < q < 3 the graded vector space
H*(/3;HqK) is additively independent of q, and, in fact, this is true even as
modules over the polynomial subalgebra of H*7Z/3 generated by the periodicity
generator in degree 2. Therefore, the spectral sequence collapses because by
Theorem 1.9 we have H*S 21-Ii=l ]F3[Yi] 1) E(xi) ( E(ai) in large degrees, and
a nontrivial differential would give too small a result.

In particular, we see that H*S is a free module of rank 8 over the polynomial
subalgebra of H*/3 generated in degree 2. The module generators have degree
0, 1, 1, 2, 2, 3, 3, 4. By Proposition 2.10 we conclude that p is a monomorphism,
and we compute the Poincar6 series of the cokernel of p to be 1 + 2t 4-t2. It
remains to identify the image of p.

Let us first consider H1; it is 2-dimensional and can be identified with the dual
of grl/2S21. For each Z/3 c $2 the basis element ’/3 in HCs2(Z/3) (which was
defined in the remark after Proposition 3.4) maps trivially to gr/2S2. Therefore,
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the image of p in dimension 1 is contained in the linear span of the elements xi
and by a dimension argument is equal to this span.
The Bocksteins of Xl and x2 give the elements y and y2. However, H2S1 has

dimension 3, so we need one more element. To identify it we consider the action
of IF on H’S2 and IIi2___l ]F3[yi] ( E(xi) t E(ai) (as described in Section 4.1) and
use the linearity of p. The subspace generated by yl and y2 is invariant under
this action and because the order of IF is prime to the characteristic we can
assume that this last element is an eigenvector for the action of the generator
09 IF. Now there are only two eigenspaces of 09, with eigenvalue 1 (resp., -1)
and eigenvectors Xlal + x2a2 (resp., Xlal- x2a2). By Lemma 4.5 below it is an
eigenvector with eigenvalue 1.

Finally, p is onto in degrees 3, so we have determined the image of p and the
missing parts of the proposition follow easily.

Remark. We have remarked after Theorem 3.2.2 that the map p is not a
monomorphism if n p- 1 and p > 3. In fact, in this case we have again a
decomposition S, 7l,p x Sin, and HISn -grunSln (Z/p)n. As above, one sees
that for any E - 7Zip c $1, the image of the restriction map HIs H1Cs (E)
lFp[y] (R) E(x) (R) E(al,... ap-1) is spanned by the class x. In particular, the prod-
uct of any two 1-dimensional classes restricts trivially to all centralizers. Accord-
ing to IRa2, Thm 6.3.14] there are nontrivial products of 1-dimensional classes
as soon as p > 3, and hence p is not injective in degree 2.

LEMMA 4.5. Let p 3 and n-- 2. The action oflF on H2SI - (/3)3 decom-
poses into a direct sum of the subspace #enerated by yl and y2 with coy1 y2,

coy2--yl, and a 1-dimensional subspace on which co acts by multiplication with
--1.

Proof. The element co 6 IF can be lifted to a primitive 8th root of unity in
W2 c 602 which we will still call 09. The group extension that we used in Propo-
sition 4.4 to investigate H*S is not invariant under the conjugation action
x coxco-1, and hence is not suited for the problem that we are considering
here. Therefore, we consider the subgroup F1S := $1 c FIS2 which is invariant
under the action of co and normal in S with quotient grl/2Sl IF9 (7Z/3)2. It
follows easily from [La, V.2.2.7] that H*FISI is an exterior algebra on three
classes in degree 1. We will prove the lemma by inspecting the spectral sequence

E,q HP((7Z/3)2, HqF1SI) HP+qS
2

and for this we need to understand the action of (/3)2 on H*F1S and the action
of ]F on (/3)2 and on H*FaSa2
The element 092 is a primitive 4th root of unity for which we will write i.

Together with the unit element, it forms a basis of IF9 as an IF3 vector space.
Therefore, the elements a 1 + S and b 1 + iS project to a basis {a,b} of
grl/2Sl,, while the elements c 1 + iS2 1 + 3i, d 1 + S3, and e 1 + iS3 pro-
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ject to a basis {,d-,} in H1FISI. Furthermore, the relation Sco co3S in (92
implies that the conjugation action of co on grl/2S21 (resp., on HFISI) is given
by the following formulas:

co.=-b, co.b=

co.t=, co.d=-, co.=d.

The action of and g on H1F1S can be read from the commutator formula of
Lemma 3.1.4, and we obtain

8,(d) d, ,,(’)= ’,

b,(d)=d, b,(’)=,, b,(t)=e-d.

With this information at hand we can look at the spectral sequence. The important
groups for us are E’1 and E’ as modules over IF. A straightforward computa-
tion gives E’ (/3)3 and-E23’ (;E/3)4. Furthermore, with respect to the co-
action, E21’ decomposes as a sum of a 2-dimensional eigenspace with eigenvalue
-1 and a 1-dimensional eigenspace with eigenvalue 1, while E23’ decomposes into
a direct sum of two 2-dimensional eigenspaces with respective eigenvalues 1 and

From the proof of Proposition 4.3, we know already that the classes Xl and x2
wl,0 and consequently the classes yl and Y2 are representedare represented on "2

on E’. Because we know already that H2S1 is of dimension 3, it follows that the
1,1 -3,0kernel of the differential dE :/32 -- 2 is at most 1-dimensional, and because we

also know that the classes Xlyl and x2y2 in E23’ survive to Eoo, the kernel is pre-
cisely 1-dimensional and gives the missing class in H2S1. We have to show that this
kernel is contained in the -1 eigenspace of co.

In fact, E33’, the quotient of E23’ by the image of dE, is generated by xyl and
XEy2 and is a direct sum of two 1-dimensional eigenspaces with eigenvalues 1
(resp., -1). The decomposition of E23’ implies that the image of dE is also a direct
sum of two 1-dimensional eigenspaces with eigenvalues 1 (resp., -1), and hence
the decomposition of E2’l gives that co acts by multiplication by -1 on the
kernel of dE.

5. The case GL(n, Zp)

5.1. We start with a few general remarks on the continuous cohomology of
the groups GL(n, TZp). Mod pr-reduction defines maps from GL(n, 7Zp) to
GL(n,E/pr) with kernel F(pr). The groups F(pr) form a decreasing sequence of
closed subgroups with GL(n, ,p) ’ lim GL(n, _,p)/F(p"). Furthermore, the quo-
tients F(p")/F(p"+) are elementary abelian p-groups (of rank n2), and hence
F(p) lim F(p)/F(p") is a profinite p-group.
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In particular, for a prime v p, mod-p reduction induces an isomorphism in
continuous cohomology H*(GL(n, TZ/p);]FI) H*(GL(n, TZp);IFI), and hence
H*(GL(n, Zp);IF) is known by the work of Quillen [Q2]. However, if p l, then
very little seems to be known about H*(GL(n, 7Zp);IFp)= H*GL(n, Zp) (from
now on we will omit the coefficients again in our notation). For example, study-
ing mod-p reduction does not lead very far, because the mod-p cohomology of
the quotient GL,(n, lFp) is not known unless n is very small.
We will use our centralizer approach to compute H*GL(n,p) in large

dimensions in case n p- 1, p odd. The following result gives the necessary
group theoretic information to apply Theorem 1.4 (resp., Corollary 1.7).

THEOREM 5.2. Let p be odd and n p- 1.
(a) The p-rank of GL(n, p) is equal to 1, and, up to conjugacy, there is a unique

subgroup E of GL(n, p) that is isomorphic to Zip.
(b) The centralizer CL(n,.)(E) is isomorphic to 7Zp[(p] x ,/p x (7Zp)n x

Z/(p- 1).
(c) Autc.(L(n,.))(E) Z/n and the action of /n on CL(n,.)(E) correspond

via the isomorphism of (b) to the Galois action on ,p[(p]X, which was explicitly
described in Section 3.4.

The crucial input for Theorem 5.2 is the following p-adic version of the theo-
rem of Diederichsen and Reiner [CR, Thm (74.3)]. It can be proved in the same
way as the integral version except that some of the details simplify because class
group phenomena disappear in the p-adic version.

THEOREM 5.3. Let G 7Z/p and M be a 7Zp[G]-module which is finitely #en-
erated and free as a 7Zp-module. Let f --7Z,p[G] be the free 7Zp[G]-module on one
lenerator, T Ep the trivial 1-dimensional module, and R Z,pI(p the rin# of
intelers in the cyclotomic extension (p((p) with action of a glenerator G #iven
by gr (prfor r R.

Then

M - Fk ) T ) Rm

for a unique triple (k, l, rn) of nonne#ative numbers.

Proof of Theorem 5.2. (a) The Zp[G]-module R is isomorphic to (p)n as a
7Zp-module, which shows that there is an embedding of G into GL(n, Zp). By
Theorem 5.2 there is a unique Zp[G]-module structure on (Zp)n for which the
action is faithful, which means that all subgroups E of order p in GL(n, p) are
conjugate. That the p-rank is not bigger than 1 will follow from part (b) because
the p-rank of the centralizer of E is only 1.

(b) We have isomorphisms Cr.(n,.p)(E) -Aut.p[e](R) and because the 7Zp[E]-
module structure on the ring R is pulled back from the R-module structure, we
also get Autz[E](R) AutR(R) R.
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(c) The group Autg.(GL(n,Zp))(E) is a subgroup of the group of all abstract
automorphisms of E and the Galois group of the cyclotomic extension realizes
all of them through conjugations in GL(n, Zp).

Using the notation of Theorem 3.3 and Proposition 3.4, we write
H*Ctt,(n,.p)(E) - IFp[y] (R) E(x) (R) E(al,..., an). The action of the Galois group
is determined by Proposition 3.4. Combining Theorem 5.2 with Corollary 1.7
leads to the following result (see Theorem 1.10 of the introduction).

THEOREM 5.4. Let p be an odd prime, n p- 1, and E
Then the restriction map

p H*GL(rI, Zp) (H*CGL(n,,)(E))/n " (lFp[y] () g(x) ( E(al,... ,an))’/n

has finite kernel and cokernel.

As in [A], one can analyze all p-rank 1 cases p- 1 < n < 2p- 3 further and
reduce the computation of H*GL(n, Zp) in large dimensions to the computation
of the cohomology of GL(n- p+ 1, Zp) and of appropriate congruence sub-
groups thereof. We leave the details to the interested reader.

5.5. We finish with a brief discussion of the case p 3 and n 2. This case is
simple enough that one could do it directly with standard methods. However, we
include it here as another example illustrating our theory and how the map p of
Corollary 1.7 may fail to be an isomorphism in small dimensions.
The situation is very similar to that of the group $2 for the prime 3 that we

discussed in Section 4. Using the same notation as in Section 4.1, we write
H*CL(2,.3)(Z/3) -- IFp[y] (R) E(x) (R) E(a, a’), where y is of degree 2, all the other
classes are of degree 1, and the action of the nontrivial element # in the Galois
group is trivial on a’ and multiplies all other generators by -1. In particular, the
ring of invariants (lF3[y] (R) E(x) (R) E(a, a’))/2 is equal to the subring generated
by the elements y2, yx, ya, xa, and a’. This is a free module of rank 4 over
IF3[y2 (R) E(a’) on generators 1, yx, ya, and xa.

PROPOSITION 5.5. The restriction map

p’H*GL(2, Z3) (H*CtL(2,.a)(Z/3))"g/2(IF3[y] t E(x) (R) E(a,a’))z/2

is a monomorphism and identifies H*GL(2, TZ3) with the subalgebra IF3[y2] (R)
E(yx, ya) (R) E(a’) of the invariants.

Proof. First we note that, if n0mod-p GL(n, Zp) is isomorphic to
Zp x GLI(n, Zp), where GLI(n, Zp) denotes the subgroup of GL(n, Zp), which is
the preimage of Z/p-1 c Zp under the determinant map. In fact, Zp
7z, x Z/p-1 identifies with the center of GL(n,Z), and the composition
with the determinant is multiplication by n, and hence is an isomorphism on
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if n : 0mod p. Furthermore, H*GLthe Zp summand of Zp
(H*SL(n, gp))z/p-I, and hence Proposition 5.5 will follow from the following
result for the special linear group.

First note that if one works with SL(2, 3) instead of GL(2,g3), then one still
has a unique subgroup Z/3 up to conjugacy with centralizer CSL(2,Z3)
Z/2 x Z/3 x 7Z3 and H* CsL(2,.a) (E) ]F3[y] t) E(x) ( E(a). Furthermore, in
this case Autd.(SL(2,3))(E/3) is the trivial group, so that in large degrees
H*SL(2, TZ3) " ]F3[y] () E(x) ( E(a) by Corollary 1.7.

PROPOSITION 5.6. The restriction map

H*SL(2,;Z3)  F3[y] (R) E(x,a)
is a monomorphism and identifies H*SL(2,Z3) with IF3[y] (R) E(x, ya).

Proof. We consider the mod-3 reduction map SL(2, Z3) SL(2,1F3). The
kernel K is a torsion-free 3-dimensional analytic pro 3-group, and hence H*K is
a 3-dimensional Poincar6 duality algebra by [La,V.2.5.8]. Now consider the
graded Lie algebra associated to the decreasing filtration of SL(2,.3) by the
kernels of mod-3k reduction, k 1, 2, It is easy to see from this Lie algebra,
say, as in the proof of Proposition 4.4, that HIK -(F3)3. Furthermore, using
[La,V.2.2.7], we see that H*K is exterior on the three generators in degree 1.
Now we consider the spectral sequence of the extension

with E’q H*(SL(2,1F3);HqK). The group SL(2,1F3) acts necessarily trivial on
H3K because there are no nontrivial homomomorphisms from SL(2,1F3) to
GL(1,1F3). Next, one can check that the invariants of HK, with respect to the
action of the 2-Sylow subgroup Q8 of SL2(IF3), are trivial. Because Q8 is normal in
SL(2, IF3), this implies that H*(SL(2,]F3);HK) O, and by Poincar6 duality we
also have H*(SL(2,1F3);H2K)= 0. Finally, the restriction map to the 3-Sylow
subgroup is well known to induce an isomorphism H*SL(2, IF3) H*TZ/3, and so
our spectral sequences have just two nontrivial rows at E2 which are both iso-
morphic to H*Z/3. As in the proof of Proposition 4.3, we see now that the spectral
sequence has to collapse; a nontrivial differential would lead to a result that is too
small to be compatible with Corollary 1.7. Then the spectral sequence shows that
H*SL(2, 713) is free over IF3 [y], and hence p is injective. It is clear that the elements
x and y are in the image of p, and by counting dimensions one sees that p is an
isomorphism in degrees of 3 and larger; in particular, the image of p is
IF3[y] (R) E(x, ya).

[A]
[BH]
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