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O. Introduction

(0.1) The purpose of this paper is to relate two seemingly disparate develop-
ments. One is the theory of graph cohomology of Kontsevich [39], [40], which
arose out of earlier works of Penner [54] and Kontsevich [38] on the cell decom-
position and intersection theory on the moduli spaces of curves. The other is the
theory of Koszul duality for quadratic associative algebras, which was introduced
by Priddy [55] and has found many applications in homological algebra, alge-
braic geometry, and representation theory (see, e.g., [5], [6], [7], [30], [51]). The
unifying concept here is that of an operad.

This paper can be divided into two parts consisting of Chapters 1, 3 and 2, 4,
respectively. The purpose of the first part is to establish a relationship between
operads, moduli spaces of stable curves, and graph complexes. To each operad we
associate a collection of sheaves on moduli spaces. We introduce, in a natural
way, the cobar complex of an operad and show that it is nothing but a (special
case of the) graph complex, and that both constructions can be interpreted as the
Verdier duality functor on sheaves.

In the second part we introduce a class of operads, called quadratic, and intro-
duce a distinguished subclass of Koszul operads. The main reason for introducing
Koszul operads (and in fact for writing this paper) is that most of the operads
"arising from nature" are Koszul; cf. (0.8) below. We define a natural duality on
quadratic operads (which is analogous to the duality of Priddy [55] for quadratic
associative algebras) and show that it is intimately related to the cobar-construc-
tion, i.e., to graph complexes.

(0.2) Before going further into discussion of the results of the paper, let us
make some comments for the reader not familiar with the notion of an operad.
Operads were introduced by J. P. May [52] in 1972 for the needs of homotopy
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204 GINZBURG AND KAPRANOV

theory. Since then it has been gradually realized that this concept has in fact
fundamental significance for mathematics in general. From an algebraic point of
view, an operad is a system of data that formalizes properties of a collection of
maps X X, a certain set for each n 1, 2, which are closed under permu-
tations of arguments of the maps and under all possible superpositions. Such a
collection may be generated by iterated compositions of some primary maps,
called the generators of the operad, and the whole structure of the operad may be
determined, in principle, by giving the list of relations among the generators. This
is very similar to defining a group by generators and relations. As for groups, the
consideration of the whole operad and not only generators and relations presents
several obvious advantages. For instance, we can develop "homological algebra"
for operations, i.e., study higher syzygies. Note, in particular, that all the types of
algebras encountered in practice (associative, Lie, Poisson, etc.) are governed by
suitable operads. (We take the binary operations involved as generators and the
identities which they satisfy as relations.)
The place of operads among other structures may be illustrated (very roughly)

by the following table.

Spin

Spin 2

Spin 3

Algebra

Modules

Algebras

Operads

Geometry

Vector bundles

Manifolds

?(Moduli spaces)

Linear
Physics

Maxwell
equations

Linear gravity
equations

Rarita-Schwinger
equations

Nonlinear
Physics

Yang-Mills
theory

Einstein
gravity

9
Conformal

"\field theoryJ

Question marks indicate that the name put at the corresponding square of the
table is just the first approximation to an unknown ultimate name. The relation
of operads to algebras in the first column is similar to the relation of algebras to
modules. Given an algebra A, one has a notion of an A-module. Similarly, given
an operad , there is a notion of a -algebra. Further, for any -algebra A, there
is a well-defined abelian category of A-modules; see 1.6 below. This explains the
hierarchy of the first column of the above table. In the geometric column, vector
bundles on a fixed manifold correspond to modules over the (commutative) alge-
bra of functions on the manifold. Similarly, giving an operad is analogous to
fixing the class of geometric objects we want to consider. This is equivalent to
studying the moduli space of these geometric objects. The relevance of the notion
of an operad to conformal field theory can be justified by the following fact,
which plays a crucial role in the theory of operads and in the present paper in
particular:

The collection ’ {o,n+1, n 2, 3,... } (Grothendieck-Knudsen moduli
spaces of stable #enus 0 curves with n + 1 punctures) has a natural
structure of an operad of smooth manifolds.
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(0.3) The paper is organized as follows. Chapter 1 begins with introducing a
category of trees that plays the key role (cf. [11]) throughout the paper. We
then recall the definition of an operad and produce a few elementary examples
of operads. Next, the above-mentioned operad ’ formed by the Grothendieck-
Knudsen moduli spaces is described in some detail. The significance of this ope-
rad for the whole theory of operads is explained: any operad can be described as
a collection of sheaves on ’.

(0.4) Chapter 2 is devoted to quadratic operads, the ones generated by binary
operations subject to relations involving three arguments only. Most of the struc-
tures that one encounters in algebra, e.g., associative, commutative, Lie, Poisson,
etc. algebras, correspond to quadratic operads.

Given a quadratic operad , we define the quadratic dual operad analo-
gously to the definition of quadratic duality (Priddy) of quadratic associative
algebras. In particular, the operads om governing commutative and ie (gov-
erning Lie) algebras are quadratic dual to each other. In some informal sense, as
a correspondence between the categories of (differential graded) commutative and
Lie algebras, this relation goes back at least to the work of Quillen [56], [57] and
Moore [53]. Our theory exhibits a very simple and precise algebraic fact which is
the reason for this relation. The operad s describing associative (not necessarily
commutative) algebras is self-dual in our sense.

There is a natural concept of a quadratic algebra over a quadratic operad, and
for the dual quadratic operads and we construct a duality between quadratic
(super-) algebras over and . For the case of associative algebras (whose ope-
rad is self-dual) we recover the construction of Priddy.

Quadratic operads have several nice features. In 2.2 we introduce on the cate-
gory of such operads the internal horn in the spirit of Manin [51]. We show that
the quadratic duality can be interpreted as horn(-, ie) where ie is the Lie
operad which therefore plays the role of a dualizing object in our theory.

(0.5) In Chapter 3 we introduce a contravariant duality functor D on the cate-
gory of differential graded (dg-) operads (as opposed to the quadratic duality
functor-t studied in the previous chapter). We present various approaches
to duality. From the algebraic point of view, the duality D is an analog of the
cobar construction and a generalization of the tree part of graph complexes.
From the geometric point of view, the duality is an analog of the Verdier dual-
ity for sheaves. In more detail, let /+ be the moduli space of n-labelled trees
with metric; cf. [54], [39]. This is a contractible topological space with a natural
cell decomposition. This cell decomposition is dual, in a sense, to the canonical
stratification of t’o,+. Moreover, the collection {+ } forms a cooperad
which plays the role dual to that of the operad ’. We show that any dg-operad
gives rise to a compatible collection of constructible complexes on the spaces
//, one for each n. Furthermore the collection arising from the D-dual dg-
operad turns out to be formed by the Verdier duals of the complexes corre-
sponding to the original operad. The spaces /+ are similar in nature to Bruhat-
Tits buildings, and there is yet another description of duality in terms of sheaf
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cohomology, which is reminiscent of the Deligne-Lusztig duality [15]-[17] for
representations of finite Chevalley groups.

Next, to any do-operad we associate its generating function which is in fact (see
Definition 3.1.8) a certain formal map C" C". It turns out (Theorem 3.3.2) that
for d9-operads dual in our sense their generating maps are, up to signs, composi-
tion inverses to each other. Recall (see, e.g., [7], [46]) that for an associative
algebra A over a field k its cobar-construction (i.e., a suitable dg-model for the
Yoneda algebra Ext](k, k)) has a generating function which is multiplicative in-
verse to the generating function of A. The role of composition (change of coordi-
nates on a manifold) versus multiplication (change of coordinates in a vector
bundle) for generating functions of operads also fits nicely into the table above.

(0.6) Section 4 is devoted to Koszul operads, the quadratic operads whose qua-
dratic dual is quasi-isomorphic (canonically) to the D-dual. We prove that the
operads ls, Com, and ie are Koszul. Associated to any quadratic operad is its
Koszul complex. We show that a quadratic operad is Koszul if and only if its
Koszul complex is exact, which is also equivalent to vanishing of higher homo-
logy for free -algebras. Given a Koszul operad , we introduce the notion of a
Homotopy -aloebra which reduces in the special cases of Lie and commutative
algebras to that introduced earlier by Schlessinger and Stasheff [59] and ex-
ploited in an essential way by Kontsevich [39]. In fact, Koszul operads provide
the most natural framework for the "formal noncommutative geometry".

(0.7) The concept of an operad in its present form had several important pre-
cursors. One should mention the formalism of "theories" of Lawvere (see [11])
and the pioneering work of Stasheff [60] on homotopy associative H-spaces. A
little earlier, in the 1955 paper [43], Lazard considered what we would now call
formal groups in an operad. He used the notion of "analyseur" which is essen-
tially equivalent (though formally different) to the modern notion of an operad.
In (2.2.14) we give a natural interpretation of Lazard’s "Lie theory" for formal
groups in analyseurs in terms of Koszul duality. We are grateful to Y. I. Manin
for pointing out to us the reference [43].

In late 1950s Kolmogoroff and Arnold [37-1, I-2] studied, in connection with
Hilbert’s 13th problem, what in our present language is the operad of continuous
operations R" R. It was proved in these papers that any continuous function in
n > 3 variables can be represented as a superposition of continuous functions in
only one and two variables, i.e., the above operad is generated by unitary and
binary operations. From the point of view of the present paper (0.2), this result
raises the interesting question of whether all the relations among the binary gen-
erators follow from those provided by functions of three variables. It seems that
this question has never been addressed. We would like to thank I. M. Gelfand for
drawing our attention to Kolmogoroff’s work.

(0.8) Our interest in this subject originated from an attempt to explain a strik-
ing similarity between combinatorics involved in the graph complex, introduced
by Kontsevich in his work on Chern-Simons theory, and combinatorics of the
Grothendieck-Knudsen moduli spaces used by A. Beilinson and the first author
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in their work on local geometry of moduli spaces of G-bundles [9]. In particular,
the main motivation for the study of Koszul operads begun in this paper is the
investigation of the operads formed by Clebsch-Gordan spaces (see (1.3.12) be-
low) for representations of quantum groups and affine Lie algebras. In a future
publication we plan to show that these operads are Koszul. In short, Koszul
algebras should be replaced by Koszul operads whenever the category under
consideration has a tensor-type (e.g., fusion) structure.

(0.9) We are very much indebted to Maxim Kontsevich, whose ideas stimu-
lated most of our constructions. We are also very grateful to Ezra Getzler, who
informed us about his work in progress with J. D. S. Jones [23] and was the first
to suggest that the constructions we were working with were related to operads,
the notion unknown to the first author at the time (June 1992). His remarks
helped to clarify several important points. We much benefited from conversations
with Sasha Beilinson, whose current joint work with the first author (see [9],
1"10]) is closely related to the subject. We would like to thank I. M. Gelfand, Y. I.
Manin, J. P. May, V. V. Schechtman, and J. D. Stasheff for discussions of the
results of this paper. Several people kindly responded to the call for comments
to the preliminary version. In particular, we are indebted to Ph. Hanlon, A. A.
Voronov, and D. Wright for valuable correspondence. Special thanks are due to
J. L. Loday and J. D. Stasheff for pointing out numerous inaccuracies in the text.

1. Operads in algebra and geometry

1.1. Preliminaries on trees

(1.1.1) By a tree we mean in this paper a nonempty connected oriented graph
T without loops (oriented or not) with the following property: there is at least one
incoming edge and exactly one outgoing edge at each vertex of T; see Figure l a.

Trees are viewed as abstract graphs (1-dimensional topological spaces), a plane
picture being irrelevant. We allow some edges of a tree to be bounded by a vertex
at one end only. Such edges will be called external. All other edges (those
bounded by vertices at both ends) will be called internal. Any tree has a unique

FIGURE la FIGURE lb
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outgoing external edge, called the output or the root of the tree, and several in-
coming external edges, called inputs or leaves of the tree. Similarly, the edges
going in and out of a vertex v of a tree will be referred to as inputs and outputs at
v. A tree with possibly several inputs and a single vertex is called a star. There is
also a tree (see Figure lb) with a single input and without vertices called the
degenerate tree.
We use the notion In(T) for the set of input edges of a tree T; for any vertex

v T we denote by In(v) the set of input edges at v. Similarly, we denote by
Out(T) the unique output edge (root) of T and for every vertex v T we denote
by Out(v) the output edge at v.

Let I be a finite set. A tree T equipped with a bijection between I and the set
In(T) will be referred to as an I-labelled tree or an/-tree for short. Two/-trees T,
T’ are called isomorphic if there exists an isomorphism of trees T T’ preserving
orientations and the labellings of the inputs.
We denote by In] the finite set { 1, 2, n} and call [n]-trees simply n-trees.
(1.1.2) Composition. Let 11 be a set and let 12 be another set with a marked

element 12. Define the composition of Ia and 12 along as I Ia oi 12 Iaw
(I2\{i}). Given an /a-tree Ta and an /z-tree T2, let T Ta oi T2 be the /-tree
obtained by identifying the output of Ta with the ith input of T2 as depicted in
Figure 2.
The tree T is called the composition of Ta and T2 (along i). Note that any tree

can be obtained as an iterated composition of stars.
Let T be a tree and v - w an internal edge of T. Then we can form a new tree

Tie by contracting e into a point. This new point is a vertex of Tie denoted by
(e). Clearly, we have

(1.1.3) In((e)) In(w) o In(v).

If T is/-labelled, then so is Tie. If T, T’ are two/-labelled trees, then we write
T T’ if the tree T’ is isomorphic (as a labelled tree) to Tie.

! ! \,
\ !
\ /

\\

FIGURE 2
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Write T > T’ if there is a sequence of edge contractions T --+ Tx ..’--+ T T’.
Thus, > is a partial order on the set of all/-trees. An/-star is the unique minimal
element with respect to that order.
A tree T (with at least one vertex) is called a binary tree if there are exactly 2

inputs at each vertex of T. Binary trees are the maximal elements with respect to
the partial order <. It can be shown that the number of nonisomorphic binary
n-trees is equal to (2n- 3)!! 1.3.5 (2n- 3). A simple proof of this fact
using generating functions will be given in Chapter 3.

(1.1.4) The cateoory of trees. Let T, T’ be trees (viewed as 1-dimensional to-
pological spaces). By a morphism from T to T’ we understand a continuous sur-
jective map f: T T’ with the following properties:

(i) f takes each vertex to a vertex and each edge into an edge or a vertex.
(ii) f is monotone, i.e., preserves the orientation.

(iii) The inverse image of any point of T’ under f is a connected subtree in T.
Thus any morphism is a composition of an isomorphism and several edge

contractions. In this way we get a category which we denote Trees.
(1.1.5) Let E, denote the symmetric group of order n. For any two sets I, J of

the same cardinality we denote by Iso(i, J) the set of all bijections I-+ J. We
write Et for Iso(I, 1), so that E, iso([n], l-n]). Clearly, iso(i, J) is a principal
homogeneous left Et-set and a principal homogeneous right Es-set.

Let W be a vector space (over some field k) with an action of E,. There is a
canonical way to construct (out of W) a functor I -+ W(I) from the category of
n-element sets and bijections to the category of k vector spaces. Namely, put

(1 1.6) W(I) @
f Iso([n], I) Y’n

the coinvariants with respect to the simultaneous action of E, on Iso([n], I) and
W. The original space W is recovered as the value of this functor on the set In].
Similarly, if W is a set, or topological space with E.-action, we can construct a
functor I v- W(I) from the category of n-element sets and their bijections to the
category of sets, or topological spaces as above, by the following analog of (1.1.6):

W(I) Iso([n], I) x. W.

1.2. k-linear operads

(1.2.1) Let k be a field of characteristic 0. A k-linear operad is a collection
{(n), n > 1 } of k-vector spaces equipped with the following set of data:

(i) An action of the symmetric group E, on (n) for each n > 1.
(ii) Linear maps (called compositions)

:m, m,:(1) (R) (mx) (R)"" (R) (mt) (m +"" + mr)

for all rex,..., mt > 1. We write/(v, v;) instead of :m m,(# (R) V (R)’’’
(R)vt).
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FIGURE 3

(iii) An element 1 (1), called the unit, such that/(1, 1) =/ for any and
any # (l).

It is required that these data satisfy the conditions (associativity and equiva-
riance with respect to symmetric group actions) specified by May ([52], 1). These
conditions are best expressed in terms of trees. Observe first that the datum (i)
allows us to assign to any finite set I a vector space (I) as in (1.1.5). Next, we
associate to any tree T the vector space

(1.2.2) (T) () (In(v)).
vT

To the degenerate tree without vertices, we associate, by definition, the field k.
Note in particular that to the trees T(n) and T(ml,..., m) depicted in Figure 3

we associate the spaces (n) and (/) (R) (ml) (R)"’(R) (mt).
Thus the datum (ii) gives a map

(1.2.3) (T(ml,..., m,)) P(T(mx +". + m,)) (ml +." +

For any n-tree T there exists a sequence of trees

(1.2.4) T To- T ’" T T(n)

where each T is obtained from T_ by replacing a fragment of type T(m, m)
by T(m + + m). So maps (1.2.3) give rise to a sequence of maps

(T) (To) (T1)--.... (T) (n).

The associativity condition is equivalent to the requirement that the composite
map (T) P(n) does not depend on the choice of a sequence (1.2.4).

(1.2.5) Observe that the tree T(m + ...+ mr) is obtained from T(mx,..., mr)
by contracting all the internal edges. The existence of unit 1 (1) makes it
possible to decompose the map (1.2.3), corresponding to this coritraction, into
more elementary ones, each consisting of contracting a single edge.
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Namely, let T be a tree, v w an internal edge of T, and Tie the tree obtained
by contracting e. Let (e) be the vertex of Tie obtained from the contracted edge.
We define a map

(in(v)) (R) (In(w)) (In(v) o In(w))t._.s)#(In((e)))

by the formula # (R) v-*#(1, v, 1) where v is placed at the entry corre-
sponding to the edge e. By tensoring this map with the identity elsewhere on T,
we obtain a map

(1.2.6) T, e" (T) (T/e)

More generally, if I is a finite set and T, T’ are two/-trees such that T > T’, then
by composing maps of the type r,e we get a map

(1.2.7) 7T, T’" (T) - (T’)

which is well defined, due to the associativity condition.
Thus a k-linear operad # gives rise to a functor

Trees Vect, T-- #(T)

equipped with the following additional structures:
(i) For any trees T1 and T2 and any jIn(T2), one has a functorial

isomorphism

(1.2.8) ,,/(T) (R) (T:) -. (T oj T).

(ii) The isomorphisms in (i) satisfy the associativity constraint saying that for
any trees T1, T2, T3 and any e In(T2), j In(T3) the following diagram
commutes:

(T) (R) (T2) (R) (T)

rt,r2(R)Id l
(T o, T2) (R)

(1.2.9) Let V be a k-vector space. Its operad of endomorphisms, gv, consists of
vector spaces

gv(n) Hom(V(R)", V).

with compositions and the Z,-action on gv(n) being defined in an obvious way.
We have v(1) End(V).
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(1.2.10) Observe that for any k-linear operad , the space K (1) has a natu-
ral structure of an associative k-algebra with unit. Conversely, if K is a k-algebra,
then the collection {(1)= K, (n)= {0}, n > 1} forms an operad, in which the
unique nontrivial map (1.2.1) (ii) is (1)(R)(1) (1), the multiplication in
(1) K. Furthermore, for an arbitrary k-linear operad , the space (n) has
several (1)-module structures. These structures are summarized in the following
definition.

(1.2.11) Definition. Let K be an associative k-algebra with unit. A K-collec-
tion is a family E {E(n), n > 2} of k-vector spaces equipped with the following
structures:

(i) a left .-action on E(n), for each n > 2,
(ii) a structure of a left K-module and a right K(R)n-module on E(n), n > 2.

These structures are required to satisfy the following compatibility conditions:
(a) For any s E, and any 21,..., 2, K, a E(n), we have

s(a. (2 (R) ..’(R)/n)) s(a)" (2x) (R) "’(R) s(n))"

(b) For any 2 K and a E(n), we have s(2 (R) a) 2 (R) s(a).
If is a k-linear operad and K (1), then {(n), n > 2} is, clearly, a

K-collection.
(1.2.12) It will be convenient for future purposes to give a reduced, in a certain

sense, version of the tree formalism above. We call a tree T reduced if there are at
least two inputs at each vertex v T. (The degenerate tree without vertices is also
assumed to be reduced.)

Let K be an associative k-algebra and E a K-collection. As in (1.1.5) we extend
E to a functor on finite sets and bijections. To each reduced tree T we associate a
vector space E(T) as follows. For the degenerate tree we set E() K, and for
a tree T with a nonempty set of vertices we set

(1.2.13) E(T) ()t: E(ln(v)).
vT

This tensor product is taken over the ring K by using the (K, K(R)Intv))-bimodule
structure on each E(In(v)); see Figure 4.

Explicitly, this means that E(T) is the quotient of the k-tensor product
()vE(In(v)) by associativity conditions described as follows. Suppose that e-- 2
is any K-valued function on the set of all edges such that ’e- 1 for all external
edges. Then for any collection of ao e E(In(v)) we impose the relation
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FIGURE 4

(1.2.14) Now let {(n)} be a k-linear operad and K (1). Since {(n),
n > 2} form a K-collection, we can assign to any reduced tree T a vector space
(T) by formula (1.2.13). This assignment has the following two fundamental
structures:

(i) A linear map

(1.2.15) r,r’: (T) (T’)

is defined whenever T > T’.
(ii) An isomorphism

(T o, T:) - (Tx) (R) (T:)

is given for any In(T2).
The maps in (i) and (ii) are induced by (1.2.7) and (1.2.8), respectively.

Observe further that the assignment T (T) extends to a functor on the
(sub-) category of reduced trees; see (1.1.4).

(1.2.16) Convention. In the rest of this paper we shall consider only reduced
trees, unless specified otherwise.

1.3. Aioebraic operads

(1.3.1) Let , . be two k-linear operads. A morphism of operads f: -} . is a
collection of linear maps which are equivariant with respect to En-action, com-
mute with compositions m, m in and 2, and take the unit of to the unit of
.; see [52].

(1.3.2) Definition. Let be a k-linear operad. A -algebra is a k-vector space
A equipped with a morphism of operads f: ga where ga is the operad of
endomorphisms of A; see (1.2.9).
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Clearly, giving a structure of a -algebra on A is the same as giving a collec-
tion of linear maps

(1.3.3) f.: (n)(R) A(R)" --. A

satisfying natural associativity, equivariance and unit conditions. We write
#(a, a,) for f,(# (R) (a (R)...(R) a.)), # e (n), a A.

(1.3.4) Free algebras. Let be a k-linear operad and K (1). As noted in
(1.2.10), K is an associative k-algebra and every (n) is a left K-module and a
right K(R)"-module.

Let V be any left K-module. Form the graded vector space

(1.3.5) F(V) >@)_ ((n) (R)r(R)- V(R)")n.. Zn

where V(R)" is the nth tensor power of V over k and the group Y, is acting
diagonally.

(1.3.6) LEMMA. Compositions in induce natural maps (n)(R) F@(V)(R)"--+
F,(V). These maps make F(V) into a -algebra.

We call F(V) the free -aloebra generated by V. Note that F(V) has a natural
grading given by the decomposition (1.3.5). Here are some other examples of
operads and algebras.

(1.3.7) Associative aloebras. For any n let sOs(x1,..., x.) denote the free asso-
ciative k-algebra on generators x x, (i.e., the algebra of noncommutative
polynomials). Let ts(n) c s(xx,..., x,) be the subspace spanned by monomials
containing each xi exactly once. There are exactly n! such monomials, namely
x() x(.), s e E.. Clearly, ss(n) has a natural E.-action and as a En-module it
is isomorphic to the regular representation of E.. The collection s {s(n)}
forms an operad called the associative operad. The composition maps (see (1.2.1))

sOs(l) (R) ts(mx) (R)...(R) s’s(mt) --+ sCs(mx +... +

are given by substituting the monomials bl e sgs(m), e s(mt) in place of
generators xa,..., xt into a monomial e s(l).
We leave to the reader to verify that an s-algebra is nothing but an associa-

tive algebra in the usual sense (possibly without unit).
(1.3.8) Commutative (associative) aloebras. For any n, let Cgom(xt, x.)=

k[x, x,] be the free commutative algebra on generators xl, x (i.e., the
algebra of polynomials). There exists precisely one monomial containing each x
exactly once, namely x x.. Let Cgom(n)c Cgom(x,..., x,) be the 1-dimen-
sional subspace spanned by this monomial. The collection Cgom {Cgom(n)} forms
an operad with respect to the trivial actions of E. on Cgom(n) and compositions
defined similarly to (1.3.7). We call Com the commutative operad.
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Again, it is straightforward to see that a om-algebra is nothing but a commu-
tative associative algebra in the usual sense (possibly without unit).

(1.3.9) Lie algebras. For any n, let .Wie(xl,..., xn) be the free Lie algebra over
k generated by xl, xn. Let ie(n) c .Wie(x,..., xn) be the subspace spanned
by all bracket monomials containing each x exactly once. Note that such
monomials are not all linearly independent due to the Jacobi identity. The sub-
space ie(n) is invariant under the action of X;n on .Wie(x,..., xn) by permuta-
tions of xi. It is known that

(1.3.10) dim .Wie(n) (n 1)!.

Moreover, if k is algebraically closed, then A. Klyachko [35] constructed an
isomorphism of Xn-modules

(1.3.11) ’ie(n) " Indn(;t)

where ; is the 1-dimensional representation of the cyclic group Z/n sending the
generator into a primitive nth root of 1. (The induced module does not depend on
the choice of such a Z.)
The collection eie (?ie(n)} forms an operad with respect to the composi-

tion operations defined similarly to the ones described in (1.3.4). An algebra over
the operad .Wie is the same as a Lie algebra in the usual sense.

It should be clear to the reader at this point how to construct operads govern-
ing other types of algebras encountered in practice: Poisson algebras, Jordan
algebras etc.

(1.3.12) A collection of finite-dimensional k-vector spaces

(EJ(a,..., at), al,..., are Z+, as > 1,j 1,..., r)

is called an r-fold collection if the following holds:
(i) For any al,..., ar Z/ the space EJ(al,..., at) is equipped with an action

of the group Eat X X Ear.
(ii)

0, 1, 0, 0) (1 on the jth place)= ,o if/# JE(0,
I.K if/=j"

Now let K be a semisimple k-algebra, and {M Mr} a complete collec-
tion of (the isomorphism classes of) simple left K-modules. Given a K-collection
E {E(n), n > 2} (1.2.11), we regard E(n) as a left module over the algebra
I-In K(R)n (R) Kp. For any a, ar Z/ such that at n, we define

(1.3.13) E(ai, at) Homri,(Mal (R)’"(R)Mar (R) M’, E(n)).
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The k-vector spaces EJ(al, at), thus defined, clearly form an r-fold collection.
It will be called the r-fold collection associated to be K-collection E.

(1.3.14) Clebsch-Gordan spaces and operads. Let z be a semisimple abelian
k-linear category equipped with a symmetric monoidal structure (R) (for example,
the tensor category of finite-dimensional representations of a finite, or an alge-
braic, group).

Fix any integer r > 1 and any set X1, Xr of pairwise nonisomorphic simple
objects of . Let X )[=t X. Associated to X is the operad x defined by
collection of vector spaces

(1.3.15) x(n) Homc(X(R)", X).

Observe that x(1)= End(X) is a semisimple k-algebra. We put K ’x(1)
and view the collection (1.3.15) as a K-collection. Clearly, the r-fold collection
associated to that K-collection via (1.3.13) is formed by the Clebsch-Gordan
spaces

(1.3.16) (at, a,) Hom,(X?al (R)’.. (R) Xat, Xi).

(1.3.17) Operads in monoidal cateoories. Let Vect be the category of k-vector
spaces. Note that the concept of a k-linear operad appeals only to the category
Vect with its symmetric monoidal structure given by the tensor product. Clearly,
one can define operads in any symmetric monoidal category, i.e., a category
(not necessarily additive or abelian) equipped with a bifunctor (R)’1 x
and natural associativity and commutativity constraints for this functor [49].

All the preceding constructions (e.g., the notion of a ’-algebra) can be carried
over to the setup of operads in any symmetric monoidal category (, (R)). Given
such an operad, one defines, as in (1.1.5), for any finite set I, an object ’(1) ,
and for tree T an object (T) .

In this section we concentrate on algebraic examples of categories .
(1.3.18) Two cateoories of 9faded vector spaces. Let 9 Vect/ be the category

whose objects are graded vector spaces V’= () z V and morphisms are linear
maps preserving the grading. For v e V we write deg(v)= i. We introduce on
9 Vect/ a symmetric monoidal structure defining with the tensor product

(1.3.19) (V’(R) W’)" @ V’(R) Wj.
i+j=m

The associativity morphism V" (R) (W" (R) X’) (V" (R) W’) (R) X" takes v (R) (w (R) x) --(v (R) w) (R) x. The commutativity isomorphism V" (R) W" W" (R) V" takes v (R) w

The symmetric monoidal category 9 Vect- has the same objects, morphisms,
tensor product, and associativity isomorphism as 9 Vect+, but the commutativity
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isomorphism is changed to

(1.3.20) v (R) w 1)degtv)’degtW)w (R) V.

Any k-linear operad can be regarded as an operad in either of the categories
g Vect -+ and so we can speak about -algebras in these categories. For example,
if om is the commutative operad, then a om-algebra in g Vect/ is a com-
mutative associative algebra equipped with a grading compatible with the algebra
structure. A Com-algebra in # Vect- is an associative graded algebra which is
graded (or super-) commutative.

(1.3.21) The determinant operad A. In the operad Com, each space Com(n) is
1-dimensional and is equipped with the trivial action of En. We now introduce an
operad A in the category # Vect- which is an "odd" analog of om.
We define A(n) to be the 1-dimensional vector space/n(k) (the sign represen-

tation of E,) placed in degree (1 n). In order to describe compositions in A we
first describe what is to be a A-algebra in /Vect-.
We consider graded vector spaces A @Ai with one binary operation

(a, b) ab satisfying the following identities:
(i) deg(ab) deg(a) + deg(b) 1,

(ii) ab (- 1)deg(a)+deg(b)/l ba,
(iii) a(bc) (- 1)degta)+l (ab)c.

The operation ab corresponds to the generator # A(2). The condition (i) means
that deg(#)=- 1 and the condition (ii) means that E2 acts on # by the sign
representation.
We fix integers dl, d and let A(xl, x) be the free algebra with the

above identities generated by symbols xi, of degree d.
(1.3.22) LEMMA. The subspace Edl , in A(x, Xn), spanned by nonasso-

ciative monomials containing each x exactly once, has dimension 1. Moreover, any
two such monomials are proportional with coefficients +_ 1.

The meaning of this lemma is that the identities (i)-(iii) above are consistent,
i.e., do not lead to the contradiction 1 0. In other words, any two ways of
comparing the signs of the monomials lead to the same result.

Proof of the lemma. As in Mac Lane’s axiomatics of symmetric monoidal
categories [49], it is enough to check the three elementary ambiguities, "i.e., the
two ways of comparing a(bc) and (bc)a, of (ab)c and c(ab), and of a(b(cd)) and
((ab)c)d. We leave this to the reader.

Another way to see Lemma 1.3.22 can be based on the following remark (made
to us by E. Getzler). If A is a graded commutative algebra (i.e., a om-algebra in
the category gVect-), then .the same algebra with the grading shifted by one and
new multiplication a b (- 1)degta)ab will satisfy the identities (i)-(iii) above.

(1.3.23) To finish the construction of the operad A, we take, in the situation of
Lemma 1.3.22, n generators x,..., Xn of degree 0. We denote by A’(n) Eo o
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the 1-dimensional subspace from this lemma. The space A’(n) is E,-invariant, and
the action of Z, on A’(n) is given by the sign representation. To see the last
assertion it is enough to show that any transposition (ij) acts by (- 1). But we can
take the basis vector of A’(n) given by any product "..(xxj).." in which x and xj
are bracketed together. By (ii) we have xx -xx, whence the assertion.
So we can identify A’(n) with A(n) =/"(k"), and the substitution of monomials

in place of generators, as in (1.3.7), defines the operad structure on A.

1.4. Geometric operads

(1.4.1) The category of topological spaces has an obvious symmetric monoidal
structure given by the Cartesian product. Operads in this category will be called
topological operads. (This was the original context of [52].)
Given a topological operad , the total homology spaces H.((n), k) form an

operad in the category 9Vect- (by the Kfinneth formula). Furthermore, for any
q > 0, the subspaces Hq(n_l)((n), k) form a suboperad.

(1.4.2) An important example of a topological operad is given by the little
m-cubes operad cg,, of Boardman-Vogt-May [11], [52]. By definition, m(n)is the
space of numbered n-tuples of nonintersecting m-dimensional cubes inside the
standard cube Im, with faces parallel to those of Im. The operad cg

2 of little squares
has an algebro-geometric analog which will be particularly interesting for us and
which we proceed to describe.

(1.4.3) The moduli space ,#(n). Let Mo,,+l be the moduli space of (n / 1)-
tuples (Xo,..., x,) of distinct points on the complex projective line CP modulo
projective automorphisms. Choose a point CP so that CP C u {}.
Letting Xo , one gets an isomorphism of Mo,,+ with the moduli space of
n-tuples of distinct points on C modulo affine automorphisms.
The space Mo,,+ has a canonical compactification ’(n) = Mo,,+l introduced

by Grothendieck and Knudsen [14], [36]. The space /t’(n) is the moduli space of
stable (n + 1)-pointed curves of genus 0, i.e., systems (C, Xo x.) where C is a
possibly reducible curve (with at most nodal singularities) and Xo, x, e C are
distinct smooth points such that:

(i) Each component of C is isomorphic to CPx.
(ii) The graph of intersections of components of C (i.e., the graph whose verti-

ces correspond to the components and edges to the intersection points of the
components) is a tree.

(iii) Each component of C has at least 3 special points where a special point
means either one of the x or a singular point of C.
The space Mo,,+x forms an open dense part of ’(n) consisting of (C, Xo, x.)

such that C is isomorphic to CP. The space /t’(n) is a smooth complex projective
variety of dimension n 2. It has the following elementary construction; see [9],
E2], E323.

Let Aft {x - ax + b} be the group of affine transformations of C. The group
Aft acts diagonally on C" preserving the open part C formed by points with
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pairwise distinct coordinates. As we noted before, we have an isomorphism
Mo,,+ -C,/Aff. Denote by A C" the principal diagonal, i.e., the space of
points (x, x, x). Then we have an embedding

Mo,,+ C/Aff (C" A)/Aff CP"-2

The coordinate axes in C" give n distinguished points pl, p, CPn-2. Let us
blow up all the points p, then blow up the proper transforms (=closures of the
preimages of some open parts) of the lines (Pi, P) then blow up the proper
transforms of the planes (p, p, Pk), and so on. It can be shown (see the refer-
ences above) that the resulting space is isomorphic to g(n).

(1.4.4) The configuration operad I/. The family of spaces ’ {,g(n), n > 1}
forms a topological operad. The symmetric group action on ’(n) is given by

(C, Xo,..., x,) (C, Xo, x,(), x,(.)),

The composition map

g(l) x ///(m) x x ///(m) M(ml + ""+ m)

is defined by

(C, Yo,..., Yl), (C(1), x(ol ), X(ml), (C(l), X(0/), X(m/))

())- (C’, Yo, x(lj, x x(),...,

where C’ is the curve obtained from the disjoint union C t_J C(1)t_l...t_J C( by
identifying x( with y, 1, (see Figure 5).

FIGURE 5
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We call////the configuration operad, since /(n) can be regarded as (compacti-
fled) configuration spaces of points on CP1.

(1.4.5) The stratification of the space l(n). Given a point (C, Xo, x,)e
g(n), we associate to it an n-tree T T(C, Xo,..., x,) as follows. The vertices
of T correspond to the irreducible components of C. The vertices corresponding
to two components C1, C2 are joined by an (internal) edge if C1 c C2 - . An
external edge is assigned to each of the marked points Xo, x,. The input
edge labelled by - 0 is attached to the vertex correponding to the component
containing xi. The output edge is attached to the vertex corresponding to the
component containing Xo. The property (iii) of stable curves ensures that
T(C, Xo,..., x,) is a reduced tree.
For any reduced n-tree T, let /(T) c /(n) be the subset consisting of points

(C, Xo x,) such that T(C, Xo,..., x,) T. In this way we obtain an algebraic
stratification /(n)= /(T). This stratification has the following properties
(cf. [9]):

(1.4.6) codim g(T) # internal edges of T.

(1.4.7) (T) c /(T’) ,, T > T’.

In particular, 0-dimensional strata are labelled by binary trees. Codimension-1
strata correspond to trees with two vertices. Their closures are precisely the irre-
ducible components of g(n) Mo,,+, which is a normal crossing divisor. More-
over, the entire stratification above can be recovered by intersecting these compo-
nents in all possible ways. In addition, we have the following result.

(1.4.8) PROPOSITION. There are canonical direct product decompositions

g(T) 1-[ Mo, I’n(v)l+l,
vT

/g(T) H g(In(v)).
veT

In particular, the closure of each stratum is smooth.

Proof. The first equality means that a pointed curve (C, Xo, x,)e /(T) is
uniquely determined, up to isomorphism, by the projective equivalence classes of
the configurations formed on each component by the marked points xi and the
double points which happen to lie on this component. This is obvious. The sec-
ond equality follows from the first one once we note that (T) )r> T /(F).

Let T(mx,..., rot) be the tree in Figure 3.

(1.4.9) COROLLARY. The structure maps (1.2.1) (ii) of the operad /g can be
identified with the embeddin9 of the stratum

.///(l) x /’(ml) x x ./#’(m,)= .///[(T(ml, m,)) ./#’(n).
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1.5. Operads and sheaves

(1.5.1) Let be a k-linear operad. The compositions in make it possible to
construct, for any n, a sheaf e(n) on the moduli space #(n), as we now proceed
to explain.

Let X be any CW-complex, and S {X} a Whitney stratification [26] of X
into connected strata X. We say that a sheaf - of k-vector spaces on X is
S-combinatorial if the restriction of to each stratum X is a constant sheaf.
Thus "S-combinatorial" is more restrictive than "S-constructible" [26], [34], which
means that Ix are only locally constant.

It is immediate to see that giving an S-combinatorial sheaf is equivalent to
giving the following linear algebra data:

(i) vector spaces F H(X, ), one for each stratum X;
(ii) generalization maps g’F F defined whenever X c X and satisfying

the transitivity condition:

(1.5.2) We now consider the moduli space //(n) defined in 1.4 together with
the stratification g(n) r //(T) labelled by the set of n-trees. A sheaf on ’(n)
combinatorial with respect to this stratification will be referred to as a "combi-
natorial sheaf of g(n)".

Let be a k-linear operad. To any n-tree T we have associated in (1.2.13) a
vector space (T) and to any pair of n-trees T’ < T we have associated a linear
map /r,T’: (T) (T’). Note that we have an inclusion ’(T)c ’(T’) pre-
cisely when T’< T. Thus associating to a stratum //(T) the space (T), and
using the T,r, as generalization maps, we get a combinatorial sheaf on ’(n)
which we denote by -(n).
The sheaves ,(n) for different n enjoy certain compatibility with the operad

structure on (g(n)}. Those compatibility properties are formalized in the next
subsection. Before proceeding to do this, let us agree on the following shorthand
notation. If X, Y are topological spaces, is a sheaf on X, and (# is a sheaf on Y,
then the sheaf Px* (R) P( on X x Y, where Px" X x Y X, Pr" X x Y --. Y are
the natural projections, will be denoted by -(R) f#. We use similar notation for
more spaces.

(1.5.3) Sheaves on an operad. Let Q be a topological operad, and

ml mr:Q(/) x Q(ml) x x Q(mz) Q(ml +"’+ m)

its structure maps. A sheaf on Q is, by definition, a collection {-(n)} where
-(n) is a sheaf of k-vector spaces on Q(n) together with the following data:

(i) a structure of En-equivariant sheaf on -(n);
(ii) for each ml,..., m, a homomorphism of sheaves on Q(l) x Q(m) x... x

Q(m):

rm, m," Y*m,...m,(m +"" + m,) ’(l) (R) -(ml) (R)"’(R) -(m,);
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(iii) a homomorphism e: :-(1)1 --+ k where -(1)1 is the stalk of the sheaf -(1) at
the point 1 Q(1).

These data should satisfy three conditions of coassociativity, equivariance, and
counit which we now explain.

(1.5.4) The coassociativity condition. Observe that the associativity condition
for the topological operad Q amounts to the commutativity, for all l, ml, m,
mj, 1, l, j 1,..., v, of the diagrams

Correspondingly, the structure data (ii) for a sheaf - give rise to the following
diagram of sheaves on Q(1) x I-It Q(m) x I-I,j Q(mi):

It is required that all such diagrams commute.
(1.5.5) The equivariance condition. It is required, first of all, that the map

rm, m, commute with the natural action of E,,, x x Era, on :’(ml +"" + m,)
and -(m) (R)"’(R) o(m).

Second, for any permtuation s e Eg we denote by g e E,,1 +...+m, the block per-
mutation which moves segments of lengths ml, ms according to s. Note that
the equivariance condition for the topological operad Q implies the commuta-
tivity of the diagram

Q(/) x Q(ml) x x

ld xs1
Q(l) x Q(ms(1)) x x Q(ms(,))

Q(ml +"" + ms)

Q(ms(1) + + ms(t)).

It is now required that the following diagram of sheaves on Q(l) x Q(ml) x x
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Q(m) commute:

where "eq." denotes morphisms of equivariance.
(1.5.6) The counit condition. Recall that the element 1 Q(1) is such that the

composition

Q(l) Q(1) x Q(1) x x Q(1) Q(l),

where j(q)= (q, 1, 1), is the identity map. It is required, in addition, that the
composition

:(1) (y o j)*:(1) ," j*((1) (1) )... @ o(1)) Id(R)e(R)...(R) -(l)

be the identity homomorphism. This completes the definition of a sheaf on a
topological operad.

(1.5.7) Example. Let Pt be the topological operad having Pt(n)= {pt} (1-point
space) for any n and all the structure maps being the identities. We call Pt the
trivial operad. (It defines associative and commutative H-spaces; see [52].) Let -be a sheaf on Pt. For any n the sheaf on the space Pt(n) is just a vector space
F(n). The structure data (i)-(iii) of (1.5.3) amount to E,-action on the space F(n),
linear maps

F(ml +"" + ml) F(I) (R) F(ml) (R)’"(R) F(mt),

and a linear functional e: F(1) k.
It is immediate to see that these data make the collection of the dual vector

spaces F(n)* into a k-linear operad. Conversely, every k-linear operad with
finite-dimensional spaces (n) defines a sheaf on the operad Pt.

(1.5.8) Remark. One might say that the F(n) in the above example form a
cooperad, a structure dual to that of an operad. We prefer to postpone the discus-
sion of this structure until 3.
The considerations of (1.5.7) can be generalized as follows.

(1.5.9) PROPOSITION. Let Q be a topological operad, and a sheaf on Q. Then
the 9raded spaces H’(Q(n), if(n))* (the duals to the total cohomology spaces) form
an operad in the category 9Vect- of 9faded vector spaces. Moreover, for any q > O,
the subspaces nq("-)(Q(n), if(n))* form a suboperad.
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The proof is obvious from the axioms and is left to the reader.
The fact (1.4.1) that the homology spaces H.(Q(n), k) form an operad is a partic-

ular case of this proposition. Indeed, for any topological operad Q, the constant
sheaves _ko, form a sheaf on Q.

(1.5.10) Let Q be a topological operad, and - a sheaf on Q. We say that " is
an isosheaf if all the maps r,, ,,, (data (ii) of a sheaf) are isomorphisms. Now
we can formulate the precise relation between k-linear operads and sheaves on
the configuration operad .

(1.5.11) THEOREM. (a) If is a k-linear operad, then the sheaves (n) on the
spaces ///(n) introduced in (1.5.2) form a sheaf on the operad

(b) If (1) k, then p is an isosheaf.
(c) Any combinatorial isosheaf on /// has the form , for some k-linear operad
with (1) k.

The proof is straightforward and left to the reader.

(1.5.12) Remark. If one replaces in (1.5.11) (c) the adjective "combinatorial" by
"constructible", then one obtains a notion of a braided operad introduced by
Fiedorowicz [20].

1.6. Modules over an algebra over an operad

(1.6.1) Let be a k-linear operad, and A a -algebra. An A-module (or a
(, A)-module, if is to be specified explicitly) is a k-vector space M together
with a collection of linear maps

q," (n)(R) A(R)’-) (R) M -+ M, n>l

satisfying the following conditions:
(i) (Associativity) For any natural numbers n, rl, r,, any elements 2 (n),

/i (ri), air A, j 1 ri, i= 1, n- 1, and also a,1, a,,r.- A,
m M, we have the equality

qml +’"+mn(/(#l, ]An) (R) all () () al,r ( a21 ( () a.,r,._x (R) m)

q,(2 (g) #l(al, al,,.,) (g)’" @ #n-x(a,-,x, an-i,,,,_,)

() qr,,(#n ( anl ( ( an,r,,-1 ( m)).

(ii) (Equivariance) The map q, is equivariant with respect to the action of
c E, (the subgroup of permutations preserving n) on (n) (R) A(R)t"-l} (R) M given
by

s(2 (R) (a (R)"’(R) a._) (R) m) s*(2) (R) (as<) (R)’"(R) an-X)) (R) m.
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(iii) (Unit) We have ql(l (R) 1 (R) m)= m for any m M where 1 (1) is the
unit of and 1 is the unit element of k A(R).
We often write 2(al, a,_, m) for q,(2 (R) (a (R)...(R) a,_) (R) m).

(1.6.2) Examples. (a) Every -algebra is a module over itself.
(b) Let ’s, and let A be a -algebra, i.e., an associative algebra. An

(s, A)-module is the same as an A-bimodule in the usual sense. Indeed, let us
realize s(n) as the space of noncommutative polynomials in xl,..., x, spanned
by the monomials xl) x,), s e E,; see (1.3.6). Given an A-bimodule M, we
define the map q,: eC’s(n) (R) A(R)’-) (R) M M by the rule

q,,(x) x,,) (R) (a (R)... (R) a,_) (R) m) a(

where we set a m.
(c) Let Com, and let A be a -algebra, i.e., a commutative algebra. A

(Cgom, A)-module is the same as an A-module in the usual sense.
(d) Let L’ie, and let A be a Lie algebra. A (5’ie, A)-module is the same as

an A-module (representation of the Lie algebra A) in the usual sense.

(1.6.3) Let M, M’ be two (, A)-modules. A morphism of modules f: M M’ is
a k-linear map such that f(2(al, a,_, m))= 2(at, a,_, f(m)) for any n,
any 2 (n), ai A, m M. Clearly, all (, A)-modules form an abelian category.

(1.6.4) The universal enveloping algebra. As for every abelian category, it is
natural to expect that the category of (, A)-modules can be described in terms of
left modules over a certain associative algebra. Such an algebra indeed exists and
is called the universal enveloping algebra of A, to be denoted U(A) or U(A). Here
is the construction:
By definition, U(A) is generated by symbols X(2; a, a,_), for every n,

every 2 (n), and every ax, a,_x A. (In particular, when n 1, then no ai
should be specified and we have generators X(2), 2 e (1).) These symbols are
subject to conditions of polylinearity with respect to each argument and to the
identifications

(1.6.5) X(2; #a(al, a,rl), #,_(a,_, , a,-l,r,_l))

for any 2 e (n), # (mi), aii A.
The multiplication in the algebra U(A) is given by the formula

X(2; ax, a,_)X(#, bx, bl_) X(2(l, 1, #); a, an_, bl, bt_a).

It is immedate to verify that we get in this way an associative algebra U(A), and
the image of X(I) is the unit of this algebra.
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Heuristically, X(2; al, a,-1) corresponds to the operator

m - 2(al, a,-1, m),

which acts on every (, A)-module M.
The following fact is obvious and its proof is left to the reader.

(1.6.6) PROPOSITION. Let A be a -aloebra. The cateoory of A-modules is equiv-
alent to the cate#ory of left modules over the associative altebra U(A).

(1.6.7) Examples. (a) If f# is a Lie algebra, then ULeie((ff) defined above is the
ordinary universal enveloping algebra of f#.

(b) If A is an associative algebra and we regard it as an ’s-algebra, then
U(A) A (R) Ap.

(c) If A is an associative commutative algebra and we regard it as a qYom-

algebra, then Uom(A h.

(1.6.8) By construction, the universal enveloping algebra U(A) has the form

Up(A) (n) (R) A(R)o,-1)/=

where is the equivalence relation described in (1.6.5). The nth summand above
is just the space of generators X(2; al,..., a,-1).

Observe that U(A)= U(A) has a natural (multiplicative) filtration F. where
F,U(A) is the subspace consisting of images of generators X(2; al, at-l) for
r< n.

2. Quadratic operads

2.1. Description of operads by generators and relations

(2.1.1) Let K be an assoicative k-algebra. Given an aribtrary K-collection E
(E(n), n > 2} (1.2.11), we define an operad F(E) called the free operad generated
by E. By definition

F(E)(n)= @ E(T)
trees T

where T runs over isomorphism classes of n-trees and E(T) is defined as in (1.2.13).
The composition maps (1.2.1) (ii) for F(E),

F(E)(1) (R) F(E)(mx) (R)’"(R) F(E)(mt) F(E)(m +’" + mt),

are defined by means of maps

(2.1.2) E(T) (R) E(T1) (R)"’(R) E(T) - E(T(T1, T))
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FIGURE 6

where T is an/-tree, T, 1, l, is an m-tree, and T(T1,..., Tt) is their com-
position; see Figure 6.
The definition of the map (2.1.2) is obvious, keeping in mind that both the

left-hand side and right-hand side are tensor products of the same spaces but over
different rings (some over k and some over K).

(2.1.3) Ideals. Let {(n)} be a k-linear operad. A (2-sided) ideal in
is a collection d of vector subspaces J(n)c (n) satisfying the following three
conditions:

(i) For each n, the space o(n) is preserved by the action of E, on (n).
(ii) If 2 (n), 1 (ml), #, (m,), and for at least one j we have #i

(m), then the composition 2(#1, #,) belongs to J(ml + + m,).
(iii) If 2 (n) and #i (m), 1, n, then 2(#1,..., #,) (mx +’-" +

If is an ideal in an operad , then we can construct the quotient operad /J
with components (/)(n)= (n)/C(n) (quotient linear spaces). The conditions
(ii) and (iii) above imply that compositions in induce well-defined compositions
in /.

It is straightforward to see that the kernel of a morphism of k-linear operads
f: is an ideal in .

(2.1.4) Let V be a finite dimensional k-vector space, and let ..ie(V), s(V),
om(V) be respectively the free Lie algebra, free associative (tensor) algebra and
free commutative (polynomial) algebra generated by V. There are canonical linear
maps

(2.1.5) ie(V) ’s(V) - Cgom(V).

Both maps are the identity on V and are uniquely determined by the requirement
that n be a homomorphism of associative algebras and e be a homomorphism of
Lie algebras (with the structure of a Lie algebra on s(V) given by [a, b] ab
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ba). The maps (2.1.5) give rise to a collection of linear maps

ie(n) & sOs(n) " Com(n), n= 1,2,...

such that r o e 0 for n > 2.
These maps give morphisms of operads ie -Com. Let ie+ be the

collection of spaces {ie(n), n > 2} and (ie+) be the minimal ideal in s con-
taining ie+. The proof of the following result is left to the reader.

(2.1.6) PROPOSITION. (&eie+) Ker(rc), that is, Com - s/(&eie+).

(2.1.7) Quadratic operads. Let K be a semisimple k-algebra. Let E be a
(K, K(R)2)-bimodule with an involution a: E E such that

a(2e) 2a(e), a(e.(2 (R) 22)) a(e).(2 (R) 2),

We form the space E (R)r E, the tensor product with respect to the right K-module
structure on the first factor given by e" 2 e" (2 (R) 1). This space has two structures:

(i) a E2-action given by the action of a on the second factor E,
(iii) a structure of (K, K(R)3)-bimodule.
Therefore the induced Z2-module IndrZ(E (R)r E) inherits the (K, K(R)3)-bimodule

structure. Let R = Ind(E (R) E) be a E3-stable (K, K(R)3)-sub-bimodule. To any
such data (E, R) we associate an operad (K, E, R) in the following way. We
form the K-collection {E(2)= E, E(n)= 0, n > 2} (denoted also by E) and the
corresponding free operad F F(E). Observe that F(E)(3)= IndrZ(E (R) E); see
Figure 7.

More generally,

(2.1.8) F(E)(n)= @ E(T).
binary

n-trees T

Let (R) be the ideal in F(E) generated by the subspace R c F(E)(3). We put
(K, E, R)= F(E)/(R). An operad of type (K, E, R) is called a quadratic

2 3 2 3 2 3

FIGURE 7. F(E)(3)
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operad with the space of generators E and the space of relations R. Note that K,
E, R can be recovered from as K (1), E (2), and R Ker{F(E)(3)
(3)}.

(2.1.9) The quadratic duality. Given a semisimple k-algebra K and a finite-
dimensional left K-module V with a E,-action, we define V Homr(V, K). This
is a right K-module, i.e., a left module over the opposite algebra Kp. We always
equip V with the transposed action of E, twisted by the sign representation.

Let N (K, E, R) be a quadratic operad. The space E has a natural struc-
ture of (Kv, Kv (R) KV)-bimodule. Observe that F(E)(3) F(E(3)). Let R+/- c

F(E )(3) be the orthogonal complement of R. It is stable under the E3-action and
the three KV-actions on F(E )(3). We define the. dual quadratic operad to be

! (Kp, E", R-L).

(2.1.10) Examples. Suppose that K k and (k, E, R) is a quadratic
operad. A -algebra is a vector space A with several binary operations (parame-
trized by E) which are subject to certain identities (parametrized by R) each in-
volving three arguments. This is precisely the way of defining the types of algebras
most commonly encountered in practice. In particular, the operads sCs, om, ie
governing, respectively, associative, commutative, and Lie algebras, are quadratic.

Note that the structure constants of an algebra A over a quadratic operad
satisfy quadratic relations. For example, if {ei} is a basis of A, define #: A x A -,

A by #(ei (R) ej) Cek. The condition that # is associative means that

k Vi, j,m.
k k

Other examples are similar. This explains the name "quadratic operad."

(2.1.11) THEOREM. We have isomorphisms of operads

om! .ie, qie Com, s! s.

The idea that the "words" of commutative, Lie, and associative algebras are, in
some sense, dual to each other, as described above, was promoted by Drinfeld
[18] and Kontsevich [39]. (The Cgom-5ie duality was implicit already in Quillen’s
paper [56] and in Moore’s Nice talk [53].) The concept of quadratic operads and
their Koszul duality allows us to make this idea into a theorem. Observe also
that the isomorphism om - ’s/(5ie+) of Proposition 2.1.6 is, in a sense, "self-
dual".

Proof of the theorem. The group 3 has three irreducible representations which
we denote 1 (the identity representation), Sgn (the sign representation) and V2 (the
2-dimensional representation in the hyperplane x- 0 in the 3-dimensional
space of (xl, x2, x3)). Both qYom and _qie have 1-dimensional spaces of generators
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with E2 acting trivially on Com(2) and by sign on qie(2). An elementary calcula-
tion of group characters shows that we have isomorphism of Ea-modules

F(Cgom(2))(3) 1 V2, F(q’ie(2))(3) Sgn V2.

This implies that we have

Cgom(3) 1, Rgom V2, ’ie(3)--- V2, R,ie Sgn.

The duality between om and Z’ie follows.
To prove that ’s= s, we consider the space F(ls(2))(3). This space has

dimension 12 and is spanned by the 12 expressions of the form xta)(xt2)xt3)) and
(Xs(1)Xs(2))Xs(3) S ’3"
We introduce on this space a scalar product ( ) by setting all these products

orthogonal to each other and putting

(Xi(XjXk)’ Xi(XjXk)) sgn(1 2 3k)j
((XiXj)Xk’ (XXi)Xk) --sgn(1 2 3k)j

This product is sign-invariant with respect to the E3-action, i.e., (s(#), s(v))=
sgn(s) (, v). The (6-dimensional) space of relations R R is spanned by all the
associators X(XjXk) (XXj)Xk. This space coincides with its own annihilator with
respect to the described scalar product. This shows that R+/- R and so ’s= s.

2.2. The analogs of Manin’s tensor products. The Lie operad as a dualizing
object.

(2.2.1) In this section we consider only quadratic operads with (1)- k.
Such an operad is defined by a vector space of generators E- 5(2) with an
involution a (action of E2) and a Ea-invariant subspace R of relations inside
F(E)(3) where F(E) is the free operad generated by E. Observe that F(E)(3) is the
direct sum of three copies of E (R) E (see Figure 6). So we refer to this space as
3(E (R) E). Our aim is to present an operad-theoretic version of [51].

(2.2.2) Let (, (R)) be any symmetric monoidal category and let , 2 be two
operads in ’. The collection of objects (n)(R) .(n) forms a new operad in 1
denoted by (R) 2. The main property of this operad is that if A is a -algebra
and B is a .-algebra (in 1), then A (R) B is a (R) 2-algebra. We are interested in
the case of k-linear operads, i.e., 1 Vect.

(2.2.3) Suppose that 5, are quadratic operads with (1)- .(1)= k so that
(2) and (2) are their spaces of generators. We denote by o the suboperad
in (R) 2 generated by (2) (R) 2(2). Let R c 3((2) (R) (2)) and Ra c 3(2(2) (R)
.(2)) be the spaces of relations of and 2. Then the operad o is described as
follows.
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The space of generators of o . is, by definition, (2)(R) .(2). The third com-
ponent of the free operad generated by (2) (R) 2(2) is 3((2) (R) (2) (R) 9(2) (R)
.(2)), which can be regarded in two ways as:

1. ((2)(R) (2))(R) 3(2(2)(R) 2(2)) and, regarded as such, it contains the sub-
space ((2) (R) (2)) (R) Ra.

2. 3((2) (R) (2)) (R) (2(2) (R) 2(2)) and, regarded as such, it contains the sub-
space R, (R) (.(2) (R) 2(2)).

(2.2.4) PROPOSITION. If , are quadratic, then o is also quadratic with
the space of 9enerators (2) (R) .(2) and the space of relations

(((2) (R) (2)) (R) Ra) + (R (R) (2(2) (R) .(2))).

(The sum is not necessarily direct.)

The proof is straightforward.
Thus o 2 is the analog of the white circle product A o B for associative

algebras considered by Manin [51].
(2.2.5) Given two quadratic operads , as before, we define the quadratic

operad (the black circle product; cf. [51]) to have the same space of genera-
tors (2) o 2(2) as 9 (R) . but the space of relations

(((2) (R) (2)) (R) R.) (R (R) (.(2) (R) 2(2))).

(2.2.6) THEOREM. Each of the products o, defines on the category of quadratic
operads (and morphisms defined in (1.3.1)) a symmetric monoidal strucutre. More-
over, we have:

(a) (9 o .)!= !,
(b) Hom( , ) Hom(, ! o ). In particular, the commutative operad is

a unit object with respect to o and the Lie operad is a unit object with respect to o.

Proof. (a) It is similar to the argument of Manin [51] for quadratic algebras:
we should use the obvious relations between sums, intersections, and orthogonal
complements of subspaces in a vector space.

(b) The fact that Cgom is a unit object with respect to o follows because Com(n)
k for any n. The fact that ie is a unit object with respect to follows from

part (a) and the fact that .ie Cgom.

(2.2.7) Given quadratic operads and ., we define the quadratic operad
hom(, .) as follows. Its space of generators is set to be

hom(, .)(2) HOmk((2), ..(2)).

The space of relations Rhom(,. is defined to be the minimal subspace in
F(Homk((2), .(2)))(3) such that the canonical map

can: .(2) + Homt((2), (2)) (R) (2) a(2)* (R) 2(2) (R) (2)
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extends to a morphism of operads 2 hom(, 2) o . More precisely, we define
Rhom(g,,.) to be minimal among subspaces J with the property that

J (R) (,(2) (R) g(2)) F(HOmk((2), 2(2)) (R) ,(2))(3)

contains the image of the embedding

can," F((2))(3) F(Homk(.(2), (2)) (R) (2))(3)

induced by can.
If pl,..., #m is a basis of (2), vl, Vn is a basis of (2), and aj, 1, m,

j 1, n is the corresponding basis of Hom((2), 2(2)), then the elements

aj (R) # (hom(, .) o ,)(2)

satisfy all the quadratic relations holding for actual v.
(2.2.8) THEOREM. We have a natural isomorphism of operads

hom(, 2) ! 2.

Proof. Simple linear algebra.

(2.2.9) COROLLARY. (a) For any quadratic operad , we have

! hom(, ’ie).

(b) There exists a morphism of operads Pie --. (R) which takes the generator

of the 1-dimensional space 5eie(2) into the identity operator in (2)(R) !(2) (2)
(R) (2)*. In particular, for any -algebra A and !-algebra B, the vector space
A (R)k B has a natural Lie algebra structure.

(2.2.10) Let us give another interpretation of the operad hom(, 2) in terms of
algebras. Suppose that V1,..., Vm, W are k-vector spaces. By a -multilinear map
V1 x x V,, W, we understand an element

O F,(V’ O) Vm*) (R) W

which is homogeneous of degree 1 with respect to dilations of any of V. (Recall
(1.3.6) that F means the free -algebra generated by a vector space.) Such maps
form a vector space which we denote by Multi(V1, V,,I W). For example, (n)

Multi(k, klk) (m copies of k before the bar), cf. (1.3.7)-(1.3.9). The space
of ordinary multilinear maps, i.e., HOmk(V1 (R)’"(R) l/m, W) is nothing but
Multom(V1,..., V,,I W) where Com is the commutative operad.
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Similar to usual multilinear maps, -multilinear maps can be composed. In
particular, for any vector space V, the spaces

(2.2.11) o,.v(n) Mult,(V, VIV) (n copies of V)

form a k-linear operad which we call the operad of endomorphisms of F in #.
(2.2.12) Let . be another k-linear operad. By a .-algebra in # we mean a

k-vector space A together with a morphism of operads f: . o,a. When #
Cgom is the commutative operad, we get the usual notion of a .-algebra.

(2.2.13) THEOREM. Let # and . be quadratic operads with (1)= 2(1)= k.
Then .-algebras in # are the same as horn(#, )-algebras (in the usual sense).

Proof. Let A be a .-algebra in . The corresponding morphism f: . o.a
is defined by its second component

f2" 2(2) 6#,A(2) (#(2) (R) (A*)(R)2) (R) A.

By taking a partial transpose of f2, we get a E2-equivariant map

f2t" Hom(#(2), (2)) Hom(A (R) A, A) gA(2).

In order that a given linear map f2 come from a morphism of operads f: Q
.a, the quadratic relations among the generators of Q should be satisfied. By
the definition of relations in hom(, .), this is equivalent to the condition that f2
extend to a morphism hom(#, .) 8, i.e., that we have on A a structure of a
hom(#, .)-algebra.

(2.2.14) Lazard-Lie theory for formal groups in operads and Koszul duality. The
idea of considering formal groups in operads goes back to an important paper of
Lazard [43]. He used the concept of "analyseur" which is essentially equivalent
to the modern notion of operad. The main result of Lazard is a version of Lie
theory (=correspondence between (formal) Lie groups and Lie algebras) for his
generalized formal groups. It turns out that Lazard-Lie theory has a very trans-
parent interpretation in terms of Koszul duality for operads.
We start with formulating basic definitions in the modern language. Let # be a

k-linear operad. We assume #(1) k. Let W be a k-vector space and

(2.2.15) ff,(W) H (#(n) (R) W(R)")z.,
n>l

the completed free #-algebra on W. If zl, z, form a basis of W, then elements
of F(W) can be regarded as formal series in zl, zr whose terms are products
of zi with respect to operations in . Thus, for example, if # Cgom, we get the
usual power series algebra; if # zgs, we get the algebra of noncommutative
power series etc. Note that our series do not have constant terms since all the free
algebras are without unit.
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There is a natural projection (on the first factor)

(2.2.16) Fe(W) W.

It can be thought of as the differential at zero.
Let V, W be two k-vector spaces. We define the space of formal -maps from V

to Was

FHom(V, W) V (R) F(W*).

For FHom(W), we denote by do HOmk(V, W) its differential at 0, i.e., the
image of under the natural projection of V (R) W* induced by (2.2.16). There are
obvious composition maps

FHom(V, W) FHom(W, X) FHom(V, X)

(given by inserting of power series into arguments of other power series) which
make the collection of vector spaces and formal -maps into a category. A
simple generalization of the classical inverse function theorem shows that
FHom(V, W) is invertible if and only if do Homk(V, W) is invertible.

(2.2.17) Definition. Let be a k-linear operad. A -formal group is a pair
(V, q)) where V is a k-vector space and e FHom(V @ V, V) is a formal -map
satisfying two conditions:

(i) do: V V V is the addition map (v, v’) v + v’.
(fi) is associative, i.e., we have the equality (x, (y, z))= ((x, y), z) of

formal maps V V V V.
A formal homomorphism of formal -groups (V, (I)) and (W, W) is a formal -map f FHom(V, W) such that f((x, y)) tP(f(x), f(y)).

(2.2.18) If (V, ) is a -formal group, then we define, following Lazard, its Lie
bracket by

Ix, y] (x, y) (y, x) (mod. cubic terms).

This construction makes V into a Lie algebra in in the sense of (2.2.12). Fur-
thermore, we obtain, from Theorem 2.2.13, Corollary 2.2.9, and the result of Lazard
([43], Theorem 7.1), the following theorem.

(2.2.19) THEOREM. Let be a quadratic operad, and ! its quadratic dual. The
category of finite-dimensional -formal groups (and their formal homomorphisms)
is equivalent to the category of finite-dimensional !-alqebras.

A special case of this theorem corresponding to s, the associative operad,
was pointed out to us earlier by M. Kontsevich. Since s s, the theorem in
this case says that, for formal groups defined by means of power series with
noncommuting variables, the role of Lie algebras is played by associative algebras
(possibly without unit).
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2.3. Quadratic algebras over a quadratic operad

(2.3.1) Let be a k-linear operad and A a -algebra. An ideal in A is a linear
subspace I c A such that, for any n, any # e (n), and any al, a,_l e A, I,
we have #(ax, a,_x, i) I. Given any ideal I A, the quotient vector space
A/I has a natural structure of a -algebra.

(2.3.2) Quadratic algebras. Let (K, E, R) be a quadratic operad (2.1.7)
so that K (1) is a semisimple k-algebra and E (2) is a (K, K(R)2)-bimodule.
Let also V be a K-bimodule. The tensor product E (R)K(R)2 V(R)2 has a natural struc-
ture of a (K, K(R)Z)-bimodule. (The left K-action comes from that on E and the
right K(R)Z-action comes from that on V(R)Z.) Moreover, there is a Ez-action on
E (R)r(R)2 V(R)2 given by

(2.3.3) a(e (R) (v (R) v2)) a(e) (R) (v2 (R) v).

Observe that the space of coinvariants (E (R)K(R) V(R)2)Z2 inherits a K-bimodule struc-
ture. Let

(2.3.4) S c (E (R)r(R) V(R)E)z

be a K-sub-bimodule. Given V and S, we construct a -algebra A A(V, S) as
follows.

Let F(V) be the free -algebra generated by V; see (1.3.5). Observe that F,(V)2,
the degree-2 graded component of Fe(V), is (E (R)r(R) V(R)2)y2 Let (S) = (V) be
the ideal generated by S (= the minimal ideal containing S). Put

(2.3.5) A(V, S)= Fe(V)/(S).

An algebra of this type will be called a quadratic -algebra (with the space of
generators V and the space of relations S).

Observe that A(V, $) has a natural grading A(V, S)=> A(V, S). Further-
more, , as any operad in the category Vect, can be regarded as an operad in the
category gVect/ of graded vector spaces (1.4.2) (c) and A(V, S) is a -algebra in
this category.

(2.3.6) Quadratic superalgebras. Let (K, E, R) be a quadratic operad as
before. We now view as an operad in the other category of graded vector
spaces (1.4.2), namely gVect-. A -algebra in this category will be referred to as a
(graded) -superalgebra.

Let V be a K-bimodule. We replace the E2-action on E (R)r(R)2 V(R)2 given by
(2.3.3) by the following one:

(2.3.7) a(e (R) (v (R) vz)) -a(e) (R) (vz (R) vl).

Let S c (E (R)(R) V(R)2)Z2 be a K-sub-bimodule where the coinvariants are taken
with respect to the new action (2.3.7). Given such data (V, S), we define a -
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superalgebra A(V, S)- as the quotient of the free -superalgebra generated by V
(placed in degree 1) by the ideal generated by S.

(2.3.8) Quadratic duality. Let (K, E, R) be a quadratic operad and
(Kp, E v, R-L) the dual operad (2.1.9). Given a quadratic -algebra A A(V, S)
we define the quadratic -superalgebra A A(V, S+/-)-. Here V Homx(V, K)
and

S"l-
( ((E ()K(R)2 V()2)2) ((V ))2 K(R)2 E )Y-2 (E ()(KOp)(R)2 (V ))2)

is the annihilator of S.
In a similar way, given a quadratic -superalgebra B, we define the dual

algebra (in the category gVect+) B. The assignment A A gives a 1-1 corre-
spondence between quadratic -algebras (resp. superalgebras) and quadratic -superalgebras (resp. algebras).

(2.3.9) Examples. (a) Let s be the associative operad. Then s!= ’s.
Note that an ,s-superalgebra (i.e., an s-algebra in gVect-) is the same as an
s-algebra (in 9Vect+). Both concepts give the usual notion of a graded associa-
tive algebra. In this case the quadratic duality (2.3.8) reduces to the well-known
Koszul duality for quadratic associative algebras introduced by Priddy [55].

(b) Let Com be the commutative algebra, and let A be a quadratic om-
algebra i.e., a quadratic commutative (associative) algebra. Let As be the Koszul
dual of A as of an associative algebra. One can show that A"as has a structure of a
graded-commutative Hopf algebra (in fact, it is a subalgebra in Ext](k, k), for
which see [57]). Hence A is the enveloping algebra of a certain graded Lie
superalgebra (i.e., a aie-algebra in the category gVect-), which we denote f

APrlm(A,). We have

(2.3.10) Quadratic duality and enveloping algebras. Let (K, E, R) be a
quadratic operad. Let A be a quadratic -algebra. Then we have (1.6.4) the uni-
versal enveloping algebra U(A), which is an associative algebra in ordinary sense.
If A is a quadratic -superalgebra, the same constructon as in (1.6.4) defines its
universal enveloping superalgebra U(A), which is an s-algebra in the category
gVect-. As noted in (2.3.9) (a), we can regard U(A) as an ordinary graded asso-
ciative algebra.

(2.3.11) THEOREM. If A is a quadratic -algebra and A the dual quadratic !-
superalgebra, then the universal enveloping algebras U(A), U,(A!) are quadratic
associative algebras in the ordinary sense and

(U(A))’ U,(A’).

Proof. Let (K, E, R) and A A(V, S). The algebra U,(A) has an obvi-
ous grading in which the generator X(2; al, an-l), 2 (n), ai A,,,, has de-
gree m + ..’+ m,_. The degree-1 component of U(A) is linearly spanned by
X(2, a), 2 (2) E, a A V and is isomorphic to E (R)x V. Obviously this
component generates U(A) as an algebra.
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To describe the relations among these generators, consider the space Y
F(E)(3) (R) V(R)2. (Here and in the remainder of this seciton all tensor products are
taken over K.) This space splits into the direct sum of three components Y
L1 0) L2 ) L3 depicted in Figure 8.
The letter "K" on some of the edges in Figure 8 means that the tensor product

over K is taken with respect to the structures of left/right K-module represented
by the ends of this edge. Note that every L and hence X is a K-bimodule with
respect to the actions corresponding to the edges not marked "K". Elements of
L1 can be viewed as formal expressions X(2; ai)X(lai; bi), as can elements of
L3. The group 2, permuting the left two inputs of the trees in Figure 8, maps Lx
isomorphically to L3 and preserves L2. Thus, denoting by X Yz2 the space of
coinvariants, we have

X=E(R)V(R)E(R)V O) E(R)(E(R)V(R)2)r,_.

Let W c X be the image, under the canonical projection Y --, X, of the subspace
R (R) V(R)2, where R c F(E)(3) is the space of relations of .

(2.3.12) PROPOSITION. The aloebra U(A) is defined by the space of generators
E (R) V and the space of quadratic relations

(2.3.13) E(R) V(R)E(R) V(W+ E(R)S)

where S (E (R) V(R)2)y2 is the space of relations in A and the intersection is taken
inside X.

The proof is straightforward and left to the reader.
Similarly, the algebra U,,(A) has the space of generators E (R) V and the

space of relations

(2.3.14) E" (R) V" (R)E" (R) V" m(W- + E" (R)S+/-).

We want to show that (2.3.13) and (2.3.14) are the orthogonal complement to
each other. This is a particular case of the following general lemma.
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(2.3.15) LEMMA. Let X be any K-bimodule decomposed into a direct sum of
bimodules X M N. Let X M N be the corresponding decomposition
of X Homr(X, K). Let W X and L N be any sub-bimodules. Then the
ortho#onal complement (in M" ) of M (W + L) coincides with M (W + L),
where Wx and L are the ortho#onal complements in X and N, respectively.

Proof of the lemma. Since K is semisimple, we can write N L P where
P is another sub-bimodule, so X M ) L P and XV M ) L 09 P. If
Z c X is any sub-bimodule, then

(2.3.16) (M c Z)t Im {(M c Z) - M } M ((M c Z)x + L + P ),

where n: X M is the projection dual to the embedding M X, i.e., the
projection along L ) Pv. Let us apply this to Z W + L and note that

(M c (W + L))c M + (Wc c L) L + P + (Wx c (M + P )).

We get that the right-hand side of (2.3.16) is equal to

(2.3.17) M o(Wx c(M + P)+ L + P).

To finish the proof of the lemma, it remains to show that (2.3.17) coincides with
M (Wx + PV). (Note that P is the same as L.) To show this, suppose that
m=w+pMv(W+P),sothatwWx,pP.Thenw=m-pM +
P, so writing m w + 0 + p, we get that m belongs to (2.3.17). Conversely, let m
belong to (2.3.17), so m w + + p with L v, p P and w Wx c (M + P ),
so w m’ + p’, m’ M, p’ P. Then we have m m’ + p’ + + p and, since
X =MvL)P,wegetm=m’,p+p’=0,l=0.Thusm=w+p,som
M (Wx + P). Lemma 2.3.15 and (hence) Theorem 2.3.11 are proven.

3. Duality for dg-operads

3.1. dg-operads. Generatin9 maps

(3.1.1) Let d# Vect be the symmetric monoidal category of differential graded
(d#-) vector spaces, i.e., of complexes over the base field k. By definition, an object
of d# Vect is a graded vector space V" together with a linear map (differential)
d: V’ V" of degree 1 such that d2 0. Morphisms are linear maps preserving
gradings and differentials. The tensor product of two complexes V" and W" is
defined by (1.4.3) with the differential given by the Leibniz rule

d(v (R) w) d(v) (R) w + (- 1)iv (R) d(w), V Vi, W . Wj

The symmetry isomorphism V’(R) W’ W’(R) V" is the same as in the category
9Vect-; see (1.4.2 (c)). As usual, for a complex V" d# Vect we define the dual
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complex V* by

(3.1.2) (V*)’ (V-’)*, dv. (dv)*

and the shifted complex V’[i], c Z, by

(3.1.3) (V’[i]) Vi+J, dv.tq (- 1)idv

An operad in the category dg Vect is called a dg-operad (over k). An algebra
over a dg-operad in the category dg Vect will be called a dg-algebra. Note that
any k-linear operad can be regarded as a do-operad (each (n) is placed in
degree 0).

(3.1.4) For any dg-operad , the collection of cohomology vector spaces H’(n)
forms an operad H’() in the category gVect-. A morphism of do-operads f:. is called a quasi isomorphism if the induced morphism H’(f): H’() H’(2) is
an isomorphism. Similarly for dg-algebras over dg-operads.

(3.1.5) A do-operad will be called admissible if the following conditions hold:
(i) Each (n) is a finite-dimensional dg-vector space.
(ii) The space ’(1) is concentrated in degree 0, and is a semisimple k-algebra.
Given a semisimple k-algebra K, we denote by dg OP(K) the category of ad-

missible dg-operads with (1)= K and with morphisms equal to the identity
on first components.

(3.1.6) Our next aim is to define a kind of "generating function" for an admissi-
ble do-operad . It will be convenient for the future to work in a slightly greater
generality. Let K be a semisimple k-algebra. By a K-do-collection we mean a
collection E {E(n), n > 2} of finite-dimensional do-vector spaces E(n) together
with a left E,-action and a structure of (K, K(R)")-bimodule on each E(n) which
satisfy the compatibility condition identical to the one given in (1.2.11).

Clearly, if is an admissible dg-operad and K (1), then (n), n > 2, form a
K-do-collection. Given any K-do-collection E, one defines the free dg-operad
F(E) as in (2.1.1).
By an r-fold do-collection, we mean, similarly to (1.3.15), a collection of finite-

dimensional complexes

Ei(al,..., a,.), ai . Z+, 1,..., r, at > 1

of Zal x... x Ear-modules such that

U(O,...,O, 1 ,0,...,0)={ fori=j;
for #j.

Given a semisimple k-algebra K with r simple summands and a K-do-collection
E, we define the r-fold do-collection associated to E by the formula identical to
(1.3.13).
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(3.1.8) Definition. Let K be a semisimple k-algebra, r the number of simple
summands in K, and E a K-dg-collection. The generating map of E is the r-tuple
of formal power series

ar
(3.1.9) 9)(xl,..., x,) z[Ei(al,..., a,)]---xl x,

1,..., r
ar=O a at!

where {Ei(a, a,)} is the r-fold d0-collection associated to E and Z stands for
the Euler characteristic.

The r-tuple 9z(x) (9(eX)(x),..., 9()(x)) will be regarded as a formal map

(3.1.10) gE: C" -’* C’, x (x,, x,) -Note that by (3.1.7)we have

(3.1.11) g)(x) xi + (higher-order terms).

In particular, for any admissible dg-operad , we have its generating map g.
Special case. If is a k-linear operad with (1) k, then its generating map

is a single power series

X
ge(x) Z dim (n)

(3.1.12) Examples. (a) The operads sgs, Cgom, and Z’ie (see (1.3.7)-(1.3.9)) are
admissible operads with K k and trivial dg-structure. Therefore r 1 and the
generating maps of these operads are the following power series in one variable:

1
1, lCom(X) ex- 1,O(x)

1 x
ie(X) log(1 x).

(b) Let s be the symmetric monoidal category of representations of the group
Z/2. It has two (1-dimensional) irreducible objects: the trivial representation I
and the sign representation J. Taking X I q) J, we define an admissible k-linear
operad , with (n)= Hom(X(R)", X); see (1.3.12). We have N(1)= k @ k. As
explained in (1.3.16), the 2-fold collection associated to consists of Clebsch-
Gordan spaces

Hom(I(R)a (R) j(R)b, I) {Ok for b odd
for b even

Hom(I(R)a(R)j(R)b,J)={Ok for b even

for b odd.
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Therefore the generating map of is given by the formulas

x x2
b

e’1 cosh(x2)_ 1,/()(XI’ X2) 2 dim Hom(I(R)a (R) j(R)b, I)-.. -.a,b

xl/(x,, x2) dim Hom(I(R)" (R) j(R)b, j)_[. e,l sinh(x2).

(3.1.13) It is possible to refine the generating map of a K-dg-collection so as to
take into account not only the dimensions of the graded components of the com-
plexes E(al,..., at) but also the symmetric groups actions.

Let 9. be the Grothendieck group of the category of finite-dimensional repre-
sentations of the symmetric group E, over k. For any such representation V we
denote by IV] its class in t. If V" is a complex of S,-representations, then we
set [V’] (-1)i[Vi]. The correspondence [V-I dim(V) extends to a group
homomorphism 9 Z also denoted by dim. The maps

[V] (R) [W] [Ind%.(V (R) W)]

make N I-/.>o . into a commutative graded ring. For n 0, we set No Z,
and 1 s Z is the unit of N. The class of trivial representation of 21 will be denoted
I. Elements of N will be written as formal infinite sums .o v. with v. e N.. For
every k-dg-collection E {E’(n)}, we denote by [E] =o [E(n)] the corre-
sponding element of N. It is well known [50] that N is isomorphic to the comple-
tion of the ring Z[el, e2,...] of symmetric functions in infinitely many variables
(that latter ring is the direct sum @.>o N.). There is a natural ring homomor-
phism h: N Z[[x]] defined by

( ) x.
(3.1.15) h v. (x)= dim(v.)., a. ..
Note that for the element I e N above we have h(I) x. For every k-dg-collec-
tion E {E’(n)} such that E’(n) 0 for n >> 0, we have a polynomial functor

w @ (e(n) (R)

on the category of complexes; cf. [50], Chapter 1, Appendix. If E and F are two
such collections, then the composition OetI)r is a polynomial functor correspond-
ing to a new collection E o F called the plethysm of E and F, see loc. cit. and [23],
n.l.2. The element [Eo F-I 9 is determined by [E] and IF] alone; in other
words, the plethysm descends to an operation on 9 which will still be denoted by
u o v; see [50-1, Chapter I, 8.
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(3.1.16) The tensor product 9, (R)...(R) 9,. is naturally identified with the
Grothendieck group of representations of the Cartesian product ]at X X "ar-
If V" is any finite-dimensional complex of Eat Ea.-modules, then by [V’]
9(R)’ we denote the alternating sum of classes of V in 9,t (R)... (R) 9,, = 9(R)’.

Let (R) [-I at ()"’" ()a,. be the completed rth tensor power of the ring 9.
Its elements will be written as formal r-fold sums vt ar with Vat ar " at (""(R) ar" We introduce for later use the elements

L 1@...@ I@I(R) 1 @...(R) I o@...@ @’"@o

where I 1 (see (3.1.14)) is on the vth place.
If E {Ei(al,..., a,)} is an r-fold d0-collection, then we get a vector of length r

over (R), namely

(3.1.17)[E]=(at,,at [El(a’’’"a")]’’’"[E(alat,,,r ’a")]) 9(R)’

X X (R)r.

If E is an r-fold dg-collection with only finitely many nonzero terms, we have a
polynomial functor OE on the category dg Vect of r-tuples of complexes. Namely,
if Wx, W are complexes, then the ith component of the r-tuple OE(Wx,
is

(E’(a,..., a,) (R) Wl@al (’"( Wr(R)ar),a y.a
at, ,at

As before, composition of polynomial functors on dg Vect induces the plethysm
(E, F) E o F on r-fold dg-connections. The vector [E o F] can be expressed
through I-E] and IF] alone by means of the binary operation on the r-fold prod-
uct 9(R)" 9(R)" which we also call the plethysm and denote (u, v) u o v.

(3.1.18) Let now K be a semisimple k-algebra with r simple summands, and let
E be a K-dg-collection. We define the refined generating map of E to be the
r-tuple

where E’ is the r-fold dg-collection associated to E; see (3.1.6) and (1.3.13).
Let h/(R) Z[[xl,..., x,]] be the rth tensor power of the homomorphism

(3.1.15), so that, for instance, h,(Iv) xv. Then the numerical generating map of E
can be recovered as

(3.1.19) gt(x, x) h,(Ge).

Let o: N--* N? be the ring homomorphism which for every n takes [,], the
class of the trivial representation of E, into [sgn,], the class of the sign represen-
tation; see [50]. Let w(R)": (R)’ (R)r be the tensor power of
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For an element v /3al are (R)’, we denote

e(V) Y’ (-- 1)a’ +’"+a"og(R)rVa a,."

If f(x) f(xl, x,) h,(v) e Z[[x1, xr]], then h,(e(v)) is the series f(-x).

3.2. The cobar-duality

(3.2.0) For a finite-dimensional k-vector space V, we denote by Det(V) the top
exterior power of K

Let T be a tree (1.1.1). We denote by Ed(T) the set of all edges of T except
the output edge Out(T). We denote by Det(T) the 1-dimensional vector space
Det(kedm). Similarly, let ed(T) be the set of internal edges of T and let det(T)
Det(kedtr)). The number of internal edges of T will be denoted by r[.

(3.2.1) Let be an admissible dg-operad (3.1.5), so that K (1) is a semi-
simple k-algebra. For any n > 2, we construct a complex

(3.2.2) (n)* (R) det(kn) @ (T)* (R) det(T)... () ;(T)* (R) det(T)
n-trees T n-trees T
ITI=I ITl=n-2

where the sums are over isomorphism classes of (reduced) n-trees, (T) was defined
in (1.2.13), and (T)* means the dual vector space. The differential is defined by
its matrix elements

(3.2.3) dir,, r" (T’)* (R) det(T’)--, (T)* (R) det(T)

where T, T’ are n-trees, TI- i, T’I i- 1. By definition, fir’, r 0 unless T’=
Tie is obtained from T by contracting an internal edge e. If this is the case, then
we set

(3.2.4) 6r’.r (Tr, r’)* (R) le

where Yr, r’ is the composition map from (1.2.15) and the map I: det(T’) --, det(T)
is defined by the formula

le(fl A"" A fro)= e ^ f ^"" ^ fro"

In this formula we use the natural identification ed(T) ed(T’)w {e} and regard
e as a basis vector of kdtr).

(3.2.5) It is straightforward to verify that 62 0, i.e., (3.2.2) is a complex. We
normalize the grading of this complex by placing the sum over T with ]rl in
degree + 1.

Observe that, for a d#-operad , each term of (3.2.2) is a d#-vector space whose
differential we denote by d. Clearly d commutes with 6, so (3.2.2) is a complex of
dg-vector spaces, i.e., a double complex.
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(3.2.6) We now define a collection of d0-vector spaces C()(n), n > 1. For n
1 we put C()(1) Kp, placed in degree 0 (with trivial differential). For n > 1 we
define C()(n) to be the total complex (= d0-vector space) associated to the dou-
ble complex (3.2.2).

(3.2.7) THEOREM. (a) The collection C() {C()(n), n > 1} has a natural struc-
ture of an admissible d#-operad.

(b) The correspondence C() extends to the contravariant functor C:
d# OP(K) d# OP(Kv) (notation of (3.1.5)). This functor takes quasi isomor-
phisms to quasi isomorphisms.

Proof. (a) The complexes (n), n > 2, obviously form a K-d#-collection (3.1.6).
Therefore the shifted dual complexes (n)*[-1] form a KV-d#-collection (shift
and duality are defined by (3.1.2)-(3.1.3)). We denote this collection by *[-1-1.
Thus we can form the free d#-operad F(*[- 1]).

(3.2.8) LEMMA. For any n, the complex F(*[- 1])(n) is isomorphic to the total
complex of the double complex (3.2.2), the latter taken with the internal differential
d (induced by that on ) only.

The lemma is proved by immediate inspection. The only point that needs ex-
planation is the appearance of vector spaces det(T) in (3.2.2). The reason for this
is part (b) of the following lemma.

(3.2.9) LEMMA. (a) Let I be a finite set of m elements, and let Wi’, I be
d#-vector spaces. Then there is a canonical isomorphism

: (W/’[-- 1]) - (/t, W/’) [- m] (R) Det(k’).

(b) Let E {E(n), n > 2}, be a K-do-collection, let El-1] be the collection of
shifted dg-vector spaces, and let T be a tree with rn vertices. Then there is a canoni-
cal isomorphism

El- 1](T) E(T)[-m] (R) det(T).

Proof. (a) To define @r W/’, we should choose some ordering (il, i,) on
! and consider the product W (R) ...(R) W,. Any other ordering will give the
product related to this one by a uniquely defined isomorphism. The same is true
for ( W’[-1-1. Let now wi W’[-1] be some elements and let w; denote the
same elements but regarded as elements of W’. We define

(wil (R) (R) wi,,) w (R) (R) w: (R) (il ^ ^ i,)|I lrrt

The proof that is independent on the choice of ordering (i, i,) follows from
the definition of the symmetric monoidal structure in dg Vect and is left to the
reader.
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(b) Let Vert(T) be the set of vertices of T. Let F c T be the subtree consisting
of all vertices and all internal edges. This is a contractible 1-dimensional sim-
plicial complex, so taking its chain complex we get the exact sequence

0 ked(T) kvert(T) k 0

whence the space Det(kverttT)) is canonically identified with det(T)= Det(kea(T)).
Now part (b) of the lemma follows from part (a), since E(T) ()vvm(r E(In(v)).
Lemmas 3.2.9 and 3.2.8 are proven.

(3.2.10) By Lemma 3.2.8, the compositions in the free operad F(*[-1]) give
rise to maps of graded vector spaces

(3.2.11) C()(l) (R) C()(mx) (R) ...(R) C()(m,) C()(m +’" + m,)

which satisfy the Leibniz rule with respect to internal differentials d in C()(n).
To complete the proof of Theorem 3.2.7 (a), it remains to check that the maps
(3.2.11) also satisfy the Leibniz rule with respect to the differentials di in C()(n)
defined in (3.2.3). We leave this straightforward checking to the reader. This com-
pletes the proof of part (a) of Theorem 3.2.7. Part (b) is straightforward.

(3.2.12) We call the dg-operad C() the cobar-construction of . We define the
dual dg-operad D() by

(3.2.13) D() C() (R) A {C()(n)(R) A(n)},

where A is the determinant operad (1.3.21) and the product (R) is defined in (2.2.2).
Recall that A(n) is a 1-dimensional vector space in degree (1 -n) with the sign
action of n. Hence D()(n) is the dg-vector space associated to the following
complex which differs from (3.2.2) by shifting the grading by (1- n) and by
replacing det by Det:

(3.2.14) ...-+ @ (T)* (R) Dct(T)--+ @ (T)* (R) Dct(T).
n-trees T n-trees T
ITl=n-3 [Tl=n-2

The grading in (3.2.14) is arranged so that the rightmost term is placed in degree
0.

It follows from the definitions that the correspondence D() extends to a
contravariant functor D: d# OP(K)--, dg OP(Kp) taking quasi isomorphisms to
quasi isomorphisms.

(3.2.15) Example. Let Com be the commutative operad so that Com(n)
k for every n; see (1.3.8). The nth component of D() is the tree complex

Det(T) @ Det(T)-+... --+ @ Det(T).
ITI=0 Irl=l ITl=n-2
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This is a special case of more general graph complexes considered by Kontsevich
[39]. In the paper i9] it was proven by using Hodge theory that for k C this
complex is exact everywhere except the rightmost term, and the cokernel of the
rightmost differential is naturally isomorphic to &’ie(n), the nth space of the Lie
operad. Thus we have an isomorphism D(orn) ie. We give a purely algebraic
proof of this later in 4.

(3.2.16) THEOREM. For any admissible dg-operad there is a canonical quasi
isomorphism D(D())- 9

Proof. Let us write D(D(9))(n) explicitly. By definition (3.2.14),

D(D())(n) .-treesO S[o(s D()(In(v))* (R) Det(S)]"
Substituting here the definitions (1.1.6) of the value on a set of the functor corre-
sponding to D(), and keeping track of cancellation of some Det-factors, we get

(3.2.17) (r (In(v))
D(D(P))(n) (

r> r’ Det(Tw)"

Here the summation is over the isomorphism classes of pairs T, T’ of n-trees such
that T > T’, i.e., T’ can be obtained from T by contracting some (possibly empty)
set of edges. For w T’ we denote by Tw the subtree of T contracted into w.
Division by a 1-dimensional vector space is understood as tensoring with the
dual space.
The construction may be understood better using Figure 9a where vertices w of

the tree T’ are indicated as big circles ("regions") containing inside them the
corresponding trees Tw. Let Tn denote the unique n-tree with a single vertex.
The summand in (3.2.17) corresponding to the pair T, > T, is nothing but (n)
(Figure 9b).

FIGURE 9a FIGURE 9b
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It is straightforward to verify that the summand (n) is in fact a quotient
complex of the whole complex D(D())(n), i.e. the projection to this summand
along all other summands is a (surjective) morphism of complexes which we de-
note by f,. It is also easily verified that we get in this way a morphism of dg-
operads f: D(D()) . Let us show that f is a quasi isomorphism, i.e., that
each subcomplex Ker(f,) D(D())(n), is acyclic. Note that Ker(f,), as part of
D(D())(n), is actually a triple complex, and so its differential is a sum of three
partial differentials d + d + d3. The differential d is induced by the differential
in ; the differential d2 is induced by the composition in (which induces the
second differential in D()). Finally, d is induced by the composition in D(),
i.e., by the grafting of trees.

It is enough to show that Ker f, is acyclic with respect to d3. If T is an n-tree
with more than one vertex, then the summands in (3.2.17) with all T’ < T form a
subcomplex K, = (Ker(f,), d3) and Ker(f,) is the direct sum of such K,. We
shall prove that each K, is acyclic.
The differential d3 in K consists purely in redrawing the boundaries among

regions in Figure 9 (a). More precisely, K is the tensor product of the vector
space (T) and a purely combinatorial complex C, where

Cr () ( Det(Tw)*.
T’ < T T’

ITl-IT’l=i

Observe that specification of a tree T’ < T is equivalent to a specification of a
subset of internal edges of T which are contracted in T’. We see that C is
isomorphic to the augmented chain complex of a simplex whose vertices cor-
respond to internal edges of T. Thus, C and K, are acyclic. Theorem 3.2.16
follows.

(3.2.18) PROPOSITION. For any admissible dg-operad with (1) k, there ex-
ists a natural morphism of dg-operads 2: D(om) (R) D(). In particular, for
any do-algebra A over and any dg-algebra B over D(), the tensor product
A (R)k B has a natural structure of a D(Cgom)-algebra.

This result is analogous to Corollary 2.2.9 (b). The precise meaning of the
analogy will be explained in 4.

Proof. Since om(n) k for every n, we find that D(om)(n) is the dg-vector
space whose (-i)th graded piece is the direct sum of spaces Det(T) correspond-
ing to n-trees T with n- 2- interior edges. We define the required maps 2,"
D(Com)(n) (n)(R) D()(n) by prescribing their restrictions on the summands
Det(T). We define

2.lDet(T): Det(T) -o (n) (R) *(T) (R) Det(T) c D()(n)

to be y (R) Idoettr), where the element Ytr (n) (R) *(T) is the transpose of the
map ’r: (T) (n) given by the composition in ; see (1.2.4).
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This defines the maps 2,. The proof that these maps form a morphism of operads
is straightforward and left to the reader.

3.3. The generating map of the dual dg-operad

(3.3.1) Let be an admissible dg-operad, and Q D() its dual (3.2.13). Let r
be the number of simple summands of the semisimple algebra (1) .(1)’, and
let g, g: C C be the generating maps of , .; see (3.1.8). Let also G, G be
the refined generating maps; see (3.1.16).
The following is the main result of this section.

(3.3.2) THEOREM. (a) We have the following identity of formal maps C - C":

a(-a(-x)) x, x (x,, x,).

(b) For the refined generating maps we have the similar plethystic identity (nota-
tions from (3.1.16)-(3.1.19))

G, o (-e,(Gt2)) (I, I,) (R)" x x (R)r.

Clearly, part (b) generalizes part (a). This generalization is due to Ph. Hanlon,
who kindly communicated it to the authors.

(3.3.3) Example. Let Cgom be the commutative operad. As we saw in
(3.1.12), g,(x) e 1. By (3.2.15), D() is quasi isomorphic to the operad
ie, so ga g.ie(X) -log(1 x). One sees that these two series satisfy Theo-
rem 3.3.2.

(3.3.4) Let K (1). As a first step towards the proof of our theorem, we
describe the r-fold d0-collection associated to the KP-dg-collection D()=
{D()(n)}. By an r-colored tree, we understand a tree T together with a function
("coloring") from the set of all edges of T to {1, r}. For such a tree T and a

vertex v T, let Ini(v) denote the set of input edges at v of color i. By an (al, a,)-
tree we mean an r-colored tree T with ai inputs of color i, which are labelled by
the numbers 1, 2, a.

(3.3.5) Let {(al, a,)} be the r-fold d0-collection associated to . For any
we use the Eal X"" X Ear-action on each (al, a,) to define, similarly to
(1.1.6), a functor

on the category of r-tuples of finite sets and bijections. Let also {.(a, a,)} be
the r-fold do-collection associated to the dual dg-operad . D(). Recall that
TI denotes the number of internal edges of a tree T.
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(3.3.6) PROPOSITION. Each -i(al, at) is isomorphic, as a graded vector space
with Eal X X E,r-action, to

( @ e(ut(v))(In (v), Inr(v))* I[ T[- ai- 21 (R) det(T).
(a ar)-trees T T

c(Out(r))=i

The proof is straightforward.
(3.3.7) To prove Theorem 3.3.2, we invoke a purely algebraic formula describing

the inversion of a formal (or analytic) map 9: C" C’. This formula is due to
J. Towber, see [62], Theorem 3.10 or [48], Theorem 2.13. (We are grateful to
D. Wright for pointing out the references to this formula, which was rediscovered
by us.)

Suppose we have r formal power series

g"(x,..., x.)= x +
at xrX1p(i)(al,..., a,)

+"" +ar> 2

where p(i)(a,..., a,) are some complex coefficients, and let

(3.3.8) yi g")(xl,..., xr)

be a formal change of variables given by these series. Since g")(x) x + terms of
order > 2, this change of variables is formally invertible, i.e., we can express xi as
power series in y, y,. The question is to find the coefficients of these power
series provided the coefficients p")(a,..., a,) are known.

(3.3.9) THEOREM. The inverse of the formal map (3.3.8) is 9iven by

(3.3.10) x, h,(yl,..., y,) y, + q(i)(al,..., at) --L-a
al a,.>O al

al + +ar> 2

where

al +... +a -1

(3.3.11) qti)(al, a,) (_ 1),1+... +,-m
m=O

1-I PC(Utv))(lInx(v)l, IIn,(v)l)}.(al ar)-trees T e T
Irl=m,c(Out(T))=i

Several other inversion formulas for analytic maps can be found in [4], [25],
[29], [48], [61].
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FIGURE 10

(3.3.12) We prefer to give here a simple direct proof of Theorem 3.3.9, partly
for the convenience of the reader, partly because an intermediate lemma in the
proof will be used later. The proof proceeds by direct substitution of the proposed
answer into the claimed equation. Suppose first that the series h (i.e., the coeffi-
cients q")(al,..., at)) in (3.3.10) are arbitrary. Let us form the composition

fti)(y) gtO(ht)(y), htr(y)), Y (Y, Yr)

and write

ar
frO(y) Yi + Z ut(al,..., a,)x’l x

al ar>O al! at!
a + +ar>2

It is immediate to get a general formula for the coefficients ut(a,..., a,). Call a
rooted tree T short if T has no consecutive internal edges (see Figure 10).
The lowest vertex of a tree T (the one which is adjacent to the output edges

Out(T)) will be denoted by Lw(T).

(3.3.13) LEMMA. We have

a,) Z
short (al a,.)-trees T

c(Out(T))=i

t’tt<’)))(I Inx (Lw(T))I,..., In,.(Lw(T))l)

U qtCtutt’)))(lIn(v)l, [In(v)l)}T, Lw(T)

where T runs over short (ax, a,)-trees such that the vertex Lw(T) may have just
one input edge but all other vertices have > 2 input edges.

The lemma is proved by explicit substitution of power series.



KOSZUL DUALITY FOR OPERADS 251

Let us now substitute into Lemma 3.3.13 the particular values of the coeffi-
cients q")(al,..., at) from (3.3.11). We get a formula for d(al,..., ar) which in-
volves a summation over all (a, a)-labelled trees T, not necessarily short,
such that the lowest vertex Lw(T) is allowed to have one input (whose color
coincides with the color of Out(T)), but no other vertex is allowed to have one
input. That means that any summand in the arising formula for u"(a,..., at) will
enter twice: it will correspond once to a tree whose lowest vertex has > 2 inputs
and it will correspond for the second time to the same tree but with a one-input
vertex appended at the bottom. These two summands will enter with opposite
signs, and hence they will cancel each other. Therefore all the coefficients

at) are equal to zero. So f(y) y and Theorem 3.3.9 is proven.
This completes the proof of part (a) of Theorem 3.3.2. The proof of part (b) is

quite similar and consists of repeating the same arguments in the new context of
representations of symmetric group. The main step is that Lemma 3.1.13, being
intepreted at the level of r-fold do-collections, gives the plethystic composition.
We omit further details.

(3.3.14) Example. Let b, be the number of nonisomorphic binary n-trees. Let
be the k-linear operad with (1)= (2)= k, #(n)= 0, n > 3. Applying the

definition, we see that the complex D()(n) consists of one vector space V(n),
of dimension b,, placed in degree 0. The generating maps of and D() are
therefore g(x) x + x2/2 and h(x) x + 2n=2 b,,x"/nI, respectively. The identity
9(-h(-x)) x yields h(x) 1 x//1 2x whence b. (2n 3)!! 1.3.5
(an- 3).

3.4. The confiouration operad and duality

(3.4.1) Let X be a topological space. A complex of sheaves of k-vector spaces
on X can be regarded as a sheaf with values in the abelian category d9 Vect of
do-vector spaces. Such objects will be referred to as do-sheaves.

For a do-sheaf ’" on X we denote by RF(X, ’) the d0-vector space of global
sections of the canonical Godement resolution of ’; see [24], [34]. The co-
homology spaces of RF(X, ’) are H(X, ’), the usual topological hyperco-
homology with coefficients in ". Given two topological spaces X, X2 and do-
sheaves ’on X, there is a natural morphism

(3.4.2) RF(XI, ,"1") () RF(X2, 2") --* RF(X1 x X2, .; () o"2"

which is a quasi isomorphism.
(3.4.3) Let . be a topological operad. The notion of a do-sheaf on . is com-

pletely analogous to the notion of a sheaf on . in (1.5.3). As in (1.5.9) we have the
following.

(3.4.4) PROPOSITION. If . is a topolooical operad and " is a do-sheaf on .,
then the collection

RF(., -’) {Rr(.(n), "(n))*, n > 1}
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forms a do-operad, so that the cohomology spaces H’(.(n), -’(n))* form an operad
on the category 9Vect-.

(3.4.5) Example: logarithmic forms of the configuraton operad. Let k C be
the field of complex numbers and let ’ be the configuration operad (1.4.4). For
any n > 1 let j,: Mo,,+l ’(n) be the embedding of the open stratum and C_.uo,,+l
be the constant sheaf on Mo,,+1. Let D(n)= ’(n)- Mo,,+l. This is a divisor
with normal crossings in ’(n), consisting of 2"- 1 smooth components ’(T),
where T is an n-tree with exactly one internal edge. Let f)t.)(log D(n)) be the
corresponding logarithmic de Rham complex [13]. Consider the collection of
shifted and twisted complexes

(3.4.6) f,(log D) {f,,)(log D(n))In 2] (R) Det(C"), n > 1}.

This collection has a natural structure of a dg-sheaf on /, whose structure maps
(1.5.3) (ii) are given by the Poincard residue maps ([13], n. 3.1.5.2). Let us briefly
recall this notion in the generality we need. Let X be a smooth variety, and let
Y c X be a divisor with normal crossings which we assume to consist of smooth
components Y1, Yt. Let Z c Y be a codimension-m subvariety given by inter-
section of some m of these components: Z (-] Y, III- m, and let y’Z X
be the embedding. The Poincar6 residue is the map

The appearance of Det(Cx) stems from the fact that the operations of taking the
residues along individual hypersurfaces Y, I anticommute with each other due
to the residue theorem.

Returning to our situation, let m, mt > 1 be given. The structure map of
the operad ’

])ml ml" .(1) X .[(mx) x x /l(mt)-, .///l(m, +’" + mr),

described in (1.4.4), is a closed embedding whose image is the intersection of
several components of the divisor D(ml + + m). If we denote the set of these
components by I, then we have a canonical identification

(Det(Cx)
_

Det(Ct) (R) () Det(Cm,) (R) Det(Cm, +’..+m,).

Thus the maps (3.4.6) indeed supply the necessary structure.

(3.4.8) The 9rarity operad qg. We denote the do-operad RF(’, f(log D))*
simply by f#, and by f we denote the cohomology operad of if, i.e., the operad in
the category of graded vector spaces 9Vect- given by f#(n) H’(fg(n)). Following
a suggestion of E. Getzler, we call ( the 9ravity operad. Since f,.)(log D(n)) is
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quasi-isomorphic to the direct image Rj,,CMo,.+I, we have

H’(g(n), f’(log D(n))) H’(Mo,,+1, C).

Thus the ith component of the graded vector space f#(n) is Hn_2_i(Mo,n+, C)(
Det(C").

(3.4.9) PROPOSITION. There is a quasi isomorphism of dg-operads C - C (where
is considered with zero differential).

Proof. Let U(n) be the space of global logarithmic /-forms on g(n). It is
known [19] that U(n) consists of closed forms and is naturally identified with
H(Mo,,+, C). Thus the embedding of the graded vector space L’(n) ( Li(n)
with zero differential into RF(’(n), f)t,)(log D(n))) is a quasi isomorphism. De-
note this embedding by ,. Clearly the Poincar6 residue homomorphisms pre-
serve global logarithmic forms so they make the collection of graded vector spaces
L’(n)* [-n + 2] (R) Det(C") into an operad which is isomorphic to (. Taking duals
of the embeddings above, we get the required quasi isomorphism f (#.

(3.4.10) Let be an admissible dg-operad. As in (1.5.2) we associate to a
dg-sheaf - on the configuration operad ’. By (3.4.4) the complexes RF(//(n),
-(n))* form another dg-operad. It is described as follows.

(3.4.11) THEOREM. Suppose that k C. Then the operad RF(’, )* is quasi-
isomorphic to D( (R) c) where D is the duality for dg-operads introduced in
(3.2.13).

Proof. Let X be a finite (compact) CW-complex and let S {X,} be its Whit-
ney stratification by locally closed CW-subcomplexes. We denote by j," X, X
the embeddings of the strata. Let X>,, be the union of strata of dimensions > m.
This is an open subset in X and we denote by J>m: X>m -- X the embedding. Let- be any (dg-) sheaf on X. Let j*- be the restrictions of to the strata.
Note that ff has a decreasing filtration

(3.4.12) , - = (j>)!J -(J>o)!J>o

with quotients

@ J!j*.
dim X=m

Here j are the direct images with proper support (extensions by zero). We can
regard this filtration as a Postnikov system realizing as a convolution [33] of
the following complex of objects of Db(Shx), the derived category of sheaves on
X"

(3.4.13) j,,j*, j,,j*- [1] ) j,, j*ff [2] ....
dim X=0 dim X,, =1 dim X=2
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By replacing jj*, with appropriate injective resolutions, we can realize (3.4.13)
as an actual double complex of sheaves on X. By applying the functor RF(X, -)
to (3.4.13), we get that RF(X, ,) is the total complex of the double complex

(3.4.14) RF(X,j*) RF(X=,j*)[1]--....
dim X 0 dim X

where RFc is the derived functor of global sections with compact support. The
horizontal grading in this complex is so normalized that the sum with dim X, 0
has horizontal degree 0.
Assume now that is S-combinatorial (1.5.1) and given by (dg-) vector spaces

F,. Then we have the equalities

(3.4.15) RFc(X, j* ) RFc(X, C)(R) F.

We specialize now to the case when X ’(n), the stratification S consists of
’(T), and ,-(n) is the sheaf corresponding to an admissible dg-operad .
For an n-tree Y-, let D(T) c ./At(T) be the complement to t’(T). This is a divisor
with normal crossing. As usual, we denote by lTI the number of internal edges in
T, so that dimc ’(T) n 2 TI. Note that we have the quasi isomorphisms

(3.4.16) RF(g(T), C) RF(g(T), C)*[-2(n 2 -ITI)]

RF((T), f-73(log D(T)))*[-2(n 2 -I TI)].

Here the first quasi isomorphism is the Poincar6 duality. The second quasi iso-
morphism is the consequence of the fact [13] that the logarithmic de Rham com-
plex is quasi-isomorphic to the full direct image of the constant sheaf. Note that
in view of the product decompositions (1.4.8) and the definition of the dg-operad
f# we have a quasi isomorphism

RF((T), f(log D(T)))* f(T)[n 2 -ITI] (R) Det(T),

where Det(T) was introduced in (3.2.0). Taking into account Proposition 3.4.9, we
see that the double complex (3.4.14), i.e., RF(’(n), -,(n)), can be replaced by the
double complex

t) (T) (R) C(T) (R) Det(T) @ (T) (R) C(T) (R) Det(T) --* ....
ITI--0 ITI=I

So the dual complex will be D( (R) ff)(n) as claimed.

(3.4.17) Example. Taking Com, the commutative operad, we get that
every -(n) is the constant- sheaf C on /(n). Thus the operad formed by the total
homology spaces H.(./g(n), C) is quasi-isomorphic to D((#).
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3.5. The building cooperad and duality

(3.5.1) By a cooperad in a symmetric monoidal category (1, (R)) we mean an
operad in the opposite category op. Explicitly, a cooperad is a collection of
objects (n) , n > 1 with En-action on each ’n and morphisms

(3.5.2) 19ml m,: (ml +"" + m) (I) (R) (ml) (R)"" (R) (mt)

satisfying the conditions dual to the corresponding conditions for an operad.
If a collection cg {Cg(n)} forms a cooperad in the category of (dg-) vector

spaces, then the dual dg-vector spaces Cg(n)* form a dg-operad cg,. A dg-cooperad
cg is called admissible if cg, is an admissible operad in the sense of (3.1.5). Co-
operads in the category of topological spaces will be called topological cooperads.

(3.5.2) The buildin9 /’(n). Let T be a n-tree. By a metric on T we mean an
assignment of a positive number (length) to each internal edge of T. The external
edges can be thought of as having length 1. Let (n) be the set of isometry
classes of all n-trees with metrics. This set has a natural topology, in plain words,
when the length of some edge is going to 0, we say that the limit tree is obtained
by contracting this edge into a point. For any n-tree T (without metric), let g’(T)
denote the subset in /’(T) consisting of all trees with metric isomorphic to T.
This subset is clearly a cell (a product of several copies of R/, corresponding to
internal edges of T). Thus /"(n) is a union of these noncompact cells. For exam-
ple, the space r(3) is the union of three half-lines glued along a common end
(Figure 11).
The minimal cell in (n) has dimension 0 and correspond,s to the n-tree T,

with a single vertex (and no internal edges). Maximal cells of /’(n) correspond to
binary trees. Thus, the cells in (n) are parametrized by the same set as the
strata in the moduli space /(n); see (1.4.5). But the closure relations among the
cells are dual to those among the strata in a’(n), where the maximal stratum
corresponds to the tree with one vertex and 0-dimensional strata correspond to
binary trees.

FIGURE 11

132
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We call YC(n) the building of n-trees since it is in many respects similar to the
Bruhat-Tits building.

(3.5.3) The building cooperad. Suppose we have natural numbers m, mr.
We define a map

Pm ,,: ,(m + ""+ m)--, ,r(l)x #(m)x ""x ,r(m)

as follows. Let T(m mr) be the (m +". + m)-tree drawn in Figure 3. Let
(T’, #’) be any other metrized (m + ""+ mt)-tree. Let T" be the maximal tree
which is obtained from both T’ and T(m,..., mr) by contracting edges. The tree
T" is naturally divided into blocks T", Tt", To where T" has m inputs and T
has inputs; see Figure 12.
Each block T", v 1,..., oo, is naturally equipped with a metric # on its

internal edges. We redefine the lengths of edges which become loose edges in T"
by letting their lengths be equal to 1. The map Pm, ,, takes

(T’, #’) - ((To, #), (T;’, #), (T", #)).

(3.5.4) PROPOSITION. The collection of maps p, , and the natural actions of
n on #(n), n > 1, define on the collection of l/’(n) the structure of a topological

cooperad which will be denoted by q#.

We call /" the buildin9 cooperad. Note that the structure maps p,,, m, for g"
are surjective, whereas the structure maps for the operad ’ are, dually, injective.

Just as any operad gives rise to a sheaf on the topological operad //(Theorem
1.5.11), any cooperad gives a sheaf on the cooperad g’. Let us give the corre-
sponding definitions.

FIGURE 12
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(3.5.5) Definition. Suppose is a topological cooperad and let

Pml m,: (ml +"" + m) (1) x (ml) x x (mt)

be its structure maps (3.5.2). A sheaf (resp. a d0-sheaf) - on consists of the
following data:

(i) a collection of E,-equivariant sheaves (resp. d0-sheaves) ’(n) on (n), one
for each n > 1;

(ii) homomorphisms of sheaves on (ml + + m)

#, ,,," p*, ,,((l) (R) :(m) (R)’"(R) (mt)) ’(ml +"" + m,).

These data should satisfy the compatibility conditions dual to those given in
(1.5.4)-(1.5.6).

If, for example, all the spaces (n) consist of a single point, then a d-sheaf on
is the same as a d0-opead. More generally, we have the following.

(3.5.6) PROPOSITION. If is a topolooical cooperad and is a do-sheaf on ,
then the collection of complexes RF((n), ’(n)) forms a do-operad. Similarly, the
complexes RFc((n), :(n)) (the derived functors of sections with compact support)
form a do-operad.

Let RF(9, -) and RF(9, -) denote the dg-operads thus obtained.

(3.5.7) Definition.
if the morphisms

A sheaf " on a topological cooperad : is called an isosheaf

-(l) (R) (mx) (R)"" (R) -(mt) (Pmx m,),(mx +"" + mr),

obtained from #,,, ,, by adjunction, are isomorphisms and if higher direct
images RJ(pm, m,),(ml + + mr) vanish for j > 1.

(3.5.8) Let 2 be any k-linear cooperad. Then .(1) is a k-coalgebra and each
(n) is a (.(1)(R)", (1))-bi-comodule. As in (1.1.5), we extend the collection of ;,-
modules .(n) to a functor I .(I) on finite sets and bijections. For any tree T
we define, similarly to (1.2.13), the space

.(T) (() (In(v))
v6T

where ( is the cotensor product of comodules over a coalgebra. If .(1) k, then
(T) ()vr (In(v)) is the usual tensor product over k. If all .(n) are finite-
dimensional over k, then we can use the operad * to define .(T)= (2*(T))*
where *(T) was defined by (1.2.13).
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If T < T’ then the cooperad structure on . defines a linear map Pr, r,: .(T)
.(T’). The condition T < T’ means that the cell (T) is contained in the closure
of /C(T’). Therefore the maps Pr, r’ give rise to a combinatorial (1.5.1) sheaf
on /’(n) with fiber .(T) on /(T). Here is the "dual" of Theorem 1.5.11.

(3.5.9) THEOREM. Let . be a k-linear operad. Then:
(a) The sheaves qJa(n) on the spaces W’(n) form a sheaf on the cooperad W’.
(b) If 2(1) k, then is an isosheaf.
(c) Any isosheaf on U, such that each (n) is constant on each cell W’(T),

has the form c5 for some k-linear cooperad with .(1) k.

The proof is straightforward and left to the reader. In a similar way, for any
dg-operad we construct a do-sheaf

(3.5.10) Let X be a CW-complex, and S its stratification into strata which are
topological manifolds. Recall [34] that the Verdier duality gives a contravariant
functor " V(-’) from the derived category of dg-sheaves on X with S-con-
structible cohomology into itself.
The following result gives two different sheaf-theoretic interpretations of the

duality D on dg-operads introduced in 3.2.
(3.5.11) THEOREM. Let be an admissible dg-cooperad (3.5.1) so that .* is an

admissible dg-operad. Then:
(a) There is a natural quasi isomorphism of dg-operads

D(.*) RFc(#’, (.)(R) A

where A is the determinant dg-operad (1.3.21).
(b) For any n, the @-sheaves (.(n) and ffl)(a,), on #’(n) are Verdier dual to each

other.

Proof. Let (X, S) be any space stratified into cells. Giving an S-combinatoial
(dg-) sheaf ff on X is the same (1.5.11) as giving (dg-) vector spaces F, (= RF(a, -))
together with generalization maps g,,: F, --, F, for a c { satisfying transitivity con-
ditions. For any cell a, let OR(a) Him(*)(a, k) be its (1-dimensional) orientation
space. Note that for the cell W’(T) in the building U(n) corresponding to an
n-tree T, the space OR(W’(T)) can be naturally identified with the space det(T);
see (3.2.0). Theorem 3.5.11 is a consequence of the following well-known com-
binatorial construction of the Verdier duality and hypercohomology functors.

(3.5.12) PROPOSITION. Let (X, S) be as above and let be an S-combinatorial
dg-sheaf on X given by dg-vector spaces F and maps g,. Then:

(a) The do-vector space RFc(X, ) is quasi-isomorphic naturally to (the total
do-vector space arising from) the complex

@ Fo(R)OR(,) @ F, (R) OR(,) --,
dim(a)=’O dim(a)=l

where the sum over a with dim(a) rn is placed in degree m.
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(b) The Verdier dual dg-sheaf V(-) is represented by the collection of dg-vector
spaces associated to complexes

V(). ("’ z=) F* (R) OR(z)- z=,)
dim(z) dim(tr) + 2 dim(z) dim(tr) +

F* (R) OR(z)

where the sum over z with dim(z) dim(a) + m is placed in degree (-m).

This completes the proof of Theorem 3.5.11.

The isomorphism D(Cgom) - 9’ie (see (3.2.15)) yields the following.

(3.5.13) COROLLARY. The cohomology of g’(n) with compact support (and con-
stant coefficients) are as follows:

0, ivan-2H(/(n), k)=
ie(n), i= n- 2.

This shows that the space ie(n) is analogous to the Steinberg representation
of the group GL.(Fq). Note that the standard Steinberg representation of this
group (see [47]) has dimension q.(.-x)/2 ql. q2 q"-. The modified Stein-
berg (discrete series) representation introduced by Lusztig [47] has dimension
(q 1)(q2 1)...(q.-1 1). Both numbers can be seen as q-analogs of (n 1)!
dim ie(n). The role of the Lie operad as the dualizing module in our theory
(2.2.9) is analogous to the role of the Steinberg representation in the Deligne-
Lusztig theory [15]-[17].

4. Koszul operads

4.1. Koszul operads and Koszul complexes

(4.1.1) Let K be a semisimple k-algebra, and (K, E, R) a quadratic operad.
Let = (Kp, E v, R+/-) be the dual quadratic operad, and D() the dual d0-
operad. Observe that for every n, the degree-0 part, D(P)(n), of the d0-vector
space D()(n) is equal to F(EV)(n), the nth space of the free operad generated by
the single space E; i.e.,

D()(n) @ E(T) (R) Det(T) F(E )(n).
binary

n-trees T

We define a morphism of d0-operads Vv: D() --, (here is equipped with the
trivial d0-structure) to be given by compositions

D()(n) D()(n) F(E)(n) F(E)(n)/(R+/-) ’(n).
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(4.1.2) LEMMA.
--, ’!(n).

For every n, the morphism y, induces an isomorphism H(D()(n))

Proof. Observe that the penultimate term

D(:)(n)- :*(T) (R) Det(T)
T

is the sum over the n-trees T such that all but one vertices of T are binary and
just one vertex is ternary. Note also that (3)v is dual to the space of relations of
the quadratic operad . Thus, the image of the last differential in D()(n) is
precisely the space of consequences of the relations in , whence the statement of
the lemma.

(4.1.3) Definition. A quadratic operad is called Koszul if the morphism
y: D() ! is a quasi isomorphism, i.e., each complex D()(n) is exact every-
where but the right end.

(4.1.4) PROPOSITION. (a) A quadratic operad is Koszul if and only if ! is
also.

(b) Let r be the number of simple sumrnands of the algebra (1) !(1) and let, 9,: C C be the 9eneratin9 maps of and ! respectively. If is Koszul,
we have the formal power series identity

g,,(-- g,(- x)) x, x (x,, ...,x,).

Proof. (a) Form the composition

D(,) f,
D() --; D(D())- : ,

where f is the quasi isomorphism constructed in Theorem 3.2.16. It is immediate
that this composition coincides with 7e,. If is Koszul, then 7, and hence D(7,)
are quasi isomorphisms, whence the statement.

(b) Follows from Theorem 3.3.2 and the observation that quasi-isomorphic
dg-operads have the same generating maps.

(4.1.5) Let K be a semisimple k-algebra, and let P {P(n)} be a K-collection
(1.2.11). We extend the collection P to a functor I P(I) on the category of finite
sets and their bijections as in (1.1.5). For any surjection f: I J of finite sets we
put

P(f) @ P(f-(j)).

If, in addition, P is an operad, then for any composable pair of surjections
f g

i J H the compositions in P give rise to a map

g,f: P(g) (R) P(f) P(gf).
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Let P, Q be two K-collections. We define a new K-collection P(Q), called the
composition of P and Q, as follows:

(4.1.6) P(Q)(n) E) P(Q)(n)m, where P(Q)(n) @ [P(m) (R)a Q(f)]z=
f: [n]-[m]

and the last sum is taken over all surjections In] --+ [m].

(4.1.7) PROPOSITION.
by the composition

The generating map (3.1.8) of the collection P(Q) is given

x (x,..., x,).

Proof. This follows from Lemma 3.3.13.

(4.1.8) Koszul complexes. Recall [55] that the Koszul complex of a quadratic
K-algebra A is the vector space A (R)K(A!) (where (A!)V Homr,op(A!,KV))
equipped with the differential defined in a certain natural way.

Let now (K, E, R) be a quadratic operad, and t the dual operad. We
define the nth Koszul complex of to be the nth space of the composition
((!) )(n). Here (’!) is the K-collection consisting of !(n) Homrop(t!(n), Kv)
with the E,-aetion being the transposed one twisted by sign. We put a grading on
the space (() )(n) by (4.1.6) and define the differential d in the following way.
For X e (2) and a surjeetion 0" [m+ 1] - Ira], let

#0,x" (m)--+ (m + 1)

be the operator of composition with X along O. For E (2) (2) and sur-
jections 9" [m + 1] -0 [m-I, h" [nl --+ [m + 1-1 let

#,h,=_: !(h)--+ ’(hg)

be the operator of composition with E induced by
Let us write the identity element

Idgq2 e Hom:((2), (2)) (2) (R)r

in the form Xi (R) Ei where X1, Xd e (2) and El,..., Ea (2). For a
surjection f" i-n] --+ [m-l, we define a map

dy" (m) (R) (’) (f) --+ ( (m + 1) (R) (’)" (h)
h: [n][m +1]
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by

d

(4.1.9) dy 2 #h,x, (R) #0*,h,-,"
o:[m+l]--*[m] i=1

oh =f

Clearly ds is En-equivariant, and hence it factors through the spaces of
coinvariants. Therefore the formula d S:n-.m dy defines a linear map

d: ((’)" )(n) -o :((:’)")(n)m+l

(4.1.10) PROPOSITION. The morphisms d satisfy, for various m, the condition
d 2 O, thus makin9 each ((!) )(n) into a complex.

(4.1.11) To prove Proposition 4.1.10, we introduce the following notation. Let
E (2) and F(E) be the corresponding free operad. By definition (2.1.1), F(E)(n)

E(T) (sum over binary n-trees). Let R c F(E)(3) be the space of relations of. Call an n-tree T a 1-ternary tree if T contains exactly one ternary vertex
v v(T), all other vertices being binary. For such a tree T there are exactly three
binary trees T’, T’, T" such that T can be obtained from each of them by con-
tracting an edge. We denote by

Rr E(T’) (R) E(T’) E(T") F(E)(n)

the result of substituting R at the place v. Thus,

(n)=
F(E)(n) ’(n)= 01-ternary Ra 1-ternaryz--n-trees T n-trees T

Looking at any summand of ((t)V)(n)m we find that this is a subquotient of
F(E)(n). More precisely, for a surjection f: [n-I --, [m-l, let T(f) be the reduced tree
obtained by depicting the map f (and ignoring vertices with one input (Figure
13).

In]

FIGURE 13
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This tree has one vertex (root) at the bottom and several vertices at the top. We
have

(4.1.12)
trees T: Ra-T > T(f), v(T)top(m) (R) (f) (1-ternary trees T: RT) (") ((’ 1-ternary trees T: RT)"

T> T(f), v(T)bottom T> T(f), v(T)top

Applying d amounts to deleting some Rr from the intersection in the numera-
tor of (4.1.12) and adding some other RT to the sum in the denominator, ac-
cording to surjections g: [m + 1] [m-]. Hence applying d2 to (4.1.12) moves some
term Rr from the numerator to the denominator. Therefore d 2 0.
Now we state the main result of this section.

(4.1.13) THEOREM. Let be a quadratic operad. The followin9 conditions are
equivalent:

(i) is Koszul.
(ii) The Koszul complexes ((!)v )(n) are exact for all n > 2.

(4.1.14) We prove Theorem 4.1.13 by reducing it to a similar result about qua-
dratic associative algebras or, rather, quadratic categories, a result which was
proven in the required generafity in [7].

For any operad we construct, following Mac Lane, a certain PROP [1-1. By
definition, this is a category Cat() whose objects are symbols In-l, n 0, 1, 2,

The morphisms are defined by

Homcat()([n], [m])= (f),
f: [n]’-*[m]

forn > m

where f runs over all surjections In] [m]. For n < m we set Homcat()(l-n], [-m])
0. The composition in the category Cat() is induced by maps #o,s; see (4.1.5). It is
well known [1] that Cat() has a natural structure of a symmetric monoidal category
given on objects by [m] (R) In] [m + n]. We write (n, m) Homcatt,)([n], Ira]).
Thus the space (n) of our operad can be written as (n, 1).

If ’ is a quadratic operad, then Cat(Y’) is a quadratic category (Z+-algebra) in
the sense of [7], 3, and Cat(’) is the dual quadratic category. Let us compare
the cobar-duals and the Koszul duals for and Cat(). The cobar-dual category
of Cat() is the category D(Cat()) with the same objects [m] as Cat(). The
complex Hom)(cat())([n], [m]) is given by

(n, m)* ) (n, r)* (R)(r,r)(r, m)*
n>r>m

--* ( (n, r)* (R)(r,,,)(r, r2)* (R)(r:,:)(r2, m)* "".
>r >r >m

The category Cat() is Koszul if and only if each of these complexes is exact off
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the rightmost term. Observe that

HOml(Cat(,))([n], [m])= (Homi(Cat())([n], [1]))(R)m

and

Homvtcatt))([n], [1]) D()(n)

is the nth complex of the cobar-operad D(). This gives the following.

(4.1.15) LEMMA. A quadratic operad is Koszul if and only if Cat() is a
Koszul quadratic category.

Let us now recall the interpretation of Koszulness for categories in terms of
Koszul complexes. Let 3. . For the category Cat() we have, according to
[7], n. 4.4, the complexes in the form

{(n, m)* ,(n, m + 1)* (R)Kt:,,+ll (m + 1, m) (n, m + 2)* (R):ty.,,,+21 (m + 2, m)

-, (n, n 1)* (R)g[.._ ’(n 1, m) (n, m)}.

Let us denote the above complex by K’(n, m). Again, K’(n, m) is the mth tensor
power of the complex K’(n, 1) and K’(n, 1) is the nth Koszul complex of the
quadratic operad . Thus Koszulness of is equivalent to the exactness of all the
Koszul complexes for Cat() and hence it is equivalent to exactness of the com-
plexes K’(n, 1) only, i.e., of Koszul complexes of . This concludes the proof.

4.2. Homology of algebras over a quadratic operad and Koszulness

(4.2.1) Given a quadratic operad (K, E, R) and a -algebra A, we define
a chain complex (C.(A), d) as follows. We put

C.(A) C, (A) (A(R)n (R)(R), !(n) ’

Recall (2.1.9) that the superscript ,,v,, means the dual vector space with the En-
action obtained from the dual one by twisting with the sign representation. To
define dn: Cn(A)--, Cn-1 (A), we first define a map

n-trees T

binary
(n 1)-trees S

where E(T) is as in (1.2.13). If T is an n-tree, we call a vertex v T extremal if all
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inputs of v are inputs of T. For such a v we define the set [n-]/v obtained by
replacing the subset In(v)= In] by a single element. Let T/v be the In]/v-tree
obtained by erasing v and replacing it by an external edge.

Let T be a binary n-tree and v T an extremal vertex. The -action on A
defines a map

ar, o" A(R)"(R) E(T) (R) Det(T)--. A@[n]/v ( E(T/t) @ Det(T/v).

We define d. to be given by the matrix with entries dr, v. (Note that the ambigu-
ity in numbering the set In]Iv by 1, 2, n- 1 will disappear after we take
coinvariants of E,-1.) Observe that C,(A) c (A(R)" (R)( E(T) (R) Det(T)))., be-
cause !(n) is a subspace in ( E(T)(R) Det(T).

(4.2.2) PROPOSITION. For any n the map d, takes the subspace C,(A) into C,-x(A).
The maps d,, defined as restrictions of d. to C.(A), satisfy d,_ d, O.

Proof. Let X be an element of A(R)" (R) Rr for some 1-ternary tree T (here Rr
stands for the space of relations at the ternary vertex of T). Let v e T be the
ternary vertex, and let Tx, T2, Ta be the binary trees obtained by splitting this
vertex. Suppose first that the vertex v e T is extremal. Let e be the edge of T
which is contracted into v. Let also v e T be the source of the edge e. Then v
is an extremal vertex. Therefore, after erasing v, the edge e will become external
and cannot be contracted.

If v is not extremal, then all the extremal vertices of T come from extremal bi-
nary vertices of T. If w T is such a vertex, then T/w is 1-ternary and 3= r,,w(X)
belongs to Rr/. Clearly all 1-ternary (n 1)-trees can be represented as T/w. So
if X A(R)"(R) Rr for all 1-ternary n-trees T, then .(X) A(R)("-t)(R) Rs for all 1-
ternary (n 1)-trees S. This shows that d,(C.(A)) C._I (A).

Let us prove that d._ o d. 0 on C.(A). Let T be a 1-ternary tree T whose
1-ternary vertex v is extremal. Suppose that X e A(R)"(R) Rr @3= A(R),(R) E(T)
where T are as before. Denote by w the end of the edge e. Then w will become
extremal after erasing v. Thus

3

2
i=1

is a sum of quantities like r(a, b, c) with r R = F(E)(3) and a, b, c A. Since A is
a P-algebra and R is the space of relations for P, every such quantity is equal to
0. This implies that d-,_x (.(X)) 0 if X (’It A(R)" (R) Rr. The proposition follows.

(4.2.3) Definition. The complex C.(A)= C.(A) with the differential d de-
fined above is called the chain complex of the -algebra A. Its homology will be
denoted Hn(A) or H.(A).

(4.2.4) Examples. (a) Let s be the associative operad. The dual operad
is isomorphic to itself. Let A be an associative algebra. Since t(n) is the
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regular representation of Z,, we find that the complex C.(A) has the form

""--+A(R)A(R)A--+A(R)A-+A.

A straightforward calculation of the differential shows that it is the standard
Hochschild complex of A with coefficients in k. Thus, H(A) is the Hochschild
homology HHi(A, k).

(b) Let &’ie be the Lie operad. Then t om is the commutative operad;
in particular, t(n) is the trivial 1-dimensional En-module and (n) is the sign
representation. Let f# be a Lie algebra. By the above, its chain complex, as a
-algebra, has the form

__. A3Cff ._. A2ff ._ c.

Again, a straightforward calculation of the differential shows that this is the stan-
dard Chevalley-Eilenberg chain complex of if, so that H(ff) Hi(f#, k) is the Lie
algebra homology of f with constant coefficients.

(c) Similarly, if Com is the commutative operad, and A is a commutative
algebra, one finds that H(A) is the Harrison homology of A; see, e.g., [45].

(4.2.5) THEOREM. Let be a quadratic operad. Then is Koszul if and only if
for any free -algebra F F(V) we have H(F) 0 for > O.

Proof. Let F, denote the free -algebra on generators xl, x,. This algebra
has an obvious (Z+ )"-grading such that deg(xi) (0, 1,..., 0) (the unit on the
ith place) and deg(#(a, b)) deg(a) + deg(b) for any a, b e F,, # e (2).

C. (F,) also inherits this grading. The following result, whichThe chain complex e

is immediate from the definitions, implies the "if" part of Theorem 4.2.5.

(4.2.6) PROPOSITION. The nth Koszul complex K. (n) of is isomorphic to the
multihomogeneous part of C. (F,) of multidegree (1, 1).

Before proving the "only if" part of (4.2.5), let us mention the following corol-
lary from what we have already done.

(4.2.7) COROLLARY. The operads s, Cgom, ie are Koszul.

Proof. It is well known that a free associative algebra without unit has higher
Hochschild homology trivial and a free Lie algebra has higher homology with
constant coefficients trivial. This proves that ’s and qie are Koszul. The case of
Cgom follows by duality (4.1.4).

Another situation of applicability of Theorem 4.2.5 is provided by the work of
E. Getzler and J. D. S. Jones [23]. They proved, in the context of their work on
iterated integrals, the vanishing of the homology of free algebras over the operads
associated to homology of configuration space.
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(4.2.8) End of the proof of Theorem 4.2.5. Let A be any -algebra. Along with
the chain complex C.(A), we introduce the "big" chain complex BC.(A). By
definition,

(4.2.9)
+j /-trees T
j<O ITl=i-2+j

A(R)i (R) (T) (R) Det(T))
The differential d: BC,(A) BC._I(A) is given by the following two types of
matrix elements:

dr, e; A(R)’ (R) (T) (R) Det(T) A(R)i (R) (T/e) (R) Det(T/e)

defined for any/-tree T and any internal edge e e Ed(T), and

dr, o: A(R)i (R) (T) (R)Det(T) A(R)[i]/o (R) (T/v) (R) Det(T/v)

defined for any/-tree T and any extremal vertex v T.
The operator dr, is 1 (R) #r,e (R) le* where /r,e" (T) (T/e) is induced by

the composition in and the map le*" Det(T) Det(T/e) is dual to the exterior
multiplication by e. The operator dr, is induced, in a similar way, by the
-action on A.

It is immediate to verify that d 2 --0. The embedding (n) = (binary R(T)’trees T
gives rise to an embedding of complexes

(4.2.10) j: C. (A)- BC. (A).

The complex BC.(A) has an increasing filtration F with the rnth term FmBC,(A)
being the sum of the summands in (4.2.9) with < m. The associated graded com-
plex has the form

grr BC. (A) A(R)m @ D()(m)

where D is the duality for d0-operads (3.2.13). This implies the following result.

(4.2.11) PROPOSITION. If the operad is Koszul, then the embedding (4.2.10)
is a quasi isomorphism for any -algebra A.

To complete the proof of Theorem 4.2.5, it is enough, in view of Proposition
4.2.11, to establish the following.

(4.2.12) PROPOSITION. Let be any k-linear operad, K 9(1), and A F,(V)
the free -algebra generated by a finite-dimensional K-module V. Then

Hi(BC, (A) 0, > 0
V, i=0.
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Proof. To each tree T and a function v: In(T) { 1, 2, 3,... } we associate the
vector space

C(T, v)= Det(T)(R) ( (In(v))(R) () Av(0
T In(T)

where A,, n 1, 2, 3,..., denotes the degree-n component of A. By construction,
the graded vector space BC.(A) is the direct sum of spaces C(T, v) over all (iso-
morphism classes of) pairs (T, v).
Given a pair (T, v), we call an input edge e e In(T) nondeoenerate if v(e) > 1.

Given a nondegenerate edge e e In(T), we define the deoeneration of (T, v) along e
as the pair (T, ) where T is obtained by attaching at e a star (1.1.1) with v(e)
inputs. The function is set equal to 1 on the new inputs and remains unchanged
on the other inputs. A pair (T, v) is called nondeoenerate if for any extremal vertex
v T there is an edge e In(v) such that v(e) > 1. A nondegenerate pair cannot be
obtained by degeneration.

Let Nd(T, v) denote the number of nondegenerate input edges of T. We intro-
duce an increasing filtration G on BC.(A) by putting

G,BC. (A) C(T, v).
# (vertices of T)+Nd(T, v) <

The differential preserves the filtration. Furthermore, the complex gr BC.(A) splits
into a direct sum of complexes E.(T, v) labelled by nondegenerate pairs (T, v).
These complexes have the form

v)= @ C(,
(,)

where the sum runs over all possible pairs (, ) obtained from (T, v) by (iterated)
degeneration. Such pairs (T, ) are parametrized by all possible subsets of the set
S of nondegenerate inputs of T. It is clear that the corresponding spaces C(, 0)
are all the same. Observe that subsets of S correspond to faces of a simplex with
ISI vertices (denote this simplex by A). Moreover, we find that E.(T, v) is the
tensor product of the fixed vector space C(T, v) and the augmented chain complex
of A. This complex is acyclic unless S . The only nondegenerate pair (T, v)
with S consists of T {} (the tree with no vertices) and v 1. This gives
Ho(BC.(A)) V, and the theorem follows.

(4.2.13) Homotopy -aloebras. Let (K, E, R) be a Koszul quadratic op-
erad and its quadratic dual. Then the canonical morphism of operads (4.1.1)
),,: D(9) 9 is a quasi isomorphism. Hence, any -algebra can be viewed as a
D()-algebra. This motivates the following.

(4.2.14) Definition. A dg-algebra over D(t) is called a homotopy -algebra.
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(4.2.15) PROPOSITION. Let A A. be a 9faded K-bimodule with dim(A.) <
oz for all n. Givin9 a structure of a homotopy -algebra on A is the same as 9ivin#
a nonhomo#eneous differential d on the free algebra F,(A*[1]) satisfyin9 the
conditions:

(i) d 2 0;
(ii) d is a derivation with respect to any binary operation in , i.e., we have

d(#(a, b)) #(d(a), b) + (- 1)aeg(a)#(a, d(b)), # (2), a, b e ",,(A* [13).

Proof. Let d be a differential in the free algebra F F,(A*[1]) satisfying (i)
and (ii). Recall that the free algebra has a natural grading F ),>1 F, where
(1.3.5)

(4.2.16) F, (!(n) (R)r(R)- (A*)(R)")sg,,

(The subscript "sgn" stands for the "anti-invariants" of the symmetric group ac-
tion.) We decompose the differential d into homogeneous components d d +
d2 + where the component di shifts degree by 1, i.e., d" Fj Fj+i-, for all
j. The equality d 2 0 yields, in particular, d2 0.

Observe that, with the operad being quadratic, the algebra F is generated by
its degree-1 component F (1)(R)r A* A*. Hence the differential d is com-
pletely determined, due to the property (ii), by its restriction to F1. Separating the
degrees, we see that this restriction is given by a collection of maps d" A*=
F1 F, m 1, 2, In view of (4.2.16), we may view d as a E,-invariant
element

(4.2.17) d,. Det(k") (R) !(m) (R)x(R),,,(A*)(R)" (R) A.

Next, we replace, using (1.1.6), the integer m in (4.2.17) by any m-element set.
Further, for any n-tree T, we form the tensor product of the elements d, over all
vertices of T to get an element (v r dlntv). Rearranging the factors in the tensor
product, we get

where the factor A on the right corresponds to the output edge of v and Det(T)
was introduced in (3.2.0). Each internal edge of T occurs in the above tensor
product twice, once as an input at some vertex, contributing to the factor A* and
once as an output at some vertex, contributing to the factor A. Contracting the
pairs of factors A* and A corresponding to each internal edge and using the
notation (1.2.13), we obtain from (4.2.18) a well-defined element

d(T) Det(k") (R) ’(T) (R) (A*)(R)" (R) A.
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This element can be regarded a morphism

(4.2.19) d(T): (T) !(T)* (R) Det(k") - Hom(A(R)", A).

The morphisms (4.2.19), assembled for various n-trees together, define, for each n,
a morphism

D(!)(n) --+ Hom(A(R)", A) ga(n).

One can check by a direct calculation that these morphisms give rise to a mor-
phism of operads D() ga if and only if the original differential d on the free
algebra F satisfies the property (i) of Proposition 4.2.15. That makes A a D()
algebra. The opposite implication is proved by reversing the above argument.

(4.2.20) Examples. (a) Let ’ie be the Lie operad so t om. Since Com(n)
k for any n, a structure of a D(Cgom)-algebra on a dD-vector space A is deter-

mined by specification of n-ary antisymmetric operations [x l, x,] for any
n > 2. (These operations correspond to the basis vectors of Com(n).) Proposition
4.2.15 in this case gives the equivalence of two definitions [59] of a homotopy
Lie algebra: the first as a vector space with brackets [x 1,..., x,] satisfying the
generalized Jacobi identity, and the second as a vector space A with a differential
on the exterior algebra/" (A*), satisfying the Leibniz rule.

(b) If we take ’ Cgom, we get a notion of a homotopy om-algebra which is a
dD-algebra over D(f’ie). Such algebras are particular cases of algebras "associative
and commutative up to all higher homotopies" (May algebras) [27], [41], [42].
More precisely, a homotopy Cgom-algebra is strictly commutative and equipped
with a system of natural homotopies which ensure, in particular, the associativity
of the cohomology algebra. This structure is not the same as a homotopy be-
tween ab and ba in an associative d0-algebra, the data often referred to as "homo-
topy commutativity".
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