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Ambidexterity and the universality of finite spans

Yonatan Harpaz

ABSTRACT

Pursuing the notions of ambidexterity and higher semiadditivity as developed by Hopkins
and Lurie, we prove that the span oco-category of m-finite spaces is the free m-semiadditive
oo-category generated by a single object. Passing to presentable oco-categories we obtain a
description of the free presentable m-semiadditive oco-category in terms of a new notion of
m~commutative monoids, which can be described as spaces in which families of points param-
eterized by m-finite spaces can be coherently summed. Such an abstract summation procedure
can be used to give a formal co-categorical definition of the finite path integral described by
Freed, Hopkins, Lurie and Teleman in the context of one-dimensional topological field theories.
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1. Introduction

The notion of ambidexterity, as developed by Lurie and Hopkins in [9] in the oco-categorical
setting, is a duality phenomenon concerning diagrams ¢: K — C whose limit and colimit
coincide. The simplest case where this can happen is when K is empty. In this case a colimit
of K is simply an initial object of C, and a limit of K is a final object of C. If C has both an
initial object @ € C and a final object * € C then there is an essentially unique map ) — *.
Given that both @ and * exist there is hence a canonical way to require that they coincide,
namely, asserting that the unique map () — = is an equivalence. In this case we say that C is
pointed. An object 0 € C which is both initial and final is called a zero object.

Generalizing this property to cases where K is non-empty involves an immediate difficulty. In
general, even if p: K — C admits both limit and colimit, there is a priori no natural choice of
a map relating the two. Informally speaking, choosing a map colim,cx ¢(x) — lim,ex p(z)
is the same as choosing, compatibly for every two objects x,y € K, a map ¢(x) — (y) in C.
The diagram ¢, on its part, provides such maps ¢(e): ¢(x) — ©(y) for every e € Map(x,y).
We thus have a whole space of maps p(e): p(x) — ¢(y) at our disposal, but no a priori way
to choose a specific one naturally in both = and y.

To see how this problem might be resolved assume for a moment that C is pointed, that
is, admits a zero object 0 € C, and that Map (z,y) is either empty or contractible for every
x,y € K (that is, K is equivalent to a partially ordered set, or a poset). Then for every X,Y € C
there is a distinguished point in Map. (X, Y’), namely the essentially unique map which factors
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as f: X — 0 — Y, where 0 € C is a zero object. We may call this map X — Y the zero
map. We then obtain a choice of a map N, ,: ¢(x) — ¢(y) which is natural in both « and
y: if Mapy (z,y) is contractible then we take N, , to be ¢p(e) for the essentially unique map
e: x —> y, and if Mapy (z,y) is empty then we just take the zero map. It is then meaningful
to ask whether the limit and colimit of a diagram ¢: K — C coincide: assuming both of
them exist, we may ask whether the map N : colim¢ — lim ¢ we have just constructed is
an equivalence.

For general posets and general pointed co-categories C the map N, is rarely an equivalence.
For example, if K = [1] then N, is simply the 0-map. However, there is a class of posets for
which this property turns out to yield something interesting: the class of finite sets, that is,
finite posets for which the order relation is the equality. In this case we may identify colim ¢ ~

H:ceK o(z) and lim ¢ ~ cheK o(z). The map
No: [ e@) — J] #(=)

zeK rzeK

we constructed above is then given by the ‘matrix’ of maps [N, ]2 yex, where Ny @ p(z) —
©(y) is the identity if = y and the zero map if x # y. When a pointed oo-category satisfies
the property that N, is an equivalence for every finite set K and every diagram ¢: K — C we
say that C is semiadditive. Examples of semiadditive co-categories include all abelian (discrete)
categories and all stable co-categories. For more general examples, if C is any oo-category with
finite products then the co-category Mong__ (C) of Eo-monoids in C is semiadditive.

In their paper [9], Hopkins and Lurie observed that the passage from pointed oco-categories
to semiadditive ones is just a first step in a more general process. Suppose, for example, that C
is a semiadditive oo-category. Then for every X,Y € C, the mapping space Map,(X,Y") carries
a natural structure of an E,,-monoid, where the sum of two maps f,g: X — Y is given by
the composition

fxg

X-2sXxX Y xY ~Y][[Y —=VY.

Now suppose that K is an oco-category whose mapping spaces are equivalent to finite sets and
that ¢p: K — C is a diagram which admits both limit and colimit. Then we may construct a
natural map colim ¢ — lim ¢ by choosing, for every =,y € K, the map

Noy= Y. ¢(e): o) — ¢(y), (1.1)

eEMap i (z,y)

where the sum is taken with respect to the natural E,,-monoid structure on Map,(X,Y"). We
may now ask if the induced map

Ny colimp(z) — lim o(z), (1.2)
which is often called the norm map, is an equivalence. When (1.2) is an equivalence for
every finite groupoid K we say that C is 1-semiadditive. We note that when C is stable the
cofiber of (1.2) is also known as the associated Tate object, and hence 1-semiadditivity in
the stable context was often considered as a phenomenon of Tate vanishing. This vanishing
happens in many examples of interest, for example, when C is a Q-linear oo-category, or when
C is the oco-category of K(n)-local spectra, where K(n) is the nth Morava K-theory at a
prime p (Hovey—Sadofsky—Greenlees [5, 10]). Hopkins and Lurie constructed an inductive
approach for continuing this process, where at the mth stage one considers co-groupoids whose
homotopy groups are all finite and vanish above dimension m. In this paper we will refer to
such oo-groupoids as m-finite spaces. This yields the notion of m-semiadditive co-category for
every m > —1. The main result of Hopkins—Lurie [9] is that the oco-category of K(n)-local
spectra is not just 1-semiadditive, but in fact m-semiadditive for every m. A similar result was

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1123

recently established for the oo-category of T'(n)-local spectra by Carmeli-Schlank—Yanovski
[2], generalizing a theorem of Kuhn [11] on the 1-semiadditivity of T'(n)-local spectra, and
using, among other things, results from the present paper.

Our goal in this work is to form a link between the theory of higher semiadditivity as
developed in [9] and the co-category of spans of m-finite spaces. To understand the role of this
oo-category, let us consider for a moment the central role played by the oco-category Spg, of
finite spectra in the theory of stable co-categories. To begin, Spg, can be described as the free
stable co-category generated by a single object S € Spg,,, the sphere spectrum. Furthermore,
one can use Spg, in order to characterize stable co-categories inside the oo-category Catg, of
all small co-categories with finite colimits (and right exact functors between them). Indeed,
Catg, carries a natural symmetric monoidal structure (see [14, §4.8.1]) whose unit is the
smallest full subcategory of spaces S, C S closed under finite colimits. One can then show

that Spg, is an idempotent object in Catg, in the following sense: the suspension spectrum
functor £°°: Sgn — Spg, induces an equivalence Spg,, =~ Spg, ®Sin — SPg, @ Spn- The fact
that Spg, is idempotent has a remarkable consequence: it endowed Spg, with a canonical
commutative algebra structure in Catg, such that the forgetful functor Mods,, (Catg,) —
Catgy, is fully faithful. From a conceptual point of view, this fact can be described as follows:
given an oo-category with finite colimits C, the structure of being an Spg,,-module is essentially
unique once it exists, and can hence be considered as a property. One can then show that this
property coincides with being stable. In other words, stable co-categories are exactly those
C € Catgay which admit an action of Spg,, in which case the action is essentially unique.

This double aspect of stability, as either a property or a structure, is very useful. On
one hand, in a higher categorical setting structures are often difficult to construct explicitly,
while properties are typically easier to define and to check. On the other hand, having a
higher categorical structure available is often a very powerful tool. An equivalence between a
given property and the existence of a given structure allows one to enjoy both advantages
simultaneously. Indeed, while the property of being stable is easy to define and often to
establish, once we know that a given oco-category is stable we can use the canonically defined
Spg,-module structure at our disposal. For example, it implies that any stable co-category
is canonically enriched in spectra, and in particular its mapping spaces carry a canonical
E-group structure.

In this paper we describe a completely analogous picture for the property of m-semiadditivity.
Let KC,, be the set of equivalence classes of m-finite Kan complexes. Let Catx,, be the
oo-category of small oo-categories which admit /C,,-indexed colimits and functors which
preserve K,,-indexed colimits between them. Then Caty,, carries a natural symmetric monoidal
structure whose unit is the oo-category S,, of m-finite spaces. Another object contained in
Cati,, is the co-category Span(S,,) whose objects are m-finite spaces and whose morphisms
are given by spans (see §2 for a formal definition). Our main result can then be phrased as
follows.

THEOREM 1.1. Span(S,,) is the free m-semiadditive oco-category generated by a single
object. More precisely, if D is an m-semiadditive co-category then evaluation at x € Span(S,,)
induces an equivalence

Fung, (Span(S,,), D) — D,
where the left-hand side denotes the oco-category of functors which preserve IC,,-indexed col-
imits.

Furthermore, we will show in § 5.1 that Span(S,,) is in fact an idempotent object of Cati, .
Consequently, Span(S,,) carries a canonical commutative algebra structure in Catg, , and
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the forgetful functor Modgpan(s,,)(Cati,,) — Catg,, is fully faithful. The structure of a
Span(S,,)-module on a given oco-category C € Cati, is hence essentially a property. This
property is exactly the property of being m-semiadditive.

The flexibility of switching the point of view between a property and a structure seems to be
especially useful in the setting of m-semiadditivity. Indeed, while m-semiadditivity is a property
(involving the coincidence of limits and colimits indexed by m-finite spaces) it is quite hard
to define directly. The reason, as described above, is that in order to define the various norm
maps which are required to induce the desired equivalences, one needs to use the fact that the
oo-category in question is already known to be (m — 1)-semiadditive. Even then, describing
these maps requires an elaborate inductive process (see [9, §4]). On the other hand, having
a canonical Span(S,,—1)-module structure on an (m — 1)-semiadditive co-category leads to a
direct and short definition of when an (m — 1)-semiadditive co-category is m-semiadditive (see,
for example, Corollary 3.17).

The picture becomes even more transparent when one passes to the world of presentable
co-categories. Let Prl denote the co-category of presentable oo-categories and left adjoint
functors between them. Then one has a natural symmetric monoidal functor Py, : Catx,, —
Pr” which sends C € Caty,, to the co-category Px.,. (C) of presheaves of spaces on C that take
Km-indexed colimits in C to limits of spaces. Applying this functor to Span(S,,) one obtains
a presentable co-category which is equivalent to a certain co-category of higher commutative
monoids, and which we will investigate in § 5.2. Informally speaking, an m-commutative monoid
can be described as a space X endowed with the following type of structure: for any map
f: K — X from an m-finite space K to X, we have an associated point fK f € X, which
we can think of as the ‘continuous sum’ of the family of points {f(x)}.cx. This association
is of course required to satisfy various compatibility conditions. For m = 0 we have that f is
indexed by a finite set and we obtain the structure of an E.,-monoid. When m = —1 this
is just the structure of a pointed space. Now since the functor Py, is monoidal the oo-
category Mon,, of m-commutative monoids is idempotent as a presentable co-category, and the
property characterizing Mon,,,-modules in Pr” is again m-semiadditivity. There is, however, an
advantage for considering Mon,, in addition to Span(S,,). Note that given an m-semiadditive
oo-category C, the canonical action of Span(S,,) described above is not closed in general, that
is, it does not endow C with an enrichment in Span(S,,). It does, however, endow C with an
enrichment in Mon,,. In particular, mapping spaces in C are m-commutative monoids, and so
we have a canonically defined summation over families of maps indexed by m-finite spaces.
This structure can be used in order to redefine the norm maps of [9] and hence to define when
an (m — 1)-semiadditive co-category is m-semiadditive (in a manner analogous to the cases of
m = —1,0,1 described above). Indeed, for every m-finite space K, any diagram ¢: K — C
and any =,y € K we obtain a natural map

Nyt [ ole): p(x) — () (13)
e€Map g (z,y)

using the (m — 1)-commutative monoid structure of Map¢(z, y) and the fact that the mapping
spaces in K are (m — 1)-finite. The compatible collection of maps N, then induces a map
N,: coli — i 1.4
ot colimp(z) — lim (z) (1.4)
which coincide with the norm maps constructed in [9]. In particular, an (m — 1)-semiadditive
oo-category C is m-semiadditive if and only if the maps N, are equivalences for every K € IC,,
and every p: K — C.
In the final part of the paper we will explain a relation between the above results and
one-dimensional topological field theories, specifically with respect to the finite path integral
described in [3, §3]. In particular, our approach allows one to formally define this finite path
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integral whenever the target oo-category is m-semiadditive. This requires a description of the
free m-semiadditive co-category generated by an arbitrary oo-category D, which we establish
in 5.3 using the formalism of decorated spans. The link with finite path integrals is then
described in 5.4.

2. Preliminaries

In this paper we work in the higher categorical setting of oco-categories as set up in [13]. In
particular, by an co-category we will always mean a simplicial set C which has the right lifting
property with respect to inner horns. We will often refer to the vertices of C as objects and to
edges in C as morphisms. In the same spirit, if Z is an ordinary category then we will often
depict maps N(Z) — C to an oo-category C in diagrammatic form, as would be the case if
C was an ordinary category. By a space we will always mean a Kan simplicial set, which we
will generally regard as an oo-groupoid, that is, an oco-category in which every morphism is
invertible. Given an oo-category C, we will denote by C=, the maximal subgroupoid (that is,
maximal sub-Kan complex) of C. We will denote by S := N(Kan) the coherent nerve of the
(fibrant) simplicial category Kan of Kan complexes, and use it as a model for the oco-category of
spaces. Similarly, we will denote by Cat., the coherent nerve of the (fibrant) simplicial category
whose objects are the oco-categories C, and where the mapping simplicial set from C to D is
given by Fun(C, D)=, and use it as a model for the co-category of (small) co-categories.

2.1. Span oco-categories

In the current subsection we will recall the definition of the co-category of spans in a given
oo-category C with pullbacks. To obtain more flexibility it will be useful to consider a
slightly more general case, following the approach of Barwick [1]. Recall that a functor
F: C — D between oo-categories is called faithful if for every X,Y € C, the induced map
Fxy: Mape(X,Y) — Mapp(F(X), F(Y)) is (—1)-truncated (that is, each homotopy fiber
of Fxy is either empty or contractible). Equivalently, F is faithful if the induced map
Ho(C) — Ho(D) on homotopy categories is faithful and the square

]
Ho(C) 2% 110(D)

is homotopy cartesian. In this case we will also say that C is a subcategory of D (and will
often omit the explicit reference to F and use the abusive notation C C D). A subcategory
C C D is called wide if the induced map C= — D~ is an equivalence of spaces. Given a wide
subcategory C C D and a morphism f in D we will say that f belongs to C if it is equivalent
in the arrow category of D to a morphism in the image of C.

DEFINITION 2.1. Let C be an co-category. A weak co-Waldhausen structure on C is a wide
subcategory C' C C such that any diagram

>

(.,
-~
<)

I

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



1126 YONATAN HARPAZ

in which g belongs to C' extends to a pullback square
P—sX

|l

Y —7

in which ¢’ belongs to C'. In this case we will refer to the pair (C,C") as a weak co-Waldhausen
oo-category.

EXAMPLE 2.2. For any oo-category C the maximal subgroupoid C~ CC is a weak
co-Waldhausen structure on C. If C admits pullbacks then C itself is a weak co-Waldhausen
structure as well. We may consider these examples as the minimal and maximal co-Waldhausen
structures, respectively.

Given a weak co-Waldhausen oco-category (C,CT) we would like to define an associated oo-
category Span(C,CT"). Informally speaking, Span(C,CT) is the oco-category whose objects are
the objects of C and whose morphisms are given by diagrams of the form

N o
X Y

such that p belongs to CT. We will refer to such diagrams as spans in (C,CT). A composition of
two spans can be described by forming the diagram

Z/P\V
TN,

in which the central square is a pullback square, and the external span is the composition of
the two bottom spans. Note that since p and g belong to CT Definition 2.1 ensures that this
pullback exists and g o s belongs to C'. To define Span(C,C") formally, it is convenient to use
the twisted arrow category Tw(A™) of the n-simplex A™. This co-category can be described
explicitly as the nerve of the category whose objects are pairs (¢,7) € [n] X [n] with ¢ < j and
such that Hom((z, 7), (¢',j")) is a singleton if i < i’ < j' < j and empty otherwise. Given a weak
co-Waldhausen oo-category (C,C") we will say that a map f: Tw(A") — C is cartesian if for
every i < i’ < j' < j € [n] the square

f(i, ) —— f(i,5")
)
f@5) —=f(@,5)

is cartesian and its vertical maps belong to CT.

DEFINITION 2.3 (cf. [1]). Let (C,C') be a weak co-Waldhausen oo-category. The span
oo-category Span(C,C') is the simplicial set whose set of n-simplices is the set of cartesian
maps f: Tw(A") — C.
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By [1, §§3.4-3.8] the simplicial set Span(C,CT) is always an co-category. We refer the reader
to [1] for a more detailed discussion of this construction and its properties.

REMARK 2.4. Let (C,C") be a weak co-Waldhausen oo-category. Unwinding the definitions
we see that the objects of Span(C,C") are the objects of C and the morphisms are given
by spans of the form (2.1) such that p belongs to C'. Furthermore, a homotopy from the
span X +— Z — Y to the span X «— Z' — Y is given by an equivalence n: Z — Z’ over
X x Y. Elaborating on this argument one can identify the mapping space from X to Y in
C with the full subgroupoid of (C,xy)~ spanned by objects of the form (2.1) such that p
belongs to CT.

REMARK 2.5. It follows from Remark 2.10 that if (CT) CCl CC are two weak
co-Waldhausen structures on C then the associated functor Span(C, (CT)") — Span(C,C') is
a subcategory inclusion. In particular, C ~ Span(C,C~) can be considered as a subcategory
of Span(C,C") for any co-Waldhausen structure C'. Such a subcategory is always wide: this
follows from the fact that any span which is invertible in Span(C,C') has both its legs invertible
as well; see, for example, [7, Lemma 8.2].

2.2. Finite spaces

In this subsection we introduce the co-category of finite spaces and describe some of its basic
properties.

DEFINITION 2.6. Let X be a space. For n > 0 we say that X is n-truncated if 7;(X,x) =0
for every i > n and every x € X. We will say that X is (—1)-truncated if it is either empty
of contractible and that X is (—2)-truncated if it is contractible. We will say that a map
f: X — Y is n-truncated if the homotopy fiber of f over every point of Y is n-truncated.

DEFINITION 2.7. Let X be a space. For n > —2 we will say that X is n-finite if it is
n-truncated and all its homotopy groups/sets are finite. We will say that X is w-finite if it is
n-finite for some n. We will denote by S,, C S the full subcategory spanned by n-finite spaces.

WARNING 2.8. The notion of a finite space should not be confused with the notion of a
space equivalent to a simplicial set with finitely many non-degenerate simplices.

The collection of weak equivalence types of n-finite Kan complexes is a set. We will denote
by K, a complete set of representatives of equivalence types of n-finite Kan complexes. We will
denote by Caty, C Cat the (non-full) subcategory spanned by the oo-categories which admit
K.,.-indexed colimits and functors which preserve K, -indexed colimits between them. If C,D
are oo-categories which admit /C,,-indexed colimits then we denote by Fung, (C, D) C Fun(C, D)
the full subcategory spanned by those functors which preserve C,,-indexed colimits.

We now address the question of K,,-indexed colimits in the co-category S,,.

LEMMA 2.9. The oo-category S, admits K,-indexed colimits which are preserved and
detected by the inclusion S, C S.

Proof. Since the inclusion §,, C S is fully faithful it detects colimits, that is, every cone
diagram in S, which is a colimit diagram in S is already a colimit diagram in S,,. Since S
admits all small colimits it will suffice to show that S,, C S is closed under IC,,-indexed colimits.
More explicitly, we need to show that if X is an n-finite Kan complex and ¢: X — § is an
X-indexed diagram of spaces such that ¢(z) is n-finite for every x € X then the colimit of ¢
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is also n-finite. For this it is convenient to use the fact that colimits in spaces can be modeled
by the total space of the left fibration p: E, — X classified by ¢ (see [13, Corollary 3.3.4.6]).
Since X is a Kan complex E, is also a Kan complex and p is a Kan fibration. We thus need
to show that the total space of a Kan fibration with an n-finite base and n-finite fibers is also
n-finite. But this is now a direct consequence of the long exact sequence of homotopy groups
associated to a Kan fibration. O

REMARK 2.10. Lemma 2.9 implies that we can model the colimit of a diagram ¢: X — S,
by the total space of the Kan fibration £, — X classified by ¢. More precisely, for such a ¢
the total space E,, is n-finite and the collection of fiber inclusions {¢(z) ~ (E,), — E,}zcx
exhibits F, as the colimit of ¢ in S,,.

Given a space X and a point z € X we will denote by i, : * — X the map which sends the
point to x.

ProrosITION 2.11. Let D be an oo-category which admits IC,-indexed colimits and let
F: S8, — D be a functor. Then F preserves K, -indexed colimits if and only if for every
X €S, the collection {F(iy): F(x) — F(X)}pex exhibits F(X) as the colimit of the
constant X-indexed diagram with value F(x).

Proof. The ‘only if’ direction is due to the fact that the collection of maps i,: * — X
exhibits X as the colimit in S,, of the constant X-indexed diagram with value * (see
Remark 2.10). Now suppose that for every X € S, the collection {F(i;)}scx exhibits F(X)
as the colimit of the constant X-indexed diagram with value F(*). Let Y € K,, be an n-finite
space and let ¢: Y — S,, be a Y-indexed diagram in S,,. Let p: E, — Y be the Kan fibration
classified by ¢, so that, in light of Remark 2.10, we have that £, is n-finite and the collection of
fiber inclusions {(E,), =~ ¢(y) — E,}ycy exhibits E,, as the colimit of ¢ in S,,. To finish the
proof we need to show that the collection of maps {F(¢(y)) — F(Ey)}yey exhibits F(E,)
as the colimit of the diagram ¢ := F o p: Y — D. Consider the lax commutative diagram

p
ELPHYH*

7| 7 (2.2)
F) F(E,)

D

where the left diagonal functor is the constant functor with value F(x), and the right diagonal
functor sends the point to F(E,). By our assumption for every y € Y the collection of maps
{F(i.): F(x) — F(e(y)) }zep(y) exhibits ¢(y) = F(e(y)) as the colimit in D of the constant
¢(y)-indexed diagram with value F(x). Identifying ¢(y) with the homotopy fiber of p: E, —
Y over y we may conclude that left lax triangle in (2.2) exhibits ¢»: Y — D as a left Kan
extension along p: E, — Y of the constant diagram E, — D with value F(x). Similarly, our
assumption implies that the collection of maps {F(i.): F(¥) — F(E,)}.cp, exhibits F(E,)
as the colimit in D of the constant E_-indexed diagram with value F(*), and so the external
lax triangle is a left Kan extension diagram as well. It then follows the right lax triangle is
a left Kan extension triangle by the pasting lemma for left Kan extensions. But this exactly
means that the collection of maps {¢(y) — F(E,)}ycy exhibits F(E,) as the colimit in D
of the diagram v : Y — D, as desired. O

2.3. Spans of finite spaces

In the present subsection we introduce the key player of this paper — the span oco-category of
n-finite spaces.
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DEFINITION 2.12. For —2 < m < n let S,,[m] C S, be the wide subcategory containing all
objects and whose mapping spaces are spanned by the m-truncated maps. Then (S,,S,[m])
is a weak co-Waldhausen oco-category, and we will denote by

S, .= Span(S,, S,[m])

the associated span oco-category (see §2.1). We note that S,[—2] is just the maximal
subgroupoid of S,,, and hence S;;? ~ S,,.

REMARK 2.13. Tt follows from [7, Lemma 8.2] that the subcategory inclusion S,, C S/ is
wide (see also Remark 2.5). In particular, if X is a space then any X-indexed diagram in S}
comes from an X-indexed diagram in S,.

Our first goal is to verify that S, admits IC,,-indexed colimits. By Remark 2.13 any diagram
in S indexed by a space comes from a diagram of the same form in S,,. The main step in
constructing KC,,-indexed colimits in S;* is hence incorporated in the following statement.

PROPOSITION 2.14. For every —2 < m < n the subcategory inclusion S,, — S,' preserves
K,,-indexed colimits.

Proof. By Proposition 2.11 it will suffice to show that for every X € S, the collection of
morphisms {i,: * — X },cx exhibit X as the colimit of the constant diagram {*},cx in S).
Equivalently, we need to show that given any test object Y € 8", the map

Mapgm (X,Y) — Mapg(X, Mapgm (*,Y))

determined by the collection of restriction maps i, o (—): Mapgn (X,Y) — Mapgn (%, Y) is
an equivalence of spaces. Let px: X X Y — X denote the projection on the first coordinate.
By Remark 2.4 we may identify Mapg,.(X,Y’) with the full subgroupoid of ((S.),xxy)~

spanned by those objects Z — X x Y such that the composite map Z — X x Y 25X
is m-truncated. Under this equivalence, the restriction map i, o (—) is induced by the
pullback functor Z:z}XY 1 (Sn)/xxv — (Sn) {2} xy - Now by the straightening—unstraightening
equivalence the collection of pullback functors i’fm}x () S/xxy — & induces an equivalence
of co-categories

St: S/xxy — Fun(X x Y,S).

Using straightening—unstraightening again and the equivalence Fun(X xY,S) ~
Fun(X, Fun(Y, S)) we may conclude that the collection of pullback functors i?m}XY 1S xxy —
S/zyxy induces an equivalence of oo-categories

Stxi S/X><Y i) FUH(X,S/y),
and hence an equivalence on the corresponding maximal subgroupoids
St;l (S/Xxy)g i) FUH(X, S/y): ~ Map(X, (S/Y):)

Given an object Z — X x Y in (S,xxy)~, the condition that the composite map Z —
X xY 2% X is an m-truncated map is equivalent to the condition that the essen-
tial image of St%(Z): X — (S;y)~ is contained in ((S,,);y)~. Furthermore, since X
is n-truncated this condition automatically implies that Z is n-truncated. Identifying
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((Sm)/v)™ with Mapg. (+,Y") we may then conclude that the collection of pullback functors
i’fm}xy: (Sn)/xxy — (Sn)/{m}xy induces an equivalence of co-groupoids

Mapg, (X,Y) — Map(X, Mapg.. (+,Y)),
as desired. O

COROLLARY 2.15. For every —2 < m < n the co-category S, admits KC,,-indexed colimits.
Furthermore, if F: S — D is any functor then F preserves K, -indexed colimits if and only
if the composed functor S, — S)' — D preserves K,-indexed colimits.

Proof. Combine Proposition 2.14 and Remark 2.13. (]

2.4. Symmetric K,,-monoidal co-categories

In this subsection we will discuss symmetric monoidal structures and actions which are
compatible with C,,-indexed colimit. These will play a recurring role in the present paper,
notably by allowing us to view n-semiadditivity in terms of actions of S;’. To begin, recall
that by [14, corollary 4.8.4.1] the oo-category Catx, of small co-categories with kC,-indexed
colimits carries a symmetric monoidal structure Cat%n — N(Fin,). For C,D € Catg, the
tensor product C ®i, D admits a map C x D — C @, D from the cartesian product and
is characterized by the following universal property: for every oo-category £ € Catx, the
restriction

Fung, (C ®x, D,€) — Fun(C x D, £)

is fully faithful and its essential image is spanned by those functors C x D — &£ which preserve
KC,,-indexed colimits in each variable separately. In particular, we may identify commutative
algebra objects in Catx, with symmetric monoidal oco-categories which admit K, -indexed
colimits and such that the monoidal product preserves K,-indexed colimits in each variable
separately. We will refer to oo-categories equipped with such a structure as symmetric
K, -monoidal co-categories.

By [7, Theorem 1.3(iv)]) the cartesian monoidal product on S,, induces a symmetric monoidal
structure on S}, which is given on the level of objects by (X,Y) — X x Y, and on the level
of morphisms by taking levelwise cartesian products of spans. We remark that this monoidal
structure on S is not the cartesian one.

ProprOSITION 2.16. The symmetric monoidal product S x S)* — S]' preserves
K -indexed colimits in each variable separately.

Proof. We have a commutative diagram

SXSE<=—-38, xS, —=85'x 8"

b

S Sn S';Tlu

where the left and middle vertical maps are the respective cartesian product and right vertical
map is the one induced by the cartesian product on span co-categories. Since cartesian products
in § preserve colimits in each variable separately and the inclusion S,, — & preserves products
and KC,,-indexed colimits (Lemma 2.9) we get that cartesian products in S,, preserve ,,-indexed
colimits in each variable separately. Since the functor S,, — S]" is essentially surjective the
desired result now follows from Remark 2.13 and Proposition 2.14. (]
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Proposition 2.16 and Corollary 2.15 now imply the following.

COROLLARY 2.17. The oo-category S, together with its symmetric monoidal structure
determines a commutative algebra object in Cat%n.

In what follows we will frequently consider the scenario of an oco-category with IC,,-indexed
colimits D which is acted upon by a symmetric K,-monoidal co-category C, requiring that the
action preserves IC,,-indexed colimits in each variable separately. Equivalently, D is a module
over C in the symmetric monoidal oco-category Catx,. More generally, it will occasionally be
useful to also consider not necessarily symmetric IC,,-monoidal co-categories, that is, associative
algebra objects in Cati,,, and their left and right actions on a given D € Catg,, . We now
summarize a few useful constructions which will be employed in the paper in order to produce
such structures.

CONSTRUCTION 2.18 (Functor categories). An important feature of the monoidal structure
on Cati, is that it is closed, that is, for every C € Catx, the functor C ®x, (—): Catx, —
Catx, admits a right adjoint Func, (C,—): Cat — Cat, given by the formation of C,,-colimit
preserving functor categories. By [4, Corollary 7.4.9] we may consequently consider Catyx,
as enriched over itself in the sense of [4], such that for C,D € Caty, the object of maps
from C to D is Fung, (C, D) € Caty, . In particular, restricting the space of objects to a point
{D} C Catg, we see that the mapping object Funy, (D, D) carries a canonical structure of
an associative algebra, that is, a monoidal structure, which on the level of objects is given by
composition of functors. Similarly, for every D, € Catx, the mapping object Fung, (D,E)
carries a left action of Funk, (D,D) and the mapping object Funy, (€, D) carries a right
action of Fung, (D, D). In particular, Fung, (S, D) ~ D carries a right action of Funk, (D, D)
for every D € Fung, (D). The K,-monoidal oo-category Fung, (D,D) is universal among
KC,-monoidal co-categories acting D in the following sense: for every IC,,-monoidal co-category
C € &, restriction of action induces an equivalence between the space of monoidal functors
C — Fung, (D, D), and the space of right actions of C on D in Catg,; see [14, Corollary
4.7.1.40].

CONSTRUCTION 2.19 (Pre-composition and post-composition actions). If C is a
Kp-monoidal oo-category acting on D € Caty, from the right, then for every £ € Caty
we have an induced right action of C on Fung, (£,D) and an induced left action of C on
Fung, (D, &), which are restricted from the respective actions of Fung (D, D) via the monoidal
functor C — Fung, (D, D) classifying the right action of C on D. We will refer to these actions
the associated pre-composition and post-composition actions, respectively.

CONSTRUCTION 2.20 (Local systems). For a space X and an co-category D, we will refer
to functors X — D as D-valued local systems on X. We will denote by

D¥ .= Fun(X, D) ~ lim D

the oo-category of D-valued local systems on X. Here the last term denotes the limit of the
constant X-indexed diagram with value D, and the equivalence results from the description of
limits in Catno; see [13, Corollary 3.3.3.2]. If D belongs to Cat, then, as the inclusion Caty, <
Cat,, preserves and detects limits, we have that DX € Catx, and is the limit of the same
constant diagram there. Similarly, if D is a symmetric K,,,-monoidal oco-category, then, since
the forgetful functor Alg..,,(Catx,) — Catg, preserves and detects limits, we can compute
the limit defining D~ in Alg. (Catr, ), and consequently promote D¥ to a symmetric K,,-
monoidal oco-category. Its monoidal product is then the pointwise product. Similarly, if D is a
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symmetric /C,,-monoidal co-category acting on £ € Caty, then the co-category £ inherits an
action of the symmetric monoidal co-category DX, which is given pointwise by the action of
D on &. Indeed, this can be obtained either by identifying pairs of an algebra and a module
over it with algebras over the algebra-module operad MCom (see, for example, [8, §5]), or,
alternatively, use the fact that the association D — DY is lax monoidal, being the composition
of the monoidal functor Catx, — Fun(X, Cati, ) given by restriction along X — *, and its
canonically lax monoidal right adjoint.

3. Ambidexterity and duality

DEFINITION 3.1. Let D be an oo-category and —2 < m an integer. Following [9], we will
say that D is m-semiadditive if D admits /C,,-indexed colimits and every m-finite space is
D-ambidextrous in the sense of [9, Definition 4.3.4].

Informally speaking, m-semiadditive oo-categories are oo-categories in which /C,,-indexed
colimits and limits coincide. The reason we do not recall [9, Definition 4.3.4] in full is that it
requires a somewhat elaborate inductive process in order to define the maps which induce the
desired equivalence. However, if D is an oco-category with kC,,,-indexed colimits which admits a
compatible action of S, then we will see below that the condition that D is m-semiadditive
can be expressed rather succinctly (see Proposition 3.16 and Corollary 3.17). On the other
hand, the main result of this paper (Theorem 4.1 below) implies in particular that any (m — 1)-
semiadditive co-category which admits /C,,,-indexed colimits is of this form, and so this approach

can be considered as an alternative way to define higher semiadditivity.

EXAMPLES 3.2. (i) Any oo-category is (—2)-semiadditive.

(ii) An oo-category D is (—1)-semiadditive if and only if it is pointed, that is, contains an
object 0 € D which is both initial and final.

(iii) An oco-category D is O-semiadditive if and only if it is pointed, admits finite coproducts,
and for every X,Y € D the maps X [[Y — X and X [[Y — Y induced by the terminal
maps Y — 0 and X — 0, respectively, exhibit X [[Y as the product of X and YV in D.

(iv) Every stable co-category is 0-semiadditive.

(v) Let D be an oo-category which admits finite products. Then the oo-category of
Eo.-monoid objects in D is 0-semiadditive (see §5.2).

(vi) For any prime p and integer n > 0, the oo-category of K(n)-local spectra is m-
semiadditive for any m (where K(n) denotes the Morava K-theory spectrum at height
n). This is the main result of [9].

(vii) For any prime p and integer n >0, the oo-category of T'(n)-local spectra is
m-semiadditive for any m (where T'(n) denotes the telescope of a finite p-local type n spectrum).
This is the main result of [2].

(viii) For every —2 < m < n the oo-category S/ is m-semiadditive (see Corollary 3.19
below).

(ix) The oo-category Catx,, of small co-categories which admit /C,,-indexed colimits is
m-semiadditive (see Proposition 5.26).

(x) If D is m-semiadditive then D°P is m-semiadditive.

For a space X, recall from Construction 2.20 the co-category DX = Fun(X, D) of D-valued
local systems on X. Given a map f: X — Y of spaces we will denote by f*: DY — DX the
associated restriction functor. If D admits K,,-indexed colimits and the homotopy fibers of f
are m-finite then f* admits a left adjoint fi: DX — DY given by left Kan extension. If in
addition D is m-semiadditive then f, is also right adjoint to f*. We will say that a natural
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transformation w: Id = fif* exhibits f as D-ambidextrous if it is a unit of an adjunction
Vil (P

In this section we fix an integer m > —1 and consider the situation where D is an co-category
satisfying the following properties:

HyPOTHESIS 3.3. (i) D admits K,,-indexed colimits.

(ii) D is (m — 1)-semiadditive.

(ili) D admits a structure of an S !-module in Catx, . In other words, there is an action
of the monoidal co-category S™~! on D such that the action map S7~! x D — D preserves
K -indexed colimits in each variable separately.

As described in Construction 2.18, the action of S~ ! on D yields a monoidal action functor

S~ — Fung, (D, D) X = [X], (3.1)

for which we adapt the notation of [9]. Similarly, given a map f: X — Y we will denote by
[f]: [X] = [Y] the induced natural transformation.

Let us now fix an oo-category D satisfying Hypothesis 3.3. Our goal in this section is to show
that if f: X — Y is an (m — 1)-truncated map of m-finite spaces, then a unit transformation
u: Id = fif* exhibiting f as D-ambidextrous can be written in terms of the 8™~ !-action on D
(see Lemma 3.11). We will use this description in order to give an explicit criteria characterizing
those D satisfying 3.3 which are also m-semiadditive (see Proposition 3.16 and Corollary 3.17).

Let X € S~ ! be an object. Recall that for a point € X we denote by i,: * — X the
map in S,,, € 8™~ ! which sends * to the point z. By Proposition 2.14 and Proposition 2.11,
for any object Z € D the collection of induced maps

[i]p: [¥](2) — [X](2)
exhibits [X](Z) as the colimit in D of the constant X-indexed diagram with value [%](Z) =

Z. Letting Z vary we obtain that the maps [i,]: [¥] = [X] exhibit [X] as the colimit in
Fung, (D,D) of the constant diagram {Id},cx. In particular, we may identify the functor

[X] with the composed functor D L pX 2y D where p: X — * is the terminal map.

LEMMA 3.4. Let D be as in Hypothesis 3.3, let X be an m-finite space and let p: X — x
be the terminal map in S,,, (which we naturally consider as a map in S~ 1). Then the natural
transformation

pip” ~ [X] B [x] ~1Id

is a counit exhibiting p;: DX — D as left adjoint to p*: D — DX.

Proof. If X is empty then [X] is initial in Fung, (D, D), and since such a counit exists it
must be homotopic to [p]. We may hence suppose that X is not empty. Since p; is left adjoint
to p* the desired claim is equivalent to the natural transformation [p]*?: p* = p* adjoint to
[p]: pp* = Id being an equivalence. We note that to specify a natural transformation p* = p*
is the same as giving an X-indexed family of natural transformations Id = Id from the identify
functor Id € Fung, (D, D) to itself. Now given a natural transformation T': [X] ~ pip* = Id,
the adjoint transformation 7?1 : p* = p* is given by the composite

* up” * * p T *
p =ppp —p,

where the first map is induced by the unit w: Id = p*p,. Concretely, for Z € D the map
up™: p*Z — p*pip*Z ~ p*[X]Z is given by the X-indexed family of maps [i,]: Z — [X]Z.
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It then follows that for T as above the adjoint natural transformation 7%¢: p* = p* is given
by the family {7 o [i,]: Id = Id},ex. Taking now T = [p] we see that since poi,: x — * is
an equivalence in S™~! the map [p] o [i,]: Id — Id is an equivalence for every z € X. It then
follows that the adjoint natural transformation [p]*!: p* = p* is an equivalence, and so [p] is

equivalent to the counit pip* = 1Id, as desired. ([l

DEFINITION 3.5. Given a map f: X — Y in §,,_1, let us denote by f: Y — X the
morphism in 87! determined by the span

X .
RN
Y X
We will refer to f as the dual span of f.

LEMMA 3.6. Let D be as in Hypothesis 3.3, let X be an (m — 1)-finite space and let
p: X — * be the terminal map in S,,,_1. Then the natural transformation

Id =~ [*] g [X] =~ pp*

is a unit exhibiting py as right adjoint to p*, where p: x — X is the span dual to p (see
Definition 3.5). In other words, it exhibits p: X — x as D-ambidextrous.

Proof. Since X is D-ambidextrous there exists a compatible pair of unit u,: Id = pp* and
counit vy : p*pr = Id which exhibit p as right adjoint to p*. We will show that [p] is equivalent
to ux in the arrow category of Funy, (D, D). Following Hopkins—Lurie [9, Notation 5.1.7], let
us define the trace form TrFmy : [X] o [X] = Id as the composite

(0p*) (pip*) = pr(p*p)p* B2 ppr =255 1d

where ¢x is a counit exhibiting p, as left adjoint to p*. Since D is assumed to be (m — 1)-
semiadditive, [9, Proposition 5.1.8] implies that the trace form exhibits [X] as self-dual
in the monoidal oo-category Fung (D, D). It will hence suffice to compare the natural
transformations [X] = Id which are dual to uyx and [p], respectively. Calculating the dual

for ux we get the composite
X]ug TrF
[x] 2, o Id
R R I
pp* B2 pptpipt B pip BEN Id,

[X] o [X]

where the composite of the first two arrows in the bottom row is homotopic to the identity
by the triangle identities for the unit-counit pair ux,vy. We then conclude that the dual of
ux is ¢x: [X] = pp* = Id. To calculate the dual of [p] we note that the action functor (3.1)
is monoidal and sends X to [X]. Since X is (m — 1)-finite it is already self-dual in ST~ (cf.
Remark 3.15). It follows that the dual of [p] is the image of the dual of p in S7~!, which is

given by the image in 8™ ~! of the terminal map p: X — * of S,,,. It will hence suffice to show

that [p] is equivalent to ¢x in the arrow category of Funx (D, D). Indeed, this was established
in Lemma 3.4. O

DEFINITION 3.7. Given an (m — 1)-truncated map f: X — Y of m-finite spaces let us
denote by Sty: Y — S the diagram obtained by applying to f the straightening construction
(see [13, §2.1]). Informally, St;: Y — S sends y € Y to the homotopy fiber X, of f
over y. Since f is (m — 1)-truncated every homotopy fiber X, is (m — 1)-finite and we
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1135

may consequently consider Sty as a functor ¥ — S,,,_1. Using the subcategory inclusions
Sno1CS, €8 ! we may further consider Sty as a functor ¥ — Sm—1 that is, as an
S~ 1valued local system. To avoid confusion we will use the notation Sty: ¥ — 87! to
denote the straightening of f when considered as taking values in S7 1.

CONSTRUCTION 3.8. Let f: X — Y be an (m — 1)-truncated map of m-finite spaces and
let Sty: Y — 871 be its straightening as in Definition 3.7. The action of S7'~! on D induces
a pointwise action of (8§7~1)Y on DY (see Construction 2.20). In particular, the action of
Sty € (Sm~1)Y determines a functor

[Stf]: DY — DY,

given informally on a local system £ € DY by the formula

[Sts](£)(y) = Sty (y)(L(y)) = [X,](L(y))-

LEMMA 3.9. Let D be as in Hypothesis 3.3 and let f: X — Y be an (m — 1)-truncated
map of m-finite spaces. Then there is a natural equivalence

[Sty] ~ fif*

of functors DY — DY .

Proof. Consider the base change g: X xy X — X of f along itself. Then the diagonal
map 6: X — X Xy X determines a section of g, which we can consider as a map of spaces
over X. Applying the straightening construction as in Definition 3.7 over the base X we obtain
a natural transformation

Sts: Strq ~ * :>§g,

from the straightening of the identity Id: X — X (which is the constant diagram with value
*) to the straightening of g: X xy X — X. The latter, in turn, is naturally equivalent to the
restriction along f: X — Y of Sty: Y — 87!, by the compatibility of unstraightening with
base change (see [13]). Applying Construction 3.8 we obtain a natural transformation

[Sts): 1d = [St,) = [£°5t/] (3.2)

of functors from DX to DX. We now observe that since the action of (S7~1)¥ on DY is
pointwise induced by the action of S~ on D we have for x: Y — 8™~ a commutative
square

DY L) DX

[X]l l[f*x]

DY L> DX

in which the left vertical arrow is the action of x and the right vertical arrow is the action of
f*x=xof: X — 87~ With this in mind for x = St; we now pre-compose (3.2) with the
restriction functor f*: DY — DX to obtain a natural transformation

6ot f* = [fStglo f* = f* o [Stf)

of functors DY — DX . For a local system £ € DY, the component at £ of §, is a map

oc: f1(L) = fH([Str1L).
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of D-valued local systems on X. To finish the proof it will now suffice to show that ¢, exhibits

[St¢]L as the left Kan extension of f*(£): X — D along f. Indeed, by the pointwise formula
for the left Kan extension we need to check that for every y € Y the diagram

X, —D
which sends the cone point to [X,]£(y) and sends the point = € X, C X7 to L(y) (equipped
with the map to [X,]L(y) determined by x € X)) is a colimit diagram in D. But this follows
directly from our assumption that the action of S”~! on D is compatible with K, _;-indexed

m
colimits, since the collection of maps i,: * — X, for x € X, exhibit X, as the colimit in

Sm=1 of the constant X,-indexed diagram with value % (by Proposition 2.14). (]

Let us now fix an (m — 1)-truncated map f: X — Y between m-finite spaces. Consider the

commutative diagram of spaces
X
N
Y X
N
Y

as a span in (S,,)/y. Applying the straightening construction over ¥ and using the assumption
that f is (m — 1)-truncated we obtain a span of the form

Stf
St1d, Stf

in the oo-category (S,,_1)¥, which we can consider as a map
gldy — §f

of 8™~ 1_valued local systems on Y. Applying Construction 3.8 and using Lemma 3.9 we then
obtain a natural transformation

[fly: Id =~ [Stia, ] = [Sty] >~ fif* (3.3)

of functors DY —s DY .

LEMMA 3.10. Let D be as in Hypothesis 3.3. Then for every (m — 1)-truncated map
f: X — Y of m-finite spaces the natural transformation [f]: [Y] = [X] associated to the

span f: vy <& x M X of Definition 3.5 is homotopic to

Y] ~ qq* %Q!f!f* * o~ [X],

where q: Y — * is the terminal map and [f]y is the natural transformation (3.3).

Proof. Since q is given by taking the colimit along Y and the action map S ! —

m

Fung,, (D, D) preserves K,,-indexed colimits it will suffice to show that the span f =[Y J

x 4 X] is the colimit in 87! of Styq +— St; —> St, considered as a Y-indexed family of

m
morphisms in S~ 1. Now since Y is m-finite the oo-category (S,,,)¥ of S,,-valued local systems
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on Y is equivalent by the straightening—unstraightening construction to the slice co-category
(Sm) /v, while the oo-category (S7~1)Y of S~ !-valued local systems on Y is equivalent in
the same manner to the generalized span co-category of (S,,),y with respect to the weak co-

Waldhausen structure (Sm);y C (Sm) /vy consisting of the (m — 1)-truncated maps in (S,,),y-

In addition, since K,,-indexed colimits in S™~1 are the same as the corresponding colimits in
S, (Proposition 2.14), the colimit functor (S7~1)¥ —s S™~! corresponds to the functor

Span((Sm) /v, (Sm)ly) — Span(S,n, Synlm — 1))

induced by the forgetful functor (S,,);y — S, (which respects the weak co-Waldhausen
structures on both sides). The desired claim is then simply a consequence of the fact that,
since unstraightening is inverse to straightening, the span Stiq <— Sty — St; unstraightens

toY ¢ x 14 x. O

LEMMA 3.11. Let D be as in Hypothesis 3.3. Then for every (m — 1)-truncated map

f: X — Y between m-finite spaces the natural transformation [f]y: Id = fif* of (3.3)
exhibits f as right adjoint to f*. In other words, it exhibits f as D-ambidextrous.

Proof. Let Lx: X — D and Ly: Y — D be two local systems. We need to show that

the composite map
N . (—)elf)
a: Map (f*Ly, Lx) —Mapy (fif*Ly. filx) ——= Mapy (Ly, filx)

is an equivalence. By [9, Lemma 4.3.8] it is enough to prove this for objects of the form
Ly = (iy)1Z where i,: {y} — Y is the inclusion of some point y € Y and Z is an object of D.
Since (i, ) is left adjoint to the restriction functor iy : DY — D this is the same as showing
that for every y € Y the composed natural transformation

uy i3 [fly (iy) e s

exhibits iy fi as right adjoint to f*(i, )i, where u, is the unit of the adjunction (i, ) 4 ;. Now

by the definition of the functor [Sts] (see Construction 3.8) we have a natural equivalence

(3.5)

iy [Sty] = [Xy )i,

of functors DY — D. Identifying [St;] with fif* via Lemma 3.9 we see that this is just an
incarnation of the fact that left Kan extensions are determined pointwise. The latter fact is
best phrased via the Beck-Chevalley transformation 7,: ( fy)!z'j(y = 1, /i associated to the
cartesian square

iXy
— X

Xy

fyi f (3.6)
{y} T Y.

Indeed, by [9, Proposition 4.3.3] the transformation 7, is an equivalence, asserting, in effect,
that the value of the left Kan extension fi£ at a given point y is the colimit of £ restricted to
the homotopy fiber X,. In this formalism the equivalence (3.5) is obtained by composing the
equivalences

Ty—l f*

i fif === (fyhik, [ == (fyhf;i}.
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1138 YONATAN HARPAZ

Now by the compatibility of the straightening—unstraightening equlvalence with base change we
see that under the equivalence (3.5) the natural transformation iy [ fly: iy = iy [Sty] identifies

with the natural transformation [f,]i* iy iy = [Xy]iy. In other words, we have a commuting
square of the form

in i Se= (fy)'lx fr

i myw ﬂ~

K srad [Fylis (Fudyiy

in the oo-category Fun(DY, D). Pre-composing with the functor (i, ) we obtain the top square
in the diagram

i A Gy ) < (£ )i £ (i)
i;[fwy»ﬂ ﬂ:
. . [fy]iZ(iy)! . .
i (i ) s (£ ) 3% i)
uﬂ ﬂ(fy»f;uy
1 o] Fn(f)"

in the co-category Fung,, (D, D), where u,: Id = 4; (i) is the unit of the adjunction (i, ), 4
In particular, we can identify the composed transformation

*
Y-

u i3 [fTy (i)
Id =2 7 (i )1 —=— i fif (i) (3.7)
with the composed transformation
[f,] . o DR
A= (f ) fy == (f)i i (i) == (fy )i, £y === i fif* (i), (3.8)

Now the transpose of the square (3.6) also has a Beck—Chevalley transformation
oyt (ix, )1fy = f*(iy)1, which (see [9, Remark 4.1.2]) is given by the composition of
transformations

(iXy)!f;“y

) . . .l ~ . e e v, (i)
(ix,)f) =———= (ix, )1 f;i,(iy) == (ix, ik [*(iy)) =——

Applying [9, Proposition 4.3.3] again we get that o, is an equivalence. Let ux, : Id =
sz( x,)1 be a unit transformation compatible with the counit vx, above. Then the com-
patibility of ux, and vy, implies that (3.8) (and hence (3.7)) is homotopic to the composed
transformation

o ok ly ()i, Gix, Sy = i i (i) (3.9)

(fy) Iy

Comparing now (3.7) and (3.9) we have reduced to showing that

[fy (fy) 'quf;

= (fy)f; (fyhix, (ix, 1 fy
exhibits (fy )i~ as right adjoint to (ix,)if;. But this just follows from the fact that uy, is

the unit of (ix,); ik by construction and | fy] exhibits (f,) as right adjoint to (f,)*
Lemma 3.6. \ O

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1139

CONSTRUCTION 3.12. Let X € S, be an m-finite space. We will denote by §: X —
X x X the associated diagonal map. Let w1, m5: X X X — X be the two projections and let
ox: (m w5 = ¢*q be the Beck—Chevalley transformation associated to the cartesian square

Xx X2 s

X
& (3.10)

o
X q

By [9, Proposition 4.3.3] the transformation ox is an equivalence. Let [0]xxx: Id — (8)16*
be the natural transformation (3.3) for the map 6. We will then denote by

X [8]X><X

Vgt ¢Fq :;(> (m1 )15 =——==> (m2)1(0)10*(m1)* = Idold ~ 1Id
the composed natural transformation.

OBSERVATION 3.13. Let D be as in Hypothesis 3.3. Let X € S,,, be an m-finite space and
q: X — * the terminal map. Then X is D-ambidextrous in the sense of [9, Definition 4.3.4] if
and only if the natural transformation v,: ¢*q = Id of Construction 3.12 is a counit exhibiting
q* as left adjoint to ¢.

Proof. Since D is assumed to be (m — 1)-semiadditive we have that X is automatically
weakly ambidextrous in the sense of [9]. We hence just need to identify the natural transfor-
mation v, with the natural transformation U,Sm) appearing in [9, Construction 4.1.8]. Comparing

the respective definitions we see that it will suffice to show that the natural transformation
2 (m—1) ,

O]xxx: Id — (6)16" is homotopic to the natural transformation jig : Id — (6),6*
appearing in [9, Construction 4.1.8]. But this now follows from the uniqueness of units since
both natural transformations exhibit ¢ as right adjoint to ¢* (Lemma 3.11). O

DEFINITION 3.14. Let X be an m-finite space. We will denote by trx: X x X — % the

morphism in S™~! given by the span
X
RN

X xX *,

where §: X — X x X, as above, is the diagonal map.

REMARK 3.15. Let X € St and trx: X x X — % be as in Definition 3.14. If we consider

m

X as an object of the larger (symmetric monoidal) oco-category S, then trx exhibits X as

self-dual. To see this, observe that in S the dual span try: % +— X % X x X exists as

well, and the pair try and try form a compatible pair of evaluation and coevaluation maps
exhibiting X as self-dual. More precisely, the compositions

XXtAI‘X trx xX

X X X x X Y x
and
XN X x X X

are both homotopic to the identity.
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1140 YONATAN HARPAZ

Having an action of S~ ! on D means in particular that for every X € S,, we are equipped
with an equivalence my: [X x Y] ~ [X] o [Y]. Since the action of S™~! is compatible with
Km-indexed colimits we have a canonical equivalence [X] ~ colim,c x Id and the map my is
completely determined by m,: Id ~ Id oId via the canonical ‘Fubini map’

colim Id = colim colimId .
(z,y)EX XY zeX yey
The latter can be described in terms of the Beck—Chevalley transformation ox y : (mx)imy =
g% (gv )1 associated to the cartesian square

XxY 2oy
WXJ/ J{qy (3.11)
*.

X —
ax

The Fubini map, and hence mx y, can then be the identified with the map

(gx)i10x,vay

mxy: [X xY] =QiQ* = (qx)1(mx 17y-q5 (ax hax (ay hay = [X] o [Y], (3.12)

where QQ: X XY — x is the terminal map.

PROPOSITION 3.16. Let D be as in Hypothesis 3.3. Then D is m-semiadditive if and only if
for every X € D the natural transformation

[X] 0 [X] =% [X x X] 1l g (3.13)
exhibits the functor [X]: D — D as self-adjoint.

Proof. By Lemma 3.10 and (3.12) we may identify the composed natural transforma-
tion (3.13) with the composed natural transformation

[(X]o [X] ~qq g % Qg ~ [X] % [*] = Id,

where v, is defined as in Construction 3.12. Identifying v, with the natural transformation
vé’”) of [9, Construction 4.1.8] as in the proof of Observation 3.13 and using Lemma 3.4 to
identify [¢]: qi¢* = Id as a counit exhibiting ¢ as left adjoint ot ¢* we may conclude that the
natural transformation (3.13) is homotopic to the trace form associated to the map ¢q: X — x
by Hopkins-Lurie [9, Notation 5.1.7]. By [9, Proposition 5.1.8] we then get that (3.13) exhibits
[X] as self-adjoint if and only if the natural transformation v,: ¢*¢r — Id is a counit of an

adjunction, and so if and only if X is D-ambidextrous (Observation 3.13). g

The following three corollaries summarize the main conclusions we wish to withdraw from
the present section.

COROLLARY 3.17. Let D be as in Hypothesis 3.3. Then D is m-semiadditive if and only if the
collection of natural transformations [i,]: [X] = [#] exhibits [X] as the limit, in Fung,, (D, D),
of the constant X -indexed diagram with value [%] (here the morphism i,: X —  in S ' is
as in Definition 3.5).

Proof. By Proposition 3.16 it will suffice to show that the collection of natural transfor-
mations [i;]: [X] = [#] exhibits [X] as the limit in Fung, (D, D) of the constant X-indexed
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diagram with value [] if and only if [trx] o my'y : [X] o [X] = Id exhibits [X] as self-adjoint.
Let G: D — D be any other functor and let ag be the composed map

[trx]om;()lxo(—)

ag: Map(d, [X]) —= Map([X] e G, [X] o [X]) Map([X]  G.1d) .

Recall that the collection of natural transformations [i,]: [*] = [X] exhibits [X] as the colimit
in Fung, (D, D) of the constant X-indexed diagram with value []. Since colimits in functor
categories are computed objectwise it follows that the natural transformations [i,] o G: [*] o
G = [X] o G exhibit [X] o G as the colimit in Funk, (D, D) of the constant X-indexed diagram
with value [#] o G ~ G. We may hence identify a map [X] o G = Id with a collection of natural
transformations 7, : G = Id indexed by x € X. Since the map io: X —> * is equivalent to the
composition X = X X % % ¥ X % & we sce that the map ag associates to a natural
transformation 7: G — [X] the collection of natural transformations [i,] o 7: G — [%] ~ Id.
It hence follows that the collection of natural transformations [i,]: [X] = [+] exhibits [X] as
the limit in Fung, (D, D) of the constant X-indexed diagram with value [#] if and only if ag
is an equivalence for every G, that is, if and only if [trx] o my'y: [X] o [X] = Id exhibits [X]
as self-adjoint. ' O

COROLLARY 3.18. Let D be an oo-category which admits an action of S]] such that the
action functor 8" x D — D preserves K,,-indexed colimits separately in each variable. Then

m

D is m-semiadditive.

Proof. Let us prove that D is m’-semiadditive for every —2 < m’ < m by induction on
m’. Since every oo-category is (—2)-semiadditive we may start our induction at m’ = —2.
Now suppose that D is m’-semiadditive for some —2 < m’ < m. As above let us denote by
[X]: D — D the action of X € S;?,/_l. By Proposition 3.16 it will suffice to show that the
morphism (3.13) exhibits the functor [X] as self-adjoint. But this follows from the fact that the
action of S::f,/*l extends to an action of S;’j,/, and the morphism trx: X x X — * exhibits X
as self-dual in the monoidal co-category S (see Remark 3.15). g

m/’

COROLLARY 3.19. For every —2 < m < n the co-category S is m-semiadditive.

Proof. Combine Corollary 2.17 and Corollary 3.18. O

4. The universal property of finite spans
In this section we will prove our main result, establishing a universal property for the

oo-categories S)7' in terms of m-semiadditivity.

THEOREM 4.1. Let —2 < m < n be integers and let D be an m-semiadditive co-category
which admits K, -indexed colimits. Then evaluation at * € S)' induces an equivalence of
oo-categories

Fung, (S, D) — D.
In other words, the oo-category S, is the free m-semiadditive oo-category which admits

KCp-indexed colimits, generated by = € S;".

Our strategy is essentially a double induction on n and m. For this it will be useful to employ
the following terminology.

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



1142 YONATAN HARPAZ

DEFINITION 4.2. Let D be an oco-category and let —2 < m < n be integers. We will say that
D is (n,m)-good if the following conditions are satisfied:

(i) D is m-semiadditive and admits /C,,-indexed colimits.
(ii) Evaluation at % induces an equivalence of co-categories

Funi, (8™, D) = D.

In other words, D is (n, m)-good if Theorem 4.1 holds for m,n and D. We may hence phrase
the induction step on n as follows: given an (n — 1,m)-good oco-category D which admits
Kp-indexed colimits, show that D is (n,m)-good. To establish this claim we will need to
understand how to extend functors from S;* ; to S when m < n — 1. Note that if f: 7 — X
is an m-truncated map and X is (n — 1)-truncated then Z is (n — 1)-truncated as well, and so
the inclusion S)' | — S)' is fully faithful. The core argument for the induction step on n is
the following.

ProPOSITION 4.3. Let —2 < m < n be integers. Let D be an oo-category which admits
Kp-indexed colimits and let F: S)* ; — D be a functor which preserves K, _i-indexed
colimits. Let v: S | — S be the fully faithful inclusion. Then the following assertions hold.

(i) F admits a left Kan extension

(i) An arbitrary extension F: 8™ —s D of F is a left Kan extension if and only if F
preserves K, -indexed colimits.

Proof. ForY € S let us denote by
Iy = S{[il XS;FL‘VL (Sm)/y

n

the associated comma oco-category. To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show
that the composed map

fy:Iy —)S;nfl — D

can be extended to a colimit diagram in D for every Y € S;'. Now an object of Zy- corresponds
to an object X € 8" ; together with a morphism X — Y in S}, that is, a span of the form

n

Z
/ X (4.1)
X Y,

where ¢ is m-truncated (and hence Z is (n — 1)-finite). Since )" ; — S is fully faithful the
mapping space from (X, Z, f,g) to (X', Z’, f',¢') in Zy can be identified with the homotopy
fiber of the map Mapg (X, X') — Mapgs..(X,Y) over (Z, f,g) € Mapg. (X,Y). Now let

Jy = 8n-1 %s, (Sn)y
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be the analogous comma oo-category for the inclusion S,,_1 — &,,. Then the inclusions S,,_1 <
S, and S, — 8" induce a functor p: Jy — Iy, and it is not hard to check that p is
in fact fully faithful, and its essential image consists of those objects as in (4.1) for which
g is an equivalence. We now claim that p is also cofinal. To prove this, we need to show
that for every object (X, Z, f,g) € Zy as in (4.1), the comma oo-category (Jy)(x,z.f.q)/ :=
Iy x1y (Ty)(x,2..9), 18 weakly contractible. Given an object h: X' — Y in Jy, we may
identify the mapping space from (X, Z, f, g) to p(X’, h) in Zy with the homotopy fiber of the

map
h.: Mapgn (X, X') — Mapg. (X,Y) (4.2)

over the span (Z, f,g) € Map g (X,Y). Now clearly any span of n-finite spaces from X to X’
whose composition with h: X’ — Y belongs to S already itself belongs to S)7'. We may
hence identify the homotopy fiber of (4.2) with the homotopy fiber of the map

Do ((Sn)/XxX’): - ((Sn)/XxY): (4'3)

over the object (f,g): Z — X x Y. Finally, using the general equivalence C,4xp ~C/4 Xc
C/p we may identify the homotopy fiber of (4.3) with the homotopy fiber of the map

((Sn)yx)= — ((Sn)yv)~ (4.4)

over f: Z — Y. We may then conclude that the functor from Jy to spaces given by (X', h)
Mapz, (X, Z, f,g), p(X', h)) is corepresented by f: Z — Y (considered as an object of Jy ).
This implies that the comma oo-category (Jv)(x,z,fq), has an initial object and is hence
weakly contractible. Since this is true for any (X, Z, f,g) € Zy it follows that p is cofinal,
as desired.

It will now suffice to show that each of the diagrams

]:y‘jytjy — D

can be extended to a colimit diagram. Let Jy, = Jy xs, , {*} C Jy be the full subcategory

spanned by objects of the form x 5 Y. Then Jy- is an co-groupoid which is equivalent to
the underlying space of Y, and the composed functor J;, — Jy — D is constant with value
F(x) € D. Since we assumed that F: S ; — D preserves K,,_1-indexed colimits it follows
from Proposition 2.14 that the restriction F|s, ,: S,—1 — D preserves K,,_1-indexed colimits
and hence by Proposition 2.11 the functor F|s, , is a left Kan extension of its restriction to
the object * € S,,_;. Now since the projection Jy — S,,—1 is a right fibration (classified by
the functor X — Mapg (X,Y)) it induces an equivalence (Jy),(x,n) — (Sn—1),x for every
(X, h) € Jy. We may then conclude that F|z, is a left Kan extension of F| 7, . Since D admits
Kn-indexed colimits (and Jy, is an n-finite Kan complex) the diagram Fy |7, admits a colimit.
It then follows that the diagram Fy|s, : Jy — D admits a colimit, as desired.

To prove (2), note that by the above considerations an arbitrary functor F: S — D is a
left Kan extension of F if and only if the extension (J5-)> — D determined by F is a colimit
diagram. By construction, this means that F is a left Kan extension if and only if for every
Y € 8™ the collection of maps {F(iy): F(x) — F(Y)} ey exhibits F(Y) as the colimit of
the constant Y-indexed diagram with value F(x). It then follows from Proposition 2.11 that
F is a left Kan extension of F if and only if F preserves K,-indexed colimits. O

COROLLARY 4.4. Let —2 < m < n be integers and let D be an oo-category which admits
K.,.-indexed colimits. Then the restriction map

Fung, (S, D) — Fung, _, (S, 1,D)

n—1»

is an equivalence of co-categories.

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



1144 YONATAN HARPAZ

Proof. This a direct consequence of Proposition 4.3 in light of [13, Proposition 4.3.2.15]. O

COROLLARY 4.5. Let —2 < m < n <n’ be integers and let D be an m-semiadditive oo-
category which admits IC,,--indexed colimits. Then D is (n’,m)-good if and only if D is (n,m)-
good.

We will now proceed to perform the induction step on m. We begin with the following lemma.

LEMMA 4.6. Let D be an (m, m — 1)-good oo-category and let F: S7~! — D be a functor
which preserves KC,,-indexed colimits. If D is m-semiadditive then the collection of maps
F(iy): F(X) — F(*) for x € X exhibits F(X) as the limit in D of the constant X -indexed
diagram with value F(x).

Proof. Using the symmetric monoidal structure of S”'~! we may consider S ~! as acting on
itself. Since the monoidal structure preserves IC,,-indexed colimits separately in each variable
(see Proposition 2.16), and since D is (m,m — 1)-good, we may endow Fung, (Sm~1 D) ~
D with an action of 8”~! via pre-composition (see Construction 2.19), which preserves
K.n-indexed colimits in each variable separately. As above let us denote by [X]|: D — D
the action of X € S™~1.

By Corollary 3.17 the collection of natural transformations [i,]: [X] = [#] exhibits [X] as the
limit, in Fung, (D, D), of the constant X-indexed diagram with value [%]. Evaluating at F(x)
we may conclude that the collection of maps [i,](F (%)) : [X](F(x)) — F(*) exhibits [X](F(*))
as the limit in D of the constant X-diagram with value F(x). By construction we may identify
[X])(F (%)) with F(X) and [i,](F(*)) with F(i,) and so the desired result follows. O

We next proceed to the establish the inductive step. As in the proof of 4.3 we will use a Kan
extension argument (though this time it will be a right Kan extension). Since the subcategory
inclusion S™~! C 8™ is not fully faithful this requires a slightly more elaborate setup for which
it will be convenient to make use of the language of marked simplicial sets, as developed by
Lurie [13]. Given an m > —1 let

Cone,, =Sy [ [Sm' x (A")]

Smlxalo}

be the right marked mapping cone of the inclusion ¢: S7~1 < S™. Let

m*
Cone,, — M? 5 Al

be a factorization of the projection Cone,, — (A!)% into a trivial cofibration followed by a
fibration in the cartesian model structure over (A')f. In particular, 7: M — Al is a cartesian
fibration and the marked edges of M® are exactly the r-cartesian edges. Let to: ST <+ M X a1
A1} C M and ¢ Smley M xan At} € M be the corresponding inclusions. Then ¢y and
t1 exhibit r: M — Al as a correspondence from S to S™~! which is the one associated to

the functor ¢: STt — S™.

ProproSITION 4.7. Let D be an oco-category which admits K,,-indexed limits and let
F:8m"1 — D be a functor which satisfies the following property: for every X € Sm~! the

collection of maps F(i,): F(X) — F(x) exhibits F(X) as the limit in D of the constant
X-indexed diagram with value F(x). Then the following assertions hold.
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(i) There exists a right Kan extension

spt—2-p
7

i 7 (4.5)
M

(ii) An extension F: M — D as above is a right Kan extension if and only if F maps
r-cartesian edges to equivalences in D.

REMARK 4.8. An extension F as in (4.5) is equivalent to the data of a functor F': 8 — D
together with a natural transformation 7: F' ov = F (where ¢: 7! — 8™ is the inclusion
as above), and F is a right Kan extension if and only if 7 exhibits F’ as a right Kan extension
of F along ¢. We should hence morally consider Proposition 4.7 as pertaining to right Kan
extensions of F along ¢: S”~! — S8™. In particular, we could have worked directly with
S instead of M at the expense of replacing (4.5) with a diagram which commutes up to a
prescribed natural transformation. We also note that this issue did not arise in Proposition 4.3
since, unlike ¢, the map S ; — 8" appearing in Proposition 4.3 is fully faithful (cf. [13,
§4.3.2,4.3.3]).

Proof of Proposition 4.7. For an object X € S let us set
Ix =M,y x) xmSmt.
To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show that the composed map
Fx:Ix — 8™ ! —D

can be extended to a limit diagram in D for every X € S;’. Now an object of Zx corresponds

to an object Y € S™~! and a morphism 1o(X) — ¢1(Y) in M, or, equivalently, a morphism

X —uY)in Sy t
Z
N ”
X Y
of m-finite spaces.

T, that is, a span
Recall from Definition 2.12 that we have denoted by S,,[m — 1] C S, the subcategory of
S, consisting of all objects and (m — 1)-truncated maps between them. Then we have a
commutative square

Sm|m — 1]°P —— 82

]

m—1 m
—_—
Si Sis

where the vertical functors are the identity on objects and send an (m — 1)-truncated
map f: X — Y to the span Y X 5 X Let Jx = Spu[m — 1]°P xgor (SyP)x/ be the

associated comma oo-category. We will write the objects of Jx as maps X <L Y of m-finite
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spaces, or simply as pairs (Y, g). We note that morphisms from X YV to X &Y are

commutative triangles of the form
h v
\g\\ 7
X

such that h is (m — 1)-truncated. The square (4.7) induces a fully faithful functor p: Jx — Ix
whose essential image consists of those objects as in (4.6) for which f is an equivalence. We
now claim that p is coinitial.

To prove this, we need to show that for every object (Y, Z, f, g) € Zy as in (4.6), the comma
oo-category (JIx)/(v,z.1.9) = Jx Xzx (Ix)/(v.z.t.9) 18 Weakly contractible. Given an object
(Y’,h) in Jx, we may identify the mapping space from p(Y’, h) to (Y, Z, f,g) in Zx with the
homotopy fiber of the map

he: Mapgm—1(Y',Y) — Mapgn (X,Y) (4.8)

Y

over the span (Z,f,g) € Mapg.(X,Y). As in the proof Proposition 4.3 we may iden-
tify these mapping spaces as Maps;x—l(yl,}/) ~ ((Sm[m —1°P)y1 /)™ xs,, ((Sm)/y)™ and
Mapgm (X,Y) >~ ((SpP)x/)™ Xs,, ((Sm)/v)™ and we may identify the homotopy fiber of (4.8)
with the homotopy fiber of the map

ot ((Smlm = 1)y /)= — (S)x/)™ (4.9)

over the object X < Z. We may then conclude that the functor from [Jx to spaces given
by (Y’,h) = Mapz, (p(Y',h),(Y,Z, f,g)) is represented in Jx by the object X <L Z. This
implies that the comma oo-category (Jx)/(v,z,f,) has a terminal object and is hence weakly
contractible. Since this is true for any (Y, Z, f, g) € Zx it follows that p is coinitial, as desired.
It will hence suffice to show that each of the diagrams

fX|JX5JX — D

can be extended to a limit diagram.
Let Jx = Jx Xs,,[m—1)» {¥} C Jx be the full subcategory spanned by objects of the form

X <2 % Then J ' is an oco-groupoid which is equivalent to the underlying space of X, and
the composed functor Js — Jx — D is constant with value F(x) € D. By our assumption
on F it follows that the restricted functor Fls, (m—1]or: Sm[m — 1]°° — D is a right Kan
extension of F| . Now since the projection Jx — S,,[m — 1]°P is a left fibration it induces an
equivalence (Jx)y,n); — (Sm[m — 1]°P)y, for every (Y, h) € Jx. We may then conclude that
F|7x is aright Kan extension of 7|7, . Since D is m-semiadditive it admits K,,-indexed limits
and hence the diagram Fx| 74, admits a limit. It follows that the diagram F x|y Ix — D
admits a limit, as desired.

Let us now prove (2). Let F: M — D be a map extending F. Then for every X € S the
functor F determines a diagram

?Xi j;(] — D
extending F. x| 7y - By the considerations above F is a right Kan extension of F if and only

if each Fx is a limit diagram. Let J¥ C Jx denote the full subcategory spanned by those
objects X «2— Y such that g is (m — 1)-truncated. By the above arguments the functor Fx |71
is a right Kan extension of Fx|7; , and so by [13, Proposition 4.3.2.8] we have that Fy is a
right Kan extension of Fx|z;. It follows that Fx is a limit diagram if and only if Fx|(7y)s
is a limit diagram. Let ¢ € (J¥)< be the cone point. We now observe that the co-category J¥
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has initial objects, namely every object of the form X <2 X’ such that g is an equivalence.
It follows that fx\( )< 1s a limit diagram if and only if Fx sends every edge connecting o
with an initial object of J¥ to an equivalence in D. To finish the proof it suffices to observe
that these edges are exactly the edges which map to r-cartesian edges by the natural map
(J%)? — M, and that all r-cartesian edges are obtained in this way. O

COROLLARY 4.9. Let D be an m-semiadditive co-category. Then the restriction map

Fung, (8™, D) — Fung, (S7 !, D)

m m? m

is an equivalence of co-categories.

Proof. Let r: M% — Al be as above and consider the marked simplicial set D% = (D, M)
where M is the collection of edges which are equivalences in D. For two marked simplicial
sets (X, M), (Y, N) let Fun’((X, M), (Y,N)) C Fun(X,Y) be the full subsimplicial set spanned
by those functors X — Y which send M to N. We will denote by Fun?cm (M5, DF) C
Fun’ (M?, D) and by Fun?cm (Cone,,, D?) C Fun’(Cone,,, D?) the respective full subcategories
spanned by those marked functors whose restriction to S™~! preserves /C,,-indexed colimits.

m
Now consider the commutative diagram of functor categories and restriction maps

Funi,’cm (M5, D)

/ * \ (4.10)

Fun,bcm (Cone,,, D¥) ha Fung, (871, D).

Since the inclusion of marked simplicial sets Cone,, — M is a trivial cofibration in the
cartesian model structure over (A')f it follows that the left diagonal map is a trivial Kan
fibration. On the other hand by Proposition 4.7 and [13, Proposition 4.3.2.15] the right diagonal
map is a trivial Kan fibration. We may hence deduce that ¢} is an equivalence of co-categories.

Since the inclusion S7* < Cone,), is a pushout along the inclusion 87~ x A0} < Sm—1
(A')* (which is itself a trivial cofibration in the cocartesian model structure over A°) it follows
that the map i%: Fun’(Cone,,, D) — Fun(S”, D) is a trivial Kan fibration and that the
composed functor

Fun’ (Cone,,, DY) %— Fun(S!", D) . Fun(Sm—1, D)

is homotopic to i}: Fun’(Cone,,, D') — Fun(S”~!, D). We may consequently conclude
that i) induces an equivalence between Fun?cm(Conem,Dh) C Fun’(Cone,,, D) and the full
subcategory of Fun(S”, D) spanned by those functors whose restriction to S™~! preserves K,,-

indexed colimits. By Corollary 2.15 these are exactly the functors ;) — D which preserves
K-indexed colimits. We may finally conclude that

t*: Fung,, (S™,D) — Fung, (S™ 1, D)

m m? m

is an equivalence of oco-categories, as desired. O

COROLLARY 4.10. Let —1 < m < n integer and let D be an m-semiadditive co-category
which admits K, -indexed colimits. If D is (n, m — 1)-good then D is (n,m)-good.

Proof. By Corollary 4.5 we know that D is (n, m)-good if and only if D is (m, m)-good, and
that D is (n,m — 1)-good if and only if D is (m,m — 1)-good. The desired result now follows
directly from Corollary 4.10. (]
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Proof of Theorem 4.1. We want to prove that if D is an m-semiadditive co-category which
admits K,-indexed colimits then D is (n,m)-good. Let us consider the set A = {(a,b) € Z x
Zla < b} as partially ordered saying that (a,b) < (¢,d) if a < ¢ and b < d. We now note that
for every (—2,—2) < (n’,m’) < (n,m) in A, the oo-category D is m'-semiadditive and admits
K,/-indexed colimits. Furthermore, D is tautologically (—2,—2)-good. It follows that there
exists a pair (—2,—2) < (n/,m) < (n,m) for which D is (n’,m’)-good and which is maximal
with respect to this property. If n’ < n then Corollary 4.5 implies that D is (n’ + 1,m’)-good,
contradicting the maximality of (n/,m’). On the other hand, if n’ = n and m’ < m thenm’ < n’.
By Corollary 4.10 we may conclude that D is (n’,m’ 4+ 1)-good, a contradiction again. It follows
that (n’,m’) = (n,m) and hence D is (n,m)-good, as desired. O

COROLLARY 4.11. Let D be an m-semiadditive oo-category which admits IC,-indexed
colimits for n > m > —2. Then D can be endowed with an action of S)* which preserves IC,,-
indexed colimits in each variable separately. Otherwise put, D has the structure of a module
over S in Cati,, .

Proof. By Theorem 4.1 we have an equivalence D ~ Funy,  (S7*,D) and the latter can
be equipped with the pre-composition action associated to the action of S)* on itself; see
Construction 2.19. O

COROLLARY 4.12. Let D be an oco-category which admits IC,,-indexed colimits. Then D is
m-semiadditive if and only if it admits an action of S]' which preserves K,,-indexed colimits
in each variable separately.

5. Applications

5.1. m-Semiadditive co-categories as modules over spans

As indicated by Corollary 4.12, the theory of m-semiadditive oo-categories exhibits a strong
connection to that of S)’-modules in Cat,, . In this section we will make this idea more precise
by proving a suitable equivalence of co-categories. This equivalence is directly related to the
fact that S) is an idempotent object of Caty , a corollary we will deduce below.

Let Add,, C Caty,, denote the full subcategory spanned by m-semiadditive co-categories.
The discussion above implies that the essential image of the forgetful functor

m )

U: Modsm (Caty,, ) — Catx

m m

is exactly Add,,. We note that U admits a left adjoint F: Catx
by F(D) =S ®x,, D.

— Modsm (Caty,,) given

m

LEMMA 5.1. Let C be an oco-category. Then the unit map

uc:C — S QKm C

m

associated to F 41U is an equivalence on C if and only if C is m-semiadditive.

Proof. If uc is an equivalence then C carries an S;’-module structure and is hence m-
semiadditive by Corollary 3.18. Now assume that C is m-semiadditive. By Corollary 3.18 again
S ®x,, C is m-semiadditive and hence it will suffice to show that for every m-semiadditive

oo-category D the induced map

ue: Fune, (S) ®xk,, C,D) — Fung,, (C,D)
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is an equivalence. Identifying the functor oo-category Fung, (S ®k, C,D) with
Fung,, (S, Fung,, (C,D)) and u} with evaluation at * € S it will suffice, in light of
Theorem 4.1, to show that Funy, (C, D) is m-semiadditive. But this follows from Corollary 3.18
since Funy,, (C,D) carries the pre-composition action of S (Construction 2.19) associated to
the action of S on C given by Corollary 4.11. O

m

LEMMA 5.2. Let C be an S)'-module. Then the counit map
ve: S @, U(C) — C

m

is an equivalence of S)'-modules. In particular, U: Modsm (Catx,, ) — Caty,, is fully faithful.

m

Proof. Since U is conservative it will suffice to show that U(v¢) is an equivalence of oo-
categories. Since the composition

UEe) ™S sm e, ue) s ue)

is homotopic to the identity we are reduced to showing that the functor

Uy(c): U(C) — S Rk, U(C)
is an equivalence. But this now follows from Lemma 5.1 since U(C) is m-semiadditive in virtue
of Corollary 3.18. (]

COROLLARY 5.3. The forgetful functor induces an equivalence of oo-categories
Modsﬁ (Cat;cm) ~ Add,,.

COROLLARY 5.4. The inclusion Add,, — Catx, admits both a left adjoint, given by
D — 8" ®x,, D, and a right adjoint, given by D — Fung (S™, D).

m

COROLLARY 5.5. S is an idempotent algebra object in Caty,, . In particular, the monoidal

m

product map ST @k, SI' —» S is an equivalence.

Since S, is an idempotent algebra object of Caty, the functor L: Catx,, — Catx,, given
by C — S ®x,, C is a localization functor (see [14, Proposition 4.8.2.4]), and the L-local

m
objects are those oco-categories C such that the map C — S ®,, C (induced by the unit
S = 8 is an equivalence, which are exactly the m-semiadditive oco-categories by Lemma 5.1.
In other words, the co-category Add,, is a localization of Catx, with localization functor
S @k, (=)

We will now discuss tensor products of m-semiadditive co-categories.

PROPOSITION 5.6. There exists a symmetric monoidal structure Add%, — N(Fin,) on
Add,, such that the functor F: Catx,, — Add,, given by F(D) =S ®k,, D extends to a
symmetric monoidal functor F® : Ca‘c%m — Add? . In particular, S™ is the unit of Add%.

Proof. This is a particular case of [14, Proposition 4.8.2.7]. O

COROLLARY 5.7. 87 carries a canonical commutative algebra structure making it the initial
object of CAlg(Add,,).

Recall that we refer to commutative algebra objects in Catx,, as symmetric K,,-monoidal co-
categories. These can be identified with ordinary symmetric monoidal oco-categories such that
the underlying oco-category admits /C,,-indexed colimits and the monoidal product preserves
Km-indexed colimits in each variable separately.
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PROPOSITION 5.8. The inclusion Add% — Cat%m is symmetric monoidal. Furthermore the
induced map

R: CAlg(Add,,) — CAlg(Caty,,)

is fully faithful and its essential image is spanned by those symmetric K,,-monoidal
oo-categories whose underlying co-category is m-semiadditive.

Proof. Recall that the symmetric monoidal structure on Add,,, was inherited from Catx, by
identifying Add,, with the localization of Caty  associated to the localization functor £(C) :=

m

S ®x,, C. In this case the inclusion Add,, C Catg,, of local objects is always lax symmetric
monoidal [14, Proposition 2.2.1.9(3)] and is given informally by the formula (C, D) — L(C ®x,,
D). To show that in this case the inclusion is actually symmetric monoidal we need to show
that if C, D are local then C ®,, D is local as well. But this is a direct consequence of the fact
that our localization functor is obtained by tensoring with an idempotent object.

To show the second part of the claim, we note that the symmetric monoidal left adjoint
F: Cat%m — Add® of Proposition 5.6 induces a left adjoint F': CAlg(Catg, ) —
CAlg(Add,,) to R whose value on the underlying objects is given by F. In particular, the
counit of 7' 4R is given by the counit of F < on the underlying co-categories and is hence
an equivalence by Lemma 5.2. We then get that R is fully faithful. Let £ C CAlg(Caty,,)
denote the full subcategory spanned by those symmetric C,,,-monoidal co-categories whose
underlying oco-category is m-semiadditive, so that the image of R is contained in £. To finish
the proof we need to show that every object in £ is in the image of R. For this, it will suffice
to show the unit of 7/ 4R is an equivalence on objects whose underlying oo-category is m-
semiadditive. But this now follows from Lemma 5.1 since the unit of ' 4 R is given by the
unit of F 4 U on underlying co-categories. O

We hence obtain yet another universal characterization of S;7.

COROLLARY 5.9. The symmetric K,,-monoidal co-category S, is initial among those
symmetric KC,,-monoidal co-categories whose underlying co-category is m-semiadditive.

5.2. Higher commutative monoids

In §5.1 we discussed the inclusion of Add,, inside the oco-category Cati,, of oco-categories
admitting /C,,-indexed colimits. But there is also a dual story, when one embeds Add,,
inside the co-category Cat™™ consisting of those co-categories which admit K,,-indexed limits.
Indeed, the symmetry here is complete: the operation D +— D°P which sends an co-category
to its opposite induces an equivalence Catm ~ Caty,, which maps Add,, to itself. We may
hence apply any of the constructions of the previous section to co-categories with IC,,-indexed
limits by ‘conjugating’ it with the operation D +— D°P. From an abstract point of view this
seems to yield no additional interest. However, for one of the procedures above applying this
conjugation yields an interesting relation with the theory of commutative monoids, which is
worthwhile spelling out.

By Corollary 5.4, if D is an oo-category which admits /C,,-indexed colimits, then
the restriction functor r: Fung,  (S7,D) — D exhibits Fung, (S7,D) as the universal
m-semiadditive co-category carrying a kC,,,-colimit preserving functor to D. In other words, any
ICpn-colimit preserving functor from any other m-semiadditive oo-category C factors essentially
uniquely through r.

Now suppose that D admits K,,-indexed limits. Then D°P admits K,,-indexed colimits
and Fung, (S, D°P) is the universal m-semiadditive oco-category admitting a /Cp,-colimit

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1151

preserving functor to D°P. We now note that since the span oo-category S, is equivalent
to its own opposite we have that

(S, D°P))°P ~ Fun™ ((S17)°P, D) ~ Fun" (8], D),

m?

(Fun;c

m

where Fun®™ (=, —) C Fun(—, —) denotes the full subcategory spanned by K,,-limit preserving
functors. It the follows that Fun™= (8, D) is the universal m-semiadditive oco-category

admitting a ICp,-limit preserving functor to D. Our next goal is to relate the oo-category
Fun™™ (8™, D) with the theory of commutative monoid objects in D.

DEFINITION 5.10. Let m > —1 be an integer and let D be an oo-category admitting
K.n-indexed limits. An m-commutative monoid in D is a functor F: S,’}Zfl — D with the
following property: for every X € S™~! the collection of maps F(i,): F(X) — F(x) exhibits
F(X) as the limit in D of the constant X-indexed diagram with value F(x). We will denote by

CMon,, (D) C Fun®" (87—, D) the full subcategory spanned by the m-commutative monoids.

EXAMPLE 5.11. If m = —1 then 7! = S~} = S_; is the co-category of (—1)-finite spaces
and ordinary maps between them. In particular, we may identify S_; with the category
consisting of two objects (), * and a unique non-identity morphism ) — *. An oco-category
D admits K£_i-indexed limits if and only if it admits a final object. A functor S_1 — D is
completely determined by the associated morphism F(f)) — F(x) in D. By definition such a
functor F is a (—1)-commutative monoid if and only if F(() is a terminal object of D. We may
hence identify CMon_; (D) with the full subcategory of the arrow category of D spanned by
those arrows A — B for which A is a final object. In particular, if we fix a particular final
object x € D then we may form an equivalence CMon_(D) ~ D, ;. In other words, we may

identify CMon_1 (D) with the oo-category of pointed objects D.

EXAMPLE 5.12. If m = 0 then we may identify S~ = 80_1 with the category whose objects
are finite sets, and such that a morphism from a finite set A to a finite set B is a pair (C, f)
where C' is a subset of A and f: C' — B is a map. In particular, Sal is equivalent to the
nerve of a discrete category. By sending a finite set A to the pointed set Ay = A[[{*} and
sending a map (C, f) to the map f': AL — By which restricts to f on C and sends A\ C
to the base point of By we obtain an equivalence &; ! ~ Fin,, where Fin, is the category of
finite pointed sets. To say that an co-category D has Ky-indexed limits is to say that D admits
finite products. Unwinding the definitions we see that a functor Sy ! — Dis a 0-commutative
monoid object if and only if the corresponding functor Fin, — D is a commutative monoid
object in the sense of [14, Definition 2.4.2.1], also known as an E..-monoid. When D is the
oo-category of spaces this notion of commutative monoids was first developed by Segal under
the name special I'-spaces.

LEMMA 5.13. Let D be an oo-category which admits K,,-indexed limits and let
F: 8" — D be a functor. Then F preserves K,,-indexed limits if and only if the restriction
Flgm-1 is an m-commutative monoid object.

Proof. Apply Corollary 2.15 and Proposition 2.11 to (S7")°P ~ 8" and D°P. O

m

PROPOSITION 5.14. Fix an m > —1 and let D be an co-category which admits IC,,-indexed
limits. Then restriction along S™~! — 8™ induces an equivalence of co-categories

Fun" (8™ D) = CMon,, (D).
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Proof. Let Cone,, be the right marked mapping cone of the natural inclusion ¢: S7~! — 8™
(see the discussion before Lemma 4.6) and let Cone,,, < MI s Al be a factorization of the
projection Cone,, — (A')* into a trivial cofibration followed by a fibration in the cartesian
model structure over (A')f. Let 19: 8™ < M xa1 A C Mand i 8771 — M xa1 Al C
M Dbe the corresponding inclusions, so that ¢o and ¢; exhibit r: M — Al as a correspondence
from S to 8™~ which is the one associated to the functor ¢: ST~ — S™.

Let Fun)(M?® D) C Fun’(M", D") and Fun)(Cone,,, D) C Fun’(Cone,,, D) denote the
respective full subcategories spanned by those marked functors whose restriction to S~ is
an m-commutative monoid in PD. Since the inclusion of marked simplicial sets Cone,, — M
is a trivial cofibration in the cartesian model structure over (A') it follows that the restriction
map Fun)(M?, D?) —s Fun)(Cone,,, D?) is a trivial Kan fibration, and by Proposition 4.7
and [13, Proposition 4.3.2.15] the restriction map Fun)(M! D%) — CMon,, (D) is a trivial
Kan fibration. We may hence deduce that the restriction map

Fun)(Cone,,, D%) — CMon,, (D)

is an equivalence. On the other hand, by Lemma 5.13 the image of the restriction map
Fun) (Cone,,, D) — Fun(S”, D) consists of exactly those functors 8" — D which preserves
Km-indexed limits. Arguing as in the proof of Corollary 4.9 we may now conclude that the
restriction map

Fun™" (8™, D) — CMon,,(D)
is an equivalence of co-categories, as desired. O

COROLLARY 5.15. Let D be an oo-category which admits K,,-indexed limits. Then
CMon,, (D) is m-semiadditive and the forgetful functor CMon,,, (D) — D exhibits CMon,,, (D)
as universal among those m-semiadditive co-categories admitting a K,,-limit preserving map
to D. In particular, D is m-semiadditive if and only if the forgetful functor CMon,, (D) — D
is an equivalence.

To get a feel for what these higher commutative monoids are, let us consider the example
of the co-category S of spaces. Let F: S™~! — S be an m-commutative monoid object and

let us refer to M = F(x) as the underlying space of F. We may then identify two types of
morphisms in §”~!. The first type are morphisms of the form

X
N
Y X,

where f is (m — 1)-truncated, and which we denote f: Y — X (see Definition 3.5). These
morphisms help us to identify the spaces F(X): by definition, the collection of maps ip: X —
* exhibit F(X) as the limit of the constant X-indexed diagram with value F(x) = M. In
particular, we may identify F(X) with the mapping space Mapg(X, M). Other morphisms
of the form f: Y — X do not really give more information: if f: X — Y is an (m — 1)-
truncated map then for every z € X we have f 0ip =1 #(z)» and so the induced map

fe: Mapg(Y, M) ~ F(Y) — F(X) ~ Mapg(X, M)
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is forced to coincide with restriction along f. The second type of morphisms in 87~ ! are the

spans of the form
X
N
X Y,

where g: X — Y is any map of m-finite spaces. We can think of the associated map
g« Mapg(X, M) — Mapg (Y, M) as encoding the structure of M. Let X, be the homotopy
fiber of g over y € Y, equipped with its natural map ix, : X, — X, and let g,: X, — {y} be
the constant map. Then i, o g = g, o %Xy and so for each ¢ € Mapg(X, M) the function g.(¢) €
Mapg (Y, M) maps the point y to the point (g,).(¢|x,) € M. We may hence think of the core
algebraic structure of an m-commutative monoid as gi\fen by the maps p.: Map(X, M) — M
associated to constant maps p: X — %, while the other maps g: X — Y specify various
forms of compatibility. Informally speaking, the structure of being an m-commutative monoid
means that for every m-finite space X we can take an X-family {¢(z)}.cx of points in M and
‘integrate’ it to obtain a new point fX ¢ :=p.«(¢) € M. These operations are then required
to satisfy various ‘Fubini-type’ compatibility constraints when one is integrating over a space
X which is fibered over another space Y. We note that when m = 0 the spaces involved are
finite sets, and we obtain the usual notion of being able to sum a finite collection of points in
a commutative monoid.

EXAMPLES 5.16. (i) For every space X, the space (S,, x5 S/x)~ classifying m-finite spaces
equipped with a map to X is naturally an m-commutative monoid. The functor associated to
this m-commutative monoid via Proposition 5.14 is the functor

fx:Snw; — S fx(Y)Z[(Sm)/y XSS/X],:

sending Y € S to the space of spans X +— Z — Y with Z being m-finite. This is the free m-
commutative monoid generated from X. To see this, consider first the case where X is m-finite.
Then Fx is corepresented by X and hence maps of m-commutative monoids Fx — G are in
bijection with points in G(X) ~ G(*)~. For a general space X one may extend this argument
by considering the span oco-category S™ := Span(S,S[m]) whose objects are all spaces and
whose morphisms are spans whose left leg is m-finite. We may then identify S, with the full
subcategory of 8™ spanned by the m-finite spaces. Arguing as in the proof Proposition 4.3
one can show that the formation of right Kan extensions induces an equivalence between the
oo-category of functors S ~ (S§7)°? — S which preserve K,,-indexed limits and the oo-
category of functors (S™)°P — S which preserves all space-indexed limits. Right Kan
extending Fx then yields the functor (§™)°? — § corepresented by X, and the same argument
as above can be applied.

(ii) Any Q-vector space is an m-commutative monoid (in the category of Q-vector spaces).
Indeed, if X is an m-finite space then the limit limx V of the constant X-indexed diagram on
V is just the vector space of functions f: mo(X) — V. To such an f we may associate the
vector

> x(Xo)f(Xo) €V,
Xo€mo(X)
where x(Xo) = ([, |m2i:(X0)|)/(I ;0 |m2i+1(Xo0)[) is the ‘homotopy cardinality’ of Xo. This
yields a structure of an m-commutative monoid on V.
(iii) More generally, if D is an m-semiadditive oco-category then any object in D carries
a canonical m-commutative monoid structure by Corollary 5.15, and for each X,Y € D the
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mapping space Mapp(X,Y) is canonically an m-commutative monoid in spaces; indeed, the
functor Mapp (X, —) preserves K, -indexed limits and hence transports m-commutative monoid
structures. For example, by the main result of [9], for any two K(n)-local spectra X,Y the
mapping space from X to Y is an m-commutative monoid in spaces.

(iv) If C is an co-category which admits /C,,-indexed colimits (or limits) then we will show
below (see Theorem 5.23) that C carries a canonically associated m-commutative monoid
structure in Cat.,, and so its maximal co-groupoid is an m-commutative monoid in spaces.

Let us now discuss the role of m-commutative monoids in the setting of m-semiadditive
presentable co-categories.

LEMMA 5.17. Let D be a presentable oco-category. Then CMon,, (D) is presentable and the
forgetful functor CMon,, (D) — D is conservative, accessible and preserves all limits.

Proof. Let CMon,, (D) C Fun(S8”~!, D) be the natural inclusion. Then CMon,,, (D) is closed
under limits in Fun(87~!, D) and under s-filtered colimits for any s such that the simplicial
sets in K, are r-small. Since Fun(S™ !, D) is presentable it now follows from [13, Corollary
5.5.7.3] that CMon,, (D) is presentable and the inclusion CMon,,(D) < Fun(S7~1,D) is
accessible. This, in turn, implies that the composition CMon,,(D) < Fun(S"~!, D) &% D
is accessible and preserves limits. Finally, to show that CMon,, (D) — D is conservative it is
enough to note that if f: M — M’ is a map in CMon,, (D) such that f.: M(x) — M'(x)
is an equivalence in D then for any X € S7~! the induced map fx: M(X) ~ limy M(x) —
limyx M’(x) is an equivalence and hence f is an equivalence. O

When D is presentable, Lemma 5.17 and the adjoint functor theorem [13] imply that the
forgetful functor CMon,, (D) — D admits a left adjoint F: D — CMon,, (D), which can be
considered as the free m-commutative monoid functor. Given two presentable oco-categories
C,D let us denote by Fun®(C, D) the co-category of left adjoint functors from C to D (that is,
those functors which admit right adjoints) and by Fun™(C, D) the co-category of right adjoint
functors from C to D.

COROLLARY 5.18. Let D be a presentable co-category and let £ be a presentable m-
semiadditive oco-category. Then post-composition with the forgetful functor CMon,, (D) — D
induces an equivalence

Fun™ (&, CMon,,, (D)) — Fun™(&, D).
Dually, pre-composition with F: D — CMon,, (D) induces an equivalence
Fun®™(CMon,, (D), £) — Fun™(D, £).
(

In particular, the functor F exhibits CMon,,(D) as the free presentable m-semiadditive
oo-category generated from D.

Proof. Let us prove the first claim (the second then follows by the equivalence Fun™(—, —) ~
Fun® (—, —)°P which associates to every right functor its left adjoint). By Corollary 5.15 it will
suffice to show that if G: & — CMon,,, (D) is a functor that preserves K,,-indexed limits then
G belongs to Fun™(&, CMon,, (D)) if and only if ev,oG: &€ — D belongs to Fun®™(£,D). By
the adjoint functor theorem right functors between presentable oco-categories are exactly the
limit preserving functors which are also accessible, that is, preserve sufficiently filtered colimits.
The result now follows from Lemma 5.17 which asserts that ev, preserves limits and sufficiently
filtered colimits, and also detects them since it is conservative. O
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Given a small co-category C, let Pr, (C) C Fun(C°P, S) denote the full subcategory consisting
of those presheaves which send /C,,-indexed colimits in C to limits of spaces. Then Pk, (C) is
presentable and is an accessible localization of Fun(C°P,S) (choose an infinite cardinal x such
that all K,,-colimit diagrams in C are x-small and use [13, Corollary 5.5.7.3]). Let Pr" denote
the co-category of presentable co-categories and left adjoint functors between them. Identifying
Pr" as a full subcategory of cocomplete co-categories and colimit preserving functors and
using [13, Corollary 5.3.6.10] we may conclude that the functor

Px

is left adjoint to the forgetful functor Pr — Catx, . In particular, we may consider
Pr,, (C) as the free presentable co-category generated from C. We hence obtain two universal
characterizations of the oo-category CMon,,(S). On the one hand, by Corollary 5.18 we
may identify CMon,,(S) as the free presentable m-semiadditive oco-category generated from
the presentable oco-category S. On the other hand, since S ~ (S7')°P we may interpret
Proposition 5.14 as identifying CMon,,,(S) ~ Pk, (S]7) as the free presentable oo-category
generated by the small K,,-cocomplete co-category S!'. Furthermore, by [14, Proposition
4.8.1.14 and Remark 4.8.1.8] the functor (5.1) is symmetric monoidal (where Pr" is endowed
with the symmetric monoidal structure inherited from that of cocomplete co-categories). We

may then deduce the following.

. Catg,, — Pr" (5.1)

m

COROLLARY 5.19. The oo-category CMon,,(S) is an idempotent commutative algebra
object in Pr". In particular, the monoidal product CMon,,(S) ® CMon,, (S) — CMon,, (S)
is an equivalence.

LEMMA 5.20. Let D be a presentable co-category. Then D carries an action of CMon,, (S)
(with respect to the symmetric monoidal structure of Pr") if and only if D is m-semiadditive.

Proof. By [14, Remark 4.8.1.17] the data of an action of CMon,,(S) on a presentable
oo-category D are equivalent to the data of a monoidal colimit preserving functor
CMon,,(S) — Fun®(D, D), which since (5.1) is monoidal, are equivalent to the data of a
ICpm-colimit preserving monoidal functor S — Fun® (D, D), that is, to an action of 8] on
D which preserves KC,,,-colimits in S} and all colimits in D. We now observe that any action

of 8 on D which preserves IC,,-colimits in ) will automatically preserve all colimits which

m m

exist in D, since the object X € S will necessarily acts as an X-indexed colimit of the identity

functor. The desired result now follows from Corollary 5.3. O
Arguing as in the proof of Lemma 5.2 we may now conclude the following.

COROLLARY 5.21.  The forgetful functor Modcyion,, () (Pr™) — Pr" is fully faithful and its
essential image consists of the m-semiadditive presentable co-categories.

REMARK 5.22. The statements of Corollary 5.21 and 5.19 are strongly related. In fact,
under mild conditions on a symmetric monoidal co-category C, the property of A € CAlg(C)
being idempotent is equivalent to the forgetful functor Mod4(C) — C being fully faithful.
Idempotent commutative algebra objects in Pr™ feature in some recent investigations of Schlank
(private communication), where they are called modes. Informally speaking, modes describe
aspects of presentable oo-categories which are both property and structure, such as being
pointed (the mode of pointed spaces), being semiadditive (the mode of E.-spaces) being stable
(the mode of spectra), being an (n, 1)-category (the mode of n-truncated spaces), and more.
Corollary 5.19 then adds a new infinite family of modes: the mode of m-commutative monoids
in spaces for every m, which is associated to the property of being m-semiadditive.
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Let us now consider the case where we replace S by the co-category Cat., of co-categories.
As above, we may informally consider an m-commutative monoid structure on an oo-category
M as giving us a rule for taking an X-indexed family of objects of M (where X is an m-finite
space) and producing a new object of M. Two immediate examples come to mind: if M is an
oo-category admitting K,,-indexed colimits then we may form the colimit of any X-indexed
family of objects in M. On the other hand, if M admits K,,-indexed limits then we may form
the limit of any such family. One might hence expect that if M admits IC,,-indexed colimits
(respectively, limits) then there should be a canonical m-commutative monoid structure on M,
which can be called the cocartesian (respectively, cartesian) m-commutative monoid structure.
To show that these structures indeed exist we will prove the following theorem.

THEOREM 5.23. (i) The forgetful functor CMon,, (Catx,, ) — Cati,, is an equivalence. In
other words, every object in Catx, admits an essentially unique m-commutative monoid
structure.

(ii) The forgetful functor CMon,,(Cat“") — Cat™ is an equivalence. In other words,
every object in Cat™ admits an essentially unique m-commutative monoid structure.

m

REMARK 5.24. If M is an oo-category which admits K,,-indexed colimits, then we may
consider it as belonging to either Cat., or Catg,, . Since the faithful inclusion Catg,, — Cats
preserves limits we obtain a natural map

CMon,, (Catx,,) Xcatx, {M} — CMon,,(Cate) Xcat., {M}, (5.2)

where the left-hand side is contractible by Theorem 5.23, and the right-hand side is an
oo-groupoid which can be considered as the space of m-commutative monoid structures on M.
The point in CMon,,, (Cate) X cas.. {M} determined by (5.2) can be considered as identifying
the cocartesian m-commutative monoid structure on M. Similarly, if M admits KC,,-indexed
limits then the image of the map

CMonm(Cat’C’") X Catlm {M} — CMonm(Catoc) X Catoo {M}

oo

identifies the cartesian m-commutative monoid structure.

REMARK 5.25. The category S admits C,,-indexed limits and colimits, but also carries
an m-commutative monoid structure which is neither cartesian nor cocartesian. To see this,
observe that the operation C — Span(C) = Span(C,C) which associates to any oco-category C
with finite limits its span category determines a limit preserving functor Span: Cat"i —s
Cat“™ | where Kg, denotes the collection of simplicial sets with finitely many non-degenerate
simplices. We then have an induced functor

Span, : CMonm(CatK““) — CMOH,,n(CatK:fin).

Since the oo-category S,, has both K,,-indexed limits and X,,-indexed colimits it carries
both cartesian m-commutative monoid structure and cocartesian m-commutative monoid
structure. Applying the functor Span, we obtain two m-commutative monoid structures on
Span(S,,) = 8. The cocartesian m-commutative monoid structure of S,, induces an m-
commutative monoid structure on S, which is both cocartesian and cartesian. The cartesian
m-commutative monoid structure on S,,, however, induces a different m-commutative monoid
structure on S, which is neither cartesian nor cocartesian. The restriction of this structure to
Sy ! determines a symmetric monoidal structure on 87 which is the one we’ve been considering

throughout this paper.

As Catm ~ Catx, by the functor which sends C to C°?, Theorem 5.23 will follows from
Theorem 4.1 and Proposition 5.14 once we prove the following result.
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PRrROPOSITION 5.26. The oo-category Caty,, is m-semiadditive.

The proof of Proposition 5.26 will be given below. Since Caty,, has all limits it follows
that Catj)cpm has all colimits and hence admits a canonical action of the co-category of spaces
S which preserves colimits in each variable separately. Dually, Catx, admits an action of
S°P which preserves limits in each variable separately. Given a space X € S°P this action
[X]: Catx, — Caty, sends M to M* =limx M and sends f: X — Y to the restriction
functor f* MY — M™X). For our purposes we will only be interested in the action of the full

subcategory SpP C S°P on Caty,, . Given a morphism o: X — Y in S of the form

Z
/ X (5.3)
X Y,

where X, Y, Z are m-finite spaces we will denote by T, : [Y] = [X] the natural transformation
given by the composition

T,(M): M “5 MZ 25 MY,
where ¢* denotes the restriction functor along ¢ and p; denotes the left Kan extension functor,

whose existence is ensured by the fact that M has IC,,-indexed colimits. If ¢ is a span as
in (5.3) then we will denote by 6: Y — X the dual span Y «+— Z 25 X.

LEMMA 5.27. Let trx: X x X — % be the span of Definition 3.14. Then the natural
transformation

Tiry: Id — [X x X] = [X] o [X]

exhibits [X] as a self-adjoint functor. Furthermore, under this self-adjunction the natural
transformation T,: [X] = [Y] associated to a span o: X — Y is dual to the natural
transformation Ty : [Y] = [X] associated with the dual span .

Proof. The Beck—Chevalley condition for pullbacks and left Kan extensions (see [9,
Proposition 4.3.3]) implies in particular that the association o +— T, respects composition of
spans up to homotopy. Both claims now follow from the fact that tr: X x X — * exhibit X
as self-dual in the monoidal co-category S (see Remark 3.15) and that under this self-duality
the dual morphism of ¢ is &. O

Proof of Proposition 5.26. Arguing by induction, let us assume that Catyg, is (m' —
1)-semiadditive for some —1 < m' <m and show that it is in fact m/-semiadditive. By
Corollary 5.3 (applied to Caty® ) we may extend the (S,)°P-action on Catg,, described

above to an (Sﬂf’:_l)"p—action which preserves KC,,/-indexed limits in each variable separately.
Applying Lemmas 3.10 and 3.11 to Catolcpm we may deduce that for every morphism of the

form Y <« X in S i1 C S:Z:*l the induced transformation [¢](M): [X](M) =~ MX —
MY ~ [Y](M) is given by the formation of left Kan extensions. Applying now Lemma 5.27
we may conclude that for every X € ng,/ ~1 the natural transformation [trx]: Id = [X] o [X]

exhibits [X] as a self-adjoint functor. By (the dual version of) Proposition 3.16 the oco-category
Caty,, is m/-semiadditive, as desired. O

REMARK 5.28. Proposition 5.26 implies in particular that if X is an m-finite space and
M € Catg,, is an oo-category admitting IC,,-indexed colimits then Fun(X, M) ~ limy M
is also a model for the colimit of the constant X-indexed diagram with value M. Using
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Lemma 5.27 we can make this claim more precise: for any M € Catx,, and X € S,,, the
collection of left Kan extension functors (i, ): M — M exhibits M* as the colimit of the
constant X-indexed diagram with value M.

5.3. Decorated spans

Theorem 4.1 identifies S as the free m-semiadditive co-category generated by a single object.
In this section we will show how to bootstrap Theorem 4.1 in order to obtain a description of
the free m-semiadditive co-category generated by an arbitrary small co-category C.

Let m: 8,,(C) — S, be a cartesian fibration classifying the functor X ~ CX. We may
informally describe objects in S,,,(C) as pairs (X, Lx) where X is an m-finite space and
Lyx: X — C is a C-valued local system on X (that is, a functor). A map (X, Lx) — (Y, Ly)
in §,,,(C) can be described in these terms as a pair (f,T) where f: X — Y is a map of spaces
and T: Lx = f*Ly is a map of local systems on X (that is, a natural transformation). In
particular, a morphism (f,T) corresponds to a m-cartesian edge of S,,,(C) if and only T is an
equivalence in CX. Now since S,, admits pullbacks it follows that S,,(C) admits pullbacks of
diagram ¢: A3 — S,,,(C) such that p|a02) is w-cartesian. Let S¢(C) C S,,,(C) denote the
subcategory containing all objects and whose mapping spaces are the subspaces spanned by
m-cartesian edges. Then S&'(C) determines a weak co-Waldhausen structure on S,,(C) (see
§2.1) and we may consider the associated span oo-category

Sy (€) = Span(8(C), S (C))-

By Remark 2.4 we may identify the objects of S”'(C) with the objects of S,,(C) and the

m

mapping space in S7(C) from (X, Lx) to (Y, Ly) with the classifying space of spans
Z Ly

) (

(X, Lx Y,Ly)

such that (p,T) is m-cartesian (that is, such that T is an equivalence in C%).

The fiber of the cartesian fibration S,,,(C) — S,, over % € S, is equivalent to C* ~C
and we may fix an equivalence C — S,,(C) xs,, {*}. We will denote by ¢: C — S,,(C) the
composition of this equivalence with the inclusion of the fiber over x € S,,,. Let

UCSn(C) x5 ea €

be the full subcategory spanned by those arrows (X, Lx) — ¢(C) which are m-cartesian. We
may informally describe objects of U as tuples (X, Lx,C,T) where T is a natural equivalence
from Lx: X — C to the constant functor C: X — C with value C. Since 7: S,,,(C) — S, is
a cartesian fibration and * is terminal in S,,, it follows that the maps U = S,%l X gall} C =

S X C are trivial Kan fibrations (whose composition can informally be described as sending
(X,Lx,C,T) to (X,C)) and hence there exists an essentially unique section s: S,,, x C — U.
We will denote by

/8, xC—8,(00)

the composition of s with the projection U — S,,(C). We may informally describe ¢ by the

formula «/(X,C) = (X, C), where C: X — C denotes the constant functor with value C.
Recall that we denote by C= C C the maximal subgroupoid of C. Since S,,, admits pullbacks

it follows that S,, x C admits pullbacks of diagram of the form ¢: A3 — S,,, x C such that
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©|at0,2y belongs to S, x C=. Since the functor /’: S,;, x C — §,,,(C) maps S,,, x C= to S (C)
we obtain an induced functor of span co-categories

e S x C ~ 8" x Span(C,C™) ~ Span(S,, X C,S,, x C7) — Span(S,,(C), S5 (C)) = S (C).

We may informally describe the functor ¢/: 8 x C — S7*(C) as the functor which sends the
object (X, C) to the object (X,C) and a pair (X <~ Z -5 Y,a: C — D) of a morphism in
S and a morphism in C to the span

(2.C)
N
(X.0) (Y, D).

Our goal in this section is to prove the following characterization of the above constructions in
terms of suitable universal properties.

THEOREM 5.29. (i) The functor t: C — S,,,(C) exhibits S,,,(C) as the free co-category with
K-indexed colimits generated from C.

(ii) The composed functor C — S, (C) — S(C) exhibits S]'(C) as the free m-
semiadditive oo-category generated from C.

The rest of this section is devoted to the proof of Theorem 5.29. We begin with the following
general lemma about colimits in cartesian fibrations.

LEMMA 5.30. Let K be a Kan complex and let g: K — C be a diagram taking values in an
oo-category C. Let m: D — C be a cartesian fibration classified by a functor x: C°? — Caty
which sends @ to a limit diagram in Cat... Then a lift 1: K> — D of 3 is a m-colimit diagram
in D if and only if 1) sends every morphism in K" to a m-cartesian edge.

Proof. Let ¢ =|x and 9 = 9| and consider the induced map . : Dy, —C,/. By
definition, v is a 7-colimit diagram if and only if the object ¥ € D, is .-initial. By (the dual
of) [13, Proposition 2.4.3.2] the map 7, is a cartesian fibration, and hence by [13, Corollary
4.3.1.16] we have that 1) is m.-initial if and only if it is initial when considered as an object
of Dy, xc_, {p}. Using the natural equivalence (see [13, §4.2.1] for the two types of slice
constructions)

Da/)/ ><Cg;/ {E} =~ Dw/ Xee/ {@} =~ Fun(KD7D) ><Fun(K,D)><Fun(K>,C) {(¢7¢)} (55)

it will suffice to show that 1/: K — D is initial when considered as an object of the RHS
of (5.5) if and only it sends all edges to m-cartesian edges. Let L = (K x A')> andlet Ly, Ly C L
be the subsimplicial sets given by

Lyi= (K x AU T am K x ATe— (K x AP < (K x A0y = L,.  (556)

Let L be the marked simplicial set whose underlying simplicial set is L and the marked edges are
those which are contained in (K x At Similarly, let L, and L, be the marked simplicial
sets whose underlying simplicial sets are L; and Lo, respectively, and whose markings are
inherited from L. In particular, Ly = L} = K”. We now claim that the inclusions Z; < L and
Ly < L are marked anodyne. For L; this follows from the fact that L; < L is inner anodyne
by [13, Lemma 2.1.2.3] and all the marked edges of L are contained in L;. For Ly we can write
the inclusion K x A%} < K x A! as a transfinite composition of pushouts along A™ < A"
for n > 0, yielding a description of L, <+ L as a transfinite composition of pushouts along
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marked maps of the form (A1}, (A7T1); N AT+t oy (AnHL A H+1h) which are marked
anodyne by definition. Let D be the marked simplicial set whose underlying simplicial set is
D and the marked edges are the m-cartesian edges. Then D7 is fibrant in the cartesian model
structure over C and so we obtain a zig-zag of trivial Kan fibrations

Fun’ (L1, DY) X Fun( K x AL0} D) x Fun(L1,¢) 1 (¥, P1)}

TN

Funb(f, Dh) X Fun(K x A0} D) xFun(L,C) {(, @)} (5.7)

Fun’ (L2, D¥) X pun(k x A0} D) xFun(La.c) L (1 Ph)}

—/

where ®’': L — C is the composition of % with the projection L — K” and @, =9

L
Let p: L1 — D" be an object which corresponds to t¢: Lo — D under the zig-zag of
equivalences (5.7). We now observe that if a map L — Dh sends all edges in Ly to m-cartesian
edges then it sends all edges in L to 7-cartesian edges. It then follows that 1) sends all edges
to m-cartesian edges if and only if p sends all edges to m-cartesian edges. To finish the proof it
will hence suffice to show that 7 is initial in Fun’(L;, D?) X Fun(K x AL0} D) xFun(L1,¢) 1(¥, P1)}
if and only if it sends all edges to w-cartesian edges.

We now invoke our assumption that the functor y: C°? — Cat., maps @ to a limit diagram
in Cats. By [13, Proposition 3.3.3.1] and using the fact that K is a Kan complex we may
conclude that the projection

Funb (zhph) XFun(KXA{O},D)XFun(Ll,C) {(7#75/1)} i>
FHD(K X Al’ D) XFun(KXA{O},D)XFun(KXAl,C) {W’ (P/)}

is a weak equivalence, where ¢’: K x A! — C is the composition of ¢ with the projection
K x A' — K. We now observe that p|x a1 is initial in

FUD(K X Alvp) XFun(KXA{O},D)XFun(KXAl,C) {(wﬂp/)} = (Fun(K7 D) X Fun(K,C) {@})w/a

if and only if the morphism in Fun(K,D) Xpun(x,c) {¢} determined by p|lxxar is an
equivalence, and so the desired result follows. (|

For an object (X,Lyx) € §,(C) and a point x € X, let us denote by i,: ({z}, Lx(z)) —
(X, Lx) the corresponding morphism in S, (C).

COROLLARY 5.31. (i) The oco-category S,,(C) admits K,,-indexed colimits. Furthermore, if
P: K* — S,,(C) is a cone diagram with K € KC,, then 1 is a colimit diagram if and only if
mot): K® — S, is a colimit diagram and 1) sends every morphism in K" to a m-cartesian
edge.

(ii) For any oo-category D with K,,-indexed colimits, an arbitrary functor F: S,,(C) —
D preserves K,,-indexed colimits if and only if for every (X,Lx) € §,,(C) the collection of
maps Fl(iz): F({z}, Lx(x)) — F(X, Lx) exhibits F(X,Lx) as the colimit of the diagram
{F({z}, Lx (7)) }aex.

Proof. Let us first prove (1). By definition, the cartesian fibration 7: S,,(C) — S, is
classified by the functor x¢: SOP — Cat, given by x¢(X) = C¥. Since the inclusion S,,, — S
preserves K,,-indexed colimits (Lemma 2.9) and the inclusion S — Cato, preserves all colimits
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it follows that x¢ sends K,,-indexed colimit diagrams to limit diagrams in Cat.,. Now let K
be an m-finite Kan complex, let ¢: K — §,,(C) be a diagram and let p = 1o ¢): K — S,,,.
Since S, admits C,,-indexed colimits we may extend ¢ to a colimit diagram ©: K* — S,,,.
Since xc 0o P°P: (K°P)? — Cat, is a limit diagram and K is a Kan complex we may use [13,
Proposition 3.3.3.1] to deduce the existence of a dotted lift

K —"-8,,(0)

v,7
) s
75

Kr——S,,

such that v sends all edges in K* to m-cartesian edges. By Lemma 5.30 we may conclude that
) is a m-colimit diagram, and since 3 is a colimit diagram it follows that v is also a colimit
diagram in §,,,(C). Finally, by uniqueness of colimits this construction covers all colimits of
K,-indexed diagrams, and so the characterization of colimits given in (1) follows.

We will now prove (2). The ‘only if’ direction is clear since the collection of maps
iz: ({z}, Lx(z)) — (X, Lx) exhibits (X,Lx) as the colimit in S,,(C) of the diagram
{({z}, Lx(z))}rex by the characterization of colimits given in (1). Now suppose that for
every X € §,,,(C) the collection F(i): F({z}, Lx(x)) — F(X, Lx) exhibits F(X, Lx) as the
colimit of the diagram {({z}, Lx(z))}. Let Y € K,, be an n-finite space and let p: ¥ — S,,,(C)
be a Y-indexed diagram. For each y € Y let us write ¢(y) = (Z,, £,) where Z, is an m-finite
space and L,: Z, — C is a local system. By (1) we may identify the colimit of ¢ in S,,,(C)
with the pair (Z, h) where Z is the total space of the left fibration p: Z — Y classified by ¢
and L: Z — C is the essentially unique local system such that £|z, = £,. We now proceed as
in the proof of Proposition 2.11. Let ¢ := Fop: Y — D and let p: Z — D be the diagram
which sends z € Z to F({z}, L(%)). We then have a natural transformation o: p = p*¢ and
our assumption on F implies that o exhibits ¢: Y — D as a left Kan extension of p: Z — D
along p: Z — Y. Similarly, our assumption implies that the natural transformation from p to
the constant diagram on F(Z, L) exhibits the latter as the colimit of p. By the pasting lemma
for left Kan extensions we may now conclude that the natural transformation from v to the
constant diagram on F(Z, L) exhibits the latter as the colimit of v, as desired. O

CONSTRUCTION 5.32. Let (X, Lx) € Sp(C) be an object. Then in the commutative square

Sm(C)yix,cx) — (Sm)/x
i o l (5.8)

the vertical maps are right fibrations and the lower horizontal map is a cartesian fibration. It
then follows that the composed dotted map in (5.8) is a cartesian fibration as well, and hence
we may consider the top horizontal arrow as a map of cartesian fibration over §,,, whose target
is a right fibration. Such a map is automatically a cartesian fibration (up to equivalence). Base
changing the square (5.8) along the inclusion {*} C S,, we then obtain the square

) Xs,, Sm(C)y(x.cx) — {*} X5, (Sm)yx =X

| |

C ~ {x}xs,Sn(C) — {x}
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whose horizontal maps are again cartesian fibrations and vertical maps right fibrations. In
particular, the top right corner in (5.9) is a space, which we may identify with Mapg (¥, X) ~
X, and the bottom right corner can be identified with Fun(x,C) ~ C by the construction of
S (C). The functor X°P — Cat classifying the top horizontal cartesian fibration in (5.9) can
then be written as x — C, ., (). In particular, the fibers of this cartesian fibration all have final
objects and these are preserved by the cartesian transition functors (which are all equivalences).
The full subcategory & C {*} xs,, Sm(C)/(x,c) consisting of objects which are final in their
fiber then projects to X via a trivial Kan fibration £ — X, and we may construct a section

s: X — {x} Xs,, Sn(C)/(x.cx) (5.10)

m

by taking the essentially unique section of € — X. The section s can then also be characterized
by the property that it picks in each fiber a final object.

LEMMA 5.33. The map (5.10) is cofinal.

Proof. Equivalently, we need to check that the inclusion £ C {*} xs,, Sn(C)/(x,£5) I8
cofinal. Indeed, one quickly verifies that its comma categories all have initial objects, given
by those arrows which are completely contained in a fiber over X. |

COROLLARY 5.34. The inclusion t: C — S,,,(C) exhibits S,,(C) as the co-category obtained
from C by freely adding K,,-indexed colimits. In particular, if D is an co-category with IC,,-
indexed colimits then restriction along ¢ induces an equivalence of co-categories

Fung, (S,,(C), D) — Fun(C, D).

Proof. By Corollary 5.31(1) we know that S,,,(C) has KC,-indexed colimits. Now suppose
that D is an oo-category that admits K,,-indexed colimits and let F: C — D be a functor.
Since D admits colimits indexed by X for every X € S,,, Lemma 5.33 and [13, Lemma 4.3.2.13]
together imply that any functor F: C — D admits a left Kan extension F: S,,(C) — D, and
that an arbitrary functor F: S,,(C) — D extending F is a left Kan extension of F if and only
if for every (X, Lx) € 5, (C) the collection of maps

Fliz): F({z}, Lx(2)) = F(Lx (x)) — F(X, Lx)

exhibit F(X, Lx) as the colimit of the diagram {F(Lx(z))}rex. By Corollary 5.31(2) the
latter condition is equivalent to the condition that F preserves K,,-indexed colimits. The
desired result now follows from the uniqueness of left Kan extensions (see [13, Proposition

4.3.2.15)). 0

We now address the universal property of S7'(C) as described in the second claim of
Theorem 5.29. We begin with the following lemma.

LEMMA 5.35. (i) The oo-category S'(C) admits K,,-indexed colimits and the inclusion
Sm(C) — S'(C) preserves K,,-indexed colimits. Furthermore, every K,,-indexed diagram in
S(C) comes from a K,,-indexed diagram in S,,(C).

(ii) For any oo-category D with K,,-indexed colimits, an arbitrary functor F: 87 (C) —
D preserves K,,-indexed colimits if and only if for every (X,Lx) € S(C) the collection of

maps {F(iy): F({z}, Lx(x)) — F(X,Lx)} exhibit F(X,Lx) as the colimit of the diagram
{F({z}, Lx(z))}.

(iii) The functor J"": S x C — SI7'(C) preserves K,,-indexed colimits in the S] variable.

85UB017 SUOWIWIOD BA11E81D) 8]qeot(dde 8y} Aq pausenob ke Sape O '8sn J0 S9IN1 10} AR1q1T 8UIUO AB|IAA UO (SUONIPUOD-PUR-SLLLIBY WD A8 |1 ALeIq 1 U1 |UO//StY) SUONIPUOD pue SIS | 81 89S *[520Z/TT/80] Uo Akeldiauliuo AB|IM eiseydoy JO AlseAlun Ad 9821 SW(d/ZTTT 0T/I0p/wW0d" A3 1M ALeIq Ul |UO"90SUBWPUO |//:Sdny Wouy pepeojumoq 'S ‘0202 ‘XyvZ0orT



AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1163

Proof. Let us begin with Claim (1). We first claim that every equivalence in §)(C) is in
the image of the map S,,,(C) — S)7(C). Indeed, a morphism in §7(C) is given by a span

Z, Lz

( )
) (

(X, Lx Y,Ly)

such that T is an equivalence in CZ. If (5.11) is an equivalence then its image in S is an
equivalence which means by Remark 2.13 that p: Z — X is an equivalence in &, and hence
that (p,T): (Z,Lz) — (X, Lx) is an equivalence in S,,(C). In this case the span (5.11) is
essentially equivalent to an honest map, that is, is in the image of S,,,(C) — S/7(C). Since
the inclusion S,,(C) — 877(C) is faithful it follows that any /C,,-indexed diagram in S§7(C) is
the image of an essentially unique K,,-indexed diagram in S,,(C). It will hence suffice to prove
that the map S,,,(C) — S/7(C) preserves K,,-indexed colimits.

By Corollary 5.31(2) it will suffice to show that for every (X, Lx) € §7(C), the collection
of maps ({z}, Lx(2z)) — (X, Lx) exhibit (X,Lx) as the colimit of the X-indexed diagram
{{{z}, Lx(z))}rex in S(C). In other words, we need to show that the data of a span of the
form (5.11) such that T: £, — p*Lx is an equivalence in CZ is equivalent to the data of an

X-indexed family of spans

(Zs,Lz]2,)
(plfy/ \@ZI) (5.12)
({z}, Lx (@) (Y, Ly),

where Z, denotes the homotopy fiber of p: Z — X over z € X. But this is now a consequence
of the straightening—unstraightening equivalence which implies that the collection of fiber
functors i%: (Sp),x — S identifies (S,,),x with Sy, and furthermore for every Z — X
the collection of maps i3 Z — Z exhibits Z as the homotopy colimit of the X-indexed family
{Z,}zex- Claim (2) is now a direct consequence of the above and Corollary 5.31(2).

Let us now prove Claim (3). We have a commutative diagram of co-categories

S % C—Y = 8,.(C)

I

S" x C ——= 8™ (C),

where the vertical maps are faithful. Let C' € C be an object, let K be an m-finite Kan complex
and let ¢: K — 8 x {C} be a diagram. By Remark 2.13 the diagram ¢ is the image of
an essentially unique diagram ¢': K — S, x {C'}, and by Proposition 2.14 the inclusion
Sm x {C} — 8" x {C} preserves K,,-indexed colimits. By Claim (2) it will suffice to show
that the top horizontal map preserves K,,-indexed colimits, which is clear in light of the
characterization of colimit cones in S,,(C) given in Corollary 5.31(1). O

PROPOSITION 5.36. The oo-category S)(C) carries an action of S which preserves
Km-indexed colimits in each variable separately. In particular, S)'(C) is m-semiadditive
(Corollary 3.18).

Proof. Since S,,(C) admits K,,-indexed colimits it carries a canonical action of S,,,
given informally by the formula X ® (Y, Ly) = colim,ex (Y, Ly) = (X x Y,p} Ly), where
py: X xY — Y is the projection on the second factor. Since the functor £ — Span(€) is
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visibly product preserving this action induces an action of S)7 = Span(S,,) on Span(S,,(C)).
We now claim that the action of S,, on S,,(C) preserves the wide subcategory S5 (C) C
S (C), and hence the action of S on Span(S,,(C)) preserves the wide subcategory S/ (C) =
Span(S,,(C), S22 (C)) C Span(S,,,(C)) (see Remark 2.13). Concretely, what we need to show is
that the tensor of a m-cartesian arrow in S,,,(C) against any arrow in S,, is again 7-cartesian.
Since m-cartesian arrows are closed under composition we can reduce to checking this when
either the arrow in Sy, or the arrow in S,,(C) are equivalences. In both cases the result readily
follows from the characterization of colimits cones in S,,(C) given by Corollary 5.31(i). We
hence get an induced action of 87 on S (C). Furthermore, by Corollary 2.15 and Lemma 5.35

this action preserves K,,-indexed colimits in each variable separately. O

Let us now consider the left marked mapping cone

Cone,(C) =[S xCx (AY] [ Sm©)
SmxCx AL}

m

of the inclusion ”: 87 x C «— S7(C). Let Cone,,(C) = M 5 Al be a factorization of
the projection Cone,,(C) — (A% into a trivial cofibration followed by a fibration in the
cocartesian model structure over (A')f. In particular, 7: M — A' is a cocartesian fibration
and the marked edges of M are exactly the r-cocartesian edges. Let 1o: S x C < M X a1
A% C M and ¢1: S7(C) = M x a1 AlY} € M be the corresponding inclusions. Then ¢y and
t1 exhibit 7: M — A as a correspondence from 8™ x C to 87 (C) which is the one associated
to the functor ¢": S x C — S™(C).

PROPOSITION 5.37. Let D be an m-semiadditive co-category and let F: S x C — D be
a functor which preserves K,,-indexed colimits in the S variable. Then the following holds.

(i) F admits a left Kan extension

SmxcLf D
7

s

Lo v
=
_ F

M

_ (ii) An arbitrary functor F: M — D extending F is a left Kan extension if and only if
F maps r-cocartesian edges in M to equivalences in D and F oty: 8'(C) — D preserves
K,.-indexed colimits.

Proof. For (Y,Ly) € §(C) let us denote by

Liviey) = (S X C) Xsmxe S (C) j(viey)

the associated comma oo-category. To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show
that the composed map

Fviey): Liviey) — S xC— D

can be extended to a colimit diagram in D for every (Y, Ly ) € S]}'(C). Now an object of Zry )
corresponds to an object (X, C) € 8™ x C and a morphism (X, C) — (Y, Ly) in S™(C), that

is, a span
(Z,Lz)
p,T) (¢,8)
/ \ (5.13)
(Y, Ly),
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where T': £L; — p*C is an equivalence in CZ. Let Tiv.ey) = (Sm x C) Xs,.¢) (Sm(C)) /(v,)
be the comma co-category over (Y, Ly ) associated to the inclusion ¢/ : S, x C — S,,(C). Then
the faithful maps S,, x C — S} x C and S,,,(C) — S;/(C) induce a fully faithful inclusion
p: Jv,cy) = Liv,c,y) whose essential image consists of those objects as in (5.13) for which
p: Z — X is an equivalence. We now claim that p is cofinal.

Consider an object P € Zy,z,) of the form (5.13). We need to show that the comma
oo-category (J(v,cy))p/ = J(v.cy) XTiy ey (Z¢v,zy)) py is weakly contractible. Given an object
(¢',8): (X',C") — (Y, Ly) of J(v,cy) the mapping space from P to p(X',C",q,S") in Tiviey)
is given by the homotopy fiber of the map

Mapsmxc((X’ C), (X/a C/)) — MapS,m(C)((X7 é)’ (Ya CY)) (5'14>

over the map determined by P. In light of Remark 2.4 we may identify the homotopy fiber
of (5.14) with the homotopy fiber of the map

((Sm)/x)= x5, ((Sm)/x)™ x Mape(C, C") — (S37(C) (x2) ™ XSm(©) (Sm(C)/(viey)) ™ (5.15)

car

over the object corresponding to P. Now since the map ((Sin),x)~ — (S57(C) /(x.7)) is an
equivalence we may identify the homotopy fiber of (5.15) with the homotopy fiber of the map

Mapg, (Z, X') x Map(C,C") — Mapsm(c)((Z, ), (Y, Ly)) (5.16)

over the point (¢, 5) € Mapg, ) ((Z, C), (Y, Ly)) determined by P. Unwinding the definitions
we recover that the map (5.16) sends a pair (¢”: Z — X', a: C — C’) to the composition
o Il,a _ I’SI
(2.0) 2 (x,0) L2 (v, £y ),
We may then conclude that the functor Jy,.,)— S defined by (X',C",¢,8") —
MapI(Yyﬁy)(P,p(X’,@, q',S’)) is corepresented in J(y,,) by the object (q,S5): (Z,C) —
(Y, Ly). It then follows that (J(y,c,))p/ has an initial object and is hence weakly contractible.

This means that p: J(y,c,) = Z(v,zy) is cofinal, as desired.
It will now suffice to show that each of the diagrams

f(Y,ﬁY)Lj(Y,Ly): t7(Y,£Y) — D

can be extended to a colimit diagram. Let Jfy . )= J(v,cy) Xs, {*} € Jv be the full
subcategory spanned by objects of the form (gq,S): (x,C) — (Y,Ly). Since we assumed
that F: S x C — D preserves K,,-indexed colimits in the first coordinate it follows from
Proposition 2.14 that the restriction F|s, xc: Sm X C — D preserves K,,-indexed colimits
in the first coordinate and by combining Proposition 2.11 with Lemma 5.33 we may
conclude that the functor Fls, «c is a left Kan extension of its restriction to {x} xC €
Syn. Now since the projection Jy — S, X C is a right fibration it induces an equivalence
(tj(Y,L'y))/(X’,C’,q/,S/) — (Sm X C)/(X’,C’) for every (X’,CQq’,S’) S ‘-7(Y.,[,y)' We may then
conclude that Fy £y)[7. ., , is a left Kan extension of f(y’gy)|‘7(/yiﬁy). Since D admits KC,p,-
indexed colimits and j(/y, £y) contains an m-finite Kan complex as a cofinal subcategory by
Lemma 5.33 the diagram Fy,z, )| Tly ey admits a colimit. It then follows that the diagram
.F(y7£y)|j(y,£y> — D admits a colimit, as desired.

To prove (2), we begin by noting that by the above considerations, an arbitrary extension
F: M — D is a left Kan extension if and only if for every (Y, Ly ) the diagram

(j(/y,cy))D — D
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determined by F is a colimit diagram. By Lemma 5.33 the functor ¥ — J(’Y Ly) sending

y €Y to the object ({y}, Ly (y)) — (Y, Ly) is cofinal and so F is a left Kan extension of F
if and only if for every (Y, Ly) the diagram

f(Y,LY)Z Y* — D (5.17)

determined by F is a colimit diagram. Now by Proposition 2.11 and Lemma 2.15 we
know that for each Y € S the collection of maps ¢,: {y} — Y exhibits ¥ as the colimit

m

in 8§ of the constant Y-diagram with value *. Since F: S x C — D preserves K-

indexed colimits in the first variable it follows that each (Y,C) € S x C the collection

of maps F(iy,Idc): F({y},C) — F(Y,C) exhibit F(Y,C) as the colimit of the diagram
{F{y},C)}yey. This means that f (vo) 18 a colimit diagram if and only if F maps every

r-cocartesian edge in M of the form (Y, C) — (Y, C) (covering the map 0 — 1 of A') to an
equivalence in D. Since all the other r-cocartesian edges of M are equivalences we may conclude
that F maps r-cocartesian edges to equivalences if and only if the diagrams F (v,C) are colimit
diagrams for every Y € S, and C' € C. On the other hand, when these two equivalent conditions
hold for Y = % and all C € C then the condition that F (v,£y) 18 @ colimit diagram for every
(Y, Ly) is equivalent by Lemma 5.35(2) to the condition that F o¢y: S™(C) — D preserves
KC,n-indexed colimits. We may hence conclude that F is a left Kan extension of F if and only if
it maps all r-cocartesian edges of M to equivalences in D and F o ¢1: 87 (C) — D preserves

K,-indexed colimits. O

Given an oco-category D admitting IC,,-indexed colimits, let us denote by

Fang,, ¢(Sy, x C,D) € Fun(S,; x C,D)

m

the full subcategory spanned by those functors which preserves K,,,-indexed colimits in the S,
variable.

COROLLARY 5.38. Let D be an m-semiadditive oo-category. Then restriction along " : S x
C — 8 (C) induces an equivalence of co-categories:

Fung,, (S(C), )—)Fun,cm/c(Sm

;e 7 x C, D).

Proof. Let r: M% — Al be as above and consider the marked simplicial set D = (D, M)
where M is the collection of edges which are equivalences in D. Let Fun?c (M5, D% C
Fun’(M?", D) and Funi,’cm (Cone,, (C), D) C Fun’(Cone,, (C), D?) be the respective full subcat-
egories spanned by those marked functors whose restriction to S))' x C preserves K,,-indexed
colimits in the left variable and whose restriction to S7(C) preserves K,,-indexed colimits.
Since the map Cone,,(C) — M"? is marked anodyne it follows that the restriction map
Funi,’cm (M5, D) —>Fun?cm(Conem(C),Dh) is an equivalence and by Proposition 5.37 the
restriction map Fun?cm (MP, D) — Fung,, /(S x C,D) is an equivalence. We may hence
deduce that the restriction map

Ly Fun?Cm(Conem(C),Dh) — Fung,, (S, x C,D)

m

is an equivalence.

Now since the inclusion S)7 x C — Cone,,(C) is a pushout along the inclusion S x xC x
Al <5 8™ x € x (A')* (which is itself a trivial cofibration in the cartesian model structure
over AY) it follows that the map i} : Fun®(Cone,,(C), D*) — Fun(87(C), D) is a trivial Kan
fibration and that the composed functor

Fun’ (Cone,, (C), D¥) Z—;> Fun(S(C), D) RN Fun(S" x C,D)
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is homotopic to i%: Fun’(Cone,,(C), D) — Fun(S”" x C, D). We may consequently conclude
that 47 induces an equivalence between Fun',’Cm(Cone,,,L(C),D“) and the full subcategory of
Fung,, (§7(C), D) spanned by those functors whose restriction to S/ x C preserves KC,,-indexed
colimits in the left variable. By Lemma 5.35(3) the latter condition is automatic and hence the
restriction map 7 : Fun,c (Cone,,(C),D") — Fun,bcm (87(C), D) is an equivalence. We may
then conclude that

(") Fung,, (S;7(C), D) — Fung,, /c(S; x C,D)

m m m

is an equivalence of co-categories, as desired. O

COROLLARY 5.39. Let D be an m-semiadditive oco-category. Then restriction along the
inclusion {*} x C < S (C) induces an equivalence of co-categories:

Fung, (S™(C),D) — Fun(C, D).
Proof. Combine Corollary 5.38 and Theorem 4.1. O

Proof of Theorem 5.29. Combine Corollary 5.34, Proposition 5.36, Corollary 5.38 and
Corollary 5.39. O

We also record the following corollary.

COROLLARY 5.40. The composed functor
S x S (C) — S x ST(C) — SM(C),

m m m m
where the second functor is given by the action of 8! on 87 (C) of Proposition 5.36, exhibits
S (C) as the tensor product 8" ®x,, Sm(C) in Caty, .

m

Proof. We need to show that for every m-semiadditive oco-category the composed functor

Fung, (S™(C), D) — Fung, (S™(C), Fung, (S™, D)) —»

m m

FunICm (Sm (C), Fung (ngla ))

m

is an equivalence. Now since D is m-semiadditive we have from Theorem 4.1 that restriction
along {*} C 87 induces an equivalence Funy, (S, D) — D. Composing the above composed
functor with the induced equivalence

Fung,, (8,(C), Fung,, (S, D)) = Fun,, (8,(C), D)
it will suffice to show that the restriction functor
Fung,, (5,7(C), P) — Fung,, (Sn(C), D)

is an equivalence. Indeed, this follows by combining Corollary 5.38 and Corollary 5.34. O

REMARK 5.41. For m < n one may also consider the subcategory S)7"(C) C S7(C) containing
all objects and whose mapping spaces are spanned by those morphisms as in (5.4) for which p is
m-truncated. A similar argument then shows that S)*(C) is the free m-semiadditive co-category
with Kp-indexed colimits generated from C.
5.4. Higher semiadditivity and topological field theories

In this section we will discuss a relation between the results of this paper and one-
dimensional topological field theories, and more specifically, with the notion of finite path
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integrals as described in [3, §3]. We first discuss the universal constructions of §5.3 in the
presence of a symmetric monoidal structure. Recall that by [13, Proposition 4.8.1.10] the
free-forgetful adjunction Cats, 4 Catx,, induces an adjunction CAlg(Cats) 4 CAlg(Caty,,)
on commutative algebra objects which is compatible with the free-forgetful adjunction. In
particular, if D® € CAlg(Caty,) is a symmetric monoidal oco-category then the co-category
Sm (D) (which, by Corollary 5.34, is the image of D in Catx,, under the free functor
Cato, — Caty,,) carries a canonical symmetric monoidal structure, under which it can be
identified with the image of D® under the induced functor CAlg(Cat.,) — CAlg(Caty,,).
Since the monoidal product on S,,(D) preserves K,,-colimits in each variable separately
the characterization of colimits given in Corollary 5.31 yields an explicit formula for the
product as (X, Lx) @ (Y, Ly) = (X xY,Lx @ Ly ), where Lx ® Ly : X XY — D is the local
system (Lx ® Ly)(z,y) = Lx(z) @ Ly (y). We also note that by the above the unit map
D — S,,(D) is symmetric monoidal, and if D already has IC,,-indexed colimits and its
monoidal structure commutes with /C,,-indexed colimits in each variable separately then the
counit map S,, (D) — D is symmetric monoidal as well.

Corollary 5.40 tells us that we have a similar phenomenon with S(D): indeed, by Proposi-
tion 5.6 the co-category S(D) inherits a canonical commutative algebra structure in Add,,, ~
Modsm (Caty,,) under which it can be identified with the image of S,,(D)® € CAlg(Caty,,)
under the functor Catx, — Add,, left adjoint to the forgetful functor Add,, — Catg,,.
Combined with the above considerations we may further identify 87 (D)® € CAlg(Add,,) with
the image of D under the induced functor CAlg(Cats,) — CAlg(Add,,). In explicit terms,
S (D) carries a symmetric monoidal structure which preserves /C,,,-indexed colimits in each
variable separately and the unit map D — S/7(D) extends to a symmetric monoidal functor.
Furthermore, if D is already m-semiadditive and its symmetric monoidal structure commutes
with K,,-indexed colimits in each variable separately then the counit map S'(D) — D is
symmetric monoidal as well.

The following lemma appears to be well known, but we could not find a reference. Note that,
while the lemma is phrased for S’ (D), it has nothing to do with the finiteness or truncation
of the spaces in §)'. In particular, the analogous claim holds if one replaces S (D) by the
analogous oco-category of decorated spans between arbitrary spaces.

LEMMA 5.42. Let D be a symmetric monoidal co-category. Let (X, Lx) € 8"(D) be such

m

that Lx (x) is dualizable in D for every x € X. Then (X, Lx) is dualizable in S]7' (D).

Proof. Let D! C D be the full subcategory spanned by dualizable objects and let (D)™~ C
D be the maximal subgroupoid of D Let Bord{’ be the one-dimensional framed cobordism
oo-category. By the one-dimensional cobordism hypothesis [6, 12], evaluation at the positively
1-framed point *; € Bord; induces an equivalence

Fun®(Bord{, D%) — (D)=, (5.18)
Now let (X, Lx) be an object of §7(D) such that Lx (z) is dualizable for every x € X. Then

the local system Lx: X — D factors through a local system L4 : X — (D)=, By the
equivalence (5.18) we may lift £x to a local system L% : X — Fun®(Bord{, D®) valued in
topological field theories. Evaluation at the negatively 1-framed point *_ € Bord; now yields a
local system Lx: X —D. Furthermore, for every x € X, evaluation at the evaluation bordism
ev: #; [[*_ — 0 induces amap L% (z,ev): Lx(x) ® Lx(x) — 1p exhibiting £x () as dual
to Lx(x). Allowing z to vary we obtain a natural transformation L (ev): (Lx ® Lx) o8 =
1p of D-valued local systems on X, where §: X — X x X is the diagonal map. Similarly,
we may evaluate at the coevaluation cobordism coev: ) — x_ ]+, and obtain a natural
transformation £ (coev): Tp = (Lx ® Lx) o8, which, for each z, determines a compatible

coevaluation map 1 — Lx () ® Lx ().
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Now let ¢: X — % denote the constant map and consider the morphisms
evixcy): (X, Lx)® (X, Lx)= (X x X,Lx ®Lx) —* and * — (X x X,Lx @ L)
in 87 (D) given by the spans
(X, (Lx ® Lx)o00d)

(6,Id) L (ev))
/ \K (519)

(X x X,Lx ® Lx) (*,1p)

(X,1p)
(q,1d) 3,L'% (coev))
(5.20)
* 11)

XXX,C)(®£X)

and

One may then directly verify that the morphisms (5.19) and (5.20) satisfy the evaluation—
coevaluation identities and hence exhibit (X, Lx) and (X, Lx) as dual to each other. O

Let us now explain the relation of the above construction with the notion of finite path
integrals as described in [3]. Given a local system Lx : X — D of dualizable objects in D (for
example, a family of invertible objects), one obtains, as described in Lemma 5.42; a dualizable
object (X, Lx) of the decorated span co-category S,’,’}( ). By the cobordism hypothesis this
object determines a one-dimensional topological field theory Z: Bord; — S7'(D) which sends

m
the point to (X, Lx). The term quantization is sometimes used to describe a procedure in which
the topological field theory Z can be ‘integrated’ into a topological field theory taking values in
D (see, for example, [15]). This can often be achieved, at various levels of rigor, by performing
some kind of a path integral.

Such a path integral is described informally in [3] in the setting of finite groupoids (that is,
m = 1) and where the target co-category D is the category of vector spaces over the complex
numbers. More generally, the authors of [3] work with an n-categorical version of the span
construction and consider n-dimensional topological field theories. However, as the paper [3]
is expository in nature, it discusses these ideas somewhat informally, leaving many assertions
without a formal proof or a precise formulation. In a recent paper [16], Trova suggests to use
the formalism of Nakayama categories in order to give a formal definition of quantization in the
setting of finite groupoids and one-dimensional field theories, when the target is an ordinary
category satisfying suitable conditions. We will now explain how the results of the present paper
can be used to give a formal definition of quantization when the target is an m-semiadditive
oo-category and finite groupoids are generalized to m-finite spaces.

Let Z: Bord; — 8'(D) be the topological field theory determined by a local system
Lx: X — D of dualizable objects in D. Suppose that D is m-semiadditive and that the
monoidal structure on D preserves K,,-indexed colimits in each variable separately. Then we
may consider the counit map vp: S'(D) — D associated to the free-forgetful adjunction
CAlg(Cat) 1 CAlg(Caty,,). This counit map is a symmetric monoidal functor, and we may
consequently post-compose the topological field theory Z with vp to obtain a topological field
theory Z: Bord; — D. The association Z — Z can be considered as a quantization procedure,
and by comparing values on the point it must be compatible with the approach of [3]. We
note that one may write the counit map vp: 8 (D) — D explicitly using the formation of
colimits and the formal summation of K,,-families of maps in D via its canonical enrichment
in m-commutative monoids established in § 5.2. The resulting formulas can then be considered
as explicit forms of path integrals. We may also summarize this process with the following
corollary.
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COROLLARY 5.43. Let D be an m-semiadditive oco-category equipped with a symmetric
monoidal structure which preserves KC,,-indexed colimits in each variable separately. Then
the collection of dualizable objects in D is closed under K,,-indexed colimits. Furthermore, if
X is an m-finite space and Lx: X — D is a local system of dualizable objects in D, then
the one-dimensional topological field theory Bord; — D determined by the dualizable object
colim L is the quantization of the topological field theory Bord; — S/7'(D) determined by the
dualizable object (X, Lx) € S (D).
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