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Ambidexterity and the universality of finite spans

Yonatan Harpaz

Abstract

Pursuing the notions of ambidexterity and higher semiadditivity as developed by Hopkins
and Lurie, we prove that the span ∞-category of m-finite spaces is the free m-semiadditive
∞-category generated by a single object. Passing to presentable ∞-categories we obtain a
description of the free presentable m-semiadditive ∞-category in terms of a new notion of
m-commutative monoids, which can be described as spaces in which families of points param-
eterized by m-finite spaces can be coherently summed. Such an abstract summation procedure
can be used to give a formal ∞-categorical definition of the finite path integral described by
Freed, Hopkins, Lurie and Teleman in the context of one-dimensional topological field theories.
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1. Introduction

The notion of ambidexterity, as developed by Lurie and Hopkins in [9] in the ∞-categorical
setting, is a duality phenomenon concerning diagrams ϕ : K −→ C whose limit and colimit
coincide. The simplest case where this can happen is when K is empty. In this case a colimit
of K is simply an initial object of C, and a limit of K is a final object of C. If C has both an
initial object ∅ ∈ C and a final object ∗ ∈ C then there is an essentially unique map ∅ −→ ∗.
Given that both ∅ and ∗ exist there is hence a canonical way to require that they coincide,
namely, asserting that the unique map ∅ −→ ∗ is an equivalence. In this case we say that C is
pointed. An object 0 ∈ C which is both initial and final is called a zero object.

Generalizing this property to cases where K is non-empty involves an immediate difficulty. In
general, even if ϕ : K −→ C admits both limit and colimit, there is a priori no natural choice of
a map relating the two. Informally speaking, choosing a map colimx∈K ϕ(x) −→ limx∈K ϕ(x)
is the same as choosing, compatibly for every two objects x, y ∈ K, a map ϕ(x) −→ ϕ(y) in C.
The diagram ϕ, on its part, provides such maps ϕ(e) : ϕ(x) −→ ϕ(y) for every e ∈ MapK(x, y).
We thus have a whole space of maps ϕ(e) : ϕ(x) −→ ϕ(y) at our disposal, but no a priori way
to choose a specific one naturally in both x and y.

To see how this problem might be resolved assume for a moment that C is pointed, that
is, admits a zero object 0 ∈ C, and that MapK(x, y) is either empty or contractible for every
x, y ∈ K (that is, K is equivalent to a partially ordered set, or a poset). Then for every X,Y ∈ C
there is a distinguished point in MapC(X,Y ), namely the essentially unique map which factors
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1122 YONATAN HARPAZ

as f : X −→ 0 −→ Y , where 0 ∈ C is a zero object. We may call this map X −→ Y the zero
map. We then obtain a choice of a map Nx,y : ϕ(x) −→ ϕ(y) which is natural in both x and
y: if MapK(x, y) is contractible then we take Nx,y to be ϕ(e) for the essentially unique map
e : x −→ y, and if MapK(x, y) is empty then we just take the zero map. It is then meaningful
to ask whether the limit and colimit of a diagram ϕ : K −→ C coincide: assuming both of
them exist, we may ask whether the map Nϕ : colimϕ −→ limϕ we have just constructed is
an equivalence.

For general posets and general pointed ∞-categories C the map Nϕ is rarely an equivalence.
For example, if K = [1] then Nϕ is simply the 0-map. However, there is a class of posets for
which this property turns out to yield something interesting: the class of finite sets, that is,
finite posets for which the order relation is the equality. In this case we may identify colimϕ �∐

x∈K ϕ(x) and limϕ �
∏

x∈K ϕ(x). The map

Nϕ :
∐
x∈K

ϕ(x) −→
∏
x∈K

ϕ(x)

we constructed above is then given by the ‘matrix’ of maps [Nx,y]x,y∈K , where Nx,y : ϕ(x) −→
ϕ(y) is the identity if x = y and the zero map if x �= y. When a pointed ∞-category satisfies
the property that Nϕ is an equivalence for every finite set K and every diagram ϕ : K −→ C we
say that C is semiadditive. Examples of semiadditive ∞-categories include all abelian (discrete)
categories and all stable ∞-categories. For more general examples, if C is any ∞-category with
finite products then the ∞-category MonE∞(C) of E∞-monoids in C is semiadditive.

In their paper [9], Hopkins and Lurie observed that the passage from pointed ∞-categories
to semiadditive ones is just a first step in a more general process. Suppose, for example, that C
is a semiadditive ∞-category. Then for every X,Y ∈ C, the mapping space MapC(X,Y ) carries
a natural structure of an E∞-monoid, where the sum of two maps f, g : X −→ Y is given by
the composition

Now suppose that K is an ∞-category whose mapping spaces are equivalent to finite sets and
that ϕ : K −→ C is a diagram which admits both limit and colimit. Then we may construct a
natural map colimϕ −→ limϕ by choosing, for every x, y ∈ K, the map

Nx,y =
∑

e∈MapK(x,y)

ϕ(e) : ϕ(x) −→ ϕ(y), (1.1)

where the sum is taken with respect to the natural E∞-monoid structure on MapC(X,Y ). We
may now ask if the induced map

Nϕ : colim
x∈K

ϕ(x) −→ lim
x∈K

ϕ(x), (1.2)

which is often called the norm map, is an equivalence. When (1.2) is an equivalence for
every finite groupoid K we say that C is 1-semiadditive. We note that when C is stable the
cofiber of (1.2) is also known as the associated Tate object, and hence 1-semiadditivity in
the stable context was often considered as a phenomenon of Tate vanishing. This vanishing
happens in many examples of interest, for example, when C is a Q-linear ∞-category, or when
C is the ∞-category of K(n)-local spectra, where K(n) is the nth Morava K-theory at a
prime p (Hovey–Sadofsky–Greenlees [5, 10]). Hopkins and Lurie constructed an inductive
approach for continuing this process, where at the mth stage one considers ∞-groupoids whose
homotopy groups are all finite and vanish above dimension m. In this paper we will refer to
such ∞-groupoids as m-finite spaces. This yields the notion of m-semiadditive ∞-category for
every m � −1. The main result of Hopkins–Lurie [9] is that the ∞-category of K(n)-local
spectra is not just 1-semiadditive, but in fact m-semiadditive for every m. A similar result was
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1123

recently established for the ∞-category of T (n)-local spectra by Carmeli–Schlank–Yanovski
[2], generalizing a theorem of Kuhn [11] on the 1-semiadditivity of T (n)-local spectra, and
using, among other things, results from the present paper.

Our goal in this work is to form a link between the theory of higher semiadditivity as
developed in [9] and the ∞-category of spans of m-finite spaces. To understand the role of this
∞-category, let us consider for a moment the central role played by the ∞-category Spfin of
finite spectra in the theory of stable ∞-categories. To begin, Spfin can be described as the free
stable ∞-category generated by a single object S ∈ Spfin, the sphere spectrum. Furthermore,
one can use Spfin in order to characterize stable ∞-categories inside the ∞-category Catfin of
all small ∞-categories with finite colimits (and right exact functors between them). Indeed,
Catfin carries a natural symmetric monoidal structure (see [14, § 4.8.1]) whose unit is the
smallest full subcategory of spaces Sfin ⊆ S closed under finite colimits. One can then show
that Spfin is an idempotent object in Catfin in the following sense: the suspension spectrum
functor Σ∞

+ : Sfin −→ Spfin induces an equivalence Spfin � Spfin ⊗Sfin
�−→ Spfin ⊗ Spfin. The fact

that Spfin is idempotent has a remarkable consequence: it endowed Spfin with a canonical
commutative algebra structure in Catfin such that the forgetful functor ModSpfin

(Catfin) −→
Catfin is fully faithful. From a conceptual point of view, this fact can be described as follows:
given an ∞-category with finite colimits C, the structure of being an Spfin-module is essentially
unique once it exists, and can hence be considered as a property. One can then show that this
property coincides with being stable. In other words, stable ∞-categories are exactly those
C ∈ Catfin which admit an action of Spfin, in which case the action is essentially unique.

This double aspect of stability, as either a property or a structure, is very useful. On
one hand, in a higher categorical setting structures are often difficult to construct explicitly,
while properties are typically easier to define and to check. On the other hand, having a
higher categorical structure available is often a very powerful tool. An equivalence between a
given property and the existence of a given structure allows one to enjoy both advantages
simultaneously. Indeed, while the property of being stable is easy to define and often to
establish, once we know that a given ∞-category is stable we can use the canonically defined
Spfin-module structure at our disposal. For example, it implies that any stable ∞-category
is canonically enriched in spectra, and in particular its mapping spaces carry a canonical
E∞-group structure.

In this paper we describe a completely analogous picture for the property of m-semiadditivity.
Let Km be the set of equivalence classes of m-finite Kan complexes. Let CatKm

be the
∞-category of small ∞-categories which admit Km-indexed colimits and functors which
preserve Km-indexed colimits between them. Then CatKm

carries a natural symmetric monoidal
structure whose unit is the ∞-category Sm of m-finite spaces. Another object contained in
CatKm

is the ∞-category Span(Sm) whose objects are m-finite spaces and whose morphisms
are given by spans (see § 2 for a formal definition). Our main result can then be phrased as
follows.

Theorem 1.1. Span(Sm) is the free m-semiadditive ∞-category generated by a single
object. More precisely, if D is an m-semiadditive ∞-category then evaluation at ∗ ∈ Span(Sm)
induces an equivalence

FunKm
(Span(Sm),D) �−→ D,

where the left-hand side denotes the ∞-category of functors which preserve Km-indexed col-
imits.

Furthermore, we will show in § 5.1 that Span(Sm) is in fact an idempotent object of CatKm
.

Consequently, Span(Sm) carries a canonical commutative algebra structure in CatKm
, and
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1124 YONATAN HARPAZ

the forgetful functor ModSpan(Sm)(CatKm
) −→ CatKm

is fully faithful. The structure of a
Span(Sm)-module on a given ∞-category C ∈ CatKm

is hence essentially a property. This
property is exactly the property of being m-semiadditive.

The flexibility of switching the point of view between a property and a structure seems to be
especially useful in the setting of m-semiadditivity. Indeed, while m-semiadditivity is a property
(involving the coincidence of limits and colimits indexed by m-finite spaces) it is quite hard
to define directly. The reason, as described above, is that in order to define the various norm
maps which are required to induce the desired equivalences, one needs to use the fact that the
∞-category in question is already known to be (m− 1)-semiadditive. Even then, describing
these maps requires an elaborate inductive process (see [9, § 4]). On the other hand, having
a canonical Span(Sm−1)-module structure on an (m− 1)-semiadditive ∞-category leads to a
direct and short definition of when an (m− 1)-semiadditive ∞-category is m-semiadditive (see,
for example, Corollary 3.17).

The picture becomes even more transparent when one passes to the world of presentable
∞-categories. Let PrL denote the ∞-category of presentable ∞-categories and left adjoint
functors between them. Then one has a natural symmetric monoidal functor PKm

: CatKm
−→

PrL which sends C ∈ CatKm
to the ∞-category PKm

(C) of presheaves of spaces on C that take
Km-indexed colimits in C to limits of spaces. Applying this functor to Span(Sm) one obtains
a presentable ∞-category which is equivalent to a certain ∞-category of higher commutative
monoids, and which we will investigate in § 5.2. Informally speaking, an m-commutative monoid
can be described as a space X endowed with the following type of structure: for any map
f : K −→ X from an m-finite space K to X, we have an associated point

∫
K
f ∈ X, which

we can think of as the ‘continuous sum’ of the family of points {f(x)}x∈K . This association
is of course required to satisfy various compatibility conditions. For m = 0 we have that f is
indexed by a finite set and we obtain the structure of an E∞-monoid. When m = −1 this
is just the structure of a pointed space. Now since the functor PKm

is monoidal the ∞-
category Monm of m-commutative monoids is idempotent as a presentable ∞-category, and the
property characterizing Monm-modules in PrL is again m-semiadditivity. There is, however, an
advantage for considering Monm in addition to Span(Sm). Note that given an m-semiadditive
∞-category C, the canonical action of Span(Sm) described above is not closed in general, that
is, it does not endow C with an enrichment in Span(Sm). It does, however, endow C with an
enrichment in Monm. In particular, mapping spaces in C are m-commutative monoids, and so
we have a canonically defined summation over families of maps indexed by m-finite spaces.
This structure can be used in order to redefine the norm maps of [9] and hence to define when
an (m− 1)-semiadditive ∞-category is m-semiadditive (in a manner analogous to the cases of
m = −1, 0, 1 described above). Indeed, for every m-finite space K, any diagram ϕ : K −→ C
and any x, y ∈ K we obtain a natural map

Nx,y :
∫
e∈MapK(x,y)

ϕ(e) : ϕ(x) −→ ϕ(y) (1.3)

using the (m− 1)-commutative monoid structure of MapC(x, y) and the fact that the mapping
spaces in K are (m− 1)-finite. The compatible collection of maps Nx,y then induces a map

Nϕ : colim
x∈K

ϕ(x) −→ lim
x∈K

ϕ(x) (1.4)

which coincide with the norm maps constructed in [9]. In particular, an (m− 1)-semiadditive
∞-category C is m-semiadditive if and only if the maps Nϕ are equivalences for every K ∈ Km

and every ϕ : K −→ C.
In the final part of the paper we will explain a relation between the above results and

one-dimensional topological field theories, specifically with respect to the finite path integral
described in [3, § 3]. In particular, our approach allows one to formally define this finite path
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1125

integral whenever the target ∞-category is m-semiadditive. This requires a description of the
free m-semiadditive ∞-category generated by an arbitrary ∞-category D, which we establish
in 5.3 using the formalism of decorated spans. The link with finite path integrals is then
described in 5.4.

2. Preliminaries

In this paper we work in the higher categorical setting of ∞-categories as set up in [13]. In
particular, by an ∞-category we will always mean a simplicial set C which has the right lifting
property with respect to inner horns. We will often refer to the vertices of C as objects and to
edges in C as morphisms. In the same spirit, if I is an ordinary category then we will often
depict maps N(I) −→ C to an ∞-category C in diagrammatic form, as would be the case if
C was an ordinary category. By a space we will always mean a Kan simplicial set, which we
will generally regard as an ∞-groupoid, that is, an ∞-category in which every morphism is
invertible. Given an ∞-category C, we will denote by C�, the maximal subgroupoid (that is,
maximal sub-Kan complex) of C. We will denote by S := N(Kan) the coherent nerve of the
(fibrant) simplicial category Kan of Kan complexes, and use it as a model for the ∞-category of
spaces. Similarly, we will denote by Cat∞ the coherent nerve of the (fibrant) simplicial category
whose objects are the ∞-categories C, and where the mapping simplicial set from C to D is
given by Fun(C,D)�, and use it as a model for the ∞-category of (small) ∞-categories.

2.1. Span ∞-categories

In the current subsection we will recall the definition of the ∞-category of spans in a given
∞-category C with pullbacks. To obtain more flexibility it will be useful to consider a
slightly more general case, following the approach of Barwick [1]. Recall that a functor
F : C −→ D between ∞-categories is called faithful if for every X,Y ∈ C, the induced map
FX,Y : MapC(X,Y ) −→ MapD(F(X),F(Y )) is (−1)-truncated (that is, each homotopy fiber
of FX,Y is either empty or contractible). Equivalently, F is faithful if the induced map
Ho(C) −→ Ho(D) on homotopy categories is faithful and the square

is homotopy cartesian. In this case we will also say that C is a subcategory of D (and will
often omit the explicit reference to F and use the abusive notation C ⊆ D). A subcategory
C ⊆ D is called wide if the induced map C� −→ D� is an equivalence of spaces. Given a wide
subcategory C ⊆ D and a morphism f in D we will say that f belongs to C if it is equivalent
in the arrow category of D to a morphism in the image of C.

Definition 2.1. Let C be an ∞-category. A weak co-Waldhausen structure on C is a wide
subcategory C† ⊆ C such that any diagram
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1126 YONATAN HARPAZ

in which g belongs to C† extends to a pullback square

in which g′ belongs to C†. In this case we will refer to the pair (C, C†) as a weak co-Waldhausen
∞-category.

Example 2.2. For any ∞-category C the maximal subgroupoid C� ⊆ C is a weak
co-Waldhausen structure on C. If C admits pullbacks then C itself is a weak co-Waldhausen
structure as well. We may consider these examples as the minimal and maximal co-Waldhausen
structures, respectively.

Given a weak co-Waldhausen ∞-category (C, C†) we would like to define an associated ∞-
category Span(C, C†). Informally speaking, Span(C, C†) is the ∞-category whose objects are
the objects of C and whose morphisms are given by diagrams of the form

(2.1)

such that p belongs to C†. We will refer to such diagrams as spans in (C, C†). A composition of
two spans can be described by forming the diagram

in which the central square is a pullback square, and the external span is the composition of
the two bottom spans. Note that since p and g belong to C† Definition 2.1 ensures that this
pullback exists and g ◦ s belongs to C†. To define Span(C, C†) formally, it is convenient to use
the twisted arrow category Tw(Δn) of the n-simplex Δn. This ∞-category can be described
explicitly as the nerve of the category whose objects are pairs (i, j) ∈ [n] × [n] with i � j and
such that Hom((i, j), (i′, j′)) is a singleton if i � i′ � j′ � j and empty otherwise. Given a weak
co-Waldhausen ∞-category (C, C†) we will say that a map f : Tw(Δn) −→ C is cartesian if for
every i � i′ � j′ � j ∈ [n] the square

is cartesian and its vertical maps belong to C†.

Definition 2.3 (cf. [1]). Let (C, C†) be a weak co-Waldhausen ∞-category. The span
∞-category Span(C, C†) is the simplicial set whose set of n-simplices is the set of cartesian
maps f : Tw(Δn) −→ C.

 1460244x, 2020, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12367 by U

niversity O
f R

ochester, W
iley O

nline L
ibrary on [08/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1127

By [1, §§ 3.4–3.8] the simplicial set Span(C, C†) is always an ∞-category. We refer the reader
to [1] for a more detailed discussion of this construction and its properties.

Remark 2.4. Let (C, C†) be a weak co-Waldhausen ∞-category. Unwinding the definitions
we see that the objects of Span(C, C†) are the objects of C and the morphisms are given
by spans of the form (2.1) such that p belongs to C†. Furthermore, a homotopy from the
span X ←− Z −→ Y to the span X ←− Z ′ −→ Y is given by an equivalence η : Z −→ Z ′ over
X × Y . Elaborating on this argument one can identify the mapping space from X to Y in
C with the full subgroupoid of (C/X×Y )� spanned by objects of the form (2.1) such that p

belongs to C†.

Remark 2.5. It follows from Remark 2.10 that if (C†)′ ⊆ C† ⊆ C are two weak
co-Waldhausen structures on C then the associated functor Span(C, (C†)′) −→ Span(C, C†) is
a subcategory inclusion. In particular, C � Span(C, C�) can be considered as a subcategory
of Span(C, C†) for any co-Waldhausen structure C†. Such a subcategory is always wide: this
follows from the fact that any span which is invertible in Span(C, C†) has both its legs invertible
as well; see, for example, [7, Lemma 8.2].

2.2. Finite spaces

In this subsection we introduce the ∞-category of finite spaces and describe some of its basic
properties.

Definition 2.6. Let X be a space. For n � 0 we say that X is n-truncated if πi(X,x) = 0
for every i > n and every x ∈ X. We will say that X is (−1)-truncated if it is either empty
of contractible and that X is (−2)-truncated if it is contractible. We will say that a map
f : X −→ Y is n-truncated if the homotopy fiber of f over every point of Y is n-truncated.

Definition 2.7. Let X be a space. For n � −2 we will say that X is n-finite if it is
n-truncated and all its homotopy groups/sets are finite. We will say that X is π-finite if it is
n-finite for some n. We will denote by Sn ⊆ S the full subcategory spanned by n-finite spaces.

Warning 2.8. The notion of a finite space should not be confused with the notion of a
space equivalent to a simplicial set with finitely many non-degenerate simplices.

The collection of weak equivalence types of n-finite Kan complexes is a set. We will denote
by Kn a complete set of representatives of equivalence types of n-finite Kan complexes. We will
denote by CatKn

⊆ Cat the (non-full) subcategory spanned by the ∞-categories which admit
Kn-indexed colimits and functors which preserve Kn-indexed colimits between them. If C,D
are ∞-categories which admit Kn-indexed colimits then we denote by FunKn

(C,D) ⊆ Fun(C,D)
the full subcategory spanned by those functors which preserve Kn-indexed colimits.

We now address the question of Kn-indexed colimits in the ∞-category Sn.

Lemma 2.9. The ∞-category Sn admits Kn-indexed colimits which are preserved and
detected by the inclusion Sn ⊆ S.

Proof. Since the inclusion Sn ⊆ S is fully faithful it detects colimits, that is, every cone
diagram in Sn which is a colimit diagram in S is already a colimit diagram in Sn. Since S
admits all small colimits it will suffice to show that Sn ⊆ S is closed under Kn-indexed colimits.
More explicitly, we need to show that if X is an n-finite Kan complex and ϕ : X −→ S is an
X-indexed diagram of spaces such that ϕ(x) is n-finite for every x ∈ X then the colimit of ϕ
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1128 YONATAN HARPAZ

is also n-finite. For this it is convenient to use the fact that colimits in spaces can be modeled
by the total space of the left fibration p : Eϕ −→ X classified by ϕ (see [13, Corollary 3.3.4.6]).
Since X is a Kan complex Eϕ is also a Kan complex and p is a Kan fibration. We thus need
to show that the total space of a Kan fibration with an n-finite base and n-finite fibers is also
n-finite. But this is now a direct consequence of the long exact sequence of homotopy groups
associated to a Kan fibration. �

Remark 2.10. Lemma 2.9 implies that we can model the colimit of a diagram ϕ : X −→ Sn

by the total space of the Kan fibration Eϕ −→ X classified by ϕ. More precisely, for such a ϕ
the total space Eϕ is n-finite and the collection of fiber inclusions {ϕ(x) � (Eϕ)x −→ Eϕ}x∈X

exhibits Eϕ as the colimit of ϕ in Sn.

Given a space X and a point x ∈ X we will denote by ix : ∗ −→ X the map which sends the
point to x.

Proposition 2.11. Let D be an ∞-category which admits Kn-indexed colimits and let
F : Sn −→ D be a functor. Then F preserves Kn-indexed colimits if and only if for every
X ∈ Sn the collection {F(ix) : F(∗) −→ F(X)}x∈X exhibits F(X) as the colimit of the
constant X-indexed diagram with value F(∗).

Proof. The ‘only if’ direction is due to the fact that the collection of maps ix : ∗ −→ X
exhibits X as the colimit in Sn of the constant X-indexed diagram with value ∗ (see
Remark 2.10). Now suppose that for every X ∈ Sn the collection {F(ix)}x∈X exhibits F(X)
as the colimit of the constant X-indexed diagram with value F(∗). Let Y ∈ Kn be an n-finite
space and let ϕ : Y −→ Sn be a Y -indexed diagram in Sn. Let p : Eϕ −→ Y be the Kan fibration
classified by ϕ, so that, in light of Remark 2.10, we have that Eϕ is n-finite and the collection of
fiber inclusions {(Eϕ)y � ϕ(y) −→ Eϕ}y∈Y exhibits Eϕ as the colimit of ϕ in Sn. To finish the
proof we need to show that the collection of maps {F(ϕ(y)) −→ F(Eϕ)}y∈Y exhibits F(Eϕ)
as the colimit of the diagram ψ := F ◦ ϕ : Y −→ D. Consider the lax commutative diagram

(2.2)

where the left diagonal functor is the constant functor with value F(∗), and the right diagonal
functor sends the point to F(Eϕ). By our assumption for every y ∈ Y the collection of maps
{F(iz) : F(∗) −→ F(ϕ(y))}z∈ϕ(y) exhibits ψ(y) = F(ϕ(y)) as the colimit in D of the constant
ϕ(y)-indexed diagram with value F(∗). Identifying ϕ(y) with the homotopy fiber of p : Eϕ −→
Y over y we may conclude that left lax triangle in (2.2) exhibits ψ : Y −→ D as a left Kan
extension along p : Eϕ −→ Y of the constant diagram Eϕ −→ D with value F(∗). Similarly, our
assumption implies that the collection of maps {F(iz) : F(∗) −→ F(Eϕ)}z∈Eϕ

exhibits F(Eϕ)
as the colimit in D of the constant Eϕ-indexed diagram with value F(∗), and so the external
lax triangle is a left Kan extension diagram as well. It then follows the right lax triangle is
a left Kan extension triangle by the pasting lemma for left Kan extensions. But this exactly
means that the collection of maps {ψ(y) −→ F(Eϕ)}y∈Y exhibits F(Eϕ) as the colimit in D
of the diagram ψ : Y −→ D, as desired. �

2.3. Spans of finite spaces

In the present subsection we introduce the key player of this paper — the span ∞-category of
n-finite spaces.
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1129

Definition 2.12. For −2 � m � n let Sn[m] ⊆ Sn be the wide subcategory containing all
objects and whose mapping spaces are spanned by the m-truncated maps. Then (Sn,Sn[m])
is a weak co-Waldhausen ∞-category, and we will denote by

Sm
n := Span(Sn,Sn[m])

the associated span ∞-category (see § 2.1). We note that Sn[−2] is just the maximal
subgroupoid of Sn, and hence S−2

n � Sn.

Remark 2.13. It follows from [7, Lemma 8.2] that the subcategory inclusion Sn ⊆ Sm
n is

wide (see also Remark 2.5). In particular, if X is a space then any X-indexed diagram in Sm
n

comes from an X-indexed diagram in Sn.

Our first goal is to verify that Sm
n admits Kn-indexed colimits. By Remark 2.13 any diagram

in Sm
n indexed by a space comes from a diagram of the same form in Sn. The main step in

constructing Kn-indexed colimits in Sm
n is hence incorporated in the following statement.

Proposition 2.14. For every −2 � m � n the subcategory inclusion Sn ↪→ Sm
n preserves

Kn-indexed colimits.

Proof. By Proposition 2.11 it will suffice to show that for every X ∈ Sm
n , the collection of

morphisms {ix : ∗ −→ X}x∈X exhibit X as the colimit of the constant diagram {∗}x∈X in Sm
n .

Equivalently, we need to show that given any test object Y ∈ Sm
n , the map

MapSm
n

(X,Y ) −→ MapS(X,MapSm
n

(∗, Y ))

determined by the collection of restriction maps ix ◦ (−) : MapSm
n

(X,Y ) −→ MapSm
n

(∗, Y ) is
an equivalence of spaces. Let pX : X × Y −→ X denote the projection on the first coordinate.
By Remark 2.4 we may identify MapSm

n
(X,Y ) with the full subgroupoid of ((Sn)/X×Y )�

spanned by those objects Z −→ X × Y such that the composite map Z −→ X × Y
pX−→ X

is m-truncated. Under this equivalence, the restriction map ix ◦ (−) is induced by the
pullback functor i∗{x}×Y : (Sn)/X×Y −→ (Sn)/{x}×Y . Now by the straightening–unstraightening
equivalence the collection of pullback functors i∗{x}×{y} : S/X×Y −→ S induces an equivalence
of ∞-categories

St : S/X×Y
�−→ Fun(X × Y,S).

Using straightening–unstraightening again and the equivalence Fun(X × Y,S) �
Fun(X,Fun(Y,S)) we may conclude that the collection of pullback functors i∗{x}×Y : S/X×Y −→
S/{x}×Y induces an equivalence of ∞-categories

StX : S/X×Y
�−→ Fun(X,S/Y ),

and hence an equivalence on the corresponding maximal subgroupoids

St�X : (S/X×Y )� �−→ Fun(X,S/Y )� � Map(X, (S/Y )�).

Given an object Z −→ X × Y in (S/X×Y )�, the condition that the composite map Z −→
X × Y

pX−→ X is an m-truncated map is equivalent to the condition that the essen-
tial image of St�X(Z) : X −→ (S/Y )� is contained in ((Sm)/Y )�. Furthermore, since X
is n-truncated this condition automatically implies that Z is n-truncated. Identifying
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1130 YONATAN HARPAZ

((Sm)/Y )� with MapSm
n

(∗, Y ) we may then conclude that the collection of pullback functors
i∗{x}×Y : (Sn)/X×Y −→ (Sn)/{x}×Y induces an equivalence of ∞-groupoids

MapSm
n

(X,Y ) �−→ Map(X,MapSm
n

(∗, Y )),

as desired. �

Corollary 2.15. For every −2 � m � n the ∞-category Sm
n admits Kn-indexed colimits.

Furthermore, if F : Sm
n −→ D is any functor then F preserves Kn-indexed colimits if and only

if the composed functor Sn ↪→ Sm
n −→ D preserves Kn-indexed colimits.

Proof. Combine Proposition 2.14 and Remark 2.13. �

2.4. Symmetric Kn-monoidal ∞-categories

In this subsection we will discuss symmetric monoidal structures and actions which are
compatible with Kn-indexed colimit. These will play a recurring role in the present paper,
notably by allowing us to view n-semiadditivity in terms of actions of Sn

n . To begin, recall
that by [14, corollary 4.8.4.1] the ∞-category CatKn

of small ∞-categories with Kn-indexed
colimits carries a symmetric monoidal structure Cat⊗Kn

−→ N(F in∗). For C,D ∈ CatKn
the

tensor product C ⊗Kn
D admits a map C × D −→ C ⊗Kn

D from the cartesian product and
is characterized by the following universal property: for every ∞-category E ∈ CatKn

the
restriction

FunKn
(C ⊗Kn

D, E) −→ Fun(C × D, E)

is fully faithful and its essential image is spanned by those functors C × D −→ E which preserve
Kn-indexed colimits in each variable separately. In particular, we may identify commutative
algebra objects in CatKn

with symmetric monoidal ∞-categories which admit Kn-indexed
colimits and such that the monoidal product preserves Kn-indexed colimits in each variable
separately. We will refer to ∞-categories equipped with such a structure as symmetric
Kn-monoidal ∞-categories.

By [7, Theorem 1.3(iv)]) the cartesian monoidal product on Sn induces a symmetric monoidal
structure on Sm

n , which is given on the level of objects by (X,Y ) 
→ X × Y , and on the level
of morphisms by taking levelwise cartesian products of spans. We remark that this monoidal
structure on Sm

n is not the cartesian one.

Proposition 2.16. The symmetric monoidal product Sm
n × Sm

n −→ Sm
n preserves

Kn-indexed colimits in each variable separately.

Proof. We have a commutative diagram

where the left and middle vertical maps are the respective cartesian product and right vertical
map is the one induced by the cartesian product on span ∞-categories. Since cartesian products
in S preserve colimits in each variable separately and the inclusion Sn ↪→ S preserves products
and Km-indexed colimits (Lemma 2.9) we get that cartesian products in Sn preserve Kn-indexed
colimits in each variable separately. Since the functor Sn −→ Sm

n is essentially surjective the
desired result now follows from Remark 2.13 and Proposition 2.14. �
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1131

Proposition 2.16 and Corollary 2.15 now imply the following.

Corollary 2.17. The ∞-category Sm
n together with its symmetric monoidal structure

determines a commutative algebra object in Cat⊗Kn
.

In what follows we will frequently consider the scenario of an ∞-category with Kn-indexed
colimits D which is acted upon by a symmetric Kn-monoidal ∞-category C, requiring that the
action preserves Kn-indexed colimits in each variable separately. Equivalently, D is a module
over C in the symmetric monoidal ∞-category CatKn

. More generally, it will occasionally be
useful to also consider not necessarily symmetric Kn-monoidal ∞-categories, that is, associative
algebra objects in CatKm

, and their left and right actions on a given D ∈ CatKm
. We now

summarize a few useful constructions which will be employed in the paper in order to produce
such structures.

Construction 2.18 (Functor categories). An important feature of the monoidal structure
on CatKn

is that it is closed, that is, for every C ∈ CatKn
the functor C ⊗Kn

(−) : CatKn
−→

CatKn
admits a right adjoint FunKn

(C,−) : Cat −→ Cat, given by the formation of Kn-colimit
preserving functor categories. By [4, Corollary 7.4.9] we may consequently consider CatKn

as enriched over itself in the sense of [4], such that for C,D ∈ CatKn
the object of maps

from C to D is FunKn
(C,D) ∈ CatKn

. In particular, restricting the space of objects to a point
{D} ⊆ CatKn

we see that the mapping object FunKn
(D,D) carries a canonical structure of

an associative algebra, that is, a monoidal structure, which on the level of objects is given by
composition of functors. Similarly, for every D, E ∈ CatKn

the mapping object FunKn
(D, E)

carries a left action of FunKn
(D,D) and the mapping object FunKn

(E ,D) carries a right
action of FunKn

(D,D). In particular, FunKn
(Sn,D) � D carries a right action of FunKn

(D,D)
for every D ∈ FunKm

(D). The Kn-monoidal ∞-category FunKn
(D,D) is universal among

Kn-monoidal ∞-categories acting D in the following sense: for every Kn-monoidal ∞-category
C ∈ E , restriction of action induces an equivalence between the space of monoidal functors
C −→ FunKn

(D,D), and the space of right actions of C on D in CatKn
; see [14, Corollary

4.7.1.40].

Construction 2.19 (Pre-composition and post-composition actions). If C is a
Kn-monoidal ∞-category acting on D ∈ CatKn

from the right, then for every E ∈ CatKn

we have an induced right action of C on FunKn
(E ,D) and an induced left action of C on

FunKn
(D, E), which are restricted from the respective actions of FunKn

(D,D) via the monoidal
functor C −→ FunKn

(D,D) classifying the right action of C on D. We will refer to these actions
the associated pre-composition and post-composition actions, respectively.

Construction 2.20 (Local systems). For a space X and an ∞-category D, we will refer
to functors X −→ D as D-valued local systems on X. We will denote by

DX := Fun(X,D) � lim
X

D

the ∞-category of D-valued local systems on X. Here the last term denotes the limit of the
constant X-indexed diagram with value D, and the equivalence results from the description of
limits in Cat∞; see [13, Corollary 3.3.3.2]. If D belongs to CatKn

then, as the inclusion CatKn
↪→

Cat∞ preserves and detects limits, we have that DX ∈ CatKn
and is the limit of the same

constant diagram there. Similarly, if D is a symmetric Km-monoidal ∞-category, then, since
the forgetful functor AlgCom(CatKn

) −→ CatKn
preserves and detects limits, we can compute

the limit defining DX in AlgCom(CatKn
), and consequently promote DX to a symmetric Kn-

monoidal ∞-category. Its monoidal product is then the pointwise product. Similarly, if D is a
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1132 YONATAN HARPAZ

symmetric Kn-monoidal ∞-category acting on E ∈ CatKn
then the ∞-category EX inherits an

action of the symmetric monoidal ∞-category DX , which is given pointwise by the action of
D on E . Indeed, this can be obtained either by identifying pairs of an algebra and a module
over it with algebras over the algebra-module operad MCom (see, for example, [8, § 5]), or,
alternatively, use the fact that the association D 
→ DX is lax monoidal, being the composition
of the monoidal functor CatKm

−→ Fun(X,CatKm
) given by restriction along X → ∗, and its

canonically lax monoidal right adjoint.

3. Ambidexterity and duality

Definition 3.1. Let D be an ∞-category and −2 � m an integer. Following [9], we will
say that D is m-semiadditive if D admits Km-indexed colimits and every m-finite space is
D-ambidextrous in the sense of [9, Definition 4.3.4].

Informally speaking, m-semiadditive ∞-categories are ∞-categories in which Km-indexed
colimits and limits coincide. The reason we do not recall [9, Definition 4.3.4] in full is that it
requires a somewhat elaborate inductive process in order to define the maps which induce the
desired equivalence. However, if D is an ∞-category with Km-indexed colimits which admits a
compatible action of Sm−1

m , then we will see below that the condition that D is m-semiadditive
can be expressed rather succinctly (see Proposition 3.16 and Corollary 3.17). On the other
hand, the main result of this paper (Theorem 4.1 below) implies in particular that any (m− 1)-
semiadditive ∞-category which admits Km-indexed colimits is of this form, and so this approach
can be considered as an alternative way to define higher semiadditivity.

Examples 3.2. (i) Any ∞-category is (−2)-semiadditive.
(ii) An ∞-category D is (−1)-semiadditive if and only if it is pointed, that is, contains an

object 0 ∈ D which is both initial and final.
(iii) An ∞-category D is 0-semiadditive if and only if it is pointed, admits finite coproducts,

and for every X,Y ∈ D the maps X
∐

Y −→ X and X
∐

Y −→ Y induced by the terminal
maps Y −→ 0 and X −→ 0, respectively, exhibit X

∐
Y as the product of X and Y in D.

(iv) Every stable ∞-category is 0-semiadditive.
(v) Let D be an ∞-category which admits finite products. Then the ∞-category of

E∞-monoid objects in D is 0-semiadditive (see § 5.2).
(vi) For any prime p and integer n � 0, the ∞-category of K(n)-local spectra is m-

semiadditive for any m (where K(n) denotes the Morava K-theory spectrum at height
n). This is the main result of [9].

(vii) For any prime p and integer n � 0, the ∞-category of T (n)-local spectra is
m-semiadditive for any m (where T (n) denotes the telescope of a finite p-local type n spectrum).
This is the main result of [2].

(viii) For every −2 � m � n the ∞-category Sm
n is m-semiadditive (see Corollary 3.19

below).
(ix) The ∞-category CatKm

of small ∞-categories which admit Km-indexed colimits is
m-semiadditive (see Proposition 5.26).

(x) If D is m-semiadditive then Dop is m-semiadditive.

For a space X, recall from Construction 2.20 the ∞-category DX = Fun(X,D) of D-valued
local systems on X. Given a map f : X −→ Y of spaces we will denote by f∗ : DY −→ DX the
associated restriction functor. If D admits Km-indexed colimits and the homotopy fibers of f
are m-finite then f∗ admits a left adjoint f! : DX −→ DY given by left Kan extension. If in
addition D is m-semiadditive then f! is also right adjoint to f∗. We will say that a natural
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1133

transformation u : Id ⇒ f!f
∗ exhibits f as D-ambidextrous if it is a unit of an adjunction

f∗ � f!.
In this section we fix an integer m � −1 and consider the situation where D is an ∞-category

satisfying the following properties:

Hypothesis 3.3. (i) D admits Km-indexed colimits.
(ii) D is (m− 1)-semiadditive.
(iii) D admits a structure of an Sm−1

m -module in CatKm
. In other words, there is an action

of the monoidal ∞-category Sm−1
m on D such that the action map Sm−1

m ×D −→ D preserves
Km-indexed colimits in each variable separately.

As described in Construction 2.18, the action of Sm−1
m on D yields a monoidal action functor

Sm−1
m −→ FunKm

(D,D) X 
→ [X], (3.1)

for which we adapt the notation of [9]. Similarly, given a map f : X −→ Y we will denote by
[f ] : [X] ⇒ [Y ] the induced natural transformation.

Let us now fix an ∞-category D satisfying Hypothesis 3.3. Our goal in this section is to show
that if f : X −→ Y is an (m− 1)-truncated map of m-finite spaces, then a unit transformation
u : Id ⇒ f!f

∗ exhibiting f as D-ambidextrous can be written in terms of the Sm−1
m -action on D

(see Lemma 3.11). We will use this description in order to give an explicit criteria characterizing
those D satisfying 3.3 which are also m-semiadditive (see Proposition 3.16 and Corollary 3.17).

Let X ∈ Sm−1
m be an object. Recall that for a point x ∈ X we denote by ix : ∗ −→ X the

map in Sm ⊆ Sm−1
m which sends ∗ to the point x. By Proposition 2.14 and Proposition 2.11,

for any object Z ∈ D the collection of induced maps

[ix]D : [∗](Z) −→ [X](Z)

exhibits [X](Z) as the colimit in D of the constant X-indexed diagram with value [∗](Z) =
Z. Letting Z vary we obtain that the maps [ix] : [∗] ⇒ [X] exhibit [X] as the colimit in
FunKm

(D,D) of the constant diagram {Id}x∈X . In particular, we may identify the functor

[X] with the composed functor D p∗
−→ DX p!−→ D, where p : X −→ ∗ is the terminal map.

Lemma 3.4. Let D be as in Hypothesis 3.3, let X be an m-finite space and let p : X −→ ∗
be the terminal map in Sm (which we naturally consider as a map in Sm−1

m ). Then the natural
transformation

p!p
∗ � [X]

[p]⇒ [∗] � Id

is a counit exhibiting p! : DX −→ D as left adjoint to p∗ : D −→ DX .

Proof. If X is empty then [X] is initial in FunKm
(D,D), and since such a counit exists it

must be homotopic to [p]. We may hence suppose that X is not empty. Since p! is left adjoint
to p∗ the desired claim is equivalent to the natural transformation [p]ad : p∗ ⇒ p∗ adjoint to
[p] : p!p

∗ ⇒ Id being an equivalence. We note that to specify a natural transformation p∗ ⇒ p∗

is the same as giving an X-indexed family of natural transformations Id ⇒ Id from the identify
functor Id ∈ FunKm

(D,D) to itself. Now given a natural transformation T : [X] � p!p
∗ ⇒ Id,

the adjoint transformation T ad : p∗ ⇒ p∗ is given by the composite

p∗
up∗
==⇒ p∗p!p

∗ p∗T
==⇒ p∗,

where the first map is induced by the unit u : Id ⇒ p∗p!. Concretely, for Z ∈ D the map
up∗ : p∗Z −→ p∗p!p

∗Z � p∗[X]Z is given by the X-indexed family of maps [ix] : Z −→ [X]Z.
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1134 YONATAN HARPAZ

It then follows that for T as above the adjoint natural transformation T ad : p∗ ⇒ p∗ is given
by the family {T ◦ [ix] : Id ⇒ Id}x∈X . Taking now T = [p] we see that since p ◦ ix : ∗ −→ ∗ is
an equivalence in Sm−1

m the map [p] ◦ [ix] : Id → Id is an equivalence for every x ∈ X. It then
follows that the adjoint natural transformation [p]ad : p∗ ⇒ p∗ is an equivalence, and so [p] is
equivalent to the counit p!p

∗ ⇒ Id, as desired. �

Definition 3.5. Given a map f : X −→ Y in Sm−1, let us denote by f̂ : Y −→ X the
morphism in Sm−1

m determined by the span

We will refer to f̂ as the dual span of f .

Lemma 3.6. Let D be as in Hypothesis 3.3, let X be an (m− 1)-finite space and let
p : X −→ ∗ be the terminal map in Sm−1. Then the natural transformation

Id � [∗] [p̂]⇒ [X] � p!p
∗

is a unit exhibiting p! as right adjoint to p∗, where p̂ : ∗ −→ X is the span dual to p (see
Definition 3.5). In other words, it exhibits p : X −→ ∗ as D-ambidextrous.

Proof. Since X is D-ambidextrous there exists a compatible pair of unit ux : Id ⇒ p!p
∗ and

counit vX : p∗p! ⇒ Id which exhibit p! as right adjoint to p∗. We will show that [p̂] is equivalent
to uX in the arrow category of FunKm

(D,D). Following Hopkins–Lurie [9, Notation 5.1.7], let
us define the trace form TrFmX : [X] ◦ [X] ⇒ Id as the composite

where φX is a counit exhibiting p! as left adjoint to p∗. Since D is assumed to be (m− 1)-
semiadditive, [9, Proposition 5.1.8] implies that the trace form exhibits [X] as self-dual
in the monoidal ∞-category FunKm

(D,D). It will hence suffice to compare the natural
transformations [X] ⇒ Id which are dual to uX and [p̂], respectively. Calculating the dual
for uX we get the composite

where the composite of the first two arrows in the bottom row is homotopic to the identity
by the triangle identities for the unit-counit pair uX , vX . We then conclude that the dual of
uX is φX : [X] � p!p

∗ ⇒ Id. To calculate the dual of [p̂] we note that the action functor (3.1)
is monoidal and sends X to [X]. Since X is (m− 1)-finite it is already self-dual in Sm−1

m (cf.
Remark 3.15). It follows that the dual of [p̂] is the image of the dual of p̂ in Sm−1

m , which is
given by the image in Sm−1

m of the terminal map p : X −→ ∗ of Sm. It will hence suffice to show
that [p] is equivalent to φX in the arrow category of FunKm

(D,D). Indeed, this was established
in Lemma 3.4. �

Definition 3.7. Given an (m− 1)-truncated map f : X −→ Y of m-finite spaces let us
denote by Stf : Y −→ S the diagram obtained by applying to f the straightening construction
(see [13, § 2.1]). Informally, Stf : Y −→ S sends y ∈ Y to the homotopy fiber Xy of f
over y. Since f is (m− 1)-truncated every homotopy fiber Xy is (m− 1)-finite and we
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1135

may consequently consider Stf as a functor Y −→ Sm−1. Using the subcategory inclusions
Sm−1 ⊆ Sm ⊆ Sm−1

m we may further consider Stf as a functor Y −→ Sm−1
m , that is, as an

Sm−1
m -valued local system. To avoid confusion we will use the notation Stf : Y −→ Sm−1

m to
denote the straightening of f when considered as taking values in Sm−1

m .

Construction 3.8. Let f : X −→ Y be an (m− 1)-truncated map of m-finite spaces and
let Stf : Y −→ Sm−1

m be its straightening as in Definition 3.7. The action of Sm−1
m on D induces

a pointwise action of (Sm−1
m )Y on DY (see Construction 2.20). In particular, the action of

Stf ∈ (Sm−1
m )Y determines a functor

[Stf ] : DY −→ DY ,

given informally on a local system L ∈ DY by the formula

[Stf ](L)(y) = Stf (y)(L(y)) = [Xy](L(y)).

Lemma 3.9. Let D be as in Hypothesis 3.3 and let f : X −→ Y be an (m− 1)-truncated
map of m-finite spaces. Then there is a natural equivalence

[Stf ] � f!f
∗

of functors DY −→ DY .

Proof. Consider the base change g : X ×Y X −→ X of f along itself. Then the diagonal
map δ : X −→ X ×Y X determines a section of g, which we can consider as a map of spaces
over X. Applying the straightening construction as in Definition 3.7 over the base X we obtain
a natural transformation

Stδ : StId � ∗ ⇒ Stg,

from the straightening of the identity Id: X −→ X (which is the constant diagram with value
∗) to the straightening of g : X ×Y X −→ X. The latter, in turn, is naturally equivalent to the
restriction along f : X −→ Y of Stf : Y −→ Sn−1

n , by the compatibility of unstraightening with
base change (see [13]). Applying Construction 3.8 we obtain a natural transformation

[Stδ] : Id ⇒ [Stg] � [f∗Stf ] (3.2)

of functors from DX to DX . We now observe that since the action of (Sm−1
m )Y on DY is

pointwise induced by the action of Sm−1
m on D we have for χ : Y −→ Sm−1

m a commutative
square

in which the left vertical arrow is the action of χ and the right vertical arrow is the action of
f∗χ = χ ◦ f : X −→ Sm−1

m . With this in mind for χ = Stf we now pre-compose (3.2) with the
restriction functor f∗ : DY −→ DX to obtain a natural transformation

δ∗ : f∗ ⇒ [f∗Stf ] ◦ f∗ � f∗ ◦ [Stf ]

of functors DY −→ DX . For a local system L ∈ DY , the component at L of δ∗ is a map

δL : f∗(L) ⇒ f∗([Stf ]L).
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1136 YONATAN HARPAZ

of D-valued local systems on X. To finish the proof it will now suffice to show that δL exhibits
[Stf ]L as the left Kan extension of f∗(L) : X −→ D along f . Indeed, by the pointwise formula
for the left Kan extension we need to check that for every y ∈ Y the diagram

X�
y −→ D

which sends the cone point to [Xy]L(y) and sends the point x ∈ Xy ⊆ X�
y to L(y) (equipped

with the map to [Xy]L(y) determined by x ∈ Xy) is a colimit diagram in D. But this follows
directly from our assumption that the action of Sm−1

m on D is compatible with Km−1-indexed
colimits, since the collection of maps ix : ∗ −→ Xy for x ∈ Xy exhibit Xy as the colimit in
Sm−1
m of the constant Xy-indexed diagram with value ∗ (by Proposition 2.14). �

Let us now fix an (m− 1)-truncated map f : X −→ Y between m-finite spaces. Consider the
commutative diagram of spaces

as a span in (Sm)/Y . Applying the straightening construction over Y and using the assumption
that f is (m− 1)-truncated we obtain a span of the form

in the ∞-category (Sm−1)Y , which we can consider as a map

StIdY
−→ Stf

of Sm−1
m -valued local systems on Y . Applying Construction 3.8 and using Lemma 3.9 we then

obtain a natural transformation

[f̂ ]Y : Id � [StIdY
] ⇒ [Stf ] � f!f

∗ (3.3)

of functors DY −→ DY .

Lemma 3.10. Let D be as in Hypothesis 3.3. Then for every (m− 1)-truncated map

f : X −→ Y of m-finite spaces the natural transformation [f̂ ] : [Y ] ⇒ [X] associated to the

span f̂ : Y
f←− X

Id−→ X of Definition 3.5 is homotopic to

where q : Y −→ ∗ is the terminal map and [f̂ ]Y is the natural transformation (3.3).

Proof. Since q! is given by taking the colimit along Y and the action map Sm−1
m −→

FunKm
(D,D) preserves Km-indexed colimits it will suffice to show that the span f̂ = [Y

f←−
X

Id−→ X] is the colimit in Sm−1
m of StId ←− Stf −→ Stf , considered as a Y -indexed family of

morphisms in Sm−1
m . Now since Y is m-finite the ∞-category (Sm)Y of Sm-valued local systems
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1137

on Y is equivalent by the straightening–unstraightening construction to the slice ∞-category
(Sm)/Y , while the ∞-category (Sm−1

m )Y of Sm−1
m -valued local systems on Y is equivalent in

the same manner to the generalized span ∞-category of (Sm)/Y with respect to the weak co-
Waldhausen structure (Sm)†/Y ⊆ (Sm)/Y consisting of the (m− 1)-truncated maps in (Sm)/Y .
In addition, since Km-indexed colimits in Sm−1

m are the same as the corresponding colimits in
Sm (Proposition 2.14), the colimit functor (Sm−1

m )Y −→ Sm−1
m corresponds to the functor

Span((Sm)/Y , (Sm)†/Y ) −→ Span(Sm,Sm[m− 1])

induced by the forgetful functor (Sm)/Y −→ Sm (which respects the weak co-Waldhausen
structures on both sides). The desired claim is then simply a consequence of the fact that,
since unstraightening is inverse to straightening, the span StId ←− Stf −→ Stf unstraightens

to Y
f←− X

Id−→ X. �

Lemma 3.11. Let D be as in Hypothesis 3.3. Then for every (m− 1)-truncated map

f : X −→ Y between m-finite spaces the natural transformation [f̂ ]Y : Id ⇒ f!f
∗ of (3.3)

exhibits f! as right adjoint to f∗. In other words, it exhibits f as D-ambidextrous.

Proof. Let LX : X −→ D and LY : Y −→ D be two local systems. We need to show that
the composite map

is an equivalence. By [9, Lemma 4.3.8] it is enough to prove this for objects of the form
LY = (iy)!Z where iy : {y} −→ Y is the inclusion of some point y ∈ Y and Z is an object of D.
Since (iy)! is left adjoint to the restriction functor i∗y : DY −→ D this is the same as showing
that for every y ∈ Y the composed natural transformation

(3.4)

exhibits i∗yf! as right adjoint to f∗(iy)!, where uy is the unit of the adjunction (iy)! � i∗y. Now
by the definition of the functor [Stf ] (see Construction 3.8) we have a natural equivalence

i∗y[Stf ] � [Xy]i∗y (3.5)

of functors DY −→ D. Identifying [Stf ] with f!f
∗ via Lemma 3.9 we see that this is just an

incarnation of the fact that left Kan extensions are determined pointwise. The latter fact is
best phrased via the Beck–Chevalley transformation τy : (fy)!i∗Xy

=⇒ i∗yf! associated to the
cartesian square

(3.6)

Indeed, by [9, Proposition 4.3.3] the transformation τy is an equivalence, asserting, in effect,
that the value of the left Kan extension f!L at a given point y is the colimit of L restricted to
the homotopy fiber Xy. In this formalism the equivalence (3.5) is obtained by composing the
equivalences
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1138 YONATAN HARPAZ

Now by the compatibility of the straightening–unstraightening equivalence with base change we
see that under the equivalence (3.5) the natural transformation i∗y[f̂ ]Y : i∗y ⇒ i∗y[Stf ] identifies
with the natural transformation [f̂y]i∗y : i∗y ⇒ [Xy]i∗y. In other words, we have a commuting
square of the form

in the ∞-category Fun(DY ,D). Pre-composing with the functor (iy)! we obtain the top square
in the diagram

in the ∞-category FunKm
(D,D), where uy : Id ⇒ i∗y(iy)! is the unit of the adjunction (iy)! � i∗y.

In particular, we can identify the composed transformation

(3.7)

with the composed transformation

(3.8)

Now the transpose of the square (3.6) also has a Beck–Chevalley transformation
σy : (iXy

)!f∗
y =⇒ f∗(iy)!, which (see [9, Remark 4.1.2]) is given by the composition of

transformations

Applying [9, Proposition 4.3.3] again we get that σy is an equivalence. Let uXy
: Id =⇒

i∗Xy
(iXy

)! be a unit transformation compatible with the counit vXy
above. Then the com-

patibility of uXy
and vXy

implies that (3.8) (and hence (3.7)) is homotopic to the composed
transformation

(3.9)

Comparing now (3.7) and (3.9) we have reduced to showing that

exhibits (fy)!i∗Xy
as right adjoint to (iXy

)!f∗
y . But this just follows from the fact that uXy

is

the unit of (iXy
)! � i∗Xy

by construction and [f̂y] exhibits (fy)! as right adjoint to (fy)∗ by
Lemma 3.6. �
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1139

Construction 3.12. Let X ∈ Sm be an m-finite space. We will denote by δ : X −→
X ×X the associated diagonal map. Let π1, π2 : X ×X −→ X be the two projections and let
σX : (π1)!π∗

2 =⇒ q∗q! be the Beck–Chevalley transformation associated to the cartesian square

(3.10)

By [9, Proposition 4.3.3] the transformation σX is an equivalence. Let [δ̂]X×X : Id −→ (δ)!δ∗

be the natural transformation (3.3) for the map δ. We will then denote by

the composed natural transformation.

Observation 3.13. Let D be as in Hypothesis 3.3. Let X ∈ Sm be an m-finite space and
q : X −→ ∗ the terminal map. Then X is D-ambidextrous in the sense of [9, Definition 4.3.4] if
and only if the natural transformation vq : q∗q! ⇒ Id of Construction 3.12 is a counit exhibiting
q∗ as left adjoint to q!.

Proof. Since D is assumed to be (m− 1)-semiadditive we have that X is automatically
weakly ambidextrous in the sense of [9]. We hence just need to identify the natural transfor-
mation vq with the natural transformation v

(m)
q appearing in [9, Construction 4.1.8]. Comparing

the respective definitions we see that it will suffice to show that the natural transformation
[δ̂]X×X : Id −→ (δ)!δ∗ is homotopic to the natural transformation μ

(m−1)
δ : Id −→ (δ)!δ∗

appearing in [9, Construction 4.1.8]. But this now follows from the uniqueness of units since
both natural transformations exhibit δ! as right adjoint to δ∗ (Lemma 3.11). �

Definition 3.14. Let X be an m-finite space. We will denote by trX : X ×X −→ ∗ the
morphism in Sm−1

m given by the span

where δ : X −→ X ×X, as above, is the diagonal map.

Remark 3.15. Let X ∈ Sm−1
m and trX : X ×X −→ ∗ be as in Definition 3.14. If we consider

X as an object of the larger (symmetric monoidal) ∞-category Sm
m , then trX exhibits X as

self-dual. To see this, observe that in Sm
m the dual span t̂rX : ∗ ←− X

δ−→ X ×X exists as
well, and the pair trX and t̂rX form a compatible pair of evaluation and coevaluation maps
exhibiting X as self-dual. More precisely, the compositions

and

are both homotopic to the identity.
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1140 YONATAN HARPAZ

Having an action of Sm−1
m on D means in particular that for every X ∈ Sm we are equipped

with an equivalence mX : [X × Y ] � [X] ◦ [Y ]. Since the action of Sm−1
m is compatible with

Km-indexed colimits we have a canonical equivalence [X] � colimx∈X Id and the map mX is
completely determined by m∗ : Id � Id ◦ Id via the canonical ‘Fubini map’

colim
(x,y)∈X×Y

Id �⇒ colim
x∈X

colim
y∈Y

Id .

The latter can be described in terms of the Beck–Chevalley transformation σX,Y : (πX)!π∗
Y =⇒

q∗X(qY )! associated to the cartesian square

(3.11)

The Fubini map, and hence mX,Y , can then be the identified with the map

(3.12)

where Q : X × Y −→ ∗ is the terminal map.

Proposition 3.16. Let D be as in Hypothesis 3.3. Then D is m-semiadditive if and only if
for every X ∈ D the natural transformation

(3.13)

exhibits the functor [X] : D −→ D as self-adjoint.

Proof. By Lemma 3.10 and (3.12) we may identify the composed natural transforma-
tion (3.13) with the composed natural transformation

where vq is defined as in Construction 3.12. Identifying vq with the natural transformation
v
(m)
q of [9, Construction 4.1.8] as in the proof of Observation 3.13 and using Lemma 3.4 to

identify [q] : q!q∗ ⇒ Id as a counit exhibiting q! as left adjoint ot q∗ we may conclude that the
natural transformation (3.13) is homotopic to the trace form associated to the map q : X −→ ∗
by Hopkins–Lurie [9, Notation 5.1.7]. By [9, Proposition 5.1.8] we then get that (3.13) exhibits
[X] as self-adjoint if and only if the natural transformation vq : q∗q! −→ Id is a counit of an
adjunction, and so if and only if X is D-ambidextrous (Observation 3.13). �

The following three corollaries summarize the main conclusions we wish to withdraw from
the present section.

Corollary 3.17. Let D be as in Hypothesis 3.3. Then D is m-semiadditive if and only if the
collection of natural transformations [̂ix] : [X] ⇒ [∗] exhibits [X] as the limit, in FunKm

(D,D),
of the constant X-indexed diagram with value [∗] (here the morphism îx : X −→ ∗ in Sm−1

m is
as in Definition 3.5).

Proof. By Proposition 3.16 it will suffice to show that the collection of natural transfor-
mations [̂ix] : [X] ⇒ [∗] exhibits [X] as the limit in FunKm

(D,D) of the constant X-indexed
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1141

diagram with value [∗] if and only if [trX ] ◦m−1
X,X : [X] ◦ [X] ⇒ Id exhibits [X] as self-adjoint.

Let G : D −→ D be any other functor and let αG be the composed map

Recall that the collection of natural transformations [ix] : [∗] ⇒ [X] exhibits [X] as the colimit
in FunKm

(D,D) of the constant X-indexed diagram with value [∗]. Since colimits in functor
categories are computed objectwise it follows that the natural transformations [ix] ◦ G : [∗] ◦
G ⇒ [X] ◦ G exhibit [X] ◦ G as the colimit in FunKm

(D,D) of the constant X-indexed diagram
with value [∗] ◦ G � G. We may hence identify a map [X] ◦ G ⇒ Id with a collection of natural
transformations Tx : G ⇒ Id indexed by x ∈ X. Since the map îx : X −→ ∗ is equivalent to the
composition X = X × ∗ Id×ix−→ X ×X

trX−→ ∗ we see that the map αG associates to a natural
transformation T : G −→ [X] the collection of natural transformations [̂ix] ◦ T : G −→ [∗] � Id.
It hence follows that the collection of natural transformations [̂ix] : [X] ⇒ [∗] exhibits [X] as
the limit in FunKm

(D,D) of the constant X-indexed diagram with value [∗] if and only if αG
is an equivalence for every G, that is, if and only if [trX ] ◦m−1

X,X : [X] ◦ [X] ⇒ Id exhibits [X]
as self-adjoint. �

Corollary 3.18. Let D be an ∞-category which admits an action of Sm
m such that the

action functor Sm
m ×D −→ D preserves Km-indexed colimits separately in each variable. Then

D is m-semiadditive.

Proof. Let us prove that D is m′-semiadditive for every −2 � m′ � m by induction on
m′. Since every ∞-category is (−2)-semiadditive we may start our induction at m′ = −2.
Now suppose that D is m′-semiadditive for some −2 � m′ � m. As above let us denote by
[X] : D −→ D the action of X ∈ Sm′−1

m′ . By Proposition 3.16 it will suffice to show that the
morphism (3.13) exhibits the functor [X] as self-adjoint. But this follows from the fact that the
action of Sm′−1

m′ extends to an action of Sm′
m′ , and the morphism trX : X ×X −→ ∗ exhibits X

as self-dual in the monoidal ∞-category Sm′
m′ (see Remark 3.15). �

Corollary 3.19. For every −2 � m � n the ∞-category Sm
n is m-semiadditive.

Proof. Combine Corollary 2.17 and Corollary 3.18. �

4. The universal property of finite spans

In this section we will prove our main result, establishing a universal property for the
∞-categories Sm

n in terms of m-semiadditivity.

Theorem 4.1. Let −2 � m � n be integers and let D be an m-semiadditive ∞-category
which admits Kn-indexed colimits. Then evaluation at ∗ ∈ Sm

n induces an equivalence of
∞-categories

FunKn
(Sm

n ,D) �−→ D.

In other words, the ∞-category Sm
n is the free m-semiadditive ∞-category which admits

Kn-indexed colimits, generated by ∗ ∈ Sm
n .

Our strategy is essentially a double induction on n and m. For this it will be useful to employ
the following terminology.
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1142 YONATAN HARPAZ

Definition 4.2. Let D be an ∞-category and let −2 � m � n be integers. We will say that
D is (n,m)-good if the following conditions are satisfied:

(i) D is m-semiadditive and admits Kn-indexed colimits.
(ii) Evaluation at ∗ induces an equivalence of ∞-categories

FunKn
(Sm

n ,D) �−→ D.

In other words, D is (n,m)-good if Theorem 4.1 holds for m,n and D. We may hence phrase
the induction step on n as follows: given an (n− 1,m)-good ∞-category D which admits
Kn-indexed colimits, show that D is (n,m)-good. To establish this claim we will need to
understand how to extend functors from Sm

n−1 to Sm
n when m � n− 1. Note that if f : Z −→ X

is an m-truncated map and X is (n− 1)-truncated then Z is (n− 1)-truncated as well, and so
the inclusion Sm

n−1 ↪→ Sm
n is fully faithful. The core argument for the induction step on n is

the following.

Proposition 4.3. Let −2 � m < n be integers. Let D be an ∞-category which admits
Kn-indexed colimits and let F : Sm

n−1 −→ D be a functor which preserves Kn−1-indexed
colimits. Let ι : Sm

n−1 ↪→ Sm
n be the fully faithful inclusion. Then the following assertions hold.

(i) F admits a left Kan extension

(ii) An arbitrary extension F : Sm
n −→ D of F is a left Kan extension if and only if F

preserves Kn-indexed colimits.

Proof. For Y ∈ Sm
n let us denote by

IY := Sm
n−1 ×Sm

n
(Sm

n )/Y

the associated comma ∞-category. To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show
that the composed map

FY : IY −→ Sm
n−1 −→ D

can be extended to a colimit diagram in D for every Y ∈ Sm
n . Now an object of IY corresponds

to an object X ∈ Sm
n−1 together with a morphism X −→ Y in Sm

n , that is, a span of the form

(4.1)

where g is m-truncated (and hence Z is (n− 1)-finite). Since Sm
n−1 ↪→ Sm

n is fully faithful the
mapping space from (X,Z, f, g) to (X ′, Z ′, f ′, g′) in IY can be identified with the homotopy
fiber of the map MapSm

n
(X,X ′) −→ MapSm

n
(X,Y ) over (Z, f, g) ∈ MapSm

n
(X,Y ). Now let

JY := Sn−1 ×Sn
(Sn)/Y
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1143

be the analogous comma ∞-category for the inclusion Sn−1 ↪→ Sn. Then the inclusions Sn−1 ↪→
Sm
n−1 and Sn ↪→ Sm

n induce a functor ρ : JY −→ IY , and it is not hard to check that ρ is
in fact fully faithful, and its essential image consists of those objects as in (4.1) for which
g is an equivalence. We now claim that ρ is also cofinal. To prove this, we need to show
that for every object (X,Z, f, g) ∈ IY as in (4.1), the comma ∞-category (JY )(X,Z,f,g)/ :=
JY ×IY

(IY )(X,Z,f,g)/ is weakly contractible. Given an object h : X ′ −→ Y in JY , we may
identify the mapping space from (X,Z, f, g) to ρ(X ′, h) in IY with the homotopy fiber of the
map

h∗ : MapSm
n

(X,X ′) −→ MapSm
n

(X,Y ) (4.2)

over the span (Z, f, g) ∈ MapSm
n

(X,Y ). Now clearly any span of n-finite spaces from X to X ′

whose composition with h : X ′ −→ Y belongs to Sm
n already itself belongs to Sm

n . We may
hence identify the homotopy fiber of (4.2) with the homotopy fiber of the map

h∗ : ((Sn)/X×X′)� −→ ((Sn)/X×Y )� (4.3)

over the object (f, g) : Z −→ X × Y . Finally, using the general equivalence C/A×B � C/A ×C
C/B we may identify the homotopy fiber of (4.3) with the homotopy fiber of the map

((Sn)/X′)� −→ ((Sn)/Y )� (4.4)

over f : Z −→ Y . We may then conclude that the functor from JY to spaces given by (X ′, h) 
→
MapIY

((X,Z, f, g), ρ(X ′, h)) is corepresented by f : Z −→ Y (considered as an object of JY ).
This implies that the comma ∞-category (JY )(X,Z,f,g)/ has an initial object and is hence
weakly contractible. Since this is true for any (X,Z, f, g) ∈ IY it follows that ρ is cofinal,
as desired.

It will now suffice to show that each of the diagrams

FY |JY
: JY −→ D

can be extended to a colimit diagram. Let J ′
Y = JY ×Sn−1 {∗} ⊆ JY be the full subcategory

spanned by objects of the form ∗ h−→ Y . Then J ′
Y is an ∞-groupoid which is equivalent to

the underlying space of Y , and the composed functor J ′
Y −→ JY −→ D is constant with value

F(∗) ∈ D. Since we assumed that F : Sm
n−1 −→ D preserves Kn−1-indexed colimits it follows

from Proposition 2.14 that the restriction F|Sn−1 : Sn−1 −→ D preserves Kn−1-indexed colimits
and hence by Proposition 2.11 the functor F|Sn−1 is a left Kan extension of its restriction to
the object ∗ ∈ Sn−1. Now since the projection JY −→ Sn−1 is a right fibration (classified by
the functor X 
→ MapSn

(X,Y )) it induces an equivalence (JY )/(X,h) −→ (Sn−1)/X for every
(X,h) ∈ JY . We may then conclude that F|JY

is a left Kan extension of F|J ′
Y
. Since D admits

Kn-indexed colimits (and J ′
Y is an n-finite Kan complex) the diagram FY |J ′

Y
admits a colimit.

It then follows that the diagram FY |JY
: JY −→ D admits a colimit, as desired.

To prove (2), note that by the above considerations an arbitrary functor F : Sm
n −→ D is a

left Kan extension of F if and only if the extension (J ′
Y )� −→ D determined by F is a colimit

diagram. By construction, this means that F is a left Kan extension if and only if for every
Y ∈ Sm

n the collection of maps {F(iy) : F(∗) −→ F(Y )}y∈Y exhibits F(Y ) as the colimit of
the constant Y -indexed diagram with value F(∗). It then follows from Proposition 2.11 that
F is a left Kan extension of F if and only if F preserves Kn-indexed colimits. �

Corollary 4.4. Let −2 � m < n be integers and let D be an ∞-category which admits
Kn-indexed colimits. Then the restriction map

FunKn
(Sm

n ,D) −→ FunKn−1(Sm
n−1,D)

is an equivalence of ∞-categories.
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1144 YONATAN HARPAZ

Proof. This a direct consequence of Proposition 4.3 in light of [13, Proposition 4.3.2.15]. �

Corollary 4.5. Let −2 � m � n � n′ be integers and let D be an m-semiadditive ∞-
category which admits Kn′ -indexed colimits. Then D is (n′,m)-good if and only if D is (n,m)-
good.

We will now proceed to perform the induction step on m. We begin with the following lemma.

Lemma 4.6. Let D be an (m,m− 1)-good ∞-category and let F : Sm−1
m −→ D be a functor

which preserves Km-indexed colimits. If D is m-semiadditive then the collection of maps
F (̂ix) : F(X) −→ F(∗) for x ∈ X exhibits F(X) as the limit in D of the constant X-indexed
diagram with value F(∗).

Proof. Using the symmetric monoidal structure of Sm−1
m we may consider Sm−1

m as acting on
itself. Since the monoidal structure preserves Km-indexed colimits separately in each variable
(see Proposition 2.16), and since D is (m,m− 1)-good, we may endow FunKm

(Sm−1
m ,D) �

D with an action of Sm−1
m via pre-composition (see Construction 2.19), which preserves

Km-indexed colimits in each variable separately. As above let us denote by [X] : D −→ D
the action of X ∈ Sm−1

m .
By Corollary 3.17 the collection of natural transformations [̂ix] : [X] ⇒ [∗] exhibits [X] as the

limit, in FunKm
(D,D), of the constant X-indexed diagram with value [∗]. Evaluating at F(∗)

we may conclude that the collection of maps [̂ix](F(∗)) : [X](F(∗)) −→ F(∗) exhibits [X](F(∗))
as the limit in D of the constant X-diagram with value F(∗). By construction we may identify
[X](F(∗)) with F(X) and [̂ix](F(∗)) with F (̂ix) and so the desired result follows. �

We next proceed to the establish the inductive step. As in the proof of 4.3 we will use a Kan
extension argument (though this time it will be a right Kan extension). Since the subcategory
inclusion Sm−1

m ⊆ Sm
m is not fully faithful this requires a slightly more elaborate setup for which

it will be convenient to make use of the language of marked simplicial sets, as developed by
Lurie [13]. Given an m � −1 let

Conem = Sm
m

∐
Sm−1
m ×Δ{0}

[
Sm−1
m × (Δ1)�

]

be the right marked mapping cone of the inclusion ι : Sm−1
m ↪→ Sm

m . Let

Conem ↪→ M� r−→ Δ1

be a factorization of the projection Conem −→ (Δ1)� into a trivial cofibration followed by a
fibration in the cartesian model structure over (Δ1)�. In particular, r : M −→ Δ1 is a cartesian
fibration and the marked edges of M� are exactly the r-cartesian edges. Let ι0 : Sm

m ↪→ M×Δ1

Δ{0} ⊆ M and ι1 : Sm−1
m ↪→ M×Δ1 Δ{1} ⊆ M be the corresponding inclusions. Then ι0 and

ι1 exhibit r : M −→ Δ1 as a correspondence from Sm
m to Sm−1

m which is the one associated to
the functor ι : Sm−1

m ↪→ Sm
m .

Proposition 4.7. Let D be an ∞-category which admits Km-indexed limits and let
F : Sm−1

m −→ D be a functor which satisfies the following property: for every X ∈ Sm−1
m the

collection of maps F (̂ix) : F(X) −→ F(∗) exhibits F(X) as the limit in D of the constant
X-indexed diagram with value F(∗). Then the following assertions hold.
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1145

(i) There exists a right Kan extension

(4.5)

(ii) An extension F : M −→ D as above is a right Kan extension if and only if F maps
r-cartesian edges to equivalences in D.

Remark 4.8. An extension F as in (4.5) is equivalent to the data of a functor F ′ : Sm
m −→ D

together with a natural transformation τ : F ′ ◦ ι ⇒ F (where ι : Sm−1
m −→ Sm

m is the inclusion
as above), and F is a right Kan extension if and only if τ exhibits F ′ as a right Kan extension
of F along ι. We should hence morally consider Proposition 4.7 as pertaining to right Kan
extensions of F along ι : Sm−1

m −→ Sm
m . In particular, we could have worked directly with

Sm
m instead of M at the expense of replacing (4.5) with a diagram which commutes up to a

prescribed natural transformation. We also note that this issue did not arise in Proposition 4.3
since, unlike ι, the map Sm

n−1 −→ Sm
n appearing in Proposition 4.3 is fully faithful (cf. [13,

§ 4.3.2,4.3.3]).

Proof of Proposition 4.7. For an object X ∈ Sm
m let us set

IX = Mι0(X)/ ×M Sm−1
m .

To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show that the composed map

FX : IX −→ Sm−1
m −→ D

can be extended to a limit diagram in D for every X ∈ Sm
m . Now an object of IX corresponds

to an object Y ∈ Sm−1
m and a morphism ι0(X) −→ ι1(Y ) in M, or, equivalently, a morphism

X −→ ι(Y ) in Sm
m , that is, a span

(4.6)

of m-finite spaces.
Recall from Definition 2.12 that we have denoted by Sm[m− 1] ⊆ Sm the subcategory of

Sm consisting of all objects and (m− 1)-truncated maps between them. Then we have a
commutative square

(4.7)

where the vertical functors are the identity on objects and send an (m− 1)-truncated

map f : X −→ Y to the span Y
f←− X −→ X. Let JX = Sm[m− 1]op ×Sop

m
(Sop

m )X/ be the
associated comma ∞-category. We will write the objects of JX as maps X

g←− Y of m-finite
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1146 YONATAN HARPAZ

spaces, or simply as pairs (Y, g). We note that morphisms from X
g←− Y to X

g′
←− Y ′ are

commutative triangles of the form

such that h is (m− 1)-truncated. The square (4.7) induces a fully faithful functor ρ : JX ↪→ IX
whose essential image consists of those objects as in (4.6) for which f is an equivalence. We
now claim that ρ is coinitial.

To prove this, we need to show that for every object (Y, Z, f, g) ∈ IY as in (4.6), the comma
∞-category (JX)/(Y,Z,f,g) := JX ×IX

(IX)/(Y,Z,f,g) is weakly contractible. Given an object
(Y ′, h) in JX , we may identify the mapping space from ρ(Y ′, h) to (Y, Z, f, g) in IX with the
homotopy fiber of the map

h∗ : MapSm−1
m

(Y ′, Y ) −→ MapSm
m

(X,Y ) (4.8)

over the span (Z, f, g) ∈ MapSm
m

(X,Y ). As in the proof Proposition 4.3 we may iden-
tify these mapping spaces as MapSm−1

m
(Y ′, Y ) � ((Sm[m− 1]op)Y ′/)� ×Sm

((Sm)/Y )� and
MapSm

m
(X,Y ) � ((Sop

m )X/)� ×Sm
((Sm)/Y )� and we may identify the homotopy fiber of (4.8)

with the homotopy fiber of the map

h∗ : ((Sm[m− 1]op)Y ′/)� −→ ((Sop
m )X/)� (4.9)

over the object X
g←− Z. We may then conclude that the functor from JX to spaces given

by (Y ′, h) 
→ MapIY
(ρ(Y ′, h), (Y, Z, f, g)) is represented in JX by the object X

g←− Z. This
implies that the comma ∞-category (JX)/(Y,Z,f,g) has a terminal object and is hence weakly
contractible. Since this is true for any (Y, Z, f, g) ∈ IX it follows that ρ is coinitial, as desired.
It will hence suffice to show that each of the diagrams

FX |JX
: JX −→ D

can be extended to a limit diagram.
Let J ′

X = JX ×Sm[m−1]op {∗} ⊆ JX be the full subcategory spanned by objects of the form
X

g←− ∗. Then J ′
X is an ∞-groupoid which is equivalent to the underlying space of X, and

the composed functor J ′
X −→ JX −→ D is constant with value F(∗) ∈ D. By our assumption

on F it follows that the restricted functor F|Sm[m−1]op : Sm[m− 1]op −→ D is a right Kan
extension of F|{∗}. Now since the projection JX −→ Sm[m− 1]op is a left fibration it induces an
equivalence (JX)(Y,h)/ −→ (Sm[m− 1]op)Y/ for every (Y, h) ∈ JX . We may then conclude that
F|JX

is a right Kan extension of F|J ′
X

. Since D is m-semiadditive it admits Km-indexed limits
and hence the diagram FX |J ′

X
admits a limit. It follows that the diagram FX |JX

: JX −→ D
admits a limit, as desired.

Let us now prove (2). Let F : M −→ D be a map extending F . Then for every X ∈ Sm
m the

functor F determines a diagram

FX : J �
X −→ D

extending FX |JX
. By the considerations above F is a right Kan extension of F if and only

if each FX is a limit diagram. Let J ′′
X ⊆ JX denote the full subcategory spanned by those

objects X
g←− Y such that g is (m− 1)-truncated. By the above arguments the functor FX |J ′′

X

is a right Kan extension of FX |J ′
X

, and so by [13, Proposition 4.3.2.8] we have that FX is a
right Kan extension of FX |J ′′

X
. It follows that FX is a limit diagram if and only if FX |(J ′′

X)�

is a limit diagram. Let � ∈ (J ′′
X)� be the cone point. We now observe that the ∞-category J ′′

X
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1147

has initial objects, namely every object of the form X
g←− X ′ such that g is an equivalence.

It follows that FX |(J ′′
X)� is a limit diagram if and only if FX sends every edge connecting �

with an initial object of J ′′
X to an equivalence in D. To finish the proof it suffices to observe

that these edges are exactly the edges which map to r-cartesian edges by the natural map
(J ′′

X)� −→ M, and that all r-cartesian edges are obtained in this way. �

Corollary 4.9. Let D be an m-semiadditive ∞-category. Then the restriction map

FunKm
(Sm

m ,D) −→ FunKm
(Sm−1

m ,D)

is an equivalence of ∞-categories.

Proof. Let r : M� −→ Δ1 be as above and consider the marked simplicial set D� = (D,M)
where M is the collection of edges which are equivalences in D. For two marked simplicial
sets (X,M), (Y,N) let Fun	((X,M), (Y,N)) ⊆ Fun(X,Y ) be the full subsimplicial set spanned
by those functors X −→ Y which send M to N . We will denote by Fun	

Km
(M�,D�) ⊆

Fun	(M�,D�) and by Fun	
Km

(Conem,D�) ⊆ Fun	(Conem,D�) the respective full subcategories
spanned by those marked functors whose restriction to Sm−1

m preserves Km-indexed colimits.
Now consider the commutative diagram of functor categories and restriction maps

(4.10)

Since the inclusion of marked simplicial sets Conem −→ M� is a trivial cofibration in the
cartesian model structure over (Δ1)� it follows that the left diagonal map is a trivial Kan
fibration. On the other hand by Proposition 4.7 and [13, Proposition 4.3.2.15] the right diagonal
map is a trivial Kan fibration. We may hence deduce that ι∗1 is an equivalence of ∞-categories.

Since the inclusion Sm
m ↪→ Conem is a pushout along the inclusion Sm−1

m × Δ{0} ↪→ Sm−1
m ×

(Δ1)� (which is itself a trivial cofibration in the cocartesian model structure over Δ0) it follows
that the map i∗0 : Fun	(Conem,D�) −→ Fun(Sm

m ,D) is a trivial Kan fibration and that the
composed functor

is homotopic to i∗1 : Fun	(Conem,D�) �−→ Fun(Sm−1
m ,D). We may consequently conclude

that i∗0 induces an equivalence between Fun	
Km

(Conem,D�) ⊆ Fun	(Conem,D�) and the full
subcategory of Fun(Sm

m ,D) spanned by those functors whose restriction to Sm−1
m preserves Km-

indexed colimits. By Corollary 2.15 these are exactly the functors Sm
m −→ D which preserves

Km-indexed colimits. We may finally conclude that

ι∗ : FunKm
(Sm

m ,D) −→ FunKm
(Sm−1

m ,D)

is an equivalence of ∞-categories, as desired. �

Corollary 4.10. Let −1 � m � n integer and let D be an m-semiadditive ∞-category
which admits Kn-indexed colimits. If D is (n,m− 1)-good then D is (n,m)-good.

Proof. By Corollary 4.5 we know that D is (n,m)-good if and only if D is (m,m)-good, and
that D is (n,m− 1)-good if and only if D is (m,m− 1)-good. The desired result now follows
directly from Corollary 4.10. �
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1148 YONATAN HARPAZ

Proof of Theorem 4.1. We want to prove that if D is an m-semiadditive ∞-category which
admits Kn-indexed colimits then D is (n,m)-good. Let us consider the set A = {(a, b) ∈ Z ×
Z|a � b} as partially ordered saying that (a, b) � (c, d) if a � c and b � d. We now note that
for every (−2,−2) � (n′,m′) � (n,m) in A, the ∞-category D is m′-semiadditive and admits
Kn′ -indexed colimits. Furthermore, D is tautologically (−2,−2)-good. It follows that there
exists a pair (−2,−2) � (n′,m′) � (n,m) for which D is (n′,m′)-good and which is maximal
with respect to this property. If n′ < n then Corollary 4.5 implies that D is (n′ + 1,m′)-good,
contradicting the maximality of (n′,m′). On the other hand, if n′ = n and m′ < m then m′ < n′.
By Corollary 4.10 we may conclude that D is (n′,m′ + 1)-good, a contradiction again. It follows
that (n′,m′) = (n,m) and hence D is (n,m)-good, as desired. �

Corollary 4.11. Let D be an m-semiadditive ∞-category which admits Kn-indexed
colimits for n � m � −2. Then D can be endowed with an action of Sm

n which preserves Kn-
indexed colimits in each variable separately. Otherwise put, D has the structure of a module
over Sm

n in CatKn
.

Proof. By Theorem 4.1 we have an equivalence D � FunKn
(Sm

n ,D) and the latter can
be equipped with the pre-composition action associated to the action of Sm

n on itself; see
Construction 2.19. �

Corollary 4.12. Let D be an ∞-category which admits Km-indexed colimits. Then D is
m-semiadditive if and only if it admits an action of Sm

m which preserves Km-indexed colimits
in each variable separately.

5. Applications

5.1. m-Semiadditive ∞-categories as modules over spans

As indicated by Corollary 4.12, the theory of m-semiadditive ∞-categories exhibits a strong
connection to that of Sm

m -modules in CatKm
. In this section we will make this idea more precise

by proving a suitable equivalence of ∞-categories. This equivalence is directly related to the
fact that Sm

m is an idempotent object of CatKm
, a corollary we will deduce below.

Let Addm ⊆ CatKm
denote the full subcategory spanned by m-semiadditive ∞-categories.

The discussion above implies that the essential image of the forgetful functor

U : ModSm
m

(CatKm
) −→ CatKm

is exactly Addm. We note that U admits a left adjoint F : CatKm
−→ ModSm

m
(CatKm

) given
by F(D) = Sm

m ⊗Km
D.

Lemma 5.1. Let C be an ∞-category. Then the unit map

uC : C −→ Sm
m ⊗Km

C

associated to F � U is an equivalence on C if and only if C is m-semiadditive.

Proof. If uC is an equivalence then C carries an Sm
m -module structure and is hence m-

semiadditive by Corollary 3.18. Now assume that C is m-semiadditive. By Corollary 3.18 again
Sm
m ⊗Km

C is m-semiadditive and hence it will suffice to show that for every m-semiadditive
∞-category D the induced map

u∗
C : FunKm

(Sm
m ⊗Km

C,D) −→ FunKm
(C,D)
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1149

is an equivalence. Identifying the functor ∞-category FunKm
(Sm

m ⊗Km
C,D) with

FunKm
(Sm

m ,FunKm
(C,D)) and u∗

C with evaluation at ∗ ∈ Sm
m it will suffice, in light of

Theorem 4.1, to show that FunKm
(C,D) is m-semiadditive. But this follows from Corollary 3.18

since FunKm
(C,D) carries the pre-composition action of Sm

m (Construction 2.19) associated to
the action of Sm

m on C given by Corollary 4.11. �

Lemma 5.2. Let C be an Sm
m -module. Then the counit map

vC : Sm
m ⊗Km

U(C) −→ C
is an equivalence of Sm

m -modules. In particular, U : ModSm
m

(CatKm
) −→ CatKm

is fully faithful.

Proof. Since U is conservative it will suffice to show that U(vC) is an equivalence of ∞-
categories. Since the composition

U(C)
uU(C)−→ Sm

m ⊗Km
U(C)

U(vC)−→ U(C)

is homotopic to the identity we are reduced to showing that the functor

uU(C) : U(C) −→ Sm
m ⊗Km

U(C)

is an equivalence. But this now follows from Lemma 5.1 since U(C) is m-semiadditive in virtue
of Corollary 3.18. �

Corollary 5.3. The forgetful functor induces an equivalence of ∞-categories
ModSm

m
(CatKm

) � Addm.

Corollary 5.4. The inclusion Addm ↪→ CatKm
admits both a left adjoint, given by

D 
→ Sm
m ⊗Km

D, and a right adjoint, given by D 
→ FunKm
(Sm

m ,D).

Corollary 5.5. Sm
m is an idempotent algebra object in CatKm

. In particular, the monoidal

product map Sm
m ⊗Km

Sm
m

�−→ Sm
m is an equivalence.

Since Sm
m is an idempotent algebra object of CatKm

the functor L : CatKm
−→ CatKm

given
by C 
→ Sm

m ⊗Km
C is a localization functor (see [14, Proposition 4.8.2.4]), and the L-local

objects are those ∞-categories C such that the map C −→ Sm
m ⊗Km

C (induced by the unit
Sm ↪→ Sm

m ) is an equivalence, which are exactly the m-semiadditive ∞-categories by Lemma 5.1.
In other words, the ∞-category Addm is a localization of CatKm

with localization functor
Sm
m ⊗Km

(−).
We will now discuss tensor products of m-semiadditive ∞-categories.

Proposition 5.6. There exists a symmetric monoidal structure Add⊗
m −→ N(F in∗) on

Addm such that the functor F : CatKm
−→ Addm given by F(D) = Sm

m ⊗Km
D extends to a

symmetric monoidal functor F⊗ : Cat⊗Km
−→ Add⊗

m. In particular, Sm
m is the unit of Add⊗

m.

Proof. This is a particular case of [14, Proposition 4.8.2.7]. �

Corollary 5.7. Sm
m carries a canonical commutative algebra structure making it the initial

object of CAlg(Addm).

Recall that we refer to commutative algebra objects in CatKm
as symmetric Km-monoidal ∞-

categories. These can be identified with ordinary symmetric monoidal ∞-categories such that
the underlying ∞-category admits Km-indexed colimits and the monoidal product preserves
Km-indexed colimits in each variable separately.
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1150 YONATAN HARPAZ

Proposition 5.8. The inclusion Add⊗
m ↪→ Cat⊗Km

is symmetric monoidal. Furthermore the
induced map

R : CAlg(Addm) −→ CAlg(CatKm
)

is fully faithful and its essential image is spanned by those symmetric Km-monoidal
∞-categories whose underlying ∞-category is m-semiadditive.

Proof. Recall that the symmetric monoidal structure on Addm was inherited from CatKm
by

identifying Addm with the localization of CatKm
associated to the localization functor L(C) :=

Sm
m ⊗Km

C. In this case the inclusion Addm ⊆ CatKm
of local objects is always lax symmetric

monoidal [14, Proposition 2.2.1.9(3)] and is given informally by the formula (C,D) 
→ L(C ⊗Km

D). To show that in this case the inclusion is actually symmetric monoidal we need to show
that if C,D are local then C ⊗Km

D is local as well. But this is a direct consequence of the fact
that our localization functor is obtained by tensoring with an idempotent object.

To show the second part of the claim, we note that the symmetric monoidal left adjoint
F⊗ : Cat⊗Km

−→ Add⊗
m of Proposition 5.6 induces a left adjoint F ′ : CAlg(CatKm

) −→
CAlg(Addm) to R whose value on the underlying objects is given by F . In particular, the
counit of F ′ � R is given by the counit of F � U on the underlying ∞-categories and is hence
an equivalence by Lemma 5.2. We then get that R is fully faithful. Let E ⊆ CAlg(CatKm

)
denote the full subcategory spanned by those symmetric Km-monoidal ∞-categories whose
underlying ∞-category is m-semiadditive, so that the image of R is contained in E . To finish
the proof we need to show that every object in E is in the image of R. For this, it will suffice
to show the unit of F ′ � R is an equivalence on objects whose underlying ∞-category is m-
semiadditive. But this now follows from Lemma 5.1 since the unit of F ′ � R is given by the
unit of F � U on underlying ∞-categories. �

We hence obtain yet another universal characterization of Sm
m .

Corollary 5.9. The symmetric Km-monoidal ∞-category Sm
m is initial among those

symmetric Km-monoidal ∞-categories whose underlying ∞-category is m-semiadditive.

5.2. Higher commutative monoids

In § 5.1 we discussed the inclusion of Addm inside the ∞-category CatKm
of ∞-categories

admitting Km-indexed colimits. But there is also a dual story, when one embeds Addm

inside the ∞-category CatKm consisting of those ∞-categories which admit Km-indexed limits.
Indeed, the symmetry here is complete: the operation D 
→ Dop which sends an ∞-category
to its opposite induces an equivalence CatKm � CatKm

which maps Addm to itself. We may
hence apply any of the constructions of the previous section to ∞-categories with Km-indexed
limits by ‘conjugating’ it with the operation D 
→ Dop. From an abstract point of view this
seems to yield no additional interest. However, for one of the procedures above applying this
conjugation yields an interesting relation with the theory of commutative monoids, which is
worthwhile spelling out.

By Corollary 5.4, if D is an ∞-category which admits Km-indexed colimits, then
the restriction functor r : FunKm

(Sm
m ,D) −→ D exhibits FunKm

(Sm
m ,D) as the universal

m-semiadditive ∞-category carrying a Km-colimit preserving functor to D. In other words, any
Km-colimit preserving functor from any other m-semiadditive ∞-category C factors essentially
uniquely through r.

Now suppose that D admits Km-indexed limits. Then Dop admits Km-indexed colimits
and FunKm

(Sm
m ,Dop) is the universal m-semiadditive ∞-category admitting a Km-colimit
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1151

preserving functor to Dop. We now note that since the span ∞-category Sm
m is equivalent

to its own opposite we have that

(FunKm
(Sm

m ,Dop))op � FunKm((Sm
m )op,D) � FunKm(Sm

m ,D),

where FunKm(−,−) ⊆ Fun(−,−) denotes the full subcategory spanned by Km-limit preserving
functors. It the follows that FunKm(Sm

m ,D) is the universal m-semiadditive ∞-category
admitting a Km-limit preserving functor to D. Our next goal is to relate the ∞-category
FunKm(Sm

m ,D) with the theory of commutative monoid objects in D.

Definition 5.10. Let m � −1 be an integer and let D be an ∞-category admitting
Km-indexed limits. An m-commutative monoid in D is a functor F : Sm−1

m −→ D with the
following property: for every X ∈ Sm−1

m the collection of maps F (̂ix) : F(X) −→ F(∗) exhibits
F(X) as the limit in D of the constant X-indexed diagram with value F(∗). We will denote by
CMonm(D) ⊆ FunKm(Sm−1

m ,D) the full subcategory spanned by the m-commutative monoids.

Example 5.11. If m = −1 then Sm−1
m = S−2

−1 = S−1 is the ∞-category of (−1)-finite spaces
and ordinary maps between them. In particular, we may identify S−1 with the category
consisting of two objects ∅, ∗ and a unique non-identity morphism ∅ −→ ∗. An ∞-category
D admits K−1-indexed limits if and only if it admits a final object. A functor S−1 −→ D is
completely determined by the associated morphism F(∅) −→ F(∗) in D. By definition such a
functor F is a (−1)-commutative monoid if and only if F(∅) is a terminal object of D. We may
hence identify CMon−1(D) with the full subcategory of the arrow category of D spanned by
those arrows A −→ B for which A is a final object. In particular, if we fix a particular final
object � ∈ D then we may form an equivalence CMon−1(D) � D
/. In other words, we may
identify CMon−1(D) with the ∞-category of pointed objects D.

Example 5.12. If m = 0 then we may identify Sm−1
m = S−1

0 with the category whose objects
are finite sets, and such that a morphism from a finite set A to a finite set B is a pair (C, f)
where C is a subset of A and f : C −→ B is a map. In particular, S−1

0 is equivalent to the
nerve of a discrete category. By sending a finite set A to the pointed set A+ = A

∐
{∗} and

sending a map (C, f) to the map f ′ : A+ −→ B+ which restricts to f on C and sends A \ C
to the base point of B+ we obtain an equivalence S−1

0 � F in∗, where F in∗ is the category of
finite pointed sets. To say that an ∞-category D has K0-indexed limits is to say that D admits
finite products. Unwinding the definitions we see that a functor S−1

0 −→ D is a 0-commutative
monoid object if and only if the corresponding functor F in∗ −→ D is a commutative monoid
object in the sense of [14, Definition 2.4.2.1], also known as an E∞-monoid. When D is the
∞-category of spaces this notion of commutative monoids was first developed by Segal under
the name special Γ-spaces.

Lemma 5.13. Let D be an ∞-category which admits Km-indexed limits and let
F : Sm

m −→ D be a functor. Then F preserves Km-indexed limits if and only if the restriction
F|Sm−1

m
is an m-commutative monoid object.

Proof. Apply Corollary 2.15 and Proposition 2.11 to (Sm
m )op � Sm

m and Dop. �

Proposition 5.14. Fix an m � −1 and let D be an ∞-category which admits Km-indexed
limits. Then restriction along Sm−1

m ↪→ Sm
m induces an equivalence of ∞-categories

FunKm(Sm
m ,D) �−→ CMonm(D).
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1152 YONATAN HARPAZ

Proof. Let Conem be the right marked mapping cone of the natural inclusion ι : Sm−1
m ↪→ Sm

m

(see the discussion before Lemma 4.6) and let Conem ↪→ M� r−→ Δ1 be a factorization of the
projection Conem −→ (Δ1)� into a trivial cofibration followed by a fibration in the cartesian
model structure over (Δ1)�. Let ι0 : Sm

m ↪→ M×Δ1 Δ{0} ⊆ M and ι1 : Sm−1
m ↪→ M×Δ1 Δ{1} ⊆

M be the corresponding inclusions, so that ι0 and ι1 exhibit r : M −→ Δ1 as a correspondence
from Sm

m to Sm−1
m which is the one associated to the functor ι : Sm−1

m ↪→ Sm
m .

Let Fun	
0(M�,D�) ⊆ Fun	(M�,D�) and Fun	

0(Conem,D�) ⊆ Fun	(Conem,D�) denote the
respective full subcategories spanned by those marked functors whose restriction to Sm−1

m is
an m-commutative monoid in D. Since the inclusion of marked simplicial sets Conem −→ M�

is a trivial cofibration in the cartesian model structure over (Δ1)� it follows that the restriction
map Fun	

0(M�,D�) −→ Fun	
0(Conem,D�) is a trivial Kan fibration, and by Proposition 4.7

and [13, Proposition 4.3.2.15] the restriction map Fun	
0(M�,D�) −→ CMonm(D) is a trivial

Kan fibration. We may hence deduce that the restriction map

Fun	
0(Conem,D�) �−→ CMonm(D)

is an equivalence. On the other hand, by Lemma 5.13 the image of the restriction map
Fun	

0(Conem,D) −→ Fun(Sm
m ,D) consists of exactly those functors Sm

m −→ D which preserves
Km-indexed limits. Arguing as in the proof of Corollary 4.9 we may now conclude that the
restriction map

FunKm(Sm
m ,D) �−→ CMonm(D)

is an equivalence of ∞-categories, as desired. �

Corollary 5.15. Let D be an ∞-category which admits Km-indexed limits. Then
CMonm(D) is m-semiadditive and the forgetful functor CMonm(D) −→ D exhibits CMonm(D)
as universal among those m-semiadditive ∞-categories admitting a Km-limit preserving map
to D. In particular, D is m-semiadditive if and only if the forgetful functor CMonm(D) −→ D
is an equivalence.

To get a feel for what these higher commutative monoids are, let us consider the example
of the ∞-category S of spaces. Let F : Sm−1

m −→ S be an m-commutative monoid object and
let us refer to M = F(∗) as the underlying space of F . We may then identify two types of
morphisms in Sm−1

m . The first type are morphisms of the form

where f is (m− 1)-truncated, and which we denote f̂ : Y −→ X (see Definition 3.5). These
morphisms help us to identify the spaces F(X): by definition, the collection of maps îx : X −→
∗ exhibit F(X) as the limit of the constant X-indexed diagram with value F(∗) = M . In
particular, we may identify F(X) with the mapping space MapS(X,M). Other morphisms
of the form f̂ : Y −→ X do not really give more information: if f : X −→ Y is an (m− 1)-
truncated map then for every x ∈ X we have f̂ ◦ îx = îf(x), and so the induced map

f̂∗ : MapS(Y,M) � F(Y ) −→ F(X) � MapS(X,M)
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1153

is forced to coincide with restriction along f . The second type of morphisms in Sm−1
m are the

spans of the form

where g : X −→ Y is any map of m-finite spaces. We can think of the associated map
g∗ : MapS(X,M) −→ MapS(Y,M) as encoding the structure of M . Let Xy be the homotopy
fiber of g over y ∈ Y , equipped with its natural map iXy

: Xy −→ X, and let gy : Xy −→ {y} be
the constant map. Then îy ◦ g = gy ◦ îXy

and so for each ϕ ∈ MapS(X,M) the function g∗(ϕ) ∈
MapS(Y,M) maps the point y to the point (gy)∗(ϕ|Xy

) ∈ M . We may hence think of the core
algebraic structure of an m-commutative monoid as given by the maps p∗ : Map(X,M) −→ M
associated to constant maps p : X −→ ∗, while the other maps g : X −→ Y specify various
forms of compatibility. Informally speaking, the structure of being an m-commutative monoid
means that for every m-finite space X we can take an X-family {ϕ(x)}x∈X of points in M and
‘integrate’ it to obtain a new point

∫
X
ϕ := p∗(ϕ) ∈ M . These operations are then required

to satisfy various ‘Fubini-type’ compatibility constraints when one is integrating over a space
X which is fibered over another space Y . We note that when m = 0 the spaces involved are
finite sets, and we obtain the usual notion of being able to sum a finite collection of points in
a commutative monoid.

Examples 5.16. (i) For every space X, the space (Sm ×S S/X)� classifying m-finite spaces
equipped with a map to X is naturally an m-commutative monoid. The functor associated to
this m-commutative monoid via Proposition 5.14 is the functor

FX : Sm
m −→ S FX(Y ) = [(Sm)/Y ×S S/X ]�

sending Y ∈ Sm
m to the space of spans X ←− Z −→ Y with Z being m-finite. This is the free m-

commutative monoid generated from X. To see this, consider first the case where X is m-finite.
Then FX is corepresented by X and hence maps of m-commutative monoids FX −→ G are in
bijection with points in G(X) � G(∗)X . For a general space X one may extend this argument
by considering the span ∞-category Sm := Span(S,S[m]) whose objects are all spaces and
whose morphisms are spans whose left leg is m-finite. We may then identify Sm

m with the full
subcategory of Sm spanned by the m-finite spaces. Arguing as in the proof Proposition 4.3
one can show that the formation of right Kan extensions induces an equivalence between the
∞-category of functors Sm

m � (Sm
m )op −→ S which preserve Km-indexed limits and the ∞-

category of functors (Sm)op −→ S which preserves all space-indexed limits. Right Kan
extending FX then yields the functor (Sn)op −→ S corepresented by X, and the same argument
as above can be applied.

(ii) Any Q-vector space is an m-commutative monoid (in the category of Q-vector spaces).
Indeed, if X is an m-finite space then the limit limX V of the constant X-indexed diagram on
V is just the vector space of functions f : π0(X) −→ V . To such an f we may associate the
vector ∑

X0∈π0(X)

χ(X0)f(X0) ∈ V,

where χ(X0) = (
∏

i�0 |π2i(X0)|)/(
∏

i�0 |π2i+1(X0)|) is the ‘homotopy cardinality’ of X0. This
yields a structure of an m-commutative monoid on V .

(iii) More generally, if D is an m-semiadditive ∞-category then any object in D carries
a canonical m-commutative monoid structure by Corollary 5.15, and for each X,Y ∈ D the
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1154 YONATAN HARPAZ

mapping space MapD(X,Y ) is canonically an m-commutative monoid in spaces; indeed, the
functor MapD(X,−) preserves Km-indexed limits and hence transports m-commutative monoid
structures. For example, by the main result of [9], for any two K(n)-local spectra X,Y the
mapping space from X to Y is an m-commutative monoid in spaces.

(iv) If C is an ∞-category which admits Km-indexed colimits (or limits) then we will show
below (see Theorem 5.23) that C carries a canonically associated m-commutative monoid
structure in Cat∞, and so its maximal ∞-groupoid is an m-commutative monoid in spaces.

Let us now discuss the role of m-commutative monoids in the setting of m-semiadditive
presentable ∞-categories.

Lemma 5.17. Let D be a presentable ∞-category. Then CMonm(D) is presentable and the
forgetful functor CMonm(D) −→ D is conservative, accessible and preserves all limits.

Proof. Let CMonm(D) ⊆ Fun(Sm−1
m ,D) be the natural inclusion. Then CMonm(D) is closed

under limits in Fun(Sm−1
m ,D) and under κ-filtered colimits for any κ such that the simplicial

sets in Km are κ-small. Since Fun(Sm−1
m ,D) is presentable it now follows from [13, Corollary

5.5.7.3] that CMonm(D) is presentable and the inclusion CMonm(D) ↪→ Fun(Sm−1
m ,D) is

accessible. This, in turn, implies that the composition CMonm(D) ↪→ Fun(Sm−1
m ,D) ev∗−→ D

is accessible and preserves limits. Finally, to show that CMonm(D) −→ D is conservative it is
enough to note that if f : M −→ M ′ is a map in CMonm(D) such that f∗ : M(∗) −→ M ′(∗)
is an equivalence in D then for any X ∈ Sm−1

m the induced map fX : M(X) � limX M(∗) −→
limX M ′(∗) is an equivalence and hence f is an equivalence. �

When D is presentable, Lemma 5.17 and the adjoint functor theorem [13] imply that the
forgetful functor CMonm(D) −→ D admits a left adjoint F : D −→ CMonm(D), which can be
considered as the free m-commutative monoid functor. Given two presentable ∞-categories
C,D let us denote by FunL(C,D) the ∞-category of left adjoint functors from C to D (that is,
those functors which admit right adjoints) and by FunR(C,D) the ∞-category of right adjoint
functors from C to D.

Corollary 5.18. Let D be a presentable ∞-category and let E be a presentable m-
semiadditive ∞-category. Then post-composition with the forgetful functor CMonm(D) −→ D
induces an equivalence

FunR(E ,CMonm(D)) �−→ FunR(E ,D).

Dually, pre-composition with F : D −→ CMonm(D) induces an equivalence

FunL(CMonm(D), E) �−→ FunL(D, E).

In particular, the functor F exhibits CMonm(D) as the free presentable m-semiadditive
∞-category generated from D.

Proof. Let us prove the first claim (the second then follows by the equivalence FunR(−,−) �
FunL(−,−)op which associates to every right functor its left adjoint). By Corollary 5.15 it will
suffice to show that if G : E −→ CMonm(D) is a functor that preserves Km-indexed limits then
G belongs to FunR(E ,CMonm(D)) if and only if ev∗ ◦G : E −→ D belongs to FunR(E ,D). By
the adjoint functor theorem right functors between presentable ∞-categories are exactly the
limit preserving functors which are also accessible, that is, preserve sufficiently filtered colimits.
The result now follows from Lemma 5.17 which asserts that ev∗ preserves limits and sufficiently
filtered colimits, and also detects them since it is conservative. �
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1155

Given a small ∞-category C, let PKm
(C) ⊆ Fun(Cop,S) denote the full subcategory consisting

of those presheaves which send Km-indexed colimits in C to limits of spaces. Then PKm
(C) is

presentable and is an accessible localization of Fun(Cop,S) (choose an infinite cardinal κ such
that all Km-colimit diagrams in C are κ-small and use [13, Corollary 5.5.7.3]). Let PrL denote
the ∞-category of presentable ∞-categories and left adjoint functors between them. Identifying
PrL as a full subcategory of cocomplete ∞-categories and colimit preserving functors and
using [13, Corollary 5.3.6.10] we may conclude that the functor

PKm
: CatKm

−→ PrL (5.1)

is left adjoint to the forgetful functor PrL −→ CatKm
. In particular, we may consider

PKm
(C) as the free presentable ∞-category generated from C. We hence obtain two universal

characterizations of the ∞-category CMonm(S). On the one hand, by Corollary 5.18 we
may identify CMonm(S) as the free presentable m-semiadditive ∞-category generated from
the presentable ∞-category S. On the other hand, since Sm

m � (Sm
m )op we may interpret

Proposition 5.14 as identifying CMonm(S) � PKm
(Sm

m ) as the free presentable ∞-category
generated by the small Km-cocomplete ∞-category Sm

m . Furthermore, by [14, Proposition
4.8.1.14 and Remark 4.8.1.8] the functor (5.1) is symmetric monoidal (where PrL is endowed
with the symmetric monoidal structure inherited from that of cocomplete ∞-categories). We
may then deduce the following.

Corollary 5.19. The ∞-category CMonm(S) is an idempotent commutative algebra
object in PrL. In particular, the monoidal product CMonm(S) ⊗ CMonm(S) −→ CMonm(S)
is an equivalence.

Lemma 5.20. Let D be a presentable ∞-category. Then D carries an action of CMonm(S)
(with respect to the symmetric monoidal structure of PrL) if and only if D is m-semiadditive.

Proof. By [14, Remark 4.8.1.17] the data of an action of CMonm(S) on a presentable
∞-category D are equivalent to the data of a monoidal colimit preserving functor
CMonm(S) −→ FunL(D,D), which since (5.1) is monoidal, are equivalent to the data of a
Km-colimit preserving monoidal functor Sm

m −→ FunL(D,D), that is, to an action of Sm
m on

D which preserves Km-colimits in Sm
m and all colimits in D. We now observe that any action

of Sm
m on D which preserves Km-colimits in Sm

m will automatically preserve all colimits which
exist in D, since the object X ∈ Sm

m will necessarily acts as an X-indexed colimit of the identity
functor. The desired result now follows from Corollary 5.3. �

Arguing as in the proof of Lemma 5.2 we may now conclude the following.

Corollary 5.21. The forgetful functor ModCMonm(S)(PrL) −→ PrL is fully faithful and its
essential image consists of the m-semiadditive presentable ∞-categories.

Remark 5.22. The statements of Corollary 5.21 and 5.19 are strongly related. In fact,
under mild conditions on a symmetric monoidal ∞-category C, the property of A ∈ CAlg(C)
being idempotent is equivalent to the forgetful functor ModA(C) −→ C being fully faithful.
Idempotent commutative algebra objects in PrL feature in some recent investigations of Schlank
(private communication), where they are called modes. Informally speaking, modes describe
aspects of presentable ∞-categories which are both property and structure, such as being
pointed (the mode of pointed spaces), being semiadditive (the mode of E∞-spaces) being stable
(the mode of spectra), being an (n, 1)-category (the mode of n-truncated spaces), and more.
Corollary 5.19 then adds a new infinite family of modes: the mode of m-commutative monoids
in spaces for every m, which is associated to the property of being m-semiadditive.

 1460244x, 2020, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12367 by U

niversity O
f R

ochester, W
iley O

nline L
ibrary on [08/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1156 YONATAN HARPAZ

Let us now consider the case where we replace S by the ∞-category Cat∞ of ∞-categories.
As above, we may informally consider an m-commutative monoid structure on an ∞-category
M as giving us a rule for taking an X-indexed family of objects of M (where X is an m-finite
space) and producing a new object of M. Two immediate examples come to mind: if M is an
∞-category admitting Km-indexed colimits then we may form the colimit of any X-indexed
family of objects in M. On the other hand, if M admits Km-indexed limits then we may form
the limit of any such family. One might hence expect that if M admits Km-indexed colimits
(respectively, limits) then there should be a canonical m-commutative monoid structure on M,
which can be called the cocartesian (respectively, cartesian) m-commutative monoid structure.
To show that these structures indeed exist we will prove the following theorem.

Theorem 5.23. (i) The forgetful functor CMonm(CatKm
) −→ CatKm

is an equivalence. In
other words, every object in CatKm

admits an essentially unique m-commutative monoid
structure.

(ii) The forgetful functor CMonm(CatKm) −→ CatKm is an equivalence. In other words,
every object in CatKm admits an essentially unique m-commutative monoid structure.

Remark 5.24. If M is an ∞-category which admits Km-indexed colimits, then we may
consider it as belonging to either Cat∞ or CatKm

. Since the faithful inclusion CatKm
↪→ Cat∞

preserves limits we obtain a natural map

CMonm(CatKm
) ×CatKm

{M} −→ CMonm(Cat∞) ×Cat∞ {M}, (5.2)

where the left-hand side is contractible by Theorem 5.23, and the right-hand side is an
∞-groupoid which can be considered as the space of m-commutative monoid structures on M.
The point in CMonm(Cat∞) ×Cat∞ {M} determined by (5.2) can be considered as identifying
the cocartesian m-commutative monoid structure on M. Similarly, if M admits Km-indexed
limits then the image of the map

CMonm(CatKm) ×CatKm {M} −→ CMonm(Cat∞) ×Cat∞ {M}
identifies the cartesian m-commutative monoid structure.

Remark 5.25. The category Sm
m admits Km-indexed limits and colimits, but also carries

an m-commutative monoid structure which is neither cartesian nor cocartesian. To see this,
observe that the operation C 
→ Span(C) = Span(C, C) which associates to any ∞-category C
with finite limits its span category determines a limit preserving functor Span: CatKfin −→
CatKfin , where Kfin denotes the collection of simplicial sets with finitely many non-degenerate
simplices. We then have an induced functor

Span∗ : CMonm(CatKfin) −→ CMonm(CatKfin).

Since the ∞-category Sm has both Km-indexed limits and Km-indexed colimits it carries
both cartesian m-commutative monoid structure and cocartesian m-commutative monoid
structure. Applying the functor Span∗ we obtain two m-commutative monoid structures on
Span(Sm) = Sm

m . The cocartesian m-commutative monoid structure of Sm induces an m-
commutative monoid structure on Sm

m which is both cocartesian and cartesian. The cartesian
m-commutative monoid structure on Sm, however, induces a different m-commutative monoid
structure on Sm

m , which is neither cartesian nor cocartesian. The restriction of this structure to
S−1

0 determines a symmetric monoidal structure on Sm
m which is the one we’ve been considering

throughout this paper.

As CatKm � CatKm
by the functor which sends C to Cop, Theorem 5.23 will follows from

Theorem 4.1 and Proposition 5.14 once we prove the following result.
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1157

Proposition 5.26. The ∞-category CatKm
is m-semiadditive.

The proof of Proposition 5.26 will be given below. Since CatKm
has all limits it follows

that CatopKm
has all colimits and hence admits a canonical action of the ∞-category of spaces

S which preserves colimits in each variable separately. Dually, CatKm
admits an action of

Sop which preserves limits in each variable separately. Given a space X ∈ Sop this action
[X] : CatKm

−→ CatKm
sends M to MX = limX M and sends f : X −→ Y to the restriction

functor f∗MY −→ MX). For our purposes we will only be interested in the action of the full
subcategory Sop

m ⊆ Sop on CatKm
. Given a morphism σ : X −→ Y in Sm

m of the form

(5.3)

where X,Y, Z are m-finite spaces we will denote by Tσ : [Y ] ⇒ [X] the natural transformation
given by the composition

Tσ(M) : MY q∗−→ MZ p!−→ MX ,

where q∗ denotes the restriction functor along q and p! denotes the left Kan extension functor,
whose existence is ensured by the fact that M has Km-indexed colimits. If σ is a span as
in (5.3) then we will denote by σ̂ : Y −→ X the dual span Y

q←− Z
p−→ X.

Lemma 5.27. Let trX : X ×X −→ ∗ be the span of Definition 3.14. Then the natural
transformation

TtrX : Id −→ [X ×X] � [X] ◦ [X]

exhibits [X] as a self-adjoint functor. Furthermore, under this self-adjunction the natural
transformation Tσ : [X] ⇒ [Y ] associated to a span σ : X −→ Y is dual to the natural
transformation Tσ̂ : [Y ] ⇒ [X] associated with the dual span σ̂.

Proof. The Beck–Chevalley condition for pullbacks and left Kan extensions (see [9,
Proposition 4.3.3]) implies in particular that the association σ 
→ Tσ respects composition of
spans up to homotopy. Both claims now follow from the fact that tr : X ×X −→ ∗ exhibit X
as self-dual in the monoidal ∞-category Sm

m (see Remark 3.15) and that under this self-duality
the dual morphism of σ is σ̂. �

Proof of Proposition 5.26. Arguing by induction, let us assume that CatKm
is (m′ −

1)-semiadditive for some −1 � m′ � m and show that it is in fact m′-semiadditive. By
Corollary 5.3 (applied to CatopKm

) we may extend the (Sm′)op-action on CatKm
described

above to an (Sm′−1
m′ )op-action which preserves Km′ -indexed limits in each variable separately.

Applying Lemmas 3.10 and 3.11 to CatopKm
we may deduce that for every morphism of the

form Y
q←− X in Sop

m′,m′−1 ⊆ Sm′−1
m′ the induced transformation [q](M) : [X](M) � MX −→

MY � [Y ](M) is given by the formation of left Kan extensions. Applying now Lemma 5.27
we may conclude that for every X ∈ Sm′−1

m′ , the natural transformation [trX ] : Id ⇒ [X] ◦ [X]
exhibits [X] as a self-adjoint functor. By (the dual version of) Proposition 3.16 the ∞-category
CatKm

is m′-semiadditive, as desired. �

Remark 5.28. Proposition 5.26 implies in particular that if X is an m-finite space and
M ∈ CatKm

is an ∞-category admitting Km-indexed colimits then Fun(X,M) � limX M
is also a model for the colimit of the constant X-indexed diagram with value M. Using
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1158 YONATAN HARPAZ

Lemma 5.27 we can make this claim more precise: for any M ∈ CatKm
and X ∈ Sm, the

collection of left Kan extension functors (ix)! : M −→ MX exhibits MX as the colimit of the
constant X-indexed diagram with value M.

5.3. Decorated spans

Theorem 4.1 identifies Sm
m as the free m-semiadditive ∞-category generated by a single object.

In this section we will show how to bootstrap Theorem 4.1 in order to obtain a description of
the free m-semiadditive ∞-category generated by an arbitrary small ∞-category C.

Let π : Sm(C) −→ Sm be a cartesian fibration classifying the functor X 
→ CX . We may
informally describe objects in Sm(C) as pairs (X,LX) where X is an m-finite space and
LX : X −→ C is a C-valued local system on X (that is, a functor). A map (X,LX) −→ (Y,LY )
in Sm(C) can be described in these terms as a pair (f, T ) where f : X −→ Y is a map of spaces
and T : LX ⇒ f∗LY is a map of local systems on X (that is, a natural transformation). In
particular, a morphism (f, T ) corresponds to a π-cartesian edge of Sm(C) if and only T is an
equivalence in CX . Now since Sm admits pullbacks it follows that Sm(C) admits pullbacks of
diagram ϕ : Λ2

2 −→ Sm(C) such that ϕ|Δ{0,2} is π-cartesian. Let Scar
m (C) ⊆ Sm(C) denote the

subcategory containing all objects and whose mapping spaces are the subspaces spanned by
π-cartesian edges. Then Scar

m (C) determines a weak co-Waldhausen structure on Sm(C) (see
§ 2.1) and we may consider the associated span ∞-category

Sm
m (C) := Span(Sm(C),Scar

m (C)).

By Remark 2.4 we may identify the objects of Sm
m (C) with the objects of Sm(C) and the

mapping space in Sm
m (C) from (X,LX) to (Y,LY ) with the classifying space of spans

(5.4)

such that (p, T ) is π-cartesian (that is, such that T is an equivalence in CZ).
The fiber of the cartesian fibration Sm(C) −→ Sm over ∗ ∈ Sm is equivalent to C∗ � C

and we may fix an equivalence C �−→ Sm(C) ×Sm
{∗}. We will denote by ι : C −→ Sm(C) the

composition of this equivalence with the inclusion of the fiber over ∗ ∈ Sm. Let

U ⊆ Sm(C)Δ
1 ×Sm(C)Δ

{1} C

be the full subcategory spanned by those arrows (X,LX) −→ ι(C) which are π-cartesian. We
may informally describe objects of U as tuples (X,LX , C, T ) where T is a natural equivalence
from LX : X −→ C to the constant functor C : X −→ C with value C. Since π : Sm(C) −→ Sm is
a cartesian fibration and ∗ is terminal in Sm it follows that the maps U �−→ SΔ1

m ×SΔ{1}
m

C �−→
Sm × C are trivial Kan fibrations (whose composition can informally be described as sending
(X,LX , C, T ) to (X,C)) and hence there exists an essentially unique section s : Sm × C −→ U .
We will denote by

ι′ : Sm × C −→ Sm(C)

the composition of s with the projection U −→ Sm(C). We may informally describe ι′ by the
formula ι′(X,C) = (X,C), where C : X −→ C denotes the constant functor with value C.

Recall that we denote by C� ⊆ C the maximal subgroupoid of C. Since Sm admits pullbacks
it follows that Sm × C admits pullbacks of diagram of the form ϕ : Λ2

2 −→ Sm × C such that
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1159

ϕ|Δ{0,2} belongs to Sm × C�. Since the functor ι′ : Sm × C −→ Sm(C) maps Sm × C� to Scar
m (C)

we obtain an induced functor of span ∞-categories

ι′′ : Sm
m × C � Sm

m × Span(C, C�) � Span(Sm × C,Sm × C�) −→ Span(Sm(C),Scar
m (C)) = Sm

m (C).

We may informally describe the functor ι′′ : Sm
m × C −→ Sm

m (C) as the functor which sends the
object (X,C) to the object (X,C) and a pair (X

p←− Z
q−→ Y, α : C −→ D) of a morphism in

Sm
m and a morphism in C to the span

Our goal in this section is to prove the following characterization of the above constructions in
terms of suitable universal properties.

Theorem 5.29. (i) The functor ι : C −→ Sm(C) exhibits Sm(C) as the free ∞-category with
Km-indexed colimits generated from C.

(ii) The composed functor C −→ Sm(C) −→ Sm
m (C) exhibits Sm

m (C) as the free m-
semiadditive ∞-category generated from C.

The rest of this section is devoted to the proof of Theorem 5.29. We begin with the following
general lemma about colimits in cartesian fibrations.

Lemma 5.30. Let K be a Kan complex and let ϕ : K� −→ C be a diagram taking values in an
∞-category C. Let π : D −→ C be a cartesian fibration classified by a functor χ : Cop −→ Cat∞
which sends ϕ to a limit diagram in Cat∞. Then a lift ψ : K� −→ D of ϕ is a π-colimit diagram
in D if and only if ψ sends every morphism in K� to a π-cartesian edge.

Proof. Let ϕ = ϕ|K and ψ = ψ|K and consider the induced map π∗ : Dψ/ −→ Cϕ/. By
definition, ψ is a π-colimit diagram if and only if the object ψ ∈ Dψ/ is π∗-initial. By (the dual
of) [13, Proposition 2.4.3.2] the map π∗ is a cartesian fibration, and hence by [13, Corollary
4.3.1.16] we have that ψ is π∗-initial if and only if it is initial when considered as an object
of Dψ/ ×Cϕ/

{ϕ}. Using the natural equivalence (see [13, § 4.2.1] for the two types of slice
constructions)

Dψ/ ×Cϕ/
{ϕ} � Dψ/ ×Cϕ/ {ϕ} � Fun(K�,D) ×Fun(K,D)×Fun(K�,C) {(ψ,ϕ)} (5.5)

it will suffice to show that ψ : K� −→ D is initial when considered as an object of the RHS
of (5.5) if and only it sends all edges to π-cartesian edges. Let L = (K × Δ1)� and let L1, L2 ⊆ L
be the subsimplicial sets given by

(5.6)

Let L be the marked simplicial set whose underlying simplicial set is L and the marked edges are
those which are contained in (K × Δ{1})�. Similarly, let L1 and L2 be the marked simplicial
sets whose underlying simplicial sets are L1 and L2, respectively, and whose markings are
inherited from L. In particular, L2 = L	

2
∼= K�. We now claim that the inclusions L1 ↪→ L and

L2 ↪→ L are marked anodyne. For L1 this follows from the fact that L1 ↪→ L is inner anodyne
by [13, Lemma 2.1.2.3] and all the marked edges of L are contained in L1. For L2 we can write
the inclusion K × Δ{0} ↪→ K × Δ1 as a transfinite composition of pushouts along ∂Δn ↪→ Δn

for n � 0, yielding a description of L2 ↪→ L as a transfinite composition of pushouts along
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1160 YONATAN HARPAZ

marked maps of the form (Λn+1
n+1, (Λ

n+1
n+1)1 ∩ Δ{n,n+1}) ↪→ (Δn+1,Δ{n,n+1}) which are marked

anodyne by definition. Let D� be the marked simplicial set whose underlying simplicial set is
D and the marked edges are the π-cartesian edges. Then D� is fibrant in the cartesian model
structure over C and so we obtain a zig-zag of trivial Kan fibrations

(5.7)

where ϕ′ : L −→ C is the composition of ϕ with the projection L −→ K� and ϕ′
i = ϕ′|Li

.
Let ρ : L1 −→ D� be an object which corresponds to ψ : L2 −→ D under the zig-zag of
equivalences (5.7). We now observe that if a map L −→ D� sends all edges in L2 to π-cartesian
edges then it sends all edges in L to π-cartesian edges. It then follows that ψ sends all edges
to π-cartesian edges if and only if ρ sends all edges to π-cartesian edges. To finish the proof it
will hence suffice to show that ρ is initial in Fun	(L1,D�) ×Fun(K×Δ{0},D)×Fun(L1,C) {(ψ,ϕ′

1)}
if and only if it sends all edges to π-cartesian edges.

We now invoke our assumption that the functor χ : Cop −→ Cat∞ maps ϕ to a limit diagram
in Cat∞. By [13, Proposition 3.3.3.1] and using the fact that K is a Kan complex we may
conclude that the projection

Fun	(L1,D�) ×Fun(K×Δ{0},D)×Fun(L1,C) {(ψ,ϕ′
1)}

�−→

Fun(K × Δ1,D) ×Fun(K×Δ{0},D)×Fun(K×Δ1,C) {(ψ,ϕ′)}

is a weak equivalence, where ϕ′ : K × Δ1 −→ C is the composition of ϕ with the projection
K × Δ1 −→ K. We now observe that ρ|K×Δ1 is initial in

Fun(K × Δ1,D) ×Fun(K×Δ{0},D)×Fun(K×Δ1,C) {(ψ,ϕ′)} � (Fun(K,D) ×Fun(K,C) {ϕ})ψ/,

if and only if the morphism in Fun(K,D) ×Fun(K,C) {ϕ} determined by ρ|K×Δ1 is an
equivalence, and so the desired result follows. �

For an object (X,LX) ∈ Sm(C) and a point x ∈ X, let us denote by ix : ({x},LX(x)) −→
(X,LX) the corresponding morphism in Sm(C).

Corollary 5.31. (i) The ∞-category Sm(C) admits Km-indexed colimits. Furthermore, if
ψ : K� −→ Sm(C) is a cone diagram with K ∈ Km then ψ is a colimit diagram if and only if
π ◦ ψ : K� −→ Sm is a colimit diagram and ψ sends every morphism in K� to a π-cartesian
edge.

(ii) For any ∞-category D with Km-indexed colimits, an arbitrary functor F : Sm(C) −→
D preserves Km-indexed colimits if and only if for every (X,LX) ∈ Sm(C) the collection of
maps F(ix) : F({x},LX(x)) −→ F(X,LX) exhibits F(X,LX) as the colimit of the diagram
{F({x},LX(x))}x∈X .

Proof. Let us first prove (1). By definition, the cartesian fibration π : Sm(C) −→ Sm is
classified by the functor χC : Sop

m −→ Cat∞ given by χC(X) = CX . Since the inclusion Sm ↪→ S
preserves Km-indexed colimits (Lemma 2.9) and the inclusion S −→ Cat∞ preserves all colimits
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1161

it follows that χC sends Km-indexed colimit diagrams to limit diagrams in Cat∞. Now let K
be an m-finite Kan complex, let ψ : K −→ Sm(C) be a diagram and let ϕ = π ◦ ψ : K −→ Sm.
Since Sm admits Km-indexed colimits we may extend ϕ to a colimit diagram ϕ : K� −→ Sm.
Since χC ◦ ϕop : (Kop)� −→ Cat∞ is a limit diagram and K is a Kan complex we may use [13,
Proposition 3.3.3.1] to deduce the existence of a dotted lift

such that ψ sends all edges in K� to π-cartesian edges. By Lemma 5.30 we may conclude that
ψ is a π-colimit diagram, and since ϕ is a colimit diagram it follows that ψ is also a colimit
diagram in Sm(C). Finally, by uniqueness of colimits this construction covers all colimits of
Kn-indexed diagrams, and so the characterization of colimits given in (1) follows.

We will now prove (2). The ‘only if’ direction is clear since the collection of maps
ix : ({x},LX(x)) −→ (X,LX) exhibits (X,LX) as the colimit in Sm(C) of the diagram
{({x},LX(x))}x∈X by the characterization of colimits given in (1). Now suppose that for
every X ∈ Sm(C) the collection F(ix) : F({x},LX(x)) −→ F(X,LX) exhibits F(X,LX) as the
colimit of the diagram {({x},LX(x))}. Let Y ∈ Kn be an n-finite space and let ϕ : Y −→ Sm(C)
be a Y -indexed diagram. For each y ∈ Y let us write ϕ(y) = (Zy,Ly) where Zy is an m-finite
space and Ly : Zy −→ C is a local system. By (1) we may identify the colimit of ϕ in Sm(C)
with the pair (Z, h) where Z is the total space of the left fibration p : Z −→ Y classified by ϕ
and L : Z −→ C is the essentially unique local system such that L|Zy

= Ly. We now proceed as
in the proof of Proposition 2.11. Let ψ := F ◦ ϕ : Y −→ D and let ρ : Z −→ D be the diagram
which sends z ∈ Z to F({z},L(z)). We then have a natural transformation σ : ρ ⇒ p∗ψ and
our assumption on F implies that σ exhibits ψ : Y −→ D as a left Kan extension of ρ : Z −→ D
along p : Z −→ Y . Similarly, our assumption implies that the natural transformation from ρ to
the constant diagram on F(Z,L) exhibits the latter as the colimit of ρ. By the pasting lemma
for left Kan extensions we may now conclude that the natural transformation from ψ to the
constant diagram on F(Z,L) exhibits the latter as the colimit of ψ, as desired. �

Construction 5.32. Let (X,LX) ∈ Sm(C) be an object. Then in the commutative square

(5.8)

the vertical maps are right fibrations and the lower horizontal map is a cartesian fibration. It
then follows that the composed dotted map in (5.8) is a cartesian fibration as well, and hence
we may consider the top horizontal arrow as a map of cartesian fibration over Sm whose target
is a right fibration. Such a map is automatically a cartesian fibration (up to equivalence). Base
changing the square (5.8) along the inclusion {∗} ⊆ Sm we then obtain the square

(5.9)
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1162 YONATAN HARPAZ

whose horizontal maps are again cartesian fibrations and vertical maps right fibrations. In
particular, the top right corner in (5.9) is a space, which we may identify with MapSm

(∗, X) �
X, and the bottom right corner can be identified with Fun(∗, C) � C by the construction of
Sm(C). The functor Xop −→ Cat classifying the top horizontal cartesian fibration in (5.9) can
then be written as x 
→ C/LX(x). In particular, the fibers of this cartesian fibration all have final
objects and these are preserved by the cartesian transition functors (which are all equivalences).
The full subcategory E ⊆ {∗} ×Sm

Sm(C)/(X,LX) consisting of objects which are final in their
fiber then projects to X via a trivial Kan fibration E −→ X, and we may construct a section

s : X −→ {∗} ×Sm
Sm(C)/(X,LX) (5.10)

by taking the essentially unique section of E −→ X. The section s can then also be characterized
by the property that it picks in each fiber a final object.

Lemma 5.33. The map (5.10) is cofinal.

Proof. Equivalently, we need to check that the inclusion E ⊆ {∗} ×Sm
Sm(C)/(X,LX) is

cofinal. Indeed, one quickly verifies that its comma categories all have initial objects, given
by those arrows which are completely contained in a fiber over X. �

Corollary 5.34. The inclusion ι : C −→ Sm(C) exhibits Sm(C) as the ∞-category obtained
from C by freely adding Km-indexed colimits. In particular, if D is an ∞-category with Km-
indexed colimits then restriction along ι induces an equivalence of ∞-categories

FunKm
(Sm(C),D) �−→ Fun(C,D).

Proof. By Corollary 5.31(1) we know that Sm(C) has Km-indexed colimits. Now suppose
that D is an ∞-category that admits Km-indexed colimits and let F : C −→ D be a functor.
Since D admits colimits indexed by X for every X ∈ Sm Lemma 5.33 and [13, Lemma 4.3.2.13]
together imply that any functor F : C −→ D admits a left Kan extension F : Sm(C) −→ D, and
that an arbitrary functor F : Sm(C) −→ D extending F is a left Kan extension of F if and only
if for every (X,LX) ∈ Sm(C) the collection of maps

F(ix) : F({x},LX(x)) = F(LX(x)) −→ F(X,LX)

exhibit F(X,LX) as the colimit of the diagram {F(LX(x))}x∈X . By Corollary 5.31(2) the
latter condition is equivalent to the condition that F preserves Km-indexed colimits. The
desired result now follows from the uniqueness of left Kan extensions (see [13, Proposition
4.3.2.15]). �

We now address the universal property of Sm
m (C) as described in the second claim of

Theorem 5.29. We begin with the following lemma.

Lemma 5.35. (i) The ∞-category Sm
m (C) admits Km-indexed colimits and the inclusion

Sm(C) −→ Sm
m (C) preserves Km-indexed colimits. Furthermore, every Km-indexed diagram in

Sm
m (C) comes from a Km-indexed diagram in Sm(C).

(ii) For any ∞-category D with Km-indexed colimits, an arbitrary functor F : Sm
m (C) −→

D preserves Km-indexed colimits if and only if for every (X,LX) ∈ Sm
m (C) the collection of

maps {F(ix) : F({x},LX(x)) −→ F(X,LX)} exhibit F(X,LX) as the colimit of the diagram
{F({x},LX(x))}.

(iii) The functor ι′′ : Sm
m × C −→ Sm

m (C) preserves Km-indexed colimits in the Sm
m variable.
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1163

Proof. Let us begin with Claim (1). We first claim that every equivalence in Sm
m (C) is in

the image of the map Sm(C) −→ Sm
m (C). Indeed, a morphism in Sm

m (C) is given by a span

(5.11)

such that T is an equivalence in CZ . If (5.11) is an equivalence then its image in Sm
m is an

equivalence which means by Remark 2.13 that p : Z −→ X is an equivalence in Sm and hence
that (p, T ) : (Z,LZ) −→ (X,LX) is an equivalence in Sm(C). In this case the span (5.11) is
essentially equivalent to an honest map, that is, is in the image of Sm(C) −→ Sm

m (C). Since
the inclusion Sm(C) −→ Sm

m (C) is faithful it follows that any Km-indexed diagram in Sm
m (C) is

the image of an essentially unique Km-indexed diagram in Sm(C). It will hence suffice to prove
that the map Sm(C) −→ Sm

m (C) preserves Km-indexed colimits.
By Corollary 5.31(2) it will suffice to show that for every (X,LX) ∈ Sm

m (C), the collection
of maps ({x},LX(x)) −→ (X,LX) exhibit (X,LX) as the colimit of the X-indexed diagram
{({x},LX(x))}x∈X in Sm

m (C). In other words, we need to show that the data of a span of the
form (5.11) such that T : LZ

�−→ p∗LX is an equivalence in CZ is equivalent to the data of an
X-indexed family of spans

(5.12)

where Zx denotes the homotopy fiber of p : Z −→ X over x ∈ X. But this is now a consequence
of the straightening–unstraightening equivalence which implies that the collection of fiber
functors i∗x : (Sm)/X −→ S identifies (Sm)/X with SX

m , and furthermore for every Z −→ X
the collection of maps i∗xZ −→ Z exhibits Z as the homotopy colimit of the X-indexed family
{Zx}x∈X . Claim (2) is now a direct consequence of the above and Corollary 5.31(2).

Let us now prove Claim (3). We have a commutative diagram of ∞-categories

where the vertical maps are faithful. Let C ∈ C be an object, let K be an m-finite Kan complex
and let ϕ : K −→ Sm

m × {C} be a diagram. By Remark 2.13 the diagram ϕ is the image of
an essentially unique diagram ϕ′ : K −→ Sm × {C}, and by Proposition 2.14 the inclusion
Sm × {C} −→ Sm

m × {C} preserves Km-indexed colimits. By Claim (2) it will suffice to show
that the top horizontal map preserves Km-indexed colimits, which is clear in light of the
characterization of colimit cones in Sm(C) given in Corollary 5.31(1). �

Proposition 5.36. The ∞-category Sm
m (C) carries an action of Sm

m which preserves
Km-indexed colimits in each variable separately. In particular, Sm

m (C) is m-semiadditive
(Corollary 3.18).

Proof. Since Sm(C) admits Km-indexed colimits it carries a canonical action of Sm,
given informally by the formula X ⊗ (Y,LY ) = colimx∈X(Y,LY ) = (X × Y, p∗Y LY ), where
pY : X × Y −→ Y is the projection on the second factor. Since the functor E 
→ Span(E) is
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1164 YONATAN HARPAZ

visibly product preserving this action induces an action of Sm
m = Span(Sm) on Span(Sm(C)).

We now claim that the action of Sm on Sm(C) preserves the wide subcategory Scar
m (C) ⊆

Sm(C), and hence the action of Sm
m on Span(Sm(C)) preserves the wide subcategory Sm

m (C) =
Span(Sm(C),Scar

m (C)) ⊆ Span(Sm(C)) (see Remark 2.13). Concretely, what we need to show is
that the tensor of a π-cartesian arrow in Sm(C) against any arrow in Sm is again π-cartesian.
Since π-cartesian arrows are closed under composition we can reduce to checking this when
either the arrow in Sm or the arrow in Sm(C) are equivalences. In both cases the result readily
follows from the characterization of colimits cones in Sm(C) given by Corollary 5.31(i). We
hence get an induced action of Sm

m on Sm
m (C). Furthermore, by Corollary 2.15 and Lemma 5.35

this action preserves Km-indexed colimits in each variable separately. �

Let us now consider the left marked mapping cone

Conem(C) =
[
Sm
m × C × (Δ1)�

] ∐
Sm
m×C×Δ{1}

Sm
m (C)

of the inclusion ι′′ : Sm
m × C ↪→ Sm

m (C). Let Conem(C) ↪→ M� r−→ Δ1 be a factorization of
the projection Conem(C) −→ (Δ1)� into a trivial cofibration followed by a fibration in the
cocartesian model structure over (Δ1)�. In particular, r : M −→ Δ1 is a cocartesian fibration
and the marked edges of M� are exactly the r-cocartesian edges. Let ι0 : Sm

m × C ↪→ M×Δ1

Δ{0} ⊆ M and ι1 : Sm
m (C) ↪→ M×Δ1 Δ{1} ⊆ M be the corresponding inclusions. Then ι0 and

ι1 exhibit r : M −→ Δ1 as a correspondence from Sm
m × C to Sm

m (C) which is the one associated
to the functor ι′′ : Sm

m × C ↪→ Sm
m (C).

Proposition 5.37. Let D be an m-semiadditive ∞-category and let F : Sm
m × C −→ D be

a functor which preserves Km-indexed colimits in the Sm
m variable. Then the following holds.

(i) F admits a left Kan extension

(ii) An arbitrary functor F : M −→ D extending F is a left Kan extension if and only if
F maps r-cocartesian edges in M to equivalences in D and F ◦ ι1 : Sm

m (C) −→ D preserves
Km-indexed colimits.

Proof. For (Y,LY ) ∈ Sm
m (C) let us denote by

I(Y,LY ) := (Sm
m × C) ×Sm

m×C Sm
m (C)/(Y,LY )

the associated comma ∞-category. To prove (1), it will suffice by [13, Lemma 4.3.2.13] to show
that the composed map

F(Y,LY ) : I(Y,LY ) −→ Sm
m × C −→ D

can be extended to a colimit diagram in D for every (Y,LY ) ∈ Sm
m (C). Now an object of I(Y,LY )

corresponds to an object (X,C) ∈ Sm
m × C and a morphism (X,C) −→ (Y,LY ) in Sm

m (C), that
is, a span

(5.13)
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1165

where T : LZ −→ p∗C is an equivalence in CZ . Let J(Y,LY ) := (Sm × C) ×Sm(C) (Sm(C))/(Y,LY )

be the comma ∞-category over (Y,LY ) associated to the inclusion ι′ : Sm × C −→ Sm(C). Then
the faithful maps Sm × C ↪→ Sm

m × C and Sm(C) −→ Sm
m (C) induce a fully faithful inclusion

ρ : J(Y,LY ) ↪→ I(Y,LY ) whose essential image consists of those objects as in (5.13) for which
p : Z −→ X is an equivalence. We now claim that ρ is cofinal.

Consider an object P ∈ I(Y,LY ) of the form (5.13). We need to show that the comma
∞-category (J(Y,LY ))P/ := J(Y,LY ) ×I(Y,LY ) (I(Y,LY ))P/ is weakly contractible. Given an object
(q′, S′) : (X ′, C ′) −→ (Y,LY ) of J(Y,LY ) the mapping space from P to ρ(X ′, C ′, q′, S′) in I(Y,LY )

is given by the homotopy fiber of the map

MapSm
m×C((X,C), (X ′, C ′)) −→ MapSm

m (C)((X,C), (Y,LY )) (5.14)

over the map determined by P . In light of Remark 2.4 we may identify the homotopy fiber
of (5.14) with the homotopy fiber of the map

((Sm)/X)� ×Sm
((Sm)/X′)� × MapC(C,C ′) −→ (Scar

m (C)/(X,C))
� ×Sm(C) (Sm(C)/(Y,LY ))�(5.15)

over the object corresponding to P . Now since the map ((Sm)/X)� −→ (Scar
m (C)/(X,C))

� is an
equivalence we may identify the homotopy fiber of (5.15) with the homotopy fiber of the map

MapSm
(Z,X ′) × MapC(C,C ′) −→ MapSm(C)((Z,C), (Y,LY )) (5.16)

over the point (q, S) ∈ MapSm(C)((Z,C), (Y,LY )) determined by P . Unwinding the definitions
we recover that the map (5.16) sends a pair (q′′ : Z −→ X ′, α : C −→ C ′) to the composition

We may then conclude that the functor J(Y,LY ) −→ S defined by (X ′, C ′, q′, S′) 
→
MapI(Y,LY )

(P, ρ(X ′, C ′, q′, S′)) is corepresented in J(Y,LY ) by the object (q, S) : (Z,C) −→
(Y,LY ). It then follows that (J(Y,LY ))P/ has an initial object and is hence weakly contractible.
This means that ρ : J(Y,LY ) ↪→ I(Y,LY ) is cofinal, as desired.

It will now suffice to show that each of the diagrams

F(Y,LY )|J(Y,LY ) : J(Y,LY ) −→ D

can be extended to a colimit diagram. Let J ′
(Y,LY ) := J(Y,LY ) ×Sn

{∗} ⊆ JY be the full
subcategory spanned by objects of the form (q, S) : (∗, C) −→ (Y,LY ). Since we assumed
that F : Sm

m × C −→ D preserves Km-indexed colimits in the first coordinate it follows from
Proposition 2.14 that the restriction F|Sm×C : Sm × C −→ D preserves Km-indexed colimits
in the first coordinate and by combining Proposition 2.11 with Lemma 5.33 we may
conclude that the functor F|Sm×C is a left Kan extension of its restriction to {∗} × C ∈
Sm. Now since the projection JY −→ Sm × C is a right fibration it induces an equivalence
(J(Y,LY ))/(X′,C′,q′,S′) −→ (Sm × C)/(X′,C′) for every (X ′, C ′, q′, S′) ∈ J(Y,LY ). We may then
conclude that F(Y,LY )|J(Y,LY ) is a left Kan extension of F(Y,LY )|J ′

(Y,LY )
. Since D admits Km-

indexed colimits and J ′
(Y,LY ) contains an m-finite Kan complex as a cofinal subcategory by

Lemma 5.33 the diagram F(Y,LY )|J ′
(Y,LY )

admits a colimit. It then follows that the diagram
F(Y,LY )|J(Y,LY ) −→ D admits a colimit, as desired.

To prove (2), we begin by noting that by the above considerations, an arbitrary extension
F : M −→ D is a left Kan extension if and only if for every (Y,LY ) the diagram

(J ′
(Y,LY ))

� −→ D
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1166 YONATAN HARPAZ

determined by F is a colimit diagram. By Lemma 5.33 the functor Y −→ J ′
(Y,LY ) sending

y ∈ Y to the object ({y},LY (y)) −→ (Y,LY ) is cofinal and so F is a left Kan extension of F
if and only if for every (Y,LY ) the diagram

F (Y,LY ) : Y � −→ D (5.17)

determined by F is a colimit diagram. Now by Proposition 2.11 and Lemma 2.15 we
know that for each Y ∈ Sm

m the collection of maps ιy : {y} −→ Y exhibits Y as the colimit
in Sm

m of the constant Y -diagram with value ∗. Since F : Sm
m × C −→ D preserves Km-

indexed colimits in the first variable it follows that each (Y,C) ∈ Sm
m × C the collection

of maps F(ιy, IdC) : F({y}, C) −→ F(Y,C) exhibit F(Y,C) as the colimit of the diagram
{F({y}, C)}y∈Y . This means that F (Y,C) is a colimit diagram if and only if F maps every
r-cocartesian edge in M of the form (Y,C) −→ (Y,C) (covering the map 0 −→ 1 of Δ1) to an
equivalence in D. Since all the other r-cocartesian edges of M are equivalences we may conclude
that F maps r-cocartesian edges to equivalences if and only if the diagrams F (Y,C) are colimit
diagrams for every Y ∈ Sm

m and C ∈ C. On the other hand, when these two equivalent conditions
hold for Y = ∗ and all C ∈ C then the condition that F (Y,LY ) is a colimit diagram for every
(Y,LY ) is equivalent by Lemma 5.35(2) to the condition that F ◦ ι1 : Sm

m (C) −→ D preserves
Km-indexed colimits. We may hence conclude that F is a left Kan extension of F if and only if
it maps all r-cocartesian edges of M to equivalences in D and F ◦ ι1 : Sm

m (C) −→ D preserves
Km-indexed colimits. �

Given an ∞-category D admitting Km-indexed colimits, let us denote by

FunKm/C(Sm
m × C,D) ⊆ Fun(Sm

m × C,D)

the full subcategory spanned by those functors which preserves Km-indexed colimits in the Sm
m

variable.

Corollary 5.38. Let D be an m-semiadditive ∞-category. Then restriction along ι′′ : Sm
m ×

C ↪→ Sm
m (C) induces an equivalence of ∞-categories:

FunKm
(Sm

m (C),D) �−→ FunKm/C(Sm
m × C,D).

Proof. Let r : M� −→ Δ1 be as above and consider the marked simplicial set D� = (D,M)
where M is the collection of edges which are equivalences in D. Let Fun	

Km
(M�,D�) ⊆

Fun	(M�,D�) and Fun	
Km

(Conem(C),D�) ⊆ Fun	(Conem(C),D�) be the respective full subcat-
egories spanned by those marked functors whose restriction to Sm

m × C preserves Km-indexed
colimits in the left variable and whose restriction to Sm

m (C) preserves Km-indexed colimits.
Since the map Conem(C) −→ M� is marked anodyne it follows that the restriction map
Fun	

Km
(M�,D�) −→ Fun	

Km
(Conem(C),D�) is an equivalence and by Proposition 5.37 the

restriction map Fun	
Km

(M�,D�) −→ FunKm/C(Sm
m × C,D) is an equivalence. We may hence

deduce that the restriction map

ι∗0 : Fun	
Km

(Conem(C),D�) −→ FunKm/C(Sm
m × C,D)

is an equivalence.
Now since the inclusion Sm

m × C ↪→ Conem(C) is a pushout along the inclusion Sm
m ××C ×

Δ{1} ↪→ Sm
m × C × (Δ1)� (which is itself a trivial cofibration in the cartesian model structure

over Δ0) it follows that the map i∗1 : Fun	(Conem(C),D�) −→ Fun(Sm
m (C),D) is a trivial Kan

fibration and that the composed functor
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AMBIDEXTERITY AND THE UNIVERSALITY OF FINITE SPANS 1167

is homotopic to i∗0 : Fun	(Conem(C),D�) �−→ Fun(Sm
m × C,D). We may consequently conclude

that i∗1 induces an equivalence between Fun	
Km

(Conem(C),D�) and the full subcategory of
FunKm

(Sm
m (C),D) spanned by those functors whose restriction to Sm

m × C preserves Km-indexed
colimits in the left variable. By Lemma 5.35(3) the latter condition is automatic and hence the
restriction map ι∗1 : Fun	

Km
(Conem(C),D�) −→ Fun	

Km
(Sm

m (C),D�) is an equivalence. We may
then conclude that

(ι′′)∗ : FunKm
(Sm

m (C),D) −→ FunKm/C(Sm
m × C,D)

is an equivalence of ∞-categories, as desired. �

Corollary 5.39. Let D be an m-semiadditive ∞-category. Then restriction along the
inclusion {∗} × C ↪→ Sm

m (C) induces an equivalence of ∞-categories:

FunKm
(Sm

m (C),D) �−→ Fun(C,D).

Proof. Combine Corollary 5.38 and Theorem 4.1. �

Proof of Theorem 5.29. Combine Corollary 5.34, Proposition 5.36, Corollary 5.38 and
Corollary 5.39. �

We also record the following corollary.

Corollary 5.40. The composed functor

Sm
m × Sm(C) −→ Sm

m × Sm
m (C) −→ Sm

m (C),

where the second functor is given by the action of Sm
m on Sm

m (C) of Proposition 5.36, exhibits
Sm
m (C) as the tensor product Sm

m ⊗Km
Sm(C) in CatKm

.

Proof. We need to show that for every m-semiadditive ∞-category the composed functor

FunKm
(Sm

m (C),D) −→ FunKm
(Sm

m (C),FunKm
(Sm

m ,D)) −→
FunKm

(Sm(C),FunKm
(Sm

m ,D))

is an equivalence. Now since D is m-semiadditive we have from Theorem 4.1 that restriction
along {∗} ⊆ Sm

m induces an equivalence FunKm
(Sm

m ,D) �−→ D. Composing the above composed
functor with the induced equivalence

FunKm
(Sm(C),FunKm

(Sm
m ,D)) �−→ FunKm

(Sm(C),D)

it will suffice to show that the restriction functor

FunKm
(Sm

m (C),D) −→ FunKm
(Sm(C),D)

is an equivalence. Indeed, this follows by combining Corollary 5.38 and Corollary 5.34. �

Remark 5.41. For m � n one may also consider the subcategory Sm
n (C) ⊆ Sn

n (C) containing
all objects and whose mapping spaces are spanned by those morphisms as in (5.4) for which p is
m-truncated. A similar argument then shows that Sm

n (C) is the free m-semiadditive ∞-category
with Kn-indexed colimits generated from C.

5.4. Higher semiadditivity and topological field theories

In this section we will discuss a relation between the results of this paper and one-
dimensional topological field theories, and more specifically, with the notion of finite path
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1168 YONATAN HARPAZ

integrals as described in [3, § 3]. We first discuss the universal constructions of § 5.3 in the
presence of a symmetric monoidal structure. Recall that by [13, Proposition 4.8.1.10] the
free-forgetful adjunction Cat∞ � CatKm

induces an adjunction CAlg(Cat∞) � CAlg(CatKm
)

on commutative algebra objects which is compatible with the free-forgetful adjunction. In
particular, if D⊗ ∈ CAlg(Cat∞) is a symmetric monoidal ∞-category then the ∞-category
Sm(D) (which, by Corollary 5.34, is the image of D in CatKm

under the free functor
Cat∞ −→ CatKm

) carries a canonical symmetric monoidal structure, under which it can be
identified with the image of D⊗ under the induced functor CAlg(Cat∞) −→ CAlg(CatKm

).
Since the monoidal product on Sm(D) preserves Km-colimits in each variable separately
the characterization of colimits given in Corollary 5.31 yields an explicit formula for the
product as (X,LX) ⊗ (Y,LY ) = (X × Y,LX ⊗ LY ), where LX ⊗ LY : X × Y −→ D is the local
system (LX ⊗ LY )(x, y) = LX(x) ⊗ LY (y). We also note that by the above the unit map
D −→ Sm(D) is symmetric monoidal, and if D already has Km-indexed colimits and its
monoidal structure commutes with Km-indexed colimits in each variable separately then the
counit map Sm(D) −→ D is symmetric monoidal as well.

Corollary 5.40 tells us that we have a similar phenomenon with Sm
m (D): indeed, by Proposi-

tion 5.6 the ∞-category Sm
m (D) inherits a canonical commutative algebra structure in Addm �

ModSm
m

(CatKm
) under which it can be identified with the image of Sm(D)⊗ ∈ CAlg(CatKm

)
under the functor CatKm

−→ Addm left adjoint to the forgetful functor Addm −→ CatKm
.

Combined with the above considerations we may further identify Sm
m (D)⊗ ∈ CAlg(Addm) with

the image of D under the induced functor CAlg(Cat∞) −→ CAlg(Addm). In explicit terms,
Sm
m (D) carries a symmetric monoidal structure which preserves Km-indexed colimits in each

variable separately and the unit map D −→ Sm
m (D) extends to a symmetric monoidal functor.

Furthermore, if D is already m-semiadditive and its symmetric monoidal structure commutes
with Km-indexed colimits in each variable separately then the counit map Sm

m (D) −→ D is
symmetric monoidal as well.

The following lemma appears to be well known, but we could not find a reference. Note that,
while the lemma is phrased for Sm

m (D), it has nothing to do with the finiteness or truncation
of the spaces in Sm

m . In particular, the analogous claim holds if one replaces Sm
m (D) by the

analogous ∞-category of decorated spans between arbitrary spaces.

Lemma 5.42. Let D be a symmetric monoidal ∞-category. Let (X,LX) ∈ Sm
m (D) be such

that LX(x) is dualizable in D for every x ∈ X. Then (X,LX) is dualizable in Sm
m (D).

Proof. Let Ddl ⊆ D be the full subcategory spanned by dualizable objects and let (Ddl)� ⊆
Ddl be the maximal subgroupoid of Ddl. Let Bord⊗

1 be the one-dimensional framed cobordism
∞-category. By the one-dimensional cobordism hypothesis [6, 12], evaluation at the positively
1-framed point ∗+ ∈ Bord1 induces an equivalence

Fun⊗(Bord⊗
1 ,D⊗) �−→ (Ddl)�. (5.18)

Now let (X,LX) be an object of Sm
m (D) such that LX(x) is dualizable for every x ∈ X. Then

the local system LX : X −→ D factors through a local system L′
X : X −→ (Ddl)�. By the

equivalence (5.18) we may lift LX to a local system L′
X : X −→ Fun⊗(Bord⊗

1 ,D⊗) valued in
topological field theories. Evaluation at the negatively 1-framed point ∗− ∈ Bord1 now yields a
local system L̂X : X −→ D. Furthermore, for every x ∈ X, evaluation at the evaluation bordism
ev : ∗+

∐
∗− −→ ∅ induces a map L′

X(x, ev) : LX(x) ⊗ L̂X(x) −→ 1D exhibiting L̂X(x) as dual
to LX(x). Allowing x to vary we obtain a natural transformation L′

X(ev) : (LX ⊗ L̂X) ◦ δ ⇒
1D of D-valued local systems on X, where δ : X −→ X ×X is the diagonal map. Similarly,
we may evaluate at the coevaluation cobordism coev : ∅ −→ ∗−

∐
∗+ and obtain a natural

transformation L′
X(coev) : 1D ⇒ (L̂X ⊗ LX) ◦ δ, which, for each x, determines a compatible

coevaluation map 1 −→ L̂X(x) ⊗ LX(x).
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Now let q : X −→ ∗ denote the constant map and consider the morphisms

ev(X,LX) : (X,LX) ⊗ (X, L̂X) = (X ×X,LX ⊗ L̂X) −→ ∗ and ∗ −→ (X ×X, L̂X ⊗ LX)

in Sm
m (D) given by the spans

(5.19)

and

(5.20)

One may then directly verify that the morphisms (5.19) and (5.20) satisfy the evaluation–
coevaluation identities and hence exhibit (X,LX) and (X, L̂X) as dual to each other. �

Let us now explain the relation of the above construction with the notion of finite path
integrals as described in [3]. Given a local system LX : X −→ D of dualizable objects in D (for
example, a family of invertible objects), one obtains, as described in Lemma 5.42, a dualizable
object (X,LX) of the decorated span ∞-category Sm

m (D). By the cobordism hypothesis this
object determines a one-dimensional topological field theory Z : Bord1 −→ Sm

m (D) which sends
the point to (X,LX). The term quantization is sometimes used to describe a procedure in which
the topological field theory Z can be ‘integrated’ into a topological field theory taking values in
D (see, for example, [15]). This can often be achieved, at various levels of rigor, by performing
some kind of a path integral.

Such a path integral is described informally in [3] in the setting of finite groupoids (that is,
m = 1) and where the target ∞-category D is the category of vector spaces over the complex
numbers. More generally, the authors of [3] work with an n-categorical version of the span
construction and consider n-dimensional topological field theories. However, as the paper [3]
is expository in nature, it discusses these ideas somewhat informally, leaving many assertions
without a formal proof or a precise formulation. In a recent paper [16], Trova suggests to use
the formalism of Nakayama categories in order to give a formal definition of quantization in the
setting of finite groupoids and one-dimensional field theories, when the target is an ordinary
category satisfying suitable conditions. We will now explain how the results of the present paper
can be used to give a formal definition of quantization when the target is an m-semiadditive
∞-category and finite groupoids are generalized to m-finite spaces.

Let Z : Bord1 −→ Sm
m (D) be the topological field theory determined by a local system

LX : X −→ D of dualizable objects in D. Suppose that D is m-semiadditive and that the
monoidal structure on D preserves Km-indexed colimits in each variable separately. Then we
may consider the counit map νD : Sm

m (D) −→ D associated to the free-forgetful adjunction
CAlg(Cat∞) � CAlg(CatKm

). This counit map is a symmetric monoidal functor, and we may
consequently post-compose the topological field theory Z with νD to obtain a topological field
theory Z : Bord1 −→ D. The association Z 
→ Z can be considered as a quantization procedure,
and by comparing values on the point it must be compatible with the approach of [3]. We
note that one may write the counit map νD : Sm

m (D) −→ D explicitly using the formation of
colimits and the formal summation of Km-families of maps in D via its canonical enrichment
in m-commutative monoids established in § 5.2. The resulting formulas can then be considered
as explicit forms of path integrals. We may also summarize this process with the following
corollary.
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Corollary 5.43. Let D be an m-semiadditive ∞-category equipped with a symmetric
monoidal structure which preserves Km-indexed colimits in each variable separately. Then
the collection of dualizable objects in D is closed under Km-indexed colimits. Furthermore, if
X is an m-finite space and LX : X −→ D is a local system of dualizable objects in D, then
the one-dimensional topological field theory Bord1 −→ D determined by the dualizable object
colimL is the quantization of the topological field theory Bord1 −→ Sm

m (D) determined by the
dualizable object (X,LX) ∈ Sm

m (D).
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