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Preface

This second edition of Analytic pro-p groups has been prepared by two
of the authors, Marcus du Sautoy and Dan Segal. We thank Avinoam
Mann for contributing Appendix A, and both him and John Dixon for
giving us a free hand.

Apart from minor changes in wording and presentation, the book dif-
fers from the first edition in the following respects.

• Most of the content of the original Chapter 6 has been redistributed
among the other chapters and the 'Interludes'; as a result, the new
Chapter n takes the place of the old Chapter n + 1 for n = 6, 7,8 and
9.

• Chapters 10-13 are new, as are §§5.4, 6.5, 6.6, 7.4 and Interludes A,
B, D and E (Interlude B is based on material from the old §§6.1 and
6.2).

• Some of the old exercises have been incorporated into the main text;
many new exercises have been added.

• The following sections have undergone major revision: §§3.3, 4.4, 4.5,
7.1, 7.2, 8.1, 9.4 and 9.5.

• The old §6.6 has been left out, as has most of the old §6.2.
• The bibliography has been updated and expanded.

We wish to thank several readers, and especially one reviewer, of the
first edition, who pointed out a number of errors - typographical and
mathematical. We are grateful to the American Mathematical Society
for permission to reproduce Interlude C, which first appeared in the
Bulletin of the American Mathematical Society.

IX



Introduction

And the end of all our exploring
Will be to arrive where we started
And know the place for the first time
T.S. Eliot: Little Gidding

The origin of this book was a seminar held at All Souls College,
Oxford, in the Spring of 1989. The aim of the seminar was to work
through Michel Lazard's paper Groupes analytiques p-adiques [L], at
least far enough to understand the proof of 'Lubotzky's linearity cri-
terion' (Lubotzky 1988). In fact, Lubotzky's proof combined Lazard's
characterisation of p-adic analytic groups with some recent results of
Lubotzky and Mann (1987b) on 'powerful' pro-p groups. We found that
by reversing the historical order of development, and starting with pow-
erful pro-p groups, we could reconstruct most of the group-theoretic con-
sequences of Lazard's theory without having to introduce any 'analytic'
machinery. This was a comforting insight for us (as group theorists),
and gave us the confidence to go on and develop what we hope is a
fairly straightforward account of the theory of p-adic analytic groups.

The first edition was divided (like Gaul) into three parts. Parts I
and II were essentially linear in structure. The point of view in Part I
was group-theoretic; in Part II, more machinery was introduced, such
as normed algebras and formal power series. Between Parts I and II
was an Interlude (Chapter 6): this consisted of a series of more or less
independent digressions, describing applications of the results to various
aspects of group theory.

This second edition is also in three parts. Parts I and II cover the
same ground as before, with some additional material; however, the old
Chapter 6 has been replaced by several shorter Interludes, and a new
Part III has appeared. Readers seeking a simple introduction to pro-p
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groups and to p-adic analytic groups will still find this in Parts I and
II; the four new chapters that constitute Part III deal with a variety of
topics that we felt deserved a place, but which are not necessary for an
understanding of the basic theory. The book as a whole now gives a
fairly comprehensive account of what is known about pro-p groups on
the 'smallish' side; 'large' pro-p groups - free products, groups of tree
automorphisms and the like - are discussed in the forthcoming book
[DSS].

We now outline the contents in more detail. Part I is an account of
pro-p groups of finite rank. Chapter 1 is a leisurely introduction to
profinite groups and pro-p groups, starting from first principles. Chap-
ter 2 is about finite p-groups. A finite p-group G is defined to be powerful
if G/Gp is abelian (if p is odd; the case p = 2 is slightly different). The
key results established in this chapter are due to Lubotzky and Mann
(1987a): (i) if G is powerful and can be generated by d elements, then
every subgroup of G can be generated by d elements; and (ii) if G is a
p-group and every subgroup of G can be generated by d elements, then
G has a powerful normal subgroup of index at most pd(l°g(d)+2) (lOg to
the base 2). Chapter 3 returns to profinite groups. Here the rank of a
profinite group is defined, in several equivalent ways. Defining a pro-p
group G to be powerful if G/Gp is abelian (where denotes closure,
and the proviso regarding p = 2 still applies), we deduce from the above
results that a pro-p group has finite rank if and only if it has a powerful
finitely generated subgroup of finite index (Lubotzky and Mann 1987b).
This is then used to give several alternative characterisations for pro-p
groups of finite rank. Chapter 4 continues with the deeper investiga-
tion of finitely generated powerful pro-p groups. These groups, being
'abelian modulo p', are in many ways rather like abelian groups. In par-
ticular, each such group contains a normal subgroup of finite index which
is 'uniform'; we shall not define this here, but note that the uniform pro-
p groups are among those studied by Lazard under the name 'groupes
p-saturables'. Following an exercise in [L], we show that a uniform pro-p
group G has in a natural way the structure of a finitely generated free
Zp-module, which we denote (G, +) (here Zp denotes the ring of p-adic
integers). Defining an additional operation 'bracket' on this module, we
also indicate how (G,+) can be turned into a Lie algebra LQ over Zp:
this is the first hint of a connection with Lie groups. It follows that the
automorphism group of G has a faithful linear representation over Zp,
and hence that G itself is 'linear modulo its centre'. Part I concludes
with Chapter 5. Here we study the most familiar p-adic analytic group,
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namely GLd{Zp), and show quite explicitly that a suitable congruence
subgroup is a uniform pro-p group. Together with the results of Chapter
4, this is used to show that the automorphism group of any pro-p group
of finite rank is itself virtually (i.e. up to finite index) a pro-p group of
finite rank.

Interlude A is a summary of results, established throughout the
book, that characterise the class of pro-p groups of finite rank, and that
determine the dimension of such a group.

Although Part II is headed 'Analytic groups', these do not appear as
such until Chapter 8. Chapter 6 is utilitarian, giving definitions and el-
ementary results about complete normed Qp-algebras which are needed
later; also established here are relevant properties of the Campbell-
Hausdorff formula. Chapter 7 forms the backbone of Part II. In it,
we show how to define a norm on the group algebra A = QP[G] of a
uniform pro-p group G, in a way that respects both the p-adic topology
on Qp and the pro-p topology on G. (Readers familiar with Chapter 8
of the first edition will note that the construction of the norm has been
streamlined, and that the troublesome case p = 2 has been tamed by
modifying the norm in that case.) The completion A of this algebra
with respect to the norm serves two purposes. On the one hand, an ar-
gument using the binomial expansion of terms in A is used to show that
the group operations in G are given by analytic functions with respect
to a natural co-ordinate system on G, previously introduced in Chap-
ter 4. On the other hand, A serves as the co-domain for the logarithm
mapping log : G —• A. We show that the set log(G) is a Zp-Lie subalge-
bra of the commutation Lie algebra on A, isomorphic via log to the Lie
algebra LQ defined intrinsically in Chapter 4 (in fact, the proof simulta-
neously establishes that LQ satisfies the Jacobi identity, and that log(G)
is closed with respect to the operation of commutation). An appeal to
Ado's Theorem, in conjunction with the Campbell-Hausdorff formula,
then shows that G has a faithful linear representation over Zp; it follows
that every pro-p group of finite rank has a faithful linear representation
over Zp.

The final section of Chapter 7 examines the structure of the completed
group algebras Zp [[G]] and FP[[G]]: the associated graded rings are
shown to be polynomial rings over Fp, which implies that Zp [[G]] and
¥p [[G]] are both Noetherian integral domains. These results are not
needed for the theory of analytic groups developed in the rest of Part II,
but have other important applications (for example in Chapter 12, and
in the cohomology theory of p-adic analytic groups, see [DSS]). Under
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the name of the 'Iwasawa algebra', the completed algebra Zp [[G}\ plays
an important role in the theory of cyclotomic fields (Washington 1982).

The linearity result proved in Chapter 7 is applied in Interlude B
to establish 'Lubotzky's linearity criterion'. This amounts to the state-
ment that a finitely generated (abstract) group G has a faithful linear
representation over a field of characteristic zero if and only if some pro-p
completion of G has finite rank.

p-adic analytic groups are defined in Chapter 8. Although we intro-
duce p-adic manifolds, only a bare minimum of theory is developed (in
contrast to Serre (1965), for example, there is no use of differentials).
Using the results of Chapters 6 and 7, it is shown that a pro-p group has
a p-adic analytic structure if and only if it has finite rank, and, more
generally, that every p-adic analytic group has an open subgroup which
is a pro-p group of finite rank. These major results are due to Lazard
[L], except that he refers to finitely generated virtually powerful pro-p
groups where we have 'pro-p groups of finite rank'.

In Interlude C we reprint an announcement by Marcus du Sautoy,
where the preceding theory is applied to study the subgroup-growth
behaviour of finitely generated groups.

Chapter 9 is concerned with some of the 'global' properties of p-
adic analytic groups. The first main result here is that every continuous
homomorphism between p-adic analytic groups is an analytic homomor-
phism, from which it follows that the analytic structure of a p-adic an-
alytic group is determined by its topological group structure. Next, it
is shown that closed subgroups, quotients and extensions of p-adic an-
alytic groups are again p-adic analytic; these results now follow quite
easily from the corresponding properties of pro-p groups of finite rank.
Section 9.4 (which can be read independently of Chapter 8) establishes
that the correspondence G <-» LQ is an isomorphism between the cate-
gory of uniform pro-p groups and the category of 'powerful' Lie algebras
over Zp. This is used in the final section of the chapter to establish
the equivalence of the category of p-adic analytic groups (modulo 'local
isomorphism') with the category of finite-dimensional Lie algebras over
QP.

The first chapter of Part III, Chapter 10, gives an account of the
theory of pro-p groups of finite coclass (completing the brief discussion
given in §6.4 of the first edition). This beautiful theory is central to the
classification of finite p-groups. The chapter can be read directly after
Chapter 4, as it depends on the theory of powerful pro-p groups but not
on the analytic machinery developed in Part II.
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The next two chapters discuss the dimension subgroup series in finitely
generated pro-p groups. In Chapter 11 this series is used to derive some
more delicate characterisations of pro-p groups of finite rank, originally
discovered by Lazard using a different method. Chapter 12 investigates
the graded restricted Lie algebra associated with the dimension series;
after developing from first principles the necessary theory of restricted
Lie algebras, the chapter proves some celebrated theorems of Jennings
and of Lazard, about dimension subgroups and about the coefficients in
the 'Golod-Shafarevich series' of a finitely generated pro-p group.

The next two Interludes give applications of Lazard's theorem on
the Golod-Shafarevich series; Interlude D is devoted to the Golod-
Shafarevich inequality in a large class of pro-p groups and abstract
groups, while Interlude E presents Grigorchuk's theorem about groups
of sub-exponential growth.

In the Introduction to the first edition, we wrote ' ... Analytic groups
over other fields also deserve consideration; a Lie group in the usual sense
(over M. or C) cannot be a pro-p group (except in the trivial, discrete,
case), but some extremely interesting pro-p groups arise as analytic
groups over fields of characteristic p: for example, suitable congruence
subgroups in SLn(Fp[[£]]). The theory of such groups poses some excit-
ing challenges: they will have to be faced in a different book.' Chapter
13 is a first step in facing those challenges. A pro-p domain is a com-
mutative, Noetherian complete local integral domain R whose residue
field is finite, of characteristic p. We propose a definition for 'groups
analytic over R\ and generalise one of the main results of Chapter 8
by showing that every R-analytic group contains an open R-standard
subgroup] here, a group is called R-standard if it can be identified with
(mk)(n\ where m is the maximal ideal of R, and the group operation is
given by a formal group law with coefficients in R. By their very nature,
jR-standard groups are pro-p groups. In general they do not have finite
rank, but they resemble Zp-standard groups (which do have finite rank)
in interesting ways. These are explored in the later part of the chapter,
which establishes some results due to Lubotzky and Shalev (1994).

Appendix A gives a proof of the Hall-Petrescu commutator-
collection formula, which is used in Chapters 10 and 11. Appendix B
contains the proofs of some elementary facts about topological groups,
used in Chapter 9.

The Exercises at the end of each chapter serve two important pur-
poses, beyond the usual one of providing practice in the use of new
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concepts: some fill gaps in the proofs of the main text, and some lead
the reader through the proofs of interesting and/or important results
which didn't find a place in the main text, but deserve to be known.
They are meant at least to be read, whether or not the reader actually
wants to do them!

The brief Notes at the end of each chapter represent a very inadequate
attempt to give credit where it is due. Because we have done things in
our own quixotic way, it has not always been easy to attribute specific
results.

To say that the language and much of the theory of profinite groups
has passed into 'folklore' does an injustice to the creators; we apologise
for this, giving the weak excuse that it's the best we can do. However, it
does seem clear that Serre's 'Cohomologie galoisienne' (recently trans-
lated as Serre (1997)) was the first appearance in book form of much of
the basic theory, particularly as far as pro-p groups are concerned.

The book as a whole should be seen as an exegesis, plus extended com-
mentary, of the first four chapters of Lazard's magisterial work Groupes
analytiques p-adiques [L]. (The fifth chapter of [L] deals with the coho-
mology of p-adic analytic groups; an adequate treatment of this impor-
tant subject is beyond the scope of this book, and the competence of
the present authors. For a recent account of some of Lazard's results
the reader is referred to J. S. Wilson's book 'Profinite groups' (Wilson
1998); a fuller treatment is given in the chapter by Symonds and Weigel
in [DSS].) Exactly which aspects of the theory of Lie groups over 'non-
classical' local fields are due to Lazard, Serre or Bourbaki, respectively,
we do not know; but the central topic of this book, namely how the
group-theoretic properties of a pro-p group reflect its status as a p-adic
analytic group, is entirely the brainchild of Lazard.

Dependence of chapters

12 ]

13
~9~

8
1 1 I I 7

4
3
2
1

6



xvi

C
K
Q
z
N

zp
QP
¥q

v(x) = Vp(x)
rp rp

[x]
\x]
A(r) = flog2(r)l

GLn

SLn

unMn

In

Introduction

Notation

complex numbers
real numbers
rational numbers
integers
non-negative integers (including 0)
p-adic integers
p-adic numbers
finite field of size q

p-adic valuation of x
p-adic absolute value of x
greatest integer < x
least integer > x
so 2A(r)~1 < r < 2X^

n x n general linear group
n x n special linear group
n x n upper uni-triangular matrix group
n x n matrix ring
n x n identity matrix

X closure of X
C subset
Co, Cc open subset, closed subset
< subgroup
<o, <c open subgroup, closed subgroup
< proper subgroup
<o, <c open proper subgroup, closed proper subgroup
< normal subgroup
<o, <3C open normal subgroup, closed normal subgroup

(X) group generated by X
Z(G) centre of G
3>(G) Frattini subgroup of G
Aut(G) automorphism group of G
K[G] group ring of G over K
Zp [[G]], ¥p [[G]] completed -group algebras of G
C<3 (X) centraliser of X in G
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A x B direct product of A and B
A xi B semidirect product of A by B
A^ n-fold direct power of A
A 0 B direct sum of A and B
An direct sum of n copies of (additive group) A
d(G) minimal number of generators of G
dp(G) minimal number of generators of G/[G, G]GP

rk(G) rank of G
dim(Vr) dimension of V

xy — y~lxy

[x, y] = x~1xy, or —x  + xy it x is in a module acted on by y

[xu... ,xn] = [[xi,... ,xn_i],xn]

[x,n 2/] = [x, y,... , y], with n occurrences of y

[A,B] = ({[x,y]\x£A, y€B})

[Ai,... ,An] = [[Ai,... ,An-i],An]

[A,n B] — [A, B,... ,B], with n occurrences of B

X{n} ={xn\x£X]

Gn = (G^) (if G is a multiplicative group)

Pi (G) = G, Fn(G) = [Pn_1(G

Dn(G) nth modular dimension subgroup of G

ll'll norm
deg degree
W(X) set of words in non-commuting

indeterminates X\,... , Xn

i^(Xi,. . . ,Xn) — K{K) polynomial ring over K in
non-commuting indeterminates
X\,... , Xn

K((Xi,... , Xn)) = K((X)) formal power series ring over K in
non-commuting indeterminates
X\,... , Xn
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K[Xi,... , Xn] = K\X] polynomial ring over K in commuting
indeterminates X\,... , Xn

K^X\,... , Xn]] = K[[X]] formal power series ring over K in
commuting indeterminates
X\,... , Xn

(a) = a\ -f • • • + ar, where a = (a i , . . . , ar)

€i = (0,.. . , 0,1,0,... , 0) with 1 in the ith place

(X)=X(X-l)...{X-n+l)/n\

(a, b) = ab - ba

(ai,... ,an) = ((ai,... ,an_i),an)

( a , 6 ) e = ( a , 6 , . . . , 6 , a , . . . , a , . . . ) w h e r e e = ( e i , e 2 , . . . )
ei e2



Prelude

A reminder

We have done our best to make this book reasonably self-contained. The
intention is that a reader with no specialist knowledge of group theory,
topology, number theory or Lie algebra theory should follow the main
thread of the argument without undue difficulty. (This is less true of
the 'Interludes', which touch on various topics, and of Chapter 13, which
depends on a certain amount of commutative algebra.)

However, there are a number of elementary facts and concepts which
are frequently used and can reasonably be classed under the heading of
'non-specialist knowledge'. These (apart from any that we may have
missed) are collected together here, for the convenience of the reader.

0.1 Commutators
G denotes a group, x, y, z elements of G, and A, B, C subgroups of G.

xy = y~lxy, [x,y] = x~lxy, [x i , . . . ,xn] = [[xi, . . . ,x n _ i ] ,x n ] .

[A,B] = ([a,b] I aeA.be B)

where (X) denotes the subgroup of G generated by a subset X of G.

.L. [xy,z\ — [X, z\  [ t / ,2j , [x, yz\ — [x,zj[x,( / j .

These are verified by inspection. Repeated applications of 0.1 give the
first two claims of:
0.2. For a positive integer n,

(i) [xn, y] = [x, y]xU 1 • [x, yf" 2 . . . [x, y]x • [x, y];

1
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(iii) (xy)n = xnyn[y, a;]^—D/ 2 (mod 73(G)).

Part (iii) is easily proved by induction on n, using (i). It is the begin-
ning of the Hall-Petrescu formula, proved in full in Appendix A.

0.3 'Three-subgroup lemma'. // A, B and C are normal subgroups
of G then

[A,B,C]<[B,C,A][C,A,B].

Proof This follows from the Hall-Witt identity:

[a,b-\c]%c-\a]c[c,a-\b)a = 1, (*)

which is most quickly verified by putting u = acba,v = bacb,w = cbac

and noting that [a, b~1, c]b = u"1v, etc.

0.2 Nilpotent groups
The terms of the lower central series of a group G are defined by 71 (G) =
G, 7i+i(G) = [7z(G),G] for i > 1. The group G is nilpotent, of class at
most c, if 7c+i(G) = 1. The centre of G is Z(G) = {x € G | xg = gx for
all geG}.

G is a finite p-group (where p is a prime) if |G| = pn for some n.

0.4. Let G be a finite group.
(i) G zs nilpotent if and only if Z(G/N) > 1 for every proper normal

subgroup N of G.
(ii) If G is a p-group then G is nilpotent.
(iii) If G is a p-group then every maximal proper subgroup of G is

normal and has index p in G.
(iv) // G is nilpotent and l< N < G then [JV, G] < N and JVnZ(G) >

1.
(v) // G zs nilpotent and 1 < N <\ G then some maximal proper

subgroup of N is normal in G.
(vi) // G is nilpotent then so are every quotient and every subgroup of

G.
(vii) // G is nilpotent then the elements of finite order in G form a

subgroup.
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Proof (i) 'If: induction on \G\. By hypothesis, 1 < Z(G) = Z, say.
Inductively, 7rn(G/Z) = 1 for some ra. Then 7 m + i (G) = 1.

'On/?/ z/?: Suppose 7^+1 (G) = 1. For some k, we then have 7^+1 (G) <
N, 7fc(G) g iV. This implies 1 < 7k(G)N/N < Z(G/N).

(ii) By (i), it suffices to show that Z(G) 7̂  1. Let fti,... , /i r represent
the non-central conjugacy classes of G. Then |G : Cc(hi)\ — pei > 1 so

| = 0 (modp).

Since |Z(G)| > 1 it follows that |Z(G)| > p.
(iii) Let M be a maximal proper subgroup of G. By (ii), Z(G) contains

an element z of order p. If z G M, M / (0) is a maximal proper subgroup
of Gj (z) and we argue by induction. If z 0 M then M(z) = G. In this
case M < G and |G : M| = p.

(iv) For some fc, 7^(G) D N ^ 1 and 7^+1 (G) D N = 1. Then
7fc(G)niV< Z(G)nAT, s o Z ( G ) n i V ^ l . If [AT, G] - 1 then [N, G] <N.
If [JV, G] > 1, then (since [AT, G] <] G) we have 1 < [N, G] n Z(G) = K,
say. Then 1 < N/K < G/if and we argue by induction.

(v) By (iv), [N, G] < N. Any maximal proper subgroup of N con-
taining [iV, G] is necessarily normal in G.

(vi) Clear.
(vii) Let x,y G G have finite order; it will suffice to prove that the

subgroup H = (x,y) that they generate is finite. Now H/72(H) is
finite. Suppose that 7^1(H)/71(H) is finite for some i > 2 . There is
a well-defined bilinear mapping from H/72(H) x 7^1(H)/71(H) into
7i(H)/7i+i(H) given by

which induces an epimorphism H/72(H) <S> 7i-i(H)/7i(H) —• 7i(H)/
7i+i(.ff). Hence 7i(H)/7^1(H) is finite. It follows by induction that
7i(H)/7i+i(H) is finite for every i; but 7c+i(iJ) = 1 where c is the
nilpotency class of G.

0.5. Let G be any group and a an automorphism of G which induces
the identity on G/72(G). Then a induces the identity on
for every i.

Proof There is an (a)-module epimorphism from
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onto 7i(G)/7i+i(G), given by

^72(G) (g) y-ii(G) H^ [ar,y]7i+i(G).

The result follows by induction on i.

0.3 Stability group theory
Suppose that H is a group acting faithfully by automorphisms on a
group G.

0.6. If N < G and F induces the trivial action on both N and G/iV,
then if can be embedded in a Cartesian product of copies of Z(iV).

Proof Let X be a set of generators for G. The embedding is given by
the map H —>  Y[xex

though not obvious, it is easily verified that x~1xh does indeed lie in
Z(7V) for all x e G.

If, in 0.6, the centre of N is torsion-free, or has a given finite exponent,
etc., it follows that H has the same property.

0.7. Let G —  Go > G\ > • • • > Gk = 1 be a series of normal subgroups
of G, and suppose that H fixes each G{y and induces the trivial action
on each factor Gi/Gi+i. Then

(i) lk{H) = 1;
(ii) if each Gi/Gi+i has exponent dividing m (respectively: is torsion-

free), then H has exponent dividing mk~l (respectively: is torsion-free).

Proof Induction on k. Put K = CH(G1)D CH(G/Gk-i)- By the induc-
tive hypothesis, H/CH(Gi) and H/CH(G/Gk-i) satisfy (i) and (ii),
with k —  1 replacing k. Therefore so does H/K. Taking a G K, b G H
and c G G in the Hall-Witt identity (*), we see that K is contained in
the centre of H (apply (*) to the semidirect product G * H). Therefore

Also, 0.6 shows that in case (ii), K has exponent dividing m (respec-
tively, K is torsion-free); hence (ii) follows.
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Applying 0.7 to the conjugation action of G on 7;(G), we deduce that

for any group G and all i and k (take H = G/Cc('yi(G)/'yi+k(G)) and
replace G by 7i(G)/7i+fe(G)).

0.4 Unipotent groups
Let A: be a finite field of characteristic p and V = fcn. The group GLn(k)
of all invertible n x n matrices over A: may be identified with the group
GL(V) of all /c-linear automorphisms of V. We denote by Un(fc) the
subgroup consisting of upper uni-triangular matrices. An automorphism
g of V is unipotent if (g —  l ) n is the zero endomorphism. A subgroup H
of GLn(K) is said to be unipotent if each of its elements is unipotent.

0.8. Let H < GLn(fc). The following are equivalent:
(i) H is unipotent
(ii) The semidirect product V x H is a nilpotent group.
(iii) There is a chain of H-invariant k-subspaces

such that H induces the trivial action on each factor Vi/Vi-\.
(iv) (/i! - l)(h2 - 1) • • • (hn - 1) = 0 for all hu ... , hn e H.
(v) There exists g G GLn(k) such that g~1Hg < Un(k).
(vi) H is a finite p-group.

Proof If h is unipotent then

hPe - 1 = (h - if = 0

whenever pe > n. Therefore (i) implies (vi). If H is a finite p-group then
so is V x H, so (vi) implies (ii). It is easy to see that (ii)=>(iii)=^(iv)=>(i)
and that (iii)<^(v).

0.5 Frattini subgroup
In this section, G denotes a finite p-group. The Frattini subgroup of G,
denoted $(G), is the intersection of all maximal proper subgroups of G.

0.9. (i)
(ii) / / I C G and X^ (G) generates G/$(G) then X generates G.
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(iii) G/$>(G) = Fp where d is the minimal cardinality of any generating
set for G.

Proof (i) G/[G,G]GP is an elementary abelian p-group, so its maximal
proper subgroups intersect in the identity. Therefore $(G) < [G,G]GP.
The reverse inclusion follows from 0.4 (iii).

(ii) is clear, since if {X) < G then (X) 3>(G) lies inside some maximal
proper subgroup of G.

(iii) This now follows from (i) and (ii).

0.10. Let H be the set of all automorphisms of G which induce the
identity on G/<&(G). Then H is a finite p-group.

Proof It is enough to show that if a G H has prime order q, then q — p.
Let {#! , . . . , Xd} be a generating set for G, and put

Q = {(uixu... ,UdXd)\ui,... ,ud G *(<£)},

a subset of G x • • • x G (with d factors). Then a permutes fi, and has
no fixed points, in view of 0.9 (ii). Therefore each orbit has length q and
so q I \n\ = |$(G)\d. It follows that q = p.

0.6 Group algebras
Let G be a group and K a commutative ring. The group algebra of G
over K, denoted AT[G], is defined to be the free if-module on the basis
G, endowed with a product which extends simultaneously the group
operation on G and the ring multiplication in K. Thus the elements of
K[G] are sums of the form Y^gec ag9i w ^ n e a c n ag e K and ag = 0 for
all but finitely many g G G, and

geG g€G geG

where

^xux~lg-
xeG

It is easily verified that K[G] is a ring. One usually identifies K with
the subring K -IQ of K[G], and G with the subgroup IK • G of the group
of units of K[G]. There is a homomorphism e : K[G] —> K given by

geG
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this is called the augmentation. Its kernel / is the augmentation ideal of

K[G}\ it is easy to see that

geG\i geG\i

More generally, for any normal subgroup N of G there is a natural

epimorphism K[G] —> K[G/N], whose kernel is the right (or equivalently

left) ideal generated by the set {g — 11 g G N}.

0.7 Topology

A topological space X is Hausdorff if distinct points of X have disjoint

neighbourhoods; by a neighbourhood of x we mean any subset of X

which contains an open set U with x G U. A topological space X is

compact if for any covering of X by open sets

x=\Jua

there is a finite subset {ai , . . . , ar} of A such that

r

x = \Juai.
i=1

0.11. A space X is compact if and only if for each family (Yα)aeA of

closed subsets of X with

there exists a finite subset {a i , . . . , ar} of A such that

z=1

0.12. If f : X —• Y is continuous and X is compact then f(X) is

compact.

0.13.Le£ X be a Hausdorff space.

(i) Every compact subspace of X is closed in X.

(ii) If X is compact, then every closed subset of X is compact (with

the subspace topology).
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(iii) // X is compact, then every infinite subset of X has a limit point
in X.

The proofs of 0.11-0.13 are simple exercises.

0.14. // A and B are disjoint compact subsets of a Hausdorff space X,
then there exist disjoint open subsets U and V of X with A C U and
B CV.

Proof For each a G A and b G B there exist open sets £/(a, 6), V(a, b)
with a G U(a,b), b G V(a,b) andU(a,b)nV(a,b) = 0. Fix a G A. Since
B is compact, there exist 6i, . . . , br G B such that B C (Jl=i V{ai h) —
y(a), say. Put U(a) = ni=i U(a,bi). Then the compactness of A gives
a i , . . . ,as G A such that A C [fi=1 Ufa). NOW let £/ = U*=1 £/(%•),

0.15. Lei / : X —> Y be a continuous bijection, where X is compact
and Y is Hausdorff. Then f is a homeomorphism.

Proof We have to show that f~x : Y —> X is continuous, i.e. that
C/""1)"1^) i s °Pe n i n Y f°r a11 U open in X. Now

and X \ U is compact. Therefore f(X\U) is compact, hence closed in
y, giving the result.

0.16. (Tychonoff 's Theorem) T/ie product of any family of compact
spaces is compact.

For the proof see for example Higgins (1974), Chapter 1 (or any intro-
ductory topology textbook).

A topological group is a group G which is also a topological space, such
that the maps

g ^ g-1 : G -> G

are both continuous. Some less trivial results about topological groups
are given in Appendix B; for most purposes, the following will suffice:

0.17. Let G be a topological group.
(i) For each g G G, the maps x i-> xg, x t—>  gx, and x \—> x~x are

homeomorphisms of G.
(ii) If H is a subgroup of G and H is open (respectively, closed), then

every coset of H is open (respectively, closed).
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(iii) Every open subgroup of G is closed.
(iv) G is Hausdorff if and only if {1} is a closed subset of G.
(v) If N is a closed normal subgroup of G and G is Hausdorff, then

G/N is Hausdorff (with the quotient topology).
(vi) If H is a subgroup of G and H contains a non-empty open subset

U of G then H is open in G.

Proof (i), (ii), (iii) are easy exercises, (iv): In a Hausdorff space, single-
ton subsets are closed (easy). Conversely, suppose {1} is closed. Then
every singleton is closed, by (i). Let x ^ y be elements of G. Then
U = G\ {xy~x} is open. Since the map (a,b) \—• a~xb is continuous,
and 1 G C/, there exist open neighbourhoods V\ and V2 of 1 such that
V^"1 • V2 C U. Then V\x and V^y are disjoint neighbourhoods of x, y.
(v) follows from (iv). (vi): note that H = [jheH Uh.

0.8 Lie algebras
Let A: be a commutative ring. A Lie algebra over k is a £;-module L with
a binary operation, (occasionally called the Lie bracket)

that is k-bilinear and satisfies

(a, a) = 0

((a,6),c) + ((6,c),a) + ((c ,a) ,6)=O

for all a,b,c G L. The first condition implies

(a, 6) = -(&, a)

for all a and 6, and is equivalent to it unless 2 is a zero-divisor on L.
The second condition is known as the Jacobi identity.

If A is any associative algebra over k, we may define a new binary
operation on A, called commutation, as follows:

(a, b) — ab — ba.

It is easy to verify that with this operation A becomes a Lie algebra, the
commutation Lie algebra on A.

A Lie algebra over Z is sometimes called a Lie ring.
Lie algebras over IR appeared originally in the guise of 'infinitesimal

Lie groups'; that is, as a sort of linearised approximation to a (real) Lie
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group. As we shall see, Lie algebras over the p-adic numbers play the
same role relative to p-adic Lie groups.

0.9 p-adic numbers
p will denote an arbitrary, but fixed, prime number. Each rational num-
ber x T̂  0 can be written uniquely as

with n, a, b € Z, b > 0, gcd(a, b) = 1 and p \ ab. We put

Vp(x) = n, | x | p =p" n ;

here |-| is the p-adic absolute value on Q. This absolute value induces
a metric on Q, and the completion of Q with respect to this metric is
the p-adic field Qp. Each element a of Qp is thus the limit of a Cauchy
sequence

a = lim Xi

with Xi e Q for each i, and the absolute value is extended to Qp by
setting

\a\ = lim \xi\

The 'valuation ring' in Qp is the subring of p-adic integers

Each element of Zp is the limit of a Cauchy sequence in Q whose terms
all lie in Z. It follows that each p-adic integer is the sum of a series

oo

£<w n (t)
n=0

with each an G Z; moreover, each an may be chosen to lie in the set
{0,1,. . . ,p—  1}, in which case the expression (f) is uniquely determined.

An alternative, equivalent, definition of Zp is as the inverse limit of
the system of rings

this construction is discussed in detail in Chapter 1.
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The additive group of Zp is a compact Hausdorff topological group,
having Z as a dense subgroup. Intuitively, one should think of doing ring-
theoretic operations in Zp as follows: do the operations in the integers
modulo pn, then let n tend to oo.

Our convention throughout the book will be that p denotes an arbi-
trary, but fixed, prime; and we shall use |-|, without the subscript, to
stand for |-| . (The usual real or complex absolute value will scarcely
appear; when it does, the reader will forgive us.)





Part I
Prop groups





1
Profinite groups and pro-p groups

Most of this book is about pro-p groups. The purpose of this introduc-
tory chapter is to explain what these are and where they come from,
and to establish their basic properties. Many of these properties belong
to the larger class of profinite groups, and we begin by discussing these.

Notation If G is a topological group and X is a subset of G, we write
X to denote the closure of X in G, and denote by (X) the subgroup of
G generated as an abstract group by X. We write X <o G, X <o G,
X <c G, X <c G t o denote: X is an open subgroup, open normal
subgroup, closed subgroup, closed normal subgroup of G, respectively.

1.1 Profinite groups
1.1 Definition A profinite group is a compact Hausdorff topological
group whose open subgroups form a base for the neighbourhoods of the
identity.

Thus a discrete group is profinite if and only if it is finite. Since in
a topological group any subgroup containing a non-empty open set is
itself open, we see that the second part of the definition comes down to:
every open set containing 1 contains an open subgroup. There are several
equivalent definitions, some of which are discussed in the exercises; the
most important one is given in Proposition 1.3, below. First we list some
elementary consequences of Definition 1.1.

1.2 Proposition Let G be a profinite group.
(i) Every open subgroup of G is closed, has finite index in G, and

contains an open normal subgroup of G. A closed subgroup of G is

15
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open if and only if it has finite index. The family of all open subgroups

of G intersects in {1}.

(ii) A subset of G is open if and only if it is a union of cosets of open

normal subgroups.

(iii) For any subset X of G,

x=
N<OG

If X is a subgroup of G then

X = f]{K \X<K<OG}.

(iv) If X and Y are closed subsets of G then so is the set XY =

{xy I x G X, y G Y}. If X is closed and n is an integer then the set

{xn I x G X} is closed.

(v) Let H be a closed subgroup of G. Then H (with the induced

topology) is a profinite group. Every open subgroup of H is of the form

HDK with K <o G.

(vi) Let N be a closed normal subgroup of G. Then G/N (with the

quotient topology) is a profinite group, and the natural homomorphism

G —> G/N is an open and closed continuous mapping.

(vii) A sequence (gi) in G converges if and only if it is a Cauchy

sequence: i.e. for each N <o G there exists n = n(N) such that g^1 gj G

N for all i > n and j > n.

Proof Most of this can be safely left as an exercise. The essential

points to note are that every coset of an open subgroup is open, and that

G is compact. We prove the 'if part of (vii). If the Cauchy sequence (gi)

contains only finitely many distinct terms, it is easy to see that it must

be eventually constant. If not, then since G is compact and HausdorfF

the infinite set {gi \ i G N} has a limit point g G G. Now let N <o G.

The neighbourhood gN of g then contains infinitely many of the g^ so

there exists i > n(N) with gi G gN. For each j > n(N) we then have

gj G gjN = giN = gN, showing that the sequence (gj) converges to g.

A second definition of profinite groups is based on the concept of

an inverse limit. We recall briefly what this is. A directed set is a

non-empty partially ordered set (A, <) with the property that for every

A, // G A there exists v G A with v > A and V^μ. An inverse system

of sets (or groups, rings or topological spaces) over A is a family of sets

(or groups, etc.) (GA)AEA? with maps (respectively homomorphisms,
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continuous maps) TTAM : GΑ —> GM whenever A > μ, satisfying the

natural compatibility conditions

whenever A > ^ > i/. The inverse limit

is the subset (or subgroup, etc.) of the Cartesian product IIAGA ^\
consisting of all 'vectors' (g\) such that g\'K\μ = Qμ whenever A > //. It
is easily verified (see Exercise 1) that this is the (unique) solution to an
appropriate universal problem (thus it is a limit in the sense of category
theory).

If the GΑ are finite groups, we give each of them the discrete topology,
and Y[ G\ the product topology. In this way, limGA, with the induced
topology, becomes a topological group.

If A is a family of normal subgroups of a given group G, we may
order A by reverse inclusion and obtain an inverse system (G/7V)NGA,

the maps being the natural epimorphisms G/N —> G/M for N < M.
We are now ready for

1.3 Proposition If G is a pro finite group then G is (topologically) iso-

morphic to lim(G/iV)jv<]oG. Conversely, the inverse limit of any inverse

system of finite groups is a pro finite group.

Proof Write G = ]Jm(G/N)N<oG- There is a natural homomorphism

given by gu = (gN)N<oG. Since C\N<IOGN = 1, ^ is injective; and it is
clear that GL < G. To see that i is surjective, let (gjviV) G G. Then
every finite collection of cosets g^N has non-empty intersection; since
these cosets are closed subsets of the compact space G, it follows that
C\N<IOG 9NN is non-empty. Choosing g to lie in this intersection we get
gt = (gNN).

Since a continuous isomorphism between compact Hausdorff groups is
a topological isomorphism, it only remains to show that t is continuous.
For M <\OG let

N>M
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The subgroups U(M) D G form a base for the neighbourhoods of 1 in
G, and for each M we have [/(M)^"1 = M which is open in G. So t is
continuous.

For the converse, we consider an inverse system of finite groups G\
(A E A), each with the discrete topology. Then I I A E A ^ 1S Hausdorff,
and Tychonoff's theorem shows that it is compact. It follows from the
definition of the product topology that every neighbourhood of 1 con-
tains a subgroup of the form U(S) = IIA^S G\ x

 IIAGS W f°r s o m e finite
subset S of A. Thus ]J G\ is a profinite group, and we only have to show
that limGA = G, say, is a closed subgroup. Now let # — (g\) eY[G\\G.
Then there exist */ > /i in A such that gv^vμ ^ gμ. Now <7?7(̂ , μ) is an
open neighbourhood of # in n^A> and 'gUiy, μ) D G = 0. This shows
that Y[ G\ \ G is open in Y[ GΑ, and the result follows.

Examples of profinite groups

(1) Profinite groups arise as the Galois groups of algebraic field exten-
sions: as such they form an essential component in the modern formu-
lation of class field theory (see Cassells and Frohlich (1967), Fried and
Jarden (1986)), and the Galois cohomology of algebraic groups (Serre
(1997), Platonov and Rapinchuk (1994), Chapter 6). Two chapters of
[DSS] are devoted to recent applications of (specifically) pro-p Galois
groups in number theory and the theory of local fields.

(2) Let F be a group and A a family of normal subgroups of finite index
in F, directed by reverse inclusion. The family of quotients (F/iV^eA
forms an inverse system of finite groups, whose inverse limit

fA = Hm(F/A0iV€A

is a profinite group by Proposition 1.3. The natural homomorphism
F —>  FΑ has kernel equal to HjveA ^ = ^-> sav> an<^ ^ embeds V/K as a
dense subgroup in FΑ- The group FΑ is called a profinite completion of
F. (If we define Cauchy sequences in F by taking the elements of A as a
base for the neighbourhoods of 1 in F, we can identify FΑ with the set of
all Cauchy sequences modulo the 'null sequences', so FΑ is a completion
in the usual sense.) When A consists of all the normal subgroups of
finite index, FΑ is the profinite completion of F, usually denoted simply
f. The kernel of F —> f is the finite residual of F. Later, we shall be
particularly concerned with the case where A consists of all the normal
subgroups whose index is a power of some (fixed) prime p: in this case,
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r A = F p is the pro-p completion of F, and F embeds into Tp if and only
if F is residually a finite p-group.

(3) Let R be a commutative ring with identity, and let A be a set
of ideals of finite index in i?, directed by reverse inclusion. Fix a pos-
itive integer n. For each / G A let K(I) be the principal congruence
subgroup modulo / in SLn(i2), i.e. the kernel of the natural homomor-
phism SLn(#) -* SLn(R/I). The family (K(I))IeA is a directed set of
normal subgroups of finite index in SLn(iJ), and we obtain a correspond-
ing profinite completion Shn(R)\. On the other hand, we can form the
ring .RΑ = lim.(R/I)ie\; it is not hard to see that SLn(R)A may be

identified with a subgroup of SLn(£A). If R = Z and A = {pirL \ i > 0},
where p is a prime, .RΑ is the ring Zp of p-adic integers; in this case,
SL^(Z)A can be identified with SLn(Zp) (see Exercise 9). If R = Z and
A consists of all ideals of finite index in Z, we can identify SLn(Z)A with
SLn(Z) where Z denotes the profinite completion of Z. The relationship
between SLn(Z) and the profinite completion of SLn(Z) is a deep mat-
ter (the 'congruence subgroup problem'); see Platonov and Rapinchuk
(1994), §9.5.

Next, we state a fundamental set-theoretic principle, which is ex-
tremely useful when one is trying to deduce properties of a profinite
group from properties of its finite quotient groups.

1.4 Proposition Let (X\',7^\μ) be an inverse system of non-empty com-
pact spaces over a directed set A. Then \\mX\ is non-empty.

Proof For each subset 5 C A let L(S) be the subset of P = HXeA X\
consisting of 'vectors' (x\) satisfying XÂ AM = Zμ whenever A G 5, μ G S
and X> μ. If 5 is finite then L(S) is closed in P (we give P the product
topology), and L(S) ^ 0: for there exists v G A with v > A for each
A G 5, and choosing xv G Xu, x\ = XV-KV\ for each A G 5, and x\ an
arbitrary element of XΑ for A 0 Si) {z/}, we get (x\) G L(S). Since P is
compact, by Tychonoff's theorem, it follows that

P|{L(5) I 5 a finite subset of A} = L, say,

is non-empty. But L is exactly

Proposition 1.4 will mostly be applied to inverse systems of finite sets:
these are compact when endowed with the discrete topology.
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A subset X of a topological group G generates G topologically if
(X) = G. The topological group G is finitely generated if it is gen-
erated topologically by a finite subset.

1.5 Proposition Let G be a profinite group and let H be a closed
subgroup.

(\)Let X C H. Then X generates H topologically if and only if
XN/N generates HN/N for every N <o G.

(ii) Let d be a positive integer. If HN/N can be generated by d ele-
ments for every N <o G, then H can be generated topologically by a d
-element subset.

Proof (i) Follows from Proposition 1.2 (iii). (ii) For each TV <\o G, let
Yjsf be the set of all d-tuples of elements of G/N which generate HN/N.
Each set Yjq is finite and non-empty, and if TTMN '• G/M —>  G/N is the
natural projection for M < N (where M, N <\o G ) then YM^MN ^ YN-
So the YN (with N <o G) form an inverse system. By Proposition 1.4,
the inverse limit of this inverse system is non-empty; let (X^) G
Then there exist # i , . . . , x^ G G such that for each N <\o G,
(x±N,... ,XdN) (see the proof of Proposition 1.3), and part (i) shows
that {#1 , . . . ,Xd} generates H topologically.

1.6 Proposition If G is a finitely generated profinite group and m is
a positive integer then G has only finitely many open subgroups of index
m, and every open subgroup contains an open topologically characteristic
subgroup.

(A subgroup of G is topologically characteristic if it is invariant under
all continuous automorphisms of G.)

Proof Suppose G is topologically generated by a d-element subset.
Then there are at most (m\)d continuous homomorphisms of G into
the symmetric group 5 m (where Sm has the discrete topology). Now
if H <o G and \G : H\ = m then the permutation representation of
G on the right cosets of H is continuous, since the inverse image of a
given permutation is the intersection of m open sets of the form x~1Hy;
and H is exactly the inverse image in G of a one-point stabiliser in Sm.
Hence there are no more than m • (m\)d possibilities for H.

The second claim follows at once, since if H <o G then \G : Ha\ =
\G : H\ for each automorphism a of G, and Ha is open if a is continuous,
so the topologically characteristic subgroup f]{Ha \ a G Aut (G), a
continuous} is again open in G.
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1.7 Proposition If G is a finitely generated profinite group then every
open subgroup of G is finitely generated.

Proof Let X be a finite (topological) generating set for G, and assume
without loss of generality that X" 1 = X. Let H be an open subgroup
of G, and let T be a transversal to the right cosets of if in G, with
1 G T. Note that T is finite. For each x G X and t G T there exists
s = s(t,x) £ T such that iftx = ifs. We put

Y = {tx- s(t, x)-1 I £ G T, x G X} ,

and claim that Y generates H topologically.
Consider the subgroup M = (Y) of G. If a G M, t G T and x G X,

then

at - x = atxs(t, x)~x • s(£, x) G MT ;

so MTX = MT. Since 1 G MT and X = X " \ it follows that M r D
(X); as T is finite, MT is closed, and therefore MT = G. But clearly
M < H, and so

H = MTnH = M(T n if) = M

as claimed.

1.8 Definition Let G be a profinite group. The Frattini subgroup of G
is

3>(G) = ( | { M | M is a maximal proper open subgroup of G} .

1.9 Proposition Let G be a profinite group.
(i) $(G) <c G.
(ii) If K <CG and K < $(G) tten ${G/K) = &{G)/K.
(iii) For a subset X of G the following are equivalent:

(a) X generates G topologically;
(b) X U $(G) generates G topologically;
(c) X$(G)/$(G) generates G/$(G) topologically.

Proof (i) and (ii) are immediate from the definition. In (iii), it is clear
that (a) implies (b) and that (b) implies (c). Suppose that (c) holds,
and let K be an open subgroup of G containing X. If K ^ G, then
K < M for some maximal proper open subgroup M of G, and then
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contradicting (c). Hence K = G, and it follows by Proposition 1.2 (iii)
that JX) = G. Thus (c) implies (a).

1.2 Pro-p groups

Henceforth, we adopt the convention that p stands for an arbitrary, but
fixed, prime.

1.10 Definition A pro-p group is a profinite group in which every open
normal subgroup has index equal to some power of p.

Thus a finite group is pro-p if and only if its order is a power of p.
Note that in a pro-p group, every open subgroup has p-power index,
since it contains an open normal subgroup. The following is immediate
from Proposition 1.2, (v) and (vi):

1.11 Proposition Let G be a profinite group.
(i) // G is pro-p and H <CG then H is pro-p.
(ii) Let K < c G. Then G is pro-p if and only if both K and G/K are

pro-p groups.

1.12 Proposition A topological group G is a pro-p group if and only if
G is topologically isomorphic to an inverse limit of finite p-groups.

Proof If G is a pro-p group, then

G ^\

by Proposition 1.3; and each G/N is a finite p-group. For the converse,
suppose G = liui(Gx)xeA where each GΑ is a finite p-group. Then G is
profinite, by Proposition 1.3. Also every open subgroup of G contains a
subgroup

for some finite subset S of A. Since

\G:G(S)\\l[\Gx\
xes

it follows that every open subgroup of G has index equal to a power of

P-
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Examples of pro-p groups
(1) The additive group Zp of p-adic integers. This is the prototype of

all pro-p groups. As well as being historically the origin of the subject,
it plays a role in pro-p groups analogous to that of the cyclic groups in
abstract group theory; a major theme of the later chapters will be to
show how our principal objects of study, the analytic pro-p groups, are
built up in a simple way from finitely many copies of Zp.

(2) The 'Sylow subgroups' of an arbitrary profinite group: see the
exercises, below.

(3) The principal congruence subgroups in GLn(Zp): see the exercises.
(4) More generally, we shall see in Part II that every p-adic analytic

group is 'locally' a pro-p group.
(5) As mentioned in §1.1, the pro-p completion of any (abstract) group

is a pro-p group (this follows from Proposition 1.12). As we shall see
in various Interludes, this fact is the basis whereby the theory of pro-p
groups can be usefully applied to problems in (abstract) group theory.

In the study of pro-p groups the Prattini subgroup plays a particularly
useful role.

1.13 Proposition If G is a pro-p group then

Here, [G, G] is the derived group and Gp = (gp \g EG).

Proof In a finite p-group, each maximal proper subgroup is normal
and has index p. Hence if M is a maximal proper open subgroup of G,
we can find N <o G with N < M, observe that M/N is a maximal
subgroup of the finite p-group G/iV, and conclude that M < G and
\G:M\= p. It follows that GP[G, G] < M. This shows that

and since $(G) is closed we obtain $(G) > Gp[G,G].
Now consider the group Q = G/GP[G, G\. This is a pro-p group, so its

open normal subgroups intersect in the identity. If TV <o Q then Q/N
is a finite elementary abelian p-group, and so $>(Q/N) = 1. Therefore
$(Q) < C\N<OQ -TV = l> and it follows by Proposition 1.9(H) and the first
part that
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1.14 Proposition Let G be a pro-p group. Then G is finitely generated
if and only if $(G) is open in G.

Proof If $(G) is open then G/<&(G) is finite. Thus there is a finite sub-
set X of G such that G = X$(G), and then X generates G topologically
by Proposition 1.9.

For the converse, suppose G — (X) where \X\ = d is finite. If 3>(G) <
N <\o G then G/N is an elementary abelian p-group, by Proposition
1.13, and can be generated by d elements; consequently \G : N\ < pd.
Among all such subgroups N we may therefore choose one, No say,
whose index in G is as large as possible. Then No < N whenever
$(G) < N <\o G. Since $(£?) is both closed and normal in G, it follows
that

$(G) = f]{N I $(G) < N <o G} = No .

Thus $(G) is open in G.

Next, we introduce an important series of (topologically) characteristic
subgroups, the lower p-series:

1.15 Definition Let G be a pro-p group. Then Pi (G) = G, and for
i> 1

Thus P2(G) = $(G) by Proposition 1.13. Note that Pi+1{G) >
for each i. (Pro-p groups G in which this inclusion is an equality will be
of particular interest to us later on.)

1.16 Proposition Let G be a pro-p group.
(i) Pi(G/K) = Pi{G)K/K for all K <c G and all i.
(ii) [Pi(G)^(G)] < Pi+j{G) for all i and j .
(iii) If G is finitely generated then P%(G) is open in G for each i, and

the set {Pi(G) \ i > 1} is a base for the neighbourhoods of 1 in G.

Proof Write G{ = Pi{G) for each i. For (i), let K <c G. Then
(Pi(G/K)) is the fastest-descending series of closed normal subgroups
of G/K such that each factor is central and of exponent dividing p. Since
(GiK/K) is a series with these properties, it follows that Pi(G/K) <
GiK/K for all i. Now suppose that, for some n, Pn(G/K) = GnK/K.
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Put M/K = Pn+1(G/K). Then M is closed in G and M > Gn[Gn, G\K,
so M > Gn+iK. Hence M = Gn+\K, and the result follows by induc-
tion.

(ii) Certainly [G ,̂ Gi] < G*+i for all i. Let n>2 and suppose in-
ductively that [Gi,Gn_i] < Gi+n-i for all i. Now we fix m > 1, and
want to show that [Gm,Gn] < G m + n . Since Grn+n is closed, it will
suffice to show that [Gm,Gn] < N whenever G m+ n < N <\o G. Thus,
in view of (i), we may replace G by the finite p-group G/N, and assume
further that G m + n = 1. Then [Gm,Gn_i] < G m + n _ i is central and has
exponent dividing p. If g G Gm and x G Gn_i we have

so[Gm,G^_1] = l. Also

[Gm,[Gn_!,G]] < [G,[Gm,Gn_i]][Gn-i,[G,Gm]]
< [G,Gm+n_i][Gn_i,Gm+i]

Gm+n = 1,

by the three-subgroup lemma and the inductive hypothesis. It follows
that

Since G is finite, this is the same as [Gm, Gn] = 1, which is what we had
to show.

(iii) Now we assume that G is finitely generated. Certainly G\ = G
is finitely generated and open in G. Let n > 1 and suppose inductively
that Gn is finitely generated and open in G. Then Proposition 1.14
shows that $(G n ) is open in Gn. Since 3>(Gn) < Gn+i < Gn it follows
that Gn+i is open in Gn, hence also in G, and Proposition 1.7 shows
that Gn+i is finitely generated. The first claim follows by induction.

To show that {Gi \ i > 1} is a base for the neighbourhoods of 1 in G,
it now suffices to show that every open normal subgroup of G contains
Gi for some i. This follows from (i), since if N <o G then G/N is a
finite p-group and so Pi(G/N) = 1 for sufficiently large i.

It is a remarkable feature of finitely generated pro-p groups that the
topology is completely determined by the group structure. The funda-
mental theorem is

1.17 Theorem If G is a finitely generated pro-p group then every sub-
group of finite index in G is open.
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This depends on two further facts, which we shall establish below:

1.18 Lemma If G is a pro-p group and K is a subgroup of finite index
in G then \G : K\ is a power of p.

1.19 Proposition If G is a finitely generated pro-p group then the
derived group [G, G] is closed in G.

Proof of Theorem 1.17 G is a finitely generated pro-p group. Write

G w = {gp \g e G}.

This set is compact, hence closed in G (being the image of the con-
tinuous mapping g i—• gp of G into G). Since G/[G,G] is abelian,
GP[G, G] = G^>[G, G], and so by Proposition 1.19 we see that GP[G, G]
is also closed; hence it is equal to $(G), and therefore is open in G by
Proposition 1.14.

Now let K be & proper normal subgroup of finite index in G. Arguing
by induction, we may assume that K is open in M whenever M is a
finitely generated pro-p group with K <M < G. Take M = GP[G, G]K.
By Lemma 1.18, G/K is a finite p-group; consequently M < G, and the
result of the first paragraph shows that M is open in G. Therefore M is
a finitely generated pro-p group, by Proposition 1.7, and our inductive
hypothesis shows that K is open in M. Thus K is open in G. Since
every subgroup of finite index in G contains a normal subgroup of finite
index, this proves the theorem.

In the course of the above proof, we saw that 3>(G) = GP[G, G]. This
important observation means that, in the case of a finitely generated pro-
p group, we can retrospectively simplify Definition 1.15 by removing the
'bars':

1.20 Corollary. If G is a finitely generated pro-p group, then $(G) =
Gp[G,G] and Pi+i(G) = Pi{Gy[Pi{G),G] for each I

Proof We have already established the first claim. Put Ĝ  = Pi (G)
for each i. Propositions 1.16 and 1.14 show that each Gi is a finitely
generated pro-p group, and that <&(G;) is open in G{. By the first part,
applied with d in place of G, we have

= [Gi,Gi]Gp
i<[Gi,G}G?.
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It follows that [Gi,G]G? is open (in G^, hence in G), therefore closed,

and therefore equal to P^+i(G) as claimed.

It is an interesting open problem whether the conclusion of Theorem

1.17 holds for all finitely generated profinite groups. The theorem has

some striking consequences.

1.21 Corollary (i) Every (abstract) homomorphism from a finitely gen-

erated pro-p group to a profinite group is continuous.

(ii) The topology of a finitely generated pro-p group is determined by

its group structure.

Proof (i) Suppose 9 : G —• H is a homomorphism, where H is a profinite

group and G is a finitely generated pro-p group. If K <o H then Kβ"1

is a subgroup of finite index (at most \H : K\) in G, so Kβ'1 is open in

G. Since subgroups like K form a base for the neighbourhoods of 1 in

H it follows that 6 is continuous.

(ii) Now take H = G (with possibly a different topology), and let 6

be the identity map.

As a consequence of (i), we have

1.22 Corollary If G is a finitely generated pro- p group then every au-

tomorphism of G (as an abstract group) is a topological automorphism,

and every topologically characteristic subgroup of G is characteristic.

Proof of Lemma 1.18 G is a pro-p group and K is a subgroup of finite

index, which we may as well take to be normal in G. Say

\G:K\=m = prq

with p]q, and put X = {gm \ g G G}. Then X C K, and X is a closed

subset of G.

Now let g G G and let N <\o G. Then gp€ G iV for some e, and we may
suppose that e> r. There exist integers a and b such that am-\-bpe = pr,
and

Since r is independent of N and X is closed this shows that gpr G X C
K. Thus G/K is a p-group.
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The proof of Proposition 1.19 is more delicate; it depends on the
following group-theoretic result:

1.23 Lemma / / H = (a i , . . . , a^) is a nilpotent group then every ele-
ment of [H, H] is equal to a product of the form [#i, a i ] . . . [xd, ad] with

Proof This is by induction on the class c of H, which we may take
to be > 2. Note first that if u G 7c-i(#) then

and tha t ifui,... ,ud,vi,... ,vd G 7 c _ i ( i f ) then

These follow from the fact that 7c(^0 is central in H, and together they
imply that every element of 7c(#) can be written in the form

w= [wi,ai]...[wd,ad] (*)

with wi,... ,Wd G 7c - i
Now to prove the lemma, let g G [#, H]. By the inductive hypothesis,

we have

g= [yi,ai\...[yd,ad]w

with 2/1,... , 2/d G H and w G 7c(jff). From (*) this gives

using the fact that each [w ,̂ â ] is central.

Proof of Proposition 1.19 Suppose the pro-p group G is generated
topological^ by {ai , . . . , ad}. Let

X = {[guai]...[gd,ad] \ gu . . . ,gd G G} .

Then X is closed in G, being the image of G x . . . x G under the con-
tinuous map ((7i,... ,gd) •—• ][I[^5ad- Now let N <o G. Then G/N is
a finite p-group, so nilpotent; and G/N = (aiN,... , adN). By Lemma
1.23, [G/N, G/N] = XN/N, and so

[G,G]N = XN.

It follows that

[G, G] C Pl X7V = X = X .
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But plainly X C [G,G], so we have equality, and [G, G] is closed as
claimed.

1.3 Procyclic groups
We have mentioned the special role of the p-adic integers in the theory
of pro-p groups. This rests on the possibility of defining p-adic powers
in a pro-p group.

1.24 Lemma Let G be a pro-p group, let g be an element of G, and
let (a*), (bi) be p-adically convergent sequences of integers tending to the
same limit in Zp. Then the sequences (gai) and (gbi) both converge in
G, and their limits are equal.

Proof Let N <3O G. Then \G/N\ = pj for some j . For all sufficiently
large i and k we have â  = a& (mod p>), and then gai = gak(modN).
Thus (gai) is a Cauchy sequence in G, and hence converges to some ele-
ment Q\ G G, by Proposition 1.2. Similarly, the sequence (gbi) converges
to some element g2 G G. Now let N be as above. For sufficiently large
fc, we have bk = a& (mod p^), gbk = g2 (mod A/"), and gak = g\ (mod AT).
This gives

= £afe~~6fc = 1 (mod TV) .

Since N was arbitrary it follows that g\ — g2-

In view of Lemma 1.24, we can make the following definition without
ambiguity:

1.25 Definition Let G be a pro-p group, g e G and A G Zp. Then

gx = lim ga"
n—>-oo

where (an) is a sequence of integers with limn_,oo an = A.

The operation of 'p-adic exponentiation' is very well behaved:

1.26 Proposition Let G be a pro-p group, let g and h be elements of
G, and let A,/x G Zp.

(i) g*+n = gxg» and gXfl = (gxy.
(H) If gh = hg then (gh)x =gxhx.
(iii) The map v H-> gv defines a continuous homomorphism of Zp into

G . Its image gZp is the closure in G of (g).
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Proof (i) and (ii) are true 'modulo JV' for every open normal subgroup

N of G, by the ordinary laws of exponents. Hence they are true in G.

The mapping v \-+ gv is a group homomorphism of Z p in G, by (i). It is

continuous, by Corollary 1.21, so its image is a compact, hence closed,

subgroup of G. Clearly gZp contains (g); since each element of gZp is the

limit of a sequence of elements of (g) it follows that gzp < (g). Therefore

1.27 Definition A group G is procyclic if G is profinite and G/N is a

cyclic group for every open normal subgroup TV of G.

1.28 Proposition Let G be a pro-p group. Then the following are

equivalent

(a) G is procyclic;

(b) G can be topologically generated by a one-element subset;

(c) G = gZp for some g £ G;

(d) G is either finite and cyclic or else is topologically isomorphic to

Proof Assume that G is procyclic, and suppose that G has two dis-

tinct maximal proper open subgroups M and N. Then M D N >

$(G) > GP[G,G], so M and TV are normal subgroups of index p in G

and G/(M D N) is elementary abelian of order p2. Such a group is not

cyclic. Therefore either G = 1 or G has a unique maximal proper open

subgroup; in either case 3>(G) is open in G and G/$(G) is cyclic. Hence

G can be generated topologically by a single element, by Proposition

1.9, and we see that (a) implies (b). Proposition 1.26 (iii) shows that

(b) is equivalent to (c). Suppose that (c) holds, and let K be the kernel

of the homomorphism 0 : Z p —> G given by Xβ = gx. By hypothesis, 6

is surjective; and 6 is continuous by Corollary 1.21. Since both Zp/K

and G are compact Hausdorff groups it follows that G is topologically

isomorphic to Zp/K; this implies (d), since every proper quotient group

of Zp is cyclic. Thus (c) implies (d), and the last fact just mentioned

shows that (d) implies (a).

Notes

This is mostly 'standard' material; the substantial Theorem 1.17 is due

to Serre. Introductory accounts of profinite and pro-p groups can be

found in Serre (1997), Chapter I §1, Pried and Jarden (1986), Chapter

1, and Wilson (1998).
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Exercises

1. Let G be a Hausdorff topological group. Show that G is profinite
if and only if (a) there is a base for the neighbourhoods of 1 consisting
of subgroups of finite index, and (b) G is complete, i.e. every Cauchy
net in G converges. [A net is a family (gu)ueB, where B is a base for
the neighbourhoods of 1, and each gu G G. It is Cauchy if for each
U e B there exists V G B such that g^1 gr G U whenever S,T e B and
S C V and T C V. The net converges to an element g G G if for each
U e B there exists V e B such that g^g €. U whenever S e B and
S c y . These concepts generalise the corresponding ones for sequences,
to the case where a countable base for the neighbourhoods of 1 may fail
to exist.]

2. Let G be a compact Hausdorff topological group. Show that G is
profinite if and only if G is totally disconnected, i.e. each connected
component has just one element. (Though elementary, this is quite
tricky. See Appendix B, or Higgins (1974), Chapter 2 §9.)

3. (i) Formulate and prove the appropriate universal property
(ii) Let H be an abstract group and let 6 : H —• G be a homomorphism,
where G is a profinite (or pro-p) group. Show that 6 extends uniquely
to a continuous homomorphism 6 : H —>  G (respectively, 6 : Hp —»  G):
i.e. that there exists a unique 6 making the diagram

H
3 \

H or

• >

Hp

G

commute, where j is the natural map H —• H (or H —»  Hp). Deduce that
if if is a dense subgroup of G then G is a (continuous) epimorphic image
of H (respectively Hp). (iii) Give an example of a finitely generated pro-
p group G and a dense subgroup if of G, with H finitely generated as
an abstract group, such that Hp ¥ G.

4. Let r be a group, A a family of normal subgroups of finite index in
r , directed with respect to reverse inclusion, and put G = t \ . Write
6 : r —• G for the natural homomorphism.
(i) Show that 6 induces an isomorphism T/N —>  G/N6 for each N G A.
(ii) Show that every open subgroup of G is of the form Hβ where H <T
and if > iV for some N G A.
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(iii) Let F and A be finitely generated groups. Show that F and A have
the same class of finite groups as their finite homomorphic images if and
only if F and A are isomorphic (as profinite groups),
(iv) Is (iii) still true without assuming finite generation?

5. (i) Show that every closed subgroup of a procyclic group is procyclic.
(ii) More generally, show that if G is a d-generator abelian profinite

group then every closed subgroup of G can be generated by d elements,
(iii) Let G be a d-generator pro-p group. Show that every generating

set for G contains a subset of size at most d that generates G [Hint:
consider G/$(G)\.

6. Let G be a profinite group, and let w(Xi,... , Xn) be a group word.
(i) Show that the set w(G) = {w(#i,... ,xn) \ x\,... , xn G G} is closed
in G. (ii) Deduce that if g G G and if for every N <o G there exist
xi(iV),... ,xn(N) G G with g = w(xi(N),... ,xn(N)) (modiV), then
there exist xi,...,xneG such that g = w(xi,... ,xn). [An important
special case: if m € N and g is congruent to an rath power modulo N
for every N <]o G, then g is an rath power in G.]

7. Let G be a profinite group and A a subgroup of G. (i) Show that
CG(A) is closed, (ii) Show that if A is abelian (or nilpotent of class c,
or soluble of derived length d), then A has the same property.

8. Give an example of a finitely generated profinite group G such that
is not open.

9. Show that the natural map SLn(Z) —>  SLn(Z/raZ) is surjective, for
all ra and n. Denoting its kernel by Kn(m), show that

]hn(SLn(Z)/Kn(p%eN * SLn(Zp)

hm(SLn(Z)/ifn(ra))mGN ^ SLn(Z).

[Hint for first part: find a simple generating set of SLn(Z/raZ). The
fact that SLn(Z) = SLn(Z) if n > 3 lies much deeper; see Platonov and
Rapinchuk (1994), §9.5]

10. Fix a prime p and a positive integer n. For each j put

F,- = {g G SLn(Zp) \g=ln (
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(i) Show that Fi is a pro-p group (with the subspace topology induced
by the p-adic topology on Mn(Zp).
(ii) Show that Fi is finitely generated (topologically). Deduce that ev-
ery subgroup of finite index in SLn(Zp) contains Tj for some j . [Thus
SLn(Zp) has the congruence subgroup property: for more on this, see
Chapter 5. Hint for (ii): use Proposition 1.14.]

11. Let G be a profinite group and let p be a prime. For N <3O G denote
by V(N) the set of Sylow p-subgroups of G/N. By applying Proposition
1.4 to a suitable inverse system of finite sets, show that G has a closed
subgroup P such that PN/N G V(N) for every N <\o G. Show that P
is a maximal pro-p subgroup of G.

12. Let G be a profinite group and let p be a prime. A Sylow pro-p
subgroup of G is a maximal pro-p subgroup. Show that every pro-p
subgroup of G is contained in a Sylow pro-p subgroup, and that the
Sylow pro-p subgroups of G are all conjugate.

13. A profinite group G is pronilpotent if G/N is nilpotent for every
N <o G. Show that G is pronilpotent if and only if G has a unique
Sylow pro-p subgroup for each prime p, and that this holds if and only
if G is isomorphic to a Cartesian product of pro-p groups for various
primes p.

14. Let G be a pro-p group. Show that G satisfies the ascending chain
condition for closed subgroups (i.e. every such chain becomes stationary
after finitely many steps) if and only if every closed subgroup of G is
topologically finitely generated. Give an example of a profinite group
having the latter property but not the former. [Hint for the first part:
use Proposition 1.14.]

15. For a pro-p group G, define TTO(G) = G and, for z > 0 , 7Ti+i(G) =
7Ti(G)p. Now Kostrikin's celebrated contribution to the 'restricted Burn-
side problem' is the Theorem: For each positive integer d, there is a
positive integer f(d,p) such that the order of every finite d-generator
group of exponent p is bounded above by f(d,p) (see Vaughan-Lee 1993).
Show that Kostrikin's theorem is equivalent to the statement: if G is
any finitely generated pro-p group then 7r^(G) is open in G for every k.

16. Zel'manov's solution of the restricted Burnside problem shows
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that for each pair of positive integers d, k, there is a positive integer
f(d,pk) such that the order of every finite d-generator group of expo-
nent pk is bounded above by f(d,pk) (see Vaughan-Lee (1993)). Show
that Zel'manov's theorem is equivalent to the statement: if G is any
finitely generated pro-p group then Gpk is open inG.

17 . (i) Let H = ( a i , . . . ,ad) be a nilpotent group, and let m > 2 .
Show tha t each element of jm(H) is equal to a product of the form
[ x i , a i ] . . . [ x d , a d ] w i t h x u . . . , x d e 7 m _ i ( J f ) .

(ii) Let G be a finitely generated pronilpotent group. Show that for
each m > 1 the subgroup r)rn{G) is closed.

18. Let G be a profinite group and 5 a closed subset. Write S^ =
{x1... xn I x i , . . . , xn G S} for each n > 1 , and S°° = \J™ =1 S K

(i) Show that S°° is closed if and only if S°° = S^ for some finite n.
(ii) Show that S°° = S^ if and only if NS°° = NS™ for every

N <OG.
(iii) What is the significance of S°° = 5 ( n ) when S = w(G)Uw(G)~1,

with w(G) as in Exercise 6?
[Hint for the 'only if in (i): use Baire's Category Theorem, see Ex.

3.6.]

19. Prove the following theorem (Martinez 1994): If G is a finitely
generated pro-p group then for every k the subgroup Gp is closed in G.

[Step 1: Show that it suffices to prove the following: if G is a d-
k k / \

generator finite p-group and S = {xp \ x G G} then Gp = S^71' for
some n that depends only on pk and d.

k

Step 2: Let G be a <i-generator finite p-group and H = Gp . Prove
that H — (x^ , . . . , xp \ for some xi,... , xn G G, where r < 2df(d,pk)
and / is Zel'manov's function (see Exercise 16). [Hint: Use the proof of
Proposition 1.7, Exercise 5(iii), and Proposition 1.9.]

Step 3: Let X denote the set of all conjugates of the elements
xf,... , xf in G. Show that [H, H] C X^2r\ Deduce that [£T, H]Hpk C
g(2r+i) ̂  w j i e r e g is a s defined above. [Hint for the first claim: use
Lemma 1.23.]

Step 4: Deduce that H = SM where n = r(pk + 1) + 1. [Hint: each
element of H is congruent modulo [H, H]HP to a product of low powers
of x\ , . . . , xp , in that order.]
20. Free pro-p groups . Let X be a finite set and let F = F(X)
denote the free group on X. (i) Show that the pro-p completion Fp is 'free
as a pro-p group': namely, every mapping (f) from X into a pro-p group
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G extends to a continuous homomorphism 0 : Fp —> G. (ii) Suppose

Y C X. Show that the inclusion mapping F(Y) —• -F(X) induces an

isomorphism of F(Y)P onto the closed subgroup of F(X)P generated by

the image of Y. [Hint: prove that if N < F(Y) then N = F(Y) nAffor

a suitable M < F(z).] (iii) Suppose that F C I Put AT - (YFWr),

the normal closure of Y in F(X)P. Prove that F(X)P/N is a free pro-p

group on |X| — \Y\ generators. (The 'free pro-p group' F(X)P is useful

when one comes to discuss presentations of pro-p groups by generators

and relations: see §4.5 and §5.5. For infinite sets X, the definition of

the free pro-p group on X needs to be modified slightly: see Fried and

Jarden (1986), §15.5.)

21. In this exercise, F denotes either the profinite completion or the
pro-p completion of a group F.

(i) Let / : A —> F be a homomorphism of groups. Show that / induces
a continuous homomorphism / : A —> F, and that this makes 'profinite
completion' and 'pro-p completion' into functors.

(ii) Let A < F with i : A —+ F the inclusion mapping, and write
6 : F —• F for the natural mapping. Show that Ai = A#, the closure of
Aβ in F. Deduce that i is an isomorphism of A onto Aβ if and only if
the following holds: for every normal subgroup K of finite (respectively:
p-power) index in A there exists a normal subgroup N of finite (respec-
tively: p-power) index in F such that K = N n A; that is, if and only
if the profinite (resp. pro-p) topology on F induces the profinite (resp.
pro-p) topology on the subspace A of F.

(iii) Now suppose that A < F, with n : A —> F/A the natural epimor-
phism. Prove that the sequence

is exact.
(iv) Show that 'profinite completion' is an exact functor on the cate-

gory of polycyclic-by-finite groups. [Hint: In such a group, every sub-
group is closed in the profinite topology; see Segal (1983), Chapter 1.]

22. Let F be a torsion-free finitely generated nilpotent group, with
upper central series 1 = Zo < ... < Zc = F. Then Zi/Zi-i = ZTi for
certain positive integers r*i,... ,rc. Show that the upper central series
of F is 1 = Zo < ... < Zc = F, and that for each i we have Zi = Z{
and Zi/Zi-i = Z^/Z^-i, where ^ denotes either profinite completion or
pro-p completion.
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[Hint: If A <\ T and F/A is torsion-free, then the conditions of Exer-
cise 21(ii) are satisfied; see Segal (1983), Chapter 1.]

23. Show that a finitely generated abelian pro-p group is isomorphic to
7jp x F for some d and some finite group F.

[Hint: Show that the group is a finitely generated module for Zp,
using Proposition 1.26(iii), and note that Zp is a PID.]

24. Let G be a finitely generated pro-p group and M, N open normal
subgroups of G. Prove that [M, N] is closed in G.

[Hint: Put D = M n N and show that

[M,JV] = [£>,£>
xex yeY

where X and Y are suitable finite subsets of N and M respectively.]



2
Powerful p-groups

In this chapter we restrict attention to finite p-groups. It turns out that
the key to understanding the structure of analytic pro-p groups lies in
the properties of a special class of finite groups.

2.1 Definition (i) A finite p-group G is powerful if p is odd and G/Gp

is abelian, or p = 2 and G/G4 is abelian.
(ii) A subgroup TV of a finite p-group G is powerfully embedded in G,

written N p.e. G, if p is odd and [N, G] <Np,ovp = 2 and [JV, G] < iV4.

Thus G is powerful if and only if G p.e. G; and if N p.e. G then
N < G and N is powerful. When p is odd, G is powerful if and only
if Gp = 3>(G). One should think of 'powerful' as a generalization of
'abelian'. We shall see that powerful p-groups (and, later, pro-p groups)
share many of the simple structural features of abelian groups.

2.2 Lemma. Let G be a finite p-group and let N,K and W be normal
subgroups of G with N <W.

(i) // N p.e. G then NK/Kp.e. G/K.
(ii) // p is odd and K < Np, or if p = 2 and K < N4, then AT p.e. G

if and only if N/K p.e. G/K.
(iii) // Af p.e. G and x € G then (N, x) is powerful.
(iv) // N is not powerfully embedded in W, then there exists a normal

subgroup J of G such that

• if p is odd,

NP[N, W, W] < J < Np[N, W) and \NP[N, W] : J\ = p;

37
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• if p = 2,

NA[N, W]2[N, W, W] < J < N4[N, W] and \NA[N, W] : J\ = 2.

Proof Parts (i) and (ii) are obvious from the definition. To prove
(iii), put H = (N,x). Then [H,H] = [N,H] since N < H, so if N
p.e. G then [H,H] < Np < Hp (respectively, [H,H] < H4 if p = 2).
For part (iv), suppose that p is odd and that [AT, W] ^ Np. Then
Np < NP[N, W] = M, say. Since G is a p-group and M and N are
normal in G, there exists J <G such that Np < J < M and |M : J\ = p.
Then M/J is central in G/J and the result follows. A similar argument
deals with the case where p = 2.

The point of part (iv) is that in order to establish that N p.e. W,
where N < W are normal subgroups of a p-group G, we can factor out
a suitable J and thereby reduce to the case where Np = 1 (if p is odd)
or N4 = 1 (if p = 2), and [N, W] has order p (and [N, W] is central in
G). This technique is illustrated in the proof of the following important
result.

2.3 Proposition. Let G be a finite p-group and N < G. If N p.e. G
then Np p.e. G.

Proof Case 1: where p is odd. It is given that [iV, G] < Np, and we
may assume that (Np)p = 1 = [NP,G,G]. Then [N.G.G] < Z(G), and
it follows that for any given x € N and g G G, the map w i-> [x, #, w] is
a homomorphism from G into Z(G). Then

n [*,$,*>•]=n [*.*»*]'=[^^^]p(p"i)/2 •
j=0 j=0

Hence

0
= II faglfagix3]

j=p-i

p-i

= [x,g]PY[[x,g,xj] since [x,g,x^] £ 1(G) for each j

since [N,G]P = 1. Thus [NP,G] = 1, giving the result.
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Case 2: p = 2. We may now assume that [TV, G] < TV4 and that

[TV2, G, G] = [TV2, G}2 = (TV2)4 = l .

For x G TV and g G G we have

so TV4 < Z(G). Since TV has exponent dividing 8, TV4 is generated by
elements of order 2, hence (TV4)2 = 1. Then with x and g as above we
have

[x2,g] = [x,g][x,g,x][x,g] = [x,g]2 = 1,

since [x,g,x] G [TV,G,G] < [TV4,G] = 1 and [x,g] G [TV,G] < TV4. Thus
[TV2, G] = 1 and the result follows.

Now recall Definition 1.15. When G is a finite p-group, this becomes

P1(G) = G, Pi+1(G) = Pi(G)p[Pi(G),G\ for i > 1.

For the rest of this chapter, we simplify the notation by writing

Gi = Pi(G).

2.4 Lemma. Let G be a powerful p-group.
(i) For each i, Gi p.e. G and Gi+1 = G\ = ${Gi).
(ii) For each i, the map x \—>  xp induces a homomorphism from

Gi/Gi+i onto

Proof (i) Since G = G\ is powerful, Gi p.e. G. Suppose G^ p.e. G for
some i > 1. Then Gi+i = G?[Gi,G] = Gf, and Proposition 2.3 shows
that Gi+i p.e. G. Since G\ < *(Gi) = <3?[Gi,Gi] < G i + i , this implies
also that G^+i = $>(Gi). The result follows by induction.

(ii) Part (i) shows that Gi is powerful, G»+i = P2{Gi) and G^+2 =
^ ( G i ) . So, changing notation, we may assume that i = 1; and then
replacing G by G/G3, we may assume that G3 = 1. Then [G,G] <
G2 < Z(G), so for x,y G G we have

If p is odd then p | p(p —  l) /2 , so

If p = 2 then [G,G] < G4 < G3 = 1. Thus in either case we have
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(xy)p = xpyp. Since G\ = G3 = 1 and Gp = G2, this shows that x i-> xp

induces a homomorphism from G/G2 onto G2/G3, and completes the
proof.

2.5 Lemma. // G = (a±,... , a^) is a powerful p-group, then Gp =
{<•••,ap

d).

Proof Let 9 : G/G2 —»  G2/G3 be the homomorphism given in the pre-
ceding lemma. Then G2/G3 is generated by {(aiG2)0,... , (o<dG2)0}, so
G2 = (af,... , a2)G3- Since G3 = $(G2) and G2 = Gp, by Lemma 2.4,
this gives the result.

2.6 Proposition. If G is a powerful p-group then every element of Gp

is a pth power in G.

Proof We argue by induction on \G\. Let g G Gp. By Lemma 2.4,
there exist x G G and y G G3 such that # = xp?/. Put H = (Gp,x).
Since Gp = G2 p.e. G by Lemma 2.4, Lemma 2.2 (iii) shows that H is
powerful. Also g G Hp, since y G G3 = G\. If H ^ G then the inductive
hypothesis gives that g is a pth power in H. If H = G, then G = (x) is
cyclic, since now G = (Gp,x) = $(G)(x); and in this case the result is
trivial.

We can now summarise the main features of the lower p-series in a
powerful p-group:

2.7 Theorem. Let G = ( a i , . . . , a^) be a powerful p-group, and put
Gi = Pi(G) for each i.

(i) Gi p.e. G;
(ii) Gi+k = Pk+i(Gi) = Gf for each k > 0;
(iii) Gi = Gpi~X = {x**-1 I x G G} = (af~\... y*'1);
(iv) the map x \-^ xp induces a homomorphism from Gi/Gi+i onto

i, for each i and k.

Proof We have already established (i), and observed that G^+i = Gp =
P2(Gi) for each i. It follows from Proposition 2.6 that G»+i = {a:p | x G
Gi}, and then by induction that Gj = {xp | x G G}. Since Gi is a
subgroup this implies that Gi = Gp . Similarly, repeated applications
of Lemma 2.5 show that Gi = {a\ , . . . ,a^ ). Thus we have (iii).
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Part (iv) follows from Lemma 2.4 (ii). Finally, taking G{ in place of G
and k + 1 in place of i, in (iii), we get

= {/~1+fc I y e G} = Gi+k ,

giving (ii).

2.8 Corollary. If G = ( a i , . . . ,a^) is a powerful p-group then G =
(cLi)... (a<f); i.e. G is the product of its cyclic subgroups (a*).

Proof Say Ge > Ge+i = 1. Arguing by induction on e, we may suppose
that G = ( o i ) . . . (cLd)Ge. But Ge = (a\ , . . . , a?d ) and Ge is central
in G, so the result follows. (For a partial converse, see Exercise 8.)

The two major results of this chapter, Theorems 2.9 and 2.13, relate
the property of being powerful to the existence of 'small' generating sets
for subgroups of a p-group. For a finite p-group G, we denote by d(G)
the minimal cardinality of a set of generators for G. Thus d(G) is also
the dimension of G/Q{G) as a vector space over Fp.

2.9 Theorem. If G is a powerful p-group and H < G then d(H) <
d(G).

Proof The proof is by induction on |G|. Let d = d(G) and put m =
d(G2). Lemma 2.4 (i) shows that G2 is powerful, so by the inductive
hypothesis we may suppose that the subgroup K —  H n G2 satisfies
d(K) < m.

Now the map TT : G/G2 —• G2/G3 given by x »-» xp is an epimor-
phism (by Lemma 2.4 (h)), and dim(ker TT) = d — m (where dim denotes
dimension as an Fp-vector space). So dim(ker7r fl HG2/G2) < d —  m,
whence

dim ((iJG2/G2)7r) > dim(iJG2/G2) - (d - m) = m - (d - e)

where e = dim(i/G2/G2). Let h±,..., he be elements of H such that
HG2 = (hu...,he)G2. Since <f>(K) < K? < G3, the subspace of
K/$(K) spanned by the cosets of h\,...,hp

e has dimension at least
dim((i/G2/G2)7r) > m — (d —  e). Since d(K) < m, we can find d —  e
elements y i , . . . , ya-e of K such that
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Then K = (h^ . . . , h\, yu . . . , yd-e) and so

H = Hn(h1,...,he)G2 = (hu...,he)K= (hu...,he,y1,...,yd-e).

Thus d(H) < d as required.

The ranA; of a finite group G is defined to be

rk(G) = sup{d(#) I H < G} .

Theorem 2.9 can be re-stated succinctly: if G is a powerful p-group then
rk(G) = d(G). The exact converse of this statement is false (see Exercise
3); our second major theorem is nevertheless a sort of converse: it shows
that in any finite p-group G, there is a powerful normal subgroup of index
bounded by a function of rk(G). The proof requires some preparation.

2.10 Definition For a finite p-group G and a positive integer r, F(G, r)
denotes the intersection of the kernels of all homomorphisms of G into
GLr(Fp).

Since the image of any homomorphism of a p-group G into GLr (Fp) is
a p-group, and every p-subgroup of GLr(Fp) is conjugate to a subgroup
of the lower uni-triangular group Ur(Fp), we could equally well define
V(G,r) as the intersection of the kernels of all homomorphisms of G
into Ur(Fp). Note that an element g of G belongs to V(G, r) if and only
if g acts trivially in every linear representation of G on any Fp-vector
space of dimension at most r.

For r G N, define the integer A(r) by

2.11 Lemma, (i) The group Ur(Fp) has a series, of length X(r), of
normal subgroups, with elementary abelian factors.

(ii) If G is a finite p-group, then G/V(G, r) has a series with these
properties.

Proof (ii) follows from (i), since G/V(G,r) is isomorphic to a subgroup
of the direct product of finitely many copies of Ur(Fp). To prove (i),
note that the result is trivial if r = 1. If r > 2, put s = [r/2]. Then the
elements of Ur(Fp) have the form

4 0 \
3 C J
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with A G Us(Fp) and C G Ur_s(Fp). The mapping which sends x to
(A, C) is a homomorphism from Ur(Fp) into US(FP) x Ur_s(Fp), and its
kernel is easily seen to be an elementary abelian p-group. The result
follows by an inductive argument.

2.12 Proposition. Let G be a finite p-group and r a positive integer.
Put V = V(G,r) and let W = V if p is odd, W = V2 if p = 2. //
N < G, d(N) < r, and N <W, then N p.e. W.

Proof The proof is by induction on |JV|. Suppose first that p is odd
and that [N, V] j£ Np. In view of Lemma 2.2 (iv), we may assume that
Np = 1 and |[7V, V]| = p. Since G is a p-group, there exists M < G
with [N, V] < M < N and \N : M\ = p. Since N/[N, V] is elementary
abelian, we have d(M/[N,V\) = d(N/[N,V]) - 1 < r - 1; as [N, V] is
cyclic it follows that d(M) < r. Hence, by the inductive hypothesis,
[M, V] < Mp = 1. Thus M is central in JV, and as N/M is cyclic it
follows that N is abelian. Then N is an Fp-vector space of dimension
at most r, so the conjugation action of V on N must be trivial. Thus
[N, V] = 1, in contradiction to the initial assumption.

Now suppose p = 2. As above, we reduce to the case where iV4 = 1
and \[N, W]\ = 2. Since any product of squares in N is congruent to a
square modulo [JV, W], it follows that (N2)2 = 1. Also, if a,b e N then

so N2 < Z(iV). Now N/N2 is an Fj*-vector space of dimension at most
r, so [N, V] < N2. Hence for a £ N and v &V we have

(a2y = (av)2 = (ba)2 with b e N2

= a2.

Thus [N2, V) = 1. Therefore [N, V, V] = 1 and so

[N, W] = [N, V2] < [N, V)2[N, V,V} = 1,

contrary to assumption.

Remark In the proof of Proposition 2.12, the defining property of
V(G,r) was only brought into play with regard to linear representations
of G arising from the conjugation action of G on elementary abelian
sections of G. Hence the result remains valid if we replace V, in the
statement, by the (possibly larger) subgroup
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where (A, B) runs over all pairs of normal subgroups of G with B < A
and A/B elementary abelian of rank at most r.

2.13 Theorem. Let G be a finite p-group of rank r. Then G has
a powerful characteristic subgroup of index at most prX^ if p is odd,
2r+rA(r) ^ p = 2

Proof Put V — V(G,r).  By Lemma 2.11, there is a series of normal
subgroups running from G to V, of length at most A(r), with each factor
elementary abelian. Since G has rank r, each of these factors has order
at most pr, so |G : V| < prA(r). If p is odd, Proposition 2.12 shows that
V is powerful. If p = 2, we know by Proposition 2.12 that V2 is powerful;
and since \V/V2\ < 2r we have \G : V2\ < 2r+x^r\ This completes the
proof.

Remark It is clear from the proof that we could take r = s\xp{d(K) \
K < G} in Theorem 2.13, giving a sharper result. With a little more
care, r can be reduced further: see Exercise 6. For an interesting appli-
cation see Exercise 7.

Notes

The material of this chapter is all from Lubotzky and Mann (1987a).
The proof of Theorem 2.9 is due to A. Caranti.
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Exercises

G always denotes a finite p-group.

1. Let N p.e. G. Prove: (a) If H < G and H is powerful then NH is
powerful, (b) If S C G and N = (SG) then N = (S). (c) [JV, G] p.e. G.
(d) I f M p.e.G then iVM and [JV, M] are both powerfully embedded in
G. (e) G has a unique maximal powerfully embedded subgroup.

2. Let M,N <G. Prove the following:
(i) if N p.e. G then Npi p.e. G for all i;
(h) if [N,M] p.e. N then [A^, M] = [AT, M]p;
(hi) (Shalev 1993b) if JV p.e. G and M p.e. G then [ A ^ \ A P ' ] =

[N,M]pi+J for a lHand j .
[Hints: for (%), induction, using Proposition 2.3 and Theorem 2.7. For

(H), examine the proof of Proposition 2.3. For (Hi), induction on i + j.]

3. (a) Give an example of a p-group G such that Gp ^ (Gp)p. [Hint:
There exists a group with d(G) = 2, G4 - 1 and |G| - 212.] (b) Give an
example of a p-group G with d(G) = rk(G) such that G is not powerful.

4. (i) Show that a 2-group G is powerful if and only if G/(G2)2 is
abelian.

(h) Show that if G is a powerful 2-group then [Pi (G), Pj (G)] <
Pi+j+i(G) for all i and j .

5. Suppose G is powerful and has exponent pe. For each k, let E^ =
{x £ G \ xp = 1 } . (a) Show that the mapping x i—> x p is an
endomorphism of G. (6) Show that JKe-i is a subgroup of G, of order
equal to \G : Pe(G)|. (c) Show by an example that Ee-\ need not be
powerful, (d) Show that if all characteristic subgroups of G are powerful
then Ek is a subgroup of G for each k.

6. Define $°(G) = G and, for i > 0, $i + 1((?) = $($*(£)). Let 5 =
suPi>od($*(G)) and put W = $A(s)+e(G), where e = 0 if p is odd, e = 1
if p = 2. Show that W is powerful and that \G:W\< ps(A(5)+e).

7. Let 5 and e be as in Exercise 6. Show that rk(G) < s(X(s) + 1 + e).
[Thus a bound for d(K) as K runs over the characteristic subgroups

of a p-group gives a (slightly larger) bound for d(H) as H runs over all
subgroups.]
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8. (a) Suppose p is odd. Show that G is powerful if (and only if) G is
the product of d(G) cyclic subgroups, (b) Show by example that this
fails if p = 2.

9. A d-tuple (x\,... , Xd) of elements of G is called a basis if each element
of G can be expressed uniquely in the form x\* ... x^d. This is equivalent
to the stipulation that G — (xi)... (xj) and \G\ = \(xi)\... \{xd)\- Show
that if G is powerful then G has a basis of cardinality d(G).

[Hint: Put Ĝ  = Pi(G) for each i, and suppose that Ge+i = 1 ^
Ge. Let (xiGe,... ,XrfGe) be a basis for G/Ge, found inductively, and
suppose that (x{ , . . . ,#§e ) is a basis for Ge. Let s < k < d, and
suppose that XkGe has order p£ in G/Ge. Using the fact that Ge-t{xk)
is powerful (why?), show that for some w G (#i, . . . ,xs) the element
x'k = wxk has order p^. Show that then (x±,... , xs, x^+1,... , x'd) is a
basis for G.]

10. Let M = Gpn if pis odd, M = (G2")2 if p = 2. Suppose that M
is not powerful. Show that d(M) > pn. Deduce that there exist normal
subgroups B < A of G and an element x G G such that (%) A/.B is
elementary abelian of rank > pn, and (H) [A, xpU] jt 5 .
[ffin :̂ For the first part, use Proposition 2.12 and consider the exponent
of Ur(Fp). Then use the Remark following Proposition 2.12.]

11. The wreath product Cp I X, for a finite group X, is the semi-
direct product of the group algebra FP[X] by X, with X acting by right
multiplication. Now let H be a finite p-group containing an elementary
abelian normal subgroup A and an element x such that [>l,xp ] ^ 1.
Show that there exist a G A such that [a, xp ] = 1 and (a,x)/(xp ) =
Cp I Cpn.

12. Prove the following theorem, due to Shalev (1992a): if G does not
involve Cp I Cpn then Gpn is powerful if p is odd, and (G2 n)2 is powerful
if p = 2.

[Hint: Use Exercises 10 and 11. (We say that G involves W if there
exist K <H < G such that H/K ^ W.)]

13. A powerful 2-generator p-group is metacyclic (i.e. has a cyclic
normal subgroup with cyclic quotient).
[Hint: Use Exercise 1 (b) to show that the derived group is cyclic]

14. If p is odd then every metacyclic p-group is powerful.
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15. Show that if p is odd, a p-group which is the product of two cyclic
subgroups is metacyclic.

16. Let H= ( # I , ... ,Xd) be the free-nilpotent group of class c on the
given generators (so H = F/^c+i{F) where F is free on {rci,... ,Xd] ).
Put r = rk(iJ), £ = \{r) if p is odd, £ = 1 + X(r) if p = 2. (i) Show that
i7p /i/ p n is a powerful p-group for every n> L (ii) Show that the map
μ : Xi I—)- x^ , (i = 1,... , d), defines an injective endomorphism of if,
with I if : Hμ] = pm for some m. (iii) Deduce that e^ery finite p-group
is involved in a powerful p-group, of the same nilpotency class.

[Hint: For (i), use Lemma 2.11 and Proposition 2.12. For (ii): the fact
that \H : Hμ\ is a power of p follows from Proposition 3 in Segal (1983),
Chapter 6. The injectivity of μ depends on a Hirsch length argument
together with the fact that H is torsion-free (see Hall (1969), Theorem
5.6, Corollary).]
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Prop groups of finite rank

We begin this chapter by developing the theory of powerful pro-p groups.
This parallels the theory of Chapter 2, which can indeed be considered a
special case of it: however we feel that the structure of the whole theory
emerges more clearly when the arguments which belong essentially to
finite p-groups are presented separately.

The heart of the chapter is in the second section, where our first major
theorem on pro-p groups appears: this characterises the pro-p groups of
finite rank as exactly those which contain a finitely generated powerful
open subgroup. Various alternative characterisations of this class of
pro-p groups are derived in §3.3. Further characterisations appear in
the exercises, and later throughout the book; they are summarised in
Interlude A.

3.1 Powerful pro-p groups
3.1 Definition Let G be a pro-p group

(i) G is powerful if p is odd and G/Gp is abelian, or if p = 2 and G/GA

is abelian
(ii) Let N <o G. Then N is powerfully embedded in G, written N

p.e. G, if p is odd and [N, G] <W, or if p = 2 and [N, G] < W.

Note that if N p.e. G then N <o G and N is powerful. Using the fact
that NP (resp. TV4) is the intersection of the open normal subgroups of
G containing it, we deduce the following important criterion:

3.2 Proposition Let G be a pro-p group and N <o G. Then N p.e. G
if and only if NK/K p.e. G/K for every K <\o G.

48
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3.3 Corollary. A topological group G is a powerful pro-p group if and

only if G is the inverse limit of an inverse system of powerful finite

p-groups in which all the maps are surjective.

Proof Suppose G is a powerful pro-p group. Then G = limG/N where N

runs over the open normal subgroups of G, and each G/N is a powerful

finite p-group. Conversely, suppose G = limGA where each GΑ is a

powerful finite p-group, and Gμ —> GΑ is surjective whenever /i > A.

Then G is a pro-p group, and if K <\o G then G/K is a quotient of some

GΑ, hence powerful; hence G is powerful by Proposition 3.2.

The way is now clear for us to carry over the results of Chapter 2

from finite p-groups to pro-p groups. However, it is necessary to restrict

attention to finitely generated pro-p groups, in which the lower p-series

is well-behaved, i.e. consists of open subgroups: see Proposition 1.16.

3.4 Lemma Let G be a powerful finitely generated pro-p group. Then

every element of Gp is a pth power in G, and Gp = $(G) is open in

G. If p = 2, then G 4 is open in G.

Proof Let g eGP. Then gN e (G/N)p for each N <o G, hence by

Proposition 2.6 we see that gN is a pth power in G/N for each such N.

It follows that g is a pth power in G (see Exercise 1.6). Hence Gp < G p ,

and so Gp = Gp consists of pth powers. Since [G, G] < G p , this shows

that Gp = $(G) = ^2(G), which is open by Proposition 1.16. If p = 2, a

similar argument shows that G4 = G4 > Ps(G), giving that G 4 is open.

3.5 Corollary. Let G be as in Lemma 3.4- Then for each i we have

Gpi = ( G ^ " 1 ) p = {xpt I x e G}p.e. Gp%~X . (*)

Proof It follows from Proposition 2.3 and Proposition 3.2 that GP p.e.G.

Thus the case i = 1 of (*) reduces to Lemma 3.4. The general case follows

by induction, on replacing G by Gp

3.6 Theorem. Let G = ( a i , . . . ,a^) be a finitely generated powerful

pro-p group, and put Gi = P%{G) for each i.

(i) Gi p.e. G;

(ii) Gi+k — Pk+i(Gi) — Gp for each k>0, and in particular G^+i =
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(iii) Gi = OP''1 = {x^1 \x€G} = (af-\... , at1);
(iv) the map x 1—>  xp induces a homomorphism from Gi/Gi+i onto

i, for each i and k.

Proof The second equality in (iii) follows from Corollary 3.5. Everything
else follows from Theorem 2.7, applied to the finite p-groups G/Gp for
sufficiently large n; the subgroups Gp being open by Corollary 3.5 (in-
deed they form a base for the neighbourhoods of 1 in G, by Proposition
1.16 (iv), since Gpn < Pn+i(G) for each n).

3.7 Proposition. If G = (ai, . . . ,a^) is a powerful pro-p group,
then G = (ai) . . . (a^), i.e. G is the product of its procyclic subgroups

Proof Let A— (ai) . . . (a^). As a product of finitely many closed, hence
compact, subsets of G, A is a closed subset ofG. S o A ^ p l ^ ^ . AN.
But Corollary 2.8 shows that AN/N = G/iV for each iV <\o G; conse-
quently A = G.

For any topological group G, d(G) denotes the minimal cardinality
of a topological generating set for G. If G is a finitely generated pro-p
group, we thus have

d(G)=dimFp(G/*(G)).

Combining Theorem 2.9 and Proposition 1.5, we obtain

3.8 Theorem. Let G be a powerful finitely generated pro-p group and
H a closed subgroup. Then d(H) < d(G).

We now extend Definition 2.10 to the case where G is a finitely gen-
erated pro-p group: thus V(G,r) will denote the intersection of the
kernels of all homomorphisms of G into GLr(Fp). Since G is finitely
generated and GLr(Fp) is finite, these homomorphisms are all contin-
uous, by Corollary 1.21, and so there are only finitely many of them:
hence V(G,r) is open in G, as well as being (obviously) characteristic.
(When p = 2, we shall also need to know that V(G, r)2 is open in G;
this follows from Proposition 1.7, Corollary 1.20 and Proposition 1.14.)

With the help of Proposition 3.2, Proposition 2.12 translates into
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3.9 Proposition. Let G be a finitely generated pro-p group and r a
positive integer. Put V = V(G, r). Let N <o G satisfy d(N) < r, and
N <V if p is odd, N < V2 if p = 2. Then N p.e. V if p is odd, N
p.e. V2 if p = 2.

We can now carry over the proof of Theorem 2.13, virtually word for
word, to obtain

3.10 Theorem. Let G be a finitely generated pro-p group, and suppose
that r = supiV<loG! d(iV) is finite. Then G has a powerful characteristic
open subgroup of index at most prX^ if p is odd, 2r+rA(r) if p = 2.

(Here, A(r) is the integer defined, as in Chapter 2, by 2X^~1 < r <

3.2 Pro-p groups of finite rank
The next thing to do is to clarify the various possible definitions of rank:

3.11 Proposition. Let G be a profinite group, and put

n = sup{d(iJ) \H <CG}
r2 = sup{d(#) \H <CG and d(H) < oc}
r3 = sup{d(tf) I H <o G}
r4 = sup{rk(G/AT) | N <o G} .

Then r\ = r2 = r3 = r4.

Proof Obviously r2 < r\ and r$ < r±. If N <\o G and M/N < G/N,
then d(M/N) < d(M) < r3; so r4 < r3. Also for such M and N we have
M = NX, where X is a finite subset of G; putting H — (X) we see that
d(M/N) = d(HN/N) < d{H) < r2, giving that r4 < r2. Finally, let
H <c G. Then d(H) = sup{d(HN/N) | N <o G} < r4, by Proposition
1.5; hence r\ < r4.

3.12 Definition Let G be a profinite group. The rank rk(G) of G is
the common value of r i , . . . , r4 given in Proposition 3.11.

Note that a profinite group of finite rank is, by definition, finitely gen-
erated. If G is a finitely generated powerful pro-p group, then Theorem
3.8 shows that rk(G) = d(G), so G has finite rank. More generally, if
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G is finitely generated and has a powerful open subgroup, then G has
finite rank: for it is easy to see that a profinite group which has an open
subgroup of finite rank has finite rank itself (cf. Exercise 1). Combining
this fact with Theorem 3.10, we obtain the main result of this chapter:

3.13 Theorem. Let G be a pro-p group. Then G has finite rank if and
only if G is finitely generated and G has a powerful open subgroup; in
that case, G has a powerful open characteristic subgroup.

3.14 Corollary. Let G be a pro-p group and r a positive integer. Sup-
pose that every open subgroup of G contains an open normal subgroup
N of G with d(N) < r. Then G has finite rank.

Proof The hypothesis implies that G is finitely generated. Now let
W = V(G,r) if p is odd, W = V(G,r)2 if p = 2. Then W contains an
r-generator open normal subgroup N of G, and Proposition 3.9 shows
that N is powerful.

Similarly (see Exercises 2.6 and 2.7) it is easy to derive

3.15 Corollary. Let G be a pro-p group and r a positive integer. If
d(if) < r for every topologically characteristic subgroup K of G, then
rk(G) < r(A(r) + 1 + e) where e = 0 if p is odd, e = 1 if p = 2.

3.3 Characterisations of finite rank
In this final section, we explore various conditions on a pro-p group that
are necessary and/or sufficient for it to have finite rank; many more will
appear in later chapters. They are summarised in Interlude A.

3.16 Theorem. Let G be a pro-p group. Then the following are equiv-
alent:

(a) there exist s <E N and c>0 such that \G : Gpk\ < cpks for all k;
(b) there exist s G N and c > 0 such that \G : Gp | < cpks for all k;
(c) G has finite rank.

Moreover, if in (c) G has rank r then we can take s = r in (a) and
(b); and given s as in (a), G has an open normal subgroup K with
rk(if) < s.

Proof Suppose that G has finite rank r. By Theorem 3.10, G has a
powerful open normal subgroup if, say. Put Hi = Pi(H) for each i.
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Then \H : #21 < P7\ &nd it then follows from Theorem 3.6 (iv) that
\H : ffjfc+il < pkr for each k. Now Hk+i = Hpk by Theorem 3.6 (iii), so
we have

\G:Gpk\ < \G:Hpk\ < \G : H\pkr .

Thus (c) implies (b). Obviously (b) implies (a). Finally, suppose (a)
holds. Then \G : $(G)| < \G : &\ < cps is finite, so G is finitely
generated. Put W_= V(G, s) if p is odd, W = V(G, s)2 if p = 2,
and write G{ = Gp% for each i. Since W <\o G, there exists m such
that Gm < W. Now our hypothesis implies that for some k > m,
\Gk ' Gjk4-i| < ps- for if not, we would have, for sufficiently large n,

|<J- • Vjrm+n| > |(jrm . C r m + n | > p v > Cp p = Cpv ,

contradicting the hypothesis. Choose such a k and put if = Gk. Then
$(if) > XP > G/C4-1, so \K/<b(K)\ < ps and so d(K) < s. Now Propo-
sition 3.9 shows that K is powerful, and Theorem 3.8 then shows that
rk(if) = d(K) < 5. This proves the final statement of the theorem, and
shows that (a) implies (c).

3.17 Theorem Let G be a pro-p group. Then the following are equiva-
lent:

(a) G is the product of finitely many procyclic subgroups;
(b) G is the product of finitely many closed subgroups of finite rank;
(c) G has finite rank;
(d) G is finitely generated as a irLp-powered group', i.e. G has a finite

subset X such that every element of G is equal to a product of the form
x^1 ... Xgs with Xj e X and Xj G Zp.

(e) G is countably generated as a irLp-powered group'.

Proof Suppose G has finite rank. By Theorem 3.10, G has a powerful
open normal subgroup, K say. Also K is finitely generated, so Propo-
sition 3.7 shows that K = C\... Cd for some procyclic subgroups Cj of
K. Now let {x i , . . . , Xm} be a transversal to the cosets of K in G. Then
G = C i . . . Cdjx^... (xm). Thus (c) implies (a).

Trivially (a) implies (b). Now suppose (b) holds. Thus G = Hi... Ht

where each Hj is a closed subgroup of finite rank. By Theorem 3.16,
there exist c > 0 and s € N such that \Hj : Hj \ < cpks for each
j and all k. But G/Gpk is the product of its subgroups HjGpk /Gpk

(j = 1 , . . . ,*), so \G : Gpk\ < (cpksY = cVfcst. Using Theorem 3.16 in
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the reverse direction now shows that G has finite rank. Thus (b) implies
(c).

Now Proposition 1.28 shows that (a) implies (d). Clearly (d) implies
(e). Finally, to show that (e) implies (a), suppose X is a countable
subset of G which generates G as a 'Zp-powered group'. For each finite
sequence x = (#i , . . . , xs) of elements of X, put

Then each of the sets M(x) is closed in G, and by hypothesis G is the
union of the M(x) as x ranges over all finite sequences in X. Now, as
X is countable, the set of all such sequences is countable; it follows by
the Baire Category Theorem (see Exercise 6) that for some x, M(x)
contains a non-empty open subset of G. Thus there exist w G G and
N <o G with wN C M(x) = x\p . . . x?p. Let {*i,... , tm} be a set of
representatives for the cosets of N in G. Then we have

G = (h) ...(tm) • (w) • (xi) ...fa) ;
thus (a) follows.

We conclude the chapter by looking at two kinds of growth condi-
tion: 'subgroup growth' in Theorem 3.19 and 'word growth' in Theorem
3.20. Both theorems will be refined later (as will Theorem 3.16), using
more sophisticated machinery (see §11.1 and Interlude E). Their proofs
illustrate the following useful principle:

3.18 Lemma Let G be a finitely generated pro-p group and r a positive
integer. Let N be an open normal subgroup of G maximal with respect
to the property d(N) > r. Then

(i) N = CG(N/Q(N)), and
(ii) \G:N\< pl'-VW where d = d(N).

Proof (i) Let C = CG(N/Q(N)). Then N < C < G. Suppose N < C.
Then there exists an element Nx of order p in C/N D Z(G/N). Putting
M = (N,x), we have N < M <o G. But M/$(N) is abelian and
contains N/$(N), so d(M) > d(M/$(iV)) > d(N/$(N)) = d(N) r,
contradicting the maximality of N. Hence N = C as claimed.

(ii) By (i), G/N acts faithfully by conjugation on N/$(N) ^ Fp,
so G/N is isomorphic to a subgroup of U^ (Fp). Since every normal
subgroup of G/N can be generated by r —  1 elements, Lemma 2.11
shows that \G/N\ <p(r-1)M«0.
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3.19 Theorem Let G be a pro-p group, and for each n let an denote the
number of open subgroups of index at most pn in G. Then the following
are equivalent:

(a) there exist c > 0 and s G N such that o~n < cpns for all n;
(b) G has finite rank.

Proof Suppose first that G has finite rank r. If H <o G then H/$(H)
is elementary abelian of rank at most r; since every open subgroup of
index p in H contains ®(H), it follows that H contains no more than pr

open subgroups of index p. Now every open subgroup of index pn+1 in
G is contained in at least one open subgroup of index pn. Hence <rn+i <
&n +VT(Jn < Pr+10Vi5 and it follows by induction that an < pn(r+1) for
all n. Thus (b) implies (a).

Now suppose (a) holds. Since $(G) is the intersection of open sub-
groups of index p in G, and there are at most cps of these, we see that
$(G) is open in G. Hence G is finitely generated. Our aim now is to
show that there is a finite upper bound for the numbers d(iV) as N
ranges over all open normal subgroups of G. Once this is established, it
will follow by Corollary 3.14 that G has finite rank.

So let r be a positive integer, and suppose that the set of N <o G
such that d(N) > r is non-empty. Choose N to be a maximal member
of this set, and put d = d(N). By Lemma 3.18, we then have

\G : N\ < p(r-1)A(d) .

On the other hand, N/$(N) is a d-dimensional vector space over Fp,
and so contains at least p^"1) /4 subspaces of codimension [d/2]. Thus
G contains at least p^"1)2/* open subgroups of index < p(r-i)A(d)+[d/2] ?

and so

Since r < d and X(d) < 1 + log2 d, this implies that d < 4s log2 d + c*,
where c* = 6s+4 logp c, and hence that d is bounded above by a function
of c and s. Thus we have the required upper bound for r.

Condition (a) in Theorem 3.19 says that G has polynomial subgroup
growth. For a finite subset X of G, the word growth of G (relative to X)
is the function fx given by fx(p) —  | ^ n ( ^ ) | where

Wn (X) = {xix2 ...xn\xieXU X~l U {1} for each %} C G

denotes the set of all (values in G of) group words of length at most n
onX.
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3.20 Theorem Let G be a pro-p group and X a finite topological gen-
erating set for G. If there exist c, s > 0 such that fx{n) < cns for all
n, then G has finite rank.

Thus having 'polynomial word growth' is a sufficient condition for a
finitely generated pro-p group to have finite rank; unlike the correspond-
ing subgroup growth condition, however, it is certainly not necessary:
see Exercise 13 and Interlude E.

Proof Let r > 2 be a positive integer, and suppose that the set of open
normal subgroups N of G with d(7V) > r is non-empty. We shall show
that r is bounded above by a function of c and s only; that G has finite
rank then follows by Corollary 3.14.

Choose AT to be a maximal such subgroup and put d = d(iV), so d> r.
Then G/N acts faithfully by conjugation on N/$(N) = F^, by Lemma
3.18. It follows by Lemma 2.11 that G has a series of normal subgroups

G = No > JVi > • • • > Nk = N > Nk+1 =

with each factor Ni-i/Ni elementary abelian and k = X(d) < 1 + logcL
Now let 0 < i < k and suppose that Ni is generated by a subset of

Wi(X), for some i>1. If N{ > N then d(N{) < r, by the choice of
N, while if Ni = N then d(JVj) = d; so in any case, d(iVi) < d, and it
follows that every generating set for Ni contains one of cardinality at
most d (Exercise 1.5). Hence there exist 2/1,... , yd € We(X) such that
Ni = (y i , . . . ,2/d). As Ni/Ni+i is elementary abelian (and of course
iVi+i is open in Ni), we can find a transversal T̂  to the cosets of iV^+i
in Ni consisting of elements of the form

with 0 < CLj < p for each j ; each such element evidently lies in
W(P_1)M{X).

It follows now that 7Vi+i is generated by a subset Z, say, consisting
of elements of the form

(see the proof of Proposition 1.7). Thus Z C W^ (X) where t = (2(p -
l)d + l)t < 2pd£.

Since No = G is generated by X C V^i(X), we see by induction
that N = Nk can be generated by a subset of W(2Pd)k(X). Taking
£ — (2pd) k in the above discussion, we thus obtain a transversal Tk to
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Nk/Nk+1 = N/$(N) with Tk C Wn(X) where n = (p-l)d£ < (2pd)fc+1.
By hypothesis, |Wn(X)| = fx(p) < cnS5 consequently

Thus

d < logp c + (fc + l)s(logp 2 + 14- logp d)

since p>2 and fc < 1 + log d. It follows that d is bounded above by a
function of c and s, giving the result since r < d.

Notes

The theory of §3.1 is from Lubotzky and Mann (1987b). Lemma 3.18
and Theorems 3.19 and 3.20 are from Lubotzky and Mann (1991). The
other results are new in the stated form; many of them appeared in
different versions in [L].

Warning: most authors use the word 'rank' to mean the minimal size
of a generating set for a profinite group (what we denote by d(G)).
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Exercises

1. Let G be a profinite group and let N <c G. Show that

max{rk(AO,rk(G/AT)} < rk(G) < rk(iV) + rk(G/iV) .

Deduce that if H <o G and rk(H) is finite then rk(G) is finite.

2. Fix a prime p, and for k e N put

(a) Let H be a finite p-group, and put d(H) — k. Show that the number
of ordered /^-element generating sets for H is P(k) \H\k. [Hint: Consider

(b) Let G be a finite p-group, and denote the number of subgroups H of
index pn in G with d(H) = k by an(k). Show that an(k) < P(k)~1pnh.
Deduce that the number of fc-generator subgroups of index pn in G is at
most S(k)pnh. [Hint: Count ordered fc-tuples in G, and use (a).]
(c) Now let G be a finitely generated pro-p group. Show that the results
of (b) are still valid. [Hint: Consider a suitable finite quotient of G.] (d)
Let G be a pro-p group of finite rank r, and define o~n as in Theorem
3.19. Show that an < 2S(r)pnr for all n > 1.

3. Let G be a pro-p group, denote the number of open subgroups of
index pn in G by an, and the number of open fc-generator subgroups
of index pn in G by bn(k) (so bn(k) = "^2j=o^n(j) m the notation of
Exercise 2). The 'lower density ' of the family of ^-generator subgroups
of G is then defined to be

6(h) = liminfn_^oo6n(A:)/an .

Prove: If 6_(k) > 0 for some finite k then G has finite rank. [Hint: Use
Exercise 2 and Theorem 3.19.]

4. (Shalev 1992a) Let G be a finitely generated pro-p group. Show that
if G does not have finite rank then G involves Cp I Cpn for every n
(i.e. for each n, there exist subgroups K < H of G such that H/K =
Cp I Cpn). [For the definition of Cp I Cpn, see Exercise 2.11. Hint: Note
that GPn is open in G for each n (Exercise 1.14). Then use Exercise
2.12.1
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5. Show that for each n there is an epimorphism of Cp I Cpn+i onto
Cp I Cpn. Hence construct a 2-generator pro-p group of infinite rank.

6. Prove the following special case of the Baire Category Theorem: Let
G be a compact Hausdorff space, in which every non-empty open set
contains a non-empty compact open subset If G = USi ^ and eac^
subset Mi is closed in G, then for some n, Mn contains a non-empty
open subset of G. [Hint: Suppose false. Put Yn = G \ UlLi ^*> show
that Yn = G, and hence find a sequence of non-empty open compact
sets (Tn) such that Tn + i C Tn n Yn+i for each n. Deduce that f]Yn D

7. Let G be a pro-p group of finite rank, and let m > 0 . Show that for
all sufficiently large k, ^pk-m(G) < Gp .
[Hint : Use Theorem 3.16 .]

8. Let G be a pro-p group. Put e = 0 if p is odd, e —  1 if p = 2. Suppose
that for some fe, jpk-e(G) < Gp2k. Prove that G^n is powerful where
n = 2 * - € - l .
[Hint: This depends on the following commutator formula, valid in all
groups:

where /(z, j) = (p
i ){p.) and the product runs over 1 < i < pn and

1 < j < Pn- It is a special case of a result due to Rex Dark, see Passman
(1977), Chapter 11, Theorem 1.16. Show that for each relevant pair
(ij), either i + j > pk~e or p n + 1 + e | f(ij).]

9. (A. Shalev) Let G be a finitely generated pro-p group, and let e be as
in Exercise 8. Prove that the following are equivalent:

(a) G has finite rank;
(b) for some k > 1, 7pfc-e(G) < Gp2ks;
(c) for all sufficiently large fc, 7p*-e(G?) < G^2fc.

[Hint: Show that (b) implies that Gp2fc is open in G. Then use Exercise
7, Exercise 8 and Theorem 3.13. In Chapter 11 we shall show that G is
virtually powerful if and only if, for some n and h with n < ph, every
n-fold commutator in G is a p^th power in G.]
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10. A pro-p group is meta-procyclic if it has a procyclic normal subgroup
with procyclic quotient. Show that a pro-p group is meta-procyclic if
and only if it is an inverse limit of met acyclic p- groups.

11. Show that a powerful pro-p group which can be generated (topo-
logically) by 2 elements is meta-procyclic. Show also that such a group
either has an open normal procyclic subgroup or else is torsion-free.

12. Let G be a finitely generated powerful pro-p group, Gi = P%{G) and
di = d(Gi).

(i) Show that di+i < di for each i.
(h) Suppose that G*+i is (topologically) generated by {a i , . . . , ddi+1};

show that Gi has a topological generating set {&i,... ,b^} such that
ai = t$ for i = 1 , . . . ,d»+i.

(iii) Deduce that G has a topological generating set {# i , . . . , x^ } such
that for every i> 1, Gi is (topologically) generated by x\ , . . . , xp

di .
[Hint: For (H), having found &i,... , 6di+1, show that their images in

Gi/Gi+i form part of a basis. For (iii), start with a generating set for
Gk where dk is minimal, and work backwards to G\ = G.]

13. Milnor (1968) and Wolf (1968) have proved that a soluble group
having polynomial word growth relative to some finite generating set
must be virtually nilpotent. Deduce from this that if a soluble pro-p
group has polynomial word growth relative to some finite topological
generating set, then it is virtually nilpotent.
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Uniformly powerful groups

In the previous chapter, we saw that every pro-p group of finite rank has
an open normal subgroup which is powerful. In this chapter we show
that this subgroup may be chosen so as to satisfy a slightly stronger con-
dition, that of being 'uniformly powerful'. We then show that uniformly
powerful groups have a remarkable property: the group operation can
be 'smoothed out', to give a new, abelian, group structure, and this new
abelian group is in a natural way a finitely generated free Zp-module.

When, in Part II, we come to consider a pro-p group of finite rank as
an analytic group, we shall see that this Zp-module structure provides a
natural co-ordinate system on the group. More immediately, we obtain,
free of charge, a faithful linear representation for the automorphism
group of any uniformly powerful pro-p group.

4.1 Uniform groups
4.1 Definition A pro-p group G is uniformly powerful if

(i) G is finitely generated,
(ii) G is powerful, and
(iii) for all i, \Pt{G) : PW(G)\ = \G : P2(G)|.

We shall usually abbreviate 'uniformly powerful' to 'uniform'.

If G is a pro-p group satisfying (i) and (ii) of this definition, then
we know from Theorem 3.6 that the pth power map x i—• xp induces
an epimorphism ft : P<(G)/Pi+i(G) -> Pi+i(G)/Pi+2(G), for each i;
condition (iii) of Definition 4.1 is clearly equivalent to:

(iii)7 for each i>1, the map ft is an isomorphism.

61
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The following is now almost obvious.

4.2 Theorem. Let G be a finitely generated powerful pro-p group. Then
Pk{G) is uniform for all sufficiently large k.

Proof Write G* = Pi(G), and suppose |G» : Gi+\\ = pdi. By Theorem
3.6 (iv) we have d\ > d^ > . • • > d\ > di+i > . . . , so there exists m
such that dk — d m for all k > m. Now Theorem 3.6 (ii) shows that
Pi(Gk) = Gk+i-i for all i and k, and Theorem 3.6 (i) shows that G& is
powerful.

If G is a characteristic open subgroup in a pro-p group H then Pk (G) is
also open and characteristic in iJ, so from Theorem 3.10 we deduce

4.3 Corollary. A pro-p group of finite rank has a characteristic open
uniform subgroup.

Now let G be a powerful pro-p group with d(G) = d finite. Write
Gi = Pi(G) for each i. Then Gi+1 = $(G;) by Theorem 3.6, so

d(G i )=d(G i /G i + i )<rk(G) = d,

by Theorem 3.8. If H <o G and if happens to be powerful also, then
H > Gi for some z, and we have, similarly,

d(Gi) < d(H) < rk(G) = d.

Now G is uniform if and only if d(Gi/Gi+i) = d(Gi/G2) = d for all i;
so we have

4.4 Proposition. Let G be a powerful finitely generated pro-p group.
Then the following are equivalent:

(a) G is uniform;
(b) d(Pi(G)) = d(G) for all i > 1;
(c) d(H) = d(G) for every powerful open subgroup H of G.

The most useful characterisation of uniform groups is simply stated:

4.5 Theorem. A powerful finitely generated pro-p group is uniform if
and only if it is torsion-free.
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Proof Let G be a finitely generated powerful pro-p group, and write
Gi = Pi(G) for each i. Suppose first that G is not torsion-free. Then G
contains an element x of order p (an element of finite order coprime to p
would have to lie in G{ for every i, and hence be 1). Say x G G{\ Gi+i.
Then 1 ^ xGi+i G Gi/Gi+i and 1 = xpGi+2 € Gi+i/Gi+2, so the map
/i : Gi/Gi+i —>• Gf+i/Gi+2 is not infective. It follows that G is not
uniform.

For the converse, suppose that G is not uniform. Then for some 2,
the epimorphism fa : Gi/Gi+\ —>  G^+i/Gi+2 is not injective, so there
exists x e Gi\ Gt+i such that xp G G +̂2- Put #2 = x, and suppose
that for some n > 2 we have found #2, • • • , #n satisfying a^ G G;+j and
Xj = Xj_i (mod Gi+j-2) for 2 < j < n. There exists 2 G G;+n_i such
that zp = x^; put xn+i = z~1xn. Then xn +i = xn (mod Gi_|_n_i). Also
xn+i ^ Gi+n+i: for if p is odd we have

+ '/2 = 1 (mod Gi+n+1)

since [Gi+n_i,G,G][Gi+n_i,G]p < Gi+ n +i; while if p = 2 we have

< + i = z " 2 ! * " 1 , * - 1 ] ^ = ^~2^n = 1 (mod Gi + n +i) ,
because [G*+n-i,G] < G\+n_x = Gi+n+i since Gi+n_i p.e. G.

Thus the sequence x2, . . . ,xn>... can be constructed recursively; it is
a Cauchy sequence and therefore converges to an element Xoo G G, say.
Then Xoo = x ^ 1 (mod G^+i); and x^ = xv

n = 1 (mod G;+n_i) for all
n, so x^ = 1. Thus G is not torsion-free.

We conclude this section with an important definition; it depends on

4.6 Lemma. If A and B are open uniform subgroups of some pro-p
group then d(A) — d(B).

Proof For large enough i we have Pi(A) < A n B < B. Then d(B) =
d(Pi(A)) = d(A) by Proposition 4.4.

4.7 Definition Let G be a pro-p group of finite rank. The dimension
of Gis

dim(G) = d(H)

where H is any open uniform subgroup of G.

The preceding lemma shows that this is unambiguous; the following
result shows that it is reasonable:
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4.8 Theorem Let G be a pro-p group of finite rank and N a closed
normal subgroup of G. Then

dim(G) = dim(iV) + dim(G/iV).

(This makes sense because both N and G/N have finite rank, by Exercise
3.1.)

Proof Suppose first of all that each of the groups G, N and G/N is
uniform. Lemma 3.4 shows that $(G) = {gp \ g € G} and $(iV) = {pp

£ € AT}. Since G/N is torsion-free, it follows that $(G) H N = $(JV).
As *(G/JV) = $(G)N/N, this gives

d(G) = dimFp (G/$(G))
= dim¥p(N/<f>(N)) + dhnVp((G/N)/*(G/N)) = d(iV) + d(G/7V),

and the theorem follows in this case.
To prove the theorem in general, it will now suffice to find a uniform

open subgroup H in G such that H H N and H/(H D N) are also both
uniform. Say rk(G) = r, and put Go = V(G, r) if p is odd, Go =
V(G;r)2 if p = 2 (see §3.1). Proposition 3.9 shows that every open
normal subgroup of G contained in Go is powerful. Let k as in Theorem
4.2 be sufficiently large so that Pk(Go) = Gi, say, is uniform; it follows
by Theorem 4.5 that then every open normal subgroup of G contained
in G\ is uniform. Similarly, N has a characteristic open subgroup iVi
such that every open normal subgroup of N contained in N\ is uniform.
Finally, for the same reason, G\/{G\ D N±) has a uniform open normal
subgroup H/(Gi nNi).

Now H/{G\ niVi) is torsion-free while N/(G\ D N\) is finite; conse-
quently fffiJV = GiniVi. Thus H/(H D N) is uniform, and H H N is
uniform by the choice of Ni. As H is uniform, by the choice of G\, this
completes the proof.

In Chapter 8, it will emerge that dim(G) is indeed the dimension of
G as a p-adic analytic group. In this chapter, we shall content ourselves
with setting up two (in general distinct) homeomorphisms between a
uniform group of dimension d and the space Z^.

4.2 Multiplicative structure
In this section and the next, G will denote a uniform pro-p group, with
d(G) = d. For each n we write Gn —  Pn(G).
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Let {a i , . . . ,a^} be a topological generating set for G. Then Propo-
sition 3.7 shows that G — (a\)... (ad); thus each element a G G can be
expressed in the form

a = a^...ax/ (1)

with Ai, . . . , Ad G Zp. Now fix a positive integer k, and consider the
finite group G/Gk+i- This has order exactly pkd, and is equal to the
product of its d cyclic subgroups (aiG^+i), . . . , (adG/c+i), each of which
has order at most pk. It follows that these cyclic groups each have order
exactly pk, and hence that each element of G/Gk+i can be expressed
in the form a^1 . . . cffGk+i where the integers e i , . . . ea are uniquely
determined modulo pk. This implies now that, in the expression (1),
the p-adic integers Ai, . . . , Ad are uniquely determined modulo pk. As
this holds for every A;, it follows that Ai, . . . ,Ad are uniquely deter-
mined p-adic integers. Thus we obtain a bijective mapping 6 : G —>  Zp,
where aO — (Ai,.. . ,Ad). Let ip : Z^ —> G be the inverse bijection,
so (Ai,... , Ad)^ = ai1 • • • add- Since multiplication in G is continuous,
Corollary 1.21 shows that i/j is continuous; and as G and Z^ are both
compact Hausdorff spaces it follows that ij) is a homeomorphism.

Thus we have

4.9 Theorem. Let G be a uniform pro-p group and {a i , . . . ,dd} a
topological generating set for G, where d = d(G). Then the mapping

from Zp to G is a homeomorphism.

4.3 Additive structure
The homeomorphism 9 : G —>  Z^ defined in the last section is a 'sys-
tem of co-ordinates of the second kind', in the language of Lie groups.
We shall examine its analytic properties in Chapter 8. Its algebraic
properties, however, are not particularly good. We turn now to the
construction of another co-ordinate system; it takes more work to set
up, but the effort will be amply justified. We keep the notation of the
previous section.

4.10 Lemma Let n G N. The mapping x \—> xp is a homeomorphism
from G onto Gn+i- For each k and m, it restricts to a bijection Gk —•
Gk+n and induces a bijection Gk/Gk+m —>  Gn+klGn+k+m-
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Proof Write f(x) = xpn. Theorem 3.6 shows that f(Gk) = Gn+fc and
that f(Gk+m) — G n+k+m', and repeated applications of Theorem 3.6
(iv) show that if x = y (mod Gfc+m) then /(x) = f(y) (mod Gn + f c + m).
Thus / induces a surjection from Gk/Gk+m onto Gn+k/Gn+k+m- Since
G is uniform, |Gfc/Gfc+m| = |Gn+fcA2n+fc+m|; hence this surjection is
a bijection. It follows that if x,y G Gk and f(x) = f(y) then x = y
(mod Gk+m) for all m. As f)mGk+m = 1, this shows that / |c fc is
infective. Finally, it is clear that / is continuous: as everything in sight
is a compact Hausdorff space, f\Gk is a homeomorphism Gk —• Gk+n-
The first statement is the case k = 1.

Lemma 4.10 shows that each element x G Gn+i has a unique pnth root
in G, which we shall denote xp . We can use this bijection between
G and Gn+i to transfer the group operation from Gn_|_i to G, thereby
defining a new group structure on G. For x, y G G we define

thus the map x ^ xp becomes an isomorphism from Gn+i onto the
group (G,+n).

4.11 Lemma. If n> 1, x,y e G, and u,v G Gn

xu+nyv = x+ny = x +n_i y (mod Gn) ,

and for all m> n

x+my^x+ny (mod Gn+1) .

Proof The final claim follows from the preceding one by induction on
m — n (where n is playing the role of n —  1). Now recall from Proposition
1.16 that [Gn,Gn] < G2n. This implies that

xp ypU = (xpn yp Y (mod G2n)

Extracting pnth roots, and using Lemma 4.10, we infer that

x + n y = (xpnypn)p~n = x -hn_i y (mod Gn) .

Since (xit)pn = xpn (mod G2n) and (yv)pn = ypn (mod G2n)5 again by
Lemma 4.10, the same argument also gives

xu +nyv = x+ny (mod Gn) .
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Thus for a given pair (x, y), the sequence (x+ny) is a Cauchy sequence,
and we can make the following definition:

4.12 Definition For x,y eG,

x-\ry—  lim x +n y .
n—»-oo

It is clear from Lemma 4.11 that

x-\-y = x+ny (mod Gn+i) (2)

and that if u, v G Gn then

xu + yv = x + y (mod Gn) . (3)

4.13 Proposition The set G with the operation + is an abelian group,
with identity element 1 and inversion given by x i—>  x"1.

Proof For each n, x + n 1 = x and x + n x " 1 = 1. Hence x + 1 = x and
x + x " 1 = 1. To verify the associative law, let x,yyz e G and let n > 1 .
Then x + y = (x + n y)-u for some -u G G n + i , so

(x + y) + z = (x + n y) + 2 (mod G n + i )

= ( s + n 2/) + n * (mod

Similarly, x + (2/ + 2;) = x + n (y + n ^) (mod Gn+i). Since the operation
+ n is associative, it follows that

(x + y) + z = x + (y + 2) (mod Gn+i);

and as n was arbitrary the associativity of + follows. Finally, we verify
that + is commutative. Since [xpU,ypn] G [Gn+i,Gn+i] < G2n+2, we
have xp yp = yp xp (mod G2n+2)- Extracting pnth roots and using
Theorem 4.9 we see that x+ny = y+nx (mod Gn+2). Thus x+y = y+x
(mod Gn +i) , and as this holds for each n the result follows.

Henceforth, we shall use 'additive' notation for the group operations
in (G, +), so we write 0 for 1, —x for x" 1, x —  y for x -f (—2/) and rax for
x + . . . + x (ra times) if ra is positive, rax for |ra| • (—x) if ra is negative.
Our next task is to elucidate the structure of this additive group.

4.14 Lemma (i) / / xy = yx then x -h y = xy.
(ii) For each integer m, rax = xm.
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(hi) For each n>1, pn~1G = Gn.
(iv) / / x, y G Gn then x + y = xy (mod Gn+i).

Proof (i) is immediate from the definition, (ii) follows, for positive ra, by
induction on ra, and then for negative ra from the fact that — x = x~ l.
Part (iii) then follows from Theorem 3.6 (iii). To prove (iv), recall that
the mapping x H-» XP induces a homomorphism from Gn/Gn+\ into
G2n/G2n+i (this follows from Theorem 2.7 (iv)). Thus for x,y G Gn we
have

=3?nyPn ( m o d G 2 n + 1 ) .

Extracting pnth roots and using Lemma 4.10 we get

xy = x+ny (mod Gn+i) ,

and (iv) follows by (2).

4.15 Corollary. For each n, Gn is an additive subgroup of G; the ad-
ditive cosets of Gn in G are the same as the multiplicative cosets of Gn

in G. Also the identity map Gn/Gn+i —>  G n /G n +i is an isomorphism
of the additive group G n / G n + i onto the multiplicative group Gn/Gn+i,
and the index of Gn in the additive group (G, +) is equal to \G : Gn\.

Proof Lemma 4.14 (iii) shows that Gn = pn~1G is an additive subgroup
of (G, +). Now let a G G, u G Gn. Then

a + u = a + l-u = a + l = a (mod Gn)

by (3), so a + u G aGn. Thus a + Gn C aGn. On the other hand,

au — a = au+ (—a) = a + (—a) = 0 (mod G n) ,

by (3) again, so au — a G Gn and au G a + Gn. Thus aGn C a + Gn.
This shows that the additive cosets modulo Gn are the same as the
multiplicative cosets. (Hence the notation G/Gn is unambiguous: we
get the same quotient set whether we consider the additive group (G, +)
or the multiplicative group G). In particular, the index |G : G n| is the
same when calculated in either group. Finally, Lemma 4.14 (iv) shows
that the restriction of the identity map on G/G n + i to G n / G n + i is an
isomorphism between the additive and the multiplicative structures.

4.16 Proposition With the original topology of G, (G, +) is a uniform
pro-p group of dimension d — d(G). Moreover any set of topological
generators for G is a set of topological generators for (G, +) .
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Proof G is a compact Hausdorff space. We already know that the map
X H - x = x~x is continuous; and (3) shows that the map (x, y) H-> x+y,
from G x G to G, is continuous. So (G, +) is a topological group. We
also know that the family {Gn}neN is a base for the neighbourhoods of
0 = 1 in G; as each Gn is a subgroup of p-power index in the additive
group (G, +), by Corollary 4.15, it follows that (G, -f) is a pro-p group.
It is powerful by virtue of being abelian; and for the same reason, the
subgroups pn~1G = Gn are exactly the terms of the lower p-series of
(G,+). Since \Gn : Gn+1\ = pd for all n, it follows that (G, +) is
uniform of dimension d. Finally, suppose X is a topological generating
set for G. Then G/G2 = (X)G2/G2 (as multiplicative groups). But
Lemma 4.14 (iv) shows that the additive group G/G2 is identical to the
multiplicative group, so we have (G, +)/G2 = (^0+ + G2/G2, where
(X)+ denotes the additive subgroup generated by X. Since G2 = pG
is the Prattini subgroup of (G, +) it follows that X is a topological
generating set for (G, +).

As (G, +) is a pro-p group, it admits a natural action by Zp (see §1.3).
Since (G, +) is abelian, Proposition 1.26 shows that this makes it into
a Zp-module. We are now ready for the main result, which gives the
structure of this module:

4.17 Theorem Let G be a uniform pro-p group of dimension d, and let
{ai,. . . , a^} be a topological generating set for G. Then, with the opera-
tions defined above, (G, +) is a free Zp-module on the basis {ai, . . . , a^}.

Proof By Proposition 4.16, the set {ai,. . . , a^} generates the uniform
pro-p group (G, +) topologically, and d(G, +) = d. We now apply Theo-
rem 4.9 to this group: in additive notation, this shows that each element
of (G, +) has a unique expression in the form

a = \\CLI + • • • + XdO^d

with Ai,... , Xd £ Zp (note that for x G G and A G Zp, we have xx = Ax,
as follows from Lemma 4.14 (ii) on taking limits). But this is exactly
the statement of the theorem.

Prom the point of view of applications, the following corollaries are
particularly useful.
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4.18 Corollary. Let G be a uniform pro-p group of dimension d. Then
the action of Aut(G) on G is Zp-linear with respect to the 7Lv-module
structure on (G,+) . Hence Aut(G) may be identified with a subgroup
of GLd(Zp).

Proof Let a be an automorphism of G. Then a is continuous, by Corol-
lary 1.22. For each n, a respects the operation of taking pnth roots: this
follows from the uniqueness of pnth roots. It follows that a respects the
operation + n , for each n; and hence, by continuity, that a respects the
operation +. Similarly, since the operation of Zp is defined by taking
limits of integral powers in G, it follows by continuity that a respects
the operation of Zp.

4.19 Corollary. Let G be a pro-p group of finite rank and dimension
d. Then there is an exact sequence

r. X F

for some e < d and some finite p-group F.

Proof G has a uniform open normal subgroup H. Put A = Z(H). Then
A is closed in H, so A is a torsion-free abelian pro-p group of rank at
most rk(H) = d. It follows that A = Z^ for some e < d (e.g. by Theorem
4.8 and Theorem 4.9: but this can easily be seen more directly). Now for
each g G G let g* denote the automorphism of H induced by conjugation
with g. We have a homomorphism 6 : G —> A\it(H) x G/H given by
gO = (g*,gH). Clearly ker0 = A. The result follows by Corollary 4.18.

4.4 On the structure of powerful pro-p groups
4.20 Theorem Let G be a finitely generated powerful pro-p group. Then
the elements of finite order in G form a characteristic subgroup T of G.
Also T is a powerful finite p-group and G/T is uniform.

The proof depends on the following lemma (which generalises a well-
known result due to Minkowski). As before, we write G{ — P%{G) for
each i.

4.21 Lemma Let G be a uniform pro-p group, and for each i let F^ be
the group of all automorphisms of G which induce the identity on
Then F2 is torsion-free if p is odd, F3 is torsion-free if p = 2.
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Proof The map x n-» xpJ induces bijections from G/G2 onto Gj/Gj+i
and from G/G3 onto Gj/Gj+2, by Lemma 4.10; it follows that F2 acts
trivially on Gj/Gj+i and that F 3 acts trivially on Gj/Gj+2, for each
j . It follows (by stability group theory) that for each i > 2 , I ^ / I \ is a
finite p-group. Since ("^2 ^ = 1, any element of finite order in F2 must
have p-power order. Thus it will suffice to show that F2 (or F3 if p = 2)
has no elements of order p.

Now let 7 satisfy 7P = 1, where 7 G F2 (and 7 G F 3 if p = 2) and
suppose that for some i we have [G, 7] C G{. Then for g G G we have

1 = [<7,7P]

(modGi+2),

because [#,7,7n] G Gf-j-i for each n, and G +̂2 contains both [Gi+i,G]
and[G,+1,(7)].

If p is odd then JP^'1)/2 = 1, while if p = 2 and 7 E F3 then
[<7>7>7] G [Gi,F3] C G;+2- In either case, therefore, we may infer that

2> and hence, by Lemma 4.10, that [0,7] G G^+i. Thus

It follows by induction that [G,7] C H^ i G% — 1- So 7 = 1 as
required.

Proof of Theorem 4-20 Now G is finitely generated and powerful. For
some m, Gm is uniform. Put if = CG(Gm). Then Z(JRT) > Gm fl if, so
K/Z(K) is a finite p-group. Hence K is nilpotent, and so the elements
of finite order in K form a subgroup T, say. Then T < G and if /T is
torsion-free.

Now G/if acts faithfully on the uniform group Gm, by conjugation.
Since G is powerful, Gm p.e. G, so G/if acts trivially on Gm/Pi(Gm)
where i = 2 if p is odd, z = 3 if p = 2. Thus Lemma 4.21 shows that
G/K is torsion-free.

Therefore all elements of finite order in G lie in T. Theorem 4.8 shows
that G/T is uniform. Finally, T is a finite p-group since T D Gm — 1;
and T is powerful: for [T, T] < T n [G, G], and if p is odd we have

while if p = 2 we have T D [G, G] C T4 in a similar way. This concludes
the proof.



72 Uniformly powerful groups

4.22 Corollary. Let G be a finitely generated powerful pro-p group of
dimension d. Then Aut(G) is isomorphic to a subgroup of GL^(ZP) x F
for some finite group F. In particular Aut (G) is isomorphic to a linear
group over Zp.

Proof Let Gm and T be as in the above proof. Then Gm D T — 1 so
Aut (G) is isomorphic to a subgroup of Aut (G/T) x Aut (G/Gm). The
result follows by Corollary 4.18.

It follows from 4.3 and 4.5 that a pro-p group of finite rank has a
torsion-free open normal subgroup, and hence that its finite subgroups
have bounded order. On the other hand, 'Sylow's theorem' (Exercise
1.12) shows that if G is any profinite group containing an open pro-p
subgroup, then the maximal (/-subgroups of G are all conjugate, when q
is a prime distinct from p. Here we establish a sort of common general-
isation of these facts:

4.23 Theorem Let G be a profinite group having an open normal sub-
group that is a pro-p group of finite rank. Then the finite subgroups of
G lie in finitely many conjugacy classes.

This applies, for example, to the group G = GL^(ZP) (see Theorem 5.2
in the next chapter).

Now let G be as in the theorem. By Corollary 4.3, G has an open
normal subgroup H that is a uniform pro-p group. As G/H is finite,
there are only finitely many possibilities for the subgroup HF as F
ranges over all the finite subgroups of G. So the theorem will follow
once we have proved

4.24 Proposition Let H be a uniform pro-p group and F a finite
group acting by automorphisms on H. Then the complements to H in
the semi-direct product H xi F lie in finitely many conjugacy classes.

The proof is an exercise in 'non-abelian cohomology'. For the time being,
let H and F denote arbitrary groups, with a given action of F on H.

Definition A 1-cocycle F —• H is a mapping 8 : F —>  H such that

6(xy) = 8{x)y6(y) for all x,y e F.
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Two 1-cocycles /3,7 : F —> H are equivalent, written /? ~ 7, if there
exists v G H such that

7(x) = vxP(x)v~1 for all x G F.

It is clear that 'equivalence' is indeed an equivalence relation. A 1-
cocycle is trivial if it is equivalent to the constant map x H 1, Note
that every 1-cocycle 6 satisfies 6(1) = 1.

Now suppose that B is another complement to H in the group H xi F.
We may define a map 6B : F —• -H" by putting <5g (x) equal to the unique
element h G H such that xh £ B. Then for i , y G F we have

(a?2/). (6B(x)y6B(y)) = x6B(x) • y6B(y) G J5,

so 6B(x)y6B(y) = 6B(xy), and we see that <$# is a 1-cocycle. It is equally
easy to check that for any 1-cocycle 6 : F —»  H , the set

5 = {x^(x) I x G F }

is a subgroup of H x F , that it complements H, and that it satisfies 6B =
6. Thus the complements we are interested in correspond bijectively with
1-cocycles from F to H; moreover, we have

4.25 Lemma Let B be a complement to H in H xi F. Then B is
conjugate to F if and only if the 1-cocycle 6B is trivial.

Proof Let v G H. Then for all x G F we have

x • VX6B(X)V~1 = v(x6B(x))v~1 G vBv~x. (4)

If VX6B(X)V~1 — 1 for each x, it follows that F < vBv~ x; as both
groups complement H in H xi F this implies that F = vBv~*. Thus if
6B ~ 1 then B is conjugate to F. Conversely, if B is conjugate to F
then there exists v G H such that vBv~x = F , and (4) then implies that
VX6B(X)V~1 = 1 for each x G A, showing that 6B ~ 1.

4.26 Lemma Suppose that \F\ = mpe where p \ m, and that H is an
abelian p-group. If 6 : F —>  H is a 1-cocycle then the mapping 6P given
by 6pC(x) = 6(x)p£ for x G F is a trivial 1-cocycle from F to H.

Proof Given that H is abelian, it is clear that 6P& is a 1-cocycle. Write
H additively, and put

b=-
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As H is a p-group, there exists a e H such that ma = b. Then for each
y G F we have

m ^ - a) = J^ «(x) - J^ 8(x)y

The result follows on cancelling ra.

Prom now on, H is supposed to be a uniform pro-p group. We write
Hn — P n(H) and 7rn : H —• H/Hn for the natural epimorphism. Let us
prove

4.27 Proposition Let F be a finite group acting on the uniform pro-p
group H, and let 8 : F —> H be a 1-cocycle. Then 8 is trivial if and only
if 7r3e+i o 6 : F —>  H/H3e+i is trivial, where pe is the exact power of p
dividing \F\.

Proof Put k = 3e + 1. Suppose we can show that 7rn o 6 is trivial
for all n > k. Then for each n > k the set Vn — {v G H \ 6(x) =
vxv~1(modHn) for all x G F} is non-empty, and it is a union of cosets
of Hn, so it is closed in H. Since, clearly, Vn D Vn+\ for all n, it follows
that 0n>kVn T̂  0 (as i / is compact). Any element v lying in this
intersection then satisfies 6(x) = vxv~l for all xeF, and we conclude
that 8 ~ l.

Now fix n > A;, and suppose we have shown that 7rn o 6 ~ 1. We
want to deduce that 7rn+i o 8 ~ 1. Replacing <S by an equivalent cocycle,
we may assume that in fact nn o 8 is the constant mapping 1, i.e. that
S(F) C JTn.

Now put M = Hn-e/H2n-2e' Then M is abelian, and 7T2n-2e o8 = 8,
say, is a 1-cocycle from F into ifn/iJ2n-2e = MpC. By the preceding
lemma, there exists a G M p e such that ~8{x)pe = axa~x for all xeF.
Say a = vp H<in-2e where v G Hn-e\ then

for each x, because M is abelian. Using Lemma 4.10 we infer that

8(x) = VXV~1 (mod H2n-3e),
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for all x G F. But n > k = 3e + 1, so 2n — 3e > n + 1 and we conclude

that 7Tn_|_i o 6 ~ 1. The result follows by induction.

It is now easy to deduce Proposition 4.24. Put H x F = G, let pe be

the exact power of p that divides \F\, and write n for the. natural epi-

morphism G —» G/Hse-\-i- Then TT(G) is finite, so we may choose finitely

many complements jFi,... , Fr to H in G so that for any complement B

to if, we have TT(B) = 7r(Fi) for some i < r.

Now fix such a value of z, and suppose that TT(B) = 7r(Fi). Replacing

F by Fi in Lemma 4.25, we see that B is conjugate to i^ if and only

if the cocycle 8B ' Fi —> H is trivial. On the other hand, we have

7T o Sβ — I because n(B) = 7r(Fi), and it follows by Proposition 4.27

that 6B is trivial. Thus B is conjugate to Fi.

Hence every complement to H in G is conjugate to one of F i , . . . , F r ,

and the proof is complete.

4.5 The Lie algebra

The procedure of passing from the uniform pro-p group G to the Z p -

module (G,-f), described in Section 4.3, involves 'forgetting' a lot of

information about the structure of G, since all free Zp-modules of a

given rank are isomorphic. More information can be saved by defining

yet another operation. We keep the notation of Sections 4.2 and 4.3, so

G denotes a uniform pro-p group of rank d, and G^ = Pi(G) for each i.

Definition For x,y G G and n G N,

This makes sense because [xp ,yp ] G [Gn+i,Gn+i] <

4.28 L e m m a If n > 1, x,y G G and u, v G G n ,

(ara, 2/v)n = (x, y)n = (a, 2/)n-i (mod G n + i ) ,

and /or all m> n

(x, 2/)m = (x, 2/)n (mod G n + 2 ) .

Proo/ Noting that [G2n, Gn+i] G 3 n + i , and using Lemma 4.10, we see
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(as in the proof of Lemma 4.11) that

(xu, yv)n = (x, y)n (mod Gn+i) •

Now if a G Gi and b G Gj then [ap,b] = [a,b]p (mod G2i+j) and
[a, feP] = [a, b]p (mo&Gi+2j)> Taking a = xpU and b = ypn this gives

[ a ^ V ] = [a*",^""1]" (mod G3 n +i) •

Taking a = x^ and 6 = yp" gives

K , ^ " 1 ] = K"1,/""1]^ (mod G3n).
Therefore (in view of Lemma 4.10)

[xp\ypn] EE [X
pn-\ypn-y (mod G3n+i)

= (x, y)v
n\ .

Extracting p2nth roots and using Lemma 4.10 again we obtain

(x, y)n = (x, y)n_i (mod Gn+i) •

The final claim follows by induction o n m - n (on replacing n by n+1).

Thus for given x, ?/ G G, ((x,t/)n) is a Cauchy sequence, and we can
make the following definition:

4.29 Definition For x,y eG,

(x, y) = lim (x, y)n .

4.30 Theorem. With the operation ( , ), the Zp-module (G, +) becomes
a Lie algebra over Zp.

A direct proof of this theorem, in the same spirit as the proof of
Proposition 4.13, is outlined in the exercises, below. Theorem 4.30 will
be proved by a different route in Chapter 7. There, we define an injec-
tive mapping log from G into a certain associative Qp-algebra A, and
establish that it has the following properties:

log(x + y) = log x + log y
log(Ax) = Alogx

log(x,2/) = (logx)(logy) - (log2/)(logx) .
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Prom this, it follows at once that the operation ( , ) is Zp-bilinear, anti-
commutative, and satisfies the Jacobi identity, which is precisely the
claim of Theorem 4.30.

A further consequence is worth mentioning at this point, though a
full discussion must be postponed until Chapter 9. For x and y G G, we
have

log(xy) = $(log£,logy)

where $([/, V) is the Campbell-Hausdorff formula: this is a certain infi-
nite sum of terms in the Lie algebra generated by U and V, which under
suitable conditions converges to an element of this Lie algebra. This
shows that xy can be recovered from the Lie algebra structure of (G, +)
alone, and hence that, unlike the Zp-module (G,+), this Lie algebra
captures all the information in the given pro-p group G.

If a subgroup or quotient of G is itself a uniform group, we would like
to know that the additive and Lie structures induced from G are the
'right' ones; this is assured by

4.31 Proposition Let H be a uniform closed subgroup of G, and let
N <c G be such that G/N is uniform. Then

(i) the inclusion map H —• G is a monomorphism of Lie algebras
(H, + , ( , ) ) —» (G, +, ( , )); in particular, H is a subalgebra of the Lie
algebra (G , + , ( , ) ) ;

(ii) N is uniform;
(iii) N is an ideal in the 7jp-Lie algebra (G, +, ( , )); and the addi-

tive cosets of N in G are the same as the multiplicative cosets, so
(G/N, + , ( , ) ) = (G, +, ( , ))/(iV, +, ( , )); moreover, the natural epi-
morphism * : G —> G/N is an epimorphism of Zp-Lie algebras from
( G , + , ( , ) ) onto (G/JV,+, ( , ) ) .

Proof (i) follows directly from the definitions, as the topology on H is
just the subspace topology induced from G.

If x G G and xpU G N then x G N, since G/N is torsion-free by
Theorem 4.5. As Gp consists of pth powers it follows that GpPiN = Np,
whence N/Np is abelian, showing (if p is odd) that N is powerful, and
hence uniform by Theorem 4.5; the same argument applies if p = 2,
considering instead N/N4. This establishes (ii).

Now let a,b e G and put cn = a +n b. Then (c*)pn = a*pn&*pT\ so
in G/N we have a* +n b* = c^. It follows by continuity that a* + 6* =
lmin-^oo c* —  (limn_>oo cn)* = (a + 6)*. A similar argument shows that
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* respects the bracket operation; and it is easy to see that * respects the
operation of Zp. Thus * is a Lie algebra homomorphism as claimed.

Since N is the kernel of * it follows that N is an ideal in (G, +, ( , )).
Finally, for a, b G G we have

showing that (G, +)/(N, +) = G/N. This concludes the proof of (iii).

In Section 7.2 we shall see that, conversely, suitable Lie subalgebras
of (G, +) are in fact subgroups of G.

4.6 Generators and relations
We show in this section that every pro-p group of finite rank has a finite
presentation by 'generators and relations', in the sense appropriate to
pro-p groups. (The results of this section will not be needed elsewhere
in the book.)

We saw in Exercise 1.20 that for each finite set X there exists a 'free
pro-p group on X\ namely the pro-p completion of the (ordinary) free
group on X. To simplify notation, we now denote this 'free pro-p group'
by F(X). For any subset R of F(X), we write

where (RF(X^) denotes the normal closure of R in F(X). We say that
(X; R) is a presentation for a pro-p group G if G is isomorphic to (X;R).
The presentation is finite if R as well as X is finite, and in this case G
is said to be finitely presented.

Suppose now that G is a pro-p group and X is a finite topological
generating set for G. The identity map on X induces an epimorphism
7T : F(X) —• G. For any subset R of ker?r, we say that 'the relations
R=l hold in G'; and then n induces an epimorphism n* from the group
(X] R) onto G. If R satisfies the condition: (i? FW) = ker ?r, then TT* is
an isomorphism and (X; R) is a presentation for G.

4.32 Proposition Let G be a uniform pro-p group of dimension d, and
let {a?i,... ,#d} be a topological generating set for G. Then G has a
presentation (#i , . . . ,x^; R) where

R = {[it, Xj]x^id)... x*d(i'j) \l<i<j<d},
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and, for each m,i and j , Xm(hj) G V^v tf P ^s °dd, ^m(hj) G ̂ 2 if
p = 2.

Proof Since G is powerful, [xj,^] G G? if p is odd, [xj,xi) G G4 if
p = 2. It follows from Theorem 3.6 and Proposition 3.7 that [a^, a ]̂ =
rim=i xrnl where each Xm(hj) lies m P^p (if P 1S odd) or in 4Z2 (if
p = 2). Thus the relations R = 1 hold in G.

Let if = (ffi,... ,xd;R) and put i ^ = Pi(H), G{ = Pi(G) for each
i. Let 7T* : H -» G denote the natural epimorphism. Then i/̂ Tr* < G;
for each z. Now the relations R = 1 which hold in if imply that H is
powerful. It follows by Theorem 3.6 that \Hi/Hi+1\ < \H/H2\ < pd for
each z, whence

\H/Hn+1\<pnd = \G/Gn+1\

for each n. Since TT* is an epimorphism and Hn+\iT* < Gn+i, this shows
that kerTT* < jffn+i, for each n. But HnLi ^n+i = l> so TT* is injective.
Thus G is isomorphic to if, as required.

To deal with pro-p groups of finite rank in general, we use the following
elementary fact:

4.33 Lemma. Let G be a pro-p group and K an open normal subgroup
of G. If K is finitely presented then so is G.

Proof Arguing by induction on the index \G : K\, we reduce to the case
where \G : K\ = p. Thus G = K(y) where yp £ K. Suppose (X; R) is a
finite presentation of K, coming from an epimorphism TT : F(X) —>  K.
There exists v G F(X) such that yp = vn, and for each x G X there
exists wx G F(X) such that (XTT)27 = WX7T. NOW take Y = l U { t } , where
t £ X, and define an epimorphism TT : F(Y) —>• G by X7f = XTT for x G X
and tJf = y. Put

5 = {t^-1} u {^w"11 x G x } c F(y),

let iV be the closure in F(Y) of ((R U 5)F(y^), and put M = kerTf.
Clearly N < M. The relations 5 = 1 which hold in F(Y)/N show
that F(X)AT < F(y) and that |F(y) : F(X)N\ < p (we are identifying
F(X) with its image in F(Y), as we may by Exercise 1.20 (ii)). Since
F(Y)n = G and (F(X)N)TT = K it follows that M < F(X)N, whence
M = (Mn F(X))N. But

M n F(X) = ker TT = (RF(X)) < N ;
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consequently M — N. It follows that (Y;RUS) is a presentation for G.

In view of Corollary 4.3, the following is now immediate:

4.34 Theorem Every pro-p group of finite rank is finitely presented.

One may ask what is the minimal number of relations required to

present a given pro-p group. For a finitely generated pro-p group G,

define t(G) by

t(G) = inf{|iJ| I G has a presentation (X; R) with \X\ = d(G)} .

Let us prove

4.35 Theorem. Let G be a finitely generated powerful pro-p group. Put

d = dim(G) and r = d(G) = rk(G). Then

In particular if G is uniform then t(G) = (f).

Proof Consider the second inequality first. Write Gi = Pi(G) for each

i, and define di by pdi = \d : Gi+i|. Thus

T = d\ > d<^ > . • • > dk = d

for some /c, where Gk is uniform. It follows from Theorem 3.6 (see

Exercise 3.12) that G has a generating set {#i,... ,xr} such that, for

each i, Gi is generated by {x\ , . . . , xv

di }.

Now whenever di > m > d;+i, we have

xP
l _ Mi(m) Mdi + 1(m) _ ( m )

with μ^ra) G p z Z p for each n. Also, as in the proof of Proposition 4.32,

whenever 1 < i < j < r there is a relation

with An(i, j) G pZp (or 4Z2 if p = 2), for each n. Let H be the group

/T. r • FT. T .lv^(^'i) fi <? i ^ i <^ r\

x~p xM ( m ) (^ > m > d i + i , 1 < z < fe)).

Writing i ^ = Pi(H), we see that i7 is powerful and that \H/Hn\ <
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\G/Gn\ for each n. Arguing as before, we may conclude that H = G.
As there are (!J) relators of the form [x^ #j]xA, and r — d relators of the
form i / x ^ , it follows that t(G) < Q + r - d.

For the other inequality, suppose we have a presentation {X;R} for
G with \X\ = r and \R\ = t. It is easy to see that then G/G2 has the
presentation (X; R, x\,... , xv

r) where X = {#i,. . . , xr}. But G/G2 is
an elementary abelian p-group of rank r, and so t(G/G2) = r(r + l)/2
(see Exercise 10). Hence

£ + r > r(r + l)/2

and so t > (£), as claimed.

An upper bound for t(G), when G is any pro-p group of finite rank,
is given in Exercise 11. It is also possible to give a lower bound in
that case, but this depends on more sophisticated methods (the 'Golod-
Shafarevich inequality': see Interlude D).

It must be emphasised that all of these results refer to presentations
of groups within the category of pro-p groups: thus if, for example, G
is a finite p-group, then G has a presentation as a p-group on d(G)
generators and t(G) relations, but the number of relations needed to
define G as an abstract group may conceivably be greater than t(G).
Whether this is actually the case, for any finite p-group, is at present
unknown.

Notes

Both the name and the theory of uniformly powerful pro-p groups devel-
oped in this chapter are new. However, this class of groups is contained
in the class of 'groupes p-saturables' defined in [L], Chapter III, 3.1.6.
Lazard calls a group p-saturable if it possesses a filtration satisfying cer-
tain conditions, and has 'finite rank' (in a sense different from ours).
When p > 3 , the natural filtration by the lower p-series will do; when
p = 2, this is not adequate, and one has to use the filtration induced by
the norm on the group algebra 2^[G], constructed in Exercise 7.10.

It is not clear to us (despite the claim made in the Introduction to the
first edition, and in Interlude C) whether every p-saturable group is in
fact a uniform pro-p group. It follows fairly directly from the definitions
that if G is p-saturable with respect to an integer-valued filtration then
G is uniform if p > 3, and G2 is uniform if p = 2.
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Given that uniform pro-p groups are p-saturable, the existence of both
the 'multiplicative' and the 'additive' systems of co-ordinates is due to
Lazard, as is the Lie algebra of §4.5 ([L] Chapter III, Ex. 2.1.10).

Theorem 4.23 is from Segal (1999). Most of the other results are
new.
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Exercises

1. Let a, b be elements of a group and suppose that c = [6, a"1] commutes
with both a and b. Show that for fceN,

ahbh = (abfc^-1^2 .

Now let G be a pro-p group and put G^ = P^ (G). Let fc,n G N and
put m = k + min{A:,n —  e}, where e = 0 if p is odd, e = 1 if p = 2.
Show that the mapping x i—>  xpn induces a homomorphism from Gk into

In Exercises 2-7, G denotes a uniform pro-p group as in §4.5.

2. (i) Prove that (x,y) = —  (y,x).
(ii) Show that (x, y) G G2e where e = 1 if p ^ 2, e = 2 if p = 2.
[Hint: when p = 2, see Exercise 2.4(ii).]

3. Let A G Zp and suppose that A = a (mod pn) where a G Z. Show
that (Ax,y) = (ax,y) (mod Gn+i).

4. Verify the following identities:

(inJ [x y , z \ = [x , z J [y , £ J (mod Cr2n+3)'

Hence show that (x,2)n + n (y,2)n = (x +n y, ^)n (mod G n + 3 ) , and
deduce that (x, z) + (y, z) = (x + y, z).
[Hint for (iii): Put a = [xpn ,zpn)p n , 6 = [ypn ,zpn]p n and note that
(a&)Pn = aPw6Pn (mod G 3 n + 3 ) , by Exercise 1.]

5. Deduce from Exercises 2-4 that ( , ) is bilinear with respect to the
Zp-module structure on (G, +) .

6. Let U and V be normal subgroups of a group, such that [£/, V, V, V] =
1. Show that for a G U, b G V and ft G N,

Now let f , f c ,nGN and put m = k + min{fc, n —  e} where e = 0 if p is
odd, e = 1 if p = 2. Show that if a G G^ and b £ Gk then

[a,6Pn] = [a,6]*n (mod
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7. Prove the following:

(i) ((x,-y)n,z)C = [xP\y-Pn,zPyn
n(mod G5n+1).

[Hint: Take a = [xp , y~p } and b = zpn in Exercise 6.]

(ii) [x"n,y-P\z"n] = [xPn,y-Pn,zPyn (mod Gin+4).

(iii) (Or, y), z) + ((y, z),x) + ((z,x),y) = -(A + B + C) (mod Gn+2),
where A = ((x, -y)n, z)n, B = ((y, -z)n, x)n, C = ((z, -x)n, y)n.

(iv) {A +n B)P3n = AP3nBP3n (mod G4 n + 5), provided n > 2 .
[Hint: Use Exercise 1.]

(v) Ap3nBp3n = C-p3n (mod G4n+i).
[Hint: Use (i), (ii) and the Hall-Witt identity.]

(vi) Deduce that ((x, y), z) + ((y, z),x) + ((2:, x), y) = 0.

8. Let G be a pro-p group of finite rank, and let K be the FC-centre
of G (defined by K = {x £ G | \G : CG(a:)| is finite}), (i) Show that
^ = CG(H) for every open uniform subgroup of H of G. (h) Deduce
that G/if is isomorphic to a subgroup of GL^(Zp) where d = dim(G).
(iii) Deduce that if G is also torsion-free, then there is an exact sequence

1 - Z; -> G -> GLrf(Zp)

where e < d.

9. Let G be a uniform pro-p group and suppose that G has an abelian
open normal subgroup. Show that G/Z(G) is finite; deduce that in fact
G ^ Z^ for some d.

[Hint: Use Exercise 8(i); note that for any group G, if G/Z(G) is finite
then [G,G] is finite (Schur's theorem, see Hall (1969), §8).]

10. ([L] III, 3.1.8) Let G be a pro-p group of finite rank. Prove that

A- (n\ v logP \G :
dim(G) = lim —

«*> i

k-+oo k

[Hint: examine the proof of Theorem 3.16.]

11. Let G be a pro-p group of rank r and dimension d. Show that
t(G) < Q + r - d + r(r + 1)(2 + A(r)).

[ffint; G has a powerful normal subgroup iJ of index at most r(2 +
A(r)). Apply Theorem 4.35 to i7, and use the proof of Lemma 4.33 to
estimate the number of additional relations required to define G.]
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12. (i) Prove that for each d > 1 there exists a group H = H(d) with

d(H) = d having a subgroup Z < Z(H) such that H/Z ^ C^ and
z ^ c(d(d+l)/2)

[Hint: Given H(d) = H, construct H(d+1) as follows. Put A = H/Z

and define a : H x A -+ H x A by (h, a)a = (/i, h.a) where h = hZ\ then

put H(d -f 1) = (i^ x A) x\ Cp2, where the generator of Cp2 acts like a

on H x A.]

(ii) Let F be the free group on d > 2 generators, put F 2 = [F,F]FP

and F 3 = [F2,F]F2

P. Deduce from (i) that F2/F3 S* C ^ d ( d + 1 ) / 2 ) .

(iii) Show that if A = C^ then t(A) = d(d + l)/2.

t* consider epimorphisms from F onto A, and use (ii).]

13. Let G be a powerful non-abelian pro-p group of rank 2 and dimension

2.

(i) Show that G is uniform, G contains a unique normal procyclic

subgroup N such that G/N is procyclic, and that TV has a complement

inG.

(ii) Deduce that G has a presentation (X,T/; [x,y]x~pe) for some

uniquely determined positive integer e.

[Hint for (ii): Suppose that x generates N and Nz generates G/N;

then xz = xx for some A G Z p . Show that A = 1 + pe// where e > 1

and ^ J μ ; then show that AT = 1 + p e for some p-adic unit r, and take

y — zT. (The existence of r follows from Theorem 5.2, applied to the

group GLi(Zp)).]

The next three exercises are from Barnea and Shalev (1997); they

prove a little more, by a different method.

14. Let G be a pro-p group of finite rank and put Gn = Gpn for each

n > 1 . Let H <c G.

(i) Show that for all sufficiently large n, both Gn and H D Gn are

uniform.

[Hint: look at the proof of Theorem 4.8.]

(ii) Suppose that in fact both G and H are uniform. Show that for

some non-negative integer c,

HnGn = (HD Gcf
n~c for all n > c.

[Hint: Use 4.14(iii) and 4.17 to translate this into a statement about

Zp-modules.]



86 Uniformly powerful groups

(iii) Deduce tha t in the general case there exists b>0 such tha t
H n Gn < Hpn~b for all n > 6 .

1 5 . Let G, Gn and H be as in Exercise 14. Show tha t

l i m \og\HGn:Gn\ = dimH
n^oo log |G:G n | dimG'

[Hint: Exercises 10 and 14.]

The limit on the left here is the Hausdorff dimension of H in G,
relative to the metric on G given by

d{a,b) = inf{|G : G^" 1 | ab'1 e Gn}.

16. Let G be a finitely generated pro-p group. Prove that G has finite
rank if and only if G contains no infinite closed subgroup of Hausdorff
dimension zero.

[Hint: For 'only if use Exercise 15. 'If depends on a deep theorem of
Zel'manov (1992): every finitely generated periodic pro-p group is finite.
It follows that if G has infinite rank then G contains an infinite procyclic
subgroup H] use Theorem 3.16 to find the Hausdorff dimension of H.]



5
Automorphism groups

The main result to be established in this chapter is that the automor-
phism group of a pro-p group of finite rank is itself virtually a pro-p
group of finite rank. An important special case is the automorphism
group of Zp, namely the group GLd(Zp) of all invertible d x d matrices
over Zp, and we begin by discussing this group in some detail.

5.1 The group GLd(Zp)
We fix a positive integer d, and write F = GL^(Zp). Then F is a Haus-
dorff topological group, with the p-adic topology (the subspace topology
induced from the natural topology on the space M^ (Zp) of all d x d
matrices over Zp). In fact F is both closed and open as a subspace of
Md(Zp): for if a G Md(Zp) then a G F if and only if det a ^ 0 (mod p),
so every matrix b = a (mod p) satisfies b G F <& a G F; this shows
that F is the union of at most pd additive cosets of pM^(Zp). Hence
F is compact. A base for the neighbourhoods of 1 in F is given by the
'congruence subgroups'

for i > 0. Since F/F^ = GLd(Z/p*Z) for i > 1, we have

\ r - . ^ 1 = (pd - l ) ( p d - p ) . . . ( p d - p * - 1 )

\ r 1 : T i \ = p d 2 < < i - 1 ) f o r z > 1 .

It follows that F is profinite and that Fi is a pro-p group.
Once we have defined analytic groups, it will be clear that F is a

compact p-adic analytic group; a fundamental property of such groups
is that they contain an open powerful finitely generated pro-p subgroup,

87
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and we now verify this directly for F = GL^(ZP). The key step is the
following simple variation on Hensel's Lemma (we keep the notation just
introduced):

5.1 L e m m a . / / p is odd and n>2, or p — 2 and n>3, then every
element of Tn is the pth power of an element of F n _ i .

Proof The claim is that for any a G M^ (Zp) we can solve

with x G Md(Zp). The solution is by successive approximation. To begin
with, (1 + pn~1a)p = 1 -\-pna (mod p n + 1 ) (provided n lies in the stated
range). Put X\ — a, and suppose inductively that we have found, for
some r > 1, a matrix x r , commuting with a, such that (1 + pn~1xr)p =
l + p n a (modp n + r ) . Say

= 1 + pna + pn+rc .

Now put

and let xr+i = xr — prz; note that xr commutes with c, hence with z,
and that x r + i commutes with a. A direct calculation shows that

(1 + p n - 1 a v + i ) p = 1 +pna (mod

Thus we obtain a convergent sequence (xr) in M^(Zp), whose limit x
satisfies (*).

5.2 Theorem. For each i let I \ = {7 G GLd(Zp) \ 7 = l d (mod p*)}.
P^^ G = Fi if p is odd, G = T2 if p — 2. Then G is a uniform pro-p
group and dim(G) = rk(G) = d(G) = c?2. Also P^G) = F i + e /or all i,
where e = 0 if p^ 2, e = 1 if p = 2.

Proof We have Pi (G) = G = T\+e by definition. Suppose r > 1 and
Pr(G) = r r + e . Then a trivial calculation shows that Pr(G)p[Pr(G), G] <
r r + i + e , and Lemma 5.1 shows that F r + i + e < F^+ e = Pr(G)p. Since
F r + i + e is a closed subgroup of G it follows that Pr+i(G) = F r + i + e .
Thus by induction we have P%(G) = Ti+e for all i, and on the way we
have shown that Pi+i(G) = Pi(G)p for all i. Taking i = 1, we see
that G is powerful (when p = 2, note that [F2,F2] < F4 < F^); and
since P2(G) = F2+e is open in G, Theorem 1.14 shows that G is finitely
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generated. Since |I\ : I \ + i | = pd is constant for all i > 1, G is uniform.
Finally, since G/<f>(G) = Fi+e/F2+e is elementary abelian of order pd ,
it needs exactly d2 generators, whence dim(G) = rk(G) —  d(G) = cP.

Note that we have established that GLd(Zp) has finite rank, without
any serious matrix calculations, by appealing to the theory of powerful
groups from Chapter 3. Once we have shown that every pro-p group of
finite rank has a faithful linear representation over Zp, this will provide
yet another characterisation for the pro-p groups of finite rank.

5.2 The automorphism group of a profinite group
Now we move on to consider automorphism groups in general. For a
profinite group G, Aut(G) denotes the group of all topological automor-
phisms of G (recall that if G is finitely generated and pro-p, this means
all automorphisms, by Corollary 1.21). Aut(G) has a natural topology,
the 'congruence topology': a base for the neighbourhoods of 1 is given
by the subgroups

as N runs over the open normal subgroups of G (generalising the case
of GLd(Zp) = Aut(Zp), discussed above). This makes Aut(G) into a
Hausdorff topological group (see Exercise 1). Note that for 7 G Aut(G),
we have 7 G F(7V) if and only if 7 fixes N and induces the trivial
automorphism on G/N.

In general, Aut(G) will not itself be a profinite group (see Exercise 3).
However, we have

5.3 Theorem. // G is a finitely generated profinite group then Aut(G)
is a profinite group.

Proof Let us write F = Aut(G). Proposition 1.6 shows that every open
normal subgroup of TV of G contains an open topologically characteristic
subgroup, iVo say. Then T(N) contains F(iVo). Since F(JVo) is the kernel
of the induced action of F on the finite group G/AT0, the index |F : F(AT0)|
is finite. Thus in F there is a base for the neighbourhoods of 1 consisting
of subgroups of finite index, so to show that F is profinite it will suffice
to verify that it is complete (see Exercise 1.1). Denote the set of all
open topologically characteristic subgroups in G by C, and let (7iv)iVeC
be a Cauchy net in F, with respect to the neighbourhood base at 1
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{T(N) \ N eC}: thus for each N G C there exists M(N) G C such that
Is1 IT € r(JV) whenever S,T G C and S < M(N), T < M(N). We have
to show that the net (7AT )ivec converges in F.

For g G G and N, S, T as above we have

Thus the family (glN)Nec is a Cauchy net in G, which therefore con-
verges to an element of G which we shall denote g1'. This defines a map
7 : G —>• G; to complete the proof, we will show that 7 G F and that the
net (7A/-) converges to 7.

For each N G C there exists iVi G C such that #7s = #7 (mod JV)
for all S G C with S < Nx. Here JVi depends on #, but if g, h G G we
can find 5 G C such that #7s = g^ (mod AT), /i7s = W (mod AT) and
(gh~l)ls = (gh*1)1 (mod iV). Since 75 induces an automorphism on
G/N, it follows that 7 induces an automorphism on G/N. As C is a base
for the neighbourhoods of 1 in G, this implies that 7 is an automorphism
of G, and also that 7 is continuous. Thus 7 G F.

Now let iV G C, and let X be a set of coset representatives for G/N
(so X is finite). As above, we can find Ni e C such that whenever S eC
and S < Nu Vs = F (mod N) for each t G X. Then for g = xt G G,
with x € N and t G X, we have

07S7"1
 = xisi^psi-1 =xt = g (mod iV) ,

showing that 7S7"1 G F(iV). Thus the net (7^) converges to 7 as
required.

The following elementary lemma will be needed in the next section:

5.4 Lemma. Let G be a profinite group and H an open normal subgroup
of G with centre Z. Let E be a subgroup of Aut(G) which acts trivially
on H and induces the trivial action on G/H. Then there is an infective
continuous homomorphism 6 : H —• Z^ where m = d(G/H). If S is
compact then 6 is a topological isomorphism of S onto a closed subgroup
of Z^.

Proof Fix a generating set {xiH,... ,xmif} for G/H, and for 7 G S
define
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Then j6 clearly determines the action of 7 on G, so the map 6 is injective.
For any x G G and ft G if,

[xn]h = x-h(xhr = [xh
n] = [[ft, oT1]*, 7] = [x,7]

since ft7 = ft and [[ft,a;"1],7] G [if,7] = 1. Hence [G, 7] C Z, and so
7(9 G Z<m). If a, /3 G S and x G G then

since Z is abelian and $ acts trivially on Z. Thus 0 is a homomorphism
of £ i n t o Z ( m ) .

To show that 6 is continuous, it now suffices to show that for any
neighbourhood U of 1 in Z^ there exists N <o G such that
(S n T(N))0 C U. Now there exists N <o G such that (N n Z)^m) C *7:
this subgroup AT clearly has the required property.

If S is compact then so is £0, and the final claim follows from the
standard property of compact Hausdorff spaces.

5.3 Automorphism groups of pro-p groups
5.5 Proposition. Let G be a finitely generated pro-p group. Then
r ($(G)) is a pro-p group.

Proof Write Gn = Pn(G) for each n. The family (Gn) is a base for the
neighbourhoods of 1 in G, and consists of characteristic subgroups; also
G2 = $(G) (see §1.2). It follows that the subgroups T(Gn), n > 2 , are
normal in IXG2) = F($(G)), and form a base for the neighbourhoods
of 1 in Y{Gt2)' Hence, by Theorem 5.3, it will suffice to show that,
for each n > 2 , T(G2)/T(Gn) is a p-group. Now T(G2)/T(Gn) acts
faithfully on the finite p-group G/Gn, and induces the trivial action on
G/G2 = (G/Gn)/${G/Gn): this gives the result (see Exercise 4).

A profinite group G is said to have a property V virtually if G has
an open normal subgroup H such that H has V.

5.6 Theorem. Let G be a finitely generated profinite group. If G is
virtually a pro-p group then Aut(G) is also virtually a pro-p group.

Proof By Proposition 1.6, G has a topologically characteristic open pro-
p subgroup i / , and H is finitely generated (by Proposition 1.7). Then

is open and topologically characteristic in G. Let A =
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be the kernel of the action of Aut(G) on G/$(H). Then A <\o Aut(G),

and we claim that A is a pro-p group.

Let 7T : A —*• A\it(H) be the restriction map, and put S = kervr.

It is easy to see that TT is continuous, since for any N <o H we have

(Anr(AO)TT £ rH(JV), where rH(JV) = {7 G Aut(ff) I [H,i\ C AT}.

Hence H is a closed normal subgroup of A, so S is compact and Lemma

5.4 shows that E is topologically isomorphic to a closed subgroup of

Z(.ff)(m), where m = d(G/H) is finite. Thus S is a pro-p group.

Since A is compact and TT is continuous, A/H is topologically isomor-

phic to the closed subgroup ATT of Aut(if). But An < F# ($(#)), SO

ATT is a pro-p group by Proposition 5.5. Putting the results together we

see (by Proposition 1.11) that A is a pro-p group as claimed.

In a similar way, we can now establish the final result:

5.7 Theorem. Let G be a pro finite group. If G is virtually a pro-p

group of finite rank, then so is Aut(G).

Proof Certainly G is finitely generated. We can choose H as in the

preceding proof so that, in addition, H is a uniform pro-p group, of

dimension c/, say (see §4.1). We keep the notation of the preceding proof.

Then E is topologically isomorphic to a closed subgroup of Z(if)(m); as

this is now a pro-p group of finite rank, it follows that E has finite rank.

By Corollary 4.18, there is an injective homomorphism μ : Aut(if) —•

GLd(Zp), and Lemma 4.14(iii) shows that μ is continuous. Thus the

composition nμ : A —• GL^(ZP) is continuous and maps A onto a

closed subgroup of GLd(Zp). Theorem 5.2 now shows that A^μ has

finite rank. As in the preceding proof, we see that A/S is topologically

isomorphic to A^μ.

Putting the results together shows that A has finite rank. We already

know that A is a pro-p group and that A <\o Aut(G), so the proof is

complete.

5.4 Finite extensions

Theorem 5.7 has a nice application to the following question: given a

pro-p group G of finite rank and a finite group F, how many different

extensions can there be of G by F, or of F by G ? We begin with

5.8 Theorem There are only finitely many isomorphism types of ex-

tensions of a pro-p group G of finite rank by a given finite group F.
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By an extension of G by F we mean a group E containing G as a

normal subgroup such that E/G = F. As we shall see, all such ex-

tensions can be embedded into a sort of 'universal container'; this is

constructed as follows (henceforth, G denotes a pro-p group of finite

rank):

5.9 Lemma Let K = G x Aut(G) and put W = K I F. Then for

every extension E of G by F there exists an injective homomorphism

OE : E —• W such that (0E)\G = ^\G where A : K —•> W denotes the

'diagonal' embedding of K into the base group of W.

Recall that the wreath product KI F is the semidirect product KF xi F,

where F acts on the base group KF by permuting the factors; identifying

K with one of these factors, we think of the base group as being the direct

product ri/GF ^- F ° r x £ K we then have

A(x)=n xf.

Proof Let E be an extension of G by F; thus we have an epimorphism

7T : E —> F with kernel G. Choose a transversal T to the cosets of G in

E, with 1 G T, and for t G T denote by t^ the automorphism induced

on G by conjugation with t. We define a map i\) : E —» VF by putting

teT

where tx e T denotes the representative of the coset Gtx. A direct

calculation shows that ifj is a homomorphism.

Now if x G G then tx — t for each t G T, so

= T-1A(a;)r,

where r = F L e T ^ ) 7 ^ ^ ' a n e l e m e n t of the base group of W. Thus the
map BE • E —> W given by

6E(X) = TIP{X)T-1

is a homomorphism which restricts to A on G. Finally, if 9E(X) = 1

then ^β(x) = 1, so x G kerTr = G, and so x — 1 since A is injective. Thus

9E is injective as claimed.
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We can now complete the

Proof of Theorem 5.8 We know from Theorem 5.7 that Aut(G) is profi-
nite, and virtually a pro-p group of finite rank. The same therefore can
be said of K, and hence of W (by Exercise 3.1). Put G* = A(G) < W
and let TV be the normaliser of G* in W. Then G* is closed in W, being
compact, hence N is closed, and it follows that N/G* is again virtually
a pro-p group of finite rank, and profinite.

Now Theorem 4.23 shows that the finite subgroups of N/G* lie in
finitely many conjugacy classes; let Ci/G* (i = 1,. . . , s) be representa-
tives for these classes. Suppose E is an extension of G by F. Then

G* = A(G) = OE(G) < 0E(E),

so 6E(E)/G* is a finite subgroup of N/G*, and therefore conjugate to
one of the groups Ci/G*. But then 9E(E) is conjugate to C ,̂ showing
that E = eE(E) = Ci. The theorem follows.

5.10 Corollary Let m be a positive integer. Then there are only finitely
many isomorphism types of group E containing G as a subgroup of index
at most m.

Proof In G there are only finitely many open subgroups of index at most
m! (by Proposition 1.6); call them Gi , . . . , Gs. Up to isomorphism, there
are only finitely many groups of order at most ml; call them F i , . . . , Ft.
Now suppose that \E : G\ < m. Then for some i < s we have Gi < E,
and then E/Gi = Fj for some j < t. The corollary is now obvious.

We can also consider extensions the other way round:

5.11 Theorem There are only finitely many isomorphism types of profi-
nite extensions of a finite group F by a given pro-p group G of finite
rank.

This depends on

5.12 Lemma Let E be a profinite group of finite rank r and let F
be a finite normal subgroup of E such that E/F is a torsion-free pro-p
group. Say \F\ = mpe with p \ m. Then E has an open subgroup K
such that K n F = 1 and \E : K\ \ mp^r'e\ for a certain function f.

Proof Let H be a Sylow pro-p subgroup of E (see Exercise 1.12). Then
FH = E and \E : H\ = m. Theorem 3.10 shows that H has a powerful
open subgroup Q of index at most pr+rA(r). Now put K = Qp€. Then
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\Q : K\ I per , and every element of K is the peth power of an element of
Q, by Theorem 3.6. As Q/(Q n F) is torsion-free and (Q n F)pC - 1 it
follows that if nF = 1. This gives the result, with /(r, e) = r+rA(r)+er.

Suppose now that we have a profinite group E containing the given
finite group F as a normal subgroup, with E/F isomorphic to the given
group G. We may choose in G a uniform open subgroup G\, by Corollary
4.3. Let E\ be the inverse image of G\ in E. By Lemma 5.12, E\ has
an open subgroup K, with K f] F = 1, such that \E\ : K\ < mp^r'e\
where m and e depend only on F, and r is at most the sum of the ranks
of G and F. Then \E : K\ < \G : G^mp*^. On the other hand,
K is isomorphic to KF/F, a subgroup of index at most mp^r'e>)/\F\
in E\/F = Gi. Hence there are only finitely many possibilities for the
isomorphism type of K (Proposition 1.6), and it follows by Corollary
5.10 that there are only finitely many possibilities for the isomorphism
type of E. This completes the proof of Theorem 5.11.

Notes

The material of §§1-3 is presumably well known (apart from the 'uni-
formly powerful' terminology). Theorem 5.7 may be new. §4 is from
Segal (1999).
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Exercises

1. Let G be a profinite group. Show that there is a unique topology on
Aut(G) making Aut(G) into a topological group and having the family
(T(N))N<OG a s a base for the neighbourhoods of 1, and that this topol-
ogy is Hausdorff (it is the existence rather then the uniqueness which is
in question here).

2. Let G be a profinite group. Show that the map

G x A u t ( G ) ^ G ; (.9,7) » g^

is continuous. Show also that if G is finitely generated, then the congru-
ence topology on Aut(G) is the coarsest topology (making Aut(G) into
a topological group) for which this statement is true.

3. Give an example of a profinite group G such that Aut(G) is not
profinite.

4. Show that if G is a finite p-group then F(<£(G)) is a p-group.
[Hint: See §0.5. Alternatively, argue as follows. Write Gn = 7n(G).

(i) Show that if 7 G F($(G)) then ^ G T(G2) for some m. (ii)
By applying Lemma 5.4 to the action of G on Gn/Gn+2, show that
[Gn,G2] < Gn+2 for each n. (iii) By induction on n, show that if
7 G r(G2) then [Gn,7] < Gn +i for each n. (iv) Suppose Gc+i = 1.
Using induction on c, and Lemma 5.4, show that F(G2) is a p-group.]

5. Suppose that the profinite group G has finite rank r and is virtually
pro-p. Show that Aut(G) is virtually (pro-p of rank < 2r2).

6. Let G = Fi+ e be as in Theorem 5.2. Show that G is topologically
generated by the set

where e^ is the matrix with (i, j)-entry 1 and all other entries 0.

7. Let G be a pro-p group of finite rank and let F be a finite p-group.
Deduce that there are only finitely many isomorphism types of pro-p
groups which are extensions of F by G from the fact that G is finitely
presented (Theorem 4.34). Use Theorem 4.35 to give an upper bound
for the number of such isomorphism types in terms of rk(G) and \F\.

[Hint: Suppose F < H and H/F = G; write down a presentation for
H as a pro-p group, in terms of a presentation for G, the multiplication
table of F and an action of H on F.]
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Interlude A

'Fascicule de resultats': pro-p groups of finite rank

1. Let G be a pro-p group. Each of the following conditions is necessary
and sufficient for G to have finite rank:

(a) G is finitely generated and virtually powerful (Theorem 3.13);
(b) G is finitely generated and virtually uniform (Corollary 4.3);
(c) \G : Gpk\ or \G : Gp \ grows at most polynomially with k (Theorem

3.16);
(c*) (p T̂  2) G is finitely generated, and \G : Gpk \ < pP +k l for some

k (Corollary 11.19);
(d) G has polynomial subgroup growth (Theorem 3.19);
(d*) G is finitely generated, and 0^(G) < pck for all large k, where

c<1 (Theorem 11.7);
(e) G is the product of finitely many procyclic subgroups (Theorem

3.17);
(e*) G is finitely (or countably) generated as a Zp-powered group (The-

orem 3.17);
(f) for some finite k, the k-generator subgroups of G have positive

lower density (Exercise 3.3);
(g) G is finitely generated, and for some n, G does not involve

Cp I Cpn (Exercise 3.4);
(h) G is finitely generated, and no infinite closed subgroup of G has

Hausdorff dimension zero (Exercise 4.16);
(i) G is finitely generated, and for some n (or for infinitely many n),

Dn(G) = Dn+1{G) (Theorem 11.4, Proposition 11.3);
(j) G is finitely generated, and for some n (or for infinitely many n),

there exists h with ph > n such that 7n(G) consists of phth powers in
G (or such that -yn(G) < '&*')n+1(G)) (Corollary 11.17);

(k) G is finitely generated, and the graded Lie algebra @Dn(G)/
Dn+i{G) is nilpotent (Exercise 11.7);

(1) G is finitely generated, and the 'Golod-Shafarevich sequence' cn(G)
grows at most polynomially (or for some n > 1 , cn(G) < p{n) ) (Exercise
7.5, Proposition 12.17);

(m) the 'subgroup-counting zeta-functionJ CG,P(5) is a rational function
of p-s (Interlude C);

(n) G is isomorphic to a closed subgroup of GL^(ZP) for some d
(Theorem 7.19, Theorem 5.2);

(o) G is a p-adic analytic group (Corollary 8.34).
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2. Let G be a pro-p group of finite rank. Then dim(G) is equal to each
of the following numbers:

(a) d(H) where H is any uniform open subgroup of G (Definition 4.7);
(b) dim(iV) + dim(G/iV) where N is any closed normal subgroup of

G (Theorem 4.8);
(c) the rank of the free Zp-module (#",+) where H is any uniform

open subgroup of G (Theorem 4.17);
(d) limfc^ooAr1 logp \G : Gpk\ (Exercise 4.10);
(e) the order of the pole at 1 of the function gocha(G; T) (Corollary

12.19);
(f) dimQp(L) where L is the Lie algebra C(G) (Theorem 9.11);
(g) the dimension of any chart belonging to any p-adic analytic group

structure on G (Theorem 8.36).
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6
Normed algebras

In this utilitarian chapter we introduce some simple analytic concepts,
and establish some of their basic features. The proofs in Sections 1-4 are
exercises in analysis of the most elementary kind, and will mostly only
be sketched; however we present a number of arguments in detail, as the
analysis is non-Archimedean and perhaps somewhat unfamiliar. Section
5 is devoted to a single more substantial result, the Campbell-Hausdorff
formula.

While Sections 2-4 concentrate on p-adic analysis, Section 6 extends
some of the results to 'pro-p rings' of more general type; these will be
needed in Chapter 13.

6.1 Normed rings
Rings are assumed to have an identity element distinct from 0; the iden-
tity of a ring R is denoted 1R.

6.1 Definition A norm on a ring it! is a function ||-|| : R —>  M. such that
for all a,be R

(Nl) ||a|| > 0 ; ||a|| = 0 if and only if a = 0;
(N2) ||lfl | | = l and |H |< | | a | | | | 6 | | ; and
(N3)||a±6||<max{||a| | , | |6| |},

If these hold then (i?, ||-||) is said to be a normed ring.

Norms of this kind, satisfying the 'ultrametric inequality' (N3), are
called non-Archimedean. These are the only ones considered in this
chapter. It is easy to see that (N3) implies the following inequalities,

101
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which will often be used without special mention:

||GI + • • • + an\\ < max ||ai|| if n is finite; (1)
l<i<n

\\a ± b\\ = max{||a||, ||6||} unless ||a|| = ||6|| (2)

The distance function (a, 6) i—> \\a  — b\\ is a metric on a normed ring
(R, ll'll); all topological terms applied to R will refer to the topology
defined by this metric. A sequence (an) of elements in R is a Cauchy se-
quence if for each e>0 there exists an integer N£ such that \\an — am\\ <
e whenever n> N£ and m> N£.

6.2 Definition (i) The normed ring (it!, ||-||) is complete if every Cauchy
sequence in R converges to an element of R.

(ii) A normed ring (i?, ||-||) is called a completion of R if (a) R is a
dense subring of R and the norm on R extends the norm on R and (b)
R is complete.

6.3 Proposition Let (R, ||-||) be a normed ring. Then there exists a
completion(R, ||• ||) of (iJ, ||-||), which is unique up to isomorphism -
that is, if (R'lW'W) is a second completion, then there exists a norm-
preserving isomorphism <\>\ R —> R' which restricts to the identity on
R.

Proof The existence of a completion follows by a standard procedure
which we briefly recall. We can define a ring structure on the set C
of Cauchy sequences in R by defining addition and multiplication com-
ponentwise. Define a null sequence to be a sequence (xi) such that
lim^oo ll^ill = 0. The null sequences form an ideal N in C. Put
i? = C/N, and note that R embeds into R via the diagonal map a n (a).
We identify R with its image in R and define a norm ||-|| on R as fol-
lows: if (cLi) is a Cauchy sequence representing an element r in # , then
||r|| = lim^oo ||a^||. This norm is well defined and its restriction to (the
copy of) R in R gives the original norm on R. It is a familiar exercise
to show that R is dense in .R and that (i^, ||-||) is complete and unique
up to isomorphism.

Proposition 6.3 allows us to talk about the completion of a normed
ring (*, H ) .

6.4 Example The function |-| : Q -> R defined by

101 = 0; \a\ = p~k if a = pkm/n with fc,m,nGZ and p\mn

is a norm on Q. The completion of (Q, |-|) is the p-adic field (Qp, |-|).
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(As throughout the book, the symbol |-| denotes thep-adic absolute value
on Qp.) The Theorem of Ostrowski (see Schikhof (1984), Theorem 10.1)
states that, up to equivalence, the p-adic norms are the only non-trivial
norms defined on Q. (The ordinary absolute value on Q is not a norm
in our sense as it fails (N3).)

The following easily verified lemma generalises the definition of the p-
adic norm on Z. Most of the normed rings discussed in the later chapters
arise in this manner.

6.5 Lemma Let R be a ring and

R = Ro 2 #i 2 • • • 2

a chain of ideals such that

• for all ij e N, RiRj C

Fix a real number c>1, and define \\-\\ : R —»  R by

| | 0 | |=0 ; \\a\\=c-k if a£Rk\Rk+1.

Then (R, \\-\\) is a normed ring.

In the situation of Lemma 6.5, the norm extends in a natural way to
the inverse limit lim (R/Ri), which is then isomorphic to the completion

(R, II -II) of (iJ, II - J)) (see Exercise 2).
We shall be particularly interested in norms defined on Qp-algebras

A, compatible with the action of Qp on A:

6.6 Definition Let A be a Qp-algebra. Then (A, ||-||) is a normed Qp-
algebra if ||-|| is a norm on the ring A and the following holds:

(N4) ||Aa|| = |A| • IHI for all a G A and A <E Qp.

We leave it to the reader to check the following important example:

6.7 Example The ring Mn(Qp) o f n x n matrices over Qp is a normed
Qp-algebra with norm given by ||(ar/)|| = max{|a^| | i , j = 1 , . . . , n} .
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6.2 Sequences and series
Throughout this section, we assume that (R, \\-\\) is a complete normed
ring. Because our norm satisfies the ultrametric inequality (N3), ele-
mentary analysis in such a ring is particularly simple, as the following
propositions indicate. However, caution should be exercised as non-
Archimedean analysis has curious features, some of which are illustrated
in the exercises.

In order to deal with multiple series it is convenient to introduce the
following rather general notion of convergence.

6.8 Definition Let T be a countably infinite set and let n H-> an be a
map of T into R. Let a,s e R.

(i) The family (an)neT converges to a, written

lim an = a,
neT

if for each e>0 there exists a finite subset T' of T such that \\a — an \\ < e
for a l lnG T\Tr.

(ii) The series ^2neT an converges with sum s, written

an = 5,
neT

if for each e > 0 there exists a finite subset X" of T such that for all
finite sets T" for which V C T" C T we have ||s - YineTn an\\ < e.

It is easy to see that the limits and infinite sums defined in this way
commute with the operations of taking finite sums and multiplication
by constants; we shall use these facts without special mention. Note
that the condition in (ii) is rather a strong one; part (iii) of the next
proposition indicates that is analogous to absolute convergence in the
real case.

6.9 Proposition Let T be a countably infinite set and let n n an be a
map from T into R. Let i H-> n(i) be a bisection from N onto T.

(i) limnGT an = a if and only if lim^oo an^ = a.
(h) The series ^2neT an converges in R if and only if limnGT an — 0.
(iii) TtneT an = s if and only if Y™ =Q an{i) = s.
(iv) V ^2neTan = s then \\s\\ < suP{||an|| | U G T}.
(V) If Y2n<ETan = S and fOr SOme m G T> \\am\\ > ||«n|| for all

neT\{m}, then \\s\\ = ||am||.



6.2 Sequences and series 105

Proof We leave (i) as an exercise.
(ii) Suppose that Y^neTan = s. Let e>0. There exists T", a finite

subset of T, such that for any finite set T" with T C T" C T, we have
s - Y,neTn an\\ <€. Let me T\T' and put T" = T" U {m}. Then

< max s —

n e T" \ r } < e.

Thus limnGT an = 0,
Before proving the converse, we give the proof of
(iii) We show that ^C°^o

 an(i) —  s implies ^2neT an —  s; the converse
is clear from Definition 6.8.

Let e>0; then there exists Ni G N such that for all M > JVi,
5 —  ^2i=Qan(i)\\ < e- We have just shown that limnGT^n = 0; hence

there exists A^ G N such that for all i > A^, ||an(i)|| < £- Put N —
max{A/i,AT2} and T = {n(i) | 0 < i < N}. Then for any finite set T"
with V C r ; / C T, the inequality (1) gives

v < S f
5 —  >^ an < max < s — y^an(

n^T" I z=0
Thus ^2neT an converges to s in the sense of Definition 6.8.

(ii), converse: Assume that limnGTftn = 0, and put Sk = ^2i=oan(i)
for each k G N. Let e>0; then there exists a finite subset Tf of T such
that for all neT\T', \\an\\ < e. Put AT = max{i | n(i) G T'}. Then for
all k > j > N we have

\\sk - SjW < max{| |an ( i ) | | | j < i < k) < e.

So (sfc) is a Cauchy sequence. Since R is complete, there exists s G R
such that

oo

S = lim Sk = / &n(i)i
k—^oo  . J

so the series J2neTan converges by (iii).
(iv) Put <7 = sup{||an|| I n G T}. It is clearly enough to consider the

case where a > 0 . Then convergence of the series implies that there
exists a finite subset V of T such that ||s —  YJn

have eT, < a, and we

< max- s — <a

as required.



106 Normed algebras

(v) Now we have a = | |am|[ > | |a n | | for all n ^ m. It follows from

(ii) that | | a n | | < \G for all but finitely many n G T, and hence that

sup{| |a n | | I n G T\ {m}} < a. Hence by (iv) we have

l l s - a m | | = 2 ^ a™ < sup {||an|| I nGT\{m}} < | |a m | | ,
neT\{am}

which implies | |s| | = Hα™ ||, by (2).

6.10 Proposition Let T be the disjoint union of a countable family

{T\ I A G A} of countable sets T\. Suppose that ^2neT dn is a convergent

series in R, with sum s. Then each of the series ^2neTx an converges in

R, with sum s\, say, and 5ZAGA SX = s-

Proof Part (ii) of Proposition 6.9 shows that l im n G ^ an = 0; this clearly

implies that limnG7-A an = 0 whenever T\ is infinite. Using Proposition

6.9(ii) in the reverse direction we deduce that for each A G A there exists

s\ £ R such that J2neTx a<n = s\-

Now let s > 0. We must show that there exists a finite set A ' C A such

that for each finite set A" with Ar C A" C A we have ||s — J^AGA" 5 ^ I I <

e. By hypothesis, there exists a finite set V C T such that for each

finite set T" with V C f C T we have \s - Y,neT,, an\\ < e. As in the

proof of Proposition 6.9(ii) above, this implies that | | a n | | < e whenever

neT\T'. Now put A' = {A G A | Tx n T ^ 0 } , a finite subset of A.

Then for each A G A we have

< £
neTx\T'

It follows that if A" is any finite subset of A with A; C h" then

s —
AGA"

as required.

neTxC\T'

< £

6.11 Corollary (Double series) Let S\ and S2 be countable sets. Sup-

pose that for each (m,n) £ S\ x S2, a>mn is an element of R, and that

lim(m,n)G5ix52flmn = 0. Then the double series J2meS1(J2neS2

 a™n)

and ^2nes2(^2mes1

 amn) both converge and their common sum is
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Proof That the series J^/m n)£s1xS2
 a"mn c o n v e r S e s *s guaranteed by

Proposition 6.9(ii). To show that the first of the double series converges
to the same value, write T = S1XS2 = UmeSi Tm where Tm = {m} x£2>
and apply Proposition 6.10. A similar argument applies to the second
double series.

6.12 Corollary ('Cauchy multiplication of series'). Suppose that (T, *)
is a countable set with a binary operation *, and that ^2inerran and

bn are convergent series in R. Then, for each n G T, the series

(r,s)ETxT

converges with sum cn, say, and the series ^2neTcn converges with

neT neT neT

Proof The hypotheses imply that l imn GTan = hmn € Tfen = 0, from
which it follows that lim(r s)62-x^arbs = 0. Therefore X^(rs)eTxTa r^
converges. We now apply Proposition 6.10 to conclude that for each
n the series for cn converges and that ^2neTcn = J ] ,
Finally, Corollary 6.11 shows that

arbs) =
(r,s)eTxT reT seT reT seT r£T

The result follows.

As a final application of Proposition 6.9, we mention the following
important result on the uniqueness of power series:

6.13 Proposition Let A be a complete normed Qp-algebra and let an

(n G N) be elements of A. Suppose that there exists a neighbourhood V
of 0 in Qp such that

nan = 0 for all A eV.
nGN

Then an = 0 for all nGN.

Proof Suppose that not all an are zero, and let m be minimal such
that <2m 7̂  0. Let Ao G V be non-zero and set r = |Ao|. Since the
series Y^neNXoan converges, there exists C > 0 such that r n | | a n | | —
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||A£an|| < C for all n G N. Choose A G V such that 0 < |A| <
rmin{C~1rm ||am||, 1}. Now let n> m; then

Since an = 0 for n < m, it follows by Proposition 6.9(v) that

which contradicts the hypothesis. The result follows.

6.3 Strictly analytic functions
Throughout this section, (A, ||-||) will denote a complete normed Qp-
algebra.

We begin by defining formal power series in non-commuting variables.
We write

to denote the free monoid generated by a set of symbols X\,... , Xn:
the elements of W are the words

w(X)=XilXia...Xim,

where i i , . . . , i m G { 1 , . . . , n} and m > 1 , together with the empty
word (m = 0) which we denote by 1; here m = degw is the degree of
u> = w(X). The words are multiplied by concatenation.

6.14 Definition The ring of formal power series in the (non- commuting)
variables XL, . . . , Xn, denoted

. . . , Xn» or Q

is the set of all formal sums

F(X) = ^2 a™ w (a™  e % f o r a11 w)i
wew

made into a Qp-algebra with componentwise addition and scalar multi-
plication, and with multiplication given by

aww ^2 bwW —  ^2 CwW wnere cw —  ̂ 2 au^v'
wew wew wew u,vew
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It is readily verified that Qp ((X)) with this definition is indeed a Qp-
algebra.

6.15 Definition Let x = (#i , . . . ,xn) G An. The formal power series
^(X) = Y2wew aww c a n ^ e evaluated at x if the series J2wew O>WW(K),
obtained by substituting xi for Xi (i = 1,. . . , n) in each word w = w(X),
converges in A; in this case we denote its sum by F(x).

The set of all such power series -F(X) is denoted E^.

(We shall sometimes loosely say 'F(x) exists' to mean 'F(X) can be
evaluated at x\) Note that, according to Proposition 6.9(ii), F(X) G Ex

if and only if lim^ew aww{x) = 0. The following lemma is easily proved:

6.16 Lemma Let x = (#i , . . . , xn) G An.
(i) 77ie subset E^ is a subalgebra of Qp ((X)).
(ii) The mapping F(X) «-• F(x) o/ E^ into A is a Qp-algebra homo-

morphism.

We are now ready for the main definition of this section. Here, the set
An is given the product topology; for w G W and x = (xi , . . . , xn) G An

we use the shorthand notation

6.17 Definition Let / : D —• A be a mapping, where D is a non-empty
open subset of An. Then / is strictly analytic on Z) if there exists
^ ( x ) = Ylwew a™ w G Qp ((X)) s u c n t n a t ' ^or e a c n x = (xi , . . . , xn) G
A

(i) lim^H' la^l^(llxll) = 0? and
(ii)/(x) = F(x).

In this case we say that F represents f.

Condition (i) is a kind of 'absolute' convergence. It implies that F(X)
can be evaluated at x, since ||awu>(x)|| <

6.18 Lemma Suppose that f is strictly analytic on a non-empty open set
D C An and that f is represented by F(K) = ^2weW aww G Qp ((X)).
Then there exists k G N such that pkdegwaw G Zp for all w G W \ {1}.

Proof Equivalently, we must show that \aw\ < pkde&w. Since D is non-
empty and open there exists x G D with X{ ̂  0 for i = 1, . . . , n; thus



110 Normed algebras

mini I kill = Pr for some integer r. Then for each w G W we have

\aw\w(\\x\\)>\aw\prd^w.

Condition (i) of Definition 6.17 now implies tha t \aw\prdegw is bounded
above for all it; G W, say by ps where S G N . The result follows with
k = max{s —  r, 0} .

6.19 Proposition Let D be a non-empty open subset of An. If f is a
strictly analytic function on D then f is continuous on D.

Proof Let F(X.) = ^2weW aww € Qp ((X)) represent / and let x G D.
Since D is open we can choose a positive integer r such that \\xi\\ > p~r

whenever x\ ^ 0 and such that the set

Df = {y G An I \\xi -Vi\\< p~r for each i}

is an open subset of D containing x. Moreover, D' contains an element
z with the properties

||zi|| = ||xi|| if Xi T̂  0

Ikill —  P~r if Xi = 0

and, by (N3), \\yi\\ < ||^i|| for each i whenever y G D'.
We now prove that / is continuous at x. Let e>0. There exists a

finite subset W C W such that | a j m | z | | ) < e for all w G W \ W, and
hence |aw|w(||y||) < e for all y e Dr and all w G W\W. It follows that

\\aw(w(x)-w(y))\\<s (3)

for each w G W \ W and all y G D'.
On the other hand, when w = X^ ... Xim and y G D1 we have

^ b/ll • ' ' yim-l\Xlm Vim)

< max ll^ll771"1 max \\xi —  y%\\ .
i i

Hence there exists <5 > 0 (with 6 < p~r) such that, if ||xi —  yi|| < 6
for each i, then \aw\ - \\w(x) — w(y)\\ < e whenever w G W (note that
degw = m takes only finitely many values as w ranges over the finite
set W). Thus (3) holds for all such y when w G W. We now apply
Proposition 6.9(iv) to infer that
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< sup
wew

for all y satisfying \\xi — Vi\\ < S for 1 < i < n. Thus / is continuous at
x as required.

Our next task is to define the exponential and logarithm functions.
First we need

6.20 Lemma For each positive integer n, v(n\) < (n —  l)/(p —  1).

Proof Recall that |z| = p~v^ for each i. Now

v(nl) =
i=1

The number of integers i between 1 and n for which v(i) > j is equal to
the integer part of n/p7. Thus

where pk < n < pk+1.

For the precise value of v(n\) see Exercise 5.

6.21 Definition Two formal power series in Qp ((X)) (one variable) are
defined by

n = 0

n = 1

Writing

we now have

= f {xeA\\\x\\<p^} ifp^2
° \ {xeA\ \\x\\ < 2 - 2 } ifp = 2, l j

6.22 Proposition There exist strictly analytic functions

exp : AQ —>  1 + Ao, log : 1 + Ao —• ^40
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such that for all x € AQ

exp(x) =

Normed algebras

(x), log(l -f x) = C{x).

Proof Let x £ Ao; then ||x|| = p r for some r satisfying r > l/(p —  1).
Now it follows from Lemma 6.20 that \n\ > \n\\ > p-("-i)/(p-i)? s o for
each n > 1 we have

The condition on r implies that limn_oop~nr+(n"1)/ (p~1) = 0. It follows
by Proposition 6.9(ii) that the two series £(x) and C(x) both converge.
Moreover, the inequality above implies that (—l) n+1xn/n and xn/n\
both lie in AQ if n> 1. Then Proposition 6.9(iv) shows that

n = 1

and

n=1 n\

The result follows.

Remark For later reference we note that for x G A$ the above inequality
implies

n n\
< llxll

We shall show that these functions satisfy the usual identities for log
and exp. For this we need to discuss the composition of formal power
series.

6.23 Definition Let

G(Y)= M ; € Q p « Y » ,
v€W(Y)

Fi(X)=

where X = (Xi,. . . , Xn) and Y = ( l i , . . . , Ym). Assume that for i =
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1,... , m, the 'constant term' an is equal to 0. For v(Y) =Yil ... Y{d G

), define the coefficients cvw G Q p by

The composite of G and F = ( F i , . . . , F m ) is defined to be the formal

power series

(GoF)(X)= (
wew(x.) \vew(Y)

Note that this is a well-defined formal power series since cvw = 0

whenever degi> > degiu.

The next theorem establishes that under certain conditions the oper-

ations of composition and evaluation of formal power series commute.

6.24 Theorem Let (A, ||-||) be a complete normed Qp-algebra, and sup-

pose that Fi(X),... , F m ( X ) and G(Y) are formal power series satisfy-

ing the conditions of Definition 6.23. Suppose that F i ( X ) , . . . , F m ( X )

can all be evaluated at some point x G An. For each i put T\ —

sup{| |a^ti;(x)| | I w G W(X)}, and suppose that

Then G?(Fi(x),... , F m (x)) and (G o F)(x) both exist and are equal.

Proof The term cvww(X.) given in Definition 6.23 is the sum of a finite

number of terms of the form

fltiwi • • • aidWdwi(X)... wd(X)

where v(Y) =Yix... Yid, each w< (X) G W(X) and ^ i ( X ) . . . wd(X) =

w(X). Thus

| |C^K;(X)| | < max | |a i l

< r h ...rid =V(TU... ,Tm)

for each v and w.

W e c l a i m t h a t l i m ^ V i W ) e W ^ Y ) x W ^ b v c v w w ( - x ) = 0 . L e t e > 0 .

The hypothesis on bv and the inequality above imply that there exists

some finite subset V C W(Y) such that, for all (v,w) with

f ^ V, H^c^i/^x)!! < e. On the other hand lim^Gv^(X) α^ty(x) = 0
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for i = l , . . . , m and so, for each fixed v G W(Y), we have
\imweW(x) cvww(x) = 0: this follows from the first inequality above if
we note that ||a^w(x)|| is bounded for all i and w. Thus for each v eV
only finitely many w G W(X) satisfy ||6vcviyiy(x)|| > e; as V is finite
this inequality holds for only finitely many pairs (t>, w) G W(Y) x W(X),
and our claim is established.

Corollary 6.11 now shows that

(6)

By Lemma 6.16, evaluation is an algebra homomorphism, so

v(Fi(x),... ,Fm(x)) =

therefore

veW(Y)

which is equal to the left-hand side of (6). On the other hand,

(GoP)(x)= X̂  ( E
which is equal to the right-hand side of (6). The result follows.

6.25 Corollary Let x e Ao. Then
(i) log(exp(x)) = x\
(ii) exp(log(l + x)) — 1  -f x;
(iii) log((l + x)n) = nlog(l + x) for each n G Z;
(iv) exp(nx) = (exp(x))n for each n G Z.

Proof We sketch the proof of (i); the others follow in a similar fashion.
Let F(X) = £(X) —  1. A standard identity (see Exercise 7) asserts that

(CoF)(X) = X.

Put r = sup1<n€N ||xn/n!||. We see from (5) above that r < \\x\\, from
which it follows that l i m ^ ^ | ( - l ) n + 1 ( l /n) | r n = 0. We may thus in-
voke Theorem 6.24 to deduce that

log(exp(x)) = C(F(x)) = (C o F)(x) = x.
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Exercises 7 and 8 indicate that there are some subtleties to watch out
for when composing strictly analytic functions.

To conclude this section, we introduce the Campbell-Hausdorff series;
in the following chapters this will provide the essential link between an
analytic pro-p group and its associated Lie algebra.

6.26 Definition Let

P(XyY) = £(X)£(Y) - 1 € Qp «X,y»
C(X,Y) = £(-X)£(-Y)S(X)£(Y) - 1 G Qp

The Campbell-Hausdorff series $(X,Y) is defined by

the commutator Campbell-Hausdorff series ty(X,Y) is defined by

6.27 Proposition. Let x,y £ Ao. Then both $ and \I> can be evaluated
at (x,y), and

*(x,2/) = log(exp(x) • exp(y))
*(x,2/) = log(exp(-x) • exp(-y) • exp(a:) • exp(y)).

Proof We prove the claim regarding <I>; the other claim is proved sim-
ilarly. Let r = sup{||(xn/n!) • (ym/m!)|| | (n,ra) G N2 \ (0,0)}. Then
T < \\x\\ - \\y\\ by (5), and it follows that

lim | ( - l ) n + 1 /n | r n = 0.
n—>oo

Theorem 6.24 now shows that

${x,y) = (CoP)(x,y) = C(P(x,y))=log(exp(x)-exp{y)).

The most remarkable feature of the Campbell-Hausdorff series is that
it can be expressed as an infinite sum of Lie elements. The algebra
Qp ((X, y)), like any associative algebra, can be made into a Lie algebra
by defining the Lie bracket operation

For r > 2 we put
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and for a vector e = (ei , . . . , en) of positive integers we write

(e> = ei + • • • + en

(X,Y)e = (X,Y,... ,Y,X,. X,...).
ei e2

6.28 Theorem (Campbell-HausdorfT formula) Let $(X,Y) =
J2neNu^(^^) w^ere un(X,Y) is the sum of terms of degree n. Then

uo(X,Y) = 0, m(X,Y) = X + Y, u2(X,Y) = ^(XY - YX);

and for each n > 3

<e)=n-l

where each qe is a rational constant satisfying

Vn~1qG epZp if P^2
22n~2qe e 4Z2 if p = 2.

Moreover, writing e = 1 if p ̂  2, e = 2 if p = 2, we have

lim = 0.

We postpone the proof until §6.5. A similar result holds for the series
\£(X, Y). However, we shall only require knowledge of the first few
terms; these are easily calculated from the definition, giving

tf (X, Y) = XY - YX + (terms of degree > 3).

The following result will be important in Chapter 9, where we use the
Campbell-HausdorfT series to define a group law on suitable Lie algebras:

6.29 Proposition The Campbell-Hausdorff series satisfies the follow-
ing identity:

* o (#!, $ o H23) = $ o ($ o Hi2, H3)

where Hi(X1,X2,X3) = X{ and Hij(XuX2,X3) = (X^X,).

Proof This is an expression of the associative law in the algebra
Qp ((X, Y,Z)), which implies that

£(X)(S(Y)£(Z)) = (£(X)£(Y))£(Z).



6.4 Commuting indeterminates 117

Recall that $ = Co P where P{Y,Z) = £(Y)£(Z) - 1. Using the
standard identity (£ o £) (T) = 1 + T (see Exercise 6), and the fact that
composition of power series is associative, we have

£(Y)£(Z) = 1 + P(Y, Z) = ((£ o C) o P))(Y, Z) = (£o $)(y, Z)

=* £(X){£(Y)£(Z)) - 1 = P o (ffi, $ o H23)(X, y, Z).

Similarly,

(£(X)£(Y))£(Z) - 1 = P o (* o H12, iJ3)(X, y, Z).

Thus Po (jEfi,*oH23) = Po($oHi2,ff3) , and the result follows after
composing on the left with £, by the associativity of composition.

6.4 Commuting indeterminates
Many of the results of the preceding section have analogues in the context
of commuting variables; these we now briefly sketch.

The set of formal power series over Qp in n commuting indeterminates
Xi , . . . , Xn is denoted QP[[X]]. The elements of QP[[X]] will be written
as formal sums -F(X) = SmeNn ^mXm with each bm G Qp, where X m =
X™ 1 . . . X™ n. The set QP[[X]] is a Qp-algebra under pointwise addition
and scalar multiplication, and the product is given by

meNn

where

Cm = ^2 °'s^t'
s+t=m

There is an obvious 'forgetful' mapping

~:QP«X»-QP[[X]];

writing Wm(X) to denote the (finite) set of words on X in which
occurs exactly m^ times for z = 1,... , n, we define

aww(X) =
weW(X.)
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It is straightforward to verify

6.30 Lemma The map : Qp ((X)) —>  QP[[X]] is an epimorphism of
Qp-algebras; its kernel is the ideal generated by {XiXj — XjXi \ i, j =
l , . . . , n } .

6.31 Definition Let

G(Y) = 5>sYseQp[[Y]],
seNm

F<(X) = Y^ OitX* G Qp [[X]] i = 1 , . . . , m,
t€N™

where X = ( X i , . . . , Xn) and Y = (Yi, . . . ,3^n). Assume that for
z = 1 , . . . , m, the 'constant term' α̂ o is equal to 0. For s G N m , define

the coefficients c s t G Q p by

The composite of G and F = ( F i , . . . , Fm) is defined to be the formal

power series

(GoP)(X)= 5 C ^
tENn \sGNm /

Comparing this with Definition 6.23, it is a routine exercise to verify

6.32 L e m m a Suppose that F i ( X ) , . . . , F m ( X ) G Qp ((X)) and G(Y) G

Qp ((Y)) are formal power series satisfying the conditions of Definition

6.23. Then F = ( F i , . . . ,Fm) satisfies the conditions of Definition 6.31

and

GoF = GoF.

From now on, (A, \\-\\) will denote a complete normed Qp-algebra, as

in the preceding section.

6.33 Definition. The power series F(X) = E m e N - 6 m X m G

Qp[[X]] can be evaluated at x = (xi,... ,xn) G An if the series

SmeN n bmX™1 . . . x™n converges in A\ in this case we denote its sum

by F(x).

6.34 Propos i t ion Let F(X) G Qp ((X)) and suppose that F(x) exists

where x = ( # i , . . . , xn) G A n . // XiXj = XjXi for each i,j — 1 , . . . , n

then F(X) G QP[[X]] can be evaluated at x and F ( x ) = F ( x ) .
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Proof Say F(X) = Ewewaw^ then F(X) = Em G N^mX m where
bm = J2weWm aw. Now W is the union of the countable family {Wm \
m G Nn} of disjoint sets VFm, each of which is finite. The hypothesis
asserts that the series ^2weW aww(x) converges in A with sum -F(x).
Put sm = ^2wGWm aww(-x) for each m G Nn. Since X{Xj = XjXi for each
i, j = 1,. . . , n, we have

It follows by Proposition 6.10 that XlmeN" ̂ m^™ 1 • • • x™ n converges to
the sum -F(x); this is the claim of the proposition.

We can now deduce the following analogue to Theorem 6.24:

6.35 Theorem Let (A, ||-||) be a complete normed Qp-algebra, and let
Fi (X), . . . , Fm(X) and G(Y) be formal power series satisfying the con-
ditions of Definition 6.31. Suppose that Fi(X), . . . ,Fm(X) can all be
evaluated at some point x =(x i , . . . ,xm) G An, where XiXj = XjXi for
each pair (i,j). For each i put T\ = sup^a^a;*1 • • • $1? \\ \ t G Nn}, and
suppose that

Jm \b.\T?...TZr=0.

Then G(Fi(x),. . . , Fm(x)) and (G o F)(x) 6ot/i exist and are equal.

Proof It is clear that we can choose if i (X), . . . , ifm(X) G Qp ((X)) and
L(Y) G Qp ((Y)) satisfying the hypothesis of Theorem 6.24 with respect
to the point x e An and with the property that Ki(X) = Fi(X) for each
i = 1,. . . , m and L(Y) = G(Y). Prom Theorem 6.24 we may conclude
that L(Ki(jc),... , Km(x)) and (LoK)(x) both exist and are equal. The
result now follows by 6.32 and 6.34.

A typical application is

6.36 Corollary Let x, y € AQ and suppose that xy — yx. Then

(x -y) = exp(x)(exp(y))~1.

Here we take F(XUX2) = X1 + X2 and G(Y) = Exp(F) = £(Y), the
exponential series. Then (GoF){X1,X2) = G(X1)G(X2) by a standard
identity. Let x = (xi,x2) G AQ X AQ. Then the hypotheses of Theorem
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6.35 are satisfied, since now r̂  = \\xi\\ for i = 1,2, so we may infer
that exp(#i + X2) = exp(xi) exp(0^2). The result follows by Corollary
6.25(iv), putting x\ = x and x^ = —y.

We conclude this section with a result that will be important in
Chapter 9:

6.37 Theorem ('Inverse Function Theorem') Let l7i(X),... , Ud(X) e
Qp[[Xi,... ,Xd]], and let mGN. Assume that for each i,

(a) Ui has constant term 0;
(b) all coefficients of Ui lie in pmZp; and
(c) the linear part of Ui(X) is S j = i bijXj, where the matrix (p~mbij)

lies in GL^(Zp).
Then there exist power series V i ( X ) , . . . ,Vd(X) G Qp[[Xi,... ,Xd]],
with zero constant terms, such that

(Vi o U)(X) = (Ui o V)(X) = Xi (i = 1, . . . , d).

For each y 6 pm+1Z£, we have V(y) € pZf and C/j(V(y)) = yi (i =

Proof Consider first the special case where m = 0 and (6^) is the identity
matrix. Thus

where in general W^ will stand for the homogeneous part of degree j
in a power series W. We want to find power series Vi,.. . , V̂  such that
(UoV)(X) = X . Put

j > 2

for i = 1,. . . , d. Then (U o V)(X) = X is equivalent to

V® (X) = - £ t/f I ( X + £ VM (X) ) . (7)
fc>2 \ j>2 /

Write Wi(X) for the right-hand side of (7). Then for t > 2, wf + 1 ](X)
is the same as the homogeneous part of degree t + 1 in the polynomial

5> (8)
fe=2 V I
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Also, W\ (X) = —U\ (X). So we can  construct the V}* recursively
by putting v}2] = -Uf] and, for t > 2, v}t+1] = w\t+1\ since the
polynomial (8) depends only on V ^ , . . . , VJ for j < t.

Note that, by construction, V has coefficients in Zp, V^ = 0 and
V^ (X) = Xi for each i. Hence we can repeat the construction with V in
place of U, to obtain power series S i , . . . , Ŝ ? sav> such that (VoS)(X) =
X. Then (Exercise 6.9)

U(X) = (U o (V o S))(X) = ((U o V) o S)(X) = S(X),

so (V o U)(X) = X, as required.
The general case is reduced to the case just considered by a change

of variables. To begin with, let us assume still that m = 0, but allow
(bij) = B to be an arbitrary matrix in GL^(Zp). Put C = (cij) = B'1.
For any matrix A = (a^) G GL^(Zp), we denote by A(X) the d-tuple of
formal power series

Now put

U*(X) = (UoC)(X).

Then [/*[0] = 0 and C/*[1](X) = X{ for each i. So by the special case
above, there exist V* (X) G ZP[[X]], 1 < i < d, with zero constant terms,
such that

(U* o V*)(X) = (V* o U*)(X) = X.

Now let

V(X) = (CoV*)(X).

Then

(V o U)(X) = (C o V* o U)(X)

= (CoV*oU*oB) (X)=X

since clearly U* o B = U and (C o B)(X) = X. Similarly,

(U o V)(X) = (U* o B o C o V*)(X) = X.

Now consider the general case, with m > 0 . Put

U(X)=p- m U(X) .
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By the previous case, there exist Vi,.. . , Vd G ZP[[X]] such that (U o
V)(X) = (V oU)(X) = X. Put

One checks immediately that then (U o V)(X) = (V o U)(X) = X.
Finally, let y G pm+1Z^. Then V(y) = V(p~my), which converges to

an element of pU^ since p~rny G pU^ and all coefficients of V lie in Zp.
It is clear that the hypotheses of Theorem 6.35 are fulfilled if we take
G = Ui and F = V, so we may infer that

= {UioY){y)=yi

for each i.

6.5 The Campbell-Hausdorff formula
The Campbell-Hausdorff series $(X, Y) was defined in §6.4 by

where

, Y) = £(X)£(Y) - 1 € Qp ((X, y »

and £(X), C(X) are the formal power series given in Definition 6.21; they
represent the functions exp(x) and log(l + #) respectively. According to
Propositions 6.22 and 6.27, if A is a complete normed Qp-algebra and
x,y e AQ then

*(x,2/) = log(exp(x) • exp(y)) G AQ.

Recall that x G A$ if and only if ||x|| < p~e where

e=1 if p ^ 2, e = 2 if p = 2,

notation that we keep throughout this section. In view of Corollary 6.25
this implies

exp $(x, y) = exp(x) • exp(y). (9)

Writing W = W(X, Y), we have

wew

where aw G Q for each w (because both the series £ and C have rational
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coefficients). For each n G N we define a polynomial un (in the non-
commuting variables X and Y) by

un(X,Y)=
deg w—n

thus 3>(X, Y) = XlnGN un(X,Y). It takes a short calculation to verify
that

where (x ,y)
We now restate

6.28 Theorem For each n > 3 we have
un{X,Y)= J2 Qe(X

(e)=n-l

where each qe € Q satisfies

Moreover, lim
(e)-Kx>

= 0.

The notation here is as in §6.4: e runs over vectors e = (ei , . . . , es) of
positive integers (with s > 1 ) , (e) = ei + • • • + es and

(x, r)e = (x, y ^ ^ , x 1 ^ 1 x , . . . ) .

Remark It is in fact the case that
fn-ll

for all n > 2 (this is clearly stronger than the assertion made above). For
the proof, which depends on the theory of free Lie algebras, see Exercise
11.

Before embarking on the proof of the theorem, we mention an impor-
tant consequence:

6.38 Corollary Let L = Z^ be a Lie algebra over Zp, and suppose
that (L, L) C peL. Let x,y G L, and for n G N define the element
Un(x,y) e QpL by un(x,y) = E<e>=n-i Qe(x,y)G. Then
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(i) un(x, y) G L for all n G N;
(ii) the series

converges in L;
(iii) i(x,y) - (x + y) G pL, and
(iv) if p = 2 then $(x,y) - (x-\-y) - \{x,y) G 4L.

Proof The hypothesis implies that if (e) = n — 1  then (x, y)e G
Since pe(n~iy>qe G Zp by the theorem, it follows that

Therefore qe(x,y)e G L, giving (i).
To prove (ii), it suffices to show that the partial sums of the given

series form a Cauchy sequence in L (here we think of L as an additive
pro-p group). Let TV G N. The second part of the theorem shows that for
all sufficiently large n G N we have pe^n~1^qe G pNZp when (e) = n —  1.
As above, this implies that

which shows in turn that un(x, y) G pNL for all sufficiently large n. The
result follows.

The argument above shows that if n > 3 then in fact un(x,y) G peL.
Parts (iii) and (iv) follow, since peL is closed in L (and \ G Zp when p
is odd).

We now start on the proof of the theorem, and begin with some general
observations. Let (A, ||-||) be a complete normed Qp-algebra. A Qp-
linear map <j) : A —> A is called bounded if there exists a real number
r > 0 such that

||o0|| <r | |o | | fora l laGA

Let B be the set of all bounded Qp-linear maps A —>  A and define the
norm ||-||0 on B by

W o p
aeA INI

We leave it as an exercise to prove that (J5,||-||O) is a complete normed
Qp-algebra. We shall be especially interested in the following class of



6.5 The Campbell-Hausdorff formula 125

elements of B. For each a G A, we define n#/i£ multiplication, left
multiplication and adjoint by

wra = ua, ida = au, -uad(a) = ua — au

for all u e A. Note that r a , la and ad(a) all lie in B with norms bounded
by II a II. In particular, it follows that if a G A$ then each of them lies in
.Bo- The maps r : A —> B, \ : A —> B and ad : A —>  B are continuous,
and clearly Qp-linear. Combining this with the following identities

lab = hla, *ab = ^a^b,

we may deduce that, provided a G Ao,

rexp(a) =

For a related result concerning the map ad, see Exercise 12. What we
need now is the following key result:

6.39 Lemma For all a, 6 G A and n G N,

tfcn(ad(a),ad(&)) = ad(itn(a,6)).

Proof Let a,b e Ao. Then la, 1& G -Bo and we have

fc) exp(l a) = leXp(6)lexp(a) = Uxp(a) exp(6)

6) by (9)

Similarly, exp(ra) exp(r^) = exp(r$(a^)). Since left multiplication com-
mutes with right multiplication and ad(a) = r a —  la we may apply (9)
again with Corollary 6.36 to deduce that

exp(3>(ad(a),ad(&))) = exp(ad(a))exp(ad(6))
= exp(ra) exp(la)"1 exp(r6) exp(l6)~1

= exp(ra) exp(rfe)(exp(l6) exp(la))~1

= exp(ad(*(a,6))).

It follows that $(ad(a),ad(6)) = ad($(a, 6)), so we have

Y^ ^n(ad(a), ad(6)) = a d ( ^ un(a, 6)); (10)
neN nGN

this holds for all a, b G AQ.
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Now let a and b be arbitrary elements from A with norms bounded by
pr. Then for all A G Qp with |A| < v~r~2 we have Aα, Xb G Ao. Since the
polynomials un(X, Y) are homogeneous of degree n we conclude that for
all a,b € A and all such A G Qp,

^ Anun(ad(a),ad(6)) = ^ <xn(ad(Aa),ad(A6))
neN nGN

^ by (10)

because ad is continuous and linear. The lemma follows by Proposition
6.13.

Let us write

cw = c(iuju . . . , ikjk) where w = X^y^1 . . . XikY^k

(here i\ > 0 and all other exponents are > 1). The following lemma lies
at the heart of the proof:

6.40 L e m m a Let n>2. Then nun(X,Y) is equal to

over all 2k-tuples f = ( n , j i , . . . ,ik,jk) with k>1 and
(f) = n.

Proof We start by constructing a certain complete normed Qp-algebra A,
as follows. Let Qp (X, Y) be the Qp-subalgebra of Qp ((X, Y)) generated
by X and Y, i.e. the non-commuting polynomial ring in X and Y. We
construct a (Q)p-algebra P by adjoining to Qp (X, Y) an indeterminate t,
satisfying the multiplication rules

Xt=(t- 1)X, Yt={t- 1)Y;

thus P is a so-called skew polynomial ring over Qp (X, Y). The elements
of P can be uniquely written as finite sums of the form Y^w fw(t)w, where
each w G W(X, Y) and each fw(t) G Qp[i\. If we define ||-|| : P -> E by

mi** w\\ =
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(P, ll'll) becomes a normed Qp-algebra, as the reader may verify. Finally,
let (A, II-||) be the completion of (P, ||-||).

Note that A contains the non-commuting polynomial ring Qp (X, Y)
as a subalgebra, and that if w G W has degree n > 1 then

wt = (t — n)w,

by the definition of multiplication in P . It follows tha t if v(X, Y) G
Z (X, Y) is any homogeneous polynomial of degree n > 1 then

tad(y(X, Y)) = nv(X, Y). (11)

Put ^ - adpO, n = ad(y). Let w = X^Y^ ...XikY*k. Suppose
that ii > 1. Then

_ r o if 2i > l

Similarly, if i\ = 0 then

f 0 i f j i > l

this is equal to 0 if i<2, = 0 and equal to

if ji = 1 and i^ > 1.
Now applying (11) we obtain

nun(X,Y) = tad(un(X,Y))
= tun(^T]) by Lemma 6.39

deg(w)=n

* l = 1

in view of the preceding paragraph.
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The lemma shows that un(X,Y) can be written in the form
^qe(X,Y)e where each qe is a sum of terms ±n~1c(f) with (f) —  1 =
(e) = n —  1. The following therefore completes the proof of Theorem
6.28:

6.41 Lemma Let f = («i, j i , • • • ,ik,jk), and suppose that (f) = n> 3
and that zi = 1 or j \ = 1. TTien

where h(n) > e for all n and h(n) —>  oo as n —>• oo.

Proe/ The terms in the power series P(X, F) = £(X)£(y) —  1 are each
of the simple form

with i + j > 1. It follows that each term of degree n > 1 in the series

$(X, y) = (£ o P)(X, y) has the form

±__J_-. x^Y^1 XlkY^k

k ii\ji]....ik].Jk]-

where 1 < k < n, i\ + j \ H h ife H- j/t = n, and i£ + j> > 1 for each £.
Some of these terms will coalesce, since some of the exponents i^ and je
may be zero; however, if we put

( k k \
y(n) = n - lcm I k TT ieljel \ / ^ it 4- j> = n, it + j> > 1 for each ^ > ,

I t=i t=i J

it is clear that f(n) • n~1c(f) G Z for each f with (f) = n. To show that
h(n) > e it would therefore suffice to verify that

v(f(n))<e(n-2) (12)

when n > 3 . Unfortunately this is false (though the lemma is true) for
n — p = 3; we refer to Exercise 10 for the cases n = 3,4, and now prove
(12) for n > 5 .

Assume that ŝ  = it 4- jt > 1 for each t. Then î !j>! divides s !̂, so
Lemma 6.20 gives

( k \ i i k i i

T TT , . \ k —  1 v ^ s£ —  1 n — 1
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where J2t=i s£ = n- On the other hand, observe that for any integer
e > 2 we have 2(p — l)e + 1 < pe, unless p — 2 in which case we require
e > 3 (to see this, expand (1 + (p —  I))6); taking e = v(n) gives

t;(n)<max|e,^——  J. (14)

One verifies trivially that

1 —

S<e(n-2)
when n > 5 ; hence (12) follows from (13) and (14).

To show that h(n) tends to infinity with n is easier: it suffices to show
that

v(f(n)) -e(n-l) -+ -oo;

but from (13) we have

v(f(n)) - e(n - 1) < v(n) + —\ - e(n - 1)
p- 1

a n d t h e r e s u l t fol lows s i n c e e > 0 .

6.6 Power series over pro-p rings
The reader is advised to skip this section until she or he is about to read
Chapter 13 where we introduce the concept of analytic groups over rings
more general than Qp. For this we shall need suitable generalisations of
some of the results established earlier in this chapter, where the role of
the p-adic integers is taken by a ring of more general type, and it is the
purpose of this section to supply these.

Throughout, all rings are assumed to be commutative, Noetherian and
with identity. A ring .R is local if R has a unique maximal ideal m ^ 0 ;
one refers to 'the local ring (i?,m)\ The quotient R/xn is called the
residue field of R.

If (R, m) is a local ring, the powers of the maximal ideal mn (n G N)
define a filtration on R called the xn-adic filtration. This filtration in
turn defines a topology on i2 called the m-adic topology, in which the
system (tnn)neN forms a base for the neighbourhoods of 0.
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Definition A local ring (i?, m) is a pro-p ring if

• the residue field R/xa is finite, of characteristic p, and
• R is complete with respect to the m-adic topology.

A pro-p ring which is an integral domain will be called a pro-p domain.
It follows from Krull's Intersection Theorem (Atiyah and Macdonald
(1969), Corollary 10.18) that the powers of the maximal ideal in a pro-p
domain intersect in 0, so the topology is Hausdorff. Familiar examples of
pro-p rings are the (complete) discrete valuation rings with finite residue
field: a pro-p ring is a discrete valuation ring - we shall say DVR - if
and only if its maximal ideal is principal.

As was the case with pro-p groups, there is an alternative definition
in terms of inverse limits: see Exercise 13.

The fundamental structure theorem of I.S Cohen shows how every
pro-p domain can be built up starting from either Zp or Fp:

6.42 Theorem Let (ii, m) be a pro-p domain. Put RQ = 7LV if
char(i?) = 0, Ro = ¥p if char(i?) = p. Then R contains a subring Ri =
Ro [[Ti,... ,Tr]] such that R is finitely generated as an R\-module. R\
is a pro-p domain with maximal ideal mi = (p, Xi , . . . , Tr).

This is Theorem 6.3 in Dieudonne (1967). It is also implicit in Mat-
sumura (1986), §29 or Bourbaki (1983), Chapter IX, §2. Since R is an
integral extension of R\ it has the same Krull dimension Dim(i?); if this
dimension is 1 then R\ is a principal ideal domain, so we may infer

6.43 Corollary Let R be a pro-p domain of Krull dimension 1. Then
R is a finitely generated free module over a subring of the form *LP or

Since the powers of m intersect in zero, we can use Lemma 6.5 to make
(i^, m) into a normed ring: fixing a positive real number c < 1, we define
the norm ||-|| : R -> R by ||a|| = ck if a <E m*\m*+1, ||0|| - 0.

If Dim(,R) = 1 then R is & DVR; in this case, the maximal ideal m is
principal, and we choose a generator ?r, so m = TTR. Thus ||7T|| = c; we
extend the norm to the field of fractions K by

11-11 _ ll-rW I! -n
«A/ II /I "k ^

where n is so large that -Knx € R. This makes K into a complete valued
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field, and the arguments of earlier sections work just as well with K in
place of Qp.

If R is not a DVR serious difficulties arise: although it may be possible
to extend the norm from R to K, we no longer obtain a locally compact
field, and elementary analysis over K breaks down (see Exercise 14).
In this case, therefore, we restrict consideration to power series with
coefficients in R. To save repetition, we fix the notation

K if R is a DVR

R if R is not a DVR.

Definition A power series F(X) = £ m e N n ^ X ™ 1 . . . X™ n G
A[[X]] can be evaluated at x = (# i , . . . ,x n) G An if the series
SmGNn UmZ™ 1 - - -x7nn converges in A. In this case, its sum is denoted
F(x).

(Whenever we use the notation -F(x), this is meant to imply that F can
be evaluated at x.)

We shall write m^n^ to denote the set of n-tuples of elements of m, to
distinguish it from the nth power of the maximal ideal mn (we continue
to write An for n-tuples from A).

6.44 Lemma If F(X) G R[[X]] then F(X) can be evaluated at x for
every x G m^n\ If the constant term of F(X) is in m then F(x) G m.

The following generalises Lemma 6.18:

6.45 Lemma Let F(X) = EaeN- n**?1 . . . X%n G A [[X]] and suppose
that F can be evaluated on (mN) . Then there exists k eN such that

aQmfc<a) C R for all a ^ 0 .

Proof If i^ is not a DVR then each aa is in R and we can take k = 0.
Suppose that R is a DVR. Since F converges at (irN,... , TTN) there exists
D such that Hfla71"^^!! ^ 1 whenever (a) > D. Let E be large enough
so that 7TEaa G R for each a with (a) < D. Then k = max{jD, E} has
the required property.

The next three results generalise earlier results, with similar proofs;
see also Bourbaki (1989a), Chapter III §4.
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6.46 Lemma Let Si and S2 be countably infinite sets. Suppose that
for each (ra, n) G S\ x 52, amn G A and that lim amn = 0. Then

(m,n)eS1xS2

the double series £ m € 5 l (Enes2
 amn) and £nes 2 (Eme5i a™0

converge and their common sum is ^2(m n)es1xs2
 a ^^ -

6.47 Theorem For i = 1, . . . , m let teN
A [[X]] be power series with zero constant terms. Let G(Y) =
EsGN- bmYi1 . . . l^m G A [[Y]]. 5tippoee too* Fu... ,Fm can be evalu-
ated at x = (#1, . . . , xn) G A.n, and for each i put

Ti = sup l l a i t ^ 1 . . . x ^ n | | .
teNn

If limseNro ll&sll Tf1 . . . T̂™  = 0 «fte» (G o F)(x) = G(Fi (x) , . . . , Fn(x)).

6.48 Corollary Let JFi (X) G -R[[X]] 6e power series with zero con-
stant terms and let G(Y) € i?[[Y]]. / / x = (xu... ,xn) G mn then
(GoP)(x)=G(Fi(x) Fn(x)).

The final result is fundamental to much of the theory we develop in
Chapter 13. It requires a further hypothesis concerning the norm on R,
which we state in terms of the associated graded ring

n=0

namely that gr(R) be an integral domain. This is equivalent to the
hypothesis

\\xy\\ = \\x\\ \\y\\ for all x,y e R.

It holds if R is a DVR; it also holds if R is a power series ring over ¥p or
Zp, and more generally whenever i^ is a regular local ring, in which case
gr(iJ) is isomorphic to a polynomial ring over the residue field (Atiyah
and Macdonald (1969), Theorem 11.22).

6.49 Proposition Assume that gr(iZ) is an integral domain. Suppose
that F(Xi,... , Xd) G A[[XL, . . . , Xd]] converges on some neighbourhood
V of 0 in Rd and that

F(x) = 0 for all x G V.

Then F(XU... ,X d )=0 .
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Proof Arguing by induction on d, we reduce to the case of a single
variable. Suppose, then, that F(X) = J2™ =0 anXn and that not all the
an are zero; let m be such that am ^ 0 but an = 0 for n < m. Since
F(0) = 0 we have m > 1 ; and by Lemma 6.45 there exists fceN such
that anmfcn C R for all n > m. Fix y € mk \ mfc+1, and suppose that

G ms \ ms+1. Now let t be so large that

m* C V, t> s.

Let x e m* \ mt+1. Then xy e V, so F(xy) = 0 and we have

am(xy)m = -
n=m+l

Hence

W —  N/7 7 /
m| | | | r l l m —  r s r t r n

II l l ^ / || | |x|| c c

a contradiction since 0 < c < 1 and t > s.

The following corollary will be quoted in Chapter 13 as the 'uniqueness
of power series':

6.50 Corollary Assume that gr(R) is an integral domain. If two power
series both converge on some neighbourhood of 0 in Rd and define the
same function there then they are identical

Notes

For more on 'ultrametric analysis' one may consult Schikhoff (1984),
Serre (1965) II, Chapters 1, 2. For the Campbell-Hausdorff formula
see Serre (1965), II Chapter 5, Bourbaki (1989b), Chapter II §8, or
[L], Chapter IV §3. The formula (without the p-adic estimates for the
coefficients) is also proved in Jacobson (1962), Chapter 5, §5.
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Exercises

1. Let (iJ, ll'll) be a normed ring. Show that for each a e R and <S > 0
the 'closed ball' B$(a) = {x £ R\ \\x —  a\\ < 6} is both closed and open.

2. Let R be ring with a descending chain of ideals (Ri) as in Lemma
6.5. Let (R'i) be another such chain of ideals, cofinal with (Ri); that is,
for each i there exists j(i) such that R'.,^ C R{ and Rj(i) C i^.

(i) Show that the two metrics on R, defined using (R^) and c > 1 , and
using (R'i) and d > 1, give rise to the same concept of Cauchy sequence
in R, and hence to the same completion R.

(ii) Put R = Km(R/Ri). Show that if (n + Ri) e R then (n) is a
Cauchy sequence in R, and that if (si) is a Cauchy sequence in it! then
there is a subsequence (sn^) such that (sn^ + Ri) e R. Deduce that
there is an isomorphism R —• R that sends (r̂  + Ri) to lirnr^.

(iii) Identifying R with R by this isomorphism, show that for each A;,
the closure Rk of Rk in R satisfies

T^ = {x e R I ||x|| < c~k} = \\m((Rk + Ri)/Ri)

(this shows that the norm on # can be defined by the chain of ideals
(Rk))' Deduce that Rk C\ R = Rk and Rk + R = R, and hence that

(iv) Let (Ja) be a system of ideals of R directed w.r.t. reverse inclusion
(i.e. for each a and P there exists 7 such that JanJp D J7). Show that
if (Ja) is cofinal with (i^) then lim (R/Ja) = R-

3. (i) Show that every linear map Q^ —• Q™  is continuous (both spaces
having the product topology). Now let V be a finite-dimensional vector
space over Qp; deduce that V has a unique topology - the p-adictopology
- given by identifying V with Q^ by choosing an arbitrary basis, and
taking the product topology on Q^. Show that every vector subspace of
V is closed in the p-adic topology.

(ii) Let A be a normed Qp-algebra and V a finite-dimensional vector
subspace of A. Show that the inclusion map V —•>• A is continuous with
respect to the j9-adic topology on V and the norm topology on A. Does
the latter topology necessarily induce the former topology on VI

4. Let (ii, ll'll) be a complete normed ring.
(i) Let T be a countable set, let i 1—• n(i) be a bijection from N onto
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T, and let n \—• an be a map from T into R. Prove that limne^ «n = o>
if and only if lim^oo an^ = a.

(ii) Let i \-^> bi and i i—>  Ci be maps from N into R, and a a permutation
of N. Prove that if lim _̂>oo b{ = b and ^ ° ^ 0

 ci = c then lim^oo ba^ — b
a n d l^i=O C<r(i) = C-

5. (i) Let 1 < n G N. Define s(n) = ^ = o bJ> w n e r e n = bo + b1p-\ h
bsps with o<6^ < p —  1. Prove that

(ii) Show that s(a + 6) < s(a) + 5(6).
(iii) Deduce that if n = a\ H h a^ then v(n\) > J2i=1 v(a,i\). Hence

show that nf=i a ^ divides n\.
(iv) Prove the last result another way. [Hint: partition a set of size n

into subsets of size a i , . . . , a^.]

6. For any power series A{X) = Y^LQ anXn G Qp ((X)) in one variable
X we define the derivative

n=1

Put F(X) = S{X) - 1.
(i) Prove that F'(X) = f (X) and £'(Y) = (1 + y ) " 1 .
(ii) Prove that for any power series A{X) and B{X) and any scalars

a, 6 we have:

= aA; + bBf

(AB)1 = A'B + ABf

(A o B)f = (A' oB)-B' provided B(0) = 0.

(iii) By considering (£ o F)f and (F o C)' prove that (£ o F)(X) = X

7. Show that in Q2, log(-l) = 0 = log(l). Thus exp(log(-l)) = 1.

8. Define strictly analytic functions / : Zp —• pZp and ^ : pZp —>
by /(x) = xp - x and ^(x) = Xln'Lo ^ n = (1 - x)'1. Prove that ^ o / :

is not a strictly analytic function on Zp.

9. Prove that composition of formal power series is an associative oper-
ation.
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10. Let / be the arithmetical function defined in the proof of Lemma
6.41. (i) Verify that /(3) = 36 and /(4) = 48.

(ii) Show that u3(X,Y) = ±(X,Y,Y) - ±(X,Y,X).
(iii) Hence complete the proof of Lemma 6.41. [For (ii), use the recipe

provided by Lemma 6.40 and the proof of Lemma 6.41.]

11. Let R = Z(X,Y) be the polynomial ring in two non-commuting
variables over Z, and let L be the Lie subring of R generated by X and
Y. According to Theorem 1 of Bourbaki (1989b), Chapter II §3, L is a
direct summand of R as Z-module. Now let n > 2 and put h = ^^j .

(i) Show that for some mi G N not divisible by p and some 7712 G
N\{0} ,

mlP
hun(X, Y) eR, m2un(X,Y) € L;

deduce that miphun(X, Y) G L. [Hint: use Lemma 6.40 and the proof
of Lemma 6.41.]

(ii) Prove that L is spanned as a Z-module by X, Y and elements of
the form (X, Y)e. [Hint: Show that if a and b are elements of a Lie ring
then ((a, 6)e, (a, &)f) is equal to a Z-linear combination of terms (a, 6)g;
argue by induction on (f), using the Jacobi identity.]

(iii) Using (i) and (ii) show that phqe G Zp when (e) = n —  1.

12. Let (A, ll'll) be a complete normed Qp-algebra, and let a G Ao.
Prove that

xexp(ad(a)) = (expa)-1x(expa)

for all x G A; here the notation is as in §6.5, so exp(ad(a)) is a (bounded)
linear map on A. [Hint: Look at the beginning of the proof of Lemma
6.39.]

13. Let Rbe a, commutative Noetherian ring. Prove that R is a pro-p
ring (for some prime p) if and only if it is the inverse limit of an inverse
system of finite local rings in which the maps are all surjective.

14. Let i^ be a pro-p ring such that gr(jR) is an integral domain.
(i) Show that the norm on R can be extended to the field of fractions

K, making K into a normed ring, with \\xy\\ = \\x\\ \\y\\ for all x,y G K.
(ii) Suppose that i2 is not a DVR, and let {xi , . . . ,Xd} be a sys-

tem of parameters for R: that is, d = Dim(i?) > 2 and the ideal
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q = (# i , . . . ,Xd) is m-primary (see Atiyah and Macdonald (1969), The-
orem 11.14). Prove that x™  £ X2R for every n G N. Deduce that m is
not an open subset of K, in the topology on K defined by the norm.
(Thus arguments relying on the assumption that a sequence tending to
0 must eventually lie inside m are not available.)

(iii) Suppose that R = Ro [ p i , . . . , T^]], where Ro is a finite field and
d > 2 or Ro = 7jp and d > 1 . Prove that K is not locally compact (in
the topology defined by the norm).

[Hint: for (ii): if m is open then x^x^1 G m for sufficiently large
n. For (iii): put x = Tuy = T2 if d > 2, x = p, y = 7\ other-
wise. Suppose that K is locally compact; then for some k>1 the se-
quence i^k+ny~n)°^=1 must contain a Cauchy subsequence. Show that
ll^/c+n^-n _ xfc+^2/-^|| > ck for aii n a n d m fa derive a contradiction.]



7
The group algebra

In Chapter 4, we showed how to endow the underlying set of a uniform
pro-p group G with an additive structure, and indicated that G could
thereby be made into a Lie algebra over Zp. One of the purposes of the
present chapter is to construct another Lie algebra, naturally isomorphic
to that one. The new Lie algebra will be a subalgebra of the commu-
tation Lie algebra on a certain associative algebra A, which we get by
completing the group algebra QP[G] with respect to a suitable norm.
Most of the work in the first section goes into setting up this norm.
The Lie algebra L, and a bijective logarithm mapping log : G —• L, are
defined in §7.2, and this is used in §7.3, with Ado's Theorem, to show
that G has a faithful linear representation over Zp. In the final section,
we establish some ring-theoretic properties of the group algebras ZP[G]
and Fp[G] and of their completions.

7.1 The norm
Throughout this section, G denotes a finitely generated pro-p group. If
M < N are open normal subgroups of G, the natural map G/M —>
G/N induces an epimorphism between the group algebras ZP[G/M] —•
ZP[G/N]. Using these maps we may construct an inverse system of
Zp-algebras: its inverse limit is denoted

and is called the completed group algebra of G. Our purpose in this
section is to show (a) how ZP[[G]] arises as the completion of the group
algebra ZP[G] with respect to a certain norm, and (b) that if G is uni-
form, then the norm can be extended to a norm on the larger group
algebra QP[G}.

138
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We write R = ZP[G], Gk = Pk(G) and

h = (Gk - 1)R = kei(R ->

the kernel of the natural epimorphism. Since the family (Gk) is cofinal
with the family of all open normal subgroups of G (see Chapter 1), we
may identify ZP[[G]] with

Urn N(Z/pfcZ)[G/C?fc] ^ Um(iJ/(/fc +pkR))

(see Exercise 1).
We begin by introducing a chain of ideals, cofinal with the chain (Ik +

pkR) but better suited for defining a norm: it consists of the powers of
the following ideal:

J = I1-\- pR.

Note that I\ = (G — 1)R = ^2xeG(x — 1)R is the augmentation ideal
of R, and that J is the kernel of the natural epimorphism R —» Fp that
sends each group element to 1.

The fact that the two chains of ideals (Jk) and (Ik +pkR) are indeed
cofinal follows from

7.1 L e m m a Let k>1. Then
(S)Jk^h+PkR;
(ii) for each j > 1, Ik +piR D J771^) where m(k,j) = j\G/Gk\.

Proof We prove (ii) first. Put n = \G/Gk\. Now G/Gk is a finite p group,
and it acts by right multiplication on the Fp-vector space ¥P[G/Gk],
which has dimension equal ton. It follows that (x\ —  1) • • • (xn —  1) = 0 in
¥P[G/Gk] for any an,..., xn G G/Gk (see §0.4). The kernel of the natural
mapofi?ontoFp[G/Gfc] is just Ik+pR; hence (gi-l)'~(gn-l) e h+pR
for all <7i,...,#n G G, and it follows that Jn C Ik + pR. This in turn
implies that J71-7 C Ik + p> R for each j > 1 .

To prove (i) we argue by induction on k. When k = 1 it is true by
definition; let k > 1 and suppose that Jk~x 2 h-i + pk~xR. Since
pk G Jfc, what remains to show is that Ik Q Jk. Since Ik is generated as
an ideal by Gk —  1, this is equivalent to showing that Gk acts trivially
by right multiplication on the quotient R/Jk. Now Corollary 1.20 shows
that Gfc is generated by elements of the form

xp, [x,y] (xeGk-u yeG).
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Put u = x — l,v = y — 1. Then

xp - 1 = (u + I f - 1 = up + /nm; (1)

for some it; G i?, by the binomial theorem (since p | (?) for 1 < i < p— 1);

and

[z,2/] - 1 = x~1y~1(xy-yx) = x'1 y'1 (uv - vu). (2)

The inductive hypothesis gives u G J^" 1 . Since pG J and v G /i C J,

and p > 2, it follows that

z p = 1 (mod Jf c) , [x, 2/] = 1 (mod Jf c) .

Hence Gk acts trivially on R/Jk as required.

7.2 Corollary

Proof Let c = X ^ i ^ x * ^ ^ ' w n e r e ^l, ••-, ^n are distinct elements of G

and Ai,..., An G Z p are non-zero. Let k be so large that (a) XiXj1 £ Gk

for all i T^ j , and (6) Â  ̂  0 (mod pfc) for some i. Write

i>k : R - (Zp/P%) [G/Gk]

for the natural map. Then xi^fe, . . . ,x n ^ are distinct elements of G/Gk,

and the coefficient of α^fc in c0fc is Â  4- pkZp ^ 0. So ctyk ^ 0. Since

ker^fc = Ik + pkR this implies that c £ Ik + pk R, and hence by Lemma

7.1 that c^ Jm for some m. The corollary follows.

Since JlJi = Jl+^ for all i and j , we may now invoke Lemma 6.5 and

make the following definition:

7.3 Definition The norm || • || on ZP[G] is defined by

||c|| =p-k if ceJk

11011=0.

It follows from Lemma 7.1 that the topology on R given by the norm

induces on G the original topology of G (Exercise 2).

Let us write R to denote the completion of (R, || • | |). In view of

Exercise 6.2, R may be identified with lim R/Jk. Thus from Lemma

7.1 and the preceding discussion we see that

R Si lim (Z/p*Z)[G/Gfc] s ZP[[G}}.
< k
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In §7.4 we shall use this isomorphism to examine some of the ring-

theoretic properties of ZP[[G]].

Having achieved our first goal (a), we move on to (b): if G is uniform,

then the norm we have just defined on ZP[G] can be extended to a norm

on the group algebra QP[G].

For the remainder of this section, we fix the following notation:

{ai, ...,arf} is a topological generating set for G where d = d(G)

bi = CLi — 1 for z = l,...,d.

For a = (ai,..., a^) G Nd and any d-tuple v = (v±,..., Vd), we write

( a > = a i + --. + a d , va = v"1 ...v«d.

The main results can now be stated:

7.4 Theorem (i) // G is powerful then each element of ZP[G] is equal

to the sum of a convergent series

with Xa G Zp for each a.

(ii) // G is uniform then the series (3) is uniquely determined by its

sum.

7.5 Theorem Assume that G is uniform. If c = Y2aeNd ^α ° a

where Xa G Z p for each a, ^/len

| | c | | = supp-< a > |A a | .

If c is as in Theorem 7.5 and A G Z p , then the coefficient of b a in the

series for Ac is just AAa; so we may infer

7.6 Corollary If G is uniform then

for all Xelp and c € ZP[G}.
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Now if a G Qp[G] we can choose a non-zero A G Zp such that Aα G

Zp[G], and Corollary 7.6 ensures that |A | - 1 ||Aa|| is independent of the

choice of A; so the following definition is unambiguous:

Hall = l A I " 1 l lAal l,

where 0 ^ A G Z p satisfies Aα G ZP[G].

The final result now follows easily:

7.7 Theorem Let G be a uniform pro-p group. Then (QP[G], ||-||) = A

is a normed Qp-algebra. The norm on A induces the original topology

on G, and each element g G G satisfies \\g — 1|| < p~1.

The routine verification of conditions N1-N4 is left to the reader. The

second statement follows from Exercise 2, and the final statement is

clear, since g — 1 G J for all g G G.

Note that if p = 2 we have

for g G G, since g2 — 1 G /2 Q J2, by Lemma 7.1. However, it is

useful in this case to define a slightly different norm on QP[G], so that

\\g — 1|| < 2~~2 for all g € G] how to do this is explained in Exercise 10.

The proof of Theorem 7.4 depends on the next two lemmas; the first
of these is a pair of simple identities which will also be important in
Chapter 9.

7.8 Lemma Let iz1?. . . , ur G G and put vi = ui —  1 for each i. Then
for β G N r ,

W

(Each sum is finite since (^*) = 0 unless cti <
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Proof This is no more than the binomial theorem. We have

The other formula is obtained similarly from

The close relation between the a a and the b a is the key to the next
lemma, where for ^ > 1 we write

Tk = {a G Nd I a* < pk~x for 2 = 1 , . . . ,d}.

7.9 Lemma Assume that G is powerful, and let k > 1.
(i)

(ii) If G is uniform then

R = IkQ

(iii) ba elk+ pR for each a G Nd \ Tk.

Proof (i) Recall that Ik is the kernel of the natural epimorphism
n : R —>  Zp[G/Gfc]. It follows from Proposition 3.7 that each element
of G/Gk can be written in the form a^1 . . . a^dGk with 0 < c^ < pk~x

for i = 1, . . . , d; hence {aa7r \ a e Tk} generates ZP[G/Gk] as a Zp-
module. Lemma 7.8 shows that {b^Tr \ a £ Tk} generates exactly the
same module, so Rn = ^2aeTk Zpba7r. This implies (i).

(ii) Suppose now that G is uniform. Then |G/Gfc| = p ^ " 1 ^ , so RTT =
ZP[G/Gk] is a free Zp-module of rank p ^ " 1 ^ . Since p(fc"1)d = \Tk\ it
follows that the generating set {ba7r | a G X^} is now actually a free
basis for this module: this is equivalent to the assertion of (ii).

(iii) Let a G Nd \Tk. Then OL{ > pk~x for some z, so b a has a factor
of the form

bP = (di — l) p = a? —  1 (modpfi ) .
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As af'1 G Gk it follows that ftf*"1 G (Gk - l)R + pR = h +pR- This
gives (iii).

Proof of Theorem 7.4 (i) Let c G i?, and for k > 1 put

A/c = < (Xa)aeTk I c = y ^ A
a b a (mod Jfc) > C

Since Jk 2 -ffc by Lemma 7.1, it follows by Lemma 7.9(i) that A^ is non-
empty for each k. Also the natural projection mapping Zp

fc+1 —>  Zjfe

sends Afc+i into A^; for if (Aa)a€Tfc+i € Afc+i then

^ A a b a = ^ Xaha- Y^ Xaba=c (modJfc),
a€Tfc cxeTk+1 a€Tk+1\Tk

since for each a G Nd \ T^ we have

b« G J ^ " 1 C Jk (4)

as 6i = Oi —  1 G J for each z. It follows by Proposition 1.4 that the
inverse system of compact sets (Ak)keN has a non-empty inverse limit;
hence there exists a family (\a)aeNd s u c n that for each k, the subfamily
(Aa)aGTfc belongs to A*.

We complete the proof by showing that the series J^aG^d A a b a con-
verges to c. Let e > 0 , and let k be so large that p~k < e. It will
suffice to show that for every finite subset S of Nd containing X^ we
have ||c —  Y^ae$ A a b a | | < e; but this is clear from the above, since
c - Y^aeTk A a b a G Jk by the choice of (AQ), while J2aeS\Tk Aab01 G Jk

by (4).
(ii) Assume now that G is uniform. To show that the series repre-

sentation given in (i) is unique, it will be enough to establish that if
Z^aeNd Mab" = 0 then μot = Q for each a G Nd. If this is not the case,
we may suppose without loss of generality that μOL is not divisible by p
for at least one value of a.

Now fix a large positive integer fc, and put m = \G/Gk\ Accord-
ing to Definition 6.8, the hypothesis Y^a£Nd μah

a = 0 implies that
I I " ! ! < P~m for some finite set S D Tk. It follows that

aeS\Tk
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by Lemmas 7.1(H) and 7.9(iii). But it follows from Lemma 7.9(ii) that

p*>a n (Ik +pR) =

so equating coefficients we deduce that μo, G pLp for each a G T^. As A:

was arbitrary it follows that μot is divisible by p for every a, contradicting

our assumption. Thus μa = 0 for all a G Nd as required.

Before proving Theorem 7.5, we need to refine Lemma 7.9. The result,

Lemma 7.11 below, depends on the following lemma, which expresses the

ring-theoretic significance of G being powerful. For each k > 1 we write

7.10 Lemma Assume that G is powerful. Let u G Jk and x G G. Then

ux — xu G Jfc+1,1.

Proof Let y be any element of G. Then

yx-xy = xy([y, x] - 1) = xy(zp - 1)

for some z G G, since G is powerful (Theorem 3.6). Formula (1) above

shows that zp — 1 G J p + p J . If p > 3 this ideal is contained in J 2 j i . If

p = 2 then G/Gs is abelian, so [y,x] — 1 G I3 C J 3 , by Lemma 7.1. In

either case it follows that yx — xy G J2,i- As i? is additively spanned by

G this proves the lemma in the case k = 1.

Now let k > 1, and assume inductively that vy — yv G J&, 1 for all

v G J*0"1 and y G G. As Jf c is additively spanned by elements of the

form vw with v G J ^ " 1 and t<; G J, it will suffice to show that for any

such v and w we have vwx — xvw G J/c+1,1. But

= v(wx — xw)

G J J2,i "I" Jk,\J

by the first paragraph and the inductive hypothesis. The result follows,

since each of the terms in the last line is obviously equal to Jk+i,i-

7 . 1 1 L e m m a Assume that G is powerful. Let k>1. Then

{a)<k
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Proof Let us write

Since p € J and 6̂  = â  —  1 G J for each i, it is clear that pfc-(a>ba G Jfc

for each a; so Jfe D Jk+l + Wfc.
The reverse inclusion is proved by induction on k. From Lemma 7.9(i)

we have

since I2 C J 2 and b a G J 2 when (a) > 2. It follows by the modular law
that

= J2a + (JnzpiG) = J

since J fi Z P 1 G = pZplo = pZph°. This establishes the case k = 1.
Now take fc > 1 and suppose inductively that J£ = J^+1 -f W^ for all

I < k. Then

Jk - J^ - 1 J = (Jk + Wfc_i)(J2 + Wi) C

As Wi = pZp+EiLi ZPb*» andpVFfc-i C VFfc, we see that Jk is additively
spanned modulo Jk+l + VFfe by elements of the form pk~1~^babi with
i e { 1 , . . . , d} and (a) < A; —  1. It will therefore suffice to show that for
each such i and a we have p/c~1~^Q:^ba6i G Jfc+1 + W^.

Put

u = bai ...bai-\ v = baibai+1 ...bad.

Then

habi = uvbi = ubiV 4- u(vbi — b{v)
= h13 + uiy,

say, where w = wbi — biv and $ = 1 + a^, Z^— <̂ j f ° r J / i - Now
v €: Jn where n = a$ + • • • + a^, so it; G J n + i , i by Lemma 7.10. As
u G J<a>~n it follows tha t

Thus
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The final term on the right lies in J f c + 1 . Since (a) < k — 1, we may
apply the inductive hypothesis to see that the middle term lies in

pk-(a) j(a)+l +pk-(«)W{a) e Jfc+l + Wkm

Since (/?) = (a) + 1, the first term belongs to Wk- It follows that
pfe-i-<a>ba6. e jfc+i + wkaa required.

Proof of Theorem 7.5 Let c = Y^aeNa A a b a e ZP[G], and suppose that
||c|| = p~k. Then c G Jfe, so by Lemma 7.11 we can write

where μα(fc) G Zp for each a and c^+i G J f c + 1 . Repeating this step we
construct a sequence (cj)j>k such that for each j , Cj G Jj and

say. Then c = wk 4- ^fc+i + • • • + wn (mod J n + 1 ) , so ||c - ^ = f c wd

p-n-i for aii n> k; hence

Now let T = {(a,i) | i > jk, (a) < i}. Since p ^ ^ b " G J% we have
||p*~^a^/ia(2)ba|| < p~l for each i, which implies that

lim pi-{a^a{i)ba = 0,
(a,i)eT

in the sense of §6.2. Then Proposition 6.9(H) shows that the series
^2(ai)eTPl~^aVa(^)ba converges in the complete ring R. In view of
Corollary 6.11 we may re-arrange this series: putting

we obtain

i=k

(As a matter of fact, the argument so far provides an alternative proof
for Theorem 7.4(i).)
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Now Theorem 7.4(ii) shows that Xa — μa for all a. It follows that

i=max{fc,{a)}

for each a, and hence that s u p a e N d p ~ ^ \Xa\ < p~k = ||c||.

The reverse inequality follows from Proposition 6.9(iv). For if |Aa| =

p-n then A a b a G pnJ{a) C Jn+<a>, showing that | |Aab
a | | < p-n-<"> =

p-<a>|Aa|;so

| | c | |<sup | |A a b a | |<supp-< a > |A a |
a a

as required.

7.2 The Lie algebra

Throughout this section, G denotes a uniform pro-p group of dimension

d, generated topologically by elements a i , . . . , a^, and G{ — P%{G) for

each i > 1 . We assume that G is contained as a subgroup of the unit

group in a normed Qp-algebra A, and that the topology on G is induced

by the norm. Let A denote the completion of A. We put

f { x £ A \ \\x\\ < p - 1 } if p ^ 2

° " \ {xeA\ \\x\\ < 2 - 2 } ifp = 2.

Finally, we make the hypothesis that

G - 1 C 4

If p is odd, Theorem 7.7 ensures that all our hypotheses are fulfilled

on taking A = (QP[G], | |-| |). If p = 2, they are fulfilled if G = P2{H) for

some uniform pro-2 group iJ, and A = (Qp[H], | |-| |); however, Exercise

10 shows that for any uniform pro-2 group G, we can define a norm

II• II2 on Qp[G] in such a way that A = (QP[G], ||-||2) satisfies all our

requirements.

In Proposition 6.22 we defined a mapping log : 1 + Ao —» AQ. We now

put

A = logGC A

Now the associative algebra A has a natural Lie algebra structure, with

Lie bracket operation (x,y) = xy — yx. On the other hand, Definitions

4.12 and 4.29 give an intrinsic addition and bracket operation on the
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uniform pro-p group G; to avoid confusion with the operations on A, we
shall denote these by +G and ( , )G respectively.

The operations are related as follows:

7.12 Lemma. Let g,heG and \eZp. Then
(i) logg + logft = log(g +G ft);
(ii) Alog# = log#A;
(iii) (log0, log ft) = \og(g,h)G.

Proof Put 7 = log g and 77 = log ft.
(i) Let *(X, Y) = X+y+£n>2 un(X, Y) be the Campbell-Hausdorff

series given in Definition 6.26; here un(X,Y) is a homogeneous polyno-
mial of degree n. By Corollary 6.25(iii), for each i G N, loggpt = p1^
and logftpl = plrj. Combining this with Proposition 6.27 gives

n>2

Thus

n>2

By Proposition 6.19, log is a continuous function, so

lim \og(gp hP )p = log( lim (gp hp )p ) .

Since the norm ||-|| on A is compatible with the topology on G, the
definition of + G gives

lim (gp hp )p = g -\-Q h (EL G.

i—+oo

Since $^n>2^n(7j^) converges, its terms are bounded, and so the sum
En>2^n"2^Un(^' r?) 1S bounded for all i. Hence

ioo
n>2

Thus taking limits in (5) we obtain

log g 4- log ft = log(# +G ft).

(ii) Let A G Zp, so A = lim^oo â  for some â  G N. It follows from the
definition of p-adic exponentiation in G and the fact that the norm ||.||
on A is compatible with the topology on G that

gx = lim gai G G,
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where the limit is taken with respect to the topology of A. Since the
mapping log is continuous, using Corollary 6.25(iii) we get

A log g= lim a* log g
%—*oo

= lim log<7ai

i—KX>

= log( lim gai)
I—+OO

(iii) Let V{X,Y) = XY -YX + £n>3vn{X,Y) be the Commutator
Campbell-Hausdorff series given in Definition 6.26; here vn(X, Y) is a
homogeneous polynomial of degree n. Then, by Corollary 6.25(iii) and
Proposition 6.27, we have

log[/, h?Y2i =lv-m+piy£ p(-8)*t;n(7, rj)- (6)
n>3

By a similar argument to (i), we find that

lim l o g [ / , h?Y2i = log( lim [ / , W>']»»~a<)
i^oo iKX>

and limi_oo(piX)n>3^(n~3)ivn(7,r7)) = 0. Thus taking limits in (6)
gives

(log0, log h) = 77/ - 777 = log(0, ft)<3,

completing the proof.

Now G is closed under the operations +Q and ( , )G; and Theorem
4.17 shows that (G, + G ) is a free Zp-module of rank d, the action of Zp

being p-adic exponentiation. The main result of this section is thus an
immediate consequence of Lemma 7.12:

7.13 Theorem (A,+, ( , )) is a Zp-Lie subalgebra of the Lie algebra
(A, -f, ( , )), and is free of rank d as a Zp-module.

Arguing in the reverse direction, we can now also deduce

7.14 Corollary (G, + G , ( > )G) is <*> Lie algebra over 1JV, and the map-
ping log: (G, -he, (, )G) —• (A, +, (, )) is a Zp-Lie algebra isomorphism.

Let us write LQ for the Zp-Lie algebra (G, +G-> G )G)> We have seen in
Proposition 4.31 how suitable subgroups and quotients of G correspond
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to subalgebras and quotients of LG> We are now ready to establish the
converse:

7.15 Proposition Let N be a 7jp-Lie subalgebra of LG such that LG/N
is torsion-free. Then

(i) N is a closed uniform subgroup of G;
(ii) if N is an ideal of LQ then N is normal in G and G/N is

uniform.

Proof Write I = log(iV), and QPI for the Qp-subspace it spans in A.
In view of Corollary 7.14, / is a Zp-Lie subalgebra of A = logG, A// is
torsion-free, and in case (ii) / is an ideal. Write € = 1 if p^ 2, e = 2
if p = 2. Since [G, G] < Gp it follows from the definition (see Exercise
4.2(ii)) that (LG,LG) C peLG, and hence that (A, A) C peA. Since A//
is torsion-free this implies that (/, /) C pel.

Now let x,y G N and put u = logx, v = logy. According to Proposi-
tion 6.27 we have

n>1

where $^n>1 un(X, Y) = 3>(X, Y) is the Campbell-Hausdorff series. Ac-
cording to Corollary 6.38, the series *Y^n>iUn(u,—v) converges to an
element of / . Hence xy~x € exp(7) = N. Thus TV is a subgroup of G,
and (being compact) it is closed.

If y e G and yp e N then logy G A and plogy G /, so logy G /
and y G N. Therefore Gp ON = Np, whence N/Np is abelian and iV
is powerful (if p is odd; replace p by 4 to reach the same conclusion for
p = 2). As G is torsion-free it follows that N is uniform, by Theorem
4.5. This completes the proof of (i).

The argument just given shows that if N is also normal in G, then
G/N is torsion-free, hence uniform. So to prove (ii) it remains only to
show that if / is an ideal of A then N is indeed normal in G. Let x G N
and y G G, and let u, v be as above. Put

w =
n>2

Corollary 6.38 shows that each term in this sum lies in A; as QPI is an
ideal in QPA, each term also lies in QPI, hence belongs to A D QPI = I.
Since / is closed in A and the series converges in A it follows that w G / .
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As above, we see that log(xy~1) = u — v + w. Then

logd/xy"1) = v + (u — v + w) + ^ un(v, u — v + w).
n>2

Since (y,u — v + w) = (v,u + w) G /, we can repeat the argument with
u + w in place of w to deduce that \og(yxy~1) G /. Hence yxy~l G
exp(/) = TV, as required.

Results like this illustrate how the Campbell-Hausdorff formula es-
tablishes a tight parallel between the structure of a uniform group and
that of its Lie algebra. This correspondence will be developed further in
Section 9.4. We conclude this section with another illustration:

7.16 Corollary Let G be a uniform group and LQ = (G, +G, G )G) the
corresponding Lie algebra.

(i) G is abelian if and only if LQ is abelian;
(ii) G is soluble if and only if LQ is soluble.

Proof (i) If G is abelian then (x1y)c = 0 for all x,y G G, directly from
the definition, so LQ is abelian. Suppose conversely that LQ is abelian.
Let G and A be as above. Corollary 7.14 shows that A is abelian, so for
it, v G A we have

exp(u) exp(i?) = exp(u + v) = exp(i; + u) = exp(i?) exp(^),

by Corollary 6.36. Hence G —  exp(A) is abelian.
(ii) Suppose that G is soluble. Let A be a maximal abelian normal

subgroup of G. We claim that G/A is uniform. Indeed, by Theorem 4.20
there is a finite normal subgroup T/A of G/A such that G/T is uniform;
then T is uniform by 4.31 (ii), and consequently abelian, by Exercise 4.9.
Hence T — A. Arguing by induction on the derived length, we may
suppose that the Lie algebra LQJ^ is soluble. Now Proposition 4.31 (iii)
shows that A is an ideal of LQ and that LQ/A = LQ/AI a nd A is abelian
as an ideal, by (i). It follows that LQ is soluble.

Suppose conversely that LQ is soluble. Let A be a maximal abelian
ideal of LQ. It is easy to see that LQ/A must be torsion-free. Now
Proposition 7.15 shows that A is a uniform normal subgroup of G and
that G/A is uniform; and A is abelian as a subgroup, by (i). As above,
we have LQ/A = LG/A; arguing by induction on the derived length of
Z/G, we may therefore suppose that G/A is a soluble group, and it follows
that G is soluble.
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7.3 Linear representations
In this section we prove that every pro-p group of finite rank has a
faithful linear representation. This depends on the analogous property of
Lie algebras, a classic result due to Ado (for the proof, see e.g. Jacobson
(1962), Chapter VI):

Ado's Theorem Let L be a finite dimensional Lie algebra over a field
k of characteristic zero. Then L admits a faithful finite dimensional
linear representation

Here, Mn(k) is the algebra of all n x n matrices over k, considered as
a Lie algebra with the Lie bracket operation given by (x, y) = xy — yx,
and (/> is a Lie algebra monomorphism.

We keep the notation of the previous section, so G is a uniform pro-p
group, A is the completion of QP[G], and A = logG (if p = 2, we can
avoid having to rely on Exercise 10 by taking A = log G2 in this section).
We write QPA for the Qp-vector subspace of A spanned by A. Then QPA
is a finite dimensional Lie algebra over Qp. Let

(f): QpA -+ Mn(Qp) = B, say,

be the faithful linear representation of QPA provided by Ado's Theorem.
Recall from Example 6.7 that Mn(Qp) is a normed Qp-algebra, and that
Proposition 6.22 defines the mapping exp on the subset

\ Mn(
.(pZp) if p =
t(4Z2) if p = 2,

with

Putting Ao = <p~1{(j)K n -Bo), we have exp AQ C G.

7.17 Lemma. There exists m>1 such that Gm C expAo-

Proof Since A is finitely generated as a Zp-module, pl<pA C Mn(Zp) for
some positive integer i. We take m = i + 2 if p is odd, m = i + 4 if
p = 2. Now Lemma 4.14 shows that Gm = p171'1 • ( G , + G ) . SO if p is
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odd we have Gm = pl+1 • (G, +G)> and Corollary 7.15 shows that this is
mapped by log into pl+1K. Thus

) C 0(pi+1A) C pM

hence Gm C exp Ao. The argument is similar when p = 2.

We now define ip = exp o0o.log : Gm —>  Mn(Qp), where m G N is such
that Gm C expA0. Then (7) implies that ^(Gm) C GLn(Zp), and we
have

7.18 Proposition, i/j : Gm —>  GLn(Zp) is a faithful linear representa-
tion of Gm.

Proof The mapping i\) is clearly injective. It remains therefore to prove
that if g,h £ Gm then ip(gh) = ip(g) • ip(h). Suppose that g = expx and
h = expy where x,y G Ao. Let $(X,Y) = J2ne^un(X,Y) denote the
Campbell-Hausdorff series. Then by Proposition 6.27

neN
Now Theorem 6.28 shows that each un(X,Y) can be written as a Q-
linear combination of compound Lie brackets in X and Y. So un(x, y) G
QpA for all n G N. Hence <f)(un(x,y)) is defined and

(f)(un(x,y)) = un((j)(x),(f)(y))

since 0 is a Lie algebra homomorphism. By Exercise 6.3, the map
(f): QpA —• Mn(Qp) is continuous. So

<j)(\og{gh)) = (j){Y^un{x,y))

nGN

Now 4>(x) and 0(2/) are in Bo, so applying Proposition 6.27 to the normed
Qp-algebra B = Mn(Qp) we obtain

= \og(exp((f)(x)) • exp(</>(y)))

= log((exp o(j) o log(#)) • (exp o</> o log(ft)))

= log(^ ) -^ ( f t ) ) .

Thus ip(g) - ij){h) = exp((f)\og(gh)) = ^(gh) as required.
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Now suppose that F is a pro-p group of finite rank. Corollary 4.3
shows that F contains a uniform subgroup G of finite index. Then Gm
also has finite index in F, and the representation of F induced from
ip : Gm —>  GLn(Zp) is again faithful. We may now therefore deduce the
main result:

7.19 Theorem. Every pro-p group of finite rank admits a faithful linear
representation over Zp.

Remark The method we have used here - translating a Lie algebra ho-
momorphism into a group homomorphism via exp and log, with the
help of the Campbell-HausdorfT formula - is actually quite general; in
§9.5 we construct a functor from Lie algebras to p-adic analytic groups,
and Proposition 7.18 will appear in retrospect as an application of this
functor.

7.4 The completed group algebra
We saw in Chapter 4 that a uniform pro-p group resembles in many
ways an abelian group. It is thus not unreasonable to expect that its
group algebra will bear some similarity to a commutative algebra, and
this indeed turns out to be the case: although ZP[G] is of course not in
general commutative, we shall show that a naturally associated graded
algebra is isomorphic to a commutative polynomial ring, and thereby
derive some ring-theoretic properties of the completion ZP[[G]]. Similar
considerations will also be applied to FP[G].

Throughout, G will denote a uniform pro-p group, R — ZP[G] its
group algebra and R = ZP[[G]] the completion of R defined in §7.1.
As before, we fix a topological generating set {«i,... , ad} for G, where
d = dim(G), and write bi = ai —  1 for i = 1,... , d. Recall the notation

<a)=a i + --- + ad, b a = 6?1 ...&£'

for a = (ai , . . . ,ad) e Nd.

The first result is a direct consequence of Theorem 7.4:

7.20 Theorem Each element of ZP[[G]] is equal to the sum of a uniquely
determined convergent series
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with Xa G

in Zp[[G]].

The group algebra

for each a G Nd; conversely, every such series converges

Proof The convergence of the series (8) is immediate from Proposition

6.9(ii), since | | b a | | < p~^ for each a G Nd. The uniqueness statement

follows from Theorem 7.4(ii), which shows that if the series (8) converges

to 0 then Aa = 0 for each a.

Now let S denote the subset of R consisting of all the elements that

are equal to the sum of a series like (8). Then S contains R, by Theorem

7.4, so S is dense in R. To prove that S = R it will therefore suffice to

show that S is closed. We do this by showing that S is compact. Write

X = Zp , and define the map (f> : X —> S by

Xab
a.

Certainly (f> is surjective; as X, with the product topology, is compact,

by Tychonoff 's Theorem, it suffices now to check that (f) is continuous.

So let r = 0(A) G 5 and let e > 0 . Choose n G N such that p~n < e,

and put

U = Kμ) G X I μa = AQ (modp n Z p ) for all a with (a) < n}.

Then U is an open subset of X containing (A); and for each (/z) G U we

have

by Proposition 6.9(iv), since each term in the infinite sum is either di-

visible by pn or divisible by some ha with (a) > n. This shows that (f>

is continuous, and completes the proof.

Corresponding to Theorem 7.5 we have

7.21 Theorem If c = J2aeNa A a b a G ZP[[G]], where Xa G Z p /or

a, then

| |c|| = sup p (a' |AQ|.
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Proof Say ||c|| = p~k. Putting

r=

we have \\c — r\\ <p~k~x, by Proposition 6.9(iv). Therefore

||c|| = | | r | |= supp-<e>|Ae|
(a)<k

by Theorem 7.5, since r G R. The result follows, since for each a with
(a) > k we have

p-<a)\\a\<p-k = \\c\\.

Next, we proceed to construct the graded ring associated to R. There
is a natural filtration on R given by setting

Rk = {ceR\\\c\\<p-k}

for each fc G N. Thus Ro = R, Rk 2 Rk+i for each fc, and each of the
subsets Rk is an ideal in R. Using property (N2) of the norm, we see
that in fact

RiRj C Ri+j (9)

for all i and j . However, in order to obtain a nice graded ring we have
to refine this filtration; this is done as follows. For each /c, m > 0 put

Rk,m = {Rk npmR) + Rk+l = Rko (p^R + i4+i) = PmRk-m + flfc+i;

the second equality here is a consequence of the modular law, and the
third one follows from Theorem 7.21 which implies that Rk P\pmR =
pmRk-m- Then

Rk = Rkjo 2 Rk,i 2 • • • 2 Rk,k 2 Rk,k+i

since ||]9fc+1 • l|| = p~(k+1\ A simple calculation using (9) shows that

Ri,mRj,n ^ Ri+j,m+n

for all relevant values of the subscripts. Now for k > 0 and 0 < m < k
we put



158 The group algebra

The associated graded ring R* is constructed as follows. The additive
group of R* is the direct sum

k=0 m=0

Multiplication is defined on homogeneous elements (those belonging to
a single summand £*,*) by the formula

(a + Ri,m+i)(b + Rjtn+i) = a>t> + Ri+j,m+n+i (a e R^m, b e

it follows from (10) that this is well defined. Finally, the multiplication
is extended to the whole of R* by distributivity. It is a simple exercise,
left to the reader, to verify that all ring axioms are satisfied.

In passing from a filtered ring to the associated graded ring, one loses
a certain amount of information. The advantage is that the graded ring
is usually easier to understand:

7.22 Theorem Let xo = PIG + #1,2 € #1,1 > and for i = 1? • • • ? d> Vu^
Xi = bi + Riti G Eito. Then the mapping Xi i-+ X{ ( % — 0 , . . .  , d)
defines a ring isomorphism

Proof It is clear from the definition that pEk,m —  0 for all k and ra, so
R* is an Fp-algebra. Next, let us verify that the elements Xj commute
among themselves. It is obvious that xo commutes with everything.
Now let 1 < i,j < d, and recall Lemma 7.10: this implies that

bibj - bjbi epJ + J3C pR1 + RSC R2fl.

As XiXj —XjXi = (bibj  — bjbi) + R2,i € £̂ 2,0 this shows that X{Xj —XjXi =
0.

Thus the mapping X^ \-> Xi (0 < i < d) extends to a ring homomor-
phism %j) : F p[X0 ,Xi , . . . , Xd] —> R*. To prove that i\) is an isomorphism,
it will suffice to show that the monomials

w(m,a) =x%lx"1 ...x0^

with (a) + m = k form a vector-space basis for Ek,m-
For each n > 0 put

r> \ ^ H7 μ-o;

£>n — 2_^ ^ P b *
(a)=n



7.4 The completed group algebra 159

Then Theorem 7.21 can be interpreted as asserting that for each k > 0,

Rk=
m-\-n=k

From this it follows that Rk,m = PmBk-m+Rk,m+i Now when {a)+m =

k we have

w(m, a) = pmba + ^

thus

fc,m = Rk,m/Rk,m+1

This shows that the given monomials span Ek^m-

To see that they are linearly independent, we reverse the argument.

Suppose that ^2/a\=k-m

 zaw{m,a) — 0? with each za £ ¥p. Interpreting

each za as an element of {0,1,... ,p — 1} C Zp, our hypothesis is equiv-

alent to the statement: X > a p m b a G iJfc,m+i. Since Rk,m+i C p m + 1

J R +

i?fc+i, Theorems 7.20 and 7.21 show that there exist Aa, /iQ G Z p such

that

and j9~^a^ |jLAQ| < p~(fc+1) for each a. Equating coefficients, as we may

by Theorem 7.20, we find that when (a) = k — ra,

n~rn\y — T)\ —\rim7 — T ) m + 1 A I — I// I < T 7 - ( m + 1 )P pa P^α — \P za P Aa \ — |pa| l̂  P

It follows that each za is divisible by p, hence equal to 0. Thus the

elements w(m,a) with (a) — k — m are indeed linearly independent, and

the proof is complete.

Also of interest is the group algebra ¥P[G] = 5, say. This will be

studied in greater generality in Chapter 12; here we consider the case

where G is uniform. As we did for ZP[G], we define the completed group

algebra

¥P[[G]\ = VmN^G

Let I = (G - l)¥p[G] be the augmentation ideal of ¥P[G]. Writing
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: ZP[G] —• ¥P[G] for the natural map (reducing coefficients modulo
p), we have

I = Tx = J.

It follows by Lemma 7.1 that the chain (Ik) = (Jk) is cofinal with the
chain (/&), where Ik = (Gk — l)¥p[G] is the kernel of the natural map
¥P[G] —>  ¥p[G/Gk}' A simple modification of the proof of Corollary 7.2
shows that

n=1

and as in §7.1 we may define a norm on ¥P[G] by putting

| |c | |=p- f e i f c e / f c \ / f c + 1

The completion of S with respect to this norm is denoted 5; as before,
S can be identified with FP[[G]], and it is clear that the natural mapping

: ZP[G] —>  ¥P[G] induces an isomorphism R/pR — S. From Theorems
7.20 and 7.21 it is now easy to infer

7.23 Theorem (i) Each element c of ¥P[[G]] is equal to the sum of a
uniquely determined convergent series

with Xa G ¥p for each a G Nd; conversely, every such series converges
in ¥P[[G}}.

(ii) For c as above,

\\c\\=
a€Nd

Writing

Sk = {ceS\\\c\\<p-k},

we form the graded Fp-algebra

k=0
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multiplication of homogeneous elements is defined by

(a + Si+1)(b + Sj+1) = ab + S^j+1 (a e Si, 6 € S )̂,

and extended by linearity to the whole of 5*. The following structure
theorem is now proved in the same way as Theorem 7.22, the argument
however being considerably simpler (alternatively, it can be deduced
from Theorem 7.22, as outlined in Exercise 7):

7.24 Theorem Let y{ = b{ + S2 € Si/S2, for i = 1,... , d. Then the
mapping X\ i—>  yi ( i = 1,... , d) defines a ring isomorphism

Although beautiful in themselves, these graded rings would be of lim-
ited interest if they conveyed no information at all about the original
group algebras. The point of the 'method of graded rings' is that certain
features of a complete filtered ring are reflected in the associated graded
ring. As a typical application of the method we shall deduce

7.25 Corollary The rings ZP[[G\] and ¥P[[G]] are right and left Noethe-
rian, and have no zero divisors.

7.26 Corollary The group algebras ZP[G] and ¥P[G] have no zero di-
visors.

It follows from the last corollary that if F is any group that can be
embedded in a uniform pro-p group, then the group rings Z[F] and FP[F]
are without zero divisors. This applies, for example, when F is the
principal congruence subgroup modulo p (p odd), or modulo 4 (when
p = 2) in GLn(Z), by Theorem 5.2. More general results along these
lines can be deduced from stronger forms of the above theorems, in which
G may be any torsion-free pro-p group of finite rank. We do not prove
these here, as they require a number of new ingredients from ring theory
and homological algebra, and refer the reader to Neumann (1988). (See
also Exercise 6.)

We know from Theorems 7.22 and 7.24 that the graded rings R* and
S* are Noetherian (by Hilbert's Basis Theorem) and without zero divi-
sors. That the corresponding complete rings R and S also have these
properties will follow by Proposition 7.27 which we prove below. Before
doing so, we must set up some terminology.
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Let A be a ring with a descending chain of ideals (Ai) satisfying the
conditions of Lemma 6.5. P u t E% — Ai/Ai+i for each i > 0 . The
associated graded ring is then

i=0

This formula specifies the additive structure; the multiplicative structure
depends on the choice of a 'grading monoid'. In the present context, this
comes down to specifying a commutative, associative binary operation
* on N, which satisfies the further conditions

i * 0 = i

j>k=>i*j>i*k

for all i, j and k. It follows from the first and third conditions that
i * j > i + j for all i and j ; returning to our ring A, we therefore have

AiAj C Ai*j, AiAj+i + Ai+xAj C A

Thus the multiplication in A induces a well-defined product E{ x Ej —>
Ei*j. This extends uniquely to an associative, distributive product on
4̂*; the ring axioms are easily verified (here the associative property of

* is essential). If A is an algebra, over ¥p or Zp, say, then A* inherits
an algebra structure provided each Ai is an algebra ideal; this will be
the case in our applications. (In many cases one simply takes * to be +;
this works for A = S but not for A = R.)

Finally, we endow A with a norm according to the recipe of Lemma
6.5.

7.27 Proposition Let A be a ring with a chain of ideals (Ai) as above.
Assume that A is complete relative to the given norm, and let A* be the
associated graded ring.

(i) // A* has no zero divisors then A has no zero divisors.
(ii) // A* is right (or left) Noetherian then so is A.

Proof If 0 T̂  a G A then a G Ak\Ak+i for some fc; we call k the degree
of a, and write

this is the leading term of a. Note that cfi / 0, by definition; putting
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Ô  = 0, we get a mapping \\ : A —• A*, and it has the following useful
property: for any a, 6 G A,

aW^0=>aW = (ab)*. (11)

Part (i) now follows quickly: if A* has no zero divisors and a,b e A\0
then cfi and $ are non-zero, so aW ^ 0, and (11) shows that (ab)^ ^ 0.
Hence ab ^ 0. (Of course, this is just the familiar proof that the ring of
polynomials over an integral domain is again an integral domain.)

Suppose now that A* is right Noetherian, and let L be a non-zero
right ideal of A. For each k > 0, put

L(k) = ((L n Ak) + Ak+1) /Afc+i < Ek

and let

k=0

Thus the non-zero elements of L(k) are just the leading terms of the
degree-fc elements of L. It follows, using (11), that L{k)Ej C L(k * j)
for all k and j , and hence that L* is a right ideal of A*. Then L* is
finitely generated as a right ideal, and splitting each generator into its
homogeneous pieces we can find a generating set of the form {s i , . . . , Sd}
with 0 T̂  Si G L(fci), say, for each z.

Now for each i there exists b̂  G L such that ŝ  = b\. Our claim is that
the finite set {6i , . . . ,6^} generates the right ideal L; part (ii) will be
proved once this is established. To this end, we start by defining partial
functions gi,... , g^ o n N as follows: if n = m * k{ then gi(n) = m;
otherwise gi(n) is undefined. Note that if gi(ni) < gi{ri2) then n\ < n<i.

Now suppose 0 T̂  a G L; we need to show that a can be written as a
linear combination of b±,... , bd- Say a has degree n. Then aft G L(n) C
L*, so there exist x\,... , x^ G A* such that

we may assume that Xi G Eg(m) f°r each i, since any homogeneous
component of Xi other than that of degree g(rii) contributes nothing to
the ^-component of s ^ ; we may also take X{ = 0 whenever s ^ = 0.
Thus for each i we have X{ = y^, where yn G A has degree gi(n) if ŝ x^ ^

0 and yn = 0 if s ^ = 0. Using (11), we see that ( ]C i = 1 »̂2
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so putting

d

E b
i=1

we have a\ G -An+i- If a\ = 0 we are done. If not, we repeat the process
with ai in place of a; thus we obtain a strictly increasing sequence n —
no < u\ < n2 < . . . , and for each i = 1,. . . , d a sequence (yn,yi2,. •.)
in A, such that y^ G Aq.fn. \ and

i=1 t=1

for each j . If â  = 0 for some j , we see that a G X^=i fyA, and we are
done. If not, then consider the infinite series X ^ i Vifr s m c e 9i(nj-i) ~^
oc as j —>  oo, the partial sums of this series form a Cauchy sequence in
A. Having made the assumption that A is complete, we may infer that
the series converges to an element Zi G A. Then

d

a — y^biZi = lim a7 = 0,

since ||aj|| = c~nj —>  0 as j —> oo. Thus a G 5Zf=i ^ ^ m ^ s c a s e

too, and we have proved (ii) (essentially, Hilbert's Basis Theorem for
power-series rings).

To deduce Corollary 7.25, it remains to show how the above procedure
gives rise to R* and 5*. The case of S* is immediate: taking A = S we
put Ai = Si for each i, and define ra * n = m + n for all ra and n.

When A = #, we take An to be the (n + l)th term in the sequence

R = Ro,o 2 -Ri,o 2 • * • 2 #fc,o 2 #fc,i 2 * • • 2 -Rfc,jk 2 -Rfc+i,o 2 • • • •

Thus An = Rk,m where

n = -k(k 4-1) + m = n{k, ra),z
say. Note that n(k, ra) uniquely determines fe and ra subject to 0 < ra <
A:. For n = n(k,m) and n' —  n(A;/,?n/), we define

n* nf — n(k -f A;7, ra + ra').

It is easy to verify that n ^ ' ^ n - f n ' , and that the operation * satisfies
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the requirements listed above for making N into a 'grading monoid' (in
effect, we are embedding N into (N 0 N, +) by n(k,j) t-> (fc, j)).

The graded ring R* constructed above is now seen to be identical to
A*. The norm on A defined by the chain (Ai) is not the same as our
original norm on R] however it defines the same topology, since the chain
(Ai) is merely a refinement of (i^), and this is enough to ensure that
A is complete. Thus all conditions of Proposition 7.27 are fulfilled, and
Corollary 7.25 follows.

Notes

The relationship between the filtration on a pro-p group and the norm
on its group algebra is explored from a different point of view in [L],
Chapter II §2. Theorems 7.4 and 7.20, on the unique representation
of elements by power series, follow from [L] Chapter III, Cor. 2.29.
Theorem 7.22, on the graded algebra associated to Zp [[G]], follows from
[L] Chapter III, Theorem 2.3.3.
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Exercises

G denotes a finitely generated pro-p group, and R = ZP[G].

1. Using the universal property of inverse limits, show that there is a
natural epimorphism

7T: ZP[[G]] - lim (Z/p*Z)[G/Gi].

Prove that TT is an isomorphism. Deduce that ZP[[G]] = i t [For the
second claim use Lemma 7.1 and Exercise 6.2.]

2. Let x G G. Show that if x G Gk then \\x - 1|| < p~k, and that if
x € Ik +pR then x G G&. Deduce that for each A; > 1 there exists ra > 1
such that

GnB(l;p-m) C Gfc C GnS( l ;p- f c ) ,

where S(l ; ^) denotes the closed ball of radius S about 1 in R. (Thus the
norm topology on i? induces the original topology on G as a subspace
of i t )

Show that if G is uniform then Gk = G C\ B{V,p~k).
Show that the norm topology on FP[G], defined in §7.4, also induces

the original topology on G.

3. (i) For A G Zp and 1 < r G N, prove that

/A\
rj r!

belongs to Zp.
(ii) Suppose that the pro-p group G is uniform, with minimal generat-

ing set {ai , . . . , a^}, and put bi = â  —  1. Show that for Ai,. . . , Â  G Zp,

(where (J) = 1)
[Hint: Approximate Ai,. . . , Â  by integers, and use Lemma 7.8. The

proof is given in full in §8.3.]
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(iii) Deduce that each element of R is the sum of a convergent series

with Aa £ Zp for all a. (This gives a constructive proof for Theorem
7.4(i) when G is uniform.)

(iv) Let A be the completion of QP[G] = A. Prove that each element
of A is the sum of a convergent series

with Aa € Qp for all a.
[Hint: Suppose that (wi) is a Cauchy sequence in A. Show that

wi = J2aeNd ^ic*ba with Xia £ Qp for all a. Prove that given e > 0 we
have

\\\iaba - \jaba\\ <e

for all sufficiently large i and j , uniformly in a. Deduce that for each
a the sequence (A^) converges to Aa G Qp, say, and show that then
Z)aENd ^cK^a converges to the sum lim^oo wi. (The proof depends on
Theorem 7.5.)]

4. Assume that G is uniform, and keep the notation of Sections 7.1 and
7.4.

(i) Prove that J M = (pR n Jfc) + Jfc+1 = Rk,i H ,R.
(ii) Show that

Jk + flfc+1 = iJfe, Jfe n i?fc+1

Deduce that the images of the elements pk~^ba with (a) < k form a
basis for Jk/Jk+1 over Fp, and that the images of the elements b a with
(a) = k form a basis for Jk/Jk,i-

(iii) Write

/<*(*)
_ (k + d - 1\

Show that /d(fe) = 5Zi=o/d-iW- Deduce that fd(k) is the number of
a e Nd such that (a) = k.

(iv) Show that

= dimFp(iJfc/iJfc+1) =
dimF p(/V/f c + 1) = dimFp(5fc/5fc+1) = fd(k)
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and that dimFp(Fp[G]/Jfc+1) = /d+i(*O (recall that / denotes the aug-
mentation ideal of FP[G].)

5. Let H be a pro-p group and G an open normal subgroup. Suppose
that G is uniform, and keep the notation of Exercise 4. Let / # be the
augmentation ideal of Fp[i7], and put Io = I¥P[H]. Show that FP[H]/Ifi
is a free Fp[G]//n-module on \H : G\ generators.

Show that Fp[H]/Ijj is a homomorphic image of ¥P[H]/IQ] deduce
that

< \H : G\fd+1(n - 1) < Cn\

where C is a constant depending only on \H : G\ and d.

6. Let H and G be as in Exercise 5, and suppose that G > Hq = Pq(H).
(i) Show that

qk-! <Gk<Hk

for all k > 1. Deduce that

\hn.Zp[H/Hk} = U

(ii) Show that limZp [_ff"/Gfc] is generated as a module for the ring
limZp[G/Gfc] by \H : G| elements. Hence show that the ring Zp[[if]] is
(right and left) Noetherian.

7. We keep the notation of §7.4. Show that the natural map : ZP[G] —*
Fp[G] induces an epimorphism : ZP[[G]] —>  FP[[G]] with kernel exactly
pZp[[G]]. Show that

Rk,m = 0 for m > 1.

Deduce that the mapping xi H-> yi (1 < i < d), Xo •-> 0 induces an
isomorphism R* /pR* —>  5*. [Hint: use Exercise 4.]

8. (i) Show that the Qp-algebra Mn(Qp) of all n x n matrices over Qp

becomes a complete normed Qp-algebra if we define

| | ( ^ ) | | = max \gij\.

(ii) Let

r = {^GGLn(Zp) |^ = l n (modpe)},

where e = 1 if p is odd, e = 2 if p = 2. Prove that L r = peMn(Zp).
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[Use Corollary 7.14, and Proposition 6.22 to show that peMn(Zp) =
log(r).]

9. Let H be a uniform pro-2 group and put G = P2{H). Show that for
x and y G H we have

4(x,y) = (2x,2y)

(in the sense of Definition 4.29). Hence show that if G is a Lie algebra
over Zp, with the operations +Q and (, )<?, then so is i7, with the
operations +# and (, )#. (Thus we may deduce Theorem 4.30 from
Corollary 7.14 without appealing to Exercise 10.)

[Hint: For the first bit, compare (x2,2/2)n_i and (x, y)*. Then note
that G = 2H]

10. In this exercise, G is a uniform pro-2 group. We are going to define
a new norm on Z2[G] = R. The notation is as in §7.1, except that we'll
write I = I\ for the augmentation ideal of JR, and 7° = R.

(y) Let JQ = R and put

(n>0)

J2n = 2 hn-1 + / n (n>1) .

Verify that the chain (J^) satisfies the conditions of Lemma 6.5, and
that it is cofinal with the chain (Jk). Deduce that R is a normed ring
with norm

||r||2 = 2-fc if r e Jfc\ Jfc+i,

and that this norm induces the original topology on G as a subspace of
R.

(ii) For each n G N, put

(a)=n

Show that / = L\ + / 2 . Deduce that J\ —  2L0 + J2 and that J2 =
4L0 + Li -h J3. [ffin :̂ Use Theorem 7.4.]

(iii) Show that if v G In and 6 G iJ then ^6 - v6 G 4/ n -f 2 / n + 1 + / n + 2 .
[Compare Lemma 7.10.]

(iv) Using (ii) and (iii), prove that for each k > 1,
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[Hint: Compare the proof of Lemma 7.11; it may be easier to deal with
the cases of even and odd k separately.]

(v) Deduce from (iv) that if c = ^2aeNd A a b a G Z2[G], where Aa G Z2

for each a, then

| |c | | 2= sup 2"2<a>|Aa|.
a£Nd

Hence show that ||-||2 extends to a norm on Q2[G] so that all the hy-
potheses of §7.2 are fulfilled.
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Interlude B

Linearity criteria

A long-standing problem in group theory has been to formulate a set
of conditions on an abstract group F which are necessary and sufficient
for F to be a linear group, that is, for F to have a faithful linear repre-
sentation (of finite dimension) over some field. Alex Lubotzky had the
insight to realise that the theory of p-adic analytic groups provides an
almost ready-made solution to this problem, under certain restrictions:
namely, when the group is assumed to be finitely generated and the field
is restricted to having characteristic zero.

The basic idea is as follows. One defines a 'p-congruence system', in
an abstract group F, to be a family of subgroups which models the be-
haviour of the system of all principal congruence subgroups in GL^(ZP).
This latter system satisfies various finiteness conditions, each of which
essentially expresses the fact that GL^(ZP) is virtually a pro-p group
of finite rank. If we now assume that F has a congruence system C
which satisfies one of the appropriate finiteness conditions, we can hope
to deduce that the completion

f = Vm(T/N)N€C

is itself virtually a pro-p group of finite rank. In this case, F has a
faithful linear representation over Zp, and we may conclude that F itself
has such a representation.

B.I Definition A p-congruence system in a group F is a descending
chain C = (A^)iG^ of normal subgroups of F such that

(i) F/A/i is finite;
(ii) Ni/Ni is a finite p-group for all i > 1; and

Of course, the mere existence of a p-congruence system in F means
little more than that F is virtually residually a finite p-group. The con-
cept is useful because we can attach conditions to it. (The reader should
be warned that the similar term 'p-congruence structure' introduced by
Lubotzky (1988) carries a more restrictive meaning: namely the condi-
tion defined below in Definition B.2(ii) is also supposed to hold.)

Now let C = (Ni) be a p-congruence system in some group F.
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B.2 Definition (i) C has finite rank if there exists r G N such that
rk(JVi/iVi)<rforaU j .

(ii) C is uniformly f.g. if there exists d G N such that d(Ni/Nj) < d
for all i < j .

(iii) C has PIG if there exist positive real numbers c and s such that

|iVi: iVfX-l <cpns

for all n , j G N. (PIG stands for 'polynomial index growth'.)
(iv) C has PSG if there exist positive real numbers c and 5 such that

vM/Nj) cpns

for all n,j G N, where crn(F) denotes the number of subgroups of index
at most pn in a finite p-group F. (PSG stands for 'polynomial subgroup
growth1.)

B.3 Proposition Let T be a group with a p-congruence system C. If
C satisfies one of the conditions (i), (ii), (iii) or (iv) of Definition 3.2,
then r has a faithful linear representation over Zp.

Proof Since T/Ni is finite, it will suffice to show that Ni has a faithful
representation: the corresponding induced representation of T will then
also be faithful.

Now let

G = lim Nx/Ni.
* 1—KX)

Then G is a pro-p group, and the natural map of N\ into G is injective,
by condition (iii) of Definition B.I. So it will suffice to show that G has
a faithful representation. This will follow by Theorem 7.19 once we have
shown that G has finite rank.

We consider N\ as being embedded in G: then N\ = G, the family of
subgroups (Nj)jzN forms a base for the neighbourhoods of 1 in G, and
Ni/Nj = Ni/Nj whenever j > i > 1 (see Exercise 1.4). Now we take
the four alternative hypotheses in turn.

(i) Suppose ik(Ni/Nj) < r for all j . Ii K <o G then K > ~N) for some
j , and then

Tk(G/K) < rk(G/Wj) = rk(AT1/ATj) < r.

Thus G has rank at most r (see Definition 3.12).
(ii) Suppose d(Ni/Nj) < d for all i < j . Then d(Nl) < d for each z,

by Proposition 1.5(H), and Corollary 3.14 shows that G has finite rank.
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(iii) Suppose that |JVi : N^Nj\ < cpns for all j and all n. Since
W 2£ Nx/Nj for each j , we have \G : GpnWj\ = \N± : A^A^I < cpns.

But n ^ i GpnWj = W, so |G : G^\ < cpns. As this holds for each n,
Theorem 3.16 shows that G has finite rank.

(iv) Suppose (Tn(Ni/Nj) < cpns for all j and all n. We claim that
for each n, G has at most cpns open subgroups of index < pn. Indeed,
if this is false, then for some n we can find k > cpns open subgroups
of index < pn in G, and we can then find j such that Nj is contained
in their intersection; but then N\/Nj = G/Nj contains k subgroups of
index < pn, contrary to hypothesis. That G has finite rank now follows
by Theorem 3.19.

This completes the proof.

The converse depends on the following lemma:

B.4 Lemma Let R be a finitely generated integral domain of character-
istic zero. Then there exist positive integers k and £ such that, for every
prime p not dividing £, R is isomorphic to a subring of M&(Zp).

It is also true that for infinitely many primes p, R is isomorphic to a
subring of Zp. An elementary proof of this can be found in Cassels
(1986), Chapter 5.

Proof Let R = Q • R be the Q-subalgebra of the field of fractions of R
generated by R. By Noether's normalisation lemma (see e.g. Atiyah
and Macdonald (1969), Chapter 5, Ex. 16), R contains finitely many
algebraically independent elements # i , . . . ,xm such that R is integral
over its subalgebra S = Q[#i,... ,xm]. This means that each of the
finitely many generators of R is a zero of some monic polynomial with
coefficients in 5; since only finitely many such polynomials are being
considered, we can find a positive integer I such that these polynomials
all have their coefficients in the subring Si = Z[l/£, xi,... ,xm] of S.
Let

R1=R[l/e,xu... ,xm]CR.

Then #i is integral over its subring Si, hence finitely generated as a
module over Si. Let us suppose that k module generators suffice.

Now let p be any prime not dividing £. Since Zp is uncountable,
it contains infinitely many algebraically independent elements (over Q),
and since Z[l/£] C Zp we can embed Si as a subring into Zp, by mapping
#i , . . . ,xm to m algebraically independent elements of Zp. Then the
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field of fractions F of Si gets embedded into Qp. Now let E be the field
of fractions of Ri. Since R\ is a fc-generator module over its subring S\
it follows that E is a finite extension field of F, with (E : F) < k. Hence
there exists an extension field K of Qp with (K : Qp) < k and E C K.
Let A be the integral closure of Zp in jRT; A is a free Zp-module of rank
at most k. Also R C Ri C E1 C K, and each element of R\ is integral
over 5i CZ p . Hence i ? C A , and letting R act on A by multiplication
we see that R is isomorphic to a subring of Endzp(^4) = M^ (Zp). This
completes the proof.

B.5 Proposition Let R be a finitely generated integral domain of
characteristic zero. Then there exists a positive integer £ such that if
F is any subgroup of GLn(R), where n E N, then for each prime p not
dividing £, F has a p-congruence system satisfying all the conditions (i),
(ii), (iii) and (iv) of Definition B.2.

Proof By Lemma B.4, there exist k and I such that R can be embedded
in Mfc(Zp) for every prime p \ £. Then GLn(#) embeds into GLd(Zp),
where d = nk. Thus it will suffice to show that \ip\£ and F <GLd(Zp)
then r has a p-congruence system satisfying (i)-(iv) of Definition B.2.

For each z, let F^ denote the principal congruence subgroup modulo
pl in GLd(Zp), as in §5.1. Put e = 0 if p is odd, e = 1 if p = 2, and for
each i let

i = rnr
i+e.

Our claim is that (i\^)iGN is a p-congruence system in F with the required
properties.

Now by Theorem 5.2, F i + e is a uniform pro-p group of dimension d2,
and Pi(Ti+£) = F i + e for each i. For j>i>l,

so

diNi/Nj) < A{Ni/Nj) < rk(rWrj+£) = d2,

showing that the system (A^) satisfies (i) and (ii) of Definition B.2. To
establish properties (iii) and (iv), consider the group

UN <o G then G/N is a homomorphic image of N\/Nj for some j > 1 ,
so rk(G/N) < d2. Hence G is a pro-p group of rank at most d2, and
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Theorem 3.16 shows that there exist c and r such that \G : Gpn | < cpnr

for all n (indeed the proof of Theorem 3.16 gives r = rk(G) < d2). Since
Ni/Nj is a homomorphic image of G, it follows that

|iVi : NfNjl < cpnr for all n.

Thus the system (A )̂ has PIG. A similar argument using Theorem 3.19
shows that the system also has PSG.

Propositions B.3 and B.5 now combine to yield the main result:

B.6 Theorem Let T be a finitely generated group. The following are
equivalent

(i) r is isomorphic to a linear group of finite degree over a field of
characteristic zero.

(ii) For some prime p, F has a p-congruence system of finite rank.
(iii) For some prime p, F has a p-congruence system which is uni-

formly f.g.
(iv) For some prime p, F has a p-congruence system with PIG.
(v) For some prime p, F has a p-congruence system with PSG.
(vi) For all but finitely many primes p, F has a p-congruence system

which satisfies all four of the above conditions.

Proof Clearly, (vi) implies each of (ii), (iii), (iv) and (v). Each of these
hypotheses, in turn, implies (i), by Proposition B.3. Finally, suppose (i)
holds. We may suppose that F = (xi, . . . , xm) < GLn(F), where F is a
field of characteristic zero. Take R to be the subring of F generated by
the entries of the matrices x^ x'1 (1 < i < m). Then F < GLn(i?), and
(vi) follows by Proposition B.5.

The 'linearity criteria' have found a number of applications in prob-
lems involving the classification of residually finite groups subject to
additional finiteness conditions. Typically, Proposition B.3 is used to
reduce the problem to the special case of linear groups, whereupon an
extensive range of powerful techniques can be brought into play. Details
of the method are described in the survey articles Mann (1990) and Segal
(1990). For an alternative approach, independent of pro-p groups, see
Segal (1996).

The method can usefully be applied to groups that are residually nilpo-
tent. This depends on the following observation; here, Tp denotes the
pro-p completion of a group F.

B7 Proposition Let T be a finitely generated residually nilpotent group.
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Suppose that, for some prime p, the pro-p completion Tp has finite rank.
Then there exists a finite set n of primes such that the natural map

is infective.

Proof Suppose that A is a torsion-free nilpotent quotient of F. Then Ap

is an image of Tp (Exercise 1.21), so dim(Ap) < dim(Fp), by Theorem
4.8. It also follows from 4.8 (see Exercise 1.22) that dim(Ap) is equal to
the Hirsch length ft (A) of A, so we have

ft(A) < dim(fp).

We may therefore choose a normal subgroup T of F such that T/T
is torsion-free and nilpotent of maximal possible Hirsch length. Then
7n(r) < T and T/^n(T) is finite, for every n exceeding the nilpotency
class of T/T (see Segal (1983), Chapter 1, for elementary properties of
the Hirsch length). It follows that T/[T, F] is finite, of order ra, say.

Let g j r n b e a prime, and suppose that Q < F has finite index a power
of q. Then T = (T 0 Q)[T,F], and as F/(T n Q) is nilpotent it follows
that T = (T n Q) < Q. Hence T is contained in the kernel T(q), say,
of the natural homomorphism F —>  Tq. On the other hand, T > T(q)
because T/T is residually a finite g-group (Gruenberg's theorem, see
Segal (1983), Chapter 1).

Thus T(q) —T for every prime q \ m. Choose one such prime q and
let 7T be the set of prime divisors of m together with q. The kernel of
the natural map F —>  Y\£e7r ^ is then

r|r(0 = rnf|rw= f| rW = 1-
£eir £\m all primes t

since F is residually nilpotent. The result follows.

The next corollary illustrates how this may be applied. Let us say that
a group F satisfies an upper finiteness condition if one of the following
holds:

(a) F has finite upper rank: i.e. rk(F*) is bounded as F* ranges over
all finite quotients of F;

(b) F has PIG: i.e. there exist constants c and s such that |F* : F*n | <
cns for all positive integers n and all finite quotients F* of F;

(c) F has PSG: i.e. there exist constants c and s such that sn(T) < cns
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for all n, where sn(F) is the number of subgroups of index at most n in
r.
B.8 Corollary Let T be a finitely generated residually nilpotent group.
If F satisfies an upper finiteness condition then F is isomorphic to a
linear group over C.

Proof For each prime p let F(p), as above, denote the finite-p residual
of r, i.e. the kernel of the natural map F —•> Tp. Now fix a prime p,
let Ni = r, and for i > 1 put Ni+i = [Ni,T]N?. We establish below
that each Ni has finite index in F. Since every normal subgroup of
p-power index in F contains some A ,̂ it follows that H ^ l -^ = ^(p),
and that (Ni/T(p)) is a p-congruence system in F/F(p); moreover, each
of the conditions (a)-(c) implies one of the alternative hypotheses of
Proposition B.3, which therefore shows that F/F(p) is isomorphic to a
linear group over Zp. In fact the proof of B3 shows that lim N\/Ni
is a pro-p group of finite rank; but it is clear in the present context that
this pro-p group is precisely Fp, so we see that Tp has finite rank.

It follows by Proposition B7 that F can be embedded in the direct
product of finitely many linear groups, over various rings Zp. Embedding
all of these rings into C gives the required faithful linear representation
ofF.

It remains to show that each Ni has finite index in F. Let i > 1 and
suppose we have shown that |F : Ni\ is finite. If Ni/Ni+i is infinite, then
we can find a normal subgroup K of finite index in F such that Ni+\ <
K < Ni and Ni/K is elementary abelian of arbitrarily large rank. It is
easy to see that this contradicts (a), (b) and (c). So \N{ : A^+i| must
be finite. The claim follows by induction.

Corollary B.8 provides a novel technique for 'lifting' linear represen-
tations from characteristic p to characteristic zero:

B.9 Corollary Every finitely generated linear group that satisfies an
upper finiteness condition is isomorphic to a linear group over C.

For such a group has a normal subgroup of finite index which is resid-
ually nilpotent (see Wehrfritz (1973), Theorem 4.7); and it is easy to
see that upper finiteness conditions are inherited by subgroups of finite
index.
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p-adic analytic groups

A p-adic analytic group is a p-adic analytic manifold which is also a
group, the group operations being given by analytic functions. This
chapter has two main purposes: the first is to explain what these terms
mean; the second is to establish Lazard's group-theoretic characterisa-
tion of p-adic analytic groups:

8.1 Theorem A topological group G has the structure of a p-adic
analytic group if and only if G has an open subgroup which is a powerful
finitely generated pro-p group.

This is the main result of this part of the book; it will be proved, along
with some refinements and corollaries, in Sections 8.3 and 8.4. The first
two sections are devoted to the definition and basic properties of p-adic
analytic groups.

Further properties of these groups are developed in the following
chapter.

8.1 p-adic analytic manifolds
We begin by considering functions on Z£. As usual, we write X for the
r-tuple (Xi,... , Xr), etc. For y G Z£ and h G N we put

-h) = { z e Z ; | \zi - Vi\ < p-h for i = 1,... ,r}

8.2 Definition Let V be a non-empty open subset of Z£ and let

be a function from V into Z£.

178
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(i) Let y G V. Then f is analytic at y if there exist h G N with
B(y,P~h) £ V and formal power series -F»(X) G QP[[X]] (i = 1,... , s)
such that

fi(y+phx)=Fi(x) for all XGZJ.

(ii) The function f is analytic on V if it is analytic at each point of
V.

Equivalently, by Proposition 6.34, f is analytic at y G V if there exists
h G N, with B(y,p~h) C V, such that the function x i-> fi(y + phx) is
strictly analytic on Z£, for each i = 1,... , s, in the sense of Definition
6.17; here we are considering Z£ as an open set in Ar where A is the
complete normed Qp-algebra Qp. Note that if {Ui}ieI is a covering of
V by open subsets, then f is analytic on V if and only if f |jy. is analytic
on Ui for each i G / (i.e. being analytic is a 'local' property).

8.3 Lemma Suppose that F(X) G QP[[X]] can be evaluated at x for
all x e Z J . Let a G Z£. T/ien ttere eaaste G(X) G QP[[X]] snc
F(x + a) = G(x) /or a// x G Z£.

Proo/ Say F(X) = EaeN- ^α ̂ f1 • • • X?r. Then for xGZJwe have

a) = J ] da(xi + ai) a i ... (xr 4- ar)
ar

say, where x^ is shorthand for x± ... xfr; note that Xap = 0 whenever
βi > OLi for some i. Since F(X) can be evaluated at (1, . . . , 1) G Z£ we
have limaGHr da = 0; as \Xap\ < \da\ for each o; and p it follows that

lim(a,/3)6NrxNr ^β = 0.

By Proposition 6.9(ii), each of the series £] a G N r Aa/j converges, with
sum Cβ say; invoking Corollary 6.11 we deduce that

F(x + a) =

The result follows on taking G(X) = J2peNr c^X{x ... X^. (Note that
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we can't apply Theorem 6.35 directly, here, since the 'power series' Xi +
CLi have non-zero constant term in general.)

8.4 Corollary Suppose that V C Z£ can be written as a union
[J{B(y(i),p-h^) I i G /} of balls and that f = (fu . . . Js) is a func-
tion from V into Z* such that, for each i E / , the functions x i—>
fj(y(i) + / W x ) are strictly analytic on Z£ /or j = 1 , . . . ,5 . T/ien f zs
analytic on V.

Proof Let y G V. Then there exists i G / such that y G
and for j = 1, . . . , s there exists Fj(X) G QP[[X]] such that, for all
X G Z L

Now put a = p - ^ y - y(i)). Then fj(y+ph{i)x) = F,(x 4- a) . By
Lemma 8.3, for each j there exists Gj (X) G QP[[X]] such that Fj (x+a) =
Gj(x) for all x e Z J . Then

for all x G Zp and j = 1,. . . ,5. Thus f is analytic at y, and the result
follows.

A special case of Corollary 8.4 is the reassuring proposition that if the
function / : Z^ —+  Zp is strictly analytic on Z£ then it is analytic on Z£.

8.5 Lemma Let f : U —>  V and g : V —• W be analytic functions,
where [ / C Z J , F C Z * and VF C Z^ are non-empty open sets. Then
gofis analytic on U.

Proof Let y e U. We are required to find h G N such that, for each
j = 1, . . . ,£, there exists flj(X) G QP[[X]] with the property that
9j(fi(y + / x ) , . . . , / e (y+p*x)) - ^ ( x ) for all x G Z£.

Since f and g are analytic there exist hi and h^ G N such that
(i) for each i = 1,... , s, there exists F{ (X) = J] a e N r 6a(z)Jf f1 . . . X ^

G Qp[[X]] such that /»(y +p / l lx) - F^(x) for all x G Z£; and
(ii) if we set b = (60(l) , . . . ,6o(s)) = (/i(y),--- ,/s(y)), then for each

j = 1,. . . ,t, there exists Gj(y) = EpeN^pU)^1 • •-YsPs G QP[[Y]]
such that ^ ( b + ^ 2 y ) = Gj (y) for all y G Z*.

By Proposition 6.19, the function x i—>• i^(x) is continuous for each
i = 1,. . . , 5. So there exists /13 G N such that
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for all x G Zr
r Thus

where Zi = p~h2(Fi(ph3x) — bo(i)) for each i = 1 , . . . , s. We now apply
the work done in Chapter 6 on composition of power series. By Lemma
6.18, there exists /i4 G N such that for i = 1 , . . . , s and all a G Nr

Let h$ = max(^3, h^) + ^2- For each i = 1 , . . . , 5 let

Et(X) = J2 ea(i)X? . ..X? € QP[[X]],

where eo(i) = 0 and ea(i) = p<«>^-/i2 . fta(^ if a ^ o. Put i^ (X) =
(Ĝ - o E)(X) for each j = 1,... ,t.

Now lini0GNs cp(j) = 0 and |ea(z)| < 1 for all a G Nr and i = 1, . . . , s.
So, by Theorem 6.35, taking h = h$ + /ii we have

= (G i oE)(x)

Thus g o f is analytic on U as claimed.

8.6 Definition (i) Let X be a topological space and U a non-empty open
subset of X. A triple (17, </>, n) is a c/iar£ on X if 0 is a homeomorphism
from J/ onto an open subset of Z^ for some n G N. The dimension of
the chart is n. The chart ([/, 0, n) is a g/o&a/ chart \iU = X.

(ii) Two charts (U,<f),n) and (V, ^,ra) on a topological space X are
compatible if the maps ^ o (j)~1\(j){ijnv) a n d </> ° (0~1|^(c/nv) a r e analytic
functions on 0(t/ D V) and i/j(U D V) respectively.

(iii) An a£Zas on a topological space X is a set of pairwise compatible
charts that covers X; i.e. it is a set of the form

A = {(Ui,(/>i,ni) \iel}

with the following properties:

• for each i G / , (L^, fa, rii) is a chart on X;
• for all i, j G / , (Ui,fa,rii) and (Uj,<t>j,rij) are compatible;

A is a g/o&a/ atlas if for some i G / the chart (Ui, fa,rii) is global.
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(iv) Let A and B be atlases on a topological space X. Then A and B

are compatible if every chart in A is compatible with every chart in B\

that is, if A U B is an atlas on X.

As a temporary notation, let us write XΑ to denote the topological

space X endowed with the atlas A. A function / : XΑ —> YΒ is said to

be analytic if for each pair of charts (U, 0, n) G A and (V, >̂, ra) G 5,

the following hold:

(i) f~1(V) is open in X, and

(ii) the composition

is an analytic function from the open set <j)(U f) f~1(V)) £ %p into Z™.

8.7 Lemma Let X,Y and Z be topological spaces and A,B,C atlases

on X, y, Z respectively. If f : XΑ —• YΒ and 9 '-YΒ —* ZQ are analytic,

then g o / : X^ —> Zc is analytic.

Proof Write h = go f. Let (V,^,m) G C. Then p " 1 ^ ) n W is an

open subset of W for each (W,0,£) G #, and g " 1 ^ ) is covered by

such subsets. So to show that h~1(V) = f~1g~1(V) is open in X it

suffices to show that for each such W and each (£/, 0, n) G A, the set

^ n r H ^ H ^ n ^ ) is open in U. Now the map 6o f o(j)-
1\4){jjnf-i{:w))

is analytic, hence continuous by Proposition 6.19; as both 0 and (j> are

homeomorphisms it follows that the restriction of / to U fl /~1(VF) is

also continuous. Therefore Uf)f~1(g~1(y)nW) is open in I7n/~1(W),

and as /"^WQ is open in X it follows that £/n/-1(0-1(Vr)nWr) is open

in U, as required. Thus /i satisfies condition (i).

To verify condition (ii), let (£/, 0, n) G A. It will suffice to show that for

each y G C/n/i~1(F) there is a neighbourhood TV oi(/>(y) in (/>(C/D/i~1(Vr))

such that 2p o h o (f)~1\N is analytic. Now the atlas B contains a chart

(W,0,t) such that /(y) G W. We take N = </>{U H Z " 1 ^ " 1 ^ ) n

Then ^ o / i o ^ " 1 ^ is the composition of 0o/o</>~1 : Â  —> 0(^

and V̂  o g o 0" 1 : 0(^-1(1^) OW) ^ ip(V) C ZJ1. Each of these maps is

analytic, by hypothesis, so it follows by Lemma 8.5 that ijj o h o <fi~1\N

is analytic as required.

Now according to Definition 8.6(iv), two atlases A and B on a space X

are compatible if and only if the identity maps XΑ —* XΒ and XΒ —• XΑ

are analytic. Lemma 8.7 therefore implies that compatibility of atlases
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is a transitive relation; as it is plainly both reflexive and symmetric, we
see that compatibility is an equivalence relation on the class of all atlases
on X. We can therefore make the following

8.8 Definition Let X be a topological space. A p-adic analytic manifold
structure on X is an equivalence class of compatible atlases on X. If such
a structure exists, X is a p-adic analytic manifold. Any atlas belonging
to the given equivalence class is called an atlas of (the manifold) X; any
chart belonging to such an atlas is called a chart of (the manifold) X.

In this chapter and the next, when we write 'analytic manifold', or
just 'manifold', we always mean 'p-adic analytic manifold'. Analytic
manifolds of a more general type will be discussed in Chapter 13.

8.9 Examples
(i) Let X be a discrete topological space. Then X is a p-adic analytic

manifold with structure determined by the atlas {({#}, 0^,0) | x G X}
where <\>x : x i—• 0.

(ii) Let X = QJJ. For each i G N, let <fo : p~* Z£ - • Z£ be the map
defined b y x ^ p*x. Then the set A = {(p""*ZJ,0i,n) | i G N} is an
atlas on X since {p~2Z™  \ i G N} is an open covering of Q™.  This atlas
gives X the structure of a p-adic analytic manifold. [This implies that if
we weakened the definition of a chart ([/, 0, n) to require that (j> should
be a homeomorphism from U onto an open subset of Q™  rather than Z™,
we would still get the same class of p-adic analytic manifolds.]

(iii) Let X be a manifold and let U be an open subset of X. Let A —
{(Vufarii) I i e 1} be an atlas of X. Then J5 = {VJ n U,<t>i\Vinu,ni) I
i G /} is an atlas on U and the manifold structure determined by this
atlas is called the induced manifold structure on U. If V and Y are
p-adic analytic manifolds such that V is an open subset of Y and the
manifold structure on V is the induced manifold structure from Y, then
we say that Y extends the manifold structure on V.

(iv) Let X = GLn(Qp) with the subspace topology induced from that
onMn(Qp)=Q£2.

(a) Let A = {(p~*Mn(Zp),<^,n2) | i G N} be the atlas on the vector
space Mn(Qp) given in Example (ii). Then, by Example (iii), B =
{(X np- iMn(Zp),^ |X n p- i M n ( Z p ) ,n2) I i G N} is an atlas on X.

(b) Let U —  l n +pMn(Zp), an open subgroup of X. Define (f) : U —•
pMn(Zp) by (j)(u) =u-ln for all ueU. Then {([/,</>,n2)} is a global
atlas on U. For each h G X, let Vh — hU, an open neighbourhood of h



184 p-adic analytic groups

in X. Define (j)h : Vh -> pMn(Zp) by 0^(a) = ^(h^x). We leave it as

an exercise to show that {(Vh, 4>h,n2) | /i 6 X} is an atlas on X, and

that it is compatible with the atlas B defined in (a).

The two atlases defined in (a) and (b) thus determine the same ana-

lytic manifold structure on X.

(v) Let G be a uniform pro-p group of dimension d, generated topo-

logical^ by {ai,.. . , ad}, say.

(a) In Theorem 4.9 we defined a homeomorphism <fi : G —> Z^ by

<j){x) = (Ai,... , Ad) where x = a*1 . . . ax

d

d. Then A = {(67, 0, d)} is a

global atlas.

(b) In Theorem 4.17 we showed that G is a free Zp-module on the

basis {ai,... , a^}, with respect to the module operations defined in

§4.3. Define t\> : G —> Z^ by ijj(x) = (/xi,... ,/Xd) where x = /xiai +

• • • + μdCLd• Then Proposition 4.16 shows that ip is a homeomorphism,

so JB = {(G, -0, d)} is a global atlas.

(c) In Corollary 7.14 we saw that log : G —> 4̂ gives a homeomorphism

of G onto A = log G, a Zp-Lie subalgebra of A of dimension d, where

A denotes the completed group algebra of G defined in Chapter 7. Let

0 : A —> Zp be an isomorphism, obtained by choosing a basis for the

Zp-module A. Then C = {(G, 0 o log, d)} is a global atlas on G.

Now Corollary 7.14 shows that log is a Zp-module isomorphism from

G onto A, where G has the module structure mentioned above in (b);

so we may choose {logai,... , log a^} to be our basis for A, and then

we see that C is the same atlas as B. Since every invertible linear

transformation on Z^ is an analytic homeomorphism, it follows that the

atlases B and C are compatible whatever the choice of 6.

As a matter of fact, the atlases A and C are also compatible. A direct

proof of this is outlined in Exercise 3. Alternatively, it can be deduced

from a uniqueness theorem to be proved in §9.4. Thus all three atlases

determine the same manifold structure on G.

(vi) Let X and Y be analytic manifolds determined by atlases A and B

respectively. Then Z = X xY has the structure of an analytic manifold

defined by the atlas C = {(U x V, (j> x >̂, ra + n) \ (C7, </>, m) G A and

(V,^,n) e B} where (f) x i/j : U x V -> Z ^ + n is defined by (tx,v) i->

{(j){u),ip{v)). This manifold Z is called the product of X and Y.

8.10 Definition Let X and Y be analytic manifolds and f : X —> Y

a function. / is analytic if there exist atlases A and B of X and V

respectively such that / : XΑ —• VΒ is analytic.
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It follows from Lemma 8.7 that if / : X —> Y satisfies the condition

stated in this definition with respect to the atlases A and B, then it

satisfies the corresponding condition with respect to every pair of atlases

of the manifolds X and Y respectively. Another immediate consequence

of Lemma 8.7 is

8.11 Lemma Suppose that f : X —> Y and g : Y —> Z are analytic

functions where X, Y and Z are analytic manifolds. Then gof : X —• Z

is an analytic function.

8.12 Lemma Let f : X —» Y be a function, where X and Y are

manifolds. Suppose that X = IJiej ^i where X{ is an open subset of X

and that f\xi • Xi —• Y is analytic with respect to the induced manifold

structure on Xi, for each i G /. Then f is an analytic function.

Proof Let A be an atlas of the manifold X. For each i £ I let A{ be the

atlas on X^ determined by A as in Example 8.9(iii). Then A* = UieI A{

is easily seen to be an atlas on X compatible with A. The lemma follows,

since the hypothesis implies that / : XΑ* —> Y is analytic.

The final result of this section follows from Proposition 6.19:

8.13 Lemma Let f : X —> Y be an analytic function. Then f is

continuous.

8.2 p-adic analytic groups

8.14 Definition A topological group G is a p-adic analytic group if G

has the structure of a p-adic analytic manifold with the properties

(i) the function / : G x G —> G given by (x, y) i—>• xy is analytic;

(ii) the function i : G —• G defined by x i—> x~l is analytic.

It follows from Lemma 8.11 that conditions (i) and (ii) may be replaced

by the single condition:

(i);: the function g : G x G —> G defined by (x, y) i-> xy'1 is analytic.

Using the Inverse Function Theorem 6.37, one can deduce condition

(ii) from condition (i); however we prefer to state both in the definition.

A p-adic analytic group is sometimes referred to as a p-adic Lie group.

The following proposition provides a 'local' criterion to determine
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whether a topological group G has the structure of a p-adic analytic
group:

8.15 Proposition Let G be a topological group containing an open sub-
group H. Suppose that H has the structure of a p-adic analytic group,
and that the following holds: for each g G G, there exists an open neigh-
bourhood Vg of the identity in H such that

(i) gVgg-1 C H and
(ii) the function kg : Vg —• H defined by x »—• gxg~l is analytic.

Then there exists a unique analytic manifold structure on G extending
the manifold structure on H and making G into a p-adic analytic group.

Proof Let T be a transversal to the left cosets of if in G. Let A be an
atlas defining the manifold structure on H. For each t G T, we define
an atlas A(t) on the coset £i7, an open neighbourhood of t, as follows:

A{i) = {(«/,&, m) I (tf,0,m) G A}

where </>t : tU -> 1™ is  defined by <f>t{x) = 4>(t~lx). Since G = \JteT tH
and this union is disjoint, the set A = [jteT A(t) is an atlas on G. The
manifold structure on G defined by the atlas A extends the manifold
structure on H. To verify condition (i)', it suffices to show that the
function / : GxG —• G defined by (x,y) i—• xy~x is analytic on sHxtH
for each s and t in T. If h\ and /i2 are in H, then

(efciKt/fc)-1 = st'Hihih^t-1. (1)

Since H is a p-adic analytic group, (1) together with Lemma 8.11 implies
that / is analytic on sH x tiJ, provided that

(a) for each g G G, the function fg:G—^G  defined by x \—> gx is
analytic; and

(b) for each g G G, the function kg : H —>  G defined by x t-> gxg~1 is
analytic.

To prove (a) it suffices to show that the function fg is analytic on tH
for each t G T. Now #£ = s/i for some s G T and h £ H. For each
(£/, 0, m) and (W, ̂ >n) £ A the function

is precisely the function

^ o / i o f 1 : </>([/ n
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which is analytic since H is an analytic group with respect to the man-
ifold determined by A. Therefore fg is analytic.

To prove (b) it suffices by Lemma 8.12 to show that for each h 6 H,
kg is analytic on some open neighbourhood of h. By hypothesis there
exists V, an open neighbourhood of the identity, with the property that
V C H n g~1Hg and kg : V —>• H is analytic. Consider the open
neighbourhood ftV of h. Then the function kg : /iV —»  ghg~1H is a
composition of functions

By (a) and our hypothesis each of these functions is analytic. That kg\hv
is analytic therefore follows from Lemma 8.11, and this proves (b).

It follows that the manifold structure on G determined by A gives G
the structure of a p-adic analytic group.

Finally, we have the question of uniqueness to settle. Suppose that B
is an atlas defining a manifold structure on G extending the manifold
structure on H and that G is a p-adic analytic group with respect to
this structure. We want to prove that A and B are compatible. We
may assume that A C B since the manifold structure determined by B
extends the structure on H. Let (W, i/j,n) £ B, g € G and (£/, </>, m) £ A.
We are required to prove that the functions

(f)g o ip-1 : ̂ (W n gU) -> (j)g(W n gU)
iio^-1: (f)g(W n gU) - ij){W n gU)

are analytic.
G is a p-adic analytic group with respect to the manifold defined by

B. So for each g € G the function fg : GΒ —> GΒ defined by x J—> gx
is analytic. Thus, for each (W,^,n) G i? and ([/, 0, m) G i C B , the
functions

* fg-1 ° ^β - ^β{w n / -lU) —> 4>{fg-iW n i

P o fg o 0 " 1 : 0({7 n / o " 1 ^ ) —> ^{fgU n w )

are analytic. But these functions are precisely the functions detailed
above. Thus A and B are compatible, and the result follows.

Remark In Chapter 9 we shall prove a far stronger uniqueness result:
if G is a topological group then there is at most one p-adic manifold
structure defined on G with respect to which G is a p-adic analytic
group.
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8.16 Lemma Let G and G be p-adic analytic groups and let <fi : G —> G
be a group homomorphism. Suppose that 4>\H is analytic for some open
subgroup H of G. Then (f) is an analytic function.

Proof By Lemma 8.12 it suffices to show that 4>\9H is analytic for each
g € G. Now 4>\gH is a composition of functions

where the functions fx : y i—> xy are  analytic. By hypothesis (j>\H is
analytic. The result follows by Lemma 8.11.

8.17 Examples
(i) Let G be a group with the discrete topology and manifold structure

as defined in Example 8.9(i). Since any function on such a manifold is
analytic, G is a p-adic analytic group.

(ii) Let G = (Q™,  +). With respect to the analytic manifold structure
defined in Example 8.9(ii), the function (x, y) H-> X — y is analytic. Thus
G is a p-adic analytic group.

(iii) Let G be a p-adic analytic group and H an open subgroup of G.
Then H is a p-adic analytic group with respect to the manifold structure
induced from G, as detailed in Example 8.9(iii) .

(iv) Let G = GLn(Qp). We begin by showing that the open subgroup
JJ — \ n +pMn(Zp) has the structure of a p-adic analytic group with
respect to the global atlas defined in Example 8.9(iv)(b). The function
/ : U x U —• U defined by (x,y) i—> xy is clearly analytic since it is
described by polynomials in the matrix entries of x and y. We leave it
as an exercise to prove that the function i : U —> U defined by x i—>  x~x

is analytic. Therefore U has the structure of a p-adic analytic group.
For each g e G, let Vg = U H g~xUg] then the function kg : Vg -» U
defined by x \—»  gxg~l is clearly analytic since it is described by linear
polynomials in the entries of x. Thus, by Proposition 8.15, G has the
structure of a p-adic analytic group. It is a straightforward exercise
to show that the manifold structure constructed in Proposition 8.15 is
precisely the manifold structure defined on G in Example 8.9(iv).

(v) In the following section we prove that if G is a uniform pro-p
group then G is a p-adic analytic group with respect to the manifold
structure given in Example 8.9(v)(a). In Chapter 9 we shall see how
the Campbell-Hausdorff formula can be used to prove that G is a p-adic
analytic group with respect to the manifold structure given in Example
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8.9(v)(b). The uniqueness result to be proved in Chapter 9 will then
imply that the atlases of Example 8.9(v) are compatible.

8.3 Uniform pro-p groups
In this section we prove our first major result:

8.18 Theorem Let G be a topological group containing an open subgroup
which is a uniform pro-p group. Then G is a p-adic analytic group.

The proof leans heavily on the theory developed in §7.1. Until fur-
ther notice, we assume that G is a uniform pro-p group, with minimal
generating set a i , . . . , a^, and write bi = ai —  1 for each i. We shall be
working inside R, the completion of (ZP[G], ||-||) constructed in §7.1.

Recall that for A £ Zp and 1 < r £ N,

'A\ A ( A - l ) . . . ( A - r + l) ^
r\

we also write (Q) = 1

8.19 Lemma Let u\,... , ur £ G and put Vi = Ui —  1 for each i. Then
for Ai , . . . , Ar G Z P we have

where v a = v™ 1 . . . v^r.

Proof Fix e > 0, and choose M < N £ N so that p~M < e and
p-N < \M\\ e. Now take ftGN such that pi = X{ (modpN). Then for
each i we have

i i —  i \ i J

in the notation of §7.1. It follows that

as the expression inside the norm may be written as a sum of terms each
of which has a factor of the form u^1 — uy.

Next, suppose that a £ f satisfies (a) < M. Then YTi=1 a»! | (a)! |
M! (Exercise 6.5), and a simple argument then shows that

A A AA //Ji\ /A



190 p-adic analytic groups

On the other hand, if a G N r and (a) > M then

i = 1

since \\vi\\ <p 1 for each i. It follows by Proposition 6.9(iv) that

a

-N/\M\\,p-

Finally, Lemma 7.8 shows that

Combining this with the previous line and (2) we infer that

\arj

As e was arbitrary, the lemma follows.

8.20 Lemma Let g : 17 —• Zp be a function such that

/or a// x € Z£; i^/iere ca G Qp. Suppose that \ca\ < cp e^ for each a,
where c>0 and e > (p — I ) " 1 . T/ien ^ is strictly analytic on Z£.

Proof Define V^β G Q p by

Note that V^β — 0 whenever Pi > ai for some i = 1,... , r, and that for
all (a, /?) G N r x N r we have

by Lemma 6.20. It follows that

where d = and p = e - (p - I ) " 1 > 0
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We deduce that lini(a,/3)eNrxNr Ca^a/3X^ — 0 for each x G Z£. Apply-
ing Proposition 6.9(ii) and Corollary 6.11 as in the proof of Lemma 8.3,
we conclude that for all X G Z J ,

where dp — 2 a e N r cauocp for each /? G N r . The result follows.

8.21 Proposition Let ui,... ,ur be arbitrary elements of G (if p >

2) or of P2(G) (if p = 2). Define g = (gu... ,gd) : Zr

p -* Zd

p by

gi{\\... , Ar) = μi where

Then g is an analytic function on Z£.

Proof Let V{ = ui — 1 for i = 1,... , r. Lemma 8.19 shows that

According to Theorem 7.4, for each a G N r we can write

(4)

where c a / 3 G Z p for each ^ G N d . Put e = 1 if p > 2, e = 2 if p = 2.

Then by hypothesis \\vi\\ = ||i6i — 1|| < p~ e for each i, so | |v a | | < p~e(aK

It follows by Theorem 7.5 that

\ca0\ < Pm l |va | | < min{l,p-€<e>+<«} (5)

for all a G N r and ^ G Nd. Since (^) G Zp and | |b^| | < p " W , we may
deduce that

lim ( ) (

Substituting (4) into (3) and applying Corollary 6.11, we get

On the other hand, Lemma 8.19 also gives

l ...ur - O l . . . a ,

where ^ = ^ ( A i , . . . , Ar) for each i. Equating coefficients as we may
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by Theorem 7.4(ii) we see that

for all p e Nd.

Denote by ê  the d-tuple with entry 6{j (Kronecker 6) in the jth place

for j = 1,... ,d.

Choosing β-ti gives

Since e > (p — I ) " 1 , Lemma 8.20 with (5) shows that each ^ is a strictly

analytic function on Z£. It follows by Corollary 8.4 that g is analytic

o n Z ; .

We can now prove Theorem 8.18. The group G is no longer assumed

to be uniform; instead, G is a topological group containing an open

subgroup N which is a uniform pro-p group. Let if = JV if p > 2 , i f =

P2(A0 if p = 2. Suppose that N is generated topologically by a i , . . . , a^.

For z = 1,... , d, let iz* = a* (if p > 2) or ui = a? (if p = 2). Then the

uniform pro-p group H is generated topologically by ui,... , i^. Define

0 : H -> Z^ by 0(x) - (Ai,... , Ar) where x = i x j 1 . . . ^ . As we

observed in Example 8.9(v)(a), H has the structure of a p-adic analytic

manifold defined by the global atlas {(if, 0, d)}. By Proposition 8.15, to

prove that G has the structure of a p-adic analytic group it suffices to

prove the following two claims:

(i) the function H x H —> H given by (x,y) •—» xy~l is analytic with

respect to the manifold structure defined on H; and

(ii) for each g G G, there exists an open neighbourhood V = Vg of

the identity in H such that gVg~l C if and the function kg : V -+ H

defined by x ^ gxg~l is analytic.

Let e = 1 if p > 2, e = 2 if p = 2, so û  = a\ for each i.

To prove (i), we have to show that the function f : Z^ x Z^ -> Z^

given by f (r, cr) = i/, where

V w l •••wd J l w l - ' u d ) ~ U 1 - -Ud >

is analytic. For z = 1,... , <i put w^+i = u^iJrV Then f = e-1f*, where

f* : Zpd —> Zp is the function defined by f*(Ai,... , A2d) = H when

u i • • • W 2 d — a i " -ad -

Proposition 8.21 shows that f* is analytic; and (i) follows.
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Now we prove (ii). Let g G G\ then H D g~1Hg is an open subgroup
of H, so there exists m e N such that Pm+i(H) C H n g~1Hg. We put
V = Pm+i(fZ"). Then the induced manifold structure on V is defined by
the atlas {(V, </>|y,d)} where <j)\y maps V onto pmZp. It will suffice to
show that the function k* : pmZ% -> Z^ defined by k*(r) = i/ where

is analytic on pmZp. Write ^ = guf g~l (i = 1 , . . . ,d), and con-
sider the function h : Z^ —» Z^ defined by h(Ai , . . . , A )̂ = H where
w^1 ... Wjd — a^1 . . . a%d; this function is analytic by Proposition 8.21.
Now let A e Z*. Then

where ^ = h(A). Thus k*(pmA) = e~1h(A) for all A e Z^, and it follows
that k* is analytic on pmZp. This completes the proof.

Remark What we have shown is that the 'co-ordinates of the second
kind' on a uniform pro-p group H endow it with the structure of an
analytic group; the proof was based on the generalised binomial expan-
sion of Lemma 8.19. The 'co-ordinates of the first kind', given by the
additive structure of H, also make H into an analytic group, where
the group multiplication is expressed by the Campbell-Hausdorff series.
This approach is spelt out in §9.4.

8.4 Standard groups
In this section we establish the converse of Theorem 8.18. This is done
in two stages. The first is to show that every p-adic analytic group has
an open subgroup whose analytic-group structure is of a particularly
simple form, that of a standard group; the second is to show that every
standard group is a uniform pro-p group.

Throughout, XL, X2 , . . . , Yi, I2? • • • will denote commuting indeter-
minates, and we write

to denote the subring of Qp[[X]] consisting of formal power series
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where aa G Zp for each a G Nn. Note that if F(X) G ZP[[X]] then F(x)
exists for all x G pZ™, by Proposition 6.9(ii).

As before, we use ê  to denote a tuple (of suitable length) with 6ij in
the j th place for each j .

8.22 Definition Let G be a p-adic analytic group. Then G is a standard
group (of dimension r over Qp) if

(i) the analytic manifold structure on G is denned by a global atlas
of the form {(G, ip, r)} where ip is a homeomorphism of G onto pZ£ (if
p > 2) or onto 4Z£ (if p = 2), with ^(1) = 0; and

(ii) for j = 1,. . . ,r there exists Pj(X,Y) G ZP[[X, Y]] such that

for all x,y G G, where ^ = (V'l ? • • • > Vv)-

Remark Our definition of a standard group differs from Bourbaki's defi-
nition at the prime p = 2 (see Bourbaki (1989b), Chapter III §7.3). The
definition will be generalised in Chapter 13.

8.23 Examples
(i) Let G = (pZr

p1 +) if p > 2, or G = (4Z£, +) if p = 2. Then G is a
standard group of dimension r over Qp.

(ii) Let G = l n 4- pMn(Zp) if p > 2, or G - l n -f 4Mn(Z2) if p = 2.
Let {(G, 0, n2)} be the atlas defined in Example 8.9(iv)(b). We leave it
as an exercise to verify that this atlas makes G a standard group over
Qp. (We saw in Chapter 5 that G is a uniform pro-p group: this will be
generalised in Theorem 8.31).

(iii) In §9.4 we shall see that if G is a uniform pro-p group, then the
subgroup H = P2(G) (or H = ^3(G) if p = 2) is a standard group with
respect to the chart

log|H :H^ACZd
p

obtained by fixing a Zp-basis for the Lie algebra A = log(G) C A, where
A = QP[G\.

8.24 Lemma Let G[Yi,... ,Ym] G ZP[Y] and let F{[X] G ZP[X] for
i = 1, . . . ,?72. Suppose that each of the series i^ [X] has constant term
0. Then G o F G ZP[X] and (G o F)(x) = G(Fi(x), . . . , Fx(x)) /or a//
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Proof The first claim is clear. The second is an application of Theorem
6.35.

Using Lemma 8.24, it is a simple exercise to verify that condition (ii)
in Definition 8.22 is equivalent to

(ii)' for j = l , . . . , r , there exist Mj(Xu ... ,Xr,Yu . . . ,Yr) G
ZP[[X, Y]] and Ij{Xu . . . ,Xr) G ZP[[X]] such that for all x,y G G

We can generalise this remark as follows:

8.25 Lemma Let G be a standard group of dimension r. Let
w(xii... , xn) be a group word in the variables x i , . . . , xn. Then there
exist

r , . . . , X n i , . . . ,Xnr] e Zp[[Xi,. . . ,X n]

j = 1,... ,r) such that for all # i , . . . , xn G G

ipj(w(xu... ,xn)) = Fj(

Proof This is by induction on the length of the word w. Suppose
w(xi,... ,xn) = v(xi,... ,xn)xk. We may assume that

i/jj(v(xU... ,Xn)) =Hj(i/>(xi),... ,i/>(Xn))

for suitable power series Hi,... ,Hr. Then writing x^ = ij){xi) for i =
1, . . . , n we have

1pj(w(xU... ,Xn)) =Mj(H1(xU... ,X n ) , . . . , f f r (x i , . . . ,Xn),Xfc).

Now put Fj = Mj o H where H = (Hi,... , ifr, X f c i , . . . , Xkr)- It
follows by Lemma 8.24 that Fj G Zp[[Xi,... ,Xn]] and that
ijjj(w(x1,... ,xn)) = Fj(ip(xi),... ,ip(xn)).

The same argument gives the result when w(xi,...,xn) =
v(xi,... , X n ) ^ 1 , using Pj in place of Mj.

The following lemmas provide information about the coefficients of
certain power series.

8.26 Lemma Let F(X) = S a G N n aaXa G QP[[X]]. Suppose that
there exists an open neighbourhood V of 0 in Qp such that, for all
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Then aa = 0 for all a £ Nn .

Proof This is by induction on n. The case n = 1 is dealt with in
Proposition 6.13. Suppose that n > 1 and that the lemma is true for
n — 1. For each i e N , put

Fix (Ai, . . . ,An_i) € y n - 1 . It follows from Proposition 6.10 that for
any An £ V, i^(Ai, . . . , An_i)A^ = bi\l

n, say, exists for each i and that

Proposition 6.13 now implies that b{ = 0 for each i. Taking An ^ 0 we
deduce that F*(Ai,... , An_i) = 0 for each i. It follows by the inductive
hypothesis that aa = 0 for all a £ Nn .

8.27 Lemma Let

F(X, Y) = X ^ X ^ e QP[[X, Y]],

suppose that F(\, /i) exists for all (A, //) £ V x V, where V is some
neighbourhood of 0 m QJ. Let 1 < i < r.

(i) / / F(A, A) = 0 and F(A, 0) = Â  for all A = (Ai, . . . , Ar) £ V, then

ae.o = 1, aa0 = 0 for a ^ e{

aOei = - 1 , ao£j = 0 for j ^ i.

(ii) / / F(A,0) = A* and F(0^) = & for all A = ( A i , . . . ,A r ) , μ =
(/ii, . . . , ^ r ) £ y , then

deiO = aOei = 1

«c*o = ao/3 = 0 for all a ^ e», /3 ̂  ê .

Proo/ (i) Put G(X) = - X i + S e e N - a -oX*. Then G(A) = F(A, 0)-A< =
0 for all A £ V, so by Lemma 8.26 we have a€i0 = 1 and aa0 = 0 for all

Now put if(X) = X^7GN r-(Sa+/5=7
a^)X7. Proposition 6.10 shows
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that H(X) = F(A, A) = 0 for all XeV. Applying Lemma 8.26 again, we
deduce that for each 7 G Nr

^2 aa/3 = 0-

In particular, setting 7 = €j we get

aOej = -aejo = -Sij (Kronecker 6).

(ii) As in case (i) we get a€io = 1, aa = 0 for all a ^ ê . The rest
follows by symmetry.

8.28 Corollary. Let G be a standard group over Qp.
(i) If P i , . . . ,Pr G Zp[[X,Y]] are power series satisfying condition

(ii) of Definition 8.22, then for each j we have

Pj(X,Y)=Xj-Yj +

where I = {(a,/3) G N r x N r | (a) + ( /?)> 2 and /? ^ 0 } .
(ii) //" Mi , . . . , Mr G Zp[[X, Y]] are power series satisfying condition

(ii)7, then for each j we have

where J = {(a,/?) G Nr x Nr | (a) > 1 and (̂ 8) > 1}.

We are now ready to prove the first main result of this section:

8.29 Theorem. Let G be a p-adic analytic group. Then G has an
open subgroup H which is a standard group with respect to the manifold
structure induced from G.

Proof The subgroup H is going to be a small neighbourhood of the
identity in G, carefully chosen so that the power series expressing the
group operation have the desired form. The details are as follows.

Let A be an atlas defining the manifold structure on G and let
(£/, 0, n) G A be a chart such that 1 G U. Then (U x £/, (f) x 0,2n) is a
chart of the manifold G x G , as detailed in Example 8.9(vi). Since G is
an analytic group, the function / : G x G —• G given by (x, y) H-» xy~x

is analytic, so putting W = (U x U) D / - 1 ( t / ) we see that the function

(4> x cf>)W ^ Z ;
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is analytic. Thus there exist h G N and power series Fj G QP[[X,Y]]
(j = 1,... ,n) such that

<j>i o / o (4> x </))

for all A and μ G Z™. It is clear that

F^AH^l), 2^,0) = 0(1)+^ (6)

for all A G Z£.
Now let /7o ^=0"1 (0(1) +p^Zp), an open neighbourhood of 1 in U,

and define ip : Uo -+ Z^ by ^(x) = p~h((/)(x) - 0(1)). Then for A and
μ eZp we have

^ o / o ( ^ x ^ ) - 1 ( A , M ) = Gj(A,M)

where

G,(X,Y) =p-hFj(X,Y) -p-h<f>j(l) € QP[[X,Y]].

In view of (6), we may apply Lemma 8.27 and deduce that for each j ,

Gj(X,Y)=Xj-Yj+ Y^ aj^XaYP

where / = {(a, 0) G Nr x Nr | (a) + (/?)> 2 and /? ̂  0}.
By Lemma 6.18, there exists k^ G N such that, for all (OL,0) G / and

j = 1, . . . ,n,

Put t ing /c = 2/co, we then have

UJ^CX-β — P U>jCX-β

for all (a, /?) E / and j = 1,... , n. We put

^) if p = 2.

Define 6> : H -+ pl^ (if p > 2) or (9 : H -* 4Z^ (if p = 2) by (9(x)

p-kil)(x). Then for all a;,2/ G i J , if <9(x) = ( A i , . . . ,An) and 0(y)

This shows that # is a standard group with respect to the global atlas
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{(if, 0,n)}. It is clear that this atlas is compatible with the manifold
structure on H induced from G.

One further lemma is required before we can complete the proof of
the main result:

8.30 Lemma Let G be a standard group over Qp with the global
atlas {(G,ip,r)}. Then there exist power series i<i(X),. . . , F r(X) G

i , . . . ,Xr]] such that

) for all x G G

Fk{X) = pXk + ] T ck,aXa for each fc,

where ck,a G Zp /or eac/i a and fc. 4̂/so eac/i c^,a = O(modp)
(a) = 2, provided p^2.

Proof Except for the final claim, this follows from Corollary 8.28(H) and
Lemma 8.24, by an obvious induction on p (where, just for the moment,
we allow p to range over N). For the final claim, we have to keep track
of the quadratic terms: keeping the notation of Corollary 8.28(H), we
find that

for each A:, giving the result.

8.31 Theorem Let G be a standard group of dimension r over Qp.
Then G is a uniform pro-p group of dimension r.

Proof Let {(G, ip,r)} be the global atlas described in condition (i) of
Definition 8.22. For i > 1 (if p > 2) or i > 2 (if p = 2) we put

Then {G(i) | i > 2} is an open neighbourhood base of the identity in
G. Corollary 8.28(i) shows that if x G G(i) and y G G(j) then, for
k = 1,... ,r,

1) = ipk(x) - ipk(y) (modpc) (7)

where c = j + min(z, j). Taking i — j we deduce that
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(a) G(i) is a subgroup of G and
(b) ip induces an epimorphism G{i) —• plZr

p/plJtlZr
p with kernel

G(i + 1).
It follows that G(i + 1) < G(i) and G(i)/G(i + 1) ^ p*Z£/p*+1Z; ^

(Z/pZ) r . Thus each G(i) is a subnormal subgroup of p-power index in
G. Since the intersection of the conjugates of a subnormal subgroup of
p-power index is itself a normal subgroup of p-power index, it follows
that G has a neighbourhood base at the identity consisting of normal
subgroups of p-power index. Hence G is a pro-p group.

By Lemma 8.30, if x G G(i) then

il)j(xp) = p^j(x) (modp*+2)

for each j . Since A i-> pX induces an isomorphism from plZr
p/plJtlZr

p

onto plJ[~1Zr
p/pl+2Zr

p, it follows that x i-> xp induces an isomorphism
from G(i)/G(i + 1) onto G(i + 1)/G(i + 2). It then follows by induction
on n that G(i + 1) = G(i)pG(i + n) for all n > 1 , and hence that

G(i + 1) = G(i)P. (8)

Arguing by induction on i we deduce that G(i) < G for each i.
If p > 2 then

Thus G/Gp is abelian and hence G is powerful, with d(G) = r.
If p = 2, to show that G is powerful we are required to prove that

GfG1 is abelian. Recall that now G = G(2). Let y e G(4) and n > 4 .
Then there exist u G G(3) and x G G(2) such that y = u2 mod G(n)
and u = x2 mod G(n). So y = x4 mod G(n). Hence

G(4) C pi GAG(n) = G*.
n>4

But it follows from (7) that G(2)/G(4) is isomorphic to 22Z£/24Z£.
Hence G/G4 is abelian, again showing that G is powerful with d(G) = r.

Finally to prove that G is uniform it suffices to show that Pi (G) =
G(i + e) for each i, where e = 0 if p ^ 2, £ — 1 if p = 2. This follows
from (8), by Theorem 3.6.

Combining Theorems 8.18, 8.29 and 8.31 we obtain

8.32 Theorem Let G be a topological group. Then G has the structure
of a p-adic analytic group if and only if G contains an open subgroup
which is a uniform pro-p group.
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With the results of Chapter 4 this gives Theorem 8.1, and the following
variations:

8.33 Corollary A topological group G is p-adic analytic if and only if
G has an open subgroup which is a pro-p group of finite rank.

8.34 Corollary The following are equivalent for a topological group G:
(i) G is a compact p-adic analytic group;
(ii) G contains an open normal uniform pro-p subgroup of finite index;
(iii) G is a profinite group containing an open subgroup which is a

pro-p group of finite rank.

Combining this with Theorem 5.7 we deduce

8.35 Corollary Let G be a compact p-adic analytic group. Then Aut(G)
is a compact p-adic analytic group.

We conclude this chapter with the following theorem which allows us
to define the concept of dimension for a p-adic analytic group.

8.36 Theorem Let G be a p-adic analytic group. Then there exists a
unique non-negative integer n with the following properties:

• every chart belonging to an atlas defining the manifold structure on G
has dimension n, in the sense of Definition 8.6;

• every open pro-p subgroup of G has finite rank and dimension n, in
the sense of Definition 4-7.

Proof Let A be an atlas giving the analytic manifold structure of G, and
let ([/, 0, n) G i b e a chart with 1 G U. In the proof of Theorem 8.29 we
constructed from this chart a chart (H,6,n) on G such that H = Hu,
say, is a standard group of dimension n. Theorem 8.31 shows that then
Hjj is a uniform pro-p group of dimension n. Now let (V, ip,m) be any
other chart in A. We are required to prove that m = n. Let g G V,
put W = g~xV and define ipg : W -> Z^1 by ij)g(x) = i>(gx). Using
the fact that the function x i—> gx : G —> G is analytic (see Exercise 1),
we see that (W,i/jg,m) is a chart compatible with every chart in A, so
A U {(W, ipg,m)} is an atlas of G. Now 1 G W; as above we obtain an
open uniform subgroup H\y in G with dim(H\y) = m. Since HJJ f] Hw
is an open subgroup of both Hu and Hw, Lemma 4.6 shows that m — n.
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Now let M be any open pro-p subgroup of G. We have seen that G
contains a uniform open subgroup H of dimension n. Then M n H is
an open subgroup oi H. So M D H is a pro-p group of finite rank with
dim(MnH) = n. Since MC\H is also an open subgroup of M, it follows
that M has finite rank and dim(M) = n.

8.37 Definition Let G be a p-adic analytic group G. Then the dimen-
sion

dim(G)

of G is the number n specified in Theorem 8.36.

Notes

The results and methods of this chapter are all essentially from [L].
Alternative accounts of much of this material may be found in Bourbaki
(1989b) Chapter III and Serre (1965), Part II.

The main result, Theorem 8.32, combines Prop. 3.1.3 of [L], Chapter
III, which implies that a p-adic analytic group of dimension r has a
uniform open subgroup of dimension r, and 3.4.4.1 and 3.4.4.2 of [L],
Chapter III, which state that every finitely generated powerful pro-p
group is p-adic analytic.
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1. Let X and Y be p-adic analytic manifolds.

(i) Prove that the projection map X x Y —> Y is an analytic function.

(ii) Let v G X. Prove that the map y \—> (v,y) : Y —» X x Y is an

analytic function. Deduce that if G is a p-adic analytic group then for

g G G, the map x i—• #x : G —• G is analytic.

2. Prove that condition (i) in Definition 8.14 implies condition (ii).

3. Let G be a uniform pro-p group of dimension d. Let # i , . . . , xd be a

Zp-basis for the Lie algebra A = log G C A, where A is the completed

group algebra of G (assume that G C 1 + Ao, as in §7.2).

(i) Show that {a\ = expxi , . . . ,a^ = expa^} is a set of topological

generators for G.

Define (f) : G -> Z^ by 0(a^1 . . . a^d) = (Ai,... , Ad) and define ^ :

G -> Z^ by 2p(x) = ^>... ^d) where logx = μ^x H- • • • + μdXd•

(ii) Define * ( * ( X i , . . . ,Xd) = (C o H)(X) G Q P ( ( X » , where

H(Xi,... , Xd) = £(Xx)... £{Xd) - 1, f and £ being the exponential

and logarithmic series of Definition 6.21. Prove that, if y i , . . . , yd G A$

then $( d )(y i , . . . ,i/d) converges to the sum log(exp(yi).. .

(iii) Show that for A = (Ai,... , Ad) G Z^,

H-

where \p(j)~1(X)

function on Z^.

(iv) Let 6f =

such that

l , . . . ,^d)- Deduce that ^ o 0 " 1 is an analytic

— 1 for i = 1,... , d. Show that there exist

for all μ l , . . . , μd G Z p and n G N, and that there exist

that

Vβ =

G Q p such

for alia,/? G N d .

lint: use Exercise 7.3(iv).]
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Deduce that if Iβ(x) — (/ii,... , /x^), then

x=

Hence show that if <f)(x) = (Ai,... , A )̂ then for each a G

m£: Use Lemma 8.19 and Theorem 7.4.]

Taking a = Ci for i = 1,... , d, deduce that (f) o ^~l is an analytic

function on Zp\

(v) By (iii) and (iv), (G, 0, d) and (G^, d) are compatible atlases.

Suppose that {zi,... , Zd} is another Zp-basis for A and define 0 : G —*

Zp by #(x) = (z^i,... , ^d) where logx = vizi + • • • + ^d^d- Prove that

(G, -0, d) and (G, 6, d) are compatible atlases.

4. (i) Show that if G is a p-adic analytic group then dim(G) = 0 if and

only if G is discrete.

(ii) Let 1 —> iV - ^ G —» Q —> 1 be an exact sequence of continuous

homomorphisms of p-adic analytic groups. Show that

dim(G) = dim(A0 + dim(Q)

provided either (a) iV is compact or (b) / : N —> f(N) is an open

mapping. Show by example that the proviso is necessary.

[Hint: use Theorem 4.8.]

5. Find the dimensions of the p-adic analytic groups in Examples 8.17.

6. Let e = 1 if p ^ 2, e = 2 if p = 2. Suppose that the function

/ : Zp —• Zp satisfies

for all x G Zp, where Cj G Z p satisfies |cj | < p e j for all j > 2 and

|ci| < p ~ 2 e . Show that there exists a power series

n=1
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such that f(x) = F{x) for all x G Zp, whose coefficients satisfy

di = 0 (modp1+e)
dn = 0 (modpe) for all n.

[Hint: compare the proof of Lemma 8.20 (but d\ needs to be done 'by
hand').]

7. Let G be a compact subgroup of GLn(Qp). Show that G C GLn(Zp) •
X for some finite subset X of G. Deduce that there exists y G GLn(Qp)
such that yGy~l < GLn(Zp). Hence prove that every compact subgroup
of GLn(Qp) is contained in a maximal one, and every maximal compact
subgroup of GLn(Qp) is conjugate to GLn(Zp).

[Hint: Let X be a transversal to the right cosets of G D GLn(Zp) in
G. Show that the Zp-module Z ^ e x ( ^ p ) ' x *s e ( l u a l t o (^P) * V f° r some
y G GLn(Qp).]

Platonov and Rapinchuk (1994), §§3.3, 3.4 contains a discussion of
compact subgroups in $)(QP), where S) is an algebraic group defined over
Qp; if S) is reductive, then the maximal compact subgroups of F)(QP) lie
in finitely many conjugacy classes.
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Interlude C

Finitely generated groups, p-adic analytic groups and
Poincare series

Here we reproduce an announcement by one of the authors, concern-
ing the detailed behaviour of the 'subgroup counting functions' whose
growth properties have been discussed in Chapter 3. An adequate ex-
planation of the results from p-adic model theory on which this depends
is beyond the scope of this book; however, it may be of interest to
the reader to see how information about the structure of uniform pro-p
groups, referred to below as p-saturable groups, is exploited in a rather
different context (the relation between uniform groups and p-saturable
groups is discussed in the Notes to Chapter 4).

Unlike most of the other applications, this paper uses the full strength
of Lazard's characterisation of compact p-adic analytic groups: on the
one hand, the existence of a uniform pro-p structure in such a group;
on the other hand, the fact that in a uniform pro-p group, the group
operations are given by analytic functions. Thus the whole machinery
developed in Part II of the book is relevant here.

For a full account see du Sautoy (1993).
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BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 23, Number 1, July 1990

FINITELY GENERATED GROUPS,
p-ADIC ANALYTIC GROUPS, AND POINCARE SERIES

MARCUS P. F. DU SAUTOY

INTRODUCTION

Igusa [I 1,12] was the first to exploit p-adic integration with
respect to the Haar measure on Q in the study of Poincare series
arising in number theory and developed a method using Hiron-
aka's resolution of singularities to evaluate a limited class of such
integrals. Denef [D 1, D 2] and, more recently, Denef and van den
Dries [DvdD] have applied results from logic, profiting from the
flexibility of the concept of definable, greatly to enlarge the class
of integrals amenable to Igusa's method. In [DvdD] these results
are employed to answer questions posed by Serre [S] and Oesterle
[O] concerning the rationality of various Poincare series associated
with the p-adic points of a closed analytic subset of Z™  . In this
note we apply these techniques to prove that various Poincare se-
ries associated with finitely generated groups and p-adic analytic
groups are rational in p~s, extending results of [GSS].

RESULTS

Let G be a group and denote by an(G) the number of subgroups
of index n in G. We are interested in groups for which an(G) is
finite for every n e N . For each prime p, we can then associate
the following Poincare series with this arithmetical function:

(!) CGJS) = Y,aAG)p~ns = £ \° : H\'s
n=0 H€Xp

where X = {H <G:H has finite /7-power index in G}.
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§ 1. P-ADIC ANALYTIC GROUPS

We consider firstly the case where G is a compact p-adic ana-
lytic group—that is, a compact topological group with the under-
lying structure of a p-adic analytic manifold with respect to which
the group operations are analytic (see [Lz] and [DduSMS]). For
such groups, an(G) is finite for every n. We wish to announce
the following:

Theorem 1. If G is a compact p-adic analytic group, then £G (s)

is rational in p~~s.

The philosophy behind the proof is to express our Poincare se-
ries as a p-adic integral

(2) I |/(x)|5|g(x)||</x|,
JΜ

where \dx\ is the normalized Haar measure on Zp and the func-
tions / , g: Z* -+ Zp and the subset M are definable in the lan-
guage describing the analytic theory of the p-adic numbers. We
can then evaluate such definable integrals applying the techniques
developed by Denef and van den Dries [DvdD] (which include
quantifier elimination results for the analytic theory of Z ) to
prove our theorem.

The translation from our Poincare series to such a definable
p-adic integral makes full use of Lazard's results on the close rela-
tionship between the structure of compact p-adic analytic groups
and filiations defined on such groups [Lz]. In answer to "Hilbert's
5th problem for p-adic analytic groups," Lazard has shown that a
compact topological group has the structure of a p-adic analytic
group if and only if there exists a normal subgroup G{ of finite
index in G which is p-saturable—that is, there exists a filtration
on Gx

GX>G2> >Gt>

such that: (i) Gx is a pro-p group with a fundamental system of
neighborhoods of the identity given by {Gt: i e N}; (ii) for all
^ 1, Gi/Gi+l is an elementary Abelian p-group of finite rank;
and (iii) for all / > 1, the map Pi:GJGM -* Gi+l/Gi+2 defined
by xGM —• xpGi+2 is an isomorphism of F p vector spaces.

A p-saturable group has the underlying structure of a pro-p,
p-adic analytic group with a global coordinate system Zr

p given by
p-adic powers of elements x{, . . . , xr where xxG2, . . . , xrG2 is
an F vector space basis for GxjG2,
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We first prove Theorem 1 in the case where G is a p-saturable
group. Recall that subgroups of finite index in a pro-/? group have
/7-power index. The idea is to associate with every subgroup H of
finite index in G, a subset M(H) of rxr matrices over Zp whose
rows form coordinates for a good basis for H. Every subgroup of
finite index in a compact p-adic analytic group is open. So, there
exists m such that H > Gm. We define the concept of a good
basis for H as a set of elements hx, . . . , hr such that, for each
i = 1, . . . , m, if we let v. = hp. e HoGi for co(hj) < i, where
e(i9 j) = i - co(hj) and co(#) = « if g e Gn\Gn+l, then

{VjGi+l:j such that ft>(/*;) < /}

is an F^ vector space basis for (HnGi)Gi^xIGi+v The index of
H in G is encoded in the measure of the subset M(H) and we
identify functions f,g:Z^-->Zp such that, for all subgroups H
of finite index in G

\G : H\'s= f |/(x)ris(x)||</x|.
JM{H)

Summing over all subgroups of finite (necessarily p-power) index
in G, we can express our Poincare series £G p(s) as a p-adic

integral of the form (2) where M C Zr
p is the (disjoint) union of

subsets M(H) for all HeXp.
The problem now is to show that this integral is definable in the

sense of [DvdD]. The set of r-tuples of elements of G which form
a good basis for some subgroup of finite index in G is definable by
a filtered group theoretic statement. We show how to translate such
statements into statements about coordinates of elements of G
definable now in the language describing the analytic theory of the
p-adic numbers. Using this translation we can show that the subset
M is definable. With regards to the functions / and g, we show
that there exists a finite partition of Zr into definable subsets
such that, on each subset, / and g are defined by polynomial
functions. Thus / and g are definable functions. We are then
in a position to apply the techniques of [DvdD] to this definable
integral and thus prove Theorem 1 in the case where G is a p-
saturable group.

We extend this to a proof of Theorem 1 using the following
ideas. Let G be a compact p-adic analytic group and G{ a normal
p-saturable subgroup of finite index in G. If H is subgroup of
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/7-power index in G, then it is determined by Hx — H n Gx and
a transversal for Hx in H. We associate with each H a subset
AT(//) consisting of coordinates both for a good basis for Hx and
coordinates for a transversal for Hx in H. Extending our integral
associated with the /7-saturable group Gx, we can express CG p{s)
as a definable p-adic integral over the union of the subsets N(H).
We can therefore apply [DvdD] to prove that our Poincare series
associated with the compact p-adic analytic group G is rational
in p~s.

§2. FINITELY GENERATED GROUPS

Theorem 1 has various corollaries for finitely generated groups.
If r is a finitely generated group, then an(T) is finite for all n .
We can therefore consider the Poincare series defined in (1). We
consider first a variant of this Poincare series. Define a^ (V) to
be the number of subnormal subgroups of index n in T. For
each prime p, we associate with the finitely generated group F ,
the following Poincare series:

n=0

where Y = {H < F : H is subnormal of p-power index in F} .
We say that apn (F) grows polynomially if there exists c e N

such that apn(T) < pnc for all n . Similarly for a^ (T). We then
have the following:

Theorem 2. Let F be a finitely generated group and p a prime. If
a^ (F) grows polynomially, then Cp p(5) is rational in p~s.

There is a one-to-one correspondence between subnormal sub-
groups of finite p-power index in F and subgroups of finite in-
dex in the pro-p completion G of T. So CG p(s) = Cp ^{s).
By Lubotzky and Mann's characterization of pro-p groups which
have the underlying structure of a p-adic analytic group [LM], if
apn(G) = a^ (F) grows polynomially, then G is a p-adic analytic
pro-/? group. By Theorem 1, Cr^(^) is rational in p~s.

We recall the definition of an upper p-chief factor of F—that is,
a chief factor of some finite quotient of F whose order is divisible
by p . We then have the following:

Theorem 3. Let T be a finitely generated group and p a prime
such that the order of all p-chief factors of T is bounded. If ann(T)
grows polynomially, then £r p(s) is rational in p~

apn
~s
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The bound on the order of /?-chief factors in F implies that
there exists a normal subgroup Fo of finite index in F whose
subgroups of p-power index are all subnormal. We construct a
finite extension G of the pro-/? completion of Fo whose sub-
groups of finite index are in one-to-one correspondence with sub-
groups of p-power index in F . If apn{F) grows polynomially,
then, by [LM], G is a finite extension of a /?-adic analytic pro-/?
group. So G is a compact /?-adic analytic group and by Theorem
!> to,p(s) = £r,p(s) i s rational in p~s.

Theorem 3 includes a large class of examples, some of which
we collect together in the following corollary. We recall that the
upper p-rank of F is the supremum of r(P) as P ranges over all
/?-subgroups of finite quotients of F , where r(P) is the rank of
P .
Corollary 4. If T is a finitely generated group of finite upper p-
rank, then £r p(s) is rational in p~s.

This follows from a remark in [MS].
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9
Lie theory

This concluding chapter of Part II is devoted to some of the more cate-
gorical aspects of p-adic analytic groups. In the first part of the chapter
we establish the fundamental result that every continuous homomor-
phism of analytic groups is analytic; this implies that the analytic struc-
ture of a p-adic analytic group is uniquely determined by its structure as
a topological group. Using this together with the group-theoretic char-
acterisation given in the previous chapter, it is then easy to show that
the category of p-adic analytic groups is closed with respect to taking
closed subgroups, quotients and group extensions.

The second part of the chapter is devoted to the correspondence be-
tween analytic groups and Lie algebras. We show that there is an exact
correspondence between uniform pro-p groups and powerful Lie algebras
over Zp, and deduce that this correspondence gives rise to an equivalence
between the 'local category' of p-adic analytic groups and the category
of p-adic Lie algebras.

9.1 Powers
Recall the definition of standard group from §8.4. If G is a standard
group and m is a positive integer, then the function g i—• gm is analytic
on G. What we want to establish in this section is that for each fixed
g £ Gj the function m H-> gm is analytic (as a function from Zp to G).
More precisely, we shall prove

9.1 Proposition Let G be a standard group, with respect to the global
chart (G,ip,r), and let v E G. Then there exist power series

213
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for i = 1,... , r, such that for all X e Zp

Moreover, putting e = 1 if p is odd and e = 2 if p = 2, we have, for
each i,

en =ipi(v)
dj = 0 (modpe) for all j > 2 .

This depends on the following result about formal power series (we shall
write X for ( X i , . . . , Xr) and X a = X?1 ... X^):

9.2 Lemma For i = 1 , . . . , r let

Fi(X, Y ) e Zp[[Xi, ...,Xr,Yu...,Yr]]

be a power series with zero constant term, and linear term Xi + Y{.
Define the power series G™, for i = 1 , . . . , r and m>1, recursively,
as follows: G\ = X{; for m > 1 , G2

m + 1 = F{ o H m where H m ( X ) =
( X i , . . . , X r , G f , . . . , G ^ ) . Then there exist £ija G Zp such that, for
z = 1,... , r and a// m > 1 ,

<e>>i v = 1

Proof Note that each G™  is a well-defined power series, with zero con-
stant term: this follows recursively from the hypothesis on the F^. Thus
we have

with each Qa(m) G Zp, and what we have to show is that there exist
Zija € Zp such that

<a) / \
) (1)

for i = 1 , . . . , r and all m > 1. This we do by induction on (a).
If (a) = 1 then a = ê  for some fc. It is easy to see (by induction on

m) that for all m,

Cfc€fc (m) = m, CjCfc (m) = 0 if j j^ k;
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so (1) is satisfied for a = e& if we put

8ik (Kronecker 6).

Now suppose (a) > 1, and assume that for all P with (/?) < (a) we have

found ^β G Zp (1 < i < r, 1 < j < /3) such that (1) holds with p in

place of a, for all m> 1. Say

Fi(X, Y) - Xi + Yi + Y^ aiCT7rX
CT • Y*,

(cr)>l
(7r)>l

and suppose that

Then by definition of G ^ + 1 we have

Cia(m + 1) = Cia(m) -f

Now if (or) -h (TT) > (a) then ba7ra(m) = 0; otherwise, b^^m) is the sum

of a finite number of terms of the form

where d = (TT) and a + 7(1) + • • • + 7(d) = a. Since (a) > 1, each
c*j70')(m) ^s § i v e n by an expression like (1); it follows that 6a7ra(?7i) is

equal to a polynomial in ra, of degree at most (a) — (a), with coefficients

in Qp and zero constant term. Hence for each i there exists a polynomial

fi(T) G Qp[T], of degree at most (a) - 1, such that /*(()) = 0 and

Cia(m + 1) — Qa(m) = fi(m) for all positive integers ra. This implies

that for each i there exists a polynomial gi{T) G QP[T], of degree at

most (a) and with ^(0) = 0, such that Qa(ra) = gi(m) for all positive

integers ra (see Exercise 1, noting that Cia(l) = 0 since (a) > 1).

Since ^(0) = 0 and cia(m) G Zp for each ra, we can write

(a)

with each &j a G Z p (see Exercise 2).

This establishes the inductive step, and completes the proof.

Proof of Proposition 9.1 We fix the element v in the standard group
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G, with global chart (G, ip, r); here ^(G) - pZp if p is odd, ^(G) =
if p = 2. There exist power series F i , . . . , F r over Zp such that

for all x, y G G, and Corollary 8.28(ii) shows that these power series
satisfy the hypotheses of Lemma 9.2. Then for each positive integer ra,
we have

in the notation of Lemma 9.2; this follows by repeated applications of
Lemma 8.24. Let £^a G Zp be the numbers given in Lemma 9.2, and
write

Then \ta\ < P~{a) if p is odd, |tQ| < 2"2<a> if p = 2, so for each A G
we have

lim

We can therefore define fa : Zp —> Qp by

/i(A) = A (̂t;)+ 2 5 > i a (

(see Proposition 6.9), and we see from (2) that for all positive integers
m,

By Corollary 6.11, the series defining /i(A) may be re-arranged, giving

j = 1 I («>>j
\<«>>2

Proposition 6.9(iv) shows that for each j ,

y , Zijata
(a>>2

where e = 1 if p ^ 2 , e = 2 if p = 2. We may therefore apply Exercise
8.6, to infer that there exists K^X) = Y^d^Xi G ZP[[X]] with ^(A) =
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Ki(X) for all A G Zp, such that dio = 0, dn = ipi(v) (modp1+e) and
dij = 0 (modp6) for all j > 2 .

It remains to show that ipi(vx) = Ki(X) for all A G Zp and 1 < i < r.
The estimates given above for the coefficients Cij show that the function
fi is strictly analytic on Zp, and therefore continuous, by Proposition
6.19. Since ^ is also continuous, we get

^i(vx) = lim ^i(ym^) = lim h(m(k)) = /.(A) = K^X)
fc—>-oo fc—»oo

when A G Zp is the limit of a sequence (m(k)) in N. This completes the
proof.

9.2 Analytic structures
It follows easily from Proposition 9.1 and Lemma 8.5 that the mapping
(Ai, . . . , Ad) •—• uXl . . . ud

d, from Z^ into a standard group G, is analytic
(ixi,... ,^d being given elements of G). If { i ^ , . . . ,7i^} is a minimal
topological generating set for G, the inverse of this mapping gives a
global chart for G, as we saw already in Chapter 4: our main task
in this section is to show that this chart is compatible with the given
analytic structure on G as a standard group:

9.3 Lemma Let G be a standard group, with respect to the global chart
(G, ip,d). Let G2 = P2(G), let {1x1,... ,Ud} be a set of topological gen-
erators for G, and define (j) : G —> Z^ by

(/)(uXl ... ux
d

d) = A for each A = ( A i , . . . , Xd) G Z£.

Then the two charts (G2, V^G^^) an^ (G2J4>\G2^) are compatible.

Proof Note that (f) is a well defined homeomorphism, by Theorem 8.31
and Theorem 4.9, and that </>(G2) = pZ, ^(G2) = p 1 + eZ, where e = 1
if p is odd, e = 2 if p = 2 (see the proof of Theorem 8.31). We have to
show that %j) o <f)~l : pZ —> p 1 + eZ and (f> o -0"1 : p 1 + eZ -^ pZ are analytic
functions. To this end, we shall construct power series f/ i , . . . ,Ud and
Vi , . . . , Vd such that

= U(A) for all A G pi
(f)(i)-l(X)) = V(A) for all A G p 1 + eZ.

We start with the construction of U. By Corollary 8.25, there exist
Fu ... , Fd G Zp[[X(l), . . . , X(d)]] such that
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for all wi,..., Wd G G; it follows easily from Corollary 8.28(ii) that

p[o] = o, F W ( X ( 1 ) , . . . , X(d)) = X(l ) 4- • • • + X(d).

Now Proposition 9.1 gives us power series K^ G ZP[[X]] such that

^ ) = K « » ( A ) for all A G Zp ,

for jf = 1 , . . . , d. For each j , the linear part of K^) is

where Vj € p1+eZ, and all coefficients of each K^' lie in peZp. We now
define, for i = 1 , . . . , d,

Then for A € pi* we have

by Lemma 8.24.
To find V we use the 'Inverse Function Theorem', Theorem 6.37. To

justify this step, we have to examine the linear part of U: from the
above, this is

d

> ^ ) + vi)Xi =

say. Now it follows from the proof of Theorem 8.31 that the cosets of
ip(ui),... , ip(ud) form a basis for the Fp-vector space p eZ/p1 + eZ. Hence
the matrix (p~ebij) lies in GL^(ZP). Also the coefficients of U all lie in
peZp. Thus the conditions of Theorem 6.37 are satisfied, and we obtain
power series Vi , . . . , Vd G QP[[X]] such that

pZ^, U(V(A)) = A for all A G p 1

Then for A G p1 + eZ^ we have

giving

V(A) =

as required.
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The main result of this section now follows easily:

9.4 Theorem Let G\ and G^ he p-adic analytic groups. Then every
continuous homomorphism G\ —• G2 is analytic.

Proof Let / : G\ —• G2 be a continuous homomorphism. By Theorem
8.29, G2 has a standard open subgroup B, and f~1(B) has a standard
open subgroup A, which is then open in G\. Put H = P2{A) and
K = P2(B).

We shall show that f\u is analytic: the theorem will then follow by
Lemma 8.16.

Choose topological generating sets {a i , . . . , ar} and {61, . . . , &d} for
A and i? respectively, where r = dim(A) and d = dim(J3). Lemma 9.3
shows that we have charts (if, 0| j j , r) of if and (if, <j>f\K,d) of if given
by

for all A E pllp and /i G pZ^. Now if vi — /(a^) for each 2, we have
Vi £ B and

for each A, since / is a continuous homomorphism. Proposition 8.21
shows that

where g = (gi,... , gd) : Z£ —> Z^ is analytic. Since

for all A E pZp, this shows that / | # is analytic, as claimed (note that
for A € pZ;, f(4>-H\)) e / ( # ) < K).

9.5 Corollary Le^ G be a topological group. Then G has at most one
structure as a p-adic analytic group; and unless G is discrete, the prime
p is uniquely determined.

Proof Let G\ and Gi be p-adic analytic groups (for the same prime p)
whose underlying topological group is G. Theorem 9.4 shows that the
identity map G\ —> G^ and its inverse are both analytic. Hence the
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atlases defining G\ and G^ are compatible, so G\ and G2 are the same
analytic group.

Now suppose that G is both p-adic analytic and q-adic analytic where
p and q are distinct primes. By Theorem 8.1, G has an open subgroup
H which is a pro-p group; and H, which is again g-adic analytic, has an
open subgroup K which is a pro-g group. Then K is both pro-p and pro-
q, so every open subgroup of K has index in K which is simultaneously
a power of p and a power of q. Hence the only open subgroup of K is
K itself. Since the open subgroups of K intersect in {1}, it follows that
K = l. But K is open in G, so G is discrete.

9.3 Subgroups, quotients, extensions
The results of this section show that there is a plentiful supply of inter-
esting p-adic analytic groups, to supplement the meagre list of Examples
8.17. In particular, it follows from Theorem 9.6(i) that every linear al-
gebraic group Q defined over Qp gives rise to the p-adic analytic group
G(QP): this is the zero-set in GLn(Qp) of some family of polynomial
equations, and is therefore a closed subgroup. (In Exercise 13.11 we ex-
hibit an open standard subgroup of G(Qp) when Q is a Chevalley group.)

9.6 Theorem Let G be a p-adic analytic group, H a closed subgroup of
G, and N a closed normal subgroup of G. Then

(i) H is p-adic analytic, and the inclusion map H —> G is an analytic
homomorphism;

(ii) G/N, with the quotient topology, is p-adic analytic, and the natural
projection G —> G/N is an analytic homomorphism.

Proof G has an open pro-p subgroup K of finite rank, by Corollary 8.33
Then KPiH is a closed subgroup of K, so KDH is a pro-p group of finite
rank. But K fi H is an open subgroup of H, so H is p-adic analytic by
Corollary 8.33 (and Corollary 4.3). The second claim of (i) follows from
Theorem 9.4. Part (ii) is proved similarly, using the fact that KN/N is
an open subgroup of G/N.

9.7 Theorem Let G be a Hausdorff topological group, and N a closed
normal subgroup. If both N and G/N are p-adic analytic (with the
induced and quotient topologies respectively), then G is p-adic analytic.

Proof This depends on some elementary facts about topological groups;
these are proved in Appendix B. Now every p-adic analytic group is lo-
cally compact and totally disconnected, since it is locally homeomorphic
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to Zp, which clearly has both properties. Thus N and G/N are lo-
cally compact and totally disconnected, and it follows that G has these
properties: see Appendix B, B8.

Corollary 8.33 shows that N has an open subgroup M which is a pro-p
group of finite rank. Then M = N fl U for some open set U in G; since
G is locally compact and totally disconnected, G has an open compact
subgroup # i with Hx C U: see B7. Then N n Hx <c M, so iV n # i is
a pro-p group of finite rank.

Again by Corollary 8.33, G/N has an open subgroup H2/N which is
a pro-p group of finite rank. Put H = Hi P\ H2. We claim that H is
pro-p of finite rank: a final appeal to Corollary 8.33 then completes the
proof.

Now H is compact and totally disconnected, hence profinite (Exercise
1.2, or Appendix B, B5). Also H/(H n N) ^ HN/N <c H2/N, and
HnN = NnHi,so both J?/(-ff H iV) and H n iV are pro-p groups of
finite rank. Hence ii K <o H then | # : if| = |ff : iT(i7 D N)\ - \H n N :
HnN C\K\ is a power of p, showing that i7 is a pro-p group; and H has
finite rank, by Exercise 3.1.

9.4 Powerful Lie algebras
This section may be read independently of Chapter 8: here we complete
the story begun in Sections 4.5 and 7.2, by showing how the correspon-
dence which assigns a Lie algebra to every uniform pro-p group can be
reversed.

We fix

e = 1 if p is odd, e = 2 if p = 2.

A Lie algebra L over Zp will be called powerful if L = Z^ for some finite
d and

Now recall the Campbell-Hausdorff formula, discussed in §6.5:
oo

(n>3) (3)

n = 1
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where (X, Y)e = (X, Y, . . . , Y, X , . . . , X , . . . ) denotes a left-normed re-
peated Lie bracket of total length (e) + 1, and the summation in (3)
is over all vectors e of positive integers satisfying (e) = n — 1. The
coefficients qe are rational numbers satisfying

pe{e)qe G p€Zp, \pe{e)qe\ -* 0 as (e) -> oo. (4)

Since each un(X,Y) is a finite sum, it may be evaluated in any Lie
algebra over Qp; in Corollary 6.38 we showed that if L is a powerful
Zp-Lie algebra, then in fact un(X,Y) can be evaluated in L, and that
for x, y G L the series

n = 1

converges in L. We may therefore define a binary operation * : LxL
by setting

9.8 Theorem Let L be a powerful Lie algebra. Then the operation *
makes L into a uniform pro-p group. If { a i , . . . ,a^} is a basis for L
over Zp then { a i , . . . ,a^} is a topological generating set for the group
(L, *), which has dimension d.

Proof It is clear from the definition that

x * (-x) = 0

for all x G L. So (L, *) will be a group provided that the operation
* is associative] we postpone the proof of this fact to the next lemma.
Taking it as given, we proceed as follows; multiplicative notation applied
to the elements of L will refer to the operation *.

If (#, y) = 0 then un(x, y) = 0 for each n > 2, so x * y = x + y. It
follows that

for all m G N, and since x x — —x this holds for all m G Z. In particular,
for each t G N w e have

{xpt I x G L} = plL,
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which is a subgroup of (L, *) since plL is again a powerful Lie algebra.
It follows that

i/ =17 = plL

for all t.
Next, we show that the multiplicative cosets oiplL in L are the same

as the additive cosets. Suppose that x — y G plL. Then x — y = plz for
some z] if (e) > 1 we have

(x, -y)e = (x,x-y,-y,... , x,...)

since L is powerful. Together with (3) and (4) this shows that un(x, —y) G
plL for each n > 2 , which in turn implies that

xy-1 =£* (-y)

= x-y + ^2 un(^, -2/) e pfL.
n>2

A similar argument shows that if xy~x — v G plL then

X — y z= v *y — ye plL.

It follows that for each t > 1 the index of the subgroup Lp in (L, *)
is equal to \L : ptL\ = ptd. Now the additive cosets x + plL (x G L,
t G N) form a base for open sets in the p-adic topology on L; as these
are the same as the multiplicative cosets xLP , this implies that (L, *) is
a topological group, and indeed a pro-p group.

To show that this pro-p group is powerful, we refer to parts (iii) and
(iv) of Corollary 6.38. The former asserts that

x*y- (x + y) epL (5)

for all x, y G L. As we have seen that multiplicative and additive con-
gruences modulo pL = Lp are equivalent, this shows at once that the
multiplicative group LjLP is abelian, so if p is odd we are done. If p = 2,
we argue as follows. According to Corollary 6.38(iv),

x*y- (x + y)- -(x,2/) G 4L
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for x, y G L. This gives

x*y-y*x= -(x,y) - -(y,x)(mod4L)

because L is powerful. Thus in this case L/L4 is abelian, as required.
That (L, *) is uniform, of dimension d, now follows from the fact that

\L : Lp I = ptd for all t. Finally, (5) shows that the identity mapping on
L/pL = L/Lp is an isomorphism between the additive and multiplicative
structures, and hence that {ai , . . . , a^} generates L modulo Lp; as Lp is
the Frattini subgroup of (L, *) it follows that {a\,... , a^} is a topological
generating set for the group (I/,*). This completes the proof, modulo
the following lemma:

9.9 Lemma The operation * on a powerful Lie algebra is associative.

Proof Let M be a positive integer. From (4), there exists an integer JVo
such that

p QG £ p ^jp (6)

whenever (e) > No-
Put N = (No 4-1)2 and let

N

n=1
this is a polynomial in the non-commuting variables X and Y. It follows
from Proposition 6.29 (the 'formal associativity' of the power series <I>)
that the polynomial

RN(X, Y, Z) = $N($N(X, Y), Z) - $N(X, $N(Y, Z))

in three non-commuting variables has no terms of degree < N. Using
(3), we can expand Rjy(X,Y, Z) as a linear combination of 'Lie mono-
mials' (that is, compound Lie brackets in X, Y and Z). Since each Lie
monomial of length n is a homogeneous polynomial of degree n, it fol-
lows that the terms in our expansion involving Lie monomials of degree
at most iV all cancel out.

Now fix n > N. The homogeneous component of degree n in the
expansion of ii!jv (X, Y, Z) is a sum of terms

qeqtl ...qtk ((X, Y)tl, Z,... , Z, (X, Y)h,... , (X, Y)tl. ,Z,...) (7)
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or

-q^f^^qt^X^Y^Z)^... ,(Y,Z)tei,X,... ,X,(Y,Z)fl+ei,...), (8)

where

(e) + <fi> + • • • + (ft) = n - 1, k< max{(e), 1},

and just for now we allow e, fj to be (0) and interpret g(o)(X, Y)(0) as
either X ovY. Let f̂  = g be such that (f̂ ) = max{(fi),... , (ffc)}. Then
either e = (0) and (g) = n - 1 > N or (e) > 1 and (e) (l + (g)) > n - 1 >
N. It follows that either (e) > y/N > No or (g) > v^V - 1 > No; with
(6) and (4) this implies that

P ^ W •••%€/%. (9)

Now let L be a powerful Lie algebra, and let x,y,z £ L. Each com-
p o u n d Lie bracket of length n in x,y and z lies in p e ( n ~ 1 ) L . Since
R]sr(x,y,z) is a sum of t e rms like (7) and (8), wi th x,y,z replacing
X , Y, Z and n > N, it follows from (9) t h a t

RN(x,y,z)epML.

On the other hand,

(x*y)*z- $>N($N(x, y), z)

is a sum of terms like (7), with x, y, z replacing X, Y, Z and n > N; the
same argument therefore shows that

similarly we

Therefore

(x *
see that

x *

(x*y

<y)

(y>

') *

* z — 3

*z)-$

z — x *(y*z.

r(x,y),z)ep™L;

*N{y,z))epML.

) = RN(x,y,z)
= 0 (modpML).

As M was an arbitrary positive integer this shows that (x * y) * z =
x * (2/ * z), and so concludes the proof. (Some variants of this proof are
indicated in Exercise 4.)

Now let G be a uniform pro-p group. According to Theorem 4.30,
or Corollary 7.14 and Exercise 7.9, the group G becomes a Lie algebra
over Zp when endowed with the operations +G, (> )G- We shall denote



226 Lie theory

this Lie algebra by LQ- Since [G, G] consists of peth powers in G, it
follows from the definition in §4.5 that the Lie algebra LQ is powerful
(see Exercise 4.2(H)).

9.10 Theorem The assignments

G i-» LG, L I-> (L, *)

are mutually inverse isomorphisms between the category of uniform pro-p
groups and the category of powerful Lie algebras over Zp.

Since an isomorphism of categories is supposed to be a functor, we have
also to specify what happens to the morphisms: each morphism is sent
to itself, as a map of the underlying sets.

Proof Suppose that / : G —> H is a homomorphism of uniform pro-
p groups. Since the Lie algebra operations in LQ and LH are defined
in terms of the group operations by taking limits, and because / is
continuous (Corollary 1.22), it follows that / : LQ —• LH is a Lie algebra
homomorphism. Thus we have a functor that sends each uniform pro-p
group G to LQ and each morphism to itself, considered as a map of the
underlying sets.

Now suppose that / : L —> M is a homomorphism of powerful Lie
algebras. Then / is continuous (think of L and M as additive pro-p
groups). For x,y G L and each n > 1 we have

f(un(x,y))=un(f(x)J(y)),
since p2nun{X, Y) is a Zp-linear combination of Lie monomials in X and
Y. It follows by continuity that

f(x*v) = f(x)*f(y);
thus / is a group homomorphism from (L, *) to (M, *). Thus we have
a functor that sends each powerful Lie algebra L to (L, *) and each
morphism to itself, considered as a map of the underlying sets.

To complete the proof we have to establish
(a) if L is a powerful Lie algebra then L(L^ — L;
(b) if G is a uniform pro-p group then (LG, *) = G.
Now each of our functors preserves not only the underlying set but

also the topology. We have seen in §4.3 and in the proof of Theorem
9.8, above, that for each positive integer m, the operations

x i—• xm, x i—• mx

correspond to each other. It follows in case (b) that the operation x i—•
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xm is the same in (L^, *) as it is in G; and in case (a) it follows by
continuity that the operation of Zp on £(L,*) 1S the same as it is on L.

To prove (a), therefore, it suffices to establish the following for all
a, b e L:

lim p-n((pna) * {pnb)) = a + 6, (10)
n—^x>

lim p~2n((-({pnb) * (pna))) * (pna) * (pnb)) = (a, b). (11)
n—KX)

Now

p-n((pna)*(pn6)) = p - n pna + pn

V
= a

where cn = X^7>2^^~1^n^(a'^) =̂ ̂ - This implies (10). Similarly, we
have

- ((pnb) * (pna)) = -pnb -pna - ^-(b, a) - p2nrn

= -{pnb+pna) + P?l{ayb)_p2nr^

(pna) * (pnb) = pna + Pnb+^-(a, b) + p2nsn,

where rn,sn€L, giving

(-((Pnb) * (pno))) * ((p»o) * (pnb)) = p2n(a, b) + p3ntn

for some ^n G X. This implies (11).
To prove (b) we must show that x*y = xy for all x, y G G, where x*i/

is defined using the Lie algebra operations in LQ- NOW recall Corollary
7.14, which establishes a Lie algebra isomorphism

log : LG -> A = log(G) C Ao,

where A is the completed group algebra of G. Put u = logx, t> = log?/.
Since log is continuous, we have

log(x*2/) = log$(x,2/)
= $(ix,v) = $(w,i;)
= log(expu • expv) by Proposition 6.27
= \og(xy).

Thus x * y = xy as required.
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Combining Propositions 4.31 and 7.15, we can add the

Scholium to Theorem 9.10 Let S be a closed subset of the uniform
pro-p group G. Then

• S is an isolated subgroup of G if and only if S is an isolated Lie
subalgebra of LQ',

• S is an isolated normal subgroup of G if and only if S is an isolated
ideal of LQ>

Here, to say that S is isolated means that if x G G and xn e S (or
equivalently, if x G LQ and nx G S) for some non-zero integer n, then
x G S. This implies that S is powerful, as a group or Lie algebra
respectively.

Under certain conditions, the 'Scholium' can be extended to subgroups
and Lie subalgebras in a uniform group that are not necessarily isolated:
see Hani (1995).

9.5 Analytic groups and their Lie algebras
Let us begin by denning the Lie algebra of a p-adic analytic group G.
According to Theorem 8.32, G has an open subgroup which is a uniform
pro-p group. If # i and H2 are both open uniform subgroups of G, then
H = Hi HH2 has finite index in both Hi and H2l so LH has finite index
in Lui for i — 1,2. Hence

Qp 0z p LHl = Qp ®zp LH = Q

We may therefore unambiguously define

C[G) - Qp 0z p LH

where H is any uniform open subgroup of G. Thus C (G) is a Lie algebra
over Qp, of dimension equal to dim(iJ) = dim(G).

Now suppose that / : Gi —+ G2 is a morphism of analytic groups.
Choose a uniform open subgroup H2 in G2\ as / is continuous, the sub-
group f~1(H2) is open in Gi, hence contains a uniform open subgroup
Hi. The group homomorphism /o = / \HX • H\ —• H2 is at the same
time a Lie algebra homomorphism from Ljjx to L#2 , as observed in
Theorem 9.10; it therefore induces a Lie algebra homomorphism
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it is clear that /* does not depend on the choices of H2 and H\. It is
also clear that if / : G\ —> G2 and g : G2 —• G3 are morphisms, then

(g°f)* = 9* of*,

and that (Id^)* = ldc(G)- Thus we have the first part of

9.11 Theorem (i) The assignment G 1—• C(G), f 1—• /* is a functor from
the category of p-adic analytic groups (of dimension d) to the category
of Lie algebras over Qp (of dimension d).

(ii) Let / i , f2 • A —• B be morphisms of p-adic analytic groups. Then
fl = f% : C(A) —> C(B) if and only if fi\ v = f2\u for some open
subgroup U of A.

(iii) Let G be a p-adic analytic group and identify C{G) with Q^ by
choosing a basis. Then G has a uniform open subgroup H such that the
composition

gives a chart (H, </>, d) of G.

To prove (ii), choose a uniform open subgroup H in A. Then fl = f2

if and only if / i | j j = / ^ H ? so the 'only if statement follows on putting
U — H. On the other hand, if f\ \jj = f2\u where U is open in A, we may
choose H to be contained in U and then have / i | i j = f2\H, whereupon
fi=fi

Part (iii) shows that C(G) may be identified with the 'tangent space at
1' of an analytic group G, as in the classical theory of Lie groups. Before
proving it, we must take another look at the material of the preceding
section, this time through analytic spectacles. Recall that the function
<$ was defined at the beginning of the previous section:

9.12 Lemma Let L be a powerful Lie algebra. Then the function <& :
L x L —>  L is analytic.

Proof Choose a Zp-basis {a i , . . . , a^} for L. Write

A • a = Aiai + • • • + Xd^d

for A = (Ai, . . . , Xd) G Zp, and write

$(x, y) = $ i(x, y)ai + • • • + * d (x , y)ad,
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with each $i(a?,y) G Zp. We shall show that for each i the function

(A^) h->$i(A-a,/i-a)

is strictly analytic on Z^ x Z^.
For each e, there exist homogeneous polynomials P ^ - - - >^e m

variables over Zp, of degree 1 + (e), such that

(A • a,/x • a)e = P ^

Since (L, L) C peL, each term (a*, CLJ)e lies in p e ^ L ; it follows that the
coefficients of each Pe

fc lie in p^'^Zp. Thus

z=1 (e>=n-l

(
i=1 \(e>=n-l

say. Here each W^ is a homogeneous polynomial of degree n in 2d
variables, and it follows from (4) that the coefficients of each W^ lie in
pf(n^1jp where f(n) > 0 for all n and f(n) —> CXD as n —> oo. Hence for
each i, the power series

n=1

converges on Z^ x Zp, and the result follows since

a,/i • a) = Wx{.

9.13 Corollary Let H be a uniform pro-p group of dimension d, let
{<2i,... , ad} be a topological generating set for H, and define ip : H —>
Zd

pby

^ ( A i a i H h Adad) = ( A i , . . . , Ad).

T/ien Hf = Pi+e(iJ) Z5 a standard group with respect to the global chart
(H'^\H, ,d).

Proof The results of §4.3 ensure that ip \H' is a homeomorphism from H1

onto peZp. Theorem 9.10 shows that xy = x * y for all x,y £ Hf = Lu>\
and the proof of Lemma 9.12 shows that for i = 1, . . . , d and x, y G Ln<,
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where each Wl is a power series with coefficients in Zp. All the require-
ments of Definition 8.22 are therefore satisfied.

This can be used to provide an alternative proof of Theorem 8.18,
the analytic structure on a uniform group being given by the additive
'co-ordinates of the first kind' instead of the multiplicative 'co-ordinates
of the second kind' used in §8.3.

Now let K be a uniform pro-p group of dimension d, put H = Pe(K),
and define i\) : H —* Z^ as in the last corollary. Thus ip is an isomorphism
(of Zp-modules) from LH onto Z^, and the argument used to prove
Corollary 9.13 shows equally that H is an analytic group with respect
to the global chart (H,if),d).

We can now complete the proof of Theorem 9.11(iii). Let K be a
uniform open subgroup of the p-adic analytic group G, and let H —
Pe(K) be as above. Then H has two structures as an analytic group:
the one given by the global chart (H, ip,d), and its induced structure as
an open subgroup of G. Now Corollary 9.5 shows that these structures
are the same; in other words, (iJ, ̂ , d) is also a chart of the p-adic
analytic group G. The map <j> given in Theorem 9.11(iii) is just the
composition of i\) with a linear automorphism of Q^ corresponding to
a change of basis; hence (H,(f),d) is compatible with (H,ip,d) and the
result follows.

Remark The construction of C(G) given above used only the (topolog-
ical) group structure of the analytic group G. There is another quite
different way to associate a Lie algebra to an analytic group, in which
the Lie algebra structure is 'read off' directly from the quadratic part
of the power series representing multiplication in the group: this gives
rise to the Lie algebra of the formal group law associated to an analytic
group, and is the procedure adopted in Chapter 13 where we consider
groups analytic over rings more general than Zp. Exercise 13 shows
that for p-adic analytic groups, the Lie algebras obtained by the two
constructions are nevertheless isomorphic.

In the preceding section, we saw that the functor H »-> LH on uniform
pro-p groups is invertible, giving an isomorphism of categories. The
functor G »-• C(G) on p-adic analytic groups is of course not invertible,
since C{G) only depends on a 'small' open subgroup of G. However,
Theorem 9.10 will enable us to set up an equivalence between a suitably
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defined category of p-adic analytic groups and the category of finite-
dimensional Lie algebras over Qp.

For p-adic analytic groups A and B, let H(A, B) denote the set of all
analytic homomorphisms whose domain is an open subgroup of A and
whose codomain is B. Now define an equivalence relation ~ on H(A, B):
if A\ and A2 are open subgroups of A, f\ : A\ —> B and /2 : A^ —> B,
then / i ~ $2 if there exists A$ <o A, with A3 < A\ D A2, such that
/ lUs = /2U3- Let us call the equivalence classes germs. It is easy to
see that composition of germs is well defined, and that the germ of an
identity mapping acts as an identity when composed on either side with
any germ (see Exercise 5). Thus we may define a category

of 'local p-adic analytic groups', whose objects are the p-adic analytic
groups, in which the morphisms from A to B are the germs of 7i(A, B).

Writing

to denote the category of finite-dimensional Lie algebras over Qp, we can
state our final theorem:

9.14 Theorem The functor C induces a category equivalence between
(&P and £p.

Proof The main difficulty is to remember what this means! First of all,
if A and B are objects of <SP, a morphism f : A -~> B is represented
by a homomorphism / : A\ —> B, for some A\ <o A. (We denote
morphisms of <3P by dotted arrows --->, to distinguish them from group
homomorphisms.) Then / induces a Lie algebra homomorphism /* :
£(Ai) -> C(B). Now C{Ai) = C(A), from the definition; and Theorem
9.11(ii) shows that /* depends only on the germ f of / . Thus we may
define £(f) = /* : C(A) —>• C{B), and so consider £ as a functor from
<5p to £ p .

Now we have to construct a functor in the reverse direction. Let V be
a finite-dimensional Lie algebra over Qp, with basis {t>i,... , Vd}. Choose
h so large that

k

hand put L = ^2k Zp -phVk. Evidently L is then a powerful Lie subalgebra
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of V, and we obtain the corresponding group (L, *). Having made this
(arbitrary) choice of basis, we now define

Given a Lie algebra homomorphism / : V —*• V, let /o be the restriction
of / to L\ = Ln/~1(L/), where V is the chosen powerful Lie subalgebra
of V. Then the mapping /o is also an analytic group homomorphism
from the open subgroup (Iα,*) of (!>,*) = J~(V) into (I/,*) = ^(l^7)-
We now define T(f) to be the germ of /Q. It is routine to verify that
this makes T into a functor from £p to 0 P .

To prove the theorem, it will suffice to verify that T o C is naturally
equivalent to the identity functor on <8p, and that £ o .T7 is naturally
equivalent to the identity functor on £ p .

A natural equivalence from C o J7 to the identity functor on £ p is a
family of isomorphisms 9y : C(T(V)) —• V, one for each object V of £ p ,
such that the diagram

C(T(V)) - ^ F

commutes for every morphism / : V —> F ; in £p. Now

= Qp ®zP L by Theorem 9.10,

where L is a powerful Lie subalgebra of V that spans V as a vector
space; so we may define Oγ to be the natural isomorphism from Qp (g) L
to V — QpL. The commutativity of the given diagram is then more or
less obvious: we leave it to the reader to check the details.

We also need to construct a natural equivalence from T o C to the
identity functor on <8P. Let G be an object of <3p. Then C(G) = QP®LH

for a suitable open subgroup H of G, and T(C(G)) = (L, *) where L is a
suitable Zp-Lie subalgebra of £(G). Identify LH with l®L(iJ) C £(G),
and put L\ — L O LH- Then K — (Iα,*) is an open subgroup both
of (L,*) = T(L(G)) and of (£#,*), which by Theorem 9.10 is equal
to the open subgroup H of G. Thus the inclusion map i : K —• G
belongs to W(^r(£(G)), G), and we define ^ to be the germ of i. Then
4>G is an isomorphism from !F(C(G)) to G in the category ®p. Again,
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following through the definitions, it is easy to see (though tedious to
prove in writing) that each morphism f : G --•> G' in <8P gives rise to a
commutative diagram

» • G

•f
V

This completes the proof.

Notes

Again, this is mostly due to Lazard [L]; alternative accounts of most of
the material are given in Serre (1965), Part II and Bourbaki (1989b),
Chapter III, §§3,4; our construction of the Lie algebra differs from theirs,
but leads to the same object (Exercise 13). The category equivalence of
§9.5, though expressed in different language, is essentially given in both
Serre and Bourbaki.

Theorem 3.2.6 of [L], Chapter IV, establishes an isomorphism between
the category of p-saturable groups and a certain category of Lie algebras
over Zp; Theorem 9.10 is our version of that result.
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Exercises

1. Let c : N —• Qp be a function and / G QP[T] a polynomial of degree
n. Suppose that /(O) = c(l) = 0 and that c(m + 1) — c(m) = f(m) for
all positive integers m. Prove that there exists a polynomial g G QP[T],
of degree at most n + 1, such that #(0) = 0 and g(m) = c(m) for all
positive integers m.

2. Let g G QP[T] have degree d. Show that if g(m) G Zp for m =
0 ,1 , . . . , d, then there exist ^ G Zp such that

f o r

3. Let G be a topological group containing an open subgroup which is a
uniform pro-p group. Use Corollary 9.13 and Proposition 8.15 to show
that G is p-adic analytic.

4. Let L = Zp be a Lie algebra over Zp. This exercise shows, without
the nasty power series calculations of Lemma 9.9 and Proposition 6.29,
that if the integer m is sufficiently large then (pmL, *) is a group.

(i) Using Ado's Theorem, show that if the integer m is sufficiently
large then pmL = Lo, say, may be identified with a Lie subalgebra of
peMn(Zp), for some n (the Lie bracket on peMn(Zp) being the usual
commutator).

(ii) Having made this identification, show that exp(x * y) =
(expx)(expy) (matrix product) for all x,y G Lo. Deduce that (Lo, *) is
a group. [Use Proposition 6.27.].

(iii) Show that (Lo, *) is both a torsion-free pro-p group and a p-adic
analytic group. [See Theorem 5.2 and Example 8.17(iv); use Theorem
9.6.]

5. Let A <c B be p-adic analytic groups, K a uniform open subgroup
of B and H < A fl K a uniform open subgroup of A. Then LH is a Lie
subalgebra of LK\ we identify LK with 1 (g) LK Q QP <8> LK = C(B),
and we identify C(A) = Qp (8) LH with the Lie subalgebra Qp • LH of

Show that if Ai and A2 are closed subgroups of B then
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[Hint: Let H3 be a uniform open subgroup of A\ Pi A2 contained in
Hi n H2, where Hi < A{ fl K is a uniform open subgroup of Ai for
i = 1,2. Show that #3 has finite index in #1 C\ H2 and deduce that
Qp-{LHinLH2)=Qp.LH3]

6. Let / : A —> B be a morphism of p-adic analytic groups. Prove that
ker/* - C(N) where TV = ker/.

[Hint: Let i^ be a uniform open subgroup of B and 77 < f~1(K)
a uniform open subgroup of A. Show that N fl H is a uniform open
subgroup of JV (use Proposition 4.31(ii) and Theorem 4.5). Then observe
that LNC\H is the kernel of /* \LH .]

7. Let / : A —» 5 be a surjective morphism of p-adic analytic groups.
Prove that /* : C(A) —> C(B) is surjective.

[Hint: Compare the dimensions of Im/* and C(B), using Exercise 6
and Exercise S.6.]

8. Let Ai <o A, Bi <o B and C be p-adic analytic groups, and let
/ : Ai —> -B, g : B\ -^ C be morphisms.

(i) Show that the equivalence class of g o / in H(A, C) depends only
on the equivalence classes of / in H(A, B) and of g in H(B,C).

(ii) Show that if A = B and / is the inclusion map of A\ in A, then
9 ° f ~ 9, while if B = C and g is the inclusion B\ —> C then g o / ~ / .

(iii) Show that if / is injective and /(-Ai) is open in B then the germ
of / is an isomorphism in the category <5P.

9. [For an alternative approach to this exercise, see Exercise 13 below.]
(i) Let G be the p-adic analytic group GLn(Qp). Show that C{G) =

&ln(Qp)i where gln(Qp) is the algebra Mn(Qp) with the usual commuta-
tor as Lie bracket.

[Hint: recall Exercise 7.8(iii).]
(ii) Let det : G -> Q ; = GLi(Qp) and tr : Mn(Qp) -> Qp denote

the determinant and trace functions, respectively. Let e^ be the matrix
with 1 in the (i,j) place and 0 elsewhere. Show that if /x € perLp then

log(l + peij) — log(l -f \i) - fiijCij (Kronecker 6);

deduce that for g = 1 + μ^j,

tr(log(<7))=log(det(<?)).

Hence show that (det)* = tr.
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[Hint: for the final statement, see Exercise 7.8(i), and use Exercise
5.6.]

(iii) Deduce that C(SLn(Qp)) ^ s[n(Qp), the Lie subalgebra of gln(Qp)
consisting of matrices with trace zero.

[Hint: Use Exercise 6. A different method is given in Exercise 13.10]

10. The adjoint representation. Let G be a uniform pro-p group
and let A be the Lie algebra log(G). Write GL(A) for the group of
all Zp-module automorphisms of A and 0^(A) for the Lie algebra of all
Zp-module endomorphisms of A, and put

A = {7 € GL(A) I A(7 - 1) C peA} ;

recall (Exercise 7.8) that

Define AdA : G - • GL(A) by u • AdA(g) - g~xug (u G A, g £ G).
Define adA : A —> gl(A) by u • adA(i>) = (u, v) (u, v G A).

(i) Verify that AdA is a homomorphism from G into A, and that adA

is a Lie algebra homomorphism from A into pegi(A).
(ii) Let Ad* : A —> log(A) be the Lie algebra homomorphism induced

by AdA : G —> A; so Ad* = log oAdA o exp. Prove that

Ad* - adA.

[Hint: use Exercise 6.12 to show that if g G G and v = logg then
log(AdA(0)) = adA(v).]

(iii) Let

r = {7 G GL(LG) I LG(7 - 1) C peLG} ,

and define Ad : G —> GL(LG) by u • Ad(^) = g~1ug (u G LG, g G G).
Show that Ad maps G into T. Let Ad* : LG -^ pe&l(LG) = log(r) be the
Lie algebra homomorphism induced by Ad : G —• T (so Ad* = log oAd).
Show that

a • Ad*(v) = exp((loga) • log(AdA(v))

for all a,v G LG. Hence justify the following steps, where u = log a:

a • ad(f) = exp(u • adA(logi>))

= exp(u • Ad*(log v))

= exp(u • log(AdA(v))) = a • Ad*(f).
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Conclude that

Ad* = ad.

[Hint: Use Lemma 7.12.]

11. The adjoint representation, again. Let G be a p-adic analytic
group. For g G G define g : G -> G by g(h) = g~xhg (h G G).

(i) Show that g is a morphism of analytic groups. Deduce that C(g)
is an automorphism of the Lie algebra C{G) = L. Denoting this auto-
morphism by Ad(#) show that

Ad : G -> GL(L)

is a morphism of analytic groups.
(ii) According to Exercise 9(i), £(GL(L)) is isomorphic to $l(L).

Choosing a suitable isomorphism to identify £(GL(L)) with gl(L), show
that

£(Ad) = ad : C(G) -> fll(L).

[Hint: Let if be a uniform open subgroup of G, consider the restriction
of £(Ad) to LH C £ ( G ) , and use Exercise lO(iii).]

12. Let G be a p-adic analytic group. Show that G has closed normal
subgroups Z < K such that Z is abelian, K/Z is discrete, and G/K is
isomorphic to a subgroup of GL^(QP) where d = dim(G).

[Hint: Let K be the kernel of Ad : G -> GL(L) where L = £(G).
Let G+ be the subgroup of G generated by all uniform open subgroups
of G. Show that K = CG(G+), and that G/G+ is discrete. Then put

13. The Lie algebra of a formal group. This exercise shows how to
recognise the Lie algebra of an analytic group directly from the power
series that define the group law; in Chapter 13 this method will be used
to define the Lie algebra.

(i) Let if be a uniform pro-p group. Let %j) : H -+ Z^ be the home-
omorphism given in Corollary 9.13, and let W 1,. . . , Wd be the power
series denned in Lemma 9.12 for the powerful Lie algebra LH- Recall
that Wn denotes the homogeneous component of degree n in Wl. Show
that

W7(X,Y)=Xi + yi,
W2(X, Y) is bilinear in X and Y,
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and that for x,y e H,

Hence show that the binary operation (•, •) on Z^ given by

(A, μ)i = W3(A, M) - W 2 >, A) (z = 1,... , d)

makes Z^ into a Lie algebra, so that ip : LH —• (Z^, (•,•)) is a Lie algebra
isomorphism.

[Hint: recall that iti(a, b) = a + b and 1x2(0, b) = | (a, 6).]
(ii) Let if be a standard group with respect to the global chart

Cff,<M), and let M*(X,Y) G ZP[[X,Y]] (i = 1,... ,d) be the power
series representing group multiplication in if (see (ii') in §8.4). Ac-
cording to Corollary 8.28, the homogeneous component of degree 2 in
Mi(X,Y) takes the form £*(X,Y) = X X ^ r ^ - Define a binary
operation (•, - ) M on Q^ by

We shall see in Section 13.3 that this operation makes Q^ into a Lie
algebra, the 'Lie algebra of the formal group law M'; moreover, this Lie
algebra is independent of M in the sense that

if M' is the formal group law arising from another global chart on if,
compatible with (if, 0, d) and with respect to which H is again a stan-
dard group.

Now let G be a p-adic analytic group. Prove that

if M is the formal group law representing multiplication in any standard
open subgroup of G.

[Hint: Use (i) and Theorem 8.31.]
(iii) The description of C(G) provided by (ii) has the great advantage

over both previous constructions (via LH and via log(if)) that it involves
no limiting processes. Use it to give a simple proof that £(GLn(Qp)) =
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Further topics





10
Pro-p groups of finite coclass

Until relatively recently, it was received wisdom that there was no point
in trying to classify finite p-groups up to isomorphism: there are just
too many of them. Received wisdom was flouted in 1980 by Charles
Leedham-Green and Mike Newman, who formulated a series of conjec-
tures that amount to no less than a programme for the classification of
all finite groups of prime-power order.

Quite remarkably, not only did the conjectures turn out to be exactly
correct, but they were proved, over a period of about ten years, by
following the guidelines proposed in the original paper of Leedham-Green
and Newman.

We shall not repeat the conjectures, nor relate the interesting history
and prehistory of their ultimate success; some pointers to the relevant
literature are provided in the Notes at the end of the chapter. Our aim
here is to explain how pro-p groups come into the picture, and to give
a self-contained account of that part of the theory that relates to pro-p
groups. Apart from its original motivation in the classification of finite
groups, this makes a beautiful chapter in the theory of pro-p groups of
finite rank.

The primary invariant used in the classification is the coclass of a
finite p-group: the coclass of a group G of order pn is n — c where c is
the nilpotency class of G. Thus G is abelian if the coclass is as large
as possible, namely n — 1, and the groups of smallest coclass, namely
coclass 1, are the furthest from being abelian (these are the so-called
'groups of maximal class'). It is one of the more surprising consequences
of the programme that, when viewed in the right light, the groups of
small coclass also turn out to be rather close to abelian.

To classify the p-groups of a fixed coclass r > 1, we form a directed
graph r = r(p, r) as follows. The vertices of F correspond to p-groups

243
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of coclass r, each isomorphism type being represented exactly once. A
directed edge joins P to Q if and only if there exists an epimorphism
from P onto Q with kernel of order p; it is easy to see that this holds
just when P/jc(P) = Q, where c is the nilpotency class of P. The
classification programme now falls into two parts. The first part consists
in describing all the infinite chains in F; the second, in describing an
explicit procedure whereby any p-group of coclass r can be obtained
by suitably modifying one of the groups occurring in one of the infinite
chains. We are going to concentrate on the first part.

An infinite chain in T has the form

C: >pn^pn_1^ >P2^Pi.

Let us assume that C is a maximal chain; in other words, it cannot be
continued to the right. Choosing a specific epimorphism Pn —> Pn-\ for
each n, we make C into an inverse system of finite p-groups, in the obvi-
ous manner; let G be its inverse limit. Elementary considerations, spelt
out in the exercises, show (a) that the isomorphism type of G is inde-
pendent of the chosen epimorphisms, (b) that, conversely, G determines
C, and (c) that G has coclass r, in the following sense:

Definition An infinite pro-p group G has coclass r if

\G : 7c+i(G)| = pc+r for all sufficiently large c.

Thus to determine the infinite chains in T is equivalent to finding all
the infinite pro-p groups of coclass r. The feasibility of this task rests
on the following theorem, the main result of this chapter:

10.1 Theorem Let G be an infinite pro-p group of coclass r. Then G
has an open normal subgroup A = U^, where d = (p — l)ps for some
s < r if p is odd, d — 2s for some s < r + 1 if p = 2. Moreover, G/A
has coclass r and \G : A\ = pr+pr if p is odd, \G : A\ = 2r+(r+1)2r+1 if

With Theorem 5.8, this implies

10.2 Theorem For given p and r, there are only finitely many isomor-
phism types of infinite pro-p groups of coclass r.

As regards the classification of finite p-groups, Theorem 10.2 has the
following interpretation: the graph T(p, r) contains only a finite number
of maximal infinite chains.

The rest of the chapter is devoted to the proof of Theorem 10.1.
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10.1 Coclass and rank
Our aim in this section is to establish

10.3 Proposition Let G be an infinite pro-p group of finite coclass r.
Then

• lpr(G) is open in G and powerful, of rank at most p r , if p ^ 2;
• 72r+2(G) is open in G and powerful, of rank at most 2 r + 1 , if p = 2.

This already shows that groups of finite coclass have finite rank, and
that the rank is bounded in terms of the coclass.

Throughout the section, G will denote an infinite pro-p group of finite
coclass r. For each i > l w e write

Gi = 7i(G).

Recall that, according to the definition of coclass, there exists Co such
that

| G : G n + i | = P n + r for all n > c0.

This is equivalent to saying that \G : GCo+i| = pc°+r and \G{ : Gi+i| = p
for all i > Co, which makes it clear that every quotient of G has coclass
at most r. We shall use this fact without special mention.

Since G is infinite, we have Gn+i < Gn for every n; in particular G
cannot be procyclic, so \G : G2I > p2- It follows that

Pn+l < \G : G ^ 7 | < pn+r for all n,

and as G2 > $(G) this implies in turn that d(G) < r + 1. We saw in
Exercise 1.17 that if G is a finitely generated pro-p group then in fact
7i(G) is closed for each i, so we have

10.4 Lemma Gi — Gi is open in G for each i.

The following definition introduces a concept which is crucial for un-
derstanding groups of finite coclass:

Definition Suppose that G acts on a finite p group U. The action is
uniserial if \N : [iV,G]\ = p for every non-trivial G-invariant normal
subgroup iV of U.

We shall also simply say lU is uniserial', the reference to G being un-
derstood. When this holds, U has for each n with pn < \U\ a unique



246 Pro-p groups of finite coclass

G-invariant normal subgroup of index pn , namely [C/,nG], so the G-
invariant normal subgroups of U are linearly ordered by inclusion. To
see this we argue by induction, starting with U = [f/,o G]. Suppose that
K = KG <Uhas index pn+\ and let N/K = Z(U/K)nCu/K(G). Then
\U :N\=prn for some m < n. As \N : [7V,G]| =p and [N,G\ <K <N
it follows that [N, G] = K and that m = n. Assuming inductively that
N = [Um G] we infer that K = [[Um G],G} = [Um+1 G].

The next lemma shows that uniserial actions are going to be ubiqui-
tous (when U is of the form A/B for open normal subgroups B < A of
G, we shall assume that G is acting on U by conjugation):

10.5 Lemma Let G = Q\ > Qi > • • • > Qn > Qn+i be a chain of open
normal subgroups in G, and put \Qi : Qi+i| = p^ for each i.

(i) / / [Qi,G] < Qi+i for each i then

i=1

(ii) If n> r then at least n — r of the factors Qi/Qi+i are uniserial.

Proof (i) is clear if we rewrite it in the form \G : Qn+i \ = P^ ^ Pn+r?
since Qn+i Gn + i . For (ii), we may assume that Qi > Q i+i for each i
(factors of order 1 are trivially uniserial). Let us suppose that k of the
given factors are not uniserial. We can then refine the series to a central
series of G in which at least k factors have order at least p2. Applying
part (i) to this new series we infer that k < r, and (ii) follows.

Now we bring in the 'power structure' of G, and state a lemma that
lies at the heart of the whole theory. We write n 0 = G and for i > 1
define

10.6 Lemma Let V be a finite ¥p[G]-module and k a non-negative
integer.

(i) If pk > dimFp(y) then [V,Uk] = 0.
(ii) If V is uniserial and pk < diniFp(F) then

dim¥p(V/[V,nk])=pk,

in particular [V, II^] / 0.

Proof Part (i) is an easy exercise, left to the reader. Let us prove
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(ii). Replacing G by G/CG(V), we may assume that G is finite. Write
Vi = [V,i G] for each i. Since [V, life] = [V, G] the result is clear when
k = 0; let us suppose that k>1 and that the lemma is true for smaller
values of k. Consider the series

V = Ao > Bo > A1 > B1 > • • • > Ap > Bp > 0,

where Aj = Vjpk-i and Bj = [Aj, G] = Vi+jpk-i for 0 < j < p. For each
j > 1 , the factor Aj-i/Bj is a uniserial G-module of Fp-dimension 1+
pk"1, so by the inductive hypothesis it is acted on non-trivially by IIfc_i.
Hence Cuk_1(Aj-i/Bj) = R^ say, is a proper subgroup of IIfc_i. Now
a finite p-group cannot be the union of p proper subgroups (Exercise 3),
so we may choose an element x G IIfc_i \ Uj=i Hj-

Let ^ denote the endomorphism of V induced by x — 1. Since
diniFp(Aj_i/Aj) = pk~x, part (i) shows that Aj-i£ < Aj, while the
choice of x ensures that Aj-i£ ^ Bj, for each j . As Aj/Bj is one-
dimensional it follows that

for j = 1,... ,p. Again, by (i) we have Bj£ < Bj+i for each j , so
applying £ p times to AQ = V we get

Since f acts like x p - l o n V, and xp G IIfc, it follows that [V,Uk] +BP>
Ap. On the other hand, (i) also shows that [V,IIfc] < Ap\ as [V,n^] is a
G-submodule of the uniserial module V this implies that [V, Ilfc] = Ap,
which has codimension pk in V as required.

For each i>0 put

Xi = UiGpi.

Then each Xi is open in G, by 10.4, and we have

Xi+1 = nfGp*+i < XfGpi+i < XfG2pi < X?[XitpiG\. (1)

10.7 Lemma Assume that p is odd. For some t with 1 < t < r, the
following hold:

• Xt/$(Xt) is uniserial as a G-module;
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• if N <OG and N < Xt then N p.e. Xt.

Proof It follows from Lemma 10.5(ii) that Xt/Xt+\ is uniserial for some
t < r; and t^0 because X\ < 3>(G), while G/$>(G) is a central factor
of G of order at least p2. Put X = Xt, and choose a G-submodule
Y/$(X) of X/<&(X) minimal subject to X/Y being uniserial. Since
[A", lit] < [X,X] < $(X) < Y and X/Y is uniserial, Lemma 10.6(H)
shows that dim.fp(X/Y) < pl.

Suppose now that Y > $(X). We may choose a G-submodule Z/$(X)
such that Z < Y and \Y : Z\ = p, and then dim¥p(X/Z) <pf + l. Since
X/Z is not uniserial, there is a central series of G running from X to Z
in which at least one factor has order at least p2; it follows that

[X,pt G] < Z.

As Xp < $(X) < Z, this shows with (1) that Xt+1 < Z. But X/Xt+i is
uniserial by hypothesis, forcing X/Z to be uniserial also, in contradiction
to our minimal choice of Y.

Thus Y — $(X), so Xt/$(Xt) is uniserial as required. The second
claim also follows since d(X) — dim$p{X/$(X)). (Note that the argu-
ment so far works as well when p = 2.)

To establish the third claim, recall from §3.1 that V(G, n) denotes the
intersection of the kernels of all homomorphisms from G into GLn (¥p). It
follows from Lemma 10.6(i), 0.8 and 0.7 that X < "^{G.p1). Proposition
3.9 now shows that X is powerful; so if iV <o G and N < X then
d(N) < d(X) < pl

y and by Proposition 3.9 again it follows that Np.e.X.

Proposition 10.3, when p is an odd prime, follows on taking iV = Gpr
in Lemma 10.7. The proof for p = 2 is a little more complicated and we
defer it to the next section.

10.2 The case p = 2
This section is included for completeness; it can safely be omitted by
the reader who is prepared to take this case on trust. Throughout this
section we assume that p = 2.

When p = 2, the argument of Lemma 10.7 breaks down at the point
where we apply Proposition 3.9: having established that X = Xt <
F(G, 2*) and that d(X) < 2t we cannot infer that X is powerful; for
that, we need to show that in fact X < V(G, 2t)2. We shall see that this
is the case for a suitable choice of t.
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1 0 . 8 L e m m a Let W be a uniserial ¥2[G]-module. Then for each i>0,

Proof Put Wn = [W,n G] for each n. That [W, U{] = W2i follows from

Lemma 10.6. Applying this also with W\ in place of W and using the

Three-subgroup Lemma, we infer that [W, [II;, G]] < W^+i- Next, note

that [W,G2i] < W2i (see 0.7(i)); hence \W,X-[ = [W,Iii}[W,G2i] <

W2i, and similarly [W^,-X*] ^ W2i+2i < VF^+i- This now implies (see

0.7(h)) that [W,Xf] < W2i+i, and the lemma follows.

10.9 Lemma There exist k > j > i > 1 with k < r + 2 such that

is uniserial as a G-module for £ = i, j , k;

d(Xk) < 2^ or d(Xj) < 2\

Proof Applying Lemma 10.5(H) to the chain G — XQ > X\ > • • • >

X r + 3 , we find three values of £ in the range 1 < I < r + 2 such that

Xe/Xt+i is uniserial; these values we call i , j , fc. For each such ^, the

proof of Lemma 10.7 shows that Xα/Xf is uniserial as a G-module and

that d(X£) < 2£.

It follows that for £ e {ij, k} we have Xi+1 = U.j[G2t,2e G] < X}.

Now write U = Xj/X] and V = Xk/X%, and let U = Uo > Ux > • • • >

Ua = 0, V = Vo > V\ > • • • > Vb — 0 be the (unique) G-composition

series in U and V respectively. Thus \Un-i : Un\ = 2 = |V^_i : Vn\ for

each n, and a = dimF2(/7) = d(X^), b = dimF2(T/) = d(X fc). Assuming

that b > 2 J, we shall deduce that then a < 2 2 ; this will suffice to complete

the proof.

Since HiXf/Xf is contained in the uniserial G-module Xi/Xf, the

quotient U^/(Hi D Xf)[Ui,G] has order at most 2; so there exists an

element g G H such that II; = ( H D Xf)[Ui, G] (g). Then Lemma 10.8

shows that, in additive notation,

for each n > 0 . It follows that

Vig*'1 - 1) = V(g - if'1 = V2j-i2i = V2i # 0 (mod V2i+1),

since we have assumed that 2J < b. Hence, by Lemma 10.8 again,
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g2'~l $ [Uj,G]X]. But g2^* e 11,- and Uj/(Uj H X2)[Uj, G] has order

at most 2, as above; so we conclude that Uj = (IIj nX2)[Tlj,G] (g2J V

It follows that U = Ui + (u) where u is the image of g23 * in U = Xj/X2.
As g commutes with g2° % we have u(g — 1) = 0. Applying Lemma

10.8 to U and to U\ we therefore have

U2i = U2i+1 + U(g -1) = U2i+l + U1(g-1) = C/2Hl .

It follows that a = dimF2 ((7) < 2Z as required.

Now put t = k if d(Xk) <2j,t = j if d(X^) < 2 \ In either case we
have d(X^) < 2 t~1 and Xt < X2_x\ arguing as in the last part of Lemma
10.7 (with t — 1 in place of t) we may therefore infer

10.10 Corollary For some t with 1 < t < r + 2, the following hold:

• Xt/$(Xt) is uniserial as a G-module;

if N <\OG and N < Xt then Np.e.Xt.

The proof of Proposition 10.3 for p = 2 now follows as before.

10.3 The dimension
We now start to pin down some finer details of the structure of a pro-p
group of finite coclass.

An open normal subgroup N of G will be called uniserial in G if G
acts uniserially on N/K for every K < o G with K < N. The main
results of this section are

10.11 Proposition Let G be an infinite pro-p group of finite coclass r.
Let m > rpr if p is odd, m > (r + l ) 2 r + 1 if p = 2. Then the group
7m (G) is both uniform and uniserial in G.

10.12 Proposition Let G be an infinite pro-p group of finite coclass r.
Then dim(G) = (p — l)ps for some s < r if p is odd, dim(G) = 2s for
some s < r + 1 if p = 2.

Note that Proposition 10.12 is a very strong structural restriction: it
shows that the dimension of a pro-p group of coclass r can take at most
r values (r + 2 when p = 2). Exercise 6 shows that in fact all of these
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values do occur (at least for odd p). The fact that they take the precise
form they do turns out, surprisingly, to be a crucial ingredient in the
solubility proof given later in the chapter.

Henceforth, G denotes an infinite pro-p group of coclass r. We know
from §1 that G has finite rank, and write

d = dim(G)

for its dimension. As before we write Gn = 7n(G).
We shall need the following simple observation:

10.13 Lemma Suppose that G acts on a finite p-group A and that
C < B are G-invariant normal subgroups of A. If both B and A/C are
uniserial, then A is uniserial.

Proof Let M < N be G-invariant normal subgroups of A with [AT, G] <
M. If N < B then \N : M\ = p. If not, then NC > B, which implies
that MC > B. Then B = (M D B)C, which implies that B = MPiB,
so C < M < N < A and again it follows that \N : M\ = p.

Now let X = Xt = UtGpt be the subgroup of G introduced in Lemma
10.7 or Corollary 10.10; thus 1 < t < r, d(X) <pt\ip^2, l < £ < r + 2
and d(X) < pt~1 if p = 2; moreover, X/$(X) is uniserial in G and every
open normal subgroup of G contained in X is powerfully embedded in
X.

Let T = r(X) be the torsion subgroup of X. According to Theorem
4.20, T is finite and X/T is torsion-free. Let pe be the exact exponent
of T. It follows from Theorem 3.6(iii) that XpS n T = 1. Now consider
the series

G>XpeT> Xpe+1 • Tp > • • • > X p 2 e - 1 • T ^ " 1 > Xp2e • Tpe - X p 2 \

None of the factors in this series is uniserial: for the first one has G/$(G)
as an image, while each of the others has the form

£+i)XP^-'rpp'-1 /xpe+iTpi ^ ( X ^ " 1 /Xp£+i) x

It follows by Lemma 10.5(ii) that e + l < r , so e < r - 1.
Next, we show that X/T is uniserial in G/T. Replacing G by G/T,

we may as well assume for this part of the argument that T = 1. Then
X is uniform, of dimension d. For i > 1 put Ui = Xp% = Pi(X).
Prom Theorem 3.6 we know that for each i, the mapping x i—> xp%

induces an isomorphism of G-modules U1/U2 = X/$(X) —> Ui/Ui+±.
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Hence Ui/Ui+i is a uniserial FP[G]-module of dimension d, for each i. In
particular, putting Vi = [Ui,G]Ui+i we have \Ui : V{| = p.

Now since Vi is open and normal in G, it is powerfully embedded in
X\ it follows that VijVf is central in Ui/V?, and hence that UijVf is
abelian (since Ui/Vi is cyclic). As Vi is also uniform (as it is torsion-free)
and of dimension d, we have \Vi : V?\ = pd, so V?/Ui+i is an Fp[G]-
submodule of index p in Ui+i/Ui+2'1 it follows that V^ = ^+i- Thus
C/i/Vi+i is abelian. If p = 2, a similar argument shows that Ui/Vi+2 is
abelian.

We claim that the mapping x \-* xp induces a G-module isomorphism
from Ui/Vi+i onto £/i+i/Vi+2, for each i. This will be clear provided we
have

(xy)p = xpyp (modVi+2)

for x,y 6 Ui. If p = 2 this is immediate; if p 7̂  2, it holds (by 0.2
(iii)) because [x,y] G V^+i and Vj+x^+i, £/*] < V +̂2- Now according
to Lemma 10.5(h), at least one of the factors in the chain U\ > Us >
• - - > C 2̂r+3 must be uniserial; but if Uj/Uj+2 is uniserial then so is its
quotient C/j/Vj+i, and as we have just seen that these G-modules are all
isomorphic we may conclude that Ui/Vi+i is uniserial for every i>1.
Repeated applications of Lemma 10.13 then show that X/Un is uniserial
for every n, and as the subgroups Un form a base for the neighbourhoods
of 1 in X, it follows that X is uniserial in G, as required.

It is now easy to complete the

Proof of P r o p o s i t i o n 1 0 . 1 1 S u p p o s e t h a t p ^ 2 , a n d l e t m > r p r .
Since X^ n T - 1, we see that Xp* ^ Xv&TjT is both torsion-free and
uniserial in G. Since d(X) <pt and X is powerful, we have \X/XP \ <
pept < p(r~1)pr. As X > Gpr it follows that

Gm < Grpr < [X,(r_l)pr G] < XP .

Hence Gm is uniserial in G, and being both torsion-free and powerful it
is uniform, by Theorem 4.5. The same argument with slight notational
changes deals with the case p = 2.

In order to prove Proposition 10.12, we may as well replace G by
G/T, so we assume henceforth that X is torsion-free. Now fix an integer
m > 3p* and put

A = GmUt.
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T h e n A < X, so A is uniform a n d uniserial in G. For i > 1 w r i t e

so A = Ai > ^2 > ... is the unique maximal descending chain of
G-invariant normal subgroups of A, and \A\ : Ai+i| = p* for each i.
Moreover, since every open normal subgroup of G contained in X is
powerfully embedded in X, each Ai is uniform, of the same dimension
d = dimX < p*. It follows that for each i we have

Proposition 10.12 asserts that d = (p — l)ps (the bounds on s then
follow from Proposition 10.3). To prove this, we have to examine the
structure of A as a G-operator group; this is more transparent if we
think of A as an additive group, with the structure introduced in Sec-
tion 4.3. According to Corollary 4.15, for each n the identity map on
Apn /Ap = Ai+nd/741+(n+1)d is an isomorphism between the multi-
plicative and additive structures on this group; hence the additive group
^4i+ndA4i+(n+i)d 1S a uniserial G-module, having the unique composi-
tion series (A?/A1+(n+1)d)nd<j<1+(n+1)d. For exactly the same reason,
the additive group A2+ndM2+(n+i)d ^ a uniserial G-module. Provided
that d > 1, it follows by Lemma 10.13 that the Zp-module (A, +) is unis-
erial for G, in the sense that A/B is uniserial for every open G-submodule
B of A] moreover, the series (Ai)i>i is the unique descending compo-
sition series in this Zp[G]-module. If d = 1, the same holds because in
that case the additive and multiplicative structures are the same.

Now a function / is defined as follows:

/(O) = i;
f(i) - min{pf(i - 1), d + f(i - 1)} for i > 1.

Evidently f(i) < p% for each i.

10.14 Lemma Unless d — (p — l)ps for some s, we have

for all i and j .

This refers to the additive group (A, +), considered as a G-module.
The analogous statement for the multiplicative group A is also true, but
less simple to prove, and we can manage without it; however we do need
the (relatively easy)
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10.15 Lemma [A^IIj] < A^ f^) for all i and j .

Given 10.14 and 10.15, the proof of Proposition 10.12 is completed as
follows. Let us assume that d is not of the form (p — l)ps.

We show first that f(t) > d. Recall that A1+d = Ap = $(A). It
follows by Corollary 4.15 that the identity map on A/Ai+d is a G-module
isomorphism between the additive and multiplicative structures on this
set. Since [A,Ut] < [A, A] < Ai+d it follows that ,4(11* - 1) < A±+d .
With Lemma 10.14 this implies that 1 + f(t) > 1 + d.

A glance at the definition of / then shows that f(t + n) = f(t) + nd
for each n > 0 .

Now let x G A\ A<z and let y G A. Since \A : A2\ = p, we have y = zxh

for some z G A2 and some integer ft, so for each n the following holds:

by Lemma 10.15. Choosing n to be the least integer such that nd >
1 + /(£), we have

f(t + n) = f(t) + nd< 2f(t) + d < 3p* < m

since f(t) < pt and d < pt\ it follows by stability group theory (0.7)
that [A2, Gm] < A2+/(t+n)5

 s o w e n o w n a v e

[XP ,y] G i42+/(t+n) = A2+f{t)+nd = ^2+/(t)-

Note now that ^4P = Ai+nd < A2+f(t). According to the remark
following Definition 4.12, it follows that

x(y - 1) = x~x +xy

= x'1 + n xy (mod A2+f(t))

= [xp\y}p~n eA2+m.

Thus x(y—1) G A2+j(t) whenever x G A\A2 and y G 11*. The same holds
if x G -A2, by Lemma 10.14, and we conclude that Ai(II* —  1) < A2+f(ty
But this contradicts Lemma 10.14; hence the initial hypothesis must be
false, and so d = (p — l)ps for some s. Thus the proof of Proposition
10.12 is complete, modulo the two lemmas stated above.
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Proof of Lemma 10.15 This is by induction on j , the case j = 1 being
clear. Fix j > 1 , put k = f(j) and assume that [An,IIj] < An+k for all
n. Now the following commutator identity is given in Lemma 11.9 (in
the next chapter): if a and x are elements of any group then

[a?,a] = [x,a)p (modl2(K)p
7p(K)),

where K = {x,[x,a]). We apply this with x G IIj and a G Ai. In
that case, we have K < IIj and [x,a] G Ai+k, so 72 (K) < Ai+2k and
72+n{K) < Ai+2k+nk for each n. In particular, iP(K) < Ai+pk.

As A?+k = Ai+k+d, we see that [x,a]p72(i;C)p C Ai+k+d. It follows
that [a,xp] e Ai+k+dAi+pk = ^ + / ( j + 1 ) ; this shows that [A^IIj+i] <
Ai_|_^(j+i), since IIj+i is generated modulo any open normal subgroup
of G by elements like xp.

Proof of Lemma 10.14 We now consider A as an additive group. In
place of the commutator identity above, we use the trivial polynomial
identity

xp - 1 = (x - l)p + p(x - 1) (modp(x - l)2Z[x]).

This implies that if a G Ai and x G IIj then

a(xp - 1) = a(x - l)p + pa(x - 1) (modpA^x - l)2) . (2)

As in the preceding proof, it follows easily that if [A ,̂ EEj] < A^f^ for
all z, then also [A^IIj+i] < Ai+f(j+i) for all i; it follows by induction
that this holds for all j .

It remains to establish the reverse inclusion, under the assumption
that d is not of the form (p — l)ps for any s. Let us fix j > 0 and
assume, inductively, that [An,IIj] = An+f^ for every n. Let i > 1 . We
shall show that there exist a G Ai and x G IIj such that a(xp — 1) ^
j4i+j(j+i)+i. Prom this it follows that [-A^IIj+i] ^ v4^+j(j+1)_|_i; since
[i4i,IIj+i] is a closed G-submodule of Aj+j(J+1) it must therefore be
equal to A i+^+ i ) , and the result follows by induction.

Let us take a closer look at (2), where a G Ai and x G IIj. The first
point is that

pAi(x - I)2 < p

Next, note that

a{x-l)p

pa(x - 1)
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The significance of our condition on d now becomes apparent: if pf(j) =
f(j) -f d then d — (p — l)/(j), and f(j) must be equal to p7 since
for each n < j we have (p — l)f(n) < (p — l)f(j) (giving pf(n) <
f(n) + d). Assuming that d •=£ (p — l)pi, we infer that pf(j) ^ f(j) + d,
and consequently that either f(j + 1) = pf(j) < /(j) + d or

f(j + l) = f(j) + d < pf(j). In the first case it follows that
a(xp — 1) = a(x — l)pmod^+j(j+1)_(_1, while in the second case
a(xp — 1) = pa(x — 1) mod A i +y( J + 1)+ 1 . We consider the cases separately,
writing k = f(j).

Case 1 where f(j + 1) = pk. For n = 1,... ,p let Cn =
CnjCAi+(n-i)fcMi+nfc+i)- The inductive hypothesis asserts that Cn <
Hj for each n, so (by Exercise 3) there exists x G IIj \ Un=i Cn- Now let
a G Ai\Ai+i. Then A» = A»+i + (a), and as Ai+i(x-l) < Ai+1^k it fol-
lows that a(x — 1) ^ Ai_|_i_|-jfe, and hence that Ai+k — î+fc-f-i + (^(^ — !))•
Repeating this argument we see that a(x—l)p £ Ai+i+pk = A i + j ( J + 1 ) + 1 .
(When p = 2, it follows that this case cannot occur.)

Case 2 where /(j + 1) = k + d. Let a G A» \ A»+i and x elij\ Cγ.
As above we have Ai+k = .̂i+fc+i + (&(# — !))• It follows that

- 1))

x - 1)),

giving in this case pa(x -I) $ Ai+fc+d+i = ^+/(j+i)+i.
In each case, it follows that a(xp — 1) ^ A i + jQ+ 1)+ 1, as required.

10.4 Solubility

In this section we complete the proof of Theorem 10.1, modulo two
results about Lie algebras to be proved in the next section. The main
task is to show that pro-p groups of finite coclass are soluble; once this
is established the main result will follow quickly. We begin with this
reduction.

As before, G denotes an infinite pro-p group of finite coclass r, with
lower central series Gi = 7^(G). Recall from §1 that G has finite rank,
and that each Gi is open in G, so {Gi)i>\ forms a base for the neigh-
bourhoods of 1 in G.

10.16 Lemma // G is soluble then Gn is abelian for some finite n.

Proof As G is infinite and soluble, there is a (unique) term TV of the
derived series of G such that G/N is finite and N/[N, N] is infinite. Put
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K = [N,N]. It follows from Proposition 1.19 that N is open and K is
closed in G, so K = p|;>i #Gt. As ji(G/K) = Kd/K has finite index
in G/iiT for each i, while G/K is infinite, we see that KGi > KGi+i for
each i. Now let n be so large that Gn < N and \Gi : Gi+i| — p for all
i > n. It follows from the modular law that K P\Gi = K Pi G^+i for all
such i; hence

oo

[Gn, Gn] < [N, iv] n Gn = if n Gn = Pi K n G* = l.

We can now give the

Proof of Theorem 10.1 (soluble case) Let us assume that G is soluble.
Let m = rpr if p / 2, m = (r + l )2 r + 1 if p = 2, and put A = Gm.
Proposition 10.11 shows that A is uniserial in G and that A is uniform.
Lemma 10.16 shows that A is virtually abelian, and it follows by Exercise
4.9 that A = Z^ for some d. It then follows by Proposition 10.12 that
d = dim(G) = (p — l)ps for some s < r if p ^ 2, for some 5 < r + 2 if
p = 2.

There exists c0 such that |G : Gi+\\ = p z + r for all i > c0. Taking
z > max{co,m} we have \A : Gi+i| = pl~rn, since A is uniserial in G,
whence |G : A| = pr+rn. Thus the coclass of G/A is exactly r, and the
proof is complete.

The rest of the chapter is devoted to the proof of

10.17 Proposition Every pro-p group of finite coclass is soluble.

This depends on the following result, to be proved in the next section:

10.18 Kreknin's Theorem Let L be a finite-dimensional Lie algebra
over afield of characteristic zero. If L has an automorphism 7 of finite
order such that CL(T) = 0 then L is soluble.

We know from §1 that the group G has a uniform open normal sub-
group U. Suppose we can find an element g € G such that C^ (g) is
finite. Then Cu(g) = 1 since U is torsion-free; and it follows that g has
finite order, since some positive power of g lies in U D Co(g) — Cu(g)-
Conjugation by g therefore induces an automorphism 7 of finite order
on the Lie algebra Ljj = (U, -f, (, )) discussed in §4.6, and CLV(I) — 0.
Now let L — L\j 0Zp Qp- This is a finite-dimensional Lie algebra over Qp,
and 7 extends by linearity to an automorphism of L, with C^(7) = 0.



258 Pro-p groups of finite coclass

It follows by Kreknin's Theorem that L is soluble; therefore Ljj is sol-
uble, and therefore so is U, by Corollary 7.16. Hence G is soluble. To
establish Proposition 10.17, therefore, it now suffices to prove

10.19 Proposition There exists g G G such that Cc(g) is finite.

We begin by constructing a second Lie algebra, this time over Fp . Fix
a multiple m of d = dim(G) with m > max{(r + l )p r + 1 ,2d}. According
to Proposition 10.11, the group Gm is uniform and uniserial in G, so we
have

Gp
n = $(G n ) = G n + d for all n> m.

For each i>0 put A\ = Gm+i/Gm+i+ii thus A{ is cyclic of order p.
Writing Ai additively we now put

i=0

An element of A is called homogeneous if it lies in one of the summands

Because [G ,̂ Gj] < Gi+j for all i and j , the formula

(xGi+!,yGj+1) = [x,y]Gi+j+1 for x e d, y e Gj (3)

gives a well defined, skew-symmetric bilinear map (, ) : Gi/Gi+i x
Gj/Gj+i —>• Gi+j/Gi+j+i, for each i and j (to see this, use the ele-
mentary commutator identity 0.1).

10.20 Lemma (i) A is a Lie algebra over Fp, with Lie bracket given on
homogeneous elements by the formula (3). For each i,j > 0,

(Ai^JCAi+j+n. (4)

(ii) For y G Gj \ Gj+\ the linear mapping 6y : A —> A given on
homogeneous elements by

aSy = (a,y) G Ai+j for aeAi,y = yGj+1 G Gj/Gj+1

is a derivation of the Lie algebra A.

(A derivation of A is a linear mapping 6 : A —+ A such that (a,b)6 =
(a<5,6) + (a,bS) for all a,b e A.)

Proof To prove that A is a Lie algebra it suffices to verify the Jacobi
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identity on homogeneous elements; this will follow from (ii) with j >
m . The relation (4) simply translates the fact that [Gm+i,Gm+j] <
G2m+i+j' The proof of (ii) is an easy application of the Hall-Witt
identity (see 0.3). (In fact the lemma amounts to saying that the formula
(3) defines a Lie ring structure on the whole of © ^ Gi/Gi+i.)

Now by Lemma 4.10, the mapping x \-> xp induces for each n an
isomorphism Gn/Gn+d = GnIGv

n —>  Gv
nIGv

n = Gn+d/Gn+2d; as this is
clearly a G-module isomorphism it induces in turn an isomorphism rn :
Gn/Gn +i —>  Gn+dlGn+d+i- Thus rm+i is an isomorphism Ai —>  Ai+d,
and we may define a linear mapping r : A —• A by putting ar = ar^^i
for a G A$. Thus A becomes a module for the polynomial ring ¥p[t],
with t acting like r; then A{tn = Ai+nd for i = 0 ,1 , . . . , n, so

d - l

i=0

10.21 Lemma A is a Lie algebra over ¥p[t], and for y G G the deriva-
tion 6y is ¥p[t]-linear.

Proof Let x G G ,̂ where z > m, let y G Gj \ Gj+i and put iiT =
(x,[x,y\). As [ar,2/] G Gi+J- we have [X,K] < G2i+j < Gt+j+d+i> since
i > m > d. It follows (see 0.2) that [xp,y] = [x,y]pmodGi+j+^i. Thus
if a = xGi+i G Ai_m we have

(at)6y = [xp

= [x,

This shows that ^y is linear over ¥p[i\. Applying this for j > m shows
that the Lie bracket on A is ¥p[t]-linear in the second argument, hence
bilinear by skew-symmetry; this is the claim of the lemma.

It follows from Lemma 10.21 that A(t —  1) is an ideal in the Lie algebra
A. We now define the Fp-Lie algebra

Writing B{ = (A{ + A(t - 1))/A(t - 1) for i = 0 ,1 , . . . , d - 1 we have
B = BQ 0 • • • 0 Bd-i, each B{ being a 1-dimensional Fp-subspace of B.
Let n* denote the least non-negative residue of an integer n modulo d.
Since A^t = A^+d for each A:, it follows from (4) that

(Ai.Aj) C A{i+j+myte C A{i+j+my + A(t - 1)
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for some e > 0 . Now we have chosen m to be a multiple of d: so
(i + j + m)* = (i+ j)*, and it follows that

for0<ij<d. (5)

We have done enough scene-setting; it is time to prove something.
We say that a derivation 6 of B has degree 1 if Bid C J3(i+1)* for i =
0 , . . . , d - l .

10.22 Lemma For eac/i non-zero element b € B there exists a deriva-
tion 6 of B of degree 1 such that bS ̂  0.

Proof Suppose first that b is homogeneous; that is, b = a+A(t — l) where
0 T̂  a G Ai for some i < d. Say a = xGm+i+i, where x G Gm+i\Gm+i+i .
Then Gm+i = (x) Gm+i+i, and it follows that [(x), G] is not contained
in Gm+2+2; thus there exists y G G such that [x, y] ^ Gm+i+2. Note that
y £ G2, since [Gm+i,G2] < G m + i + 2 . Therefore a ^ = [x,2/]Gm+i+2 G
T4^+I \ 0. It follows similarly that Aj8y C ^4j+i for every j . As 6y is
Fp[t]-linear, it induces a derivation 6 of B, which has degree 1 by the
preceding remark.

We claim that b8 ^ 0. For bS = aSy -h A(t - 1), so bS = 0 only
if a<5y G A(t — 1); but it is easy to see that A(t — 1) contains no non-
zero homogeneous element of A (think about leading coefficients), so the
claim follows from the fact that 0 ^ a6y G Ai+i.

Finally, suppose b — bo + • • • + bd-i, where bj G Bj for each j , and
bi T̂  0 for some i. We can find a derivation 6 of degree 1 such that
bid y^ 0; the component of b6 in B^+iy is just M , so in fact b8 ^ 0.
This completes the proof.

The proof of the next step is deferred to the next section:

10.23 Proposition Let B = Bo 0 • • • 0 Bd-i be a Lie algebra over ¥p,
where each B^ is a 1-dimensional subspace of B and (5) holds. If

• d = aps for s o m e s > 0 and s o m e a G { 1 , . . . , p — 1 } , and
• the assertion of 10.22 holds,

then B is abelian.

It is at this stage that Proposition 10.12 is invoked. With Lemma
10.22 and Proposition 10.23 it now shows that B is abelian; we are
ready for the
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Proof of Proposition 10.19 We have shown that the Lie algebra B =
A/A(t — 1) is abelian, so (A, A) C A(t — 1). It is clear from the def-
inition that (A, A) is the direct sum of its homogeneous components;
on the other hand, as observed above, A(t — 1) contains no non-zero
homogeneous elements. It follows that (A, A) = 0, in other words that
A is abelian.

We can now forget about Lie algebras and return to our group G. To
say that A is abelian means that [Gi, Gj] < Gi+j+i for all i,j > m. Let
n be the least integer such that

[Gn, Gj] < G n + J +i for all sufficiently large j ;

thus n < m and n > 1 (since [Gi, Gj] = Gj+i for all j).
Let x e G n_i , and suppose that [G ,̂ x] < Gn+i for some large value

of i. Then H = Gn (x) < G, and applying the Three-subgroup Lemma
gives

so [Gi+1,2?] < Gn+i4-i- It follows by induction that [G^, x] < Gn+j for
all large j .

As [Gj,Gn] < Gn+j for all j and G n _ i / G n is finite, one of the follow-
ing must hold:

(a) there exists x G Gn_i such that [G ,̂ x] < Gn+^ for no large value
of i; or

(b) [Gj,Gn_i] < G n + j for all sufficiently large j .

The second possibility is excluded by the minimal choice of n; so we have
(a). We claim that now CG(X) is finite: this will complete the proof.

Put C = c<3(a;), and let k be maximal such that [G&, x] < Gn+k> Then
for i > k we have Gi ^ GG*+i, since [G^,x] j£ Gn+i while [Gi+i,x] <
[Gi+ i ,Gn_i] < Gn+i. If also i > m, this implies by the modular law
that C n Gi = C n Gi+i, since then |G^ : G^+i| = p. Hence putting
q = maxjA: -f 1, m} we have

i=q

It follows that C is finite as claimed.
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Let us recap the rather extraordinary strategy of the whole proof,
which proceeds via three distinct Lie algebras. In logical order it goes
like this. Step 1: prove that the finite Lie algebra B is abelian; this
depends on the uniserial embedding of Gm in G, and on the apparent
arithmetical accident that dim(G) has the form (p — l)ps. Step 2: de-
duce that the graded Lie algebra A is abelian. This translates into the
rather weak statement that (G ,̂ Gj) < Gi+j+i for large i and j . Step 3:
deduce that G contains an element with finite centraliser, again using
the uniserial embedding of Gm in G. Step 4' Use this element to give
an automorphism of finite order of the intrinsic Lie algebra LJJ. Step 5:
deduce via Kreknin's Theorem that LJJ is soluble. Step 6: Deduce that
U is soluble, hence that G is soluble. Step 7: Deduce that G is virtually
abelian, since it has finite coclass.

Schematically,

B abelian =̂  A abelian => LJJ soluble => G soluble
=> G virtually abelian => U abelian => LJJ abelian;

we mention the last two implications to indicate the roundabout route
that leads from properties of the graded Fp-Lie algebra B to those of
the 'intrinsic' Zp-Lie algebra LJJ.

10.5 Two theorems about Lie algebras
Here we prove the two results quoted in the preceding section.

10.18 Kreknin's Theorem Let L be a finite-dimensional Lie algebra
over a field of characteristic 0, having an automorphism 7 of finite order
such that CL(T) = 0. Then L is soluble.

Proof This is by induction on dim(L). If (L, L) ^ L, we may suppose
inductively that (L, L) is soluble: then L is soluble and we are done. So
let us assume that L = (L, L), and aim to deduce that then L = 0.

Say 7 has order q. We may assume without loss of generality that the
field contains a primitive qth root of unity (. Then L decomposes as a
direct sum

where Li = ker(7 —  CZ1L) is the C2-e-igenspace of 7, for each i. Note that
Lo = C L ( 7 ) = 0 . If a G Li and b G Lj then
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so we have

for each i and j , where n* denotes the least non-negative residue of an
integer n modulo q. We shall write '=' to mean 'congruent modulo q\

Put Hq-i = 0 and for n < q — 1 let Hn be the Lie subalgebra of L
generated by i/n+i and Ln+i; thus L = HQ 3 ffI 2 • • • 2 ^g-i = 0.
Now fix n > 1 and suppose we have shown that L = Hn-\. Then L is
spanned by Lie products of the form

w = {u\,... , Us), with izj G I/fc(j) and n < k(j) < q for each j (7)

(Exercise 4); and w G Li where Xlj=i ^0) = ^ ^ follows that (L,L) is
spanned by elements of the form (v, it;) with w as in (7) and v G I/*;, for
1 < fe < g; and (v,w) G L(kJriy if w e Li. With (6) this implies that
Ln = (L, L) n Ln is spanned by such elements for which

By repeated applications of the Jacobi identity (see Exercise 4), we can
re-write (v,w) = (y,(ui,... ,ur)) as a linear combination of terms of
the form (v,uia,... ,ura), where a runs over certain permutations of
{1, . . . , r} . We claim now that each such term lies in Hn. Given this
claim, it follows that Ln C Hn, and hence that ifn_i = Hn. As L = Ho
and Hq-i =0we see by induction that L = 0, as required.

It only remains to establish the claim. Put t = k(ra) and s = k +
S j = i k(jcr). Then (v,uia,... ,ura) = (a,u) where a G Ls* and u =
ura G Lt\ and we have

n <t < q, s + t = n.

If 5 = 0 then a G Lo = 0 so (a, it) = 0 G i/n- Suppose that s ^ 0 . Then
t^n so n<t<q. It follows that s* = n+q — t also lies strictly between
n and q, showing that both a and u are in Hn. Thus again (a, u) e Hni
and the proof is complete. (It is not in fact necessary to assume that
the characteristic is zero; the argument is valid provided only that the
characteristic of the field does not divide the order of 7.)

The second result concerns a cyclically-graded Fp-Lie algebra B =
J3o ® • • • 0 Bd-i- that is, (Bi,Bj) C Bi+j for all i and j , subscripts
being interpreted in Z/dZ (this convention remains in force for the rest
of this section). A derivation 8 of B is said to have degree f HBi6 C Bi+f
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for each i; the set of all such derivations is denoted Der/(i?); it is clearly
a vector subspace of Hom^p(B,B). Finally, we say that Derf(B) acts
without constants if for each b G B \ 0 there exists 6 G Derj(B) such
that bS ^ 0.

10.24 Lemma Assume that dim^p(Bi) = 1 for each i. If Deri(B) acts
without constants then so does Derpk(B) for every k>0.

Proof Let Bi = ¥pbi for each i. Suppose that for some / we know that
Derf(B) acts without constants. Then for each i, the annihilator Di of
bi in Y>eif(B) is a proper subspace of Deif (B). It follows that for each j ,
the set DjL)Dj+f{J.. .UZ)j+(p_i)/ is properly contained in Der/(J3) (see
Exercise 3), so we can find 6j G Der/(i?) \ (Dj UD j + f U... UD j +( p_ 1 ) f).
Then bj6P ± 0. If 0 ^ 6 G B then b = ^ I ^ afij with aj ^ 0 for some j ;
the i?j+p/-component of b8p- being ctjbjS? ^ 0 we see that 6<SJ ̂  0. An
elementary calculation (Exercise 5) shows that 8P- is a derivation. Thus
<5j G Derp/(i?) and we conclude that Derp/(5) acts without constants.

The lemma follows by induction.

10.23 Proposition Let B — Bo ® • • • 0 £?d-i be a cyclically-graded Lie
algebra over Fp, where each Bi is a 1-dimensional subspace of B. If
Deri (B) acts without constants and d = aps, where 1 < a < p and
s>0, then B is abelian.

Proof As above, let Bi = ¥pbi for each i, and define Â  G ¥p by (60, bi) =
Xibi. The Jacobi identity applied to (bo,(bi,bj)) gives \i+j(bi,bj) =
(Xi + \j)(bi, bj) for each i and j , whence

(bubj)^O^\i+j = \i + \j. (8)

Suppose now that j = pk for some k > 0, and that (bi,bj) — 0. By
Lemma 10.24, we can find a derivation b G Derpfc (B) such that 6bi ^ 0,
so <5&i = /i6i+j where μ^o. Then

= (vbj,bi) + (&o,l-ibi+j) fc>r some î  G F
p

thus we have
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Let t > 2 be an integer. Repeated applications of (9) and/or (8) show
that

Xtpk — A2pfc+(t_2)pfc

= X2pk + n'\pk where 0 < ri < t - 2 (10)

= Xpk + n'Xpk = nXpk where 1 < n < t;

note that if t < p then n is invertible in ¥p. Taking t = a if a > 2, it
follows that

Xps = n~1Xaps = n~1Xd = n~1Xo = 0.

Repeated applications of (10) with t = p now show that Ai = 0, and it
follows by repeated applications of (9) and/or (8) that Â  = 0 for all i.

Thus (bo^B) = 0. Now let j > 0 and suppose inductively that
(bj,B) — 0. There exists 6 G Deri(B) such that bj6 = μbj+l for some
/i / 0, and then for b G B we have

(bj+ub) = μ-^bjs,b) = μ^iibjw - (bj,b6)) = 0.

It follows by induction that (bj,B) = 0 for all j , and the proof is com-
plete.

Notes

Prehistory The theory of p-groups of maximal class (i.e. coclass 1) was
developed by Blackburn (1958). It was advanced by R.T. Shepherd in
his 1970 Chicago Ph.D., and completed by Leedham-Green and McKay
(1976, 1978); in these papers they showed that the p-groups of maximal
class can be classified by relating them to certain p-adic space groups.

History Leeham-Green and Newman (1980) defined coclass, and pro-
posed a classification of p-groups of fixed coclass in terms of p-adic space
groups. Their programme was expressed in a series of five conjectures,
of which we state

Conjecture A Given p and r, there is a positive integer f such that
every finite p-group of coclass r has a normal subgroup which is nilpotent
of class at most 2 and has index at most pf.

Conjecture C Every pro-p group of finite coclass is soluble.
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Conjecture D Given p and r, there are only finitely many infinite
pro-p groups of coclass r (up to isomorphism).

It is the case (though not obviously) that Conjecture A implies all the
others. A large number of papers contributed to the ultimate proof of
these conjectures; we only mention a few highlights:

(a) Leedham-Green (1994a) proved that every pro-p group of finite
coclass is p-adic analytic, of dimension (p — l)ps for some s.

(b) Donkin (1987) proved that if p > 5, every pro-p group of finite
coclass satisfying this conclusion is soluble; this proof depends on the
classification of semisimple algebraic groups over Qp. Together with (a)
this establishes Conjecture C for primes p > 5 .

(c) Leedham-Green (1994b) completes the proof of Conjecture A (for
p > 5 ) , and shows explicitly how every finite p-group of a given coclass
may be constructed by suitably 'twisting' a finite image of some infinite
pro-p group of finite coclass.

(d) Shalev and Zel'manov (1992) give an elementary self-contained
proof of Donkin's theorem (b), valid for all primes p.

(e) Shalev (1994) gives a 'constructive' self-contained proof of Conjec-
ture A, valid for all primes; this is independent of all the previous work
(logically though not conceptually), and gives explicit bounds. It does
not involve pro-p groups at all, but makes intensive use of the theory of
powerful p-groups.

This chapter Theorems 10.1 and 10.2 imply Conjectures C and D.
Sections 1-3 are based on arguments from Shalev (1994); some of these
were modelled on the earlier work of Leedham-Green (1994a) (which was
in circulation for some years before the publication date). Section 4, with
Proposition 10.23, is essentially an exposition of Shalev and Zel'manov
(1992); Theorem 10.18 is due to Kreknin (1963).
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Exercises

In the following exercises, r denotes a fixed positive integer.

1. (i) Let P and Q be finite p-groups of coclass r, with p\P\ = \Q\ =

pc+r > pT g n o w xfaax if ij) : Q _• p is a n epimorphism then ker-0 =

7c(Q). Deduce that if (f,ip : Q ^ P are surjective and a G Aut(Q) then

there exists /? G Aut(P) such that a<j) — ^β.

(ii) Let (Pn)nGN be a family of p-groups of coclass r with | P n + i | =

p | P n | for each n, and let ipn : P n + i —» P n be an epimorphism for each

n. Put

< n—>-oo

Prove that if (</>n) is another such sequence of epimorphisms then G^ =

[Hint: Use (i) to construct a suitable inverse system • Aut(P n +i) —•

Aut(P n ) - , . . . . ]

(iii) Let G = G^ as in (ii), and write 7rn : G —* P n for the natural

homomorphism, X n = ker7rn. Show that nn is surjective for each n.

Deduce that for each z > 1 ,

\G : i f n 7i+i(G) | = p 2 + r for all sufficiently large n.

Hence show that the pro-p group G has coclass r.

2. Let G be a pro-p group of coclass r, and let CQ be the least positive

integer such that \G : 7^+1 (G)| = p%Jrr for all i > c 0 . Put Q^ =

G/7c o + i (G) for each i > 1 .

(i) Show that G =^im ( Q n ) .

(ii) Suppose that G is the group G^ defined in Exercise 1. Show that

Pi = Qi+k for a l H > 1, for a certain integer k>0. Deduce that if Pi

has no proper image of coclass r then Pi = Qi for a lH > 1.

3. Show that a finite p-group cannot be the union of p proper subgroups.

[Hint: count elements!]

Deduce that a finitely generated pro-p group cannot be the union of

p proper closed subgroups.

In Exercises 4 and 5, L denotes a Lie algebra over a field F, and

a, a^, 6, bi, etc. elements of L. 'Left-normed brackets' are defined by

, . . . ,a n ) = ( ( a i , a 2 , . . . ,a n _i ) ,a n ) .
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4. (i) Prove that

(a, (61, 62, . . . , bn)) =

where £ is a certain subset of Sym(n).
[Hint: Put c = (&i,&2>-«- >&n-i)> expand (a,(c, 6n)) by the Jacobi

identity, and apply an induction hypothesis to expand (a,c) and
((o,6n),c).]

(ii) Let 5 be a subset of L, and let V be the subspace of L spanned by
S and all left-normed Lie products (ai, 02 , . . . , an) with ai £ S for all i
and n > 2 . Deduce that (V, V) C V, hence that V is the Lie subalgebra
of L generated by S.

5. Let 6 be a derivation of L. Prove Leibniz's formula:

i=0

Deduce that if char(F) = p ^ 0 then 6P is a derivation.

We recall some facts from algebraic number theory (see Frohlich and
Taylor (1991), Chapter VI). Let ( be a complex primitive p*th root of
unity, where t > 1 , and put d = (pip*) = pt~1(p — 1). Then

d-l

j=0

is the ring of integers in the algebraic number field Q(C)> a n d p =
(£ — l)o is the unique maximal ideal of 0 containing p. It satisfies
o/p = ¥p. We write op = Zp[(\ = 0 ^ I Q CJ%P- Multiplication by ( gives
an automorphism z of the additive group of 0, and of the Z^-module op.

6. (i) Let r = 0 xi (z). Show that ^(T) = p* for each i > 2. Deduce
that each T/^T) is a finite p-group of order ptJrl~l and coclass t.

(ii) Let G — op x (z). Show that G = Fp , and that G is a pro-p group
of coclass t and dimension d.

(iii) For each s in the range 0 < s < r construct a pro-p group of
coclass r and dimension ps(p — 1).

[Hint: consider G x Cpn, where t and n are suitably chosen.]
(A more interesting exercise is to construct p-adic space groups of given
coclass and dimension; a p-adic space group is an extension of A = Z^



Exercises 269

by a finite p-group in which A is equal to its own centraliser. See Section
3 of Leedham-Green and Newman (1980).)

7. Let us say that a pro-p group G has p-coclass k if \G : Pi(G)\ = pk~^1

for all sufficiently large i. Prove that a pro-p group G has finite p-coclass
if and only if either G has finite coclass or G is infinite and virtually
pro-cyclic.

[Hint for 'only if: Put Gi = Pi(G). There exists m such that
\Gi : Gi+i| = p for all i > m. Case 1: there exists i > m such
that Gi+i = G .̂ Show that then G{ is pro-cyclic. Case 2: for all
i>m, Gi+i > Gf. Show that then G$+i = [Gi,G] for each i > m.
Show that for some / and some r > m, 7/(G) = Gr, and deduce that
G has finite coclass.l
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Dimension subgroup methods

The main result of Chapter 3 was that a finitely generated pro-p group
G has finite rank if and only if G is virtually powerful (Theorem 3.13).
We also saw that this is equivalent to 'polynomial growth' (relative to
pn) of either of the functions

<rn(G) = \{H<oG\\G:H\<pn}\

As an application of the main result of this chapter, we shall give re-
finements of these results; the characterisations obtained this way are
best possible. The main result is a characterisation of a different sort:
namely in terms of the behaviour of the modular dimension series. It
is explained in §11.1, and proved in §11.3; the main work is done in
§11.2, where we establish various properties of the modular dimension
subgroups (valid in all groups, not just pro-p groups). The applications
are given in Sections 11.1 and 11.4.

11.1 Modular dimension subgroups
In this section and the next, G denotes an arbitrary group (not neces-
sarily a pro-p group); p, as usual, denotes a fixed prime.

We start by defining a series of characteristic subgroups Dn = Dn(G)
by

11.1 Definition D\ = G, and for n > 1

Dn = Di.. J ] [DuDj]
i+j=n

where n* = \n/p\ is the least integer r such that pr > n.

270
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Thus [Di,Dj] < A+j and DP < DPi for all i and j , and the series
(Dn) is the fastest descending series with these properties starting at
D\ = G. It is clear that D{ > 7 (̂G) for each i. The subgroups D{
are the dimension subgroups of G in characteristic p: that is, Dn is the
kernel of the natural homomorphism of G into the unit group of k[G]/In,
where k is any field of characteristic p and / is the augmentation ideal
of k[G]. However, we shall not use this fact in this chapter (except to
justify the title); it will be proved in Chapter 12, along with further
properties of the 'dimension series' (Dn). However, in the next section
we establish the following useful 'closed formula', discovered by Lazard:

11.2 Theorem For each n,

Dn{G)= J ] 1i(Gf.
ipj>n

Suppose now that G is a pro-p group of finite rank. Then, by Theorem
k

3.16, there exist constants c and s such that \G : Gp \ < cp for all k.
It follows from the definition that Dpk > Gp for each A:, so we have

\G:Dpk\<cpks (1)

for all k. If there exists an m such that Dn > Dn+\ for every n > pm

then

for every k > m; this contradicts (1) for large values of k, so we have
established

11.3 Proposition If G is a pro-p group of finite rank then Dn(G) =
Dn+i(G) for infinitely many values of n.

The main result of this chapter is the remarkable fact that Proposition
11.3 has a converse, indeed a very strong one:

11.4 Theorem Let G be a finitely generated pro-p group. Then G has
finite rank if and only if Dn(G) = Dn+\(G) for some n.

We shall see (Lemma 11.16 below) that if G is a finitely generated
pro-p group then each of the subgroups Dn is open in G. So the 'if part
of Theorem 11.4 will follow by the results of Chapter 3 from the next
result (due to David Riley):
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11.5 Theorem Let G be a finitely generated pro-p group and n a positive
integer. If Dn(G) = Dn+i(G) then Di(G) is powerful for all i> n.

This will be proved in §11.3, along with a number of further characteri-
sations of pro-p groups of finite rank, essentially due to Lazard.

We conclude this section with two applications of Theorem 11.4. The
first concerns the function qn(G) — \G : G^n|; it follows by an argument
like the proof of Proposition 11.3, above, which we leave as an exercise:

11.6 Corollary Let G be a finitely generated pro-p group. If qn(G) <
pP for some n > 1 then G has finite rank.

This result can be improved; the best-possible version will be estab-
lished in §11.4. The second application, due to Aner Shalev, concerns
subgroup growth :

11.7 Theorem Let G be a finitely generated pro-p group and let c < |
be a positive constant. If

pck2 (2)

for all sufficiently large k, then G has finite rank.

We shall see in Exercise 13.13 that this result is best possible, in the
sense that there exist finitely generated pro-p groups of infinite rank
which satisfy (2) for all k, with some constant c. The proof depends on
the following lemma; here, G denotes a finitely generated pro-p group,

dn = d(D2n) and in = logp \G : D2n\.

11.8 Lemma Suppose that there exist e>0 and m G N such that

dn < (1 — e)in for all n> m.

Then Di = Di+\ for some i.

Proof We quote the fact that each Di is open in G (Lemma 11.16,
below). This implies that D2n+i < $(D2n) for each n, and hence that

It follows that

^n+i - in < dn < (1 - e)in for n> m.
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Thus in+i < (2 — e)in for n> m, and so

im+k<(2-e)kirn<2™+k-l

for large enough values of k. But if Di > A+i for all i < 2m+/c, then
im+k > 2m+/c — 1; hence it must be the case that D^ = Di+i for some
i < 2 m + / \

Proof of Theorem 11.7 Suppose that G has infinite rank. Choose a small
positive constant e. Then (keeping the above notation) Theorem 11.4
and Lemma 11.8 show that

dn > (1 - e)in (3)

for infinitely many values of n. Now choose such a value of n and put

The Fp-vector space H/$(H) has dimension dn; so if the positive integer
r satisfies

3r < (1 - e)in < 3(r + 1)

then H/$(H) will have at least p2r subspaces of codimension r. Each of
these corresponds to a subgroup of index pln+r in G, so putting k = in+r
we have o> (G) > p2r .

Now

2r2 > 2 -—— > ck2,

provided £ is small and /c is large relative to the positive constant | — c.
Thus (2) fails for this value of k. Since A: > in + 1 > 2n, and we may
choose n arbitrarily large, we see that (2) fails for arbitrarily large k.
The result follows.

Of course, the converse of Theorem 11.7 follows from Theorem 3.19.

11.2 Commutator identities
Throughout this section, G denotes an arbitrary group. We write

Dn = Dn(G), rn = ln{G)

for each n; we shall constantly be using the fundamental properties
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without special mention. Recall that for a positive integer n,

n* = \n/p]

denotes the least integer r such that pr > n.
The basis of all our calculations is

11.9 Lemma Let x and y be elements of a group H and let K =
(z, [x, y\). Then for all j > 1 ,

(i)

(xyf = xpjypj

(ii)

[xp\y] = [x,yf modl2(K)pJ

Proof We quote the well-known identity of Hall and Petrescu, proved
in Appendix A: for each n > 1 ,

xnyn = (xy)nc2(x,y)ti). ..Cnfay)®, (4)

where, for each r, cr(x,y) G r)r{x,y).
Now take n = p?. If r = sp£, where 1 < s < p and t < j , then

(™) is divisible by pi~£ (Exercise 1). Hence Cr(x,y)(r' G 7 r(iJ)p J C
1jt(HY~l. Thus part (i) follows from (4).

To deduce (ii), we replace y by [x,y] and H by K. Then (i) becomes

f [ . (5)
i=i

Since

(x[x,y]f =(Xyf =a?
we can cancel xpJ on each side of (5) to obtain (ii).

11.10 Corollary Let x G Dr and y G Ds.
(i) If s>r then (xy)p = xpypmodD2prjp(Dry,
(ii) if s> r then (xy)p = xpmodDpr+i;
(iii) [xp,y] G (w) Dpr+s+t where w = [y,px] and t = min{r, s}.

Proof Parts (i) and (ii) are direct applications of 11.9(i), with j = 1:
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note that if s > r and H = (x,y) then H < Dr, 72(H) < Dr+S and
lp(H) < i^(p_i)r+s. Part (iii) follows similarly from Lemma 11.9(H);
for if K = (x,[x,y\) then 72 (if) < £>2r+s, and -yp(K) < (w) Dpr+s+t\
to see this, note that any commutator of length > p in x and [x,y]
either involves at least two occurrences of [x,y], in which case it lies in
Dpr+2s, or it involves at least p occurrences of x, in which case it lies
in £)(p+1)r+s, or it is one of [[x, y],p-\ x], [x, [x, y],p-2 x]; each of these is
conjugate in K to w or w~x, and hence lies in (w) £>(p+i)r+2s-

The next lemma is a stepping-stone to the first main result of this
section; it will subsequently be strengthened (see 11.14):

11.11 Lemma Let i and j be positive integers. Then
(i)

(ii)

Proof We start by proving that

(6)

This is clear if i = 1; now let z > 1 and argue by induction on i. Pu t t ing
r = i*, what we have to show is tha t

h + k = i =* [Dh,Dk,Tj) < r i + i A

The inductive hypothesis gives

[Dh,rj]<rh+jDh+j+1

whence

< [Th+j,Dk}[Dh+j+uDk]

By symmetry the same holds with h and k interchanged, and the first
line of (7) follows by the Three-subgroup Lemma (0.3).
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To prove the second line of (7), let x e Dr and y e Tj. Applying
ll.lO(iii), we see that

[xp,y]G{w)Dpr+J+1,

where

w=[y,px}£ [[DP)rj],p_i£>r].

Now [Dr,Fj] < Tr+jDr+j+i by the inductive hypothesis, so

[Dr,ThDr] < [Tr+j,Dr][Dr+j+1,Dr}<T2r+jD2r+j+1

by the inductive hypothesis again, and repeating this argument we
obtain

w £ Tpr+jDpr+j+i.

Thus [xp,2/] € I\_|_jl^+j+i, since pr > i, and the second line of (7)
follows.

We have now established (6), and are ready to prove (i). Again, the
proof is by induction on i. Since D\ = G = Fi, the case i = 1 follows
from (6) (taking j = 1 and i = j). The proof of the inductive step
now exactly follows the argument above, with F^ replaced by Dj (but
keeping Fh+j, F r + j , etc.), and quoting (6) at appropriate points instead
of the inductive hypothesis.

To deduce (ii), take j = (p — l)i in (i): this gives

7P(A) = bp-i(Di), A ] < [Dfr-ix.A] < TpiDpi+1.

The first main result follows quickly:

11.12 Proposition

for all positive integers n and t.

Proof Lemma 11.11 shows that if h + k = n then [D^, Dk] < TnDn+i.
Hence Dn = D^*Fn£)n+i; the proposition follows on replacing n by
n + 1,. . . , n + t — 1.

Next, we need a simple observation:

11.13 Lemma / / G is a finite p-group then

Dpn-, < Pn(G)

for all n>1.
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Proof This is trivial if n = 1. Let n > 1 and suppose tha t Dpn-i <
Pn(G). Then

h+k=pn

since h + k = pn implies h > pn~1 or k > pn~1. The result follows by
induction.

We are now ready to give the

Proof of Theorem 11.2 We have to show that Dn = Xn for each n, where
Xn = Xn(G) is defined by

Note that this is really equal to a finite product, since whenever i > n or
pi > n, the factor F^ is contained in Fnr^ where / is the least integer
with pf > n.

Since vf < Df < Dipj, it is clear that Xn < Dn for each n. The
theorem is therefore equivalent to the validity of

[X^XjKXi+j, Xf<Xpi (8)

for all i and j .
Suppose our result is known whenever G is finitely generated. To

deduce it in general, we only have to verify (8); to this end, let x G J*Q,
y G Xj and put H = (x, y). It is clear that Xn(H) < Xn(G) for each n,
so applying (8) for the finitely generated group H we deduce that

Xi+j(G), xp e Xpi(H) < Xpi(G).

Hence (8) holds for G, as required.
Thus we may assume that G is finitely generated. Now to verify (8) for

a given pair z,^, we may replace G by G/Xn provided n > max{i+j,pi}.
If G is finitely generated, then G/Xn is a finite p-group (see Exercise 2);
so it will suffice to prove (8) when G itself is a finite ]>group. In this
case, Lemma 11.13 shows that D^ = 1 for large k. We claim now that,
for each n > 1 ,

Dn = XnDn+1. (9)
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Repeated applications of (9) give Dn = XnXn+i.. .Xk-iDk = Xn; so
the theorem will be proved once (9) is established.

Certainly (9) is true when n = 1. Now let m > 1 and suppose that
(9) holds for all n < ra. Since ra* < ra, Proposition 11.12 gives

Dm = Dp
m,TmDm+l = I [ J r f J TmDm+1. (10)

Let x G Dm* and y G F^ where zp7 > ra*; then i/pJ G Dm* also. Since
pra* > ra, we have £>2pm* ^m+i- On the other hand, Lemma 11.11 (ii)
shows that 7P(£>m*) < Fpm*JDpm*+i < F m D m + i . Applying ll.lO(i) we
deduce that

Now each element of the bracketed factor in (10) is a finite product of
the form

zu =z xK x ^

where X£ G F^^) and i((,)pie > ra* for each £ = 1 , . . . ,5. Arguing by
induction on s and applying (11), we infer that

Since i ( £ ) ^ + 1 > pra* > m for each £, it follows from (10) that Dm <
Ylip3>m r f -FmAn+1 = X m D m + i . The reverse inclusion is clear, so (9)
holds for n = m, and the result follows by induction.

The following improved version of Lemma 11.11 will be important in
the next section:

11.14 Lemma

(i) // m> n then

[Dm, Dn\ < rm-|_n.D

(ii) for any positive integers m and fc,

Proof We begin with the case where n = k = 1; here (i) and (ii) say
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the same thing. In view of Theorem 11.2, it will suffice to show that if
y G G and X G F J , where ip7 > ra, then

[x^,y]erm+1Dm+p. (12)

This is clear if j = 0, so let us assume t h a t j > 1 . Now L e m m a 11.9(H)
gives

[ẑ ,y) EE [x,yf mod^iKf f[^(Kf'\ (13)
t=1

where K = (x, [z, y]). We examine the factors on the right-hand side in
turn:

Thus (12) follows, and we have established that

[Drn,G]<rm+1Dm+p,

for every m. Repeated applications of this now give (ii).
Before proceeding, we note the following consequence:

this follows from (ii) by stability group theory (see 0.7).
We turn to the general case of (i). As above, it will suffice to show

that if y € Dn and x G I\, where ipi > m, then

[z^y] G rm + n£>m + p n . (15)

If j = 0 then x G Fm , and (14) shows that

[x,y] G [rm,Z)n] < Tm+nDn+prn < r m + n J D m + p n

since m> n. Suppose j > 1, and put K = (x, [x, y}). Using (14), we see
that [x,y] G Ti+nDn+pi < Di+n, and that for each h>lwe have

< [Dn,hTi] < Tn+hiDn+hpi < Dn+hi.

Bearing this in mind we now again examine the factors on the right-hand
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side of (13):

[x,yf G Dp+n < D(i+n)pJ < Dm+pn;

< D^n < D(2i+n)pJ < Z?m+Jm;

< D^n < Dpj-t{pH+n) < Dm+pn if 1 < £ < j ;

< Fpji+nDn+pj+ii < r m + n D

Thus (15) follows from (13), and the proof is complete.

To conclude this section, we translate some of the results into the
language of Lie Algebras. This material is not needed for the applications
to be given in the next section; the topic will be dealt with in earnest in
Chapter 12.

For each n, we put

Since D^[Dn,Dn] < Dn+i, each Ln is an elementary abelian p-group,
and we treat it as a vector space over Fp , writing the group operation
additively. We make

n=1

into a graded Lie algebra over ¥p in the following manner: if x =
xDi+i e Li and y = yDj+i G L^ we set

(x,y) = [x,

This gives a well-defined bilinear mapping L^ x Lj —• Li+j, because
[Di,Dj+i] and [Di+i,Dj] are both contained in Di+j+i\ and it extends
uniquely to a bilinear product (•, •) on L. It is a routine matter (left to
the exercises) to verify that this product is skew-symmetric and satisfies
the Jacobi identity.

A second operation can also be defined on L, that makes L into a
restricted Lie algebra. We are not ready to give the full definition at
this stage: this will be done in Chapter 12; but we can give a partial
definition, which suffices for the present purpose. Recall (ll.lO(ii)) that
if x G Di and y G A + i then (xy)p = xp modDpi+i; hence we may define
a mapping

\p]:Li-> Lpi
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by setting

IE® = xpDpi+1

when x = xDi+i and x G A- The extension of [p] to an operation
defined on the whole of L is not completely straightforward (see §12.2);
but we have gone far enough to be able to state

11.15 Proposition Let L* be the Lie subalgebra of L generated by L\,
and for each n put

*n = TnDn+1/Dn+1<Ln.

Then
(i)

L* = ( J ) L* and L*n = L* D Ln for each n.
n=1

(ii)

L*+1 = (L*,Li) /or eac/i n.

(iii)

Ln = Ln if p\n
Ln = L$ -f L* z/ n = pm.

Proo/ Parts (i) and (ii) follow easily from the definition of the bracket
operation (•,•). Part (iii) is a translation of Proposition 11.12. To see
this, suppose first that p \ n. Then pn* > n + 1, so D^* < Dn+i; in
this case, Proposition 11.12 gives Dn = TnDn+i, which is equivalent to
Ln = L^. Now suppose that n = pm. Let x,y G .Dm. Using Corollary
ll.lO(i) and Lemma ll.ll(ii) we see that

It follows that

Dp
mQ{gp I g€Dm}-TnDn+1.

With Proposition 11.12 this shows that

Dn = {gp I g€Gm}-TnDn+1,

which is equivalent to Ln = Lfi} + L*n.
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11.3 The main results
The hard work is over and we now reap the rewards. Throughout this
section, G denotes a finitely generated pro-p group. We keep the notation
of §11.2, so Dn = Dn(G) and Tn = jn(G) for each n.

11.16 Lemma The family (Dn)n>1 forms a base for the neighbourhoods
of 1 in G.

Proof We show that for each n,

Dpn-i < Pn{G) < Dn-

the lemma will follow by Proposition 1.16(iii).
Now D1 = G = Pi (G). Let n > 1 and suppose that Dn > Pn(G).

Since (n + 1)* < n, we then have

Dn+1 > [Dn,G]Dp
(n+ir > [Pn(G),G}Pn(Gr = Pn+i(G),

by Corollary 1.20. Thus Dn > Pn(G) for all n.
To establish the other inclusion, we may factor out Pn(G), and so

reduce to the case where G is a finite p-group; in that case, it follows
from Lemma 11.13.

Next we give the

Proof of Theorem 11.5 Given that Dn = Ai+i> we have to show that
Di is powerful for all i > n. In view of Lemma 11.16, it will suffice to
show that Di/Dk is powerful whenever k > i > n; so, fixing some large
k and replacing G by G/Dk, we may assume that in fact D^ = 1 (and
hence that G is a finite p-group).

Let j be an integer with j >n—  z ^ . We claim that for each m > 2 ,

Tmj<Dlm_x)r (16)
Indeed,

Traj < [Tn,mj-nG] < [Dmmj-nG] = [Dn_|_i,mj_n G]
< Tmj-nDn+x+p^j-n) by 11.14(H)
< rmi+1£>£m_1M by 11.12;

note that the condition on j implies that (n + 1 +p(mj — n))*>mj—j.
It follows that if G = G/Dp,_1,. then 7mj( G) = 7mj+i( G), and hence
that 7mj( G) = 7fc( G) = 1, and this is equivalent to (16).
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Now using 11.14(i) we get

[Dj,Dj}<T2jDpj+j

< T2jTpj+jD*; by 11.12

= D? by (16).

Thus if p is odd, Dj is powerful, and we are done (indeed we have proved
slightly more than was claimed).

Suppose now that p = 2. Let r > 1 . Using Proposition 11.12 and
(16), we find

D2
rj D2rj < T2rjD2

rj < D2
2r_x)jD2

rj = D2
rj. (17)

Now Lemma 11.14(i) and (16) give

[D2j,Dj}<T3jD4j=D4j, (18)

[D4j,D2j}<TejD8j = D8j; (19)

we deduce

[D2j,D2j] = [D2j,D2]
< [D2j,DtfiD^D^Dj] by 11.9(ii)
KD^lD^Dj} by (18) and (17)
< DllD^Djfllhj, Dj, D2j] by 11.9(H)
< D% [D4j, D2j] < DJjDsj by (18) and (19)

= (D2
2j)2 by (17).

This implies that D2J is powerful, by Exercise 2.4.
Finally, let i > n. If i is even then i = 2j where j is as above, and we

are done. If i is odd, we know from Proposition 11.12 that

but (as in the proof of (16)) we also have I \ < [Dn+i,i-nG] < A+ i -
Thus Di = Di+i and the previous case applies. This completes the
proof.

Next we deduce a strengthening of the main result of Chapter 3 (char-
acterising pro-p groups of finite rank as those which have a powerful
finitely generated open subgroup):

11.17 Corollary The following are equivalent for a finitely generated
pro-p group G:
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(a) for some n, there exists h with ph > n such that

(a') the statement of (a) holds for infinitely many values of n;
(b) for some n, every commutator of length n in G is a phth power

with ph > n;
(bf) the statement of (b) holds for infinitely many values of n;
(c) for some n, jn(G) consists of phth powers with ph > n;
(cf) the statement of (c) holds for infinitely many values of n;
(d) G has finite rank.

Proof We prove that (a) implies (d) and that (d) implies (d)] the other
implications are then more or less obvious.

Suppose that (a) holds, and put m = ph — 1. We claim that then
Dm = D m + i ; this being so, Theorem 11.5 shows that Dm is powerful,
and this in turn implies (d) by Theorem 3.13.

To establish the^claim, write G = G/G^'. Then ^n(G) = 7n+i(G),
which implies jn(G) = jn+k(G) f°r all k. It follows that

< rn c

c
k>1

With Proposition 11.12 this now gives

since m* = \(ph - l)/p\ =ph~1. Thus (a) implies (d).
Now suppose that G has finite rank. By Corollary 4.3, G has a uniform

open normal subgroup K, of rank /c, say. There exists r^ such that
lro(G) < K. Let r > ro, let h be large enough so that

ph > r + hk,

and put n = r + hk. Since \K : Ph+i(K)\ = phk, we have

1n(G)<[K,hkG]<Ph+1(K).

However, Corollary 3.5 shows that Ph+i(K) consist of phth. powers in
K\ as r can be arbitrarily large, and n > r, we have established (d).
Thus (d) implies (d), and the proof is complete.
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11.4 Index growth
In this section we prove the following refinement of Corollary 11.6:

11.18 Theorem Let G be a finitely generated pro-p group, where p is
an odd prime, and let k> 1. / /

\G:Dpk(G)\<pPk+k-1 (20)

then Dpk(G) is powerful and has rank at most (p — l ) ^ " 1 .

An immediate consequence, given Theorem 3.18, is

11.19 Corollary Let G be as above. If, for some k,

then G has finite rank and dimG < (p — l)pk~l.

Although only a little stronger than Corollary 11.6, this result is in-
teresting because it is best possible: the simplest example of a finitely
generated pro-p group of infinite rank, namely G — Cp I Zp, satisfies
\G : GPk\ = pP + /c~1 for every k (see Exercise 8). It is interesting also
because, unexpectedly, the proof uses some of the theory of groups of
finite coclass (and so, unlike most of the main results of this chapter,
could not have been known to Lazard).

Henceforth, p denotes an odd prime, G is a finitely generated pro-p
group, and Dn = Dn(G) for each n. We start with an easy observation
(for the notation V(G,n) see Definition 2.10):

11.20 Lemma For every n > 1 ,

Dn<V(G,n).

Proof Let i and j be integers such that ipP > n, and let M be an
n-dimensional Fp[G]-module. It follows from stability group theory (see
0.7) that

M(7i(G) - l)pi C M(G - l)ipJ = 0;

hence if x G 7*(G) then M(xpj - 1) = M{x - l)pj = 0 (alternatively,
represent the action of G by unitriangular matrices, and note that the
matrix of x has i — 1 rows of zeros below the main diagonal). Thus
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1i(G)pJ acts trivially on M. It follows that 7;(G)^ < V{G,n), and this
gives the result in view of Theorem 11.2.

With Proposition 3.9 and Theorem 3.8, the lemma gives

11.21 Corollary Suppose that d(Dn) = n0 < n. // N <\o G and
N < Dn then N is powerful, of rank at most n$.

We now put

Ln = Dn/Dn+1,

as at the end of §11.2, and write

dn = d(Dn), 6n = diniFp Ln.

By results from Chapter 1, we have

dn = dim¥p{Dn/$(Dn))>6n.

To prove Theorem 11.18, it will suffice to show that if (20) holds then
there exists i < k such that

dpi+i <(p-l)pi; (21)

the theorem will then follow on taking n = p 1 + 1 , no — dpi+i and TV =
Dpk in Corollary 11.21. Two more lemmas are needed (the first does
not require p to be odd).

11.22 Lemma Suppose that 6S — 0, where s>1. Then for each integer
m > s/p we have

(i) \Dm:Dprnl> \Dpm''DP*m\i
(ii) Dprn = DPm.

Proof We use the notation of Proposition 11.15. The hypothesis is that
Ls = 0. Hence L* = 0, and it follows that L* = 0 for all n > s (see
11.15(H)). Then 11.15(iii) shows that

Ln = 0 ii n> s and p \ n,
Ln = Li?1 if n = pr > s.
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Thus 6n = 0 in the first case and 6n < 6r in the second case. Therefore

p2m—1 p2m—p
\Dpm : Dp2m\ = ^2 6n= y ^ 6n

n=pm n=pm
pm—1

— Z ^ ^n = \Dm - Dpm •
n=771

This proves (i).
Since L^ = 0 for all n > s, we have 7n(G) < -Dn+i for n > s; as

p?7i > 5, Proposition 11.12 and Lemma 11.16 now give

so we have (ii).

11.23 Lemma Suppose that 6S = 1 for each s in the range p° < s <
where j>1. Then 82p3+i = 0.

Proof Put M = Dpi /D2pj+i. Since p > 2, we have

Dp
pj <DpJ+i <D2pi+1,

so M has exponent p. Also M is abelian: for [Dpj+i,Dpj] <
while Dpj /Dpj+i is cyclic since 6pj = 1; but any group which is cyclic
modulo its centre is abelian. Thus we may consider M as a vector space
over Fp, with

dim¥p(M)=
s=pi

Now recall Lemma 10.6: this shows that if M were uniserial as an
Fp[G]-module, then [M, TTJ(G)] would be non-zero. But TTJ(G) < Dpj,
and [M^Dpj] = 0 since M is abelian. Consequently M is not uniserial,
and it follows that [M,pJ G] = 0. Since 7pJ (G) < Dpj, we deduce that

In the notation of Proposition 11.15, this says that L^ j+1 = 0, and
11.15(iii) now shows that Z ^ + i — 0; this is the claim of the lemma.
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We can now complete the

Proof of Theorem 11.18 If 6± < 1 then G is procyclic, since Di/D2 =
G/$(G), and the theorem holds trivially. We assume henceforth that
6i>2. The hypothesis is that

en<pk + k-l, (22)
n=1

and we have to show that (21) holds for some i < k. Write

= logp|L>pJ :DpJ+i\.

Since pk + k - 1 = Ej=o((P ~ 1 ) ^ + *)> w h i l e t h e left-hand side of (22)
is equal to ^j=0 A?> there exists i < k with A^ < (p — l)pz. This in
turn implies that either 6S = 0 for some s between p* and pl+1 — 1, or
^s = l for every s in this range. If i > 1 the latter possibility is excluded
by Lemma 11.23, since for i > 1 we have p2 < 2pl 4-1 < p z + 1 — 1, while
if i = 0 it is excluded by our assumption that 6\ > 2.

Thus there exists s < pl+1 such that Ss — 0. Taking m = pl in Lemma
11.22, we deduce that A»+i < A», and that Dpi+2 = D£i+1 <
It follows that

dpi+i = dimFp (Dpi+i/$(JDpi+i)) < logp |.Dpi+i : ,Dpi

= A i + i < A i < ( p - l ) p i .

Thus (21) holds, and the proof is complete.

Notes

Theorem 11.2 is essentially the same as [L], Appendice 3.14.5. Theorem
11.4, and most of its applications in Corollary 11.17, are established in
Appendice, §1 of [L]. Lazard's proof is however quite different from ours,
and depends on the construction of a 'mixed' Lie algebra ([L] Chapter
II, §1.2); this combines the graded Lie algebra L that we introduce in
§11.2 with a graded Lie algebra associated to the lower p-series.

Our approach, based on Theorem 11.5, is more direct, depending only
on an application of the Hall-Petrescu formula. Theorem 11.5 is due to
Riley (1993).

Theorems 11.7 and 11.18 are due to Shalev (1992b).
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Exercises

1. Using the result of Exercise 6.5, calculate vp((^)).

2. Show that if G is a ^-generator group and GpJ = 7n(G) = 1 then
IGIIP*1".
3. A series of subgroups G = G\ > G^ > • •. is called an N-series if
[Gi,Gj] < Gi+j for all i and j . Verify that if (d) is an N-series, then
the direct sum 0 ° ^ Gi/Gi+i has a Lie algebra structure given by

(zGi+ijj/Gj+i) = [x,y]Gi+j+1 (x eGi,y e Gj).

In the following exercises, G is a finitely generated pro-p group, and
L is the Lie algebra defined at the end of §11.2.

4. Suppose that G is powerful Prove that

Di(G) = Pn+i(G) where p71'1 <i<pn.

[Hint: Examine the proof of 11.13, and recall Theorem 3.6.]

5. Prove that the following are equivalent: (a) G is powerful; (6) L is
abelian; (c) 72(G) < D3(G).
[Hint: Use Exercise 4 to show that (a) =>(&). Use Exercise 2.4 to show
that (c)=>(a) when p = 2.]

6. Show that if Dn = Dn+i then [D ,̂ Dj] C Di+j+i whenever i + j > n.
[Use 11.15 and 11.14.]

7. Prove that G has finite rank if and only if L is nilpotent (Shalev
(1993b)).
[Use 11.4, 11.15 and Exercise 6.]

8. Let Wn be the wreath product Cp I Cpn; this is the semi-direct prod-
uct of the (x)-module Fp[(x)] by a cyclic group (x) of order pn.

(i) Fix k < n and write 0(F) = 1 + • • • + Y^*"1. Show that 4>{xl) G
(j)(x)¥p[(x)] for every i. Deduce that

and hence that \Wn : w£\ = pPk+k~l.
(ii) For each n there is a natural epimorphism Wn+i -^ Wn (cf. Exer-

cise 3.5). Using these we construct the inverse limit G — limWn; this is
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the wreath product Cp I Zp in the category of pro-p groups. Show that

for every positive integer k.
Deduce that if p is odd, then |A(G) : A+i(G)| = p for all i > 2.
(iii) Show that G may be identified with the semi-direct product

Fp [[X]] • X, where X is Zp written multiplicatively and ¥p [[X]] is the
completed group algebra of X discussed in §7.4.



12
Some graded algebras

In Chapter 11 we defined the modular dimension series (Dn(G)) of an
arbitrary group G, and derived some of its properties; we also stated,
but did not prove, the theorem of Jennings, that Dn(G) is precisely the
kernel of the natural homomorphism of G into the unit group of fc[G]//n,
where k is any field of characteristic p and / is the augmentation ideal.
We now resume the study of this series, from a somewhat different point
of view: our main focus will be on the Lie algebra

oo

I(G) = 0DB /DB + 1 ,
n=1

where Dn = Dn(G), briefly introduced in §11.2.
Now let

n=0

be the graded /c-algebra associated to the chain of ideals (/n) in fc[G];
when k = Fp, gr(fe[G]) is the algebra denoted 5* in §7.4. It is easy to
see (this will be explained in detail in §12.2) that Jennings's theorem is
equivalent to the existence of a well-defined, infective linear mapping

0 : L(G) - gr(k[G])

such that for g = gDn+1 e Dn/Dn+1,

This suggests an intimate connection between the group-theoretic struc-
ture of G, as reflected in the Lie algebra I/(G), and the ring-theoretic
structure of the group algebra fc[G], as reflected in the graded associative
algebra gr(fc[G]). A special case of this connection was established in

291
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§7.4, where we saw that if G is a uniform pro-p group (and k — ¥p) then
gr(k[G}) is a polynomial ring.

In this chapter, we consider the general case. As well as proving
Jennings's theorem, we show that L{G) has the structure of a restricted
Lie algebra over Fp, and that the mapping 0 extends to an isomorphism
of the universal restricted enveloping algebra of L(G) onto gr(Fp[G]); this
is a direct generalisation of Theorem 7.24. These results, due to Lazard,
are proved in §12.2; Section 12.1 gives a self-contained introduction to
the relevant concepts.

In the course of the proof, we obtain an explicit formula for the
dimensions of the graded components 7 n / / n + 1 . This is used in §12.3 to
derive yet another characterisation for the pro-p groups of finite rank:

12.1 Theorem Let G be a finitely generated pro-p group. Then G has
finite rank if and only if the sequence

(dimFp (in/r+1))

grows polynomially.

In fact, the proof will show that if G has infinite rank then diniFp (In/
Jn+1) must grow much faster than any polynomial in n; a remarkable
group-theoretic application of this is described in Interlude E.

12.1 Restricted Lie algebras
Throughout this section, k denotes an arbitrary field of characteristic p.
By a k-algebra we mean an associative ring with identity, containing k
as a subring. Each k-algebra A can be made into a Lie algebra over &,
by setting

(a, b) = ab — ba;

the resulting Lie algebra will be denoted A^. By 'a Lie subalgebra of A*
we always mean a Lie subalgebra of AL •

12.2 Definition Let A be a A:-algebra and L a Lie subalgebra of A.
Then L is said to be restricted if for each element a G L, also oP G L.

Thus a restricted Lie subalgebra of A has, in addition to the binary
operation (•,•), a unary operation, [p], given by

a[p] = ap.
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More generally, a Lie algebra L over k, with an additional unary oper-
ation [p], is called a restricted Lie algebra if there exist a /c-algebra A
and a Lie algebra monomorphism 0 : L —• At, such that 0(a^) = 0(a)p

for all a e L. In this case A (more precisely, the pair (0, A)) is called
a restricted enveloping algebra of L. It is universal if it has the follow-
ing universal property: for any restricted Lie algebra homomorphism
(f) : L —y BL, where B is a fc-algebra, there exists a unique fc-algebra
homomorphism </>* : A —• B such that (f> = </>* o 0. (A Lie algebra ho-
momorphism between two restricted Lie algebras is called restricted if
it preserves the operation [p]; here i?£, is supposed to be endowed with
the operation b^ = &P.)

We shall abbreviate 'universal restricted enveloping algebra' to uni-
versal envelope. It is easy to see that if it exists, it is essentially unique
(Exercise 1). In order to construct it, we start with a non-empty set X,
and consider the free associative algebra k(X) on the set X; this is the
ring of polynomials in the non-commuting variables x G X, discussed in
§6.3. Recall that k(X) has a /c-basis W(X) consisting of all monomials
w = x\... xni with Xi e X and n > 0 ; the identity element 1 of k(X) is
identified with the 'empty monomial', where n = 0, and monomials are
multiplied by concatenation.

Now let L be a restricted Lie algebra, and choose X to be a basis for
L. For all x,y,z G X there exist \xy, μz

x G k such that

Zyz, *M = $ > * * ; (1)
zex zex

for each x and y, only a finite number of the \z

xy and μz

: are non-zero.
We take J to be the two-sided ideal of k(X) generated by all elements
of the form

xy-yx~Y^ \z

xyz, xp -
zex zex

with x, y G X, and put

U = Ux(L) = k(X)/J.

Write c = c + J G U for each c G k{X)\ since X is a basis of L, there is
a unique fc-linear mapping £ : L —+ U such that £(x) = x for all x G X.
We claim now that (£, £/) is a universal envelope of L.

There are four conditions to be verified. The first is that £ is a Lie
algebra homomorphism: this is clear from the construction, since the
Lie bracket operation is bilinear. The second is that £ is restricted: this
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is harder to verify, since the operation [p] is not in general linear, and we
postpone this for the moment. To verify the universal property, suppose
we are given some restricted Lie algebra homomorphism (j> : L —> BL,
as above. The mapping x \-+ (j>(x) from X to B extends to a fc-algebra
homomorphism (j>, say, from k(X) to B. Then for x,y G X,

zex zex

so xy — yx — ^2zeX ^xyz ^ ^ e r </>- Similarly, xp — Y^Z{

so J C ker</). Hence (j> induces a fc-algebra homomorphism (j>* : U —> B,
and it is clear that (j> = (/>* o £. It is also clear that 0* is the unique fc-
algebra homomorphism with this property. The injectivity of £ follows
from the universal property: for our definition of 'restricted Lie algebra'
means that there exists a 0 : L —> A^ which is injective, and then
6 — 0* o £ implies that £ is injective. For future reference, we note that
this also implies that the restriction of 0* to £(L) is injective, so we have
f(L)nkerfl* = 0.

Before proceeding, we state an important lemma:

12.3 Lemma Let H be a Lie subalgebra of the k-algebra A, and let X
be a basis of H. IfxpeH for all x G X, then H is restricted.

Proof Let a,b G A, and let T be an indeterminate. In the polynomial
ring A[T] we have

P-I
(aT + b)p = oPTp + If + ] T si(a, b)T\ (2)

i=1

where si (a, b) is a sum of terms c\C2 .. • cp with each ĉ  equal to either a
or 6. We may formally differentiate (2) with respect to T: this is merely
a device for equating coefficients of equal powers of T on each side of
the equation. The result is

P-I p-\

i=0 i=1

Now we quote the following elementary identity, valid in every algebra
over a field of characteristic p:

P-I
x ^ i p—i—l / \ fA\

i = 0
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(for the proof, see Exercise 2). Putting aT + b = u and a = v in (3),
this gives

P-I

i=1

2 " 1Equating coefficients of T2"1 we find

8i(a, b) = r1 Y^(a, c i , . . . , Cp_i), (5)

the sum being over all (p — l)-tuples c where Cj = a for z — 1 values of j
and Cj = b for p — i values of j . Returning to (2), put T = 1: this now
gives

P - I
(a + b)p = a*> + fcP + ] T e<(a, 6). (6)

i=1

Now each element of H is of the form c = Ai#i + • • • + Anxn, with
Xi e k and â  G X for each i. We argue by induction on n to show that
cp eH. If n = 1 we have

c^ = A? x? G H
by hypothesis. Suppose n > 1 , and put a = X\Xi + • • • + An_ixn_i, 6 =
Anxn, so c = a + 6. The inductive hypothesis says that both ap and bP
are in iJ, and (5) shows that Si(a,b) e H for i = 1,... ,p — 1. It follows
by (6) that (a + b)p e H also. Thus cp G if as required, and the lemma
follows.

We can now complete the proof that (£, U) is a universal envelope of
the restricted Lie algebra L. We have to show that if c G L then £(c^) =
£(c)p. Let 6 : L —> AL be an injective restricted homomorphism, as
above. Then

so f(clP])- f(c)P G ker<9*. Now for each x G X, we have £(x)p =
€(T,zex ^zxz) e ^(L ) ' f r o m t h e definition of ^ : L -> t/ = k(X)/J (see
(1)); it therefore follows from the above lemma that £(c)p G £(£), so in
fact we have ^ ( c ^ ) - ^(c)p G f (L) D ker 0* = 0, as required.

We have established

12.4 Proposition Let L be a restricted Lie algebra over k, with basis
X. Then the k-algebra Ux(L) is a universal envelope of L.
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Since £ is injective, we may as well consider L as being contained
in £/, whereupon £ becomes the inclusion mapping L —> U. We shall
sometimes write x instead of x, for x G X. The relations (1) are then
identities in [/, where (x,y) = xy — yx and x^ = xp. Using these, we
can extract from W(X) a much smaller spanning set for U. To this end,
we start by endowing the set X with a total ordering, written <. A
monomial

w = x^ . . . x^

is said to be restricted if x\ < X2 < . . . < xn and 1 < fi < p — 1 for
each i (here, x^ means x.x... x with / factors).

12.5 Lemma The images in U of the restricted monomials span U as
a vector space over k.

Proof Let V be the subspace of U spanned by the restricted monomials.
It will suffice to prove that if w G W(X) then w € V. This is done by
induction on the degree of w. The idea is simple: if w is not already
restricted, use (1) to reduce the degree of any x? with f > p occurring
in w, and to replace yx by xy if y > x and yx occurs in w] this is done
at the cost of adding to w a linear combination of monomials of strictly
smaller degrees. We leave it as an exercise for the reader to verify the
details.

The following easy consequence is the key to the main results of the
next section:

12.6 Lemma Let A be a k-algebra, L a finite-dimensional Lie algebra
over k, and (f) : L —> A a Lie algebra homomorphism. Suppose that
</)(L) is a restricted Lie subalgebra of A and that </>(L) generates A as a
k-algebra. Let n = dim^(L). Then

(i) dimfc(i4)<pn;
(ii) if dimk(A) = pn then (f> is injective, so L is a restricted Lie

algebra; and (0, A) is a universal envelope of L;
(iii) if dimfc(^4) = pn and X is an ordered basis for 4>{L) then the

(images in A of the) restricted monomials on X form a basis for A.

Proof The Lie algebra </>(L) has a basis X = {xi,... , x m } , where

m = n — dim*; (ker (j>).
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We order the set X as written, and let U = Ux{<t>{L)). Since the num-

ber of restricted monomials on X is exactly p m , Lemma 12.5 shows that

dimfc(£/) < p171. Now by Proposition 12.4 there exists a fc-algebra homo-

morphism if) : U —> A which extends the inclusion mapping of <j>{L) into

A] then VK̂ O ls a fc-subalgebra of A which contains </>(L), and as <j>[L)

generates A it follows that if)(U) — A. Thus

dimfc(j4) < dim* (17) < p m < pn,

giving (i).

Now suppose that dim.k(A) = pn. The above inequalities are then

equalities. Hence dim/-(ker (/>) = n — m — 0, so (f> is injective. Since

dimfc(ker^) = diuik(U) — dimfc(A), this also shows that ^ is injective,

hence an isomorphism of U onto A. As ^ restricts to the identity map

on 0(L), and U is a universal envelope of </>(L), it follows that ((f), A) is

a universal envelope of L; thus (ii) holds. Part (iii) is clear, since A is

spanned by the (images of the) restricted monomials.

Remark It is more usual to define a restricted Lie algebra to be a Lie

algebra L with a unary operation [p] such that for all A G k and a, 6 G L

the following hold:

(Aα) W =

(a,p6) (7)

(a + ft) [Pi = a M + ftW + ^ 5 (a,

where Si(a,b) is given by (5), above (in fact the third condition follows

from the other two). That L in this case satisfies our definition follows

from the 'restricted Poincare-Birkhoff-Witt Theorem', which says that

the restricted monomials on X form a k-basis for the universal envelope

U of L, when X is an ordered basis for L (see Jacobson (1962), Chapter

V §7, whence we have borrowed the proof of 12.3). In particular, it im-

plies that the monomials of degree 1 are linearly independent, and hence

that L is embedded in U. Conversely, every restricted Lie algebra in our

sense satisfies (7): see Exercise 3. As we shall see in the next section,

the Lie algebras that we are concerned with come ready equipped with

an embedding into an associative algebra, and we don't need to quote

the PBW Theorem; indeed our approach provides a self-contained proof

for it in the special case at hand.
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12.2 Theorems of Jennings and Lazard
In this section, G denotes an arbitrary group and k a field of character-
istic p. As in Chapter 11, the series of subgroups Dn = Dn(G) is defined
to be the fastest descending series with D\ = G such that

DP < D^

for all i and j .
We write

I = IG = (g- l)k[G]

fo r t h e a u g m e n t a t i o n i d e a l o f k[G}, a n d fo r e a c h n > 1 p u t

thus Kn is the kernel of the natural homomorphism of G into the unit
group of k[G]/In.

12.7 Lemma Dn < Kn for all n > 1 .

Proof It is clear that K\ = G and that Kn+i Kn for all n, so it will
suffice to check that

for all i and j . Let x € Ki, y € Kj. Then

xp - 1 = (x - l)p 6 (Pf = Ipi,

[x,y] - 1 = x^y-^xy - yx)
= x-iy-Hix - l)(y - 1) - (y - l)(x - 1)) e

Thus xp e Kpi and [x,y] G ^ + j , and the result follows.

Now put Ln — Dn/Dn+i for each n. As we observed in §11.2, each
Ln is an elementary abelian p-group; we consider it as a vector space
over Fp, and put

n=1

This is a Lie algebra over Fp; the Lie bracket operation is defined on
homogeneous elements a = xDi+\ G L^, b = yDj+i G Lj by

(a, b) = [x,2
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and extended to L by linearity (see §11.2). We also showed in §11.2
that for each z, there is a well-defined mapping [p] : Li —> Lpi given by
a[p] _ xPDpi+i. As the notation is meant to suggest, this mapping does
indeed extend to a unary operation on L, making L into a restricted Lie
algebra; to prove this, however, we need to take a little detour.

Let x,y € G. The identity

xy - 1 = (x - 1) + (y - 1) + (x - l)(y - 1),

together with Lemma 12.7, shows that if a; € Dn and y € Dn+\ then
xy — 1 = x — 1 (mod J n + 1 ) . We may therefore define a mapping #ra :
Ln = Dn/Dn+1 -> / " / / " + 1 by setting

The same identity, now taking both x and y in Z?n, then shows that 9n

is a homomorphism, hence an Fp-linear map.
The bracket operation on L extends by linearity to the A;-vector space

n=1

which thereby becomes a Lie algebra over k. For each n, the Fp-linear
map 0n extends uniquely to a A;-linear map 6n : Ln <S> k —• / n / / n + 1 ; we
put these together to obtain a fc-linear map

9 = 0 0 n : Lk = 0 L n ® fe -
We can now state the main result of this section:

12.8 Theorem (i) The operation a ^ o ^ defined on the subset IJ^Li Ln

extends to a unary operation on Lk, making Lk into a restricted Lie al-
gebra over k.

(ii) The mapping 6 : Lk —> gr(k[G]) is a restricted Lie algebra mono-
morphism.

(iii) (0,gr(fc[G])) is a universal envelope of Lk.

The theorem of Jennings is an easy consequence of the fact that 6 is
injective:

12.9 Theorem Dn = Kn for all n> 1.

Proof This is by induction on n. The claim is trivial for n = 1; let n > 1
and suppose that Dn = Kn. Then Dn > Kn+\ > Dn+\, by Lemma
12.7, so

ker 6n nLn = (Dn n ^ n + i ) D n + i / D n + i = Kn+1/Dn+1. (8)
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If we assume that 9 is injective, as stated in part (ii) of Theorem 12.8,
we have ker#n < ker# = 0; hence Ai+i = Kn+i and the result follows
by induction.

For later reference, we note that this argument is reversible: if Dn+i =
Kn+i then certainly Dn > Kn+i > Dn+i, so (8) holds and it follows
that 0n\Ln is injective. As 9n is the linear extension of this map to
Ln (g> fc, this shows that 6n is injective. Thus we have

12.10 Lemma If Dn+i = Kn+\ then the mapping 9n is injective.

We now embark on the proof of Theorem 12.8. Much of the argument
is essentially formal; this part is summed up in the following lemma:

12.11 Lemma (i) 9(Lk) generates gr(k[G\) as a k-algebra.
(ii) 6 is a Lie algebra homomorphism.
(iii) 9(a^) = 9(a)? for all a G |J~=i Ln.
(iv) 9(Lk) is a restricted Lie subalgebra of gr(fc[G]).

Proof (i) The fc-algebra gr(k[G]) is clearly generated by the subspace
J/72 , which in turn is spanned by the set {(g — 1) + I2 \ g G G} =

C 9(Lk).
(ii) Let x e Di and y G Dj. Then

(x - l)(y - l ) - ( y - l ) (x - 1) = ([x,y] - 1) + (yx - l)([x,y] - 1)

since (yx - 1) G I and [x,y] - 1 G Di+j - 1 C P+i by Lemma 12.7. It
follows that if a = xA+i £ Li and b = yDj+\ G L^, then 6(a)6(b) —
9(b)9(a) = 9((a,b)). This gives the result, since elements of this form
span Lk.

(iii) Let a = xA+i € Li. Then

= (x- If + /p i + 1 = 9(a)p.

(iv) Part (ii) implies that 9(Lk) is a Lie subalgebra of gr(fc[G]); it has
a A:-basis consisting of elements of the form 9(a) where a G U^Li Ln-
The result therefore follows from (iii), by Lemma 12.3.

Next, we consider the special case where G is a finite p-group.
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12.12 Lemma Suppose that G has finite order pn. Then
(i) -Ds+i = 1 and 7 t + 1 = 0 for some s and t.
(ii) dimk(Lk) = n and dimfc(gr(fc[G])) = pn.

Proof (i) The first claim is immediate from Lemma 11.13. The second
follows from Lemma 7.1 when k = Fp; this implies the general case, since
it is clear that the set (G — I)1 spans P over k for each natural number
i.

(ii) It follows from (i) that \G\ - f l U IA/A+i| - IL~i lA/A+i|.
Hence

oo oo

n = ^dim F p (A/A+i) = ]TdimFp(Li)
i = 1 2=1

= dimFp(L) = dimk(Lk).

The second claim follows similarly from the fact that dimfc(fc[G]) = \G\ =

Proof of Theorem 12.8 for finite p-groups Suppose that \G\ = pn. We
apply Lemma 12.6, taking A = gr(fc[G]), Lk for L and 9 for (j>. Lemma
12.11 shows that the hypotheses are all satisfied, and Lemma 12.12 shows
that dim*; (A) = pn. Part (ii) of Lemma 12.6 therefore tells us that 0
is injective; with Lemma 12.11 this shows that Lk is a restricted Lie
algebra, with the 'correct' unary operation [p]; and Lemma 12.6(ii) also
shows that (9, A) is a universal envelope of Lk. All parts of Theorem
12.8 are therefore established.

The following corollary will be used in the next section:

12.13 Corollary Suppose that

\Di/Di+1\=phi fori = l,...,r,

where each bi is finite. Then

dimk(Ir/Ir+1) = cr

where cr is the coefficient of Tr in the polynomial

i=1 - - 1

Proof The hypothesis implies that G/Dr+\ = G, say, is a finite p-group.
Write ~: k[G] —> k[G] for the natural epimorphism. Then ker(~) =
(Dr-|_i — l)fe[G] C 7 r+1 by Lemma 12.7, so ~ induces an isomorphism
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of k[G]/IrJrl onto k[G]/IrJrl. We may therefore replace G by G without

altering the values of 61,... , br and c r, and so assume that in fact G is

a finite p-group, and hence that Theorem 12.8 is valid. In particular, we

then have

dimF p(fl(L i))=dimF p(L i) = 6i

for each i.

For i = 1,... , r let Xi = {α^i,... ,x^} be an Fp-basis for 6(Li).

Then X = (J[=i ̂  ^s a ^-basis for 9(Lk); we order it lexicographically.

Lemma 12.6(iii), with Lemma 12.12(H), shows that the restricted mono-

mials on X form a basis for gr(fc[G]). Now recall that 0(Li) C /*// i + 1 ; it

follows that each monomial on X is a homogeneous element of gr(fe[G]),

and hence, in particular, that the restricted monomials which happen

to lie in / r / / r + 1 form a basis for J r / / r + 1 . Thus c r is equal to the num-

ber of such restricted monomials. This is just the number of distinct

expressions of the form

i=1 j=1

such that

To see that this number is exactly the coefficient of Tr in F(T), multiply

out the identity

F(T) =
i=1

2i

Remark The reduction to finite p-groups in this proof was made so that

we could quote Theorem 12.8 before proving it in full generality; thus

the applications to pro-p groups that we make in the next section do

not depend on the rather lengthy arguments with which we are about

to conclude the present section.

The proof of Theorem 12.8 in general is a matter of reduction to the

case of finite p-groups. We begin with the

Proof of Theorem 12.8 (i) and (ii) The main task is to prove that Dn =

Kn for all n. Suppose this done. Then Lemma 12.10 shows that 6 is
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injective, and the result follows from Lemma 12.11, parts (ii), (iii) and
(iv).

It remains to prove that Kn C Dn for all n. We fix n > 1, and show
first that it suffices to consider the case where G is finitely generated.
Let x G Kn. Then x — 1 G / n , so x — 1 is a finite sum

x^9n - 1). . . (gin - 1),
i=1

for certain elements g^ £ G and Â  G k. Thus x G Kn(H) where H is
the subgroup (x, gn,... , gin \ i = 1,... , s) of G. If our claim is true for
all finitely generated groups, we have Kn(H) = Dn(H); but it is easy to
see that Dn(H) C Dn(G), so x G Dn(G) as required.

We may assume, then, that G is finitely generated. In this case,
Gn/Dn = G, say, is a finite p-group, by Exercise 11.2; so Kn(G) =
Dn(G) = 1, by the case done above. Now write ~: k[G] —> k[G] for
the natural epimorphism. As in the proof of Corollary 12.13, above, we
see that ~ induces an isomorphism of k[G]/In onto k[G]/In. It follows
that for g G G,

Thus Kn = Dn, and we are done.

We remark that Jennings's Theorem, Theorem 12.9, is now established
in complete generality. The reader who is not particularly interested in
universal envelopes may therefore safely skip the rest of this section,
which is devoted to the proof of Theorem 12.8(iii).

We start by fixing, for each n > 1, an Fp-basis Xn for Ln = Dn/Dn+i,
and give it a total ordering <. We then put X = U^Li ^n> and order
X by putting elements of Xm before elements of Xn when m < n. We
define the weight of a monomial w = x\... xs to be

) = 7ii H \-ns

where Xi G Lni for each i, and put

e(w) = e(x1)...e(xs)egr(k[G}).
Note that then 9{w) € Ir/Ir+1 where r = wt(to).
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Finally, we denote by Br the set of all restricted monomials of weight
r on X. We shall prove

12.14 Proposition For each r>0, the restriction of 9 to Br is infec-
tive, and 6(Br) is a linearly independent subset of / r / / r + 1 .

Part (iii) of Theorem 12.8 follows easily from this. In view of Propo-
sition 12.4, it will be enough to show that the induced fc-algebra homo-
morphism 0* : Ux{Lk) —• gr(MG]) is an isomorphism. Now Lemma
12.11 shows that 6* is surjective; that 0* is injective is then an im-
mediate consequence of Proposition 12.14 and Lemma 12.5, which says
that Ux(Lk) is spanned by the images of the restricted monomials. As
remarked at the end of Section 12.1, we also obtain the further conse-
quence that these images are in fact linearly independent in Ux(Lk): this
is the 'Poincare-Birkhoff-Witt Theorem' for the restricted Lie algebra
Lk.

Before proving Proposition 12.14 we extract a simple reduction lemma:

12.15 Lemma Let Ho be a finitely generated subgroup of G, and let
Xi = hiDni+i G XUi for i — 1 , . . . , q, with x\ < X2 < . • • < xq. Then
there exist a finitely generated subgroup H of G, containing HQ, and
for each n an ordered ¥p-basis Yn for Ln(H) = Dn(H)/Dn+i(H), such
that

(i) hieDni(H)fori = l,... ,q;
(ii) for each i, the element yi = hiDni+\(H) is in Yni;
(iii) 2/1 < 2/2 < • • • < Vq, where [jYn is ordered so that elements of Ym

precede elements of Yn when m < n.

Proof For each n, the group Dn is the union of its subgroups Dn{H) as
H ranges over the finitely generated subgroups of G. We can therefore
find a finitely generated subgroup H of G, containing Ho, such that (i) is
satisfied. Now for n ^ m , . . . , nq, let Yn be any ordered basis for Ln(H).
Suppose n = nr = n r+i = ••• = n r + s . The inclusion Dn(H) —> Dn

induces an Fp-linear mapping ?rn : Ln(H) —» Ln , and then 7rn(^) = Xi
for i = r , r + l , . . . ,r-(-s; since x r , . . . xr+s are linearly independent, so
are yr,... yr+s, a n d we may extend the set { y r , . . . yr+s} to a basis Yn of
Ln(H), ordered so that yr < yr+i < . . . < yr+fS. In this way conditions
(ii) and (iii) are satisfied.
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Proof of Proposition 12.14 Let w\,... , wm be distinct elements of Br,
and suppose that

\ie{wi) = o, (9)
i=1

where Ai , . . . , Am G k. We have to show that Ai = . . . = Am = 0. Say
Wi = Xii.. .xiSi, where x^ = hijDnij+1 G Xnij. Then (9) is equivalent
to

i=1 j=1

Since each element of 7 r + 1 is a finite linear combination of terms of the
form (<7i — 1 ) . . . (gr+i — 1), there exists a finitely generated subgroup H$
of G such that

Now enlarge HQ to a finitely generated subgroup H as in Lemma 12.14,
taking x i , . . . , xq to be the elements x^ in increasing order; and let Y be
the ordered basis of L(H) given in that lemma. Retracing the argument
from (10) to (9), we find that

i=1

where the vi — yn . . . yiSi are distinct restricted monomials of weight
r on y, and ^// is to the pair (H,Y) what ^ is to (G,X). Replacing
(G, X) by (if, y) , we may therefore suppose that in fact G is finitely
generated.

Now put G = G/Dr+i; this is a finite p-group, by Exercise 11.2. We
have Ln(G) = Ln for n = 1,... , r and Ln(G) — 0 for all n > r, so the set
X = XL U ... UXr is a basis for Lk(G). The special case of Theorem^l2.8
proved above shows that gr(fc[G]) is a universal envelope for Lk(G); it
follows by Lemma 12.6(iii) that the images of the restricted monomials
on X are distinct and form a basis for gr(fc[G]). Identifying / r / / r + 1

with / r / / r + 1 as before, we see in particular that 0(wi),... ,0(wr) are
distinct and linearly independent; hence Ai = .. . = Am = 0 as required.

This completes the proof.
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12.3 Poincare series: Talternative des gocha'
We return now to pro-p groups, and assume henceforth that G is a
finitely generated pro-p group. As before, we write

Dn = Dn(G), Ln = Dn/Dn+1.

Recall (§11.3) that each Dn is now an open subgroup of G; hence each
of the numbers

bn = dimFp(Ln)

is finite. We shall be applying the results of the preceding section, taking
k = Fp; thus / will now denote the augmentation ideal of FP[G]. For
each n > 0 we write

cn = d im F p ( /7J" + 1 ) .

Following Lazard's whimsical terminology, we define a formal power se-
ries

oo

gocha(G; T) = ^ cnTn

n=0

(the name alludes to 'Golod and Shafarevich'). Writing

we may restate Corollary 12.13 in the succinct form

12.16 Theorem Let G be a finitely generated pro-p group. Then

gocha(G;T) =
n = 1

In Chapter 11, we showed that the growth rate of the sequence (6n)
determines whether or not G has finite rank. It is now a mere formality
to translate this into a criterion using the cn instead of the bn; the result,
however, has interesting applications.

Suppose first that G has infinite rank. Theorem 11.4 says that then
Dn ^ £>n+i for all n, so we have bn > 1 for all n. Let us define a
partial ordering on formal power series by setting $ > ^ if and only
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if each coefficient of ^ — ̂  is non-negative. In this sense, we have
Pn(T) > 1 4- Tn for each n > 1 ; with Theorem 12.6 this gives

n=1
oo

n=1 n=1
oo

n=1

here, p(n) denotes the number of partitions of n. Thus we have

12.17 Proposition / / G has infinite rank then

Cn p(n) > 2[V^ for all n>1.

For the proof of the second inequality, see Exercise 5 (we have given a
crude lower bound for p(n), which is easy to prove; in fact

p(n)

see Hardy (1940)). Since 2 ' ^ of course grows faster than any polyno-
mial in n, this establishes one direction of Theorem 12.1.

The other direction of Theorem 12.1 has already been essentially es-
tablished in Chapter 7; indeed, if G has finite rank then Exercise 7.5
gives

cn<dim¥p(Fp[G]/In+1)<Cnd

for all n, where d = dim(G) and C is a positive constant. (Note that
when G is uniform, the exact value of cn is given in Exercise 7.4: in this
case,

Cn

However, it is interesting to pursue the finite rank case a little further,
using the more explicit information available from Chapter 11. Assume
from now on that G is a pro-p group of finite rank, and dimension d.
Proposition 11.3 says that br = 0 for some r. Now recall Proposition
11.15. Putting

gn = dimF L*,
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where Z£ = jn(G)Dn+1/Dn^u we have

#n+i <9n<K for all n,
K=9n if P t n>
&n < &m + #n if n = pra.

It follows that gn = 0 for all n > r, and hence that

bn = 0 if p { n and n> r,
bn < bn/p if p I n and n> r.

Thus 6n = 0 unless n < r or n = p2/i for some i > 0 and /i in the range
r/p < h < r. For each h in this interval, the sequence of non-negative
integers bh > bph > bp2h > ... must become stationary at some point.
We can therefore choose s so large tha t for every n > 5 ,

either p \ n and bn = 0
or n = plt, where s < t < ps, and bn = bt.

Now for each t > 1, we have

In the present case, therefore, Theorem 12.16 becomes

12.18 Proposition If G is a pro-p group of finite rank, then for suffi-
ciently large s we have

s-l ps — 1

gocha(G;T) = J J Pn{T)b»
n=1 t=s

Note that each Pn(T) is a polynomial, taking the value p at 1. It
follows that gocha(G; T) is a rational function having a pole of order

ps-l
^ 6t = m, say,
t = 3

at 1. What is the value of m? First of all, it is clearly independent of
the choice of s, provided s is sufficiently large. Choose s to be large
and not divisible by p. Then bs = 0, so Ds = Ds+i, and hence Ds is
powerful, by Theorem 11.5. Since, by Lemma 11.16, Ds is open in G,
and may be taken to lie inside any open subgroup of G provided s is
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large enough, it follows that d(D3) = dim(G). Now Lemma 11.22(ii)
shows that Dps = D^ = <I>(JDS); consequently

Thus the answer to our question is m = dim(G); and we have a new
characterisation for the dimension of a pro-p group of finite rank:

12.19 Corollary Let G be a pro-p group of finite rank. Then dim(G)
is the order of the pole at 1 of the rational function gocha(G; T).

Notes

For the theory of restricted Lie algebras, see Jacobson (1962), Chapter
5, §7.

Theorem 12.9 is due to Jennings (1941); for another account see Pass-
man (1977).

Theorem 12.8 and the results of §12.3 are from [L], Appendice, §3. A
short proof that gr(fc[G]) is the restricted universal envelope of L(G), and
an analogue for fields of characteristic zero, is given by Quillen (1968);
although it uses the language of Hopf algebras, at its heart lies a simple
counting argument that we have adapted here as Lemma 12.6; a similar
account is given in Passi (1979).
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Exercises

1. Let L be a restricted Lie algebra and (0, A), (0, B) universal envelopes

for L. Show that 0* o 0* = Id A and 0* o (9* = I d B . Deduce that </>* is

a fc-algebra isomorphism from A onto B such that (f)*0(x) = 4>{x) for all

2. (i) Prove that

(Y - Xγ = YP-XP

i=0

for commuting indeterminates X, Y over F p .

(ii) Let A be a fc-algebra and v e A. Define £, 77 : A —> A by £(it) = m;,

7y(n) = vu. Show that there is a homomorphism from FP[X, y] into the

ring of fc-linear transformations on A sending X to £ and y to 77. Deduce

that for all v G A,

P - I

2=0

3. Let A be a fc-algebra and L a Lie subalgebra of A such that xp e L

for all x G L. Prove that the identities (7) hold in L, where x^ — xp.

[Use the proof of Lemma 12.3, and Exercise 2.]

4. Let H and N be restricted Lie algebras, and (j> : H —• N a Lie

algebra homomorphism. Suppose that 0 ( a ^ ) = (j){x)^ for every £

in some spanning set of H. Prove that 0 is a restricted Lie algebra

homomorphism.

[Hint: Look at the proof of Lemma 12.3.]

5. Let n be a positive integer. A partition of n is a sequence of non-

negative integers b\ > 62 > .. • such that Y^zl bi = n. Show that if

k > a\ > a2 > . . . > ar > 1 then

k

( n - ^ a t , o i , a 2 , . . . ,a r ,0, . . . )
i=1

is a partition of n provided fc2 + 3fc < 2n. Deduce that the number p(n)

of partitions of n satisfies p(n) > 2 ' ^ if n > 9.

Verify that this holds also for n = 2, . . . ,8.
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Interlude D

The Golod—Shafarevich inequality

Let G be a pro-p group, and suppose that d(G) = d is finite. A presen-
tation

G=(X',R)

by generators and relations is called minimal if \X\ = d. In §4.6 we
defined t(G) for a finitely generated pro-p group G by

t(G) = inf {\R\ I G has a minimal presentation (X; R)} ,

and gave the lower bound d(d — l)/2 for t(G) when G is powerful.
Roughly speaking, what this means is that to force a d-generator pro-p
group to be powerful, one needs to impose at least d(d — l)/2 relations;
this is intuitively plausible, since we have to make all the generators
commute with one another 'modulo pth powers'. In 1964, Golod and
Shafarevich gave a lower bound for the number of relations needed to
ensure that a pro-p group be finite. This bound is also quadratic in d.
An examination of their method, and various improvements of it due
to Gaschiitz, Vinberg and Roquette, shows that a similar lower bound
obtains provided only that the pro-p group G is rather 'narrow', in the
sense that the factors in the dimension subgroup series do not grow too
fast.

The dimension subgroups Dn = Dn(G) were defined in §11.1. For
each n > 1 we put

bn = dim¥p(Dn/Dn+i).

As we saw in §12.3, the sequence (bn) is closely related to the sequence
(cn) given by

where Io = (G — 1)FP[G] is the augmentation ideal of the group algebra
Fp[G]. For any sequence a = (an) of non-negative real numbers we write

p(a) = lim sup an
n,

n—^co

so p(a)"1 is the radius of convergence of the power series ^anXn (in
the usual Archimedean sense!). The main result is now

Dl Theorem Let G be a finitely generated pro-p group, and suppose
that d = d(G) > 1. // either
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• p(b) < 1 or

• P(c) < 1

£/ien

t(G) > f, (1)
/̂le inequality is strict unless d = 2 and t(G) = 1.

The formula (1) is the Golod-Shafarevich inequality. If G is finite, the
sequence (cn) is eventually zero, by Lemma 7.1, and we obtain the origi-
nal theorem of Golod and Shafarevich. If G has finite rank, Exercise 7.5
shows that for all n, cn < Cnr, where r — dim(G) and C is a constant;
thus (1) holds if G is a pro-p group of finite rank which is not pro-cyclic.
Wilson (1991) showed that this holds under much milder hypotheses on
G; and in fact Zel'manov has proved that if the finitely generated pro-p
group G does not satisfy (1), then G contains a non-abelian free pro-p
subgroup. The proof is hard, and is given in Zel'manov's chapter in
[DSS]. Theorem Dl combines results of Koch (1969), Lubotzky (1983)
and Lubotzky and Shalev (1994).

In fact the condition p(b) < 1 is equivalent to p(c) < 1; we have
included it in the statement of the theorem because it refers only to the
internal structure of the group G, and can sometimes be more easily
verified, as we shall see in Chapter 13.

Let us write fl = F p [[G]] for the completed group algebra of G, defined
in §7.4, and put I = (G — 1)R; thus / is the closure of 70 in R. Using
Lemma 7.1 one readily verifies that

d i m F p ( J " / / " + 1 ) = c n

for each n. Now let t = t(G). Then there is a presentation

1 -• N -> F -» G -> 1 (2)

where F is a free pro-p group on d generators and N is the closure in F
of the normal subgroup generated by t elements of F. The next lemma
provides the essential link between presentations of G and powers of the
ideal I:

D2 Lemma Provided d = d(G), the sequence (2) gives rise to an exact
sequence

/ _> o (3)

of R-modules, such that R^α C
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We postpone the proof to the end, and proceed now to deduce Theo-
rem Dl. Let us assume that p(c) < 1, so that the power series

n=0

is convergent for x in the range (0,1). For n > 0 we put

j=0

and also write s_i = 0 . Now let n > 1. Prom (3) we derive an exact
sequence

o -> R{t)/Kn ^ (R/r){d) -> i/r+1 -> o,
where Kn = ( J 7 1 ) ^ " 1 . Since ijWa C /(d) we see that the second
term in this sequence is annihilated by J71"1; its dimension is therefore
at most tsn-2' The next two terms have dimensions dsn-\ and sn — 1
respectively, since dim¥p(R/I) = 1. It follows that

tsn-2 - dsn-i + sn > 1. (4)

Now multiply (4) by xn~1 — xn, and add up the resulting inequalities.
Noting that sn — sn_i = cn for each n, we find that

P(x){tx2 -dx + 1) > 1

for all x G (0,1). As P(x) is positive for such x it follows that

tx2 - dx + 1 > 0

for all x G (0,1). If d = 2 this clearly implies that t>1. Suppose that
d>3. Letting x —> 1 from the left we infer that t > d—1, which implies
that d/2t < 1; substituting x = d/2t now gives —d2/kt + 1 > 0.

To complete the proof, it remains to establish

D3 Lemma p(b) < 1 if and only if p(c) < 1.

Proof Since the mappings 6n defined in §12.2 are injective, we have
frn cn f°r all >̂ so p(b) < p(c) in any case.

Suppose now that p(b) < 1. Theorem 12.16 asserts the power series
identity

n=0 n=1
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where Pn(T) = 1 + Tn + • • • + T^"1 ) n for each n > 1 . To show that
p(c) < 1, it will suffice therefore to show that the infinite product on
the right is convergent when T is replaced by a real number x G (0,1).
Now

where 0 < un < xn/(l - xn). Let N be so large that xn < \. Then 0 <
un < 1, and elementary analysis shows that the product II^Liv Pn(x)bn

is convergent if and only if the series Y^>
==N bnun converges. But

OO

un < J2 (! - xn)~lKxn < 2 ]T bnxn,
n=N n=N n=N

and the series on the right does converge if p(b) < 1. The lemma follows.

As observed by Lubotzky (1983), a variant of the Golod-Shafarevich
inequality may be inferred for any finitely generated group whose pro-p
completion satisfies the inequality. This depends on

D4 Lemma Let T be a group and (X;R) a finite presentation for T as
abstract group (i.e. T ^ F(X)/ (RF^) where F(X) denotes the free
group on X). Then (X; i?), considered as a presentation in the category
of pro-p groups, is a presentation for the pro-p completion of T.

We leave it to the reader to verify that if F = F(X)p denotes the free
pro-p group on X, then

has the requisite universal property that characterises the pro-p comple-
tion Tp of P.

However, since it is not always the case that d(F) = d(Fp), we can-
not translate Theorem Dl directly to an inequality for abstract groups.
Write

D5 Lemma If T is a finitely generated group then d(Fp) = dp(F).

To see this, put G = Fp, and note that G/<&(G) is the largest elementary
abelian p-group quotient of G (by an open normal subgroup). It follows
that G/$(G) is isomorphic to the largest elementary abelian p-group
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quotient of F, which is T/[T,T]TP. This makes it clear that d(G) =

D6 Lemma Let G be a pro-p group and let (X; R) be a finite presenta-
tion of G. Then there exists a presentation {Y\ S) of G with \Y\ = d(G)
and \S\ = \R\ - (\X\ - \Y\).

Proof Let F = F(X) denote the free pro-p group on X\ we have an
epimorphism F —• G with kernel (RF). This epimorphism induces an
epimorphism

Put K = ker (f), so K is the subspace of the Fp-vector space F/$(F)
generated by the image of i^. Let {ri$(F), . . . ,rfc<I>(F)} be a basis for
K with n , . . . , rk e R. Clearly k = d(F) - d(G) and Ro = {ru . . . ,rfc}
is a subset of a free basis of F. Thus by Exercise 1.20 (iii) F* = F/(RQ)
is a free pro-p group on d(F) — k = d(G) generators. The image 5 of
R\Ro in F* gives the desired presentation.

Combining Lemmas D4, D5 and D6 we may deduce that if (X; R) is
a finite presentation for the group F then

We therefore have the following corollary to Theorem Dl:

D7 Theorem. Let T be a finitely generated group and let (X; R) be a
finite presentation for F. Let p be a prime. If Tp satisfies the hypotheses
of Theorem Dl then

\R\-(\X\-dp(T))>dp(rf/4.

This includes all finitely generated groups of finite upper rank (i.e.
those whose profinite completion has finite rank). For the subclass of
finitely generated nilpotent groups we can choose p so that dp(F) = d(F)
(see Exercise 3), and so obtain the following corollary, another direct
generalisation of the original result for finite p-groups:

D8 Corollary // F is a finitely generated non-cyclic nilpotent group
then

t(r) > d(r)2/4.
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To conclude, here is the

Proof of Lemma D2 We have to turn the exact sequence

1 -• N -• F - * G -• 1 ( 2 )

into the exact sequence (3) of R = F p [[G]]-modules. Let us write F n =

Pn(F) and G n = Pn(G), and suppose that TV is the closure in F of

(yf,... , y f ) . Then for each n we have an exact sequence

t

0 - j > ^ - 1)FP [F/Fn] <-> F p [F/Fn] - F p [G/Gn] - 0;
i=1

these fit together to give an exact sequence

K^VP[[F]]£FP[[C\]^0, (5)

where /? is a ring epimorphism and ker/? = AT is the closure in ¥p [[F]]

of the right ideal Y?i=1(yi - l)¥p [[F]}. Since ¥p [[F]} is compact (being

the inverse limit of the finite rings ¥p [F/Fn]), each finitely generated

right ideal is also compact, and hence closed in FP[[F]]; consequently

K = Y?i=1(yi - l)¥p[[F}}. Note that ¥P[[G]] considered as a right

¥p [[F]]-module is annihilated by K.

Now put IF = (F - 1)¥P[[F]]. Then K C IF and IFp =

(G — l)Fp [[G]] = I. The epimorphism β therefore induces an epimor-

phism from IF/IF onto I/I2. Having assumed that d(F) = d = d(G),

we infer that IF/IF — F p - ^/^2 ( s e e Exercise 1). This implies that

K = ker/? C /|,, and so from (5) we derive an exact sequence

0 -> K/K2 ^ IF/IFK -> / - * 0 (6)

with the property that im7 C tpjIFK.

Since if is a ^-generator right F p [[F]]-module, KjK2 is a ^-generator

right R = Fp [[G]]-module and we have an epimorphism n : iĴ *) —•

K/K2. On the other hand, /^ is a free right F p [[F]]-module on d gen-

erators - for the proof of this see Exercise 2. It follows thatp
¥p [[F]](d) /Fp [[F]]{d) K ^ RW. Replacing the middle term in (6) with

p

^ we finally obtain the desired exact sequence

Rw A RW ^ i _ o,

where a = 7077. Moreover, the fact that im7 C l\jlFK translates into

the statement that R^α C i?(d)/ = l(d\ and the proof is complete.
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Exercises

1. Let G be a finitely generated prop group. Write IQ = (G — 1)FP [G]
and J = ( G - 1 ) F P [ [ G ] ] .

(i) Show that the mapping g i—> (g — 1) + /Q induces an isomorphism

(ii) Show that the natural inclusion ¥p [G] —* ¥p [[G]] induces an iso-
morphism Fp [G] / / J -> Fp [[G]] / / n for each n > 1 . [#m£: Use Lemma
7.1.]

(iii) Deduce that dimF p(/ / /2) = d(G).

2. Let F be the (abstract) free group on a finite set {xi , . . . , a^}, and
let I =(F- l)Fp [F] be the augmentation ideal of Fp [F],

(i) Prove that

[Hint: To see that the elements Xi — 1 generate / as a right ideal,
show that F acts trivially on the right module ¥p [F] /J2(xi~ ! ) F P [F]-
To show that they generate / freely, consider the semi-direct product
H = Fp [-F] x F; the mapping Xi \—> Ui - Xi (i = 1, . . . ,d), where
î i G Fp [F]^d^ has x~x in the zth place and 0 elsewhere, extends to a
group homomorphism 6 : F —> H. Show that there is an Fp [F]-module
homomorphism 0* : / -> Fp [F](d) such that

(y - 1)0* = (yg) . y- 1 for all 1 / G F .

Deduce that the elements Xj — 1 are linearly independent over ¥p [F].]
(ii) Let F be the pro-p completion of F. Write ?rn for the natural

epimorphism

where F n = Pn{F) and F n = Pn(F). Suppose that n , . . . ,rd e FP[[F]]
are such that

= o.

For each i and n, choose r^n G Fp [F] such that r̂  = r^n (modker?rn).
Deduce from (i) that r^n G (Fn — 1)FP [F], and hence that r̂ 7rn = 0 for
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each i and all n. Hence show that

2 - 1

3. Let r be a finitely generated nilpotent group, and put Fab = F/[F, F].
Show that d(F) = d(Fab). [Consider $(F).] Deduce that if Fab is torsion-
free then d(F) = dp(F) for every prime p, while if Fab contains an ele-
mentary abelian p-subgroup of rank rp > 0 then d(F) = dp(F) for those
primes p such that rp is maximal.
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Interlude E

Groups of sub-exponential growth

Let r be a group with a finite generating set X; we assume for conve-
nience that 1 e X and that x € X =» x~x e X. We write Wn = X^
to denote the set of all (values in F of) group words of length n o n l ,
and define the growth function (relative to X) of F by

f(n) = fx(n) = \Wn\ forneN.

This function arises in differential geometry: when F is the fundamen-
tal group of a Riemannian manifold M, the growth rate of / reflects the
curvature properties of M; see Wolf (1968), Milnor (1968). A celebrated
theorem of Gromov (1981) asserts that F has polynomial growth (i.e.
there exists s such that f(n) < ns for all n) if and only if F is virtually
nilpotent. Gromov's proof uses geometric group theory (largely invented
for just this purpose), together with the solution to Hilbert's fifth prob-
lem, to show that if F has polynomial growth then F can be embedded
in a (real) Lie group. R.I. Grigorchuk (1989) realised that if the group
F happens also to be residually a finite p-group, then an alternative
approach is available: one may embed F in its pro-p completion, and
use Lazard's solution to the 'p-adic analogue' of Hilbert's fifth problem,
namely our Theorem 8.34. The result obtained is weaker than Gromov's
in that it applies only to groups which are residually nilpotent; but it is
stronger in that it requires a less stringent growth hypothesis.

Henceforth, G will denote a pro-p group, topologically generated by a
finite subset X satisfying the conditions above; and Wnif(n) will refer
to words in G and the growth function of G respectively. It is clear that
if G is actually the pro-p completion of F and F is residually a finite
p-group, then F may be identified with a subgroup of G, and then Wn
denotes the same set as before; so the growth function of G is the same
as the growth function of F.

We use the notation of Section 12.3. Thus

I = (G-1)¥P[G]

denotes the augmentation ideal of the group algebra ¥P[G] and

for n > 0 .



320 Groups of sub-exponential growth

E l Lemma cn < f(n) for all natural numbers n.

Proof Write Vn = ¥pWn for the linear subspace of FP[G] spanned by the
set Wn. Then dimirp(V^) < \Wn\ = / (n ) , so it will suffice to show that

for each n.
Recall that the mapping g \-> (g — 1) + I2 induces a homomorphism

6 : G —> I/I2. Since I/I2 is abelian and has exponent p, it is clear that
ker# > $(G). Since X generates G modulo $(G), it follows that I/I2

is additively generated by elements of the form x — 1 with x € X; this
shows that

Now let ra > 1 and suppose that In C Fn + J n + 1 . Put Z = Vn n / n .
Then

Z / + / n + 1 / C Z(Vi + I2) + / n + 2 C y n + 1 + Jn+2 ,

since V^Vi = V^+i. The result follows by induction.

According to Proposition 12.17, if G has infinite rank then cn > p(n)
for all n> 1, where p(n) denotes the number of partitions of the natural
number n. Hence if f(n) < p(n) for some integer n > 1 then G has finite
rank.

It is now easy to deduce

E2 Theorem Let T be a finitely generated residually nilpotent group.
Suppose that the growth function f of T relative to some finite generating
set satisfies

f(n) < 2 ^ (*)

for infinitely many positive integers n. Then
(i) r has a faithful linear representation over C;
(ii) r is virtually nilpotent, and has polynomial growth relative to any

finite generating set.

Proof If Gp is the pro-p completion of F then the growth function of Gp,
relative to the image in Gp of the given generating set of F, is dominated
by / . Since p(n) > 2 1 ^ for every n > 1, by Exercise 12.5, the preceding
remarks show that Gp has finite rank. It follows by Proposition B7 that
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r can be embedded in Y\pe7T Gp, where TT is some finite set of primes. By

Theorem 7.19, each Gp is isomorphic to a linear group over Z p , hence

also over C, and (i) follows. (In fact, for (i) it is enough to assume that

(*) holds for just one value of n > 1.)

We only sketch the proof of (ii), following Gromov. According to a

famous theorem of Tits (1972), a finitely generated linear group either

is virtually soluble or else contains a non-abelian free subgroup. Observe

now that F cannot contain such a free subgroup. For if u and v freely

generate the subgroup (u,v), then for k > 1 we obtain 2k distinct el-

ements of the form z\... z^ with each zi equal to either u or v; so if
u £ Wα, v G Wb and c = max{a,b} then |Wcfc| > 2k. Let n > c2 and

put k — [\/n\'. then ck < n so

showing that (*) holds for only finitely many values of n.

It follows that F is virtually soluble. Now Milnor (1968) and Wolf

(1968) have shown that for every finitely generated virtually soluble

group F, one of the following holds: either (a) the growth of F is ex-

ponential (i.e. bounded below by a function of the form cn for some

c > 1 ) , or (b) the growth is polynomial and F is virtually nilpotent. Our

hypothesis (*) excludes possibility (a); therefore (b) must hold, and this

completes the proof.
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Analytic groups over pro-p rings

A p-adic analytic group is a group that 'locally' looks like Z^; as we
saw in Chapter 8, this implies that such a group has an open subgroup
which is a pro-p group. The reason is that Zp is - in an obvious sense
- a pro-p ring. If we start with an arbitrary pro-p ring R and define an
'.R-analytic group' by analogy with the p-adic case, we may reasonably
hope to recover in this more general setting at least some of the results
known in that case.

However, once we leave the realm of discrete valuation rings, the ques-
tion of what should count as an analytic function becomes less clear-cut,
and we find ourselves obliged to impose what may appear to be rather
arbitrary restrictions. This issue is discussed briefly in Section 6.

In Section 1 we give our chosen definition of analytic groups over a pro-
p ring R. The main result is proved in Section 2: every R analytic group
contains an open R-standard subgroup. An R-standard group is what one
gets on endowing the space (m n )^ with a 'formal group law' (m being
the maximal ideal of R). The subsequent sections examine the properties
of these groups. On the one hand, the formal group law gives rise to a Lie
algebra, leading to the beginnings of Lie theory for R analytic groups.
On the other hand, an ^-standard group is a pro-p group; as in the
p-adic case, we can find out a certain amount about its group-theoretic
structure by studying the filtration on the group corresponding to the
filtration of R by the powers of m.

13.1 Analytic manifolds and analytic groups
Throughout this chapter (R, m) will denote an infinite commutative pro-
p ring ; that is, J? is a commutative Noetherian complete local ring with
maximal ideal m, and R/xn is a finite field of characteristic p. We make

322



13.1 Analytic manifolds and analytic groups 323

the standing assumption that the associated graded ring

n=0

is an integral domain (which implies that R is itself an integral domain,
as observed in Proposition 7.27). The significance of this hypothesis was
discussed in §6.6; it ensures that the power series representing an ana-
lytic function on a non-empty open set is uniquely determined (Corollary
6.50), a fact that will be crucial.

As in Chapter 8 we begin with the definition of an i?-analytic manifold.
We refer back to Chapter 6 for what it means to evaluate a power series
with coefficients in R. Recall that m^n^ denotes the set of n-tuples with
entries from m whilst m^ denotes the iVth power of the ideal m (though
we still write i?m, K171 for the free modules of rank m over it!, K).

If R is a discrete valuation ring (we shall abbreviate this to DVR) then,
as explained in §6.6, we can extend the norm defined by the powers of
the maximal ideal to a norm on the field of fractions K of Ĵ ; in this
case it makes sense to evaluate power series with coefficients in K. This
does not work well if R is not a discrete valuation ring, and in that case
we have to restrict power series to have coefficients in the ring R. We
fix the following notation.

• K is the field of fractions of R
• A = K if R is a DVR
• A = R if R is not a DVR
• ||x|| = ck if x G mk \ mfe+1, where c < 1 is a positive constant
• if R is a DVR, TT is a generator for the ideal m; and for x € K we have

\\x\\ = c~n \\7Tnx\\ where 7rnx G R.
• Ao [[X]], where X = (Xi,. . . , Xj), denotes the set of all power series

F(X) =

such that for some k G N,

dam*<a> C R for all a G Nd \ {0}.

Note that AQ [[X]] consists precisely of those power series in A [[X]] that
converge on (m^)^ for some N: this was the content of Lemma 6.45.

13.1 Definition Let U be an open subset of Rn and let / : U —> R be
a function. / is A-analytic on U if for each y G U there exist a formal
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power series F G A0[[Xi,... , Xn]\ and a positive integer N such that
(i) y + K ) W c [ /
(ii) F(x) = /(y + x) for all x G (mN)W.

A function f = (/l , . . . , /m) • U —• i^m is A-analytic on [/ if /* is
A-analytic for i = 1,... , m.

Again, ultrametric analysis allows analytic continuation, in the sense
that a function which can be represented by a power series on a ball
around some point is in fact A-analytic on the whole ball:

13.2 Lemma Let y G Rn and let f : y + (miV)(n) -> A be a func-
tion, where N > 1. Suppose that there exists a power series F G
A[[XU... ,Xn]] such that

/ (y + x) = F(x) for all x G (mN) (n) .

Then f is A-analytic on the ball y + (mN) .

Proof We follow the proof of Lemma 8.3. Let z G y + ( m ^ ) ^ . We
must produce a power series G(X) G AQ[[XL, . . . , Xn]] such that G(x) =
/(z + x) = F(x + (z - y)) for all x G (mN){n) . Suppose that F(X) -
ZaeNn daX« and put a = z - y G (m") (n ) .

Observe to begin with that if x G (m^) then

) N N

for the hypothesis implies that F(X) G Ao [[X]], and (V) = 0 whenever
Pi > OLi. Next, we apply Lemma 6.46 to justify the following rearrange-
ment of power series:

F(x+(z-y)) =
aGN

= y */ai

say, where
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Since the series G(x) is convergent for all x £ {wN) ™ it follows that
G(X)eAo[[X]].

13.3 Lemma Every A-analytic function is continuous.

Proof Let / : U —» R be a A-analytic function, and let aGt / . To show
that / is continuous at a, we may as well assume that /(a) = 0 (replace
/(x) by /(x) — /(a)). We then have to show that for each positive
integer E, there exists an open neighbourhood a + (mD)^ of a such
that f(&+ (mD)W) CmE.

According to the hypothesis, there exist a positive integer N, with
a + (mN)(n) C U, and a power series F(X) = J2aeN™ d a x ° e

AO[[XU... ,Xn]], such that / (a + x) = F(x) for all x e (m^)'"'.
There exists k £ N such that dam*<a> C # for all a £ Nn. Take D =
max{7V, k + E}, and let x £ (mD)(n). Then dax^ ... x%n emE for each
a ^ 0 , while dox° = F(a) = 0. It follows that / (a 4- x) = F(x) £ mE.

13.4 Lemma Suppose that f : £/ —> V and g : V —> W are A-analytic
functions, where U C m ^ , V C m^s^ and W C m^̂  are non-empty open
sets. Then go f is A-analytic on U.

Proof The proof of Lemma 8.5 requires only slight modification. Given
y £ U, we have to find h £ N such that, for each j = 1,... , t, there exists
Hj(X) £ A[[X]] satisfying ^(f(y + x)) = i^(x) for all x £ (mh){r).

Since f and g are A-analytic, there exist hi and h^ £ N such that
(i) for each i = 1,... ,5, there exists -Fi(X) = J3a€Nr &<* W- î*1 • • •

X ^ £ Ao[[X]] such that /i(y + x) = F*(x) for all x £ (mhl){r); and
(ii) if we set b = (&o(l), • • • > ^o(5)) — f (y)> then for each j = 1,... , t,

there exists G -̂(Y) = E / 3eNs c^(j)Y^ £ A0[[Y]] such that ^ ( b + y) =
G j(y)forally£(m / l 2) ( s ) .

By the previous lemma, the function x ^ F j (x) is continuous for each
i = 1,... , s. So there exists h% £ N such that

f(y + x )£b+(m ' l 2 ) ( s )

for all x £ (m^1+/l3)(r). Thus

where zi = JFi(x) — 60(*) for 2 = 1 , . . . ,5.
We now apply the work done in Chapter 6 on composition of power
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series. For each i let ^ ( X ) = F*(X) - bo(i). Put Hj(X) = (Gj o E)(X)

for j = 1,... ,£.

If .R is not a DVR then A = R and all the power series have coefficients

in R. It follows by Corollary 6.48 that for all x G ( m

/ l l + ' l 3 ) ( r ) we have

9j(f(y + x)) = G ^ (x),... , £ s(x)) = (Gj o E)(x) = fl^x). (1)

Now suppose that R is a DVR, and let k G N be such that for i =

1,... , s a n d a l l a G N r \ { 0 } ,

Let /i4 = max(/ii + /13, A:) + h^. Since G^ converges at (TT'12, . . . , TT^2) G

(mh2)(s), we have l i m ^ * \\c0(j)\\ ch2^ = 0 (recall that ||-|| is

the norm on K and c = \\n\\). Thus if x G (m^4) r then r̂  =

sup{||6a(2)xa|| I a 7̂  0} < ch2 for z = 1,... ,5. So the criterion for

applying Theorem 6.47 applies, showing that (1) holds for all x G

K0 ( p ) .
Thus in either case each gj o f is represented by the power series Hj

on a suitable neighbourhood of y, and the result follows.

13.5 Definition (i) Let X be a topological space and U a non-empty

open subset of X. A triple (J7,0, n) is an R-chart on X if 0 is a home-

omorphism from U onto an open subset of Rn for some n G N. The

dimension of the chart is n. The chart (f/, 0, n) is a global chart if

(ii) Two charts (J7,0, n) and (V, T/>, ra) on a topological space X are

compatible if the maps ipo<^"1 |0([/nv) a n ( i (/)OV;~1U(t/ny) are A-analytic

functions on </>([/ Pi V) and xp(U D V) respectively.

(iii) An R-atlas on a topological space X is a set of pairwise compat-

ible ^-charts that covers X; i.e. it is a set of the form

with the following properties:

• for each i G /, (L^,0i,n^) is an β-chart on X;

• for all i,j G /, (Ui,4>i,rii) and (Uj,(f)j,nj) are compatible;

• X = \Ji€lUi.

A is a global atlas if for some i G / the chart ([/*, < ,̂ n j is global.
(iv) Let A and 5 be atlases on a topological space X. Then v4 and B

are compatible if every chart in 4̂ is compatible with every chart in B]
that is. if A U B is an atlas on X.
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(v) An R-analytic structure over R on a topological space X is an
equivalence class of compatible atlases.

That compatibility of atlases is an equivalence relation can be proved
as in Chapter 8, using Lemma 13.4. The space X endowed with an
^-analytic structure will be referred to as an analytic manifold over R,
or an R-manifold.

13.6 Examples: analytic manifolds over R.
(i) Let X = K171. For each k G Km put Uk = k + f?m, and define

<j)k'.Uk-> Rm by (f)k(u) =u-k. Then A = {(Uk,(f)k,m) | k G Km} is
an atlas on X] the charts are compatible since if Uk C\ Uk> is non-empty,
then k - k! G Rm and (j)k o ̂ fe/1|</,fc,(c/fenc/fe/)(w) = u + (kf - k), clearly
an i2-analytic function of u. (Warning: in asserting that A is an atlas,
we implicitly impose a topology on Km; if R is not a DVR, this is not
the same as the field topology induced by extending the norm, as in
Exercise 6.14: it cannot be, since in the latter topology K is not locally
compact.)

(ii) Let X = GLn(iif); then X has an i?-analytic structure defined
as follows. Put U = l n + Mn(m), an open subgroup of X. Define
(f> : U —> Mn(m) by 4>(u) = u — ln . For each / i G l , let Vh = hU, and
define (f>h • Vh —> Mn(m) by (j>h{x) = (f)(h~1x). The charts (Vh,(f)h>n2)
are compatible since if VhCiVh' is non-empty, then h~xh! eU < GLn(R)
and (frhcxfrh'1(u) = h~1h'u] as above, this is clearly an i^-analytic function
of u. So A = {(Vh, 4>h, ™2) • h G X} is an fi-atlas on X. Note that the
topology on X implied by this atlas is not necessarily the one induced
from the product topology on Mn(K) = Kn , where K is topologised as
in Example (i).

(iii) A discrete space, an open subspace of a manifold, and the product
of two manifolds have natural analytic structures exactly as in Examples
8.9. An open subspace of the manifold X, with the induced analytic
structure, will be called an open submanifold of X.

(iv) Suppose that R has a local subring 5, such that (5, mfi5) satisfies
our standing hypotheses and such that R is finitely generated and free
as a module for S; for example

S = Ro [[Ti,... ,Tr]\, R = R , [[TU. .. ,Tr)]

where Ro is Fp or Zp and R\ is a finite extension of R$. Then any R-
manifold X has a natural 5-analytic structure, obtained as follows. Fix
an iS-module isomorphism a : R —• Se. To each i?-chart c = ([/, 0, n)
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of X, associate the S'-chart cs = ([/, a o </>, en). Three points have to be
verified: (a) that o~(f)(U) is an open subset of Sen, so that c^ really is
an 5-chart, (b) that if c and d are compatible ^-charts then cs and c's
are compatible 5-charts, and (c) that a different choice of isomorphism
a produces the same S-analytic structure; the argument is outlined in
Exercise 4. The 5-manifold X^s) obtained in this manner from X is said
to come from X by restriction of scalars.

In order to define R-analytic groups, we need the concept of an ana-
lytic function between two manifolds:

13.7 Definition Let X and Y be two i^-manifolds. A function / : X —>
Y is analytic if there exist jR-atlases A and B of X and Y respectively
such that, for each pair of charts ([/, 0, n) G A and (V,^;,m) G B, the
following hold:

(i) f~1(V) is open in X, and
(h) the composition

is a A-analytic function from the open set (^(C/n/~1(V)) C Rn into R171.

As in Chapter 8, the fact that A-analytic functions are continuous
implies that an analytic function / : X —>  Y is continuous. Similarly,
one deduces from Lemmas 13.3 and 13.4 that the composition of analytic
functions between manifolds is analytic. If 5 is a subring of R satisfying
the hypotheses of Example 13.6(iv), then every ^-analytic function X —>
Y is 5-analytic as a function X(S) —• Vj;^; for the proof see Exercise 4.

13.8 Definition Let G be a topological group with an R-analytic struc-
ture. Then G is an R-analytic group if the functions

(x,y) y-+ xy : G x G ^ G
XV-* x'1 :G^G

are analytic. An analytic homomorphism between R-analytic groups is
called a morphism.

13.9 Examples: i2-analytic groups.
(i) Let G = (Km, +). Then G is an ^-analytic group with respect to

the analytic structure given in Example 13.6(i).
(ii) Let G —  (K*,-) the multiplicative group of the field. Example
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13.6(H) with n = 1 defines an R-analytic structure on this group. If
1 + u e 1 + m then 0((1 + w)"1) = Z^Li(~!)n^n> which is an ana-
lytic function of u = 0(1 + u). In general, if h € G and u G m then
</>h-i {{hil + u))-1) = £^°=1(-l)nwn which is analytic in <j>h(h(\ + u)) =
u. Multiplication is clearly analytic with respect to this structure. Hence
G is an β-analytic group.

(iii) If i^ is a DVR, then GLn(K), with the analytic structure given
in 13.6(h), is an ^-analytic group. If not, we can only say that GLn(i?)
is jR-analytic.

(iv) Let S be a subring of R satisfying the hypotheses of Example
13.6(iv), and let G be an ^-analytic group. Then G is an ^-analytic
group, when considered as an S-manifold by restriction of scalars; this
follows from the remark preceding Definition 13.8. In particular, by
Corollary 6.43, it follows that if R has KruU dimension 1 and character-
istic p then G is analytic over ¥p [[T]], while if R has Krull dimension 1
and characteristic zero then G is a p-adic analytic group.

Further examples are provided by

13.10 Proposition Let G be a topological group containing an open
subgroup H which is an R-analytic group. Suppose that for each g G G,
there exists an open neighbourhood Vg of the identity in H such that

(i) gVgg-1 C H and
(ii) the function kg : Vg —> H defined by x i—» gxg~1 is analytic.

Then there is a unique R-analytic structure on G inducing the R-analytic
structure on H with respect to which G is an R-analytic group.

The proof is exactly as in Proposition 8.15. However, in contrast to the
case of j9-adic analytic groups, continuous homomorphisms of ^-analytic
groups are not necessarily analytic (see Exercises 1 and 3); the mere
possession of an open ^-analytic subgroup is therefore not sufficient to
ensure that a topological group has the structure of an ^-analytic group
(see Exercise 3).

In Chapter 8, we defined the dimension of a p-adic analytic group
by identifying it with an intrinsic group-theoretic invariant, the rank of
any uniform open subgroup. This interpretation is no longer available,
unless we impose a special condition as we shall do in Section 5; instead
we refer to the underlying analytic manifold.

13.11 Lemma Let X be an R-manifold and (£/, 0, n), (V, Iβ, m) charts
of X with U n V ± 0. Then m = n.
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Proof Choose u G U D V. Replacing </> by the map x »-» 4>(x) —
(j)(u), we may suppose that 4>(u) = 0; similarly we assume that ip(u) =
0. Then there exists N G N such that T/;"1 ( ( m * ) ( m ) ) C U n V

and (J)'1 ( ( m ^ ) ^ ) C U n V. Suppose that m < n. Since the two
charts are compatible, there exist power series Fi(Xi,... ,Xn),... ,
Fm(Xu... , X n ) a n d f f i ( y i , . . . , y m ) , . . . , J ? n (y i , . . . , y m ) such that for

Nf > N large enough and x G (m^ J we have

(Hi o F)(x) = ffi(F(x)) = x< (i = 1,... , n).

By the 'uniqueness of power series', this implies that (Hi o F)(X) = Xi
for each i. Now we can write Fi = anX\ + • • • + a i nXn + O(2) and
iifi = biiY\-\ \-bimYrn-\-O(2)1 where 0(2) stands for a sum of terms of
degree at least 2. Then the linear part of (HioF)(X) is Ci\X\-\ \-CinXn

where (c^) = (bij)(dij), the product of an n x m matrix with an m x n
matrix. Since (Hi o F)(X) = Xi it follows that (c^) is the identity
matrix, and this is only possible if m = n. (This argument will reappear
centre-stage in Section 13.3.)

We can therefore make the following

13.12 Definition Let G be an i?-analytic group. The dimension dim(G)
of G is the common dimension of all charts of G at 1.

13.2 Standard groups
When dealing with power series, it will be convenient to use the following
shorthand:

• the expression O(n) stands for any power series in which every term
has (total) degree at least n;

• the expression O'(n) stands for any power series in which every term
has total degree at least n and has degree at least 1 in each variable.

The formal notation G o F for the composition of power series, intro-
duced in Chapter 6, becomes unwieldy when applied to multiple compo-
sitions, and we shall allow ourselves to use a more transparent notation,
exemplified by G(F(X)).

We shall need to broaden the definition of standard groups given in
Chapter 8:
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13.13 Definition Let G be an jR-analytic group. Then G is an R-

standard group, of level n and dimension d, if

(i) the ^-analytic structure on G can be defined by a global atlas

{(G,i/j,d)} where ip = (^l,... ,^d) is a homeomorphism onto ( m n ) ^

and -0(1) = 0;

(ii) for j = 1,... , d, there exist formal power series J F ) ( X , Y ) G

i?[[X, Y]], without constant term, such that Iβ (xy) = F(ip(x),i(j(y)) for

all x,yeG.

In this case, (G,ip,d) is a standard chart.

We shall use the convention that ci2-standard group' means 'JR-

standard group of level 1'. While the dimension of an i?-standard group

is just its dimension as an i?-analytic group, its level is not uniquely

determined if R is a DVR, as shown in Exercise 5. When R is not a

DVR, however, the level is indeed unique: this is proved in Exercise 6.

13.14 Definition Let -Fi(X) for i = 1,... , d be power series in

R[[Xi,... ,-Xd]]. Then F = ( F i , . . . ,Fd) is a formal group law, of

dimension d over R, if

(i) F(X,0) = X and F(0, Y) = Y, and

)) = F(F(X,Y),Z).

13.15 Lemma Let G be an R-standard group, with standard chart

(G,^,d). Then a power series F satisfying condition (ii) of Definition

13.13 is a formal group law.

Proof Given the 'uniqueness of power series', the proof of (i) is precisely

as in Lemma 8.27(H), while (ii) follows from the associative law in G.

The following proposition records some features possessed by any for-

mal group law:

13.16 Proposition Let ¥ be a formal group law.

(i)

F(X, Y) = X + Y + B(X, Y) + O'(3)

where B(X, Y) is bilinear in X and Y.

(ii) There exists a 'formal inverse' I(X) = - X + B(X,X) + 0(3) €
R [[X]] such that
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(iii) The 'formal commutator' C(X,Y) = F(IoF(Y,X),F(X, Y))
satisfies

C(X, Y) = B(X, Y) - B(Y,X) + O;(3). (2)

Proof Again, the work has largely been done in Chapter 8. Part (i) is
an immediate consequence of property (i) of a formal group law.

(ii) follows by adapting the proof of Theorem 6.37 ('Inverse Function
Theorem'). As there, W^ will stand for the homogeneous part of degree
j in a power series W. We want to find power series / i , . . . , Id such that
F(X,I(X)) = 0 = F(I(X),X). Put

for i = 1 , . . . , d. Then F ( X , I (X) ) = 0 is equivalent to

(X) ) . (3)

Write Wi(X) for the right-hand side of (3). Then for t > 2, w f + 1 ] ( X )
is the same as the homogeneous par t of degree t + 1 in the polynomial

t + i

fe=2 V j=2

Also, W '̂21 (X) = - i ^ [ 2 1 ( X , - X ) = # i ( X , X ) . So we can construct the
/J*1 recursively by put t ing lf] = Bt(X.,X) and, for t > 2, i ] * + l 1 =
W\ , since the polynomial (4) depends only on l\*',... , 7 j ' for j < t.

We can solve F ( I ' ( X ) , X ) = 0 similarly. To show tha t I and I ' are the
same power series we use the associativity of the formal group law:

(iii) we leave as an exercise in substitution of power series, using the
expressions established in (i) and (ii).

Part (ii) shows that the definition of 'standard group' (of level 1)
given above is equivalent to the stronger definition in Chapter 8 (where
we demanded also that the inverse operation be represented by power
series).
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Since the coefficients of the power series in a formal group law lie in R,
each of these power series converges on the maximal ideal m and takes
values in m. Every formal group law of dimension d over R therefore de-
fines a binary operation on the set m ^ . It is tempting to assert that this
makes m ^ into a group; but something still needs to checked: namely
that identities in formal power series translate into the corresponding
identities for our group operation when evaluated on m.

This is a non-trivial point, as it is possible for both sides of a formal
power series identity to converge at some point and yet have different
values (see Exercise 6.7). However, Corollary 6.48 prevents this sort of
pathology provided that we stay within the ideal m, and we may infer

13.17 Proposition Let F be a formal group law of dimension d over
R. Then G = m ^ is an R-standard group, with group operation

xy = F(x,y).

and standard chart (G, Id, d).

The only point we have to add to the comments above is that Proposi-
tion 13.16(ii) ensures that the inverse operation in this group is also an
analytic function, justifying the implicit claim that G is an ^-analytic
group.

Remark The above discussion in fact shows that a formal group law
defines a group structure on m ^ for any pro-p ring (i?,m), whether or
not gr(iJ), or indeed R, is an integral domain. Such a group could also
be referred to as a 'standard group' (as in Lubotzky and Shalev (1994)).
However we prefer to follow Bourbaki and reserve the name for certain
types of analytic groups. Lacking a well-defined category of analytic
groups over a pro-p ring which is not an integral domain, we do not
consider these examples here, although many of the results proved for
our standard groups hold equally in the more general context. However,
without a concept of 'analytic isomorphism', it is not clear how the
concept of dimension should be defined (see Exercise 1).

We leave it as an exercise to verify the following

13.18 Examples: formal group laws.
(i) F(X, Y) = X + Y is a formal group law.
(ii) F(X, Y) = X + Y + XY is a formal group law.
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(iii) Let X = (Xij) and Y = (Yij) benxn matrices of indeterminates.
Then F(X, Y) = X + Y + X - Y i s a formal group law of dimension n2,
where (X • Y).. = £LiX u Y £ j .

13.19 Examples: i?-standard groups
(i) G = (m^, +) is an i?-standard group.
(ii) G = (1+m, •) is an i?-standard group, with standard chart (G, u \-^

u — 1,1). The corresponding formal group law is X -f Y + XY.
(iii) GL^(i?) = 1 + Mn(m) is an ^-standard group, with standard

chart (G, w n > w - l n , n2). The corresponding formal group law is given
in (iii) above.

(iv) Let G = SL\(R) = SLn(R) n GL^(iJ); this is the kernel of the
natural map SLn(i?) —> SLn(R/m). Then SL^(i?) has the structure of
an (n2 — l)-dimensional i?-standard group, with standard chart

,ri2 - 1);

see Exercise 9. More generally, any Chevalley group functor gives rise
to a standard group over R (Exercise 11).

(v) Let G be a uniform pro-p group. We have seen in Corollary 9.13
that P2{G) (or P%(G) if p = 2) is a standard group, with standard chart
given by the 'co-ordinates of the first kind', which identify G with the
Lie algebra log(G). The corresponding formal group law is <£(pX,pY)
(or c|>(4X,4Y) ii p = 2), where $ is the Campbell-Hausdorff series.

(vi) Let H be an i?-standard group of level m > 1 , with standard
chart (H,ijj,d), and corresponding formal group law F. According to
Proposition 13.17, F defines a group operation on m ^ so that m ^
becomes a standard group of level 1. Thus ip(H) — (mm)(d) is an open
subgroup in a standard group of level 1. As ip is a homeomorphism, we
can construct a standard group G of level 1 that contains H as an open
subgroup, with the induced analytic structure (identify G with m ^ and
identify H with (mm)(^ via V)-

(vii) Assume that R is a DVR, and let G be an it!-standard group
of level m > 1 , with standard chart (G,^,d). Exercise 5 shows how ip
may be modified so as to turn G into an i?-standard group of level 1.
(Exercise 6, on the other hand, shows that this can never be done if R
is not a DVR.)

Further properties of standard groups are examined below. First, let
us state the main result.
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13.20 Theorem Let G be an R-analytic group. Then G contains, as
an open submanifold, an R-standard subgroup of level h for some h.

Proof We begin as in the proof of Theorem 8.29. Let A be an atlas
defining the manifold structure on G. There exists a chart (U, (f), d) e A
with 1 G U. After making a simple translation of coordinates, we may
assume that 0(1) = 0. By hypothesis, the functions (x,y) i-> xy and
x —> x" 1 are analytic on G x G and G respectively. Hence there exist
a neighbourhood (xtih)^ of the point </>(l) = 0 and power series Fj G
Ao[[X, Y]], Ij G Ao[[X, Y]] {j = 1,...,d) such that (i) <T1(m' l)(d) Q U,
and (ii) for all x,y € (̂ >"1 (m' 1 )^ we have

Now given the 'uniqueness of power series', the proof of Lemma 8.27
is quite formal and so may be applied here, to show that

F i(X,Y)= J2 cj,a,0XaY" = Xj + Yj + O(2), (5)

Suppose first that i i is not a DVR. Then Fj(X, Y) G ii[[X, Y]] and
Ij G R[[X]} for each j . It follows that Fj (X^μ) G mh and Ij (A) G mh

for all A and ^ € (mh)W. This implies that H = 0-1(m/l)(d> is closed
under both multiplication and inversion, so H is an open subgroup of
G. Moreover, (if, <j>\H ,d) is clearly a standard chart, showing that H
is a standard group of level h, with corresponding formal group law F.

If R is a DVR, we argue as in the proof of Theorem 8.29, using ir
in place of p. Since Fj G A0[[X,Y]] for each j , there exists a positive
integer k such that

cJ>l/37rfe(<a>+</3>) e R

for all OL^β G Nd \ {0} and each j ; it follows from (5) that provided
N > 2k, the power series

has coefficients in R. Similarly, provided N is large enough, each of the
series
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has coefficients in R. Choosing such a large integer N, we now put

H = 0 - 1 ( m f t + J V ) ( d \ and define ip : H -> (mh)W by ip(x) = TT~N4>(X).

Then for x,y G H, with <f>(x) = A and <f>(y) — μ, we have

ipjix-1) = Tr-N4>j(x~1) = K-NIj{\)

Thus H is a standard group of level ft, with standard chart (i7, i\), d) and

corresponding formal group law F. This completes the proof.

We turn next to the group-theoretic structure of standard groups.

We assume in the rest of this section that our standard group G of

dimension d and level ft has ( m / l ) ^ as its underlying set, and standard

chart (G,Id, d) (this is of course just a matter of notation: given a

standard chart (G, 0, d) we use <j> to identify G with (xnh)^). We write

to mean that F is the formal group law representing multiplication in

G. For any ideal / C m^ we put G(7) = /. Each such ideal is closed

in R (Atiyah and Macdonald (1969), Corollary 10.19); since F and the

'formal inverse' I when evaluated on I^ converge with sums in I^, we

see that G(7) is a closed subgroup of G. In particular, for each n > ft

we write

Thus G n = ((mn)(d),F) is a standard group of level n; it is an open

submanifold and a subgroup of G.

13.21 Lemma Let G = ((mh)(d\F) be a standard group, and let I and

J be ideals of R contained in mh.

(i) G(7) < G.

(ii)

(iii)

Proof (i) follows from (ii) on putting J = mh. Part (ii) is a consequence

of Proposition 13.16(m). This shows that [x,y] = C(x,y) where the

series C(X, Y) is in O'(2); hence if x G G(7) and y e G(J) then each

term of C when evaluated at (x, y) lies in I J.
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In order to prove (iii), we need to consider the power series that rep-
resent the operation x i-> xp in G. For each m > 1, let G™(X) (i =
1,... , d) be the power series constructed in Lemma 9.1: so Gj(X) = X^
and for m > 1

We can write

with each cia(m) G i2. Now the proof of Lemma 9.1 remains valid when
Zp is replaced by any integral domain R of characteristic zero, and shows
that

where each ^ j a G .R. If R has characteristic p, the proof still shows that
(6) holds for all a G Nd such that (a) < p — 1 (one of the essential steps,
Exercise 9.2, breaks down when applied to polynomials of degree p).

Now let x G G(7) = J<d>. Then x*> - (G?(x),... ,G^(x)), and for
each i

Gf(x) = X) c - W x a + E C-(P)X°-
l<(a)<p <a)>p

Since each ^ija (p G p.R, it follows from (6) that the first sum lies in pi;
and the second sum clearly lies in Ip'. The claim (iii) follows.

It is now easy to derive

13.22 Proposition Let G be an R-standard group of dimension d and
level h, and let n and m be integers not less than h.

(i) Gn < G;
(ii) [Gn,Gm]<Gm+n;
(iii) If m < n then Gn/Gn+m is a finite abelian p-group isomorphic

to the additive group (mn/mn+m) (d);
(iv) G = lim (G/Gn) and hence G is a pro-p group.

Moreover, if char(i^) = p then
(v) (Gny < Gpn;
(vi) Gn > Dn{G).
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Here Dn(G) denotes the nth dimension subgroup of G over Fp, defined
in §11.1.

Proof Parts (i), (ii) and (v) are immediate from the preceding lemma,
and (vi) follows from (ii) and (v). To prove (iii), observe that for x j E
(mn)(d), we have

by Proposition 13.16(i). It follows that the identity map Gn —»  ( m n ) ^
induces a homomorphism from Gn onto the additive group
( m n / m n + m ) ^ , provided m < n; the kernel of this homomorphism is
G n + m . Finally, (iv) holds because R is complete in the m-adic topology.

One of the key problems about analytic groups over pro-p rings is to
what extent is the pro-p ring actually determined by the group? More
specifically, can a group have an analytic structure over two distinct
commutative pro-p integral domains (-Ri,rrii) and (#2,1112)?

The answer is 'yes' if R2 is a finitely generated free module over its
subring R\, as indicated in Example 13.9(iv) (just as a complex Lie group
may be regarded as a real Lie group). More challenging is the possibility
of a group being analytic over both Fp[Xi,T2] and ZP[T], both rings of
Krull dimension 2 (in Section 13.5, below, we discuss a condition which
ensures that the group does at least determine the Krull dimension of
the ring). Until we have characterisations of these categories of groups
like that for the category of p-adic analytic groups, questions of this
sort will be difficult to answer. However, the known characterisations of
p-adic analytic groups can be used to show these groups won't admit an
analytic structure over a ring significantly different from Zp:

13.23 Theorem Let G be an R-analytic group. Suppose also that the
topology of G is not discrete. Then G can have the structure of a p-adic
analytic group if and only if R is a finitely generated integral extension
ofZp.

Proof 'If follows from Example 13.9(iv). To establish the converse,
suppose that G is R-analytic, of dimension d. Then d>1 since G is not
discrete. By Theorem 13.20, G has an open jR-standard subgroup H of
some level h. Proposition 13.22(iii) shows that for each n > h,



13.3 The Lie algebra 339

Now suppose that G is also p-adic analytic. Then so is H; as H is a
pro-p group, it follows by Corollary 8.34 that H has finite rank, r say.
As d > 1, this now implies that

| m n : p m n + m2 n | < pr

for all n > h. Taking n — max{r + 1, /i}, we see that for some i > 0 we
must have

m n + i + pmn = m n + i + 1 + pmn. (7)

This shows at once that pR ^ 0, since R is infinite and the powers
of m intersect in 0; therefore R has characteristic zero, and by Cohen's
Structure Theorem 6.42 R is a finitely generated integral extension of
Ri = Zp[[Ti,. . . ,Tfc]], for some k>0. To complete the proof, we
must show that k = 0. Since R is integral over Ri, there is a prime
ideal P of R such that P n Ri = pR\. Write — : R -+ i ? /P for the
natural map. As i? is a Noetherian integral domain, Krull's Intersection
Theorem tells us that the powers of m intersect in 0; with (7) this implies
that m = 0. Thus i^ is finite; but P was chosen so that R contains a
copy of Ri/pRi = ¥p [[Ti,... , X^]], so k must be zero as required.

13.3 The Lie algebra
In this section, we outline the construction of the Lie algebra associated
to an ^-analytic group. The method used in Chapter 9 is no longer
applicable; instead, we shall simply extract a 'Lie algebra law' from
the formal group law. That this procedure actually gives the same Lie
algebra in the p-adic case was established in Exercise 9 13.

So let

F(X, Y) = X + Y + B(X, Y) + O;(3)

be a formal group law of dimension d over i ,̂ where B(X,Y) =
(Bi(X, Y)) and B»(X, Y) is bilinear in X and Y for i = 1,... , d. To F
we associate the d-tuple of bilinear forms

(X,Y)F = B(X,Y) -B(Y,X) .

13.24 Lemma The polynomials (X, Y) = (X, Y)p satisfy the 'formal
Jacobi identity7

(X, (Y, Z)) + (Y, (Z, X)) + (Z, (X, Y)) = 0.
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Proof We know from Proposition 13.17 that the set m ^ becomes a
group with multiplication given by evaluating the formal group law F.
This group satisfies the Hall-Witt identity given in Section 0.3, which
we shall use in the following alternative form:

[ab,[b,c]][bc,[c,a]][<?,[a,b]] = l. (8)

Recall now (Proposition 13.16(H)) that the commutator formula for a
formal group law takes the form

C(X, Y) = B(X, Y) - B(Y, X) + C(3).

Let us write [X, Y] for the formal power series C(X, Y) and XY for the
formal power series F(I(Y),F(X, Y)). It is easy to see that

and hence to deduce the following formal identities:

[XY,[Y,Z]]=(X,(Y,Z))
[YZ,[Z,X]]=(Y,(Z,X))
[ZX,[X,Y]]=(Z,(X,Y))

Since F(X, Y) = X + Y + O(2), it follows that

F( [XY, [Y, Z]] , F( [Yz, [Z, X]] , [Zx, [X, Y]])) (9)
= (X, (Y, Z)) + (Y, (Z, X)) + (Z, (X, Y)) + 0(4).

Since (8) holds for all a,b,c £ m ^ , the first line of (9) must be identically
zero by the 'uniqueness of power series'. Hence in particular the terms
of degree 3 sum to zero, and the lemma follows.

Thus, in an obvious sense, (X, Y)p is a 'formal Lie algebra law', and
so defines a Lie algebra structure on Rd; the resulting Lie algebra will be
denoted (Rd, (, )p). With a view to examining the functorial properties
of this construction, we make the following

13.25 Definition Let F and F' be formal group laws, of dimensions d
and e respectively. A formal morphism F —• F' is an e-tuple of power
series

e = (e 1 , . . . ,e e )eAo[[x 1 , . . . ,xd ] ] ( e \
with zero constant terms, such that

(0oF)(X,Y)=F' (e(X) ,e(Y)) . (10)
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Now let B and B' be the bilinear parts of F and F' respectively, and
write

where @\ is quadratic. Examining the terms of degree 2 in (10) we find
that

of](Y)

for i = 1,... , e. Interchanging X and Y and subtracting the resulting
identities now gives

13.26 Proposition Let F and F' be formal group laws and let © be a
formal morphism F —• F'. Then

((x, Y)F) = (oW(x),eW(Y))F/,

where ©W(X) denotes the linear part of ©(X).

Suppose now that H = ((mn)(d\F) and H' = ((mm)(e \F) are two
standard groups and / : H —• Hf is an analytic homomorphism. Then
there exist a neighbourhood (mN)^ of 0 in H and an e-tuple ©(X)
of power series in Ao [[Xu... ,Xd\] such that /(x) = 0(x) for all x G
(m^)^ . The fact that / is a group homomorphism, together with the
'uniqueness of power series', implies that © is a formal morphism F —>
F ;. Write Df for the ̂ -linear mapping Rd —• Re given by evaluating
©I1!. Then the last proposition shows that

is a Lie algebra homomorphism.
Suppose that g : Hf —> ( ( m ^ ^ F " ) is another analytic homomor-

phism, represented by the formal morphism \I> : F ; —>• F ; /. The proof of
Lemma 13.4 shows that g o / is represented by \I/ o @; and it is very easy
to see that (* o e)W = ^l1] o ©W; hence

D(gof) = DgoDf
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(we have proved the chain rule!). Thus the assignment

((m")< d \F)~ (#«,(,),,)

is a functor, from the category of 'standard groups with given standard
chart' to the category of Lie algebras over R (given a standard chart
on an arbitrary standard group G, we use it to identify G with some
((m")(d\F)).

Given two standard charts on a standard group G, we thus obtain
two Lie algebras: but they are isomorphic via Df, where / is the iden-
tity map on G considered as an analytic isomorphism between the two
standard structures. Up to isomorphism, therefore, our functor asso-
ciates a unique Lie algebra L(G) = (Rd, (, )p) to each standard group

We are now ready to define the Lie algebra of an R-analytic group.
Let G be an ^-analytic group. Then G contains an open i?-standard
subgroup H of some level (Theorem 13.20). We define the Lie algebra
of G to be

C(G) = L(H) ®R K,

and have to verify that this is independent of the choice of H.
Suppose, then, that H' is another open i?-standard subgroup of G.

Then

Hm <H'<H
n —

for some m and n (in the notation of the previous section). Let
a : Hm —> H'n and $ : H'n —> H be the inclusion mappings. Both
are analytic homomorphisms, hence induce Lie algebra homomorphisms

Now it is clear from the definition that L(Hm) = L(H) and that
is the identity map on this Lie algebra; as D(P o a) = Dβ o Dα, by the
functoriality established above, it follows that Dα is injective. Hence
Dα induces an injective Lie algebra homomorphism from L(H) ®R K
into L(H'n) ®R K = L(Hf) ®# K; since these Lie algebras are of the
same finite dimension, it follows that they are isomorphic.
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13.4 The graded Lie algebra
Throughout this section, G will denote a standard group of the form
(m(d),F); for each n > 1 we write Gn = (mn)(d), as in Section 2. We
defined the Lie algebra L — L(G) to be the R-module Rd with the
operation

(x,y) .-> (x,y)p = B(x,y) - B(y,x).

The corresponding graded Lie algebra is
oo oo

grL(G) = 0mnL/mn+1L = 0 L n
n=1 n=1

where Ln = xnnL/xnn+1L for each n. As usual, the binary operation is
defined on homogeneous components by

(x + mn+1L, y + mm+1L) = (x, y)F + mn + m + 1L G L n + m

for x G xnnL and y G mmL, and extended by bilinearity. This makes
gri(G) into a graded Lie algebra over the field R/xn.

In group-theoretic terms, we have xanL = Gn and xnmL = Gm, and
the Lie bracket Ln x Lm —• L n + m can be expressed in the form

i,2/Gm+i) = [x,y] Gm + n + i (x eGn,y e Gm)]
to see that this is equivalent to the above, observe that if x = x G mnL
and 2/ = y G mml/ then

[x, 2/] = C(x, y) = B(x, y) - B(y, x) + O'(3)
= (x,y)F (modGm+n+i).

Now let

Lo = Lo(G) = L/xaL.

Thus Lo = (R/xny ' is a d-dimensional Lie algebra over the finite field
-R/rn; its Lie bracket is the reduction modulo m of the bilinear mapping
B(X, Y) — B(Y, X). As vector spaces over R/xn we may identify grL(G)
with LQ(G) ®R/ra gr(m)5 where

n > 1

is the maximal ideal of the graded ring gr(jR). The fact that (, )p is
bilinear over R now implies
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13.27 Proposition grL(G) is isomorphic as a Lie algebra over R/m
to L0(G) <8>R/mgr(m).

The Lie algebra grL(G) therefore does not retain much information
about the group G. For example (see Exercise 10)

since gr(Zp) S gr(Fp[[T]]) it follows that

grL(SLi(Zp))^gr£(SLi(

Nevertheless, grL(G) has its uses, as we shall see in the following section.

13.5 jR-perfect groups
Standard groups over Zp have the nice property that their lower p-series
coincides with the filtration induced by the powers of the maximal ideal
m. For pro-p rings R of more general type, the link between the group-
theoretic structure of an .R-standard group and its analytic structure is
much weaker; the additive group of ¥p [[T]], for example, bears no trace
of the underlying ring (beyond its characteristic!).

On the other hand, one might expect that the structure of a compli-
cated group like SL^(i?) should to some extent reflect the structure of
the ring R. Although this group, being a pro-p group, cannot be perfect,
it is in some sense close to the perfect group SLn(K) (a group is perfect
if it is equal to its derived group: thus perfect groups are at the opposite
extreme to abelian groups). In general, we do not know how to 'swell
up' an ^-standard group G into a 'if-standard group'; but there is no
difficulty at the level of Lie algebras.

Rather than going 'up' to the Lie algebra C(G) over K, however, it
turns out to be sufficient to impose a condition on the finite Lie algebra
Lo(G) defined above: this has the advantage of being recognisable in a
small finite quotient of G, and is reminiscent of our definition of powerful
pro-p groups.

As before, we shall identify a d-dimensional ^-standard group G with
m<d\ and for n > 1 write Gn = (mn)(d\

13.28 Definition Let G be an ^-standard group of positive dimension.
Then G is R-perfect if [G, G] = G2.
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It is easy to see that G is i?-perfect if and only if L0(G) is a perfect Lie
algebra: that is, (L0(G),L0(G)) = L0(G).

Important examples of imperfect groups are the /^-standard groups
SL^R) withp ^ 2 o r n ^ 2 : for the Lie algebra L0(SL^(,R)) = sin(R/m)
is perfect unless p = n — 2 (see Exercise 10); more generally, most
Chevalley groups similarly give rise to ^-perfect groups, as explained in
Exercise 11.

The following proposition shows that in any fi-perfect group, just as in
the p-adic case, the filtration denned by the analytic structure is rigidly
determined by the group structure.

13.29 Proposition Let G be an R-perfect group of dimension d. Then
(i) G is a finitely generated pro-p group with

d(G) = dimFp (G/G2) = d • dimFp (m/m2) ,

and the following hold, for all n, ra > 1:
(ii) [Gm,Gn] = Gm+n \

(iv) if pR = 0 then Gn = Dn(G) .

Proof Proposition 13.22(iii) tells us that G/G2 = ( m / m 2 ) ^ . As G2 =
[G, G] by hypothesis, it follows that in fact G2 = ^(G), and (i) is clear.

(ii) Since LQ(G) is perfect, so is the graded Lie algebra grL(G) =
0 £ L i £ n = Lo(G) ®R/m gr(m). This implies that (L n ,L m ) = L n + m

for all n and ra. Translating this back to the group we see that
[Gm, Gn] Gm+n+i = Gm+n for all n and ra.

Now let k > 1 and suppose inductively that [Gm,Gn] Gm+n+fc =
Gm+n for all n and ra. Then

[Gm, Gn\ Gm+n+k+i — [Gmt  Gn] [Gm, Gn+i] Gm+(n+i)+/c
= [Gm, Gn] G m + ( n + i )
= Gm+n-

It follows by induction that for each ra and n we have

Gm+n — [ J [G m, Gn] Gm+n+k
k>1

= [Gm, Gn] ,

since [Gm, Gn) is closed in G by Exercise 1.24.
Part (iii) follows from (i) and Proposition 13.22(iii). When R has
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characteristic p, Proposition 13.22(vi) shows that Gn > Dn(G) for all n.
Since Dn{G) > 7n(G) in any case, part (iv) now follows from (iii).

It follows from part (iii) that the Hilbert-Samuel function

n ^ f(n) =
j=0

of the local ring R is encoded in the group structure of the i?-perfect
group G; for if |i2/m| = q then \G : Gn\ = q

df^~l)-d. Now there exists
a polynomial H(X) over Q such that for large values of n,

/(n) = H(n),

and the degree of H is equal to the dimension Dim(i2) of the local ring
R (see Atiyah and Macdonald (1969), Theorem 11.14, or Matsumura
(1986), Theorem 13.4). Thus we may infer

13.30 Theorem Let G be an R-perfect group, and suppose that

|G:Pn(G)|=p»<n>

for each n>1. Then there exists a positive rational number c such that

g(n) = en6 + O(n8-1)

where 6 = Dim(.R).

This shows that a group cannot be both ^-perfect and ^-perfect unless
Dim(jR) = Dim(S).

It also has an interesting group-theoretic consequence. In Interlude
D we stated the Golod-Shafarevich inequality: this asserts for a finitely
generated pro-p group G that

* > d(G)2/4

if there exists a presentation for G on d(G) generators and t relations.
As our final result, we have

13.31 Theorem Every R-perfect group satisfies the Golod-Shafarevich
inequality.

Proof Let dn = dim¥p(Dn(G)/Dn+1(G)). Since Dn(G) > ln{G) =
Pn(G) by Proposition 13.29(iii), we have dn < g(n + 1) for each n.
Theorem 13.30 therefore implies that dn = O(n6), and the result follows
by Theorem Dl.



13.6 On the concept of an analytic function 347

13.6 On the concept of an analytic function
We conclude this chapter with some remarks about our choice of defini-
tion for '^-analytic manifold'. At first sight, the case distinction made
in the definition of a A-analytic function may seem rather unnatural;
it was imposed because on the one hand we want the definition to re-
duce to the usual notion when R is a DVR such as Zp, while on the
other hand we need to be able to compose analytic functions, and this
is problematic if the functions are defined by power series over the field
of fractions of a ring which is not a DVR.

A consistent theory could be developed by simply decreeing that A =
R for every pro-p ring i?, but only at the cost of sacrificing the richness
of the theory in Chapters 8 and 9. For example, the two obvious charts
Zp —• Zp and Zp —• pZp would no longer be Zp-compatible; this is why
we want to allow division by p to count as a p-adic analytic function.
(This particular problem does not arise for a ring like R = ZP[[T]]: in
that case multiplication by a non-unit s maps R onto the subset sR
which is not open in i?; while a chart must be onto an open subset of
R.)

When R is a DVR, we therefore need to allow functions which are A-
analytic but not R-analytic, such as exp : pZp —> Zp. However, as we did
in the proof of Theorem 13.20, we can use rescaling on the underlying
set to arrange that an analytic function be represented by a power series
with coefficients in R: for example exp(pX) G Zp [[X]]. This suggests
an alternative definition of 'analytic', which combines representability
by power series over the ring R with rescaling. This definition avoids
the irritating case distinction between DVRs and other pro-p rings, and
reduces to our original definition when .R is a DVR.

For k, x G Kn we write

k x = (fcixi,... ,fcnxn).

Definition Let U be an open subset of Rn. A function f : U —> R
is analytic on U if for each y G t/ there exist a formal power series
F G R[[Xi,... , Xn]], elements fci,... , kn G K^n\ and a positive integer
N such that

• y + (TCLN)W CU
• k'(mN)M CRn

. /(y + x) = F(k • x) for all x G (m")K
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Any function that is A-analytic in the sense of Definition 13.1 is an-
alytic in this new sense. If R is not a DVR this is clear, while if R
is a DVR it follows from the definition of Ao[[X]]: given H(X.) =
J2daXa G Ao [[X]] such that /(y + x) = #(x) for all x G ( m ^ ) ,
we take k = (7r~fc,... , 7r~fc), where k G N satisfies

damk{^ CR (a^ 0);

then F(X) = H(7ThX) is in R [[X]] (note that F(0) = H(0) = /(y) G R).
When R is a DVR, the converse is also true, since F(k • x) = H(x.)

where H(K) is a power series over K. Whether the converse holds for
an arbitrary pro-p ring R is not clear to us; the following lemma implies
that it holds in many cases of interest:

Lemma Suppose that T)im(R) > 2 and that R is a unique factorisation
domain. If k G K and kmN C R for some positive integer N then
ke R.

Proof According to Matsumura (1986), Theorem 13.4 or Atiyah and
Macdonald (1969), Theorem 11.14, the local ring R contains a system
of parameters {£i,... ,£d}, where d = Dim(R) > 2; this means that
Yli=i UR = q> sav> is a n m-primary ideal. Now suppose that k = ab~x

where a,b € R, and that kmN C R. If k £ R there exists an irreducible
element z of R such that z | b and z \ a. From amN C bR we infer that
z divides both at^ and at£. This implies that z divides both t\ and £2,
and hence that

i=3

Thus R contains an m-primary ideal that can be generated by d — 1
elements; this is impossible by the theorem quoted above.

Thus for rings of this type, the definition permits only a very limited
kind of rescaling; we can now deduce

Proposition Suppose that R is a unique factorisation domain. Then
every A-analytic function is analytic in the new sense, and conversely.

Proof A unique factorisation domain of dimension 1 is a DVR, so what
remains to be established is that if R is a UFD of dimension at least 2
and / : U —» R satisfies the definition above, then / is ^-analytic. Now
the lemma shows that k G Rn, from which it follows that F(k-x) = #(x)
where if is a power series with coefficients in it!. Thus / is iJ-analytic.
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This applies in particular to every ring R of the form Ro [[T\,... , Tm]\
where JR0 is a finite field or a finite extension of Zp

Notes

The definition of an analytic group over a complete discrete valuation
ring appears in Serre (1965) and Bourbaki (1989b). The definition over
more general pro-p rings is new. The investigation of such groups was
suggested in Lubotzky and Shalev (1994), who showed that much of the
theory of standard groups over complete discrete valuation rings carries
over to the more general setting; they also established Theorem 13.23
for the case where R = Fp [[£]]. The construction of the Lie algebra of a
formal group, and its graded Lie algebra, appear in Bourbaki and Serre
(loc. cit.).

The concept of jR-perfect groups was introduced in Lubotzky and
Shalev (1994); Theorem 13.31 (the Golod-Shafarevich inequality) is
taken from there. In the same paper, the graded Lie algebra is used
to prove the following result on subgroup growth:

Theorem Let G be an R-perfect group, having an open subgroups of
index n for each n. Then

an<n c l o g n

for all n, where c is a constant.

Recent work of Richard Pink (1998) shows that pro-p groups which are
linear over ¥p [[t]] have surprisingly restricted structure. In particular, as
noted in Barnea and Larsen (a), a non-abelian free pro-p group cannot
be embedded in GLn(Fp[[T]]) for any n.

We have emphasised throughout the book that the theory of p-adic
analytic groups is driven by the group theory and that sophisticated
concepts of analysis can be avoided. For example, the proof that sub-
groups and quotients of p-adic analytic groups have a p-adic analytic
structure did not require the development of a concept of submanifolds
or quotient manifolds. To examine these issues for the more general
analytic groups of the present chapter, such concepts would need to be
developed. In the case of discrete valuation rings, an account of analytic
subgroups and quotients may be found in Bourbaki and Serre (loc. cit.).
In particular Bourbaki, Chapter III, §1.6 shows that the quotient of an
Fp[[t]]-analytic group by an analytic subgroup is analytic.
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Exercises

In Exercises 1-3, F denotes a finite field of characteristic p.

1. Let R = F [[T]] and m = TR. Let G be the i?-standard group (m, +).
Let d b e a positive integer. Exhibit a homeomorphic isomorphism G —>
G x G x • • • x G (d factors). Deduce that (a) the dimension of an
i?-analytic group is not uniquely determined by its topological group
structure, and (b) a continuous homomorphism of iZ-analytic groups
need not be analytic.

[Hint: consider the mapping Y^aiT1 i-> ( ^ a ^ T 2 , Y^adi-iT1... ,

2. Let R = F [[T]] and G = SLl(R). Show that G contains an element
of infinite order; deduce that G has an infinite pro-cyclic pro-p subgroup
H. Can H have the structure of an R-analytic group?

[Hint: recall Theorem 13.23!]

3. Let R = F [pi , . . . , Tp\] and m = (Tu ... , TP)R. Let a be the con-
tinuous F-algebra automorphism of R that sends T̂  to Ti+i (i < p), Tp

to Xi. Let A be the ^-standard group (m, +).
(i) Prove that a is a continuous automorphism of A, but that a is not

analytic.
(ii) Let G be the semi-direct product G = A xi (a). Show that G is a

pro-p group, having A as an open subgroup with the induced topology.
Prove that there exists no .β-analytic group structure on G with respect
to which A is an open submanifold.

4. Let S C R be pro-p rings as in Example 13.6(iv), and suppose that
R = viS®'"®veS. Let n > 1 .

(i) Show that for each a G Nn there exist elements ^k(P) £ S such
that

for fe = 1,... ,e.
(ii) For a € A (which is either R or the field of fractions of R) write
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where each a(k,£) G A(5) (which is either S or the field of fractions of
5). To a power series -F(X) = ^ a a X a G A0[Xi,... ,Xn] we associate
the e power series

£ = 1,... ,e. Show that F/(Y) G A0[Yii,... ,Fen], and that if x =
£ v*y/ G 72n and F(x) = £v*** then zt = F/ (yi , . . . , ye).

(iii) Define cr : # —• Se by <j(X} i ^ ) = (si , . . . , se). Let {/ be an open
subset of Rn. Show that a^n\U) is an open subset of Sen. Deduce from
the above that if / : U —• R is A-analytic then

is A(5)-analytic.
(iv) Let X and Y be ^-manifolds and / : X —>  Y an analytic function.

Using (iii), show that the construction given in Example 13.6(iv) does
define 5-manifolds X(s), Y(s) ? that the manifold structures so obtained
are independent of the choice of isomorphism a : R —• 5e, and that the
function / : X($) —> Y(S)  1S analytic.

5. Suppose that R is a DVR. Let G be an i?-standard group of level
n > 1 , with standard chart (G, 0, d). Let ij) : G —>  m ^ be the map # i—•
7T~n(j)(g). Show that (G,rf,d) is a standard chart of level 1, compatible
with (G,0,d).

[ffin£: Let F(X,Y)jE i?[[X,Y]](d) the formal group law associated
to (G,<M). Define | i (X,Y) = T T - ^ - ^ F ^ T T 1 * " 1 ^ ^ - ^ ) for i =
1,... ,d. Verify that F is a formal group law giving the multiplication
on G with respect to the chart (G, >̂, d).]

6. Assume that R is not a DVR, and let G be an -R-standard group of
level n > 1 . (i) Let / C mn be an ideal of i^. Prove that the subgroup
G(7) is well defined (i.e. that it does not depend on the choice of a
standard chart of level n for G).

(ii) Deduce that the level of G is uniquely determined.
[Hint: Note that a A-analytic function must map I^ into I^.]

7. Assume that R is a DVR. Let G be an iJ-standard group and /
a proper ideal of R. For each standard chart (G,<f>,d) of level 1, put

). Is the subgroup G^(7) independent of <\P.
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[The answer is 'no' if we allow the level to vary, by Exercise 5. The
answer is 'yes' if R = Zp, since then I = pnZp for some n, and G(pnZp) =
Pn-i(G) by Theorem 8.32. What happens for R = FP[[T]]?]

8. Prove that L(GL*(#)) = &ln(R). [Hint: look at the group law in
Example 13.18(iii)!]

9. Let n > 2 . Write (X) for the n x n matrix (Xij), where the
Xij are n2 independent indeterminates, and X' for the (n2 — l)-tuple

(i) Show that
det(ln + (X)) = (1 + Xnn)(l + P(X')) + Q(Xf)

where P and Q are polynomials and P has constant term zero. Hence
show that there exists a power series H in n2 — 1 variables over Z such
that under the substitution Znn = H(Xf), Zij = X^ for (i,j) ^ (n,n),
we have the power series identity det(ln + (Z)) = 1.

(h) Prove that the mapping if) : SL^(fi) —• mn ~x that sends 1 + (x)
to xr is a homeomorphism.

(iii) Show that t/>((l + x) • (1 + y)) = F(^(l -f x),^(l + y)), where
F = (Fij)(i,j)*(ntn) and

n - l

Fin(X;, Y') = Xf + Y' + ]T XiiYij + XinH(Y') (i ̂  n)

n - l

e=i

Deduce that ip defines a standard chart on SL^(i?).
(iv) Show that P(X') = Y^I^ Xu + O'(2) and that Q(Xr) = O'(2).

Deduce that H(X') = - X ^ 1 Xu -h O;(2).

10. (i) Prove that L(SL^(,R)) ^ sln(R). Deduce that Lo(SL^(.R)) ^

[ m t : For the first part, note that sln(R) is the set of matrices (x)
such that xnn = — Y^I^ xu> Now look at the bilinear part of the group
law F given in the preceding exercise, using part (iv).]

(ii) Let F be a field of characteristic ^ 2 and let n > 2. Prove that
the Lie algebra L = $in(F) is perfect (i.e. that (L,L) = L).
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[Hint: work out (e^, eu) where e^ is the matrix with 1 in the (i, j)-
place and 0 elsewhere. The following exercise generalises this.]

Without developing a theory of closed submanifolds, it is difficult
to establish a general theorem that algebraic groups yield ^-analytic
groups. However, the basic examples of simple algebraic groups, the
Chevalley groups, do naturally give rise to standard groups. For unex-
plained terminology and unproved assertions in the following exercise,
see Steinberg (1967) or Carter (1989).

11. Chevalley groups. Let $ be a root system of type Xi E {̂ 4/, J9/, C/,
Di,E6,E7,Eg,F4,G2} and let II = {a i , . . . , a j be a set of simple
roots. Let R be pro-p domain with maximal ideal m. The Lie al-
gebra LR(XI) of type Xi over R is the free R-module on the basis
{ha I a E II} U {ep | /? E $}, with the following Lie brackets:

(LI) (ha,hp) = 0,
(L2) (ha;ep) = Aapep,
(L3) (ea,e_Q) = fta,
(L4) (ea, e^) = 0 if a + / ? £ $ ,
(L5) (ea, e0) = Na^ea+p if a + /? e $;

here Aa/g = 2fr^/ is the Cartan integer and Na^ = ±(q + l) where q
is the largest integer for which P — qa e 3>.

The universal Chevalley group G = QR{X{) of type X\ over R is the
abstract group generated by symbols xa(t) where t e R subject to the
following relations (called the Steinberg relations):

(Gl) Xalt^Xafo) = xa(t! +12) for a e $,*i,t2 E iJ;
(G2) X/9(5)~1Xa(t)~1X/3(8)xa(t) = n^ta+JiSWjjQ^C-*)*^) f o r a11

a,^ E $ linearly independent and all s,t e R; here the Nij.a^
are integers with N\^a^ = Na^\

(G3) putting u>a(s) = xa(5)x_a(—s~1)xa(s), the relation

for each a G $ , 5 G ^ * = i ? \m and t e R;
(G4) putting ca(s) = wa(s)wa(l)~1, the relation ca(s)ca(t) = ca(st)

for each a G $ , s , t G iZ*.

The following fact is a consequence of these relations (see Carter
(1989) Chapter 12):

ca(s)xp(t)ca(s)~1 =xp(sAaH),for a € $,s e R*,t e R.
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(i) For each positive integer k let

xa(ta)\ta,spemk

(The products here are ordered according to the height function h on the
root system defined by h(a) = AH I-Aj where a = AIQ:I + - • - + A/a/.)
Prove that Gk is a subgroup of QR(XI).

(ii) Given that the above expression for each element of Gk is unique,
prove that Gk is an R-standard group of level k and dimension |3>| + |II|.

(iii) Prove that the Lie algebra of G\ is the Lie algebra LR(XI).
(iv) Using (L1)-(L5) show that if F is a field then LF(Xi) is a perfect

Lie algebra, unless char(F) = 2 and Xi is A\ or C\. Hence deduce that
G\ is an imperfect group, provided (p, X) is not one of (2, A\) or (2, G/).

12. Assume that the ring R has characteristic p. Let G = (m^ ,F ) be
a standard group, write L = L(G), and put Gn — (m ny ' and Ln =
xnnL/xnn+1L for each n, as in Section 13.4. Show that

gives a well-defined mapping [p] : Ln —• Lpn. Prove that this extends
to an operation \p] : grL(G) —>  grL(G), making grL(G) into a restricted
Lie algebra over Fp.

compare §§12.1,12.2.]

13. Let cTfc(G) denote the number of open subgroups of index at most
pk in a pro-p group G. Let G = SLl(¥p [[t]]) where p > 3, or G =
5Lg(F2 [[*]]). Using the theorem quoted in the Notes, show that there
is a constant c such that ^ ( G ) < pck for all k > 1.
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The Hall-Petrescu formula

In abelian groups, and in powerful p-groups, the product of nth powers
is an nth power. The Collection Formula of Philip Hall (also called the
Hall-Petrescu formula) provides a substitute for this useful fact.

Let G be any group, x, y any two elements of G, and n a positive
integer. Then (xy)n and xnyn are equal (modulo Gf) so we can write
xnyn = (xy)nc, with c G G'. The collection formula establishes an
expression for c as a product of commutators.

Theorem Let x and y be elements of a group G, and let n be a positive
integer. Then

~n n _ / \n (2) (?) n

x y — {xy) c2 . . . c{ . . . cn_1cn

where C{ G 7i(G) for each i.
Taking G to be the free group on x and y, we may construe each Q as
a group word, equal to a product of commutators on x and y of length
at least i; the formula can then be interpreted as an identity, valid in all
groups.
Proof We consider a free group of rank 2n with free generators
Zii,zi2i-- ,ziri)Z2n, and in this group we consider the product P =
Z11Z12 . • • z\nZ2n- For each m we write Zm = {zim, 22m}- For any subset
S of {1,..., n} with |5| > 1, we denote by Zs the set of all commutators
on the Zij which involve generators only from the sets Zm with m G 5,
but involve at least one generator from each of these sets. Thus a com-
mutator in Zs has length \S\ at least. (For S = {m}, a one-element
subset, we write Zs = Zm.) We order the subsets of {1 , . . . ,n} by re-
quiring that if \S\ < \T\ then S precedes T, and sets of the same size are
ordered lexicographically.
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Lemma With these notations, we have P = Y[Qs, where S runs over
the non-empty subsets of {1, ...,n}, ordered as above, and for each S the
element Qs is a product of elements of Zs.

Proof The idea is simply to rewrite P by changing the order of the
factors. Since usually uv ^ vu, we effect the change by writing uv =
vu[u,v]. This introduces the new factor [u,v] in the product, and as we
continue in the process, we add more and more new factors, which are
commutators in the old ones. But if we do the rewriting carefully, it is
possible to keep track of the added factors, and this yields the formula
of the lemma.

We start by 'collecting to the left' the elements of Z\. The first gen-
erator z\\ already occurs at the extreme left-hand end of P. We use the
transformation uv — vu\u,v\ to move Z21 to the left, until it reaches z\\.
This means that we replace the product z\\Z\2...21 n̂ 21 by the equal
product ziiZ2iZi2[zi2,Z2i]...zin[zin,Z2i]. We have thereby introduced
some new commutators into P, but they all belong to sets Zs (of the
form S = {l,i}) succeeding {1} in our ordering.

In general, suppose we have already written P in the form
P = Qi... QTU\ ... urv\... vs, where each QΑ is a product of elements
from ZΑ, the sets 1,...,T, occur in their right order, the elements ui
belong to Zs, where S is the subset immediately succeeding T, and the
elements Vi belong to either Zs or to some Zβ with B succeeding S.
We then continue by looking for the first element of Zs to the right of
tir, say this is i^, and collecting it to the left until it reaches ur. Since
there are no elements of Zs, or of ZΑ with A preceding 5, between ur

and Vj, the new commutators that we introduce all belong to sets ZΒ
with B a successor of S. Having finished collecting Vj, we look for the
next element of Zs- Since no new elements of Zs are introduced in this
stage, we will eventually finish collecting Zs and obtain an expression
P = Qi... QTQSWI "'Wt, where each Wj belongs to some ZΒ with B
succeeding S. The procedure terminates after finitely many steps with
the desired expression for P.

In order to apply the lemma, we want to know what the elements Qs
are. Since all the added elements in the products are commutators, no
new factors Zij have been introduced, and therefore Q{m} = zimZ2m f°r

each m.
To evaluate the other factors Qs, we take some subset A, and write

PΑ for the value of P under the substitution which gives the value 1
to the generators which do not belong to a set Zm with m G A. Any
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commutator involving one of these generators also takes the value 1
after this substitution. Therefore the equation P = UQs becomes PΑ =
TIBCAQB- This equation can be considered as a recursion formula for
calculating QΑ, starting with the equality Q{m} = P{m}.

To prove the theorem, we make a different substitution: z\j = x, z^ —
y, and write P*,PJ,Q^, for the values of these words under that sub-
stitution. Thus P* = xnyn, the expression we are interested in, and
in general P\ = xtyt where t = \A\. Thus P\ depends only on |A|,
and therefore Q\ also depends only on \A\. In particular QTmi = xy,
so Q^, ... Q\n\ = (xy)n, while the product of all the Q\ with \A\ = t

becomes c ^ , where Q denotes the common value of all the Q*A with
IAI = t. Since QΑ is a product of commutators of length at least |A|, it
follows that ct G 7t(G) for each t > 2 . The theorem follows since

We remark that a similar formula, with a similar proof, holds for the
product of any finite number of terms.
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Topological groups

Here we prove some facts about topological groups, a little less basic
than those of §0.6. They are needed only for Exercise 1.2 and Theorem
9.7.

Throughout, G denotes a Hausdorff topological group. For subsets X
and Y of G, XY denotes the set {xy\x G X,y G Y}, I ( n ) = X^~^X
for n > 1 , and X'1 = {x~x\x G X}. The map μ : G x G -> G is
(x, 2/) i-> xy.

Bl . If K C U Co G and K is compact then there is an open neighbour-
hood W of 1 in G such that KW C U.

Proof There exist open sets Aa, Ba in G such that

Since K x {1} C μ~1(U) and K x {1} is compact, K x {1} C | J a G F Aa x
jBa for some finite set F, and without loss of generality 1 G Ba for each
a G F. Now take W = f |Q GF Boc

B2. Every compact open neighbourhood of 1 in G contains a compact

open subgroup of G.

Proof Let 1 G KCOG, K compact. Put X - K^\K. By B l there is an
open neighbourhood W of 1 with KW C G\X. Put V =
Kn^n^n^)- 1. Then

KV C (G\X) n K ( 2 ) C K,

from which it follows that KV^ C X for all n > 1. Now let # -
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subgroup of G. Hence H is also closed, and since H is contained in the
compact set K, H is also compact.

B3. Let x and y be elements of distinct connected components in a
compact Hausdorff space V. Then V contains an open compact set K
with x G K and y £ K.

Proof Denote by C the set of all compact open subsets of V containing
x. Note that C is non-empty since V G C. Put D = f]C. It will be
enough to show that D is connected: since y does not belong to the
same connected component of V as x, it will follow that y £ D, and
hence that y £ K for some K G C.

Suppose, then, that D = XUY with XnY = 0, X and Y both open
in D, and suppose that x G X; we must show that Y is empty. Now X
and Y are compact, so X and Y are contained in disjoint open sets U
and W, say, in V (since V is Hausdorff). Then

V\(UUW)C (J

Since V\(U U W) is compact, there exist i^i,. . . ,Zfn G C such that
V\(*7 U W) C F\n iLi #*• H e n c e ^ U l ^ D Hill # i = ^> say. Now
x G KnU, KnUis open, and ATI 17 = K\W is compact, so KnU G C.
Therefore

B4. Suppose that G is totally disconnected (i.e. each connected compo-
nent is a singleton). Let V be a neighbourhood of 1 in G, whose closure
V is compact. Then V contains a compact open subgroup of G.

Proof By B2, it suffices to show that V contains a compact open neigh-
bourhood of 1 in G. Now let U be an open neighbourhood of 1 con-
tained in V. By B3, each element x of V\J7 lies in a compact, relatively
open subset K{x) of V with 1 ^ K(x). Since V is compact we have
V = U U K(xi) U ... U K(xn) for some xu ... , xn G V\U. Now put

i=1 i=1

Then W is the required compact open neighbourhood of 1 contained in
V.
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B5. If G is compact and totally disconnected then G is pro finite.

Proof Every neighbourhood of 1 now has compact closure, hence by B4
contains an open subgroup. Thus the open subgroups form a base for
the neighbourhoods of 1 in G.

B6. Let N be a closed normal subgroup of G. If both N and G/N are
totally disconnected, then so is G.

Proof Write G° for the connected component of 1 in G. Then G°N/N
is connected, so G° C N. Therefore G° = N° = {1}. The result follows
since for each x G G, the connected component of x is xG° = {x}.

B7. Suppose that G is locally compact and totally disconnected. Then
every neighbourhood of 1 in G contains a compact open subgroup of G.

Proof Suppose that V is a neighbourhood of 1. Since G is locally com-
pact, 1 has a compact neighbourhood W, say. Then the closure V n W
of V n W is a compact neighbourhood of 1, hence by B4 contains a
compact open subgroup of G.

B8. Let N be a closed normal subgroup of G. If N and G/N are both
locally compact and totally disconnected, then so is G.

Proof G is totally disconnected, by B6. By B7, N has a compact,
relatively open subgroup K. Then K = N 0 U for some open subset U
of G, and without loss of generality KU = U. Then UN/N is open in
G/N, so, by B7, G/N has a compact open subgroup C/N with C C UN.
Put V = C n U. Then V is open in G and 1 G V. If we show that V
is compact, it will follow that G is locally compact, since then for each
x G G, xV is a compact neighbourhood of x.

Suppose then that V = (J Ra with each Ra open. We must show that
V is covered by finitely many of the Ra. Let v G V. Then Kv C V since
K < C and iff/ = [/, so as ifi> is compact we have

KvC ( J iJa = 5(t;), say,

for some finite set of indices Af(v). By Bl , there is a compact neigh-
bourhood W(v) of 1 in G with KvW(v) C 5(v).

Now C = UN DC = NV and NOV = NnU = K. The natural
map of C/N onto V/jfiT is continuous, so V/K is compact. Since V/K
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is covered by the open sets KvW(v)/K as v runs over V, there exist
V!,...,vm€V such that V/K = Q™ i J ^ W M / J r . Then

[J flQ,
2 = 1

giving the result.
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