August 10, 1987

jced version-of letter to Waldhausen of July 10:

1. The cvclic nerve of wS.€

~all that the cyclic nerve of a category € is the cvclic set N?ye given

. f f f.
x“Y¢ = [ circular diagrams CO-—>C1-—>...——)CR—5>CO in t }

N
ace maps are given by composing morphisms, degeneracies are given ny

jserting identity morphisms, and Z/(k+1) acts by rotating the diagram.)
i

, T is a groupoid (every morphism is an isomorphism) then the cvclic

bset of NGV given by the condition fkfk_l...fO:l is isomorphic (as a

mplicial set) to the ordinary nerve N.t . By realization we then get a

. 1 - - A . . . . .
.ir of S -spaces (]N?}fl,!h.t]), and it is known that this is equivalent,

.

1 the weak equivariant sense, to the pair (AX,X) vhere X:]N.fg, A
.notes free loopspace, X is the subspace of constant ioops in aX, and &7
i*:ts in the obvious way.

t is also worth noting that if t is a groupoid tnen the cvcelic nerve of t

2 isomorphic ias a simpliciai seti 0O the ordinary nerve of the groupcia

)

4ti{f) whose cbjects are the automorphisms of c¢bjects in ¥ and wnose

+he ocbvious ones.
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v let ¢ be a category with cofibrations and weak equivalences « as 1in

1}]. We can form the cyclic nerve of the simplicial category «S.t to get
. . .. cy . s <y .

cyclic simplicial set NITwS.t . Let s call the loopspace Q[Nﬁ"us.tl the

.CcVv

‘velic K-theory” and denote it by Kk " (w,t). In the minimal case when w=i,

» that only the isomorphisms are weak equivalences, then wS.t is a
Ko

implicial groupoid and one has an inclusion N.iS.¢ -3 &.viS.f and so a

aip from K-theory to cyclic K-theorvy.

5r general w one can still define the cvclic K-theory. In particular one
an define it in the maximal case when v is all of t. In this case it 1is
]N?ys.f|. Of course in the maximal case we have nothing like a groupoid,
o we don't expect to see a map from E-theoryv. This is just as well, since
n this case the K-theory is contractible. However, the cvclic K-theory is
ot. In fact, I think that Kcy(w,f) in the special case when « 1is all of €
s going to play an important role in studving trace maps from K-theory to

.

Hochschild) homology. It seems to live somevhere between the two:; it's

efined like K-theory but behaves like homology. i'm calling this new

al

bject W(€) (the "W" stands for “Witt vector'!: it is a functor «f the

ategory-with-cofibrations ¢t.

3v the way, the additivity theorem seems to extend easily to this setting:

T

claim that for any ¢t and « the obvious map

C cy

v R Ny . . .
NTTwSLE(fY —-=> NEles.r v NTwsLe



an equivalence. To see this, just follow the proof of 1.4.2 from 1.4.2
(wl], but replacing the category t{m,«) (the linear diagirams of length

in w) by the category atf circular diagrams

C . -=>C,==>...=-=>C_-->C
m

1 0

1 w. One consequence of this is that Kcy(w,f), and in particular W(¢), is
te O-th space in a connective Q-spectrum made up of the spaces

j‘v(w,an)t‘), with S1 acting on the entire spectrum. In general, for any
B T —

one has a diagram (of «=-loopspaces with Sl-action)

s

]

K(i,€) -=> KSV(i,€) -=> W(¢)

-n which the action of S1 on K(i,€t) is essentially trivial.

2. Groups and fixvoints

‘he simplest example of all this is when f is the category of (based)

“inite sets. In this case let us try to identify -the spaces and maps

K(i, ) --> KS¥(i,e) --> w(e)

7f course we know the first space: every fiitered object in t is
~anonically the sum of its subquotients, =0 the category iSPf is
equivalent to the product of k copies of it and Kii.t: is equivalent ta

R . . . . u
Segal’'s group completion of t. 1in ¢ther words us .




) oy : . oYL
> can apply the same method to K" (i,t) by viewing N.‘xskt as
\\'-//

. . N
.Aut(isl “Aut(t). Since Aut(t) is the weak product wver all n>0 of
< s€an procye

v
he category

t1=N.18
< !

{Z/nZ of finite (based) free (2Z/nZ)-cets, and the droup

ompletion of tz/nz is QB(Z/nZ)+, we qbtain

y = I’ QB(Z/nZ)+

O, . e . S
K " (i,€) = K(i,Aut(¢)) = 2 h(l’(Z/nZ n

his doesn't give the Sl~action, but it is clear that S1 acts diagonally
S drasonasty

n the product and I'm quite sure that if we look more closely we will

ind that the action on the nth factor comes from the action of S1 on

(R/nz)/(2/n2)=B(Z/nZ) given by the short exact sequence

2/nz --> R/nZz --> R/Z=S' ‘,ZJW\S \Jfb“"k
el

.
< mﬁﬂbm’
‘inally, I believe that the third term W(t¢) (where T is still the category

)f finite sets) contains K°¥(i,t) as a deformation retract. Define a map V

cv.

from W(€t) to W(S.€) as follows: Given an element C0—>...—>Cj->CO of NJ t,

‘ 2
nake the element Cé—)...;>C3—>C6 of Njyszf where Ci is the pair
(Ci,f(Ci)), f being the composed map once around the circular diagram from
to itself. This is a cyclic map from NCYE to N?yszf. It extends in the
sther simplicial direction to give a map from XTUs.T to N?}S.Szf. Now use
+he three exact functors “"total set, subset, quotient set” from Szf to ¢.

The additivity theorem says that tv LEEESE_EEfLQQ~lQQQ£i£§l is homotopic

< . N . . .CV . . . .
o sv+gv. Note that sv 1s the i1dentity on NT iS.¢ and that any finite

R

cv . .l CcYy, . .
§Ebcomplex of NI"S.t¥ is carried into N.T1S5.¢ by some iterate of sv. Thus 1

Y
/

/
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11 have what 1 want if gv is nullhomotopic. 1 believe that it is. In any
- “‘W .

LY

ce it's clear that there 158 a retraction from W{(t) to K ~ (]}

e map K(f)——)K(i,fz/“z) given by the retraction followed by the nth

~ojection can be described in terms of counting periodic orbits of

srtain maps, and I will therefore denote it by Pern. The description is

s follows. Given a circular diagram CO~>C1~>...—>CR—>CO in ¢ we select
romieach set Cj the subset consisting of those elements which have period
cactly n for the composed map Cj—>(,“j (and also the basepoint). These form
circular diagram 1n ifz/nz' The same construction applies more generally
hr filtered objects, and so gives a cyclic map from NEVs.¢ to a “twisted”

e aay

. . . CV. o
opy of *‘ls‘tz/nz in N, lS'tZ/nz'

"ore generally if we start from the category fG of finite free G-sets

here G is some discrete group we can analyvze the sequence

y o= KEY(i,t ) => W(E )

h(i,t G G

G

‘e obtain

K(i.fG) = Q(BG)+

You know this., and [ have aiready mentioned it in the rase G=Z/nZ.)

L A . . . . . .-
i ‘(1,:(; = Lhi{i,Autis 1 = 1 “]<G>
- ty ¥
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ere Mn(G) ia the Segal group completion «f the

oupoid-vith-sum-operation whose abjects atre automorphisms of fintte free

sets such that the induced automorphism nf the G-arbit set generates a

ee (Z/nz)-action. This can be analyzed and shown to be equivalent to

E(tz/n2) x ABG)+. Again I believe that the correct action of S1 on Wn(G)
z2/n2

5 given by writing E(R/nZ) instead of E{Zz/nz). Concerning W(CG), which I

>

ill abbreviate W(G), there is a retraction W(G) -> Kcy(i,fG) = n‘wn(G),

nd just as in the case G=1 1 believe that it is an equivalence. Again [

enote the composed map W(G) -> H'Wn(G) -> Wn(G) by Pern. Just as in the

ase G=1 it can be described in terms of counting periodic orbits.

3. Rings and traces

et R be a discrete ring and let f:MR be the category of finite(ly

‘enerated) projective modules. In the diagram

. ., . CY, . . .
K(R):= KE(i,f) -> KSY(i, M) —> W(H,) =:W(R)
def R R R def

-he first term is algebraic K-theory of R. The second term is the

algebraic k-theory of the exact category of

finite—projective—modules—with—automorphism. Thus for example if R is a

field then this is the category of finitely generated tcrsion modules for

. -1 . . . : - s 5 .
he ring R[x.x ~]. This i3 the weak product of the K-theory of all «f the

rezsidue fields. What can ve say about the third tarm W(R)7T




~(R) is the group given by the following generators and relations: There
a generator [M,t] for every endomorphism f:4-:M of a finite projective
module. There are tuvoe kinds of rela&ions: the Grothendieck rejation for
" ort exact sequences, and the relation [M,gf]={N,fg] for Mf>Ng>W. Wwhen R

commutative there is a homomorphism to the multiplicative group of

rmal power series 1+a1T+a2T‘+... , given by
{A] ~-> det(I-AT)

is easily seen to be a split surjection onto its image, which is of
urse the subgroup generated by polynomials. In the case of a fieid the
rnel is easily seen to be trivial. Actually this turns cut to be true
r every commutative ring: According to a theorem of Almkvist [A][Gr] the
 rne1 is trivial even when the relation [M,gf]=[N,fg] is replaced by the
parently weaker relation [ﬂ,O]:O. Note that the map from nOW(R) to power
‘ries is a ring homomorphism. Here the ring structure on nOW(R) is given

tensor product of endomorphisms of modules and the target group 1is a
ibring of the ring of Witt vectors, namely the group of all quotients of
ilvnomials with constant terms . Let’'s call it‘the ring of rational Witt

-ctors.

related construction sends nOW(R) to the product 1 R by
o n>0

- 2

S ) < K
tAy ——» {tracelAy,tracel{dA :,trace(s ,...]




iere are several things to say about this. First, it ‘is determined by th

fad)

her construction because trace(A") can bLe expressed in terms of tn
rst n coefficients of det(1-AT) by the universal formulas which eupress
ywer sums in terms of elementary symmetric polynomials. (One cannot go
ve other way unless R is a Q-algebra.) Second, this map really goes into
product, not a weak product. Third, this map generalizes to the
sncommutative case; one has only to take the traces to lie in the
ochschild homology group R/[R,R}. Fourth, in the case ~nf a group ring

=2G this is closely related to a construction which I mentioned 1in

. . .Cy, . . .
onnection with K ‘(tG).There is in fact a diagram

Kei, ) -=> K 7 (i,%,) -3 WI(G)

b b }

K(i, M ) -=> KSV(i,f ) --> W(R)

R R

nduced by the exact functor "linearization” from €. to # and one can

G R’

rasily express the maps

. n, .
mR(G) ==> m W(R) _tracelA ) 5 R/(R,R]

n terms of the maps

m WG - 2y TY;S‘(F(Z/r.Z) A !\BG)+ = R/[R,R]

Z/n&

w f

§

-




/
¢ considering traces of powers of matrices like
0 0 ¢
1 00 , g € G
010

think about this in the following wayv: trace(A) corresponds to counting
he fixpoints of a map. Therefore trace(A™) corresponds to ccunting the
‘ixpoints of the nth iterate. A certain linear combination of trace(Aj)
‘or 1¢j¢n corresponds to counting the points of period exactly n. To count
he orbits of such points one should divide this linear combination Ly n.
‘his can be done when the ring is Z. (It can’'t be done for a general ring,

sven in the commutative case.)

[ believe that the homotopy type of W(R) is unchanged if instead of

srojective modules we use free or based modules; this is easy to check on

1 \

0

I will now show that the usual trace map from K-theorwv to Hochschild

homology factors through'W(R) by giving an explicit map
W(R) —-=-=-= > Q|N.HH.(R)| o ]HH.(R)] = HH(R)

to (a space whose homotopy grcups are! the Hochschild heomology of R. 1 use

the definition of W(R) in terms of based modules. Thus an element in

Oy, . . . : , .
M5 blnR determines a (Jj+li-tuplie of matrices (%O,w.‘...,A;i wnose <hapes

4
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nd sizes are such that it is possible to multiply any two consecutive

. N -
iatrices (includineg Aj and AU,' An element in N;'kaR determines a

j+li-tuple of matrices in kxk block triangular form whicﬁ are similarly
-eady to multiply. To go to Hochschild homology, Jjust carry out the matrix
wltiplication: send a (j+l)-tuple to the product matrix AOAl"'Aj; but
lon"t use the multiplication in R, just leave the matrix entries as
:lements of the tensor product RJ+1. The matrix is square, in kxk
-riangular block form, with square blocks on the diagonal. Take the trace

¢ithin each diagonal block. This gives an element of the direct sum of

sensor powers %RJ+1. The map that I have just described is a map of
k

>isimplicial sets. Its source is NC¥s.#  and its target is the nerve (with

k
respect to addition) of the simplicial abelian group HH.(R) which is the
standard model for Hochschild homology. Thus after realizing and looping
it becomes a map from W(R) to Q{N.HH.(R)I. Of course this is also an
Sl—equivariant map because .it comes from a map of cyclic objects. It even

2xtends to give an equivariant map of Q-spectra. On nOW(R) it gives the

nap "[A]l->trace(A)” to R/[R,R]:HHO(R) which we saw before.

In the same way we can define “trace power maps  generalizing the

sonstruction "{Al->trace(A™)” from‘no to the space level. Namely, instead
. . J+1 n .
of taking the trace of AOAI...AJ in R take the trace of (AOA1'°'Ai’ in
i+1) . . oy . . .
Rn(J . Again this is a map from N?Fs.ﬂ into the nerve of a simplicial

R

abelian group. However, this time the simplicial abelian group is not

HH.(R: but rather a different simplicial model for Hochschiid homoiocgy:

. eyt N . . . o . . L. .
~all it KEH V (R). It is the diagonal of a certain n-simplicial akeiiar



/1

‘cup. (You can find this multisimplicial object an page 382 of [Gol]; 1in
(n)

It case the bimodules Ij should all be taken to be k.) HH (HY 13 a

sdel for Hochschild homology which has a simplicial (Z/nZ)-action, given

- cvelically permuting the simplicial directions. I believe that

{H(?)(R)l is actually isomorphic as a topological abelian group with
z/nZ)-action to lHH.(R)I where 2/nz acts on the latter as a subgroup of

1. The map from N?yskﬁR actually goes into the fixed-point set HH’?(R)Z/nZ

or this action so that the result of our efforts is a map

W(R) —---- 0y gL HE Y (RZME | = e N a2/ PE) | = HH(R E/ME

'm a little surprised to be in a fixpoint set Xz/nz rather than in a

. . .h(z/nz .
omotopy fixpoint set X (2/ ). In any case we can consider the latter as

ell. We get weak maps of spaces (or better Q-spectra with Sl—action)

K(R) -> W(R) -> HH(RIZ/™® -y gu(riP2/P2) 5 Hu(R)

‘'n particular on the level of homotopy groups we get maps
¥ > P P

Z/nZ) _, ™ *(2/nz;HH(R)) -> HH,(R)

e

3.1) §ij) -> n*W(R) -> n (HH(R)

lere I have interpreted the homotopy groups of the homotopy fixpoint

ipectrum as (hyuper)cohomology groups of Z/nZ with coefficients in a

opological abelian grcup. (I don % know a Zood interpratation {or " he

ictual fixpoint set.) Note that if n happens to be invertibie 1n =

“he last two maps in 2.1 are isomorphisms.




1. Simplicial groups and simplicial rings

. . . oV
Up to now [ have only been able to describe a map from K to K in Ccases

where the isomorphisms are the weak equivalences. This is not adequate for
dealing with the K-theory of spaces, or simplicial rings, or rings up to
homotopy. 1 will try to remedy this by using your trick of "blowing up the

weak equivalences to a simplicial category”.

For example, if G is a simplicial loop groﬁp for a space X then one of
vour ways of defining A(X) is K(w,®), where %:Fhf(*,G) is the category of
those based simplicial G-sets which are free (in the sense of attaching
cells) and finite up to weak equivalence. The weak equivalences are the
maps which after realization are weak equivalences of spaces. You also
have a blown-up version in which the category w is replaced by a
simplicial category w. having the same objects, and vou show ([W1]) that
the trisimplicial object N.w.S.%® is equivalent to the bisimplicial object
N.wS.% and so also vields A(X). The reason why this works is that for each

k N.w.S. % is equivalent to N.wS
\

! ®. For each k the simplicial category wSk%

k
is “"groupoid-like” in the sense that after replacing morphisms by
nO!morphisms| it becomes a groupoid. It ought to be true, and probably is

known, that dgroupoid-like simplicial categories (with discrete sets of

objects) can be functorially replaced by weakly naturally equivalent

m

implicial groupoids. (Equivalent here means related by a simplicial

functoer which is bijective on objects and a weak equivalence con

morphisms.}) So another definition of A(N) is as the nerve c«i "he



simplicial category obtained by replacing each u.Skk bv a simplicial
oupoid. Now since ue have a groupoid we can map the nerve to the creclie
rve. We thus obtain a weak map from h(w.,%: (vhich is A(N)1 to KEY (e, k)
hich I will now name AY(X)). Note: I am using the obvious fact that
placing the simplicial categories by the simplicial groupoids does not
ange the homotopy type of the nerve (resp. cyclic nerve). This is true
ready when we fix the degree in both the “S." simplicial direction and
.e nerve (resp. cvcelic nerve) direction. I am also using your fact that
w.,R)=K(w,%). But I am not claiming that Kcy(w.,ﬂ)chy(w,x); I am simply
l0osing to use only the blown-up version Kcy(u.,ﬂ) as my definition of

Sy

{X) and not the other.

Je next step is to consider the version in which all maps are declared to
2 equivalences. We map Kcy(w.,%) into a blown-up version of W(%), which
:ight be called W(%.). This just means including "function spaces”
actually simplicial categories) of weak G-equivalences into larger
function spaces” of arbitrary G-maps. Again I am not claiming that this
(%.) is equivalent to W(%). I will return later to the guestion of what
his W(%®.) might actually be. It is some new and interesting homotopy
unctor of the simplicial group G or of the space Xx. It is related to A{(X)
n the same way that (for discrete rings R) W(R) is related to K(R). Let's

rall it TU(X).

"he same approach works in various ather settiings, teo, as lang as there

ire simplicial catories of weak equivalences with good properties. For




/f

example, again for a simplicial group U ve could have used a topological

version of ¥ such as your ® (*,gu’). ] believe that up Lo natural weak

f

equivalence this will give not onlv the same A(N} (by rtaking nerves with
or without blowing up the equivalences) but also the same ACy(X) (by
taking cyclic nerves, and this time definitely blowing up). I also believe

the same for T(X).

One could also introduce the finitely dominated version Wfd(t,G). Just as

this gives the correct A(X) (except that n_, is now the full class group},

0

I think that the cyclic nerve of the blown-up version of this gives the

correct ACY(X) {except for n,.), and that the cyclic nerve of the blown-up

0

version with all maps as equivalences gives the correct T(X) (this time

even with the correct no).

Of course I do not assert, in the case of a discrete group G, that the

constructions Kcs(i,fc) and wW(G) based on finite free G-sets are the same
as the corresponding constructions ASY(BG) and T(BG) based on
(homotopically) finite free G-spaces. (This is already false in the

non-cyclic version: K(i,fG)zQ(X+) is not the same as A(X).) However, I

think it is instructive to compare them.

There are analogous definitions and statements ccncerning rings. If R is a

simplicial ring then one can consider various categories of free

-~

simplicial R-modules (firite, homotopically teiv dominated!

™

inite. or fini

and in each c¢ase one can either biow up the weak equivalences cr not.




heorems of vours say that for

hich version you use. | think

s long as you always blow up.

-theory of simplicial modules

Ay

h-theorv (except for U it doesn’'t matter

that the same is true for oyclic k-theory

1 think this is also true for W(R) {(cyeclic

when all maps are declared to be

quivalences), and that in this case even n, is unaffected by the choice

f category of modules.

‘or rings, as opposed to groups, there is one difference. XNamely when a

. . . . . .. . C¥
liscrete ring is viewed as a simplicial ring the h

iodules and isomorphisms

a simplicial category of)

-he K
“he K°Y based on simplicial modules and
ijomomorphisms. This would not be surprising,

is a theorem of yours.

ictually it seems pretty clear that W(R)

is the same as the k

equivalences.

based .on discrete

€Y for simplicial modules and

The same should be true for W:

based on discrete modules and homomorphisms should be the same as

{a simplicial category of)

since the non-cyclic version

for a simplicial ring R (defined

in terms of simplicial modules and a simplicial category of mcdule maps)

~an equivalently be defined in terms of spaces of matrices,

description of W(R)

map above.

This has several good consequences.

as in the

for discrete R which was used in defining the trace

One is the fact which 1

just mentioned. that W(R) for R discrete is the same as W(R) for R viewved
as simplicial. Another is that the constructiecn of the trace power maps on
the space level for discrete R ~an be generalized o =implicial R. incother

for

fomt

is that W(R} implicial kK

n

can e defined degreswise.

This i3 a sirong




statement. Of course the corresponding statement for K-theory i1s false,
even though K(K) can also he defined in terms of spaces of matrices. (The
problem is that the matrices which are invertible up to homotupy cannot be
identified degreewise.) This property of WwW{R} should be a great aid in
computing it. As a simple example, suppose one wanted to give another
proof of the statement that for any discrete commutative ring R the map
from nOW(R) to the ring of rational Witt vectors is an isomorphism. It
would be enough to prove the more general statement for commutative
simplicial rings: ﬂOW(R) = rational Witt vectors of nO(R). But F respects
weak equivalences, and every commutative simplicial ring has a free

resolution. It follows easily that it would be enough to prove the

statement in the case of polynomial rings over z.

On a related subject, I want to point out that both Kcy(R) and W(R) are
equipped with an external pairing, and hence in the commutative case also
an internal pairing. The argument is Just a variant of your argument in
[W1] for K(R), using a biexacf functor. The maps K(R)->K“Y(R)-> W(R) are

ring maps. It's interesting to note that W{(R) is not an R-module (although

HH(R) is), even in the commutative case. (Look at WOW(Z/p)!)

Some of these comments about rings have analogues for groups. Thus it '
seems to me that T(X) must also have a description in terms of “spaces of
mairices” and that as a consequence it can  be defined degreewise {(as a

functer of the simplicial Zroup ).
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resumably much of.Khat I am doing here can be genéralized to “rings up to
omotopy” in various senses. In that setting HH(R) should be replaced by a
ersion of Bokstedt's THH(R) {B]. Even without leaving the world of
implicial rings 1 think that my trace W(R)->HH(R) can probably be

actored through THH(R). I don't quite know what to expect as the target

f trace power maps when THH is substituted for HH. For some vague ideas

bout this, see the next two sections.

5. Fixpoints again

hen G was a discrete group it turned out that W(G) was completely
etected by periodic points: We looked at circular diagrams of finite free
i-sets. ke composed the maps around the diagram to get a self-map of a
‘ree G-set. We counted the periodic orbits of length n for the action of
his map on the G-orbit set. Doing this svstematically we found that we
rere mapping N?yS.GG into another cyclic object and thus mapping W(G) into
1 certain space Wn(G). Assembling these for all n>0 we obtained an

rquivalence to the weak product H'Wn(G).

¢ would like to do something similar for simplicial groups and thereby
>btain a good target for a map from A(X). In fact these ideas seem to lead
o a map vhich goes from T(X) to the product (not the weak product) of the
spaces Kn(G!. (What 1 mean by Wn(G) here is Wn extended from groups to

simplicial groups by degreewise extension. Note that we still nave, as in

he case of discrete groups, W (G) =~ QIE(Z/nZ) x ABG)
n
-/
Z/n&
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There is a little problem in ahoosing the right version of the category nof
free G-spaces. The category must be capable of being blown up and made
groupoid-like. This rules out finite simplicial G-sets. It must have some
sort of finiteness if one is to be able to count fixpoints and periodic
points in a meaningful way. This rules out, say, homotopically finite
fibrant simplicial G-sets. It must be a category with cofibrations! This
rules out any PL approach. However, I believe the thing can be made to
work somehow. I base this partly on the thinking that 1 did about periodic
‘points when I was trying to work out a version of "higher traces” for
emooth pseudoisotopy theory, and partly on the remark that if we ignore
the point about nonexistence of cofibers in the PL category then things
seem to work beautifully. Thus take G=1 for simplicity (so X=%). Suppose
ve have a circulér diagram of compact polyhedra and PL maps. Let f be the
map which sends each of the polyhedra to itself by running around the
diagram once. The fixpoints of f™ form a subpolyhedron. Divide out by the
fiquints of f™ for all m<n. This vields a pointed finite complex with

free (Z/nz)-action, in fact a circular diagram of isomorphisms of such

things, so it seems to get us into Wn(l). Taken all together 1t seems to
give a map T(¥)->0 Wn(l). Of course we left the PL category (and ve will
n

also leave it as soon as we introduce filtered objects and try to define

face m?ps in the "S.” direction). But this still seems encouraging.

I emphasize that the map from T(X} to Kn(G) vhich I am tryving to define 1is
something which should not malke sense for rings or rings up To J0MCToPY 1n

general. When n=z! it should he the “trace”, wvhich does malke <ense in
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generél and which has been defined (on h-theoryt in various degrees of
generallty by various peaple (such as yvou [W2], Bokstedt (B], and C(ohen
and Jones [CJ]}). In general the only "higher traces” that I know are the
trace powver maps. My feeling is that for group rings a more refined
construction should be possible, and that “counting periodic points”

should be the guiding idea.

By the way, if this works then the space T(X) is actually caught between
the weak product and the full product of the spaces Wn(G): we can map the
weak product into T(X) by using the obvious maps

.Ccv

[Im] => K™ iy )| -=> KV1,%) -=> KV(w.,%) -=> EV(%.) = T(x)

m

Thus T(X) is no smaller than the weak product of the wn(c). It seems
plausible that in some sense it is no bigger than the full product. As a
first test of this one might try it for LA Is it true that for an
arbitrary discrete group G the “trace power"” map (A]—){trace(An)|n>O)
injects WOW(ZG):nOT(BG) into N 2G/[2G,zG] »

n
I'1l mention two other questions while I think of them: (1) What is the
correct analogue of the ring of Witt vectors for a non-commutative ring?
(2) For the class af commutative rings the characteristic polynomial
det(I-TA) gave a sort of "higher trace” more refined than the trace power
map. Does this generalize somehow from nnK(R) o WR)Y T My vague feeling
15 that for commutative rings W(F:! is trying ¢ e something iike  the

Witt veciors cver THH(R» .
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§. Epicvclic objects

1@ cyvelic nerve of a category is more than a evelic object; there is one

~her thing you can do to a circular diagram besides (1) composing two
aps to make the diagram shorter, (2) inserting an identity map to make it

snger, and (3) rotating it. Namely, (4) vou can make “covering spaces’ of

uch diagrams. I will formalize this idea by introducing the idea of an

epicyciic object”. (The terminology was suggested by Andrevw Ranicki.)

1t has

he same objects as a. Index them by the integers n>0 and call the nth

he categoryv of epicyclic operators A~ contains Connes’' category A.

bject (n). A map from (m) to (n) is a class (f) of functions f from zZ to

The functions f are required %o satisfy

fix) ¢ fix+1)

f{x+m)-f(x) = dn

“or all xez, where d is a positive integer {independent of ~} called

jeg(f). The equivalence relation among the functions is given bv
(F1=(g) <==> f(x)-g(x) is a multiple of n independent cf
+e that this iz a iittle stronger than saving that f and g define the

same map of sets Z/m -> Z/n.! Not= that degree of maps =and ~emposition of

maps are vell-definec on equivalence classes.
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A map (f):{(m)->{(n) in A may or may not have a representative f such that
1 € f(1)y ¢ f(m) ¢ n

If so, it has a unique one. These maps (f) are the simplicial operators;
they form a subcategory of A" isomorphic to a. The category A of cvyvelic
operators is intermediate between A and AT; it consists of the maps of

-~

degree one in A It is generated by a together with the translations
(t):(n)->(n) given by t(x)=x+1. The category A~ is generated by A together
with the standard coverings (p):(dn)->(n) given by p(x)=x. In fact, every

)igl>(dn)£21>(n) where

map (f):(m)->(n) of degree d can be factored as (m
(g) has degree one. Here (g) is determined up to a d-fold ambiguity.

((tng) is as good as (g).)

An epicyclic object in a category is by definition a functor from a~°P, It
is easy to see that cyclic nerves are not Just cyeclic sets but epicyelic
sets. On the other hand, for a ring R the cyclic abelian group HH.(R)) is
not an epicyxclic abeliaﬁ group, because for this one would need linear
“"diagonal maps"” from R to tensor powers of R. (Some rings, such as group
rings, do have an epicyclic structure on their Hochschild homology, and
this fact is probably useful, but it is also confusing. In particular the
trace map F(R)->HH(R) for a group ring R .is not an epicyclic map, but only

@ cvclic map between epicyelic objects. )




e objects and maps

A(X) --> AT - TX)

K(R) --> K Y (R) =--> W(R)
e all epicyclic (in the category of Q-spectra with Sl—action).

should say what I think epicyclic objects really are. Just as simplicial
sts are really spaces and (by [DHK]) cyclic sets are really spaces with

3ayv) right Sl—action. 1 think that epicyclic sets are really spaces with
right action of the topological monoid M of all maps from the circle to
tself with constant positive derivative. (It is important to sa¥y "right”

ere since M is not isomorphic to MPP .y Notice that AX has such an action.

otice also that the product n HH(R)Z/n which was the target of our "trace
n

ower map” looks very much like it might be the universal epicyvclic object

~er the cyclic object HH(R) .

7. Applications (7))

111 of this originated in m¥ efforts to understand the fiber of A(X)->A(Y)

for 2-connected maps X->Y, OrT the fiber of K(R)->K(S) for 1-connected ring

s

naps R->S, in terms of something Simpler,.something like the free

lcopspace and 1its Sl—action or (topological) Hochschild homology with its

-
]

5%-action {in other words ~vclic theory). 1 now think thnat one should use

s for a later letter.

ot

+he epicyclic theory instead. 1'11 save the detai

wut my current thinking 1is t+his: We have maps
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ACN) => T(N) -> k(Qk)dngl(k).
Because the maps are suitably equivariant the situation is actually better

than this: we have maps

1
A(X) -> T(x)PM _, T, (x)PS

into homotopy fixpoint sets (or rather spectra). Here M is the monoid
vhich acts on the realization of an epicryclic object. Differentiating in

the sense of [Go2], we obtain maps

1
A
AT o axn™ 1) PS

I have known for some time'that the composed map is an equivalence. I now

believe that the second Map may also be an equivalence. It would fellow

N ’
that the first one is. But I think there's a chance that (T')hjz(ThM)'.
. .hs! _ps! hM o
(It was not true that (Ti) =(T1 }'.) If so, and if T™ 1S 1n some sense
Y
“analytic”, then my map A-—>Th‘l » because it induces an equivalence of

derivatives, will induce equivalences

fiberta)=>a(v))->fiber (Tex)PMsr(v)M™) | 1hic should hold for 2-connected

Mmaps N->Y of finite complexes, I guess; to get a statement for arbitrary
Z-ccnnected maps cne should take direct limits. (The functor 1 commutes

. . . . . A
vith filtered direct limits, but Thl does not.)
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‘tually a more confident conjecture would be that all of what 1 have just

1id abiout T(XN) is true about I N“(QX). My 1dea 13 that the latter obgect
n
iould have an epicyclic structure and an epicyciic map from T(X) (given

v each n by a "Pem'

) map). Based on my knowledge of the "Taylor tower”

" wW(QXN) I have the impression that the following should be true: when
.>Y is a 2-connected finite CW pair then the fiber of A(X)->aA(Y) should

> the same as the fiber of (I Wn(QX))hM -> (n Wn(QY))hM by a

n n

iver-by-layer comparison of two towers. (It may also be true that the map

-1 WnQ is an equivalence, but this is something I'm much less confident
n

>out. )

Tom Goodwillie
Brown Univ.

Box 1917

Providence RI 02912

USA
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