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Abstract. These are my notes for a talk on topic that I gave at the European

Autumn School in Topology in 2018.

Introduction

The goal of this talk is to introduce the concepts of homotopy orbits, homotopy
fixed points, and the Tate construction on a G-spectrum. We will also construct
spectral sequences that compute the homotopy groups of these constructions. In
this way we have a natural division of the talk directly indicated by the title:

(1) The Tate construction.
(2) Spectral sequences.

Many of the standard references for these topics work in a chosen 1-categorical
model for spectra, like orthogonal spectra or S-modules, plus a model structure
on these categories. However, as the previous talks have already introduced ∞-
categories, and in particular the ∞-category of spectra, we have here opted to give
an ∞-categorical approach to the subject. We will freely use the notation and
terminology from Lurie’s two bibles [Lur09,Lur17].

1. The Tate construction

In this section we define the Tate construction on a G-spectrum following [NS17,
Section I.1]. We will do this only for finite groups, but indicate that this can be
done more generally for all topological groups, and in particular for compact Lie
groups.

1.1. Homotopy orbits and homotopy fixed points. Before we describe what
we mean by homotopy orbits, homotopy fixed points, and the Tate construction,
we have to introduce the category of G-spectra. We will denote the ∞-category of
spectra by Sp throughout.

Definition 1.1. Let G be a topological group and consider a fixed classifying space
BG. The stable ∞-category of G-spectra is defined as the functor category

SpG = Fun(BG, Sp).

Remark. In equivariant stable homotopy theory we often consider another type of
G-spectra, so called genuine G-spectra. We warn the reader that above definition
is different from these genuine G-spectra, and could be referred as näıve G-spectra.
However, the constructions that we are interested in for this talk only depend on
the näıve equivariant homotopy type of the spectra we consider, so this is an issue
that we will completely disregard.
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We can consider the limit and colimits of a functor BG → Sp and so get the
homotopy fixed points and homotopy orbits.

Definition 1.2. The homotopy orbits and homotopy fixed points of a G-spectrum
X are defined as

XhG = colim
BG

X and XhG = lim
BG

X.

An important example is when G is a finite group and M is a G-module. The
Eilenberg-Mac Lane spectrum HM is then a G-spectrum and we can consider the
homotopy orbits and homotopy fixed points of this G-spectrum. In fact, we have

π∗(HMhG) ∼= H∗(G;M) and π∗(HM
hG) ∼= H−∗(G;M)

so that the homotopy orbits recover group homology and homotopy fixed points
recover group cohomology.

1.2. The norm map and the Tate construction. To give a motivation for the
Tate construction, we recall Tate cohomology as defined in [CE56, Chapter XII].
Classically, Tate cohomology is a way to patch together group homology and group
cohomology into a single cohomology theory. If G is a finite group and M is a
G-module, we may consider the G-orbits MG and the G-fixed points MG. We leave
it to the reader to check that the norm map

NmG : MG →MG, m 7→
∑
g∈G

gm

is a well defined map. The Tate cohomology groups are defined as

Ĥi(G;M) =


Hi(G;M) i ≥ 1,

coker(NmG) i = 0,

ker(NmG) i = −1,

H−i−1(G;M) i ≤ −2.

One can check that Tate cohomology enjoys all of the convenient features that
ordinary group cohomology does; for example, a short exact sequence of G-modules
give rise to a long exact sequence in Tate cohomology, and the cup product in group
cohomology extends to a cup product on Tate cohomology.

Example 1.3. Let G = Cp = 〈g | gp = e〉 and M = Z as a trivial Cp-module.
Group (co)homology of G with coefficients in M is computed via the projective
resolution

· · · // ZCp
e−g // ZCp

N // ZCp
e−g // ZCp

// 0 ,

so all that is left to figure out is the cokernel and the kernel of the norm map. The
norm map evaluated on a class m is

NmCp
(m) =

p−1∑
i=0

gim =

p−1∑
i=0

m = pm

since we are working with the trivial action. We hence have

coker(NmCp
) = Z/pZ and ker(NmCp

) = 0
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and additively we conclude that

Ĥi(Cp;Z) =

{
Z/pZ even i

0 odd i
.

We remark that the multiplicative structure (that we do not have time to discuss)
can be computed to be

Ĥ∗(Cp;Z) = (Z/pZ)[t±], |t| = 2.

Our goal in this section is to give an ∞-categorical analogue of this norm map
and use this to define the Tate construction in spectra. To simplify, we will only do
this for finite G. We start with giving an alternative description of the homotopy
fixed points and homotopy orbits. Consider the map f : BG → ∗. The map gives
rise to a pullback functor f∗ : Sp→ SpG that gives an ordinary spectrum the trivial
G-action. This functor has left and right adjoints, f! and f∗, and these are just
different names for the homotopy orbits and homotopy fixed points:

f! = (−)hG and f∗ = (−)hG.

We will use that these are left and right adjoints to the same map in order to get
a transformation f! → f∗. Here is a step-by-step construction:

(1) Consider the pullback diagram

BG×BG
p //

q

��

BG

f

��
BG

f // ∗
where p and q denote projection onto the first and second coordinate, re-
spectively. Since this is a pullback diagram the canonical transformation

f∗f∗ → p∗q
∗

is also equivalence by [Lur17, Lemma 6.1.6.3].
(2) Consider the diagonal map δ : BG → BG × BG and observe that the

induced functors δ∗ : SpBG → SpBG×BG and δ! : SpBG → SpBG×BG are
equivalent. Explicitly, they are both given by

δ∗, δ! : X 7→
⊕
g∈G

X

where the target is a G × G-spectrum by letting one factor act on the
indexing set and the other one via the action on X. Here, we have implicitly
used that G is a finite group, and that finite coproducts and products in
Sp are the same.

(3) The unit 1 → δ∗δ
∗ and the counit δ!δ

∗ → 1 can be put together with the
equivalence of Step (2) to give the transformation

p∗ → δ∗δ
∗p∗ ' δ∗ ' δ! ' δ!δ∗q∗ → q∗.

(4) By adjunction we have a map 1 → p∗q
∗ so by the equivalence of Step (1)

there is a map 1 → f∗f∗. Now we use adjunction again to obtain the
wanted norm map

NmG : f! → f∗.
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Remark. The composition

X // XhG
NmG // XhG // X

can informally be given as
∑

g∈G ρg where ρg : X → X denotes the action of the
element g in G.

We now have everything in place to define the Tate construction.

Definition 1.4. The Tate construction on a G-spectrum X is defined as the cofiber

XtG = cofib(NmG : XhG → XhG).

If M is a G-module, then HM tG recovers Tate cohomology in the sense that

π∗(HM
tG) ∼= Ĥ−∗(G;M).

In particular, since the Tate construction is defined as a cofiber, we have a cofiber
sequence

XhG
NmG // XhG can // XtG

where the last map is the canonical map. Informally, we can say that the Tate
construction measures how close the norm map is to being an equivalence.

Remark. We can also define a suitable norm map NmG when G is a compact Lie
group and so get the Tate construction with respect to an action of any compact
Lie group. In this case, the norm map is a natural transformation

NmG : (DG ⊗X)hG → XhG

where DG is the so called dualizing spectrum of G [Kle01]. Concretely, we have that
the dualizing spectrum of a Lie group is DG = Sg, the representation sphere of the
adjoint representation g on G. An important case is when G = T, the circle group.
Observe that T is abelian so the adjoint representation is trivial with dimension
the same as T, namely 1. Hence, we get a norm map

NmT : ΣXhT → XhT.

2. Spectral sequences

Spectral sequences are incredibly useful tools in modern mathematics. In this
section we give a short introduction to the topic using the language of∞-categories.
In particular, we construct the homotopy orbit, homotopy fixed point, and Tate
spectral sequence. This is a condensed version of [HKN]. We end the section by
using the homotopy fixed point spectral sequence to compute the homotopy groups
of the homotopy fixed point of complex topological K-theory with the conjugation
action.

2.1. Towers in spectra. The spectral sequences we consider will be produced by
towers in spectra. To make sure no confusion arises, we fix some notation. The
1-category Z is the category whose objects are integers, and where Z(m,n) is a
single element if m ≤ n and otherwise empty.

Definition 2.1. Let C ∈ {Sp,SpG}. The∞-category of towers in C is the functor
category

Tow(C ) = Fun(Zop,C ).
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We agree to denote a tower on the form X•, indicating that the image of the
functor at the integer n is to be denoted by Xn. We visualise a tower as a diagram

· · · → Xn+1 → Xn → Xn−1 → · · · .
The colimit and limit of the tower X• are denoted

X−∞ = colimX• and X∞ = limX•,

and to shorten notation we will also write

Xm/Xn = cofib(Xn → Xm)

for m ≤ n.

Example 2.2. Any (G-)spectrum E gives rise to a tower White(E)• by killing off
homotopy groups under a certain degree:

White(E)n = τ≥nE.

Observe that

White(E)−∞ ' E and White(E)∞ ' 0.

This construction makes sense in any stable ∞-category with a t-structure.

Example 2.3. Given a G-spectrum E we can consider the Whitehead filtration
White(E). If we postcompose this functor with homotopy fixed points we get a
tower White(E)hG which in every degree is

(White(E)hG)n = (τ≥nE)hG.

Using [NS17, Lemma I.2.6] we see that taking homotopy fixed points interacts well
with Whitehead covers, and we have

(White(E)hG)−∞ ' EhG and (White(E)hG)∞ ' 0.

The same discussion goes through for both homotopy orbits and the Tate construc-
tion.

2.2. Spectral sequences from towers. Instead of constructing spectral sequences
via exact sequences as in [Boa99], we will here construct them following [Lur17, Sec-
tion 1.1.2.2], but in the dualized setting. Observe that given a tower X•, for any
triple i ≥ j ≥ k the cofiber sequence

Xj/Xi → Xk/Xi → Xk/Xj

gives rise to a long exact sequence in homotopy

· · · → πn(Xj/Xi)→ πn(Xk/Xi)→ πn(Xk/Xj)→ πn−1(Xj/Xi)→ · · · .
We define the pages of a spectral sequence associated to X• by setting the pages
to be

Er
p,q = im(πp+q(Xq/Xq+r−1)→ πp+q(Xq−r+2/Xq+1)).

for every r ≥ 2. The differential dr : Er
p,q → Er

p−r,q+r−1 in the spectral sequence is
characterized as being the map making the diagram

πp+q(Xq/Xq+r−1) //

��

Er
p,q

//

dr

��

πp+q(Xq−r+2/Xq+1)

��
πp+q−1(Xq+r−1/Xq+2r−2) // Er

p−r,q+r−1
// πp+q−1(Xq+1/Xq+r)



6 ALICE HEDENLUND

commute. The so constructed spectral sequence converges conditionally to π∗(X
−∞/X∞).

In particular we observe that the second page of the spectral sequence associated
to X• is given as

E2
p,q = πp+q(Xq/Xq+1)

and the d2-differential is induced by connecting homomorphism d : Xq/Xq+1 →
ΣXq+1/Xq+2 of the pushout square

Xq+1/Xq+2 //

��

Xq/Xq+2

��
0 // Xq/Xq+1.

Example 2.4. Let us check what the second page of the spectral sequence asso-
ciated to the Whitehead tower White(E) of some (G-)spectrum E looks like. The
cofiber sequences in the Whitehead tower are given as

τ≥q+1(E)→ τ≥q(E)→ ΣqHπq(E),

so the second page of the Whitehead spectral sequence is

E2
p,q = πp+q(ΣqHπq(E)) =

{
πq(E) if p = 0,

0 otherwise.

This is perhaps not incredibly exciting, but it provides a good foundation for con-
structing other spectral sequences as we will see in the next example.

Example 2.5. The homotopy fixed point spectral sequence is constructed by using
the tower White(E)hG. Since taking homotopy fixed points is an exact functor we
have cofiber sequences

(τ≥q+1(E))hG → (τ≥q(E))hG → Σq(Hπq(E))hG

and the second page of the spectral sequence becomes

E2
p,q = πp+q(Σq(Hπq(E))hG) = πp(Hπq(E)hG) ∼= H−p(G;πq(E)).

The same discussion goes through for homotopy orbits and the Tate construction
and we conclude that we have spectral sequences

E2
p,q
∼= Hp(G;πq(E))⇒ πp+q(EhG)

E2
p,q
∼= H−p(G;πq(E))⇒ πp+q(EhG)

E2
p,q
∼= Ĥ−p(G;πq(E))⇒ πp+q(EtG)

that converges conditionally the homotopy groups of all of these constructions.

2.3. Computation. To end this talk we consider a classic application of the ho-
motopy fixed point spectral sequence: the computation of π∗(KUhC2) where KU
denotes complex topological K-theory spectrum and C2 = 〈g | g2 = e〉 acts on KU
by complex conjugation. The homotopy fixed point spectral sequence for complex
conjugation on KU takes the form

H−p(C2;πq(KU))⇒ πp+q(KUhC2).

Recall that the homotopy groups of KU are 2-periodic

π∗(KU) = Z[u±1], |u| = 2
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where u is the so called Bott element. The complex conjugation action on KU
is exhibited on homotopy groups by gu = −u. The second page of the spectral
sequence can now be computed using the projective resolution we saw in Example
1.3:

E2
∗∗ = Z[x, u±2]/(2x)

where |u2| = (0, 4) and |x| = (−1, 2). To makes this a bit more clear we give a
picture of the E2-term:
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Here, bullet represents Z/2Z and box represents Z. We have marked the groups
generated by u2 and x, respectively. For degree reasons d2 = 0, so we focus our
attention on the possible non-zero d3-differential. Fact:

d3(u2) = x3.1

Since the homotopy fixed point spectral sequence is multiplicative (which we have
not proved in this talk, but does hold from the Whitehead tower being multiplicative
and the homotopy fixed point construction being lax symmetric monoidal) this

1There is no easy way of justifying this differential without introducing more sophisticated
machinery. In the context of this talk we will have to take a leap of faith and just believe that

the d3-differential is given in this way. For the people who want a little more justification: the
differential can be figured out by using another spectral sequences, namely the Adams-Novikov
spectral sequence:

Extp,q
MU∗(MU)

(MU∗,MU∗) =⇒ πq−p(S).

There is a map of spectral sequences from the Adams-Novikov spectral sequence for S to the
homtopy fixed point spectral sequence for KU. This map is an isomorphism in bidegree (−1, 2),
where the Hopf element η is detected in the Adams-Novikov spectral sequence. Since η4 = 0 in the

Adams-Novikov spectral sequence, we conclude that x4 = 0 in the homotopy fixed point spectral
sequence. The only differential that can kill off x3 is precisely the differntial d3(xu2) = x4, which
is equivalent to the d3-differential we have specified, by multiplicativity.
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differential propagates through the entire E3-page. We give a picture of the E3-
term with the d3-differential:
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This leaves the E4-term of the spectral sequence looking like:
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Which more compactly can be written

E4
∗∗ = Z[x, α, u±4]/(2x, x3, xα, α2 − 4u4)
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with |u4| = (0, 8), |x| = (−1, 2) and |α| = (0, 4). The element α represents 2u2.
Since there is no room for further differentials, we conclude that this is the E∞-
term. Nor is there room for any extension problems, so we conclude that

π∗(KUhC2) = Z[x, α, β]/(2x, x3, xα, α2 − 4β)

with |x| = 1, |α| = 4, and |β| = 8.
We can import the differentials from the homotopy fixed point spectral sequence

to the Tate spectral sequence. By multiplicativity, the d3-differential described
above propagates through the entire spectral sequence, killing off everything. We
conclude that

π∗(KUtC2) = 0.2
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2Compare this to the homotopy groups of the Tate construction on KU with trivial C2-action.

Complex topological K-theory is an example of a complex oriented cohomology theory, so we can
use the well-known formula [AMS98, Lemma 2.1] to conclude that

π∗(KUtC2 ) ∼= KU∗((x))/[2](x) ∼= KU∗((x))/(x2 − 2x)

if C2 acts trivially on KU.


