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DENDROIDAL SEGAL SPACES AND ∞-OPERADS

DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Abstract. We introduce the dendroidal analogues of the notions of complete
Segal space and of Segal category, and construct two appropriate model cat-
egories for which each of these notions corresponds to the property of being
fibrant. We prove that these two model categories are Quillen equivalent to
each other, and to the monoidal model category for ∞-operads which we con-
structed in an earlier paper. By slicing over the monoidal unit objects in these
model categories, we derive as immediate corollaries the known comparison re-
sults between Joyal’s quasi-categories, Rezk’s complete Segal spaces, and Segal
categories.
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Introduction

The category of dendroidal sets is an extension of that of simplicial sets, suitable
for constructing nerves, not just of categories but also of (coloured) operads. It was
introduced with this purpose, and with the aim of giving an inductive definition of
weak higher categories, in [14, 15]. This category dSet of dendroidal sets carries
a symmetric monoidal closed structure which is closely related to the Boardman-
Vogt tensor product of operads, and the inclusion of the category sSet of simplicial
sets into dSet can in fact be identified with the forgetful functor, from the slice (or
comma) category of dendroidal sets over the unit η of the monoidal structure back
to dendroidal sets, via an explicit isomorphism of categories

(0.0.1) dSet/η = sSet
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Dendroidal sets carry a very rich homotopical structure, which we began to
explore in [7]. For example, there is a monoidal Quillen model structure on dSet ,
whose fibrant objects include all nerves of operads. In fact, these fibrant objects
can be thought of as simple combinatorial models of the notion of operad-up-to-
homotopy or “∞-operad”. Like any Quillen model structure, this model structure
on dendroidal sets induces another model structure on any slice category. Under
the identification dSet/η = sSet this induced model structure can be shown to
coincide with the Joyal model structure on simplicial sets, whose fibrant objects
are most commonly known under the name “∞-categories” (and are also referred
to as quasi-categories, weak Kan complexes, or inner Kan complexes [11, 13, 4]).

These ∞-categories model a notion of category-up-to-homotopy. Other ways of
modelling such a notion have occurred in the literature, including the theory of
Segal categories [17, 2] and of complete Segal spaces [16]. The latter two concepts
are both based on the much older observation that a simplicial set X is the nerve
of a category if and only if the canonical map

(0.0.2) Xn −→ X1 ×X0 · · · ×X0 X1

sending a simplex to its one-dimensional ribbons, is an isomorphism. Indeed, Simp-
son and Rezk both base their theories on bisimplicial sets X for which the map
(0.0.2) is a weak equivalence of simplicial sets (and replacing the fibred product on
the right hand side by its homotopy version). Building on the work of Simpson
and Rezk, the relation between these different ways of modelling categories-up-
to-homotopy was recently made precise through the work of Bergner, Joyal and
Tierney, and Lurie. Indeed, Simpson’s Segal categories, Rezk’s complete Segal
spaces, and Joyal’s∞-categories all arise as the fibrant objects in a specific Quillen
model category structure, and these different model category structures have now
been related to each other by explicit Quillen equivalences [2, 13]. Moreover, they
are all Quillen equivalent to the model category of simplicial categories discovered
by Bergner [2], thus providing a strictification or rigidification result for each of
these notions of category-up-to-homotopy.

The goal of this paper and its sequel [8] is to develop analogous theories of Segal
operads (rather than categories) and complete dendroidal (rather than simplicial)
Segal spaces, to relate these to each other and to dendroidal sets via Quillen equiv-
alences, and to prove a strictification result for each of them by relating them to
simplicial operads. By a simple slicing procedure like in (0.0.1), the earlier results
just mentioned for categories-up-to-homotopy can all be recovered from our results,
which can in this sense be said to be more general.

In more detail, then, we will consider the category sdSet of simplicial objects in
dendroidal sets, or what is the same, dendroidal spaces. We will define a Segal type
condition on the objects of this category, based on an extension to trees of “the
union of 1-dimensional ribbons in an n-simplex” to which we will refer as the Segal
core of a tree. In Section 5, we will establish a closed model category structure on
sdSet whose fibrant objects satisfy a tree-like Segal condition involving these Segal
cores, and a completeness condition like the one of Rezk, and prove (Corollary 6.7)
that this model category is Quillen equivalent to our earlier model category struc-
ture on dendroidal sets [7]. The definitions and proofs of these results are based on
some elementary observations about these Segal cores presented in Section 2, and
on a characterization of weak equivalences between ∞-operads as maps which are
“essentially surjective and fully faithful” in a suitable sense (Theorem 3.5). The
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proof also exploits the hybrid nature of the objects of sdSet , which can be viewed
alternatively as simplicial objects in one category or as dendroidal objects in an-
other. In fact, the first view point is taken in Section 4, while the second viewpoint
underlies the notion of complete dendroidal Segal space and the formulation of the
main equivalence 6.7. The relation between these two view points is most clearly
expressed by Theorem 6.6 which equates two seemingly different model category
structures.

Again using the Segal cores, we define the notion of a Segal operad in Section 8.
These Segal operads will then be shown to be the fibrant objects for a model
category structure on a full subcategory of the category sdSet of dendroidal spaces,
the category of so-called Segal pre-operads (Theorems 8.13 and 8.17). Using most
if not all of the earlier results, we will then be able to show that this model category
with Segal operads as fibrant objects is Quillen equivalent to the model category
having complete dendroidal Segal spaces as fibrant objects (Theorem 8.15), and
hence also Quillen equivalent to the original model category of dendroidal sets.

We believe these results are of interest in themselves, and because they generalize
important classical results from the simplicial-categorical context to the dendroidal-
operadic one. In addition, they will all be used in our proof of the strictification
theorem for ∞-operads presented in [8].

1. Preliminaries

We begin by recalling the basic definitions related to dendroidal sets; see [14,
15, 7]. The starting point is a category Ω of trees. Its objects are finite (non-
planar) trees. These trees have internal edges (between vertices) and external ones
(attached to just one vertex); the root is one such external edge, the others are called
“leaves”, or “input edges”. Each such tree freely generates a coloured operad, and
the arrows in Ω are the maps between these operads. Thus, by definition, Ω is a
full subcategory of the category of (symmetric coloured) operads.

Each natural number n > 0 defines a linear tree with n vertices and n + 1
edges, the input edge being labelled 0, and the output or root edge labelled n.
The corresponding coloured operad is the category defined by the linear order
0 6 · · · 6 n. Thus the simplicial category ∆ is a full subcategory of Ω, and we
denote the inclusion by

i : ∆ −→ Ω , [n] 7−→ n = i[n] .

The category dSet of dendroidal sets is by definition the category of presheaves
(i.e. contravariant Set -valued functors) on Ω, just like the category of simplicial
sets is that of presheaves on ∆. The inclusion functor i induces a pair of adjoint
functors

i! : sSet ⇄ dSet : i∗

where i∗ is the restriction along i and i! is its fully faithful left adjoint (i∗ also has
a fully faithful right adjoint i∗).

We will write Ω[T ] for the dendroidal set represented by a tree T . With the
similar notation ∆[n] for representable simplicial sets, we thus have

i!∆[n] = Ω[n] ,

and this identification determines i! uniquely up to unique isomorphism (as colimit
preserving functor).



4 D.-C. CISINSKI AND I. MOERDIJK

There is a natural identification of ∆ with the slice category Ω/i[0], and this
leads to an identification

sSet = dSet/η

where η = Ω[0]. Under this identification, the functor i! corresponds to the forgetful
functor dSet/η −→ dSet .

The full embedding of Ω into (coloured) operads gives an adjoint pair

τd : dSet ⇄ Operad : Nd ,

where the right adjoint Nd is called the dendroidal nerve. These functors restrict
to the usual nerve of a small category and its left adjoint.

The category of dendroidal sets carries a symmetric monoidal closed structure,
denoted by ⊗ and Hom . Its unit object is the representable dendroidal set η = Ω[0].
This structure is compatible with the product of simplicial sets as well as with the
Boardman-Vogt tensor product of operads, in the sense that, for any simplicial sets
M and N , and for any dendroidal sets X and Y , we have natural identifications

i!(M ×N) = i!(M)⊗ i!(N) and τd(X ⊗ Y ) = τd(X)⊗BV τd(Y ) .

We now recall some of the main combinatorial properties in the category of
dendroidal sets; see [14, 15, 7] for more details.

Just like for the simplicial category ∆, the arrows in Ω are generated by el-
ementary arrows. These are faces and degeneracies like for ∆, together with
the isomorphisms (the only isomorphisms in ∆ are the identities). In particu-
lar, for a tree T , we may define ∂Ω[T ] as the maximal proper subobject of Ω[T ],
or, equivalently, as the union of the all the images of the elementary face maps
Ω[S] −→ Ω[T ]. We refer to ∂Ω[T ] as the boundary of Ω[T ]. The saturation of the
set of boundary inclusions ∂Ω[T ] −→ Ω[T ] (i.e. the closure under transfinite com-
position, pushout, and retract) gives rise to the class of normal monomorphisms.
The normal monomorphisms can also be characterized as the monomorphisms of
dendroidal sets u : X −→ Y such that, for any tree T in Ω, the action of Aut(T ) on
the set Y (T )− u(X(T )) is free. A dendroidal set X is normal if the map ∅ −→ X
is a normal monomorphism. We will often use the following property: given any
morphism of dendroidal sets X −→ Y , if Y is normal, then so is X .

For an internal edge e in a tree T , we denote by T/e the tree obtained from T
by contracting the edge e. Then there is an elementary face map

∂e : T/e −→ T

in Ω. Face maps of this shape are called inner or internal. We write Λe[T ] for
the maximal subobject of Ω[T ] which does not contain the image of the internal
face ∂e : Ω[T/e] −→ Ω[T ] (equivalently, Λe[T ] may be described as the union of all
the images of the elementary faces Ω[S] −→ Ω[T ] which do not factor through ∂e).
We refer to Λe[T ] as the inner horn of Ω[T ] associated to e. The class of inner
anodyne extensions is defined to be the closure of the set of inner horn inclusions
by transfinite composition, pushout, and retract.

A morphism of dendroidal sets X −→ Y is called an inner fibration if it has the
right lifting property with repect to the set of inner horn inclusions Λe[T ] −→ Ω[T ].
A dendroidal set X is called an inner Kan complex, or an∞-operad if the map from
X to the terminal object of dSet is an inner fibration. Under the identification
dSet/η = sSet , the ∞-operads which admit a (necessarily unique) map to η are
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precisely the ∞-categories (quasi-categories) of Joyal. We may now formulate one
of the main results of [7]:

Theorem 1.1. The category dSet of dendroidal sets carries a cofibrantly generated
model category structure, whose cofibrations are the normal monomorphisms, and
whose fibrant objets are the ∞-operads. This structure is left proper and monoidal
(i.e. compatible with tensor product). The induced model category structure on
dSet/η = sSet corresponds to the Joyal model structure on sSet .

The weak equivalences of the model structure above are called the weak operadic
equivalences. This model category structure on dSet will be referred to as the model
category structure for ∞-operads.

2. Segal cores

2.1. We recall that, for each n > 0, the nth corolla Cn is defined as the smallest
rooted tree with one vertex and n leaves.

······

Cn = •
a2

a1

▼▼▼▼▼▼▼▼▼ an

❦❦❦❦❦❦❦❦❦❦❦❦

a

(2.1.1)

In general, we say that a face map F −→ T is a subtree if F −→ T is a composition
of external faces. In other words, a face map F −→ T is a subtree if F is obtained
by successively pruning away top vertices, or pruning away root vertices which have
only one internal edge attached to them.

F
❇❇❇❇

⑤⑤⑤⑤

T =

❂❂❂❂❂❂❂❂❂❂❂❂❂❂

✁✁✁✁✁✁✁✁✁✁✁✁✁✁

(2.1.2)

Definition 2.2. Given a tree T with at least one vertex, we define its Segal core
Sc[T ] as the subobject of Ω[T ] defined as the union of all the images of those maps
Ω[Cn] −→ Ω[T ] corresponding to subtrees of shape Cn −→ T . Remark that, up to
isomorphism, such a map Cn −→ T is completely determined by the vertex of T in
its image, so we can write

Sc[T ] =
⋃

v

Ω[Cn(v)] ,

where the union is over all the vertices of T , and n(v) is the number of input edges
at v.

If T = [0] is the tree with no vertices (so that Ω[T ] = Ω[0] = η is the unit object
of the Boardman-Vogt tensor product), it will be convenient to define Sc[T ] = η.

Recall from [7, Paragraph 1.2] that an (elementary) face S −→ T of a tree T is
called outer or external if S is obtained from T by pruning away an external vertex,
i.e. a vertex with exactly one inner edge attached to it.

Definition 2.3. Let T be a tree. The external boundary of Ω[T ] is the subobject
∂extΩ[T ] of Ω[T ] obtained as the union of all the external faces of T .
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Proposition 2.4. For any tree T , the inclusion Sc[T ] −→ Ω[T ] is inner anodyne.

Proof. Note that, if T has at most one vertex, then this inclusion is an isomorphism,
while, if T has exactly two vertices, this is an inner horn. So we may assume that
T has at least three vertices.

If T has N vertices, then Ω[T ] has a natural filtration by subobjects

Ω[T ]1 ⊂ Ω[T ]2 ⊂ . . . ⊂ Ω[T ]N−1 ⊂ Ω[T ]N = Ω[T ] ,

where, for 1 6 n 6 N ,

Ω[T ]n =
⋃

ξ

Ω[Fξ]

is the union over all subtrees Fξ of T with at most n vertices. Notice that, by
definition, we have:

Ω[T ]1 = Sc[T ] and Ω[T ]N−1 = ∂extΩ[T ] .

By virtue of [15, Lemma 5.1], the inclusion ∂extΩ[S] −→ Ω[S] is inner anodyne
for any tree S with at least two vertices. We shall use this to prove that the
inclusion Ω[T ]n−1 −→ Ω[T ]n is inner anodyne for 2 6 n 6 N , which will prove the
proposition.

Let F0, . . . , Fk be all subtrees of T having n vertices. For 0 6 j 6 k, we put

Sj =
⋃

06i6j

Ω[Fi] ⊂ Ω[T ] .

We shall prove by induction on j that the map

Sj ∩ Ω[T ]n−1 −→ Sj

is inner anodyne. The case j = 0 follows from the identification Ω[Fi]∩Ω[T ]n−1 =
∂extΩ[Fi], 0 6 i 6 k. Assume that j > 0. Note that, since

Sj−1 ∩ Sj ∩ Ω[T ]n−1 = Sj−1 ∩ Ω[T ]n−1 ,

the following diagram is a pushout.

Sj−1 ∩ Ω[T ]n−1
//

��

Sj−1

��
Sj ∩ Ω[T ]n−1

// Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1)

Moreover, since Ω[Fp] ∩ Ω[Fq] ⊂ Ω[T ]n−1 for p 6= q, we have

Ω[Fj ] ∩ (Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1)) = Ω[Fj ] ∩ Ω[T ]n−1 ,

which gives the following pushout square.

Ω[Fj ] ∩Ω[T ]n−1
//

��

Ω[Fj ]

��
Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1) // Sj

Since the top arrows in these two squares are inner anodyne, so are the lower ones,
and we obtain that the composite

Sj ∩ Ω[T ]n−1 −→ Sj−1 ∪ (Ω[Fj ] ∩ Ω[T ]n−1) −→ Sj
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is inner anodyne as well. For j = k, we conclude that the map

Ω[T ]n−1 −→ Sk ∪ Ω[T ]n−1 = Ω[T ]n

is the pushout of an inner anodyne extension. �

Proposition 2.5. Let W be a class satisfying the following three conditions.

(i) The class W is closed under transfinite compositions, pushouts and retracts.
(ii) Any Segal core inclusion belongs to W.
(iii) For any normal monomorphisms between normal dendroidal sets u : X −→

Y and v : Y −→ Z, if u and vu are in W, so is v.

Then any inner anodyne extension belongs to W.

Proof. As, by definition, the class of inner anodyne extensions is the smallest class
of maps which satisfies Condition (i) and contains the inner horn inclusions, it is
sufficient to prove that any inner horn inclusion belongs to W. For a tree T with
at least two vertices, and any internal edge e in T , we have the following natural
inclusions.

(2.5.1) Sc[T ] −→ ∂extΩ[T ] −→ Λe[T ] −→ Ω[T ]

We shall prove by induction on the number |T | of vertices of T that all these
inclusions belong to W (note that this is not so if T has only one vertex). In fact,
if A is a union of at least two external faces of T , then Sc[T ] ⊂ A, while, if B is
the union of ∂extΩ[T ] and of a collection of internal faces not including the one
contracting e, there are interpolating inclusions

(2.5.2) Sc[T ] −→ A −→ ∂extΩ[T ] −→ B −→ Λe[T ] −→ Ω[T ] .

Our induction on |T | will proceed by showing that all these inclusions belong to W.
To begin with, if |T | = 2, then Ω[T ] has just two external faces, and one internal

one (given by the edge e), so Sc[T ] = A = ∂extΩ[T ] = B = Λe[T ], whence, as W

contains isomorphisms and Segal core inclusions, all the inclusions in (2.5.2) are in
W.

Consider now a tree S with |S| > 2, and assume that, for any tree T such that
2 6 |T | < |S|, all the maps in (2.5.2) are in W. We shall first show that, for any
set {Ri}06i6j of at least two external faces of S, the map

(2.5.3) Sc[S] −→ A =
⋃

06i6j

Ω[Ri]

is in W. For the set of all external faces of S, the map (2.5.3) is the inclusion
Sc[S] −→ ∂extΩ[S], so that we shall have shown that this map belongs to W as
well. By Condition (iii), it then follows that the map A −→ ∂extΩ[S] also belongs
to W.

To prove that (2.5.3) is in W, consider the case of just two distinct external faces
R0 and R1 in S. Then the map

Sc[R0 ∩R1] −→ Ω[R0 ∩R1]
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belongs to W (also if R0 ∩ R1 is a tree with just one vertex), as does the map
Sc[R1] −→ Ω[R1]. Now, consider the commutative diagram below.

Sc[R0 ∩R1] //

��

Sc[R1]

((❘❘
❘❘

❘❘❘
❘❘

❘❘❘
❘❘

��
Ω[R0] ∩ Ω[R1] // Sc[R1] ∪ (Ω[R0] ∩ Ω[R1]) // Ω[R1]

The square is a pushout, so the right hand vertical map belongs to W. As the
slanted map also does by assumption, we find that the right hand horizontal map
belongs to W. Next, the two pushout diagrams

Sc[R1] ∪ (Ω[R0] ∩ Ω[R1]) //

��

Ω[R1]

��
Sc[R1] ∪ Ω[R0] // Ω[R0] ∪ Ω[R1]

and

Sc[R0] //

��

Ω[R0]

��
Sc[R0] ∪ Sc[R1] // Ω[R0] ∪ Sc[R1]

show that

Sc[S] = Sc[R0] ∪ Sc[R1] −→ Ω[R0] ∪Ω[R1]

belongs toW. This shows that (2.5.3) belongs toW for any collection of two distinct
external faces. Consider now a collection {Ri}06i6j of distinct external faces of S,
with j > 1. We shall prove by induction on j that (2.5.3) belongs to W. The case
j = 1 just having been dealt with, we may assume that j > 2. By induction, we
have that the map

Sc[R0] −→
⋃

0<i6j

Ω[R0 ∩Ri]

belongs to W, because R0 ∩ Ri is an external face of R0 for 0 < i 6 j. Also, the
map Sc[R0] −→ Ω[R0] is in W, so that, by Condition (iii), the map

⋃

0<i6j

Ω[R0 ∩Ri] −→ Ω[R0]

belongs to W. By induction, the map

Sc[S] −→
⋃

0<i6j

Ω[Ri]

is in W, whence we deduce from the pushout
⋃

0<i6j Ω[R0 ∩Ri] //

��

Ω[R0]

��⋃

0<i6j Ω[Ri] //
⋃

06i6j Ω[Ri]

that (2.5.3) is the composite of two maps in W. This completes the proof of the
fact that all the maps of type (2.5.3) belong to W.

We now turn to the internal faces of the tree S, and let B be the union of
∂extΩ[S] and of a family of internal faces Ω[∂a1S], . . . ,Ω[∂akS], given by internal
edges a1, . . . , ak, all distinct from another internal edge e. We shall prove that
∂extΩ[S] −→ B belongs to W. Then the composition Sc[S] −→ ∂extΩ[S] −→ B
belongs to W as well, and if B contains all internal faces but the one given by e,
we find that the inclusion Sc[S] −→ Λe[S] belongs to W. Since Sc[S] −→ Ω[S]
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is in W by assumption, Condition (iii) implies that Λe[S] −→ Ω[S] is in W. So,
to complete the proof of the proposition, it is sufficient to prove that, under our
inductive assumption (that the maps in (2.5.2) all belong to W for smaller trees),
the map

(2.5.4) ∂extΩ[S] −→ B = ∂extΩ[S] ∪
⋃

16i6k

Ω[∂aiS]

belongs to W for any family of internal edges a1, . . . , ak as above.
We proceed by induction on k. If k = 1, then S has at least two internal edges,

hence ∂a1S has at least two vertices, so, by assumption on trees smaller than S,
the map

∂extΩ[∂a1S] −→ Ω[∂a1S]

belongs to W. But

∂extΩ[∂a1S] = Ω[∂a1S] ∩ ∂extΩ[S]

so we have a pushout diagram

∂extΩ[∂a1S] //

��

Ω[∂a1S]

��
∂extΩ[S] // ∂extΩ[S] ∪ Ω[∂a1S] .

Thus the inclusion map ∂extΩ[S] −→ ∂extΩ[S] ∪ Ω[∂a1S] is in W. This proves the
case k = 1.

If k > 1, then we have


∂extΩ[S] ∪
⋃

16i<k

Ω[∂aiS]



 ∩Ω[∂akS] = ∂extΩ[∂akS] ∪
⋃

16i6k

Ω[∂ai∂akS] ,

so the diagram

∂extΩ[∂akS] ∪
⋃

16i6k Ω[∂
ai∂akS] //

��

Ω[∂akS]

��
∂extΩ[S] ∪

⋃

16i<k Ω[∂
aiS] // ∂extΩ[S] ∪

⋃

16i6k Ω[∂
aiS]

is a pushout. Moreover, the family {∂ai∂akS}16i<k of internal faces of T = ∂akS
misses the edge e, so that, by assumption, all the inclusions in (2.5.2) belong to
W. We conclude that the top arrow in the pushout above belongs to W, whence so
does the bottom arrow. By induction on k, the map

∂extΩ[S] −→ ∂extΩ[S] ∪
⋃

16i<k

Ω[∂aiS]

is in W, and as W is closed under composition, we find that (2.5.4) is in W. �

Corollary 2.6. A dendroidal set X is the nerve of an operad if and only if, for
any tree T , the map

XT = HomdSet (Ω[T ], X) −→ HomdSet (Sc[T ], X)

is bijective.



10 D.-C. CISINSKI AND I. MOERDIJK

Proof. Assume that X = Nd(P ) for a (coloured) operad P . Then, as the functor
τd sends inner anodyne inclusions to isomorphisms, it follows from Proposition 2.4
that the map HomdSet (Ω[T ], X) −→ HomdSet (Sc[T ], X) is bijective. The converse
follows easily from Proposition 2.5 and from the characterization of dendroidal
nerves given by [15, Proposition 5.3 and Theorem 6.1]. �

Remark 2.7. The preceding corollary gives in particular the well known charac-
terization of small categories as simplicial sets satisfying the Grothendieck-Segal
condition: given a simplicial set X , then, for T = n with n > 1, we have

HomdSet (Sc[T ], X) = X1 ×X0 X1 ×X0 · · · ×X0 X1
︸ ︷︷ ︸

n times

.

3. Equivalences of ∞-operads

3.1. For an∞-categoryX , we denote by k(X) the maximal Kan complex contained
in X ; see [11, Corollary 1.5]. Recall that, if A and X are two dendroidal sets,
Hom(A,X) denotes their internal Hom (with respect to the Boardman-Vogt tensor
product of dendroidal sets).

Given two dendroidal sets A and X , we write

hom(A,X) = i∗ Hom(A,X) .

If X is an ∞-operad, and if A is normal, then Hom(A,X) is an ∞-operad, so that
hom(A,X) is an ∞-category; see [15, Theorem 9.1].

For an∞-operadX and a simplicial setK, we will writeX(K) for the subcomplex
of Hom(i!(K), X) which consists of dendrices

a : Ω[T ]× i!(K) −→ X

such that, for any edge u in the tree T , the induced map

au : K −→ i∗(X)

factors through k(i∗(X)) (i.e. all the 1-cells in the image of au are weakly invertible
in i∗(X)).

For an ∞-operad X and a normal dendroidal set A, we write k(A,X) for the
subcomplex of hom(A,X) which consists of maps

u : A⊗ i!(∆[n]) −→ X

such that, for all vertices a of A (i.e. maps a : η −→ A), the induced map

ua : ∆[n] −→ i∗(X)

factors through k(i∗(X)). So, by definition, for any normal dendroidal set A, any
simplicial set K, and any ∞-operad X , there is a natural bijection:

(3.1.1) HomsSet (K, k(A,X)) ≃ HomdSet (A,X
(K)) .

Furthermore, by virtue of [7, 6.8], we have the equality:

(3.1.2) k(A,X) = k(hom(A,X))

(in particular, k(A,X) is a Kan complex).
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3.2. Recall that, in any model category C , given a cofibrant object A and a fibrant
object X , one of the models of the mapping space Map(A,X) is the simplicial set
defined by

(3.2.1) Map(A,X)n = HomC (A,Xn) ,

where X• is a Reedy fibrant resolution of X (where X is seen as a simplicially
constant object of C∆op

); see [10, 5.4.7 and 5.4.9], for instance. In the case where
C = dSet and X is an∞-operad, then the simplicial dendroidal set X(∆[•]) is Reedy
fibrant, and, for any integer n > 0, the map X −→ X(∆[n]) is a weak equivalence
(this follows immediately from [7, Corollary 6.9]). In particular, we get:

Proposition 3.3. If A is a normal dendroidal set and X an ∞-operad, then there
is a natural isomorphism (in fact, identity) of simplicial sets

k(A,X) ≃ Map(A,X) .

Proof. This follows immediately from the identifications (3.1.1) and (3.2.1). �

Lemma 3.4. Let X be an ∞-operad.

(i) For any simplicial set K, and for any normal dendroidal set A, there is a
natural bijection

HomHo(sSet)(K, k(A,X)) ≃ HomHo(dSet)(A,X
(K)) .

(ii) For any cofibration (resp. trivial cofibration) between normal dendroidal
sets A −→ B, the map k(B,X) −→ k(A,X) is a fibration (resp. a trivial
fibration) between Kan complexes.

(iii) For any pushout of normal dendroidal sets

A //

i

��

A′

i′

��
B // B′

with i a cofibration, the commutative square

k(B′, X) //

��

k(A′, X)

��
k(B,X) // k(A,X)

is a pullback.
(iv) For any sequence of cofibrations between normal dendroidal sets

A0 −→ A1 −→ · · · −→ An −→ An+1 −→ · · · ,

the map

k(lim−→
n

An, X) −→ lim←−
n

k(An, X)

is an isomorphism.

Proof. This follows immediately from Proposition 3.3, using the general properties
of mapping space functors; see for instance [10, Proposition 5.4.1 and Theorem
5.4.9]. �
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Theorem 3.5. Let f : X −→ Y be a morphism between ∞-operads. The following
conditions are equivalent.

(a) For any integer n > 0, the map k(Ω[Cn], X) −→ k(Ω[Cn], Y ) is a simplicial
homotopy equivalence, as is the map k(η,X) −→ k(η, Y ).

(b) For any tree T , the map k(Ω[T ], X) −→ k(Ω[T ], Y ) is a simplicial homotopy
equivalence.

(c) For any normal dendroidal set A, the map k(A,X) −→ k(A, Y ) is a sim-
plicial homotopy equivalence.

(d) The map f : X −→ Y is a weak operadic equivalence.

Proof. Assume condition (a). We claim that, for any tree T , the induced map
k(Sc[T ], X) −→ k(Sc[T ], Y ) is a simplicial homotopy equivalence. Note that, for
T = [0], this is a special case of (a). Therefore, to prove this, we may assume that
T has at least one vertex. Let v1, . . . , vk the vertices of T , and, for 1 6 i 6 k, write
ni for the number of input edges of vi in T . We then have

Sc[T ] =
⋃

16i6k

Ω[Cni
] .

Moreover, for two indices i 6= j, the intersection Ω[Cni
]∩Ω[Cnj

] is either empty or
isomorphic to η. For 1 6 j 6 k, define

Ai =
⋃

16i6j

Ω[Cni
] .

For 1 < i 6 k, there is a pushout square

Ai−1 ∩ Ω[Cni
] //

��

Ω[Cni
]

��
Ai−1

// Ai

in which the intersection Ai−1 ∩Ω[Cni
] is isomorphic to a finite sum of η’s. By the

cube lemma (see the dual version of [10, Lemma 5.2.6]), using properties (ii) and
(iii) of Lemma 3.4, we obtain by induction on i that the maps

k(Ai, X) −→ k(Ai, Y )

are simplicial homotopy equivalences. In particular, for i = k, this means that the
map

k(Sc[T ], X) −→ k(Sc[T ], Y )

is a simplicial homotopy equivalence. Thus, since the vertical maps in the commu-
tative square

k(Ω[T ], X) //

��

k(Ω[T ], Y )

��
k(Sc[T ], X) // k(Sc[T ], Y )

are simplicial homotopy equivalences as well (by Proposition 2.4 and Lemma 3.4 (ii)),
this proves (b).
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The fact that condition (b) implies condition (c) follows by similar arguments1

from Lemma 3.4, using the skeletal filtration of normal dendroidal sets [15, section
4].

A reformulation of Lemma 3.4 (i) in the particular case where K = ∆[0] is that,
for a normal dendroidal set A and an ∞-operad X , we have a natural bijection

π0(k(A,X)) ≃ HomHo(dSet)(A,X) .

It thus follows from the Yoneda lemma that condition (c) implies condition (d).
Finally, the fact that condition (d) implies condition (c) (and, therefore, condi-

tion (a)) is obvious: it follows from Lemma 3.4 (ii) and from Ken Brown’s Lemma
[10, Lemma 1.1.12] that the functor k(A,−) sends weak operadic equivalences be-
tween ∞-operads to simplicial homotopy equivalences. �

3.6. Let X be an ∞-operad. Given an (n+1)-tuple of 0-cells (x1, . . . , xn, x) in X ,
the space of maps X(x1, . . . , xn;x) is obtained by the pullback below, in which the
map p is the map induced by the inclusion η∐ · · · ∐ η −→ Ω[Cn] (with n+1 copies
of η, corresponding to the n+ 1 objects (a1, . . . , an, a) of Cn; see (2.1.1)).

X(x1, . . . , xn;x) //

��

Hom(Ω[Cn], X)

p

��
η

(x1,...,xn,x)
// Xn+1

Using the identification sSet = dSet/η, we shall consider X(x1, . . . , xn;x) as a
simplicial set. Observe that X(x1, . . . , xn;x) is actually a Kan complex (see [7,
Proposition 6.13]).

Definition 3.7. Let f : X −→ Y be a morphism of ∞-operads.
The map f is fully faithful if, for any (n + 1)-tuple of 0-cells (x1, . . . , xn, x) in

X , the morphism

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a simplicial homotopy equivalence.
The map f is essentially surjective if the functor underlying the morphism of

operads τd(X) −→ τd(Y ) is essentially surjective.

Remark 3.8. For an ∞-operad X , the set of isomorphism classes of objects in
τd(X) is in bijection with the set π0(k(i

∗X)); see [7, 4.1]. The condition of essential
surjectivity is thus equivalent to the fact that the map k(i∗X)) −→ k(i∗Y )) induces
a surjection on connected components.

Moreover, by virtue of [7, Proposition 6.14], we have natural bijections

π0(X(x1, . . . , xn;x)) ≃ τd(X)(x1, . . . , xn;x) .

As a consequence, if f : X −→ Y is fully faithul, so is the induced morphism of
operads τd(f) : τd(X) −→ τd((Y ). Therefore, if f : X −→ Y is fully faithful and

1Another proof consists to see that, by [7, 1.7], for a normal dendroidal set A, the category

Ω/A is a regular skeletal category in the sense of [6, 8.2.3], from which we deduce that A is the
homotopy colimit of the Ω[T ]’s over A (see [6, 8.2.9]), and we can use Proposition 3.3 to see that
the functor k(−,X) turns homotopy colimits into homotopy limits (see for instance [5, 6.13]),
which implies the result.
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essentially surjective, then the map k(i∗X)) −→ k(i∗Y )) induces a bijection on
connected components.

We recall the following well known fact:

Lemma 3.9. A commutative square of simplicial sets

X
u //

p

��

X ′

p′

��
Y

v
// Y ′

in which p and p′ are Kan fibrations is a homotopy pullback square if and only if,
for any 0-simplex y of Y , the map between the corresponding fibers

p−1(y) = Xy −→ X ′

v(y) = p′−1(v(y))

is a simplicial homotopy equivalence.

A direct consequence of the preceding lemma is:

Lemma 3.10. Consider a commutative square of simplicial sets.

X
u //

p

��

X ′

p′

��
Y

v
// Y ′

Assume furthermore that p and p′ are Kan fibrations, and that the map v is a weak
homotopy equivalence. Then the map u is a weak homotopy equivalence if and only
if, for any 0-simplex y of Y , the map between the corresponding fibers

Xy −→ X ′

v(y)

is a simplicial homotopy equivalence.

Theorem 3.11. Let f : X −→ Y be a morphism between two ∞-operads. Then
f is a weak operadic equivalence if and only if it is fully faithful and essentially
surjective.

Proof. Given an ∞-operad X , and an (n+1)-tuple (x1, . . . , xn, x) of objects of X ,
i.e. a 0-simplex of k(i∗X)n+1 = k(∂Ω[Cn], X), we have the following diagram in
which the right hand square is a pullback square (see [7, Remark 6.2 and Corollary
6.8]).

X(x1, . . . , xn;x) //

��

k(Ω[Cn], X) //

��

hom(Ω[Cn], X)

��
η

(x1,...,xn,x)
// k(i∗X)n+1 // i∗Xn+1

Hence the left hand square above is a pullback as well. Assume that f is fully
faithful and essentially surjective. We will first prove that the induced morphism
k(i∗X) −→ k(i∗Y ) is a simplicial homotopy equivalence. As the corresponding map
π0(k(i

∗X)) −→ π0(k(i
∗Y )) is bijective (see 3.8), it is sufficient to prove that, for

any 0-simplex x of k(i∗X), the map of loop spaces

Ω(k(i∗X), x) −→ Ω(k(i∗Y ), f(x))
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is a weak homotopy equivalence. For this purpose, it will be sufficient to prove that
the commutative square

Ω(k(i∗X), x) //

��

Ω(k(i∗Y ), f(x))

��
X(x;x) // Y (f(x); f(x))

(3.11.1)

is homotopy cartesian. In general, the set of connected components of the Kan
complex X(x1, . . . , xn;x) is in bijection with the set τd(X)(x1, . . . , xn;x); see [7,
Proposition 6.14]. We can thus describe the loop space Ω(k(i∗X), x) as the disjoint
union of the connected components of X(x;x) which correspond to automorphisms
of x in the category underlying the operad τd(X). In particular, the inclusion
Ω(k(i∗X), x) ⊂ X(x;x) is a Kan fibration between Kan complexes. Using the
fact that the functor underlying the map τd(X) −→ τd(Y ) is full faithful (whence
conservative), we see that the map

π1(k(i
∗X), x) = π0(Ω(k(i

∗X), x)) −→ π0(Ω(k(i
∗Y ), f(x))) = π1(k(i

∗Y ), f(x))

is bijective. The square (3.11.1) is thus cartesian, and, as its vertical maps are Kan
fibrations, it is homotopy cartesian as well. Therefore, the map k(i∗X) −→ k(i∗Y )
is a simplicial homotopy equivalence. As a consequence, for any corolla Cn, we also
have simplicial homotopy equivalences

k(i∗X)n+1 = k(∂Ω[Cn], X) −→ k(i∗Y )n+1 = k(∂Ω[Cn], Y ) .

By applying Lemma 3.10 to the commutative squares

k(Ω[Cn], X) //

��

k(Ω[Cn], Y )

��
k(∂Ω[Cn], X) // k(∂Ω[Cn], Y )

(3.11.2)

we conclude that the maps k(Ω[Cn], X) −→ k(Ω[Cn], Y ) are all simplicial homotopy
equivalences. The characterization given by condition (a) of Theorem 3.5 thus
implies that f is a weak operadic equivalence.

For the converse, we just apply again Lemma 3.10 to the commutative squares
(3.11.2). �

Remark 3.12. As we saw implicitly in the proof above, Theorem 3.5 and Lemma 3.9
lead to a characterization of fully faithful maps: a morphism between ∞-operads
X −→ Y is fully faithful if and only if the commutative squares of shape (3.11.2)
are homotopy pullback squares of Kan complexes for any n > 0.

4. Locally constant simplicial dendroidal sets

4.1. Let sdSet = dSet
∆op

≃ ∆̂× Ω be the category of simplicial dendroidal sets.
The category dSet (resp. sSet ) of dendroidal (resp. simplicial) sets is naturally
embedded in sdSet , by viewing a dendroidal (resp. simplicial) set as a constant
simplicial (resp. dendroidal) object in dSet (resp. in sSet). For a simplicial den-
droidal set X , a tree T , and an integer n > 0, the evaluation of X at (T, n) will
often be denoted by X(T )n.
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Given a simplicial dendroidal set X , we denote by

sSetop −→ dSet , K 7−→ XK

the (essentially) unique limit preserving functor which sends ∆[n] to X∆[n] := Xn.
Starting from the model category structure on dSet , and using that the category

of simplices ∆ is a Reedy category, one obtains the Reedy model structure on sdSet ;
see [10, Theorem 5.2.5]. We shall call this structure the simplicial Reedy model
category structure on sdSet . By definition, the weak equivalences are the termwise
weak operadic equivalences (by evaluating at simplices), while the fibrations (resp.
the trivial fibrations) are the maps X −→ Y such that, for any integer n > 0, the
map

X∆[n] −→ X∂∆[n] ×Y ∂∆[n] Y ∆[n]

is a fibration (resp. a trivial fibration) in dSet . In other words, we have:

Proposition 4.2. The simplicial Reedy model structure on sdSet is a cofibrantly
generated model category. A generating set of cofibrations of sdSet is given by the
inclusions

∂∆[n]× Ω[T ] ∪∆[n]× ∂Ω[T ] −→ ∆[n]× Ω[T ]

for any integer n > 0 and any tree T , while, if K is a generating set of trivial
cofibrations (between normal dendroidal sets) in dSet , then a generating set of trivial
cofibrations of sdSet is given by the inclusions

∂∆[n]×B ∪∆[n]×A −→ ∆[n]×B

for any integer n > 0 and any map A −→ B in K.

Corollary 4.3. The cofibrations of the simplicial Reedy model category structure
on sdSet are the termwise normal monomorphisms of dendroidal sets.

Proof. It is well known that any Reedy cofibration is a termwise cofibration. There-
fore, it is sufficient to prove that any termwise normal monomorphism is a cofibra-
tion of the simplicial Reedy model category structure on sdSet . As both Ω and
∆ are skeletal categories in the sense of [6, 8.1.1], so is there product [6, 8.1.7].
Moreover, for any integer n > 0 and any tree T , the boundary of the representable
presheaf ∆[n] × Ω[T ] is nothing but the presheaf ∂∆[n] × Ω[T ] ∪ ∆[n] × ∂Ω[T ].
Therefore, the Reedy cofibrations of sdSet are the normal monomorphisms in the
absolute sense (see [6, 8.1.30 and 8.1.35] for A = ∆× Ω). Thus Reedy cofibrations
are precisely the monomorphisms X −→ Y in sdSet such that, for any integer n > 0
and any tree T , any non-degenerate element y ∈ Yn,T which does not belong to
the image of Xn,T has a trivial stabilizer in Aut(([n], T )) = Aut(T ). On the other
hand, a monomorphism of simplicial dendroidal sets X −→ Y is termwise normal if
and only if, for any integer n > 0 and any tree T , any element y ∈ Yn,T which does
not belong to the image of Xn,T has a trivial stabilizer. Therefore, any termwise
normal monomorphism is a Reedy cofibration. �

4.4. In the sequel, we shall simply call normal monomorphisms the cofibrations of
the simplicial Reedy model category structure on sdSet .

Remark 4.5. Any fibrant object of the simplicial Reedy model category on sdSet is
termwise fibrant (i.e. is termwise an ∞-operad).
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Definition 4.6. We define the locally constant model category structure on sdSet
as the left Bousfield localization of the simplicial Reedy model category structure
on sdSet by the set of projections ∆[n] × Ω[T ] −→ Ω[T ], for any tree T and any
integer n > 0 (see [9] for the general theory of left Bousfield localization of model
categories).

Proposition 4.7. Let X a simplicial dendroidal set. Assume that X is fibrant for
the simplicial Reedy model category structure. Then the following conditions are
equivalent:

(i) the map from X to the terminal object has the right lifting property with
respect to the inclusions

Λk[n]× Ω[T ] ∪∆[n]× ∂Ω[T ] −→ ∆[n]× Ω[T ]

for any tree T and for any integers n > 1 and 0 6 k 6 n;
(ii) for any integer n > 0, the map X0 −→ Xn is an equivalence of ∞-operads;
(iii) X is fibrant for the locally constant model category structure on sdSet .

Proof. The equivalence between conditions (ii) and (iii) holds by definition of left
Bousfield localizations, as, for any tree T , we have a natural identification in
Ho(sSet )

Map(Ω[T ], Xn) = Map(∆[n]× Ω[T ], X)

for any integer n > 0.
Next, it follows easily from [6, Corollary 2.1.20] and [10, Lemma 4.2.4] that the

class of monomorphisms K −→ L in sSet such that, for any tree T , the map

K × Ω[T ] ∪ L× ∂Ω[T ] −→ L× Ω[T ]

is a trivial cofibration of the locally constant model category structure on sdSet ,
contains the class of trivial cofibrations of the usual model category structure on
sSet . Therefore, condition (iii) implies condition (i). Conversely, as the horn in-
clusions generate the trivial cofibrations of the usual model category structure on
sSet , it is clear that condition (i) implies condition (iii). �

Proposition 4.8. The inclusion dSet ⊂ sdSet is a left Quillen equivalence from
the model category for ∞-operads to the locally constant model category structure.
Moreover, this inclusion preserves and detects weak equivalences between arbitrary
objects.

Proof. This inclusion functor is left adjoint to the evaluation at zero functor

ev0 : sdSet −→ dSet , X 7−→ X0 .

Note first that the inclusion functor dSet ⊂ sdSet is a left Quillen functor which pre-
serves weak equivalences: by virtue of Corollary 4.3, it preserves cofibrations, and
it preserves weak equivalences by definition of the locally constant model structure.
Thus, to finish the proof, it is sufficient to check the following two properties:

(a) for any fibrant object X of the locally constant model structure, the natural
map X0 −→ X is a weak equivalence;

(b) for any fibrant object X in dSet , there exists a weak equivalence X −→ Y
in sdSet with Y fibrant in the locally constant model structure, such that
the induced map X −→ Y0 is a weak equivalence of dendroidal sets.
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Property (a) follows from the characterization of fibrant objects given by condition
(ii) of the previous proposition. Property (b) is a particular instance of the existence
of Reedy fibrant resolutions2. �

5. Dendroidal Segal spaces

5.1. We shall now consider different model category structures on the category of
simplicial dendroidal sets.

Given a simplicial dendroidal set X , let us denote by

dSet
op
−→ sSet , A 7−→ XA

the (essentially) unique limit preserving functor which sends a tree T to XΩ[T ] :=
X(T ).

Starting from the usual model category structure on the category of simplicial
sets, we first have:

Proposition 5.2. The category sdSet admits a cofibrantly generated and proper
model category structure whose weak equivalences are the termwise simplicial weak
homotopy equivalences ( i.e. the maps X −→ Y such that, for any tree T , the map
XT −→ YT is a simplicial weak homotopy equivalence), and whose cofibrations are
the normal monomorphisms. Moreover, a morphism of simplicial dendroidal sets
X −→ Y is a fibration (resp. a trivial fibration) if and only if, for any tree T , the
map

(5.2.1) XΩ[T ] −→ X∂Ω[T ] ×Y ∂Ω[T ] Y Ω[T ]

is a Kan fibration (resp. a trivial Kan fibration). In other words, a set of generators
for cofibrations is provided by the maps

∂∆[n]× Ω[T ] ∪∆[n]× ∂Ω[T ] −→ ∆[n]× Ω[T ]

for any tree T and for any integer n > 0, while a generating set of trivial cofibrations
is given by the maps

Λk[n]× Ω[T ] ∪∆[n]× ∂Ω[T ] −→ ∆[n]× Ω[T ]

for any tree T and for any integers n > 1 and 0 6 k 6 n.

Proof. As the category Ω is a generalized Reedy category (see [3, Example 2.8]), the
model category above can be obtained as special case of [3, Theorem 1.6]. �

Remark 5.3. We shall call the model category of Proposition 5.2 the generalized
Reedy model category structure on sdSet .

Definition 5.4. We define the model category structure for dendroidal Segal spaces
as the left Bousfield localization of the generalized Reedy model category on sdSet
by the set of maps Sc[T ] −→ Ω[T ], for any tree T (we consider dSet as full sub-
category of sdSet via the obvious inclusion dSet ⊂ sdSet). A fibrant object for this
model category will be called a dendroidal Segal space.

Proposition 5.5. The model category structure for dendroidal Segal spaces is the
left Bousfield localization of the generalized Reedy model category structure on sdSet
by the set of maps Λe[T ] −→ Ω[T ], for any tree T with an inner edge e.

2One can also prove (b) more explicitely from [7, Corollary 6.9]: given an ∞-operad X, we
can consider the simplicial dendroidal set Y defined by Yn,T = k(Ω[T ],X)n for any integer n > 0

and any tree T (see Paragraph 3.2 above).
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Proof. It follows immediately from Proposition 2.5 that, for any tree T with given
inner edge e, the map Λe[T ] −→ Ω[T ] is a weak equivalence of the model category
structure for dendroidal Segal spaces. Conversely, let W be the class of maps of
dendroidal sets which are weak equivalences in the left Bousfield localization of the
generalized Reedy model category on sdSet by the set of maps Λe[T ] −→ Ω[T ], for
any tree T with an inner edge e. It is clear that any inner anodyne extension in dSet
belongs to W, so that, by virtue of Proposition 2.4, for any tree T , the inclusion
Sc[T ] −→ Ω[T ] is in W. �

Corollary 5.6. Let X be a simplicial dendroidal set. Assume that X is fibrant for
the generalized Reedy model category structure. Then the following conditions are
equivalent:

(i) X is a dendroidal Segal space;
(ii) for any tree T , the map XΩ[T ] −→ XSc[T ] is a trivial Kan fibration in sSet ;
(iii) for any tree T with a given inner edge e, the map XΩ[T ] −→ XΛe[T ] is a

trivial Kan fibration in sSet .

Proof. For any normal dendroidal set A, there is a canonical identification

Map(A,X) = XA .

The corollary thus follows from the definition of left Bousfield localizations and
from Proposition 5.5. �

Proposition 5.7. A morphism of dendroidal Segal spaces X −→ Y is a weak
equivalence if and only if, its evaluation at T

X(T ) = XΩ[T ] −→ Y Ω[T ] = Y (Y )

is a simplicial homotopy equivalence for T = η as well as for T = Cn, n > 0.

Proof. A morphism of dendroidal Segal spaces is a weak equivalence of the model
structure for dendroidal Segal spaces if and only if it is a weak equivalence of
the generalized Reedy model category structure. In other words, a morphism of
dendroidal Segal spaces X −→ Y is a weak equivalence if and only if, its evaluation
at T

XΩ[T ] −→ Y Ω[T ]

is a simplicial homotopy equivalence for any tree T . By virtue of condition (ii) of
the preceding corollary, we see that evaluating a dendroidal Segal space at a tree
T gives the same information as evaluating at Sc[T ]. We easily conclude the proof
from the fact that Sc[T ] is a (homotopy) colimit of dendroidal sets of shape η or
Ω[Cn], n > 0. �

5.8. If X is a dendroidal Segal space, and if (x1, . . . , xn, x) is an (n + 1)-tuple of
elements of X(η)n+1

0 , we define X(x1, . . . , xn;x) by the following pullback

X(x1, . . . , xn;x) //

��

X(Cn)

��
∆[0]

(x1,...,xn,x)
// X(η)n+1

in which the map X(Cn) −→ X(η)n+1 = X∂Ω[Cn] is the map induced by the
inclusion

∐

n+1 η = ∂Ω[Cn] −→ Ω[Cn]. As X(Cn) −→ X(η)n+1 is a Kan fibration,
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the pullback square above is homotopy cartesian, and X(x1, . . . , xn;x) is a Kan
complex.

Definition 5.9. A morphism of dendroidal Segal spaces f : X −→ Y is fully
faithful if, for any (n+ 1)-tuple of 0-cells (x1, . . . , xn, x) in X(η), the morphism

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a simplicial homotopy equivalence.
A morphism of dendroidal Segal spaces is a weak equivalence on objects if its

evaluation at η is a simplicial weak equivalence.

Corollary 5.10. A morphism of dendroidal Segal spaces is a weak equivalence if
and only if it is fully faithful as well as a weak equivalence on objects.

Proof. This follows immediately from Proposition 5.7 and from Lemma 3.10. �

6. Complete dendroidal Segal spaces

6.1. Recall the dendroidal interval Jd = i!(J), where J = Nπ1(∆[1]) denotes the
nerve of the contractible groupoid with two objects 0 and 1.

Definition 6.2. We define the dendroidal Rezk model category as the left Bousfield
localization of the model category for dendroidal Segal spaces (5.4) by the maps

Ω[T ]⊗ Jd −→ Ω[T ] , T ∈ Ω ,

obtained by tensoring with the unique morphism Jd −→ η, the image under i! of
the unique map J −→ ∆[0]. The fibrant objects of the dendroidal Rezk model
category will be called complete dendroidal Segal spaces. The weak equivalences of
this model category structure will be called the complete weak equivalences.

Proposition 6.3. For any normal dendroidal set A, the map A⊗Jd −→ A induced
by the projection Jd −→ η is a complete weak equivalence.

Proof. It is sufficient to prove that this map is a weak equivalence for the induced
model category structure on sdSet/A, the latter being equivalent to the category
of presheaves on the category ∆× Ω/A (where Ω/A is the category of elements of
A). On the other hand, we know that tensoring by Jd preserves colimits as well as
normal monomorphisms. As, by virtue of [7, Corollary 1.7], Ω/A is then a regular
skeletal category in the sense of [6, 8.2.3], this proposition is a straightforward
application of [6, 8.2.14]. �

Corollary 6.4. The inclusion dSet ⊂ sdSet sends the weak operadic equivalences
between normal dendroidal sets to complete weak equivalences.

Proof. By virtue of Propositions 5.5 and 6.3, this inclusion functor sends J-anodyne
extensions in the sense of [7, 3.2] to complete weak equivalences. This corollary thus
immediately follows from [7, Proposition 3.16] and from Ken Brown’s Lemma [10,
Lemma 1.1.12]. �

Corollary 6.5. Let K be a generating set of trivial cofibrations in dSet . We assume
that all the maps in K are morphisms between normal dendroidal sets (which is a
harmless hypothesis, by virtue of [7, Remark 3.15]). A simplicial dendroidal set X
is a complete dendroidal Segal space if and only if it is a Segal space, and if the
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map from X to the terminal simplicial dendroidal set has the right lifting property
with respect to the inclusions of shape

∂∆[n]×B ∪∆[n]×A −→ ∆[n]×B

for j : A −→ B in K and n > 0.

Proof. Let L be the set of maps ∂∆[n]×B ∪∆[n]×A −→ ∆[n]×B, for A −→ B
in K and n > 0, and consider the left Bousfield localization of the model category
for dendroidal Segal spaces by L. It is clear that the L-fibrant objects are precisely
the Segal spaces X such that the map from X to the terminal object has the right
lifting property with respect to the elements of L. Therefore, it is sufficient to
prove that this left Bousfield localization at L coincides with the dendroidal Rezk
model category structure on sdSet . Using corollaries 4.3 and 6.4, we easily see
that the elements of L are cofibrations and complete weak equivalences. On the
other hand, for any trivial cofibration X −→ Y in dSet and any integer n > 0 the
map ∂∆[n] × Y ∪ ∆[n] × X −→ ∆[n] × Y is a trivial cofibration of the localized
model structure at L (this readily follows from [10, Lemma 4.2.4], for instance). In
particular, for any tree T , and ε ∈ {0, 1}, the map Ω[T ] = Ω[T ]⊗{ε} −→ Ω[T ]⊗Jd
is a weak equivalence of the localized model structure at L. Therefore, any complete
weak equivalence is a weak equivalence for the left Bousfied localization by L. �

Theorem 6.6. The locally constant model category structure on sdSet (4.6) and
the dendroidal Rezk model category structure (6.2) are equal.

Proof. As these two model category structures on sdSet have the same class of
cofibrations, it is sufficient to observe that they have the same class of fibrant
objects, which follows from Corollary 6.5 and from the characterization of fibrant
objects given by 4.2, 4.7 (i), 5.2, and 5.6 (iii). �

Corollary 6.7. The inclusion functor dSet ⊂ sdSet is a left Quillen equivalence
from the model category for ∞-operads to the dendroidal Rezk model category.

Proof. This follows from the preceding theorem and from Proposition 4.8. �

Corollary 6.8. A morphism of dendroidal sets is a weak operadic equivalence if and
only if its image under the inclusion dSet ⊂ sdSet is a complete weak equivalence.

Proof. This is a reformulation the last assertion of Proposition 4.8 through Theorem
6.6. �

Corollary 6.9. Let X −→ Y be a morphism between complete dendroidal Segal
spaces. The following conditions are equivalent.

(a) The map X −→ Y is a complete weak equivalence.
(b) For any integer n > 0, the map Xn −→ Yn is an equivalence of ∞-operads.
(c) The map X0 −→ Y0 is an equivalence of ∞-operads.
(d) For any tree T , the map X(T ) −→ Y (T ) is a homotopy equivalence between

Kan complexes.

6.10. Consider the cosimplicial dendroidal set

(6.10.1) ∆J : ∆ −→ dSet

defined by

(6.10.2) ∆J [n] = i!Nπ1(∆[n])
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(so that ∆J [1] = Jd). This cosimplicial object defines a unique colimit preserving
functor

(6.10.3) sdSet −→ dSet , X 7−→ |X |J

such that

(6.10.4) |∆[n]× Ω[T ]|J = ∆J [n]⊗ Ω[T ] .

The functor | − |J has a right adjoint

(6.10.5) dSet −→ sdSet , X 7−→ SingJ(X)

defined by

(6.10.6) SingJ (X)(T )n = HomdSet (∆J [n]⊗ Ω[T ], X) .

Proposition 6.11. The functor (6.10.3) is a left Quillen equivalence from the
dendroidal Rezk model category to the model category for ∞-operads.

Proof. Using the fact that dSet is a monoidal model category, it is easily seen that
(6.10.3) is a left Quillen functor from the generalized Reedy model structure (given
by Proposition 5.2) to the model category for ∞-operads. Therefore, to prove that
this is a left Quillen functor for the dendroidal Rezk model structure, it is sufficient
to prove that it sends inner horns as well as maps of shape

Ω[T ]⊗ Jd −→ Ω[T ] , T ∈ Ω ,

to weak operadic equivalences. But this latter property follows from the fact that
the composition of (6.10.3) with the inclusion dSet ⊂ sdSet is (isomorphic to) the
identity. Similarly, to prove that (6.10.3) is a left Quillen equivalence, by virtue
of Corollary 6.7, it is sufficient to prove that its composition with the inclusion
dSet ⊂ sdSet is a left Quillen equivalence, which is more than obvious. �

6.12. Let ∞-Operad be the full subcategory of dSet spanned by ∞-operads (i.e.
fibrant objects). We define a functor

(6.12.1) K :∞-Operad −→ sdSet

by the formula below (see 3.1):

(6.12.2) K(X)(T )n = k(Ω[T ], X)n .

Proposition 6.13. The functor (6.12.1) takes its values in the full subcategory of
sdSet spanned by complete dendroidal Segal spaces. Moreover, it preserves fibra-
tions as well as weak equivalences between ∞-operads, and, under the canonical
equivalence Ho(∞-Operad ) ≃ Ho(dSet ), the corresponding functor

K : Ho(dSet ) −→ Ho(sdSet )

is canonically isomorphic to the functor

RSingJ : Ho(dSet ) −→ Ho(sdSet )

(which is an equivalence of categories).

Proof. In view of the identification of Proposition 3.3, this is a straightforward
application of the general properties of mapping spaces; see [10, Propositions 5.4.1,
5.4.3 and 5.4.7] (remark that, for any normal dendroidal set A, ∆J [•]⊗A provides
a canonical cosimplicial frame of A in the sense of [10, Definition 5.2.7]). �
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Remark 6.14. The Boardman-Vogt tensor product on dSet induces a symmetric
monoidal structure on sdSet : for two simplicial dendroidal sets X and Y , their
tensor product X ⊗ Y is simply defined termwise:

(X ⊗ Y )n = Xn ⊗ Yn , n > 0 .

Using the fact that dSet is a symmetric monoidal model category with respect
to the Boardman-Vogt tensor product (Theorem 1.1), it is easily seen that sdSet ,
endowed with the dendroidal Rezk model structure, is also a symmetric monoidal
model category. Moreover, the functor dSet ⊂ sdSet is a symmetric monoidal left
Quillen equivalence.

7. Segal pre-operads

Definition 7.1. A Segal pre-operad is a dendroidal space A such that A(η) is
a discrete simplicial set (i.e. all the simplices of positive dimension in A(η) are
degenerated). We denote by PreOper the full subcategory of sdSet spanned by
Segal pre-operads.

7.2. The category of Segal pre-operads is in fact the category of presheaves on the
category S(Ω), which is obtained as the localization of ∆×Ω by the arrows of shape
([n], η) −→ ([m], η). We denote by

(7.2.1) γ : ∆× Ω −→ S(Ω)

the localization functor. Under the identification PreOper ≃ Ŝ(Ω), the inverse image
functor

(7.2.2) γ∗ : PreOper −→ sdSet

is simply the inclusion functor. The inclusion functor γ∗ thus has a right adjoint

(7.2.3) γ∗ : sdSet −→ PreOper

as well as a left adjoint

(7.2.4) γ! : sdSet −→ PreOper .

The explicit description of these adjoints will be needed later on.
The right adjoint, γ∗ : sdSet −→ PreOper , is defined as follows. Let X be a

dendroidal space. Then γ∗(X) is the subobject of X given by all the dendrices
whose vertices are degenerated. More explicitely, for a tree T , let write E(T ) for
its set of edges (colours), with the evident inclusion (which is natural in T )

vT :
∐

e∈E(T )

η −→ Ω[T ] .

For a simplicial set K, we shall identify the set K0 with the corresponding discrete
simplicial set, and write s : K0 −→ K for the inclusion. Then γ∗(X)(T ) is defined
as the following pullback of simplicial sets.

γ∗(X)(T ) //

��

X(T )

v∗

T

��∏

e∈E(T ) X(η)0
s //

∏

e∈E(T ) X(η)

(7.2.5)

The left adjoint γ! : sdSet −→ PreOper can also be made explicit as follows.
For a simplicial dendroidal set X as above, consider the set π0X(η) of connected
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components of the simplicial set X(η). We have γ!(X)(T ) = X(T ) for any tree T
such that there is no map T −→ η in Ω. If there is a map ε : T −→ η in Ω, then its
unique (remember there is a canonical isomorphism Ω/η = ∆), and we can describe
γ!(X)(T ) as the pushout below.

X(η) //

��

X(T )

��
π0X(η) // γ!(X)(T )

(7.2.6)

7.3. A morphism of Segal pre-operads is a monomorphism if and only if its image
by γ∗ is (because γ∗ is a fully faithful limit preserving functor). We say that a
morphism of Segal pre-operads X −→ Y is a normal monomorphism if its image
by γ∗ has the same property (this just means that the map Xn −→ Yn is a normal
monomorphism of dendroidal sets for any integer n > 0).

A Segal pre-operad X is normal if ∅ −→ X is a normal monomorphism.
A morphism of Segal pre-operads is a trivial fibration if it has the right lifting

property with respect to the class of normal monomorphisms.

Lemma 7.4. If X −→ Y is a normal monomorphism of simplicial dendroidal
sets and if π0X(η) −→ π0Y (η) is injective, then γ!(X) −→ γ!(Y ) is a normal
monomorphism of Segal pre-operads.

Proof. One sees easily from the explicit description of γ! given by the pushouts
(7.2.6) that, for any tree T above η, the map γ!(X)(T ) −→ γ!(Y )(T ) is injective.
For any tree T which has a non trivial automorphism in Ω, there is no map from
T to η. As, for such a tree T , we have γ!(X)(T ) = X(T ), it is clear that the map
γ!(X) −→ γ!(Y ) is a normal monomorphism. �

Proposition 7.5. Let I be the set of maps

(7.5.1) γ!
(
∂∆[n]× Ω[T ] ∪∆[n]× ∂Ω[T ]

)
−→ γ!

(
∆[n]× Ω[T ]

)

for any tree T with at least one vertex, and for any integer n > 0, together with the
map ∅ −→ η. Then the smallest class of maps in PreOper which is closed under
pushouts, transfinite compositions and retracts, and which contains I, is the class
of normal monomorphisms.

Proof. Let us call I-cofibrations the elements of the smallest class of maps which
contains I and is closed under pushouts, transfinite compositions, and retracts.

If T is a tree with at least one vertex, then, for any integer n > 0, the evaluation
of the map

(7.5.2) ∂∆[n]× Ω[T ] ∪∆[n]× ∂Ω[T ] −→ ∆[n]× Ω[T ]

at η is bijective, so that, by virtue of Lemma 7.4, its image by γ! is a normal
monomorphism. Hence any map in I is a normal monomorphism of Segal pre-
operads. Therefore, any I-cofibration is a normal monomorphism.
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Conversely, consider a normal monomorphism of Segal pre-operads u : A −→ B.
Let A′ be the Segal pre-operad obtained from the pushout below.

∅ //

��

A

��∐

b∈(B(η)0−A(η)0)
η // A′

Then the inclusion A −→ A′ is certainly an I-cofibration, and one checks easily
that the canonical map A′ −→ B is still a normal monomorphism. Thus, to prove
that u : A −→ B is an I-cofibration, we may assume, without loss of generality,
that the map A(η) −→ B(η) is bijective on 0-simplices. Applying the small object
argument to the map u with the set of maps (7.5.1) (for any tree T with at least
one vertex, and for any integer n > 0), we obtain a factorization of u of shape

A
v // C

p
// B ,

in which v is an I-cofibration, while p has the right lifting property with respect
to maps of shape (7.5.1) (still for any tree T with at least one vertex, and for
any integer n > 0). Moreover, one checks that v induces a bijection by evaluating
at η, which implies that p has the same property. We claim that γ∗(p) has the
right lifting property with respect to maps of shape (7.5.2) (for any tree T and any
integer n). Indeed, in the case T has at least one vertex this follows by a standard
adjunction argument. In the case where T = η, this lifting property means that
the map C(η) −→ B(η) is a trivial fibration between discrete simplicial sets, i.e. is
a bijective map on the 0-simplices. Hence, since γ∗ is fully faithful, the map p has
the right lifting with respect to u. By the retract argument [10, Lemma 1.1.9], this
implies that u is a retract of v, whence is an I-cofibration. �

8. Segal operads

Definition 8.1. A Segal operad is a Segal pre-operad X such that, for any tree T ,
the map

X(T ) = XΩ[T ] −→ XSc[T ]

is a trivial fibration of simplicial sets, where, if A is a dendroidal set, XA denotes
the simplicial set whose n-simplices are the maps of dendroidal sets from A to Xn

(with the notations of 5.1, we thus have γ∗(X)A = XA). We write SegOper for the
full subcategory of PreOper spanned by Segal operads.

A Reedy fibrant Segal operad is a Segal pre-operad whose image by γ∗ is fibrant
in the model category structure for dendroidal Segal spaces (see Definition 5.4).
Note that any Reedy fibrant Segal operad is indeed a Segal operad; see Corollary
5.6.

A morphism of Segal pre-operads is a Segal weak equivalence if its image by γ∗

is a complete weak equivalence (6.2).
A morphism between Reedy fibrant Segal operads is fully faithful if its image by

the functor γ∗ is fully faithful; see 5.9.

Proposition 8.2. Let X be a dendroidal Segal space. Then γ∗(X) is a Reedy
fibrant Segal operad.
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Proof. Since, for any tree T , the evaluation of the map Sc[T ] −→ Ω[T ] at η is
bijective, the commutative square

γ∗γ∗(X)Ω[T ] //

��

XΩ[T ]

��
γ∗γ∗(X)Sc[T ] // XSc[T ]

is cartesian. Therefore, the functor γ∗γ∗ preserves dendroidal Segal spaces. In
other words, the functor γ∗ sends dendroidal Segal spaces to Reedy fibrant Segal
operads. �

Lemma 8.3. With the notations of paragraph 6.12, for any ∞-operad X, the
natural map X −→ K(X) is a complete weak equivalence.

Proof. As X = K(X)0, this is a reformulation of the fact that K(X) is a complete
dendroidal Segal space; see Proposition 4.7, Theorem 6.6 and Proposition 6.13. �

Proposition 8.4. For any dendroidal Segal space X, the map X0 −→ X is a
complete weak equivalence.

Proof. Let X be a dendroidal Segal space. Given a bisimplicial object U , we
write diag(U) for the simplicial object defined by diag(U)n = Un,n. We define

the bisimplicial dendroidal set V by Vm,n = X
(∆[m])
n (see paragraph 3.1), and we

put W = diag(V ). The maps ∆[m] −→ ∆[0] induce embeddingsXn = V0,n ⊂ Vm,n,
and thus a monomorphism X −→W . Recall that K(X0) = V•,0 is a fibrant resolu-
tion of X0 in the dendroidal Rezk model structure; see Proposition 6.13. We have
a canonical commutative square of the following form

X0
//

��

X

��
K(X0) // W

in which the mapX0 −→ K(X0) is a complete weak equivalence (by Lemma 8.3). It
is thus sufficient to prove that the maps X −→W and K(X0) −→W are complete
weak equivalences.

By virtue of Lemma 8.3, the inclusion Xn −→ V•,n = K(Xn) is a weak equiva-
lence for any integer n > 0. Using Theorem 6.6 (so that we can compute homotopy

colimits in sSetΩ
op

in the usual way), this implies that the induced map

X = hocolim
∆[n]∈∆op

Xn −→ hocolim
∆[n]∈∆op

K(Xn) = W

is a complete weak equivalence.

If we work with the projective model structure on sdSet = dSet
∆op

associated to
the model structure on dSet (that is the model category whose weak equivalences (or
fibrations) are the maps whose evaluation at each object of ∆ is a weak equivalence
(or a fibration, respectively) in dSet ), then, for any tree T , the functor

∆[n] 7→ ∆[n]× Ω[T ]

is a cosimplicial resolution of Ω[T ], while

∆[m] 7→ X(∆[m]) = Vm,•
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is a simplicial resolution of X . Therefore, by virtue of [10, Proposition 5.4.7],
for any tree T , we can identify the simplicial set W (T ) with the mapping space
Map(Ω[T ], X). On the other hand, as the evaluation at zero functor X 7→ X0

is a right Quillen functor from dSet
∆op

to dSet , we have the following natural
identifications in the homotopy category of Kan complexes:

Map(Ω[T ], X0) ≃ Map(Ω[T ], X) .

In other words, with the notations introduced in paragraph 6.12, by virtue of Propo-
sition 3.3, the map K(X0) −→W induces a canonical isomorphism

K(X0) ≃W

in the homotopy category of sSetΩ
op

(corresponding to termwise weak equivalences
of sSet ). Therefore the map K(X0) −→ W is a complete weak equivalence, and
this ends the proof. �

Remark 8.5. If we keep the notations used in the proof above, we may use the
simplicial dendroidal set W to obtain a canonical resolution of X by a complete
dendroidal Segal space: one may consider a fibrant resolution W −→ Y for the

generalized Reedy model structure on sSetΩ
op

. Then the mapX −→ Y is a complete
weak equivalence, and Y is a complete dendroidal Segal space.

Corollary 8.6. The functor γ∗ sends complete weak equivalences between den-
droidal Segal spaces to Segal weak equivalences, and, for any dendroidal Segal space
X, the map γ∗γ∗(X) −→ X is a complete weak equivalence.

Proof. It is clearly sufficient to prove the last assertion, which follows from the fact
that, by virtue of Propositions 8.2 and 8.4, for any dendroidal Segal space X , there
exists a commutative square

γ∗γ∗(X)0 // γ∗γ∗(X)

��
X0

// X

in which three hence all maps are weak equivalences. �

Corollary 8.7. A morphism between dendroidal Segal spaces X −→ Y is a com-
plete weak equivalence if and only if γ∗(X) −→ γ∗(Y ) is a Segal weak equivalence
of Segal operads.

8.8. Given a dendroidal Segal space X , there is a canonical operad ho(X) asso-
ciated to it, whose set of colours is X(η)0, and whose sets of maps are given by
π0(X(x1, . . . , xn;x)) (the fact that this defines an operad can be proved using the
explicit description of the operad associated to an ∞-operad (see [7, Proposition
6.14]), Corollary 8.7 (to reduce to the case of a complete dendroidal Segal space),
Proposition 3.3, as well as the Quillen equivalence of Proposition 6.11; however, it
is not difficult to understand this construction in elementary terms).

Definition 8.9. A morphism of dendroidal Segal spaces X −→ Y is essentially
surjective if the morphism of operads ho(X) −→ ho(Y ) is essentially surjective.

Remark 8.10. A morphism of dendroidal Segal spaces X −→ Y is fully faithful
(see Definition 5.9) and essentially surjective if and ony if the induced morphism
γ∗γ∗(X) −→ γ∗γ∗(Y ) has the same property.



28 D.-C. CISINSKI AND I. MOERDIJK

Theorem 8.11. Let f : X −→ Y be a morphism of dendroidal Segal spaces. The
following conditions are equivalent.

(a) The map f is a complete weak equivalence;
(b) The map γ∗(f) : γ∗(X) −→ γ∗(Y ) is a weak equivalence of Segal operads.
(c) The map γ∗γ∗(f) : γ∗γ∗(X) −→ γ∗γ∗(Y ) is fully faithful and essentially

surjective.
(d) The map f is fully faithful and essentially surjective.

Proof. The equivalence between (a) and (b) follows from Corollary 8.7, while the
equivalence between (c) and (d) is a tautology. To prove the remaining equivalences,
we will use Theorem 3.11 to deduce the equivalence between conditions (a) and
(d). Indeed, we may assume that X and Y are complete (by Corollary 8.7), so that
the evaluated maps X(T ) −→ Y (T ) may be identified with the maps of mapping
spacesMap(Ω[T ], X) −→ Map(Ω[T ], Y ); up to the Quillen equivalence dSet ⊂ sdSet
(see Corollary 6.7), and using Proposition 3.3, condition (d) (resp. (a)) may be
interpreted by saying that the map between the corresponding ∞-operads is fully
faithful and essentially surjective (resp. satisfies condition (b) of Theorem 3.5).
This completes the proof of the theorem. �

Lemma 8.12. If a morphism of Segal pre-operads has the right lifting property
with respect to normal monomorphisms, then it is a Segal weak equivalence.

Proof. Consider first a normal resolution E∞ of the terminal dendroidal set (i.e. a
cofibrant resolution of the terminal dendroidal set for the model category structure
of Theorem 1.1), considered as a simplicially constant simplicial dendroidal set. We
may see E∞ as a Segal pre-operad, and it follows immediately from Theorem 6.6
that, for any Segal pre-operad X , the projection E∞ × X −→ X is a Segal weak
equivalence. Moreover, as E∞ is even a normal Segal pre-operad, E∞×X is always
normal. Therefore, it is sufficient to prove that, if p : X −→ Y is a morphism of
normal Segal pre-operads which has the right lifting property with respect to normal
monomorphisms of pre-operads, then it is a Segal weak equivalence. Note that Jd
may be seen as Segal pre-operad, so that, for any normal pre-operad A, Jd ⊗ A is
still a pre-operad, and, whenever A is normal, the map

A∐ A = ({0} ∐ {1})⊗A −→ J ⊗A

is a normal monomorphism; see Corollary 4.3 and [7, Proposition 1.9]. We may now
finish the proof in the standard way: as Y is normal, the map p admits a section
s : Y −→ X , and the commutative square

X ∐X
(1X ,sp)

//

��

X

p

��
Jd ⊗X

pπ
//

h

;;

Y

admits a lifting h (where π : Jd ⊗X −→ X denotes the map induced by the map
Jd −→ η), which means that the map p is a Jd-homotopy equivalence, whence a
weak equivalence. �

Theorem 8.13. The category of Segal pre-operads is endowed with a left proper
cofibrantly generated model category structure whose weak equivalences are the Segal
weak equivalences, and whose cofibrations are the normal monomorphisms.
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Proof. The preceding lemma tells us that any trivial fibration of Segal pre-operads
is a Segal weak equivalence. On the other hand, by virtue of Proposition 7.5, the
class of normal monomorphism is generated by a small set of maps. The existence of
this model category is thus a particular case of J. Smith’s Theorem; see [1, Theorem
1.7 and Proposition 1.18]. The left properness property follows immediately from
its counterpart for the Rezk model category structure. �

8.14. The model category structure above will be called the Reedy-Segal model
category structure on PreOper . We will always consider the category of simplicial
dendroidal sets as a model category with the Rezk model structure (6.2). By
construction, the functor γ∗ : PreOper −→ sdSet is a left Quillen functor. Our
purpose is to prove that it is in fact a left Quillen equivalence, and that the fibrant
pre-operads are precisely the Reedy fibrant Segal operads.

Theorem 8.15. The functor γ∗ : PreOper −→ sdSet is a left Quillen equivalence
from the model category for Segal operads to the model category for complete den-
droidal Segal spaces.

Proof. As γ∗ is a fully faithful left Quillen functor which preserves and detects weak
equivalences, this follows immediately from Corollary 8.7. �

Remark 8.16. Note that Segal pre-operads are closed under tensor product (as
defined in Remark 6.14), and that the model category of Theorem 8.13 is symmetric
monoidal, in such a way that the left Quillen functor of Theorem 8.15 is symmetric
monoidal as well (this is immediate from Remark 6.14).

Theorem 8.17. Let X be a Segal pre-operad. The following conditions are equiv-
alent:

(a) X is fibrant in the model structure of Theorem 8.13;
(b) X is a Reedy fibrant Segal operad;
(c) X is a retract of γ∗(Y ) for some complete dendroidal Segal space Y ;
(d) X is a retract of γ∗(Y ) for some dendroidal Segal space Y .

Proof. Condition (a) implies condition (b) because the inclusions Sc[T ] −→ Ω[T ] are
trivial cofibrations in the symmetric monoidal model category structure of Theorem
8.13.

Let us prove that condition (b) implies condition (c). If X is Reedy fibrant, then
we can choose a trivial cofibration γ∗(X) −→ Y with Y a complete dendroidal
Segal space. By virtue of Corollary 8.7, we may assume that the map γ∗X ≃
γ∗γ∗γ

∗(X) −→ γ∗γ∗(Y ) is a weak equivalence between fibrant objects in the model
category for dendroidal Segal spaces. As γ∗ is fully faithful, to prove that X
is a retract of γ∗(Y ), it is sufficient to prove that the map γ∗X −→ γ∗γ∗(Y )
is a cofibration (i.e. a normal monomorphism): this follows from the fact that,
by assumption, for any tree T , the group Aut(T ) of automorphisms of T in Ω
acts freely on Y (T )−X(T ), and that we have an Aut(T )-equivariant inclusion of
γ∗(Y )(T )−X(T ) in Y (T )−X(T ); see the cartesian square (7.2.5).

Condition (c) implies condition (a): as γ∗ is a right Quillen functor (Corollary
8.15), γ∗(Y ) is fibrant for any complete dendroidal Segal space Y , and the class of
fibrant objects of any model category is closed under retracts.

It is clear that condition (c) implies condition (d).
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Finally, the fact that condition (d) implies condition (b) follows from the fact
that γ∗ sends dendroidal Segal spaces to Reedy fibrant Segal operads (see the first
assertion of Proposition 8.2). �

Remark 8.18. Recall from 6.12 the canonical functor

K :∞-Operad −→ sdSet .

We know that K sends∞-operads to complete dendroidal Segal spaces, so that, by
virtue of Proposition 8.2, we obtain a functor

γ∗K :∞-Operad −→ SegOper .

We also know from Proposition 6.13 and from Theorem 8.15 that γ∗K sends weak
equivalences of∞-operads to weak Segal equivalences, and that the induced functor

γ∗K : Ho(∞-Operad ) −→ Ho(SegOper )

is an equivalence of categories.
Remark as well that any dendroidal set is a pre-operad, so that the inclusion

dSet ⊂ sdSet factors through an inclusion dSet ⊂ PreOper which happens to be
a left Quillen equivalence (this follows immediately from Corollary 6.7 and from
Theorem 8.15). If X is an ∞-operad, seen as a Segal pre-operad, then γ∗K(X) is
a canonical fibrant replacement of X in the model category of Theorem 8.13.

Remark 8.19. The identification dSet/η = sSet allows us to deduce the Joyal model
category structure for quasi-categories from the model category structure for ∞-
operads; see [7, Corollary 2.10]. Similarly, the dendroidal Rezk model structure
of Definition 6.2 induces Rezk’s original model structure for complete Segal spaces
([16, Section 12]), while the model category structure for Segal categories can be
obtained from the model category structure of Theorem 8.13 by slicing over η as
well. The Quillen equivalences relating the homotopy theories of Segal categories
and of complete Segal spaces, proved by Joyal and Tierney in [12] are deduced
immediately from their dendroidal analog, namely Corollary 6.7 and Proposition
6.11, while the Quillen equivalence from the model category for Segal categories to
the model category for complete Segal spaces, proved by Bergner in [2], is a direct
consequence of Theorem 8.15.
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bonne, 31062 Toulouse cedex 9, France

E-mail address: denis-charles.cisinski@math.univ-toulouse.fr

URL: http://www.math.univ-toulouse.fr/~dcisinsk/

Radboud Universiteit Nijmegen, Institute for Mathematics, Astrophysics, and Par-

ticle Physics, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

E-mail address: i.moerdijk@math.ru.nl

URL: http://www.math.uu.nl/people/moerdijk/


	Introduction
	1. Preliminaries
	2. Segal cores
	3. Equivalences of -operads
	4. Locally constant simplicial dendroidal sets
	5. Dendroidal Segal spaces
	6. Complete dendroidal Segal spaces
	7. Segal pre-operads
	8. Segal operads
	References

