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Dendroidal sets and simplicial operads

Denis-Charles Cisinski and Ieke Moerdijk

Abstract
We establish a Quillen equivalence relating the homotopy theory of Segal operads and the
homotopy theory of simplicial operads, from which we deduce that the homotopy coherent nerve
functor is a right-Quillen equivalence from the model category of simplicial operads to the model
category structure for ∞-operads on the category of dendroidal sets. By slicing over the monoidal
unit, this also gives the Quillen equivalence between Segal categories and simplicial categories
proved by Bergner, as well as the Quillen equivalence between quasi-categories and simplicial
categories proved by Joyal and Lurie. We also explain how this theory applies to the usual notion
of operad (that is, with a single colour) in the category of spaces.

Introduction

This paper is the last in a series of three, the main goal of which is to establish a homotopy
theoretic equivalence between simplicial operads and dendroidal sets. When we talk about
operads in this paper, we will generally mean coloured operads, that is, operads controlling
algebraic structures in which there are elements of different ‘types’, such as the structure
consisting of a ring together with a module over it, or the structure of a (enriched) category
given by the various hom sets, for which the types are given by pairs of objects, the domain
and the codomain. The more classical uncoloured (‘monochromatic’) operads are included as
those coloured operads in which there is only one colour. The category dSet of dendroidal sets
is an extension of the category sSet of simplicial sets. It is related by a nerve functor to the
category Operad of operads in exactly the same way as the category of simplicial sets is related
to the category Cat of small categories. In fact, there is a special dendroidal set η, related to the
trivial operad, which we also denote η, for which there are canonical isomorphisms of categories

dSet/η = sSet, (I)

Operad /η = Cat, (II)

while the corresponding forgetful functors

i! : sSet −→ dSet and j! : Cat −→ Operad

are fully faithful embeddings.
The dendroidal nerve functor Nd extends the classical nerve functor N in the sense that the

diagram

Operad
Nd �� dSet

Cat

j!

��

N �� sSet

i!

��

commutes. In [11], we proved that the category of dendroidal sets carries a left proper Quillen
model structure, which under the identification (I) induces the Joyal model structure on sSet.
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In the Joyal model category structure, the fibrant objects are the ∞-categories, also known as
quasi-categories; see [14, 16]. The fibrant objects in the model structure on dendroidal sets
are similarly referred to as ∞-operads. In fact, there is a bit more structure around: there
is a symmetric closed monoidal structure on dSet, reminiscent of the Boardman–Vogt tensor
product of operads [8], and compatible with this Quillen structure in the precise sense that it
makes dSet into a monoidal model category. It turns out (see Theorem 1.14) that the category
sOper of simplicial coloured operads also carries a Quillen model structure, which, under the
simplicially enriched version of the identification (II) relating simplicial operads and simplicial
categories, induces the Bergner model structure [2] on the category sCat of simplicial categories.
The main result of this paper, already announced in [11], can then be stated as follows:

Theorem (Theorem 8.15). There is a Quillen equivalence

W! : dSet � sOper : hcN d

between dendroidal sets and simplicial operads.

The right-Quillen functor hcN d is a homotopy coherent version of the dendroidal nerve
functor, and its left adjoint W! is closely related to the Boardman–Vogt resolution of operads
[5, 6, 8]. In fact, the counit of the adjunction

W!hcN d(P ) −→ P

is essentially the Boardman–Vogt resolution of P . On the other hand, for a cofibrant and fibrant
dendroidal set X, the unitX −→ hcN dW!(X) can be viewed as a strictification, or rectification,
of the ∞-operad X by a ‘strict’ operad W!(X). The force of this theorem is illustrated by the
fact that, by considering the corresponding slice categories over η, it immediately implies one
of the cornerstone facts in the theory of ∞-categories, proved by Joyal and Lurie [16]:

Corollary (Corollary 8.16). There is a Quillen equivalence

W! : sSet � sCat : hcN

between simplicial sets and simplicial categories.

Recall that a reduced simplicial set is one with a unique vertex. There is an analogous notion
of reduced dendroidal set, and our theorem will also be seen to imply a similar equivalence
between classical (monochromatic) simplicial operads and a related Quillen model category
structure on these reduced dendroidal sets:

Proposition (Proposition 9.5). The category of reduced dendroidal sets carries an induced
model structure which is Quillen equivalent to the category of (uncoloured) simplicial operads
(with the model structure of [5]).

The category of dendroidal sets is a category of presheaves of sets. In our earlier paper
[10], we studied the related category of presheaves of simplicial sets: this is the category of
dendroidal spaces, identical to the category of simplicial objects in dSet, and denoted sdSet.
It contains as a full subcategory the category of preoperads, those dendroidal spaces whose
space of vertices (or objects, or colours) is discrete. In [10], we proved that the category
of dendroidal spaces carries a Rezk style Quillen model structure whose fibrant objects are
referred to as dendroidal complete Segal spaces. We established a Quillen equivalence between
the original model category of dendroidal sets and this model category of dendroidal complete
Segal spaces. We also proved that this model category restricts to a Quillen equivalent model
category structure on the category PreOper of preoperads. Thus, together with the main theorem

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DENDROIDAL SETS AND SIMPLICIAL OPERADS 707

in this paper, we obtain a square of Quillen equivalent model categories

PreOper

γ∗

��

sOperNd��

hcNd

��
sdSet dSet

i��

(∗)

in which Nd is the simplicial enrichment of the dendroidal nerve functor, while γ∗ and i are
the inclusion functors.

The way we prove our theorem is based on these earlier results and proceeds as follows: We
prove that the functors W! and hcN d of the main theorem form a Quillen pair (Proposition 4.9),
and we prove that the square (∗) is commutative in a homotopy theoretic sense, even though
the top horizontal functor is not a right-Quillen functor (although it does preserve weak
equivalences). Thus, using the fact, from our earlier paper [10], that the inclusion functors
relating dSet, sdSet and PreOper are left-Quillen equivalences, we see that, to prove that W! and
hcN d form a Quillen equivalence, it is in fact enough to prove that the adjunction between
preoperads and simplicial operads is a Quillen equivalence. In order to do this, we change the
model structure on PreOper used in [10] into a ‘tame’ model structure, with the same weak
equivalences but considerably fewer cofibrant objects (Section 7). With fewer cofibrant objects
to deal with, it is possible to show that the functor Nd on top of diagram (∗) is a right-Quillen
equivalence (Theorem 8.4). This last argument is based on a fundamental property of the
nerve functor, stating that it preserves certain pushouts ‘up to an inner anodyne extension’
(in particular, up to a trivial cofibration); see Proposition 3.6. This fundamental property
also implies that Σ-cofibrant operads behave like cofibrant operads with respect to homotopy
pushouts (Theorem 8.7). An immediate consequence (Corollary 8.10) is that the model category
structure on the category of simplicial categories is in fact left proper, a special feature which
was proved by different methods in Appendix A of Lurie’s book [16]. In the same spirit, we see
that any reasonable model of the operad E∞ defines a proper model category which is Quillen
equivalent to the model category of simplicial operads (Corollary 8.11).

The plan of this paper, then, is as follows: In the first section, we give a detailed proof
of the existence of a closed model structure on the category of simplicial operads. We have
known this model structure for quite a while, and in fact already announced it in our first
paper [11]. In the meantime, it has been proved and used independently by Robertson [20].
Section 2 reviews basic definitions and facts concerning dendroidal sets; the reader can find
detailed treatments in [11, 17, 18]. In Section 3, we prove the fundamental property, already
mentioned, that the dendroidal nerve functor from operads to dendroidal sets preserves certain
pushouts up to homotopy. In Section 4, we take up the construction of a generalized Boardman–
Vogt resolution of operads from [5, 6], and use it to construct the Quillen pair featuring in
our main theorem. Section 5 is essentially a review of those definitions and facts needed in this
paper about dendroidal complete Segal spaces and about preoperads. In Section 6, we examine
weak equivalences between preoperads which satisfy some Segal-type fibrancy conditions. In
Section 7, we explain how to modify the model structure on preoperads, in such a way that the
nerve functor from simplicial operads to preoperads becomes right-Quillen, while the homotopy
category of preoperads does not change. In Section 8, we collect all the results together, and
deduce our main theorem and some of its variations and consequences. Finally, Section 9 deals
with the reduced case mentioned above.

1. The homotopy theory of simplicial operads

1.1. Let us denote by Operad the category of coloured operads (=symmetric multicategories)
in the category of sets. The objects of Operad will simply be called operads.
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A morphism of operads u : P −→ Q is said to be fully faithful if, for any integer n � 0, and
for any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P , the map

P (x1, . . . , xn;x) −→ Q(u(x1), . . . , u(xn);u(x))

is bijective. A morphism of operads u : P −→ Q is essentially surjective if, for any object y
in Q, there exists an object x in P as well as an isomorphism u(x) � y in Q. A morphism
of operads u : P −→ Q is an isofibration if, for any isomorphism b : y −→ y′ in Q and for any
object x in P such that u(x) = y, there exists an isomorphism a : x −→ x′ in P such that
u(a) = b (and u(x′) = y′).

We recall the following basic result, stated in [17] (a full proof can be found in [21]).

Theorem 1.2. The category of operads is endowed with a proper cofibrantly generated
model category structure defined as follows. The weak equivalences are the morphisms of
operads which are fully faithful and essentially surjective, the cofibrations are the morphisms
which are injective on objects, while the fibrations are the isofibrations.

1.3. Now, consider the category sOper of simplicial operads (that is, of coloured operads
enriched in simplicial sets).

There is an adjunction
π0 : sOper � Operad : ι, (1.1)

where the right adjoint ι sends an operad P to itself, while the left adjoint π0 sends a simplicial
operad P to the operad π0(P) defined by Obπ0(P) = Ob P, while, for any integer n � 0 and
any (n+ 1)-tuple of objects, π0(P)(x1, . . . , xn;x) is the set π0(P(x1, . . . , xn;x)) of connected
components of the simplicial set of operations P(x1, . . . , xn;x). We will have to consider the
following kinds of morphisms of simplicial operads.

Definition 1.4. A morphism of simplicial operads u : P −→ Q is said to be fully faithful
if, for any integer n � 0 and for any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P, the map

P(x1, . . . , xn;x) −→ Q(u(x1), . . . , u(xn);u(x))

is a weak equivalence (in the sense of the usual Quillen model structure on the category of
simplicial sets). A morphism of simplicial operads u : P −→ Q is said to be essentially surjective
if the associated morphism of operads π0(u) : π0(P) −→ π0(Q) is essentially surjective.

A morphism of simplicial operads u : P −→ Q is a local fibration (a local trivial fibration)
if, for any non-negative integer n and for any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P, the
map

P(x1, . . . , xn;x) −→ Q(u(x1), . . . , u(xn);u(x))

is a Kan fibration (a trivial fibration, respectively). A morphism of simplicial operads u : P −→
Q is an isofibration if it is a local fibration and if the induced map of operads π0(u) : π0(P) −→
π0(Q) is an isofibration in the sense of 1.1.

A simplicial operad P is fibrant if the morphism from P to the terminal operad is a local
fibration (or, equivalently, an isofibration).

1.5. Let C be a set. We denote by sOper
C

the category of simplicial operads with C as
a fixed set of objects: the objects of sOper

C
are the simplicial operads P such that Ob P = C,

and the morphisms of sOper
C

are the morphisms of simplicial operads P −→ Q for which the
induced map C = Ob P −→ Ob Q = C is the identity. Note that any morphism of sOper

C
is in

particular essentially surjective.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 709

Remark 1.6. For any simplicial operad P, there is a functorial map

P −→ Ex∞(P) (1.2)

which is fully faithful and the identity on objects, while Ex∞(P) is fibrant: we define Ex∞(P)
by Ob Ex∞(P) = Ob P on objects, while, for any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P,
we take

Ex∞(P)(x1, . . . , xn;x) = Ex∞(P(x1, . . . , xn;x)), (1.3)

where, on the right-hand side, we apply Kan’s Ex∞ functor to the space of operations of
P. This defines a simplicial operad because Kan’s Ex∞ functor preserves finite products. In
fact, more generally, this functor preserves finite limits as well as filtered colimits, so that the
functor P �−→ Ex∞(P) has the same properties. Moreover, Kan’s Ex∞ functor preserves Kan
fibrations, so that the induced functor on simplicial operads preserves local fibrations as well
as isofibrations (for the latter property, note that π0(P) � π0(Ex∞(P))).

Theorem 1.7. The category sOper
C

is endowed with a right proper cofibrantly generated
model category structure whose weak equivalences (fibrations) are the morphisms of sOper

C
which are fully faithful (which are local fibrations, respectively).

Proof. As recalled in the preceding remark, the usual Quillen model category structure on
the category of simplicial sets has a finite limit preserving fibrant replacement functor provided
by Kan’s Ex∞ functor. Moreover, the canonical interval Δ[1] is naturally endowed with a
structure of cocommutative counital comonoid (the comultiplication is the diagonal Δ[1] −→
Δ[1] × Δ[1], while the counit is the unique map Δ[1] −→ Δ[0]), so that the existence of this
model category structure on the category sOper

C
follows straight away from [6, Theorem 2.1].

The right properness easily follows from the analogous property in the usual model category
of simplicial sets.

Remark 1.8. A morphism in sOper
C

is a trivial fibration if and only if it is a local trivial
fibration in the sense of Definition 1.4.

Remark 1.9. The model structure of Theorem 1.7 can be constructed by more elementary
means: the category sOper

C
is the category of simplicial objects in the category Operad

C
of

operads with fixed set of object C, and one can check that A = Operad
C

satisfies the hypotheses
of [19, Chapter II, Section 4, Theorem 4].

1.10. Consider two sets C and D as well as a map f : C −→ D. This map induces an
adjunction

f! : sOper
C

� sOper
D

: f∗ (1.4)

in which the right adjoint sends a simplicial operad P with set of objects D to the simplicial
operad f∗P with set of objects C defined by the formula

f∗P(c1, . . . , cn; c) = P(f(c1), . . . , f(cn); f(c)) (1.5)

for any integer n � 0 and any (n+ 1)-tuple (c1, . . . , cn, c) in Cn+1.
The following statement is then obvious.

Proposition 1.11. The adjunction (1.4) is a Quillen pair with respect to the model
category structures of Theorem 1.7. Moreover, the functor f∗ preserves weak equivalences.
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Remark 1.12. Consider an arbitrary morphism of simplicial operads u : P −→ Q . If, with
a slight abuse of notation, we still denote by u : Ob P −→ Ob Q the associated map on objects,
we obtain a natural factorization of the morphism of simplicial operads u of the form:

P −→ u∗Q −→ Q (1.6)

in which the first map P −→ u∗Q is bijective on objects, while the second one, u∗Q −→ Q , is
degreewise fully faithful (in the strong sense of 1.1).

We see in particular that the morphism u is fully faithful (a local fibration) in the sense of
Definition 1.4 if and only if the map P −→ u∗Q is a weak equivalence (a fibration, respectively)
of the model structure of Theorem 1.7 (with C = Ob P).

Remark 1.13. The category Cat of small categories can be seen as the full subcategory of
the category of operads whose objects are the operads P such that P(x1, . . . , xn;x) = ∅ for any
non-negative integer n �= 1 and any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P. We thus get
an adjunction

j! : Cat � Operad : j∗, (1.7)

where j! denotes the inclusion. One can understand this adjunction as follows. Let η be the
terminal category, seen as an operad. Then there is a canonical identification Cat = Operad /η,
so that the inclusion functor j! corresponds to the forgetful functor Operad /η −→ Operad , while
its right adjoint is the functor P �−→ η × P. In particular, the model category structure of
Theorem 1.2 induces a model category structure on Operad /η = Cat which is nothing but the
canonical model category structure (whose weak equivalences are the equivalences of categories
and whose cofibrations are the functors which are injective on objects). The adjunction (1.7)
extends naturally to an adjunction relating simplicial categories and simplicial operads.

j! : sCat � sOper : j∗ (1.8)

A similar pattern appears if we fix a set of objects C: the category sCatC of simplicial categories
with a fixed set of objects C can be seen as a full subcategory of the category sOper

C
. The

terminal object of sCatC is the contractible groupoid whose set of objects is C, which we will
denote by EC. We have a natural identification sCatC = sOper

C
/j!EC, from which the model

structure of Theorem 1.7 induces the existence of a right proper model category structure on
sCatC . The latter is in fact the model category structure of Dwyer and Kan [12, Proposition 7.2].

The main purpose of this section is to prove the following theorem, which can be seen as an
extension to operads of the model category structure on sCat constructed by Bergner [2].

Theorem 1.14. The category sOper of simplicial operads is endowed with a cofibrantly
generated right proper model category structure in which a map u : P −→ Q is a weak
equivalence (a fibration) if and only if it is fully faithful and essentially surjective (an
isofibration, respectively) in the sense of Definition 1.4.

The proof of this theorem will require quite a few steps. We will now develop the preparatory
results needed for the proof, while the formal proof will be given at the end of this section.

1.15. We introduce several classes of maps in the category of simplicial operads. For this
purpose, we will need the following construction. Given a simplicial set X and an integer
n � 0, we denote by Cn[X] the free simplicial operad with n-ary operations decorated by the
simplicial set X. In other words, the simplicial operad Cn[X] has objects 0, 1, . . . , n, and, for
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 711

each simplicial degree m, the only non-identity operations of the operad Cn[X]m are given by
the set

Cn[X]m(1, . . . , n; 0) = Xm. (1.9)

Another way of defining Cn[X] is by saying that it represents the functor

sOperop −→ Set, P �−→
∐

(x1,...,xn,x)∈Ob Pn+1

HomsSet(X,P(x1, . . . , xn;x)). (1.10)

This construction is certainly functorial in X.
Now we can go back to defining our classes of maps in sOper. The class C contains:

(C1) the map ∅ −→ η (where η stands for the terminal category, seen as an operad);
(C2) the maps Cn[∂Δ[m]] −→ Cn[Δ[m]], for any integer n � 0 and any boundary inclusion

∂Δ[m] −→ Δ[m], m � 0.

The class C̄ is the saturation of C (that is, the closure under pushout, transfinite composition,
and retracts). The class A contains:

(A1) the maps of shape η −→ H which are fully faithful and essentially surjective (in the sense
of Definition 1.4), while H is a category with set of objects {0, 1}, with the property that
Hn is countable for each integer n � 0, and that H is cofibrant, seen as object of sOper{0,1}
(or equivalently, of sCat{0,1}).

(A2) the maps Cn[Λk[m]] −→ Cn[Δ[m]] by any horn inclusion Λk[m] −→ Δ[m], m � 1, 0 � k �
m, and for any integer n � 0.

As before, the class Ā is the saturation of A.
The following lemma shows that, for any monomorphism (trivial cofibration) of simplicial

setsX −→ Y , and for any integer n � 0, the induced morphism of simplicial operads Cn[X] −→
Cn[Y ] is in C̄ (in Ā, respectively).

Lemma 1.16. Let i : X −→ Y be a morphism of simplicial sets, and u : P −→ Q a morphism
of simplicial operads. The following properties are equivalent.

(i) For any integer n � 0 and any (n+ 1)-tuple of objects (x1, . . . , xn, x) of P, the morphism
P(x1, . . . , xn;x) −→ Q(u(x1), . . . , u(xn);u(x)) has the right-lifting property with respect to
X −→ Y .

(ii) The morphism u has the right-lifting property with respect to any map of shape Cn[i] :
Cn[X] −→ Cn[Y ], for any integer n � 0.

Proof. This follows by a standard argument, once we note that Cn[X] represents the
presheaf (1.10).

1.17. As will be shown later in the proof of Theorem 1.14, the class C̄ is the class of
cofibrations in sOper, while Ā is the class of trivial cofibrations. Propositions 1.18 and 1.20
clarify this point.

Proposition 1.18. A morphism of simplicial operads has the right-lifting property with
respect to the class C̄ if and only if it is a local trivial fibration which is surjective on objects.
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Proof. The right-lifting property with respect to the maps of shape (C1) is equivalent to the
surjectivity on objects, while, by virtue of Lemma 1.16, the right-lifting property with respect
to maps of shape (C2) corresponds to the property of being a local trivial fibration.

Corollary 1.19. We have Ā ⊂ C̄.

Proof. The preceding proposition implies that any morphism with the right-lifting property
with respect to C̄ also has the right-lifting property with respect to maps of type (A2). It also
implies, by examination of lifting properties, that, for any set C, the image of any cofibration
of sOper

C
in sOper is in C̄. As the inclusion {0} −→ {0, 1} = {0} 
 {1} is certainly in C̄, this

implies that any map of shape (A1) is in C̄. Therefore, A ⊂ C̄, whence the result.

Proposition 1.20. A morphism of simplicial operads is an isofibration if and only if it
has the right-lifting property with respect to the class Ā.

Proof. Lemma 1.16 implies that the right-lifting property with respect to maps of shape
(A2) is equivalent to the property of being a local fibration. Therefore, it is sufficient to prove
that a local fibration u : P −→ Q has the right-lifting property with respect to maps of shape
(A1) if and only if the morphism of operads π0(u) : π0(P) −→ π0(Q) is an isofibration. Note
that, if u is a local fibration, so is the simplicial functor j∗u : j∗P −→ j∗Q . Moreover, the
simplicial functor j∗u is an isofibration if and only if u has this property (just remark that the
functor j∗ commutes with π0). In other words, it is sufficient to prove this lemma in the case
when both P and Q are in fact simplicial categories. But then, this is already known; see [2,
Propositions 2.3 and 2.5] (this also can be deduced from Corollary 7.18).

Proposition 1.21. A morphism of simplicial operads is both a weak equivalence and an
isofibration if and only if it has the right-lifting property with respect to the class C̄.

Proof. Let u : P −→ Q a morphism of simplicial operads. If u is surjective on objects and
is a local trivial fibration, then it is surely a local fibration. Furthermore, the morphism of
operads π0(u) is then fully faithful and surjective on objects, which implies that it is a trivial
fibration for the model category structure of Theorem 1.2. In particular, the morphism π0(u)
is an isofibration, whence u is an isofibration. Conversely, if u is an isofibration and a weak
equivalence, then u is obviously a local trivial fibration, while π0(u) is a weak equivalence and
an isofibration for the model category structure of Theorem 1.2. Therefore, π0(u) must be
surjective on objects, which implies that u has the same property. We conclude the proof with
Proposition 1.18.

1.22. If P is a simplicial operad and if X is a simplicial set, we denote by PX the simplicial
operads defined by Ob PX = Ob P and by

PX(x1, . . . , xn;x) = P(x1, . . . , xn;x)X

(where, for two simplicial sets X and Y , we denote by Y X the internal Hom of maps from X
to Y ).
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 713

Proposition 1.23. In a commutative triangle of sOper, if two of the maps are weak
equivalences, then so is the third. Furthermore, the class of weak equivalences of simplicial
operads is closed under retracts.

Proof. Using the canonical fibrant replacement functor given by Remark 1.6, it is sufficient
to prove this proposition in the full subcategory of fibrant simplicial operads. As, for any
simplicial set X and any simplicial operad P, the morphism X −→ Δ[0] induces a canonical
morphism of simplicial operads P −→ PX which is bijective on objects, a morphism of simplicial
operads P −→ Q is essentially surjective if and only if, for any simplicial set X, the morphism
of operads π0(PX) −→ π0(QX) is essentially surjective. On the other hand, the Yoneda Lemma
applied to the homotopy category of Kan complexes implies that a morphism of fibrant
simplicial operads P −→ Q is fully faithful if and only if, for any simplicial set X, the morphism
of operads π0(PX) −→ π0(QX) is fully faithful. In conclusion, a morphism of fibrant simplicial
operads P −→ Q is a weak equivalence if and only if, for any simplicial set X, the morphism of
operads π0(PX) −→ π0(QX) is a weak equivalence of the model category given by Theorem 1.2.
This immediately implies the proposition.

Proposition 1.24. The class of morphisms of sOper which are fully faithful (essentially
surjective, respectively) is closed under filtered colimits.

Proof. Let us consider first the case of essentially surjective maps. The functor π0 : sOper −→
Operad commutes with (filtered) colimits, so that it is sufficient to check the analogous property
for operads, which is easy.

Consider now a filtered diagram of fully faithful morphisms of simplicial operads ui : Pi −→
Qi, and let us denote by u : P −→ Q the colimit of these. Consider an integer n � 0 and an
(n+ 1)-tuple (x1, . . . , xn, x) of objects of P. We may assume that it comes from a compatible
family of (n+ 1)-tuples (xi

1, . . . , x
i
n, x

i) of objects of Pi for each i (by replacing the indexing
category by a cofinal subcategory). We then have natural identifications of the form

lim−→
i

Pi(xi
1, . . . , x

i
n;xi) � P(x1, . . . , xn;x),

and, similarly,

lim−→
i

Qi(ui(xi
1), . . . , ui(xi

n);ui(xi)) � Q(u(x1), . . . , u(xn);u(x)).

The fact that u is fully faithful thus comes down to the fact that the class of weak equivalences
of simplicial sets is closed under filtered colimits.

Proposition 1.25. The class Ā is contained in the class of weak equivalences.

The proof of this proposition will go through the following chain of four lemmas.

Lemma 1.26. Consider the following pushout square in the category of simplicial operads.

P
f ��

u

��

P′

u′

��
Q

g
�� Q ′
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714 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

If u is in C̄, is bijective on objects, and is a weak equivalence, and if f is injective on objects,
then u′ is a weak equivalence.

Proof. We will prove the lemma by obtaining the pushout square from pushout squares in
various model categories of the form sOper

C
for various sets C; cf. Theorem 1.7. First of all, we

of course may assume that the map u is the identity on objects. Let us write C = Ob P = Ob Q .
Then u must be a trivial cofibration in sOper

C
, because the inclusion of sOper

C
in sOper preserves

fibrations. Next, write C ′ = Ob P′, and C ′ = B 
 C (in such a way that f is the coproduct
inclusion). For a simplicial operad P, we define P 
B to be the simplicial operad

P 
B = P 

(∐

b∈B

η

)
.

The pushout of the lemma can then be seen as the composition of two pushouts of the following
shape:

P ��

��

P 
B
f ′

��

u�B

��

P′

u′

��
Q �� Q 
B

g′
�� Q ′.

Now, the right-hand square is a pushout in sOper
C′ , and, as u is a trivial cofibration of sOper

C
,

the same reasoning as before shows that the map u
B must be a trivial cofibration of sOper
C′ .

Therefore, the morphism u′ is a trivial cofibration in sOper
C′ .

Lemma 1.27. Let ϕ : {0, . . . , n} −→ S be a surjection (n � 0). Then, for any morphism of
simplicial sets X −→ Y, the commutative square:

Cn[X] ��

��

Cn[Y ]

��
ϕ!Cn[X] �� ϕ!Cn[Y ]

is a pushout in sOper. Moreover, if X −→ Y is a trivial cofibration of simplicial sets, then the
map ϕ!Cn[X] −→ ϕ!Cn[Y ] is a trivial cofibration in the model category structure on sOper

S
given by Theorem 1.7.

Proof. For a simplicial set X, the object ϕ!Cn[X] represents the presheaf

sOperop −→ Set, P �−→
∐

f∈Hom(S,Ob P)

P(fϕ(1), . . . , fϕ(n); fϕ(0)).

We deduce from the surjectivity of ϕ and from this description of the functor ϕ!Cn[−] that,
for any simplicial operad P, the commutative square

HomsOper(ϕ!Cn[Y ],P) ��

��

HomsOper(ϕ!Cn[X],P)

��
HomsOper(Cn[Y ],P) �� HomsOper(Cn[X],P)

has injective vertical maps and is cartesian. In other words, the square of the lemma is
cocartesian.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 715

To prove the last assertion, as the functor ϕ! is a left-Quillen functor (Proposition 1.11), we
may assume that ϕ is the identity. But then, if X −→ Y is a trivial cofibration, it follows from
Lemma 1.16 that the morphism Cn[X] −→ Cn[Y ] has the left-lifting property with respect to
the fibrations of the model structure given by Theorem 1.7 for C = {0, . . . , n}. Therefore, it
must be a trivial cofibration.

Lemma 1.28. Let f : C −→ D be an inclusion of sets. Then the pullback on objects functor
f∗ : sCatD −→ sCatC preserves cofibrant objects.

Proof. An object of sCatC is cofibrant if and only if it is a retract of a simplicial category
A such that, for each integer n � 0, An is isomorphic to the free category on a directed graph
(whose set of objects is C), such that the degeneracies preserves generators; see [12, 7.6].
Therefore, it is sufficient to prove that the functor f∗ preserves free categories on graphs in a
functorial way. Let G be a directed graph with D as set of objects. Let us denote by f∗G the
graph whose set of objects is C, and whose set of edges c −→ c′ consists of the edges c −→ c′

in G together with the formal strings of edges of G of shape

c −→ d1 −→ · · · −→ dn −→ c′, n � 1,

with di ∈ D − C for 1 � i � n. This construction is functorial in G, at least for morphisms of
graphs which are the identity on objects. One checks that the image by f∗ of the free category
generated by G is naturally isomorphic to the free category generated by f∗G.

Lemma 1.29. Let u : K −→ H be a full embedding of small categories, in which the set of
objects of H is {0, 1}, while K only has one object 0 (such that u(0) = 0). Consider a pushout
of shape

j!(K)
f ��

j!(u)

��

P

v

��
j!(H)

g �� Q

in the category Operad of operads. Then the map v is fully faithful.

Proof. The proof of this lemma is elementary but tedious: it consists of an explicit
description of the operad Q.

Suppose that P is an operad with set of objects C, and let c0 = f(0). Then the set of objects
of the operad Q is the disjoint union of the set C and of an element which we will denote by
t. Up to permutations of the input objects, the n-ary operations in Q (with n � 0) are of five
kinds:

(i) c1, . . . , cn −→ c (with ci and c in C);
(ii) c1, . . . , cn −→ t (with ci in C);
(iii) c1, . . . , ca, t, . . . , t −→ t (with ci in C and a sequence of b occurrences of t, b � 1, a+ b = n);
(iv) c1, . . . , ca, t, . . . , t −→ c0 (with ci in C and a sequence of b occurrences of t, b � 1, a+ b =

n);
(v) t −→ t (like case (iii), with n = b = 1 and a = 0).

For (i), we take the same operations as in P .
For (ii), we take the operations to be represented by pairs (h, p), written as

h · p,
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716 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

where h ∈ H(0, 1) and p ∈ P (c1, . . . , cn; c0); two such operations are identified by the rule

hu(k) · p = h · f(k)p for any k ∈ K(0, 0).

For (iii), we take operations to be represented by (b+ 2)-tuples, written as

h · p · (h1, . . . , hb),

where h ∈ H(0, 1), (h1, . . . , hb) ∈ H(1, 0)b and p ∈ P (c1, . . . , ca, c0, . . . , c0; c0) (with b occur-
rences of c0 before the semi-colon); two such operations are identified according to the
rules

hu(k) · p · (h1, . . . , hb) = h · f(k)p · (h1, . . . , hb)

for any k ∈ K(0, 0), and

h · p · (h1, . . . , u(k)hi, . . . , hb) = h · p ◦i f(k) · (h1, . . . , hb)

for any k ∈ K(0, 0) and 1 � i � b.
For (iv), we take the operations of the form

p · (h1, . . . , hb)

with (h1, . . . , hb) ∈ H(1, 0)b, and p ∈ P (c1, . . . , ca, c0, . . . , c0; c0); two such operations are
identified by the rule

p · (h1, . . . , u(k)hi, . . . , hb) = p ◦i f(k) · (h1, . . . , hb)

for any k ∈ K(0, 0) and 1 � i � b.
Finally, for (v), we take the elements of H(1, 1) as operations in Q(t, t).
Composition of such operations is defined in the evident way (modulo permutations of

arguments), but uses that the functor K −→ H is fully faithful in an essential way. For
example, if

ϕ = h · p · (h1, . . . , hb) and ψ = p′ · (h′1, . . . , h′b′),
are operations of type (iii) and (iv), respectively, with b′ � 2, then

ψ ◦n+1 ϕ = (p′ ◦n+1 f(k)p) · (h1, . . . , hb, h
′
2, . . . , h

′
b′),

where k is the unique operation such that u(k) = h′1h.
Finally, the operad Q (defined above) fits into a commutative diagram of operads:

K
f ��

u

��

P

v

��
H

g �� Q

(where we identify K and H with their images under the functor j!), where the map v sends
operations in P to operations of type (i) in Q, and, for h ∈ H(i, j), the value of g(h) is defined
as follows:

g(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h ∈ Q(c0; c0) if i = j = 0 (type (i)),
h · 1c0 ∈ Q(c0; t) if i = 0, j = 1 (type (ii)),
1c0 · h ∈ Q(t; c0) if i = 1, j = 0 (type (iv)),
h ∈ Q(t; t) if i = j = 1 (type (v)).

The morphism v is fully faithful by construction. It remains to check that the commutative
square above is a pushout. Let R be another operad and consider a commutative square as
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 717

below:

K
f ��

u

��

P

α

��
H

β �� R.

One defines a morphism γ : Q −→ R on objects by γ(c) = α(c) and γ(t) = β(1), and on
operations of type (i)–(v), respectively, by:

(i) γ(p) = α(p);
(ii) γ(h · p) = β(h) ◦ α(p);
(iii) γ(h · p · (h1, . . . , hb)) = β(h) ◦ α(p) ◦ (β(h1), . . . , β(hb)) (this last circle denotes the operad

composition given by inserting β(h1), . . . , β(hb) in the entries a+ 1, . . . , n of the operation
α(p), we could have also written β(h)(α(p)(1α(c1), . . . , 1α(ca), β(h1), . . . , β(hb))));

(iv) γ(p · (h1, . . . , hb)) = α(p) ◦ (β(h1), . . . , β(hb));
(v) γ(h) = g(h).

One checks that γ is a well-defined map of operads, and that it is the unique one such that
γg = β and γv = α.

We now are ready to present the following:

Proof of Proposition 1.25. Note that the class of morphisms of simplicial operads which
are fully faithful and essentially surjective is closed under retracts and under small filtering
colimits; see Propositions 1.23 and 1.24. As the class Ā is the saturation of a small set of maps
(up to completion by isomorphisms), namely A, we can apply the small object argument and
see that any map in Ā is a retract of a transfinite composition of pushouts of maps of type (A1)
or (A2). Therefore, it is sufficient to prove that any pushout of a map of type (A1) or (A2) is
fully faithful and essentially surjective.

Let us consider first a trivial cofibration of simplicial sets u : X −→ Y , a non-negative integer
n, as well as a pushout of the following form in the category of simplicial operads.

Cn[X]
f ��

a=Cn[u]

��

P

b

��
Cn[Y ]

g �� Q

At the level of objects, the map f factors as a surjection ϕ : {0, . . . , n} −→ S followed by an
injection S −→ Ob P. By virtue of Lemma 1.27, the pushout square above decomposes into
two pushout squares:

Cn[X] ��

a

��

ϕ!Cn[X] ��

ϕ!(a)

��

P

b

��
Cn[Y ] �� ϕ!Cn[Y ] �� Q

in which ϕ!(a) is a trivial cofibration of sOper
S
. By applying Lemma 1.26 to the right-hand

square, we conclude that the map b is a weak equivalence.
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718 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Now, consider a weak equivalence of shape a : η = {0} −→ H, where H is a cofibrant object
of sOper{0,1}, as well as a pushout square of the following form:

η a ��

f

��

H

g

��
P

b �� Q .

Let K = a∗H, and decompose the pushout above into two pushouts as below:

η
a1 ��

f

��

K
a2 ��

h

��

H

g

��
P

b1 �� R
b2 �� Q .

Lemma 1.28 shows that the morphism a1 is a cofibration in sCat{0}. Since any inclusion of the
form sCatC −→ sOper

C
evidently preserves cofibrations, we conclude that the morphism a1 is

in C̄. Thus, we can apply Lemma 1.26 to the left-hand square, from which we deduce that the
map b1 is a weak equivalence. To finish the proof of Proposition 1.25, it is thus sufficient to
prove that the map b2 is a weak equivalence. Note that the map a2 is a fully faithful morphism
of operads in each simplicial degree. Therefore, by virtue of Lemma 1.29, the map b2 has
the same property. In particular, the map b2 is fully faithful in the sense of Definition 1.4.
Moreover, the map b is essentially surjective: π0(b) is a pushout of π0(a), which implies that it
is an equivalence of operads (as the pushout of a trivial cofibration of the model structure of
Theorem 1.2), whence an essentially surjective map. But then, the map b2 must be essentially
surjective as well, whence a weak equivalence.

Proof of Theorem 1.14. We will prove a slightly more precise result: namely that the class
of cofibrations is C̄ and the class of trivial cofibrations is Ā; see 1.15. We already know that
these classes are generated by small sets of maps, so that we can use the small object argument
to prove the existence of factorizations. By virtue of Propositions 1.20, 1.21, 1.23 and 1.25,
the conditions of [13, Theorem 2.1.19] are verified, which gives the existence of the expected
model category structure on sOper. The right properness property comes from the fact that
Kan’s Ex∞ functor induces a fibrant replacement functor in sOper which commutes with finite
limits and which preserves fibrations (see Remark 1.6).

2. Dendroidal sets and ∞-operads

In this section, nothing new happens: we just recall, for the convenience of the reader, the
results of [10, 11] on the homotopy theory of ∞-operads needed in this paper.

2.1. The category of trees Ω is the full subcategory of the category of operads whose
objects are trees (by which we mean non-empty finite rooted trees), seen as operads: if T is
a tree, then the corresponding operad is the free operad whose objects are the edges of T ,
generated by an operation (e1, . . . , en) −→ e for each vertex v of T , where e1, . . . , en are the
input edges at v (n � 0), while e is the output edge at v. One proves that any morphism of Ω
can be factored as a split epimorphism followed by a monomorphism.

The category dSet of dendroidal sets is the category of presheaves of sets on the category of
trees Ω. If T is a tree, we denote by

Ω[T ] = HomΩ(−, T )
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 719

the corresponding representable presheaf. The boundary inclusion ∂Ω[T ] −→ Ω[T ] is defined as
the union of the images of all the monomorphisms Ω[S] −→ Ω[T ] that are not isomorphisms.
If e is an inner edge of T (that is, an edge which connects two vertices in T ), and if T/e
denotes the tree obtained from T by contracting e, then there is a unique monomorphism
∂e : T/e −→ T in Ω, called the inner face associated to e, such that e is not in the image
of ∂e. The corresponding inner horn inclusion Λe[T ] −→ Ω[T ] is the union of the images of
all the monomorphisms Ω[S] −→ Ω[T ] which are not isomorphisms and which do not factor
through ∂e.

2.2. Let 0 be the tree without any vertices (as an operad, this is the terminal category η).
By a slight abuse of notation, we write Ω[0] = η. Then the comma category Ω/0 is isomorphic
to the category Δ of non-empty totally ordered finite sets (in Ω, these correspond to linear
trees). In particular, the category dSet/η can be identified with the category sSet of simplicial
sets, and one has an adjunction

i! : sSet � dSet : i∗ (2.1)

in which the left adjoint has the property of being fully faithful: one checks that η is a subobject
of the terminal object of dSet. This adjunction extends the adjunction (1.7) in the following
sense. The inclusion Δ ⊂ Cat extends to an adjunction

τ : sSet � Cat : N (2.2)

and, similarly the inclusion Ω ⊂ Operad extends to an adjunction

τd : dSet � Operad : Nd (2.3)

such that the functors N and Nd, called the nerve functors, are fully faithful. Moreover, for
any simplicial set X, one has

τdi!(X) � j!τ(X). (2.4)

By transposition, for any operad P , one has

Nj∗(P ) � i∗Nd(P ). (2.5)

The essential image of the dendroidal nerve functor Nd can be characterized precisely: a
dendroidal set X is isomorphic to the dendroidal nerve of an operad if and only if, for any
tree T with a given inner edge e, the map

XT = HomdSet(Ω[T ],X) −→ HomdSet(Λe[T ],X)

is bijective. In particular, the functor τd sends inner anodyne extensions to isomorphisms; see
[18, Proposition 5.3 and Theorem 6.1].

2.3. We call normal monomorphisms (inner anodyne extensions, respectively) the elements
of the smallest saturated class of maps in dSet which contains the boundary inclusions (which
contains the inner horn inclusions, respectively). One checks that a morphism of dendroidal
sets X −→ Y is a normal monomorphism if and only if it is a monomorphism such that, for
any tree T in Ω, the action of the group Aut(T ) on the set Y (T ) −X(T ) is free; see [11,
Proposition 1.5]. A dendroidal set X is called normal if ∅ −→ X is a normal monomorphism.
Note that any monomorphism between normal dendroidal sets is a normal monomorphism,
and that, for any map X −→ Y , if Y is a normal dendroidal set, then so is X. For instance,
for any tree T , the dendroidal set Ω[T ] is normal, but the terminal dendroidal set is not.

A morphism of dendroidal sets is called an inner Kan fibration if it has the right-lifting
property with respect to the class of inner anodyne extensions. An ∞-operad is a dendroidal

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



720 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

set X such that the map from X to the terminal dendroidal set is an inner Kan fibration (such
objects are also called inner Kan complexes in [17, 18]).

A morphism of dendroidal sets p : X −→ Y is called an isofibration if it is an inner Kan
fibration and if the morphism of operads τd(X) −→ τd(Y ) is an isofibration (paragraph 1.1).

Theorem 2.4 [11, Theorem 2.4]. The category of dendroidal sets is endowed with a
unique left proper cofibrantly generated model category structure such that the cofibrations
are precisely the normal monomorphisms, and the fibrant objects are precisely the ∞-operads.
A morphism between ∞-operads is a fibration of this model category structure if and only if
it is an isofibration.

Moreover, the class of weak equivalences is the smallest class of maps W satisfying the
following properties:

(a) in any commutative triangle of dSet, if two maps are in W, then so is the third;
(b) any trivial fibration between ∞-operads belongs to W ;
(c) any inner anodyne extension is in W .

The model categories of operads (1.2) and the model category of dendroidal sets (2.4) are
related as follows.

Proposition 2.5 [11, Proposition 2.5]. The adjunction (2.3) is a Quillen pair. Moreover,
the dendroidal nerve functor Nd detects and preserves weak equivalences, while its left adjoint
τd preserves weak equivalences.

Remark 2.6. Under the identification sSet = dSet/η, the model category of Theorem 2.4
induces a model category structure on the category of simplicial sets, whose cofibrations are
the monomorphisms, and whose fibrant objects are the ∞-categories (also known as quasi-
categories). In other words, the model category of Theorem 2.4 contains the Joyal model
category for ∞-categories.

2.7. There is a closed symmetric monoidal structure on the category of dendroidal sets,
with η as the unit object, while we denote by X ⊗ Y and Hom(X,Y ) the corresponding
tensor product and internal Hom functors, respectively. This monoidal structure is essentially
characterized by the fact that the tensor product functor preserves small colimits in each
variable, and by the fact that, for any trees S and T , we have a natural isomorphism

Ω[S] ⊗ Ω[T ] � Nd(S ⊗BV T ), (2.6)

where ⊗BV denotes the Boardman–Vogt tensor product of operads; see [17, Section 5.1]. For
any two simplicial sets X and Y , we have a natural isomorphism

i!(X) ⊗ i!(Y ) � i!(X) × i!(X) = i!(X × Y ) (2.7)

which turns the functor i! : sSet −→ dSet into a symmetric monoidal functor (if we consider the
category of simplicial sets as a symmetric monoidal category, with the cartesian product as
tensor product).

Proposition 2.8 [11, Proposition 2.6]. The category of dendroidal sets is a symmetric
monoidal model category.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 721

2.9. If X is a dendroidal set, we will refer to the elements of the set X0 = HomdSet(η,X)
as objects of X.

Let X be an ∞-operad. For an (n+ 1)-tuple of objects (x1, . . . , xn, x) in X, n � 0, the space
of maps X(x1, . . . , xn;x) is obtained by the pullback below, in which the map p is the map
induced by the inclusion ∂Ω[Cn] = η 
 · · · 
 η −→ Ω[Cn] (with n+ 1 copies of η, corresponding
to the n+ 1 objects of the corolla Cn).

X(x1, . . . , xn;x) ��

��

Hom(Ω[Cn],X)

p

��
η

(x1,...,xn,x)
�� Xn+1

(2.8)

Under the equivalence sSet = dSet/η, we consider X(x1, . . . , xn;x) as a simplicial set. Observe
that X(x1, . . . , xn;x) is actually a Kan complex; see [11, Proposition 6.13]. This space of
operations may be described with a more homotopy theoretic flavour as follows.

Proposition 2.10. Let X be an ∞-operad, and (x1, . . . , xn, x) an (n+ 1)-tuple of objects
in X, n � 0. Then there is a canonical homotopy pullback square

X(x1, . . . , xn;x) ��

��

Map(Ω[Cn],X)

��
Δ[0]

(x1,...,xn,x)
�� Map(η,X)n+1

in the category of Kan complexes.

Proof. We will prove the proposition by showing that, for a particular model of Map(A,X)
in dSet (cf. [10, Proposition 3.3]), the square is a pullback of a Kan fibration.

Using the identification sSet = dSet/η by the adjoint pair i! and i∗, one sees that, any
commutative square of the form

i!i
∗A ��

i!i
∗f

��

A

f

��
i!i

∗B �� B

is pullback, and next that the pullback square (2.8) can be seen as the composition of the two
following pullback squares.

X(x1, . . . , xn;x) ��

��

i!i
∗ Hom(Ω[Cn],X) ��

��

Hom(Ω[Cn],X)

p

��
η

(x1,...,xn,x)
�� i!i∗ Hom(η,X)n+1 �� Xn+1

On the other hand, Paragraph 6.2 and Corollary 6.8 of [11] mean that the left-hand square
above is itself the composition of two pullback squares

X(x1, . . . , xn;x) ��

��

i!k(i∗ Hom(Ω[Cn],X)) ��

��

i!i
∗ Hom(Ω[Cn],X)

��
η

(x1,...,xn,x)
�� i!k(i∗ Hom(η,X))n+1 �� i!i∗ Hom(η,X)
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722 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

in which, for an ∞-category C, k(C) is the maximal Kan subcomplex of C in the sense of
Joyal [14, Corollary 1.5], while [11, Proposition 6.7] asserts that the middle vertical map is
a Kan fibration. By virtue of [10, Proposition 3.3], we know that, for any normal dendroidal
set A and any ∞-operad X, we have a canonical identification Map(A,X) = k(i∗ Hom(A,X)),
whence this proposition.

Definition 2.11. Let f : X −→ Y be a morphism of ∞-operads.
The map f is fully faithful if, for any (n+ 1)-tuple of objects (x1, . . . , xn, x) in X, the

morphism
X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a simplicial homotopy equivalence.
The map f is essentially surjective if the morphism of operads τd(X) −→ τd(Y ) is essentially

surjective.

Remark 2.12. For an ∞-operad X, the set of isomorphism classes of objects in the
category j∗τd(X) � τi∗(X) is canonically in bijection with the set of connected components
of the Kan complex Map(η,X); see [11, 4.1]. Therefore, using Proposition 2.10, we see that
the notions of essentially surjective map and of fully faithful map have a purely homotopic
meaning in the model category of dendroidal sets. In fact, we have:

Theorem 2.13 [10, Theorem 3.11]. A morphism between ∞-operads is a weak equivalence
if and only if it is fully faithful and essentially surjective.

3. Adding free cells

This section is quite technical: we will study some specific pushouts in the model category
of dendroidal sets. This will be used later to produce a Quillen equivalence between the
homotopy theories of Segal operads and of simplicial operads (see the proof of Lemma 8.2).
Our calculations will also have implications for the computation of homotopy pushouts in the
model category of simplicial operads (see Theorem 8.7 and its corollaries).

3.1. Letm � 0 be a fixed integer, and write f for the operation corresponding to the unique
vertex of the corolla Cm. We find it convenient to write ∂Cm for the operad η 
 · · · 
 η (m+ 1
copies of η), so that we have a morphism ∂Cm −→ Cm which is bijective on objects. Given an
operad P (in the category of sets) as well as an (m+ 1)-tuple of objects (x0, . . . , xm, x) in P ,
we define the operad P [f ] as the pushout below:

∂Cm

(x0,...,xm,x) ��

��

P

��
Cm

�� P [f ].

(3.1)

We also define the dendroidal set Nd(P )[f ] as the following pushout:

∂Ω[Cm]
(x0,...,xm,x) ��

��

Nd(P )

��
Ω[Cm] �� Nd(P )[f ].

(3.2)
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 723

We have a canonical comparison map

Nd(P )[f ] −→ Nd(P [f ]) (3.3)

which happens to be bijective on objects.

Proposition 3.2. If the operad P is Σ-cofibrant, then the morphism (3.3) is a normal
monomorphism between normal dendroidal sets.

Proof. As the map P −→ P [f ] is a Σ-cofibration between Σ-cofibrant operads, it is a
monomorphism. (The proof of this fact can be found in [4, Proposition 5.1] in the case of
an operad with one object. The case with several objects is proved similarly; see also the
Appendix of [7], where a little mistake of [4] is corrected.)

Therefore, as the dendroidal nerve of a Σ-cofibrant operad is normal, the dendroidal nerve
Nd(P ) −→ Nd(P [f ]) of this map is a normal monomorphism between normal dendroidal sets.
Thus, to see that the map (3.3) is a normal monomorphism, it is sufficient to observe that f
is a non-degenerate element in Nd(P [f ])Cm

, which does not belong to Nd(P )Cm
(to be more

precise, this argument uses [9, Lemme 8.1.34] for A = Ω).

3.3. The main result of this section is that the map (3.3) is an inner anodyne extension
(3.6). This will require further preparation.

Given a tree T , an element of Nd(P [f ])T = Hom(T, P [f ]) is completely determined by a
labelling of the edges of T by objects of P together with a (compatible) labelling of the vertices
of T by operations of P [f ] (here, we are just reformulating that Nd(P [f ]) is a strict inner Kan
complex, and thus satisfies the strict dendroidal Segal condition; see [10, Corollary 2.7]). Now,
an operation in P [f ] may be represented by another tree S whose vertices are labelled by
operations of P or by the letter f ; such a representation will be said canonical if no inner edge
of S has both vertices labelled by elements of P (otherwise we may compose them) and if no
unary vertex of S is labelled by an identity of P [f ]. If q is an operation in P [f ], represented
by a canonical labelling of a tree S, we will write m(q) for the multiplicity of f in q, that is,
the number of vertices of S which are labelled by the freely added operation f . Note that the
number m(q) does not depend on the choice of a canonical presentation of q. For a tree T and
an element q of Nd(P [f ])T , we define m(q) =

∑
v∈V (T )m(qv), where V (T ) denotes the set of

vertices of T , while, for each v ∈ V (T ), the letter qv stands for the operation of P [f ] attached
to v.

For an integer k � 0 and for any tree T , we define the set Nd(P [f ])(k)
T as

Nd(P [f ])(k)
T = {q ∈ Nd(P [f ])T |m(q) � k}. (3.4)

This defines a dendroidal subcomplex Nd(P [f ])(k) ⊂ Nd(P [f ]). Therefore, the dendroidal set
Nd(P [f ]) admits an increasing filtration

Nd(P ) = Nd(P [f ])(0) ⊂ Nd(P [f ])(1) ⊂ · · · ⊂ Nd(P [f ])(k) ⊂ · · · (3.5)

such that Nd(P [f ]) =
⋃

k�0Nd(P [f ])(k). The filtration above can be refined as

Nd(P [f ])(k) = A
(k)
0 ⊂ A

(k)
1 ⊂ · · ·A(k)

n ⊂ · · · ⊂ Nd(P [f ])(k+1) (3.6)
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724 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

in which, for each integer n � 0, A(k)
n is the dendroidal subcomplex of Nd(P [f ])(k+1) defined

as follows:

A(k)
n = Nd(P [f ])(k) ∪

⋃
q∈U

(k)
n

image of q, (3.7)

where U (k)
n is the set of all non-degenerate dendrices q : Ω[T ] −→ Nd(P [f ])(k+1) such that T

has at most n+ k vertices and such that, for any vertex v of T , the corresponding decoration
qv satisfies m(qv) = 0 or is a corolla decorated by an isolated occurrence of f . Remark that,
if T is a tree with at least one vertex, any non-degenerate element q in Nd(P [f ])T may be
obtained as the inner face (along T −→ T ′) of an element of Nd(P [f ])T ′ which belongs to Un′

for a big enough integer n′. In other words, we have that Nd(P [f ])(k+1) =
⋃

n�0A
(k)
n . Note

that we have an identification

A
(0)
1 = Nd(P )[f ]. (3.8)

Lemma 3.4. Let X −→ Y be a normal monomorphism of dendroidal sets, and n � 1 an
integer. Assume that any non-degenerate dendrex s : Ω[T ] −→ Y which does not factor through
X has the following properties.

(i) The tree T has exactly n+ 1 vertices.
(ii) The map Ω[T ] ×Y X −→ Ω[T ] is an inner anodyne extension.

Then the map X −→ Y is inner anodyne.

Proof. There exists a set Σ of non-degenerate dendrices s : Ω[T ] −→ Y which do not factor
through X, the trees T having exactly n+ 1 vertices, such that the commutative square

∐
s∈Σ

∂Ω[T ] ��

��

X ∪ Skn(Y )

��∐
s∈Σ

Ω[T ] �� Y

(3.9)

is cocartesian (apply [9, Lemme 8.1.34] for A = Ω). As the left-vertical map of this square is
a monomorphism, this square is also cartesian. On the other hand, the canonical isomorphism
X ×Y (X ∪ Skn(Y )) � X, together with the fact that colimits are universal in the topos dSet,
implies that the cartesian square

∐
s∈Σ

Ω[T ] ×X Y ��

��

X

��∐
s∈Σ

Ω[T ] �� Y

(3.10)

is obtained from (3.9) by pulling back along the given map X −→ Y . Thus, we obtain that
square (3.10) is cocartesian as well, which ends the proof of the lemma, for the class of inner
anodyne extensions is closed under small sums and pushouts.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 725

Lemma 3.5. If P is Σ-cofibrant, then, for any integers n, k � 0 such that n+ k is positive,
the inclusion A(k)

n ⊂ A
(k)
n+1 is an inner anodyne extension.

Proof. We already know that this map is a normal monomorphism (Proposition 3.2). In
order to simplify the notation, we will write A(k)

n = An and, similarly, U (k)
n = Un. Henceforth,

we assume that n+ k > 0. Let q : Ω[T ] −→ An+1 be a non-degenerate dendrex which does not
factor through An. This means that T must have exactly n+ 1 + k vertices and that q ∈ Un+1.
Let Iq be the set of inner edges of T which are adjacent to at least one of the vertices labelled
by f , and write ΛIq [T ] for the union in Ω[T ] of the images of all the outer face maps as well
as of the inner face maps ∂e : Ω[T/e] −→ Ω[T ], for e /∈ Iq. By virtue of [18, Lemma 5.1], the
inclusion of ΛIq [T ] into Ω[T ] is an inner anodyne extension (the set Iq is not empty because
we assumed n+ k to be positive). Therefore, by Lemma 3.4, it is sufficient to prove that we
have a cartesian square of the form below:

ΛIq [T ] ��

��

An

��
Ω[T ]

q �� An+1.

As any map of Ω factors as a (split) epimorphism followed by a monomorphism, it is sufficient
to prove that, for any injective map ∂ : Ω[S] −→ Ω[T ], the composed morphism

Ω[S] ∂−−→ Ω[T ]
q−−→ An+1

factors through An if and only if ∂ factors through ΛIq [T ].
Assume first that ∂ : S −→ T is an outer face. We then have that m(∂(q)) � k + 1 and that

S has at most n+ k vertices. In fact, one easily sees that, if q∂ does not belong to Nd(P [f ])(k),
then it must be in Un (because an outer face does not affect compositions). To finish the proof
of the lemma, it is now sufficient to prove that, for any injective map ∂ : Ω[S] −→ Ω[T ], which
does not factor through an outer face of T , the composed morphism q∂ factors through An if
and only if ∂ factors through ΛIq [T ]. The assumption that ∂ does not factor through an outer
face of T means that ∂ is obtained as a finite composition of inner face maps; that is, ∂ is a map
obtained by contracting a finite family J of inner edges of T . The number of vertices of S is then
n+ 1 + k − j, where j is the number of elements in the set J . We also have that m(q∂) = k + 1
(because going from T to S via inner faces only involves composition of some operations in
P [f ], so that the global number of occurrences of f does not change). Therefore, the map q∂
cannot factor through Nd(P [f ])(k). This implies that q∂ factors through An if and only if q∂
is a face of an element of Un. This latter property may be reformulated as the existence of
an inner edge e /∈ Iq, such that q∂ factors through the composition of q with the inner face
∂/e : Ω[T/e] −→ Ω[T ] (so that q(∂/e) still has k + 1 isolated occurrences of f and only n+ k
vertices). The dendrex q being non-degenerate, q∂ factors through q(∂/e) if and only if ∂ factors
through ∂/e, which precisely means that e ∈ J . This shows that Ω[T ] ×An+1 An � ΛIq [T ], and
completes the proof.

Proposition 3.6. If the operad P is Σ-cofibrant, then the morphism (3.3) is an inner
anodyne extension.

Proof. The class of inner anodyne extensions is closed under countable composi-
tion. Therefore, this proposition follows straight away from Lemma 3.5 and from the
identification (3.8).
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726 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

3.7. Let P be a Σ-cofibrant operad, (ni)i∈I a small family of integers, and ui : ∂Cni
−→ P ,

i ∈ I a family of maps. We get the following comparison map of pushouts:(∐
i∈I

Ω[Cni
]

)

(
∐

i∈I ∂Ω[Cni
]) Nd(P ) −→ Nd

((∐
i∈I

Cni

)

(∐

i∈I ∂Cni
)
P

)
. (3.11)

Corollary 3.8. The map (3.11) is an inner anodyne extension.

Proof. Given a subset J of I, write

AJ =

(∐
i∈J

Ω[Cni
]

)

(
∐

i∈J ∂Ω[Cni
]) Nd(P ) and BJ =

((∐
i∈J

Cni

)

(
∐

i∈J ∂Cni
) P

)
.

We proceed by transfinite induction to prove that the comparison map AJ −→ Nd(BJ ) is an
anodyne extension for all subsets J of I. For this purpose, we note that, for a subset J ⊂ I and
an element j ∈ J , if fj denotes the unique non-trivial operation of Cnj

, we have the following
pushout:

AJ−{j} ��

��

Nd(BJ−{j})

��
AJ

�� Nd(BJ−{j})[fj ].

Therefore, by transfinite induction, the map AJ −→ Nd(BJ−{j})[fj ] is an inner anodyne
extension. On the other hand, by virtue of Proposition 3.6, the map

Nd(BJ−{j})[fj ] −→ Nd(BJ−{j}[fj ]) = Nd(BJ)

is an inner anodyne extension, which ends the proof of this corollary.

4. The Boardman–Vogt construction

4.1. Recall from [5, 6, 8] the Boardman–Vogt construction

W (P) −→ P

of a simplicial operad P (with respect to the interval Δ[1]). The map W (P) −→ P is a
weak equivalence, while the W (P)-algebras are the ‘P-algebras up to homotopy’ in the usual
Quillen model category of simplicial sets. We will only need to understand the Boardman–Vogt
construction for the operads freely generated by trees; see [5, pp. 819–820; 18, Remarks 7.2
and 7.3] for a very precise explicit description in this case. We recall the main properties of
this construction below.

Let T be a tree, seen as an operad. By virtue of [6, Theorem 3.5], the Boardman–Vogt
resolution of T gives a morphism of operads ε : W (T ) −→ T which is functorial in T (seen as
an object of the category Ω) and such that:

(a) the simplicial operad W (T ) is cofibrant in the model category structure of Theorem 1.14;
(b) the map ε : W (T ) −→ T is bijective on objects and a weak equivalence (in particular, the

map ε induces a natural isomorphism of operads π0(W (T )) � T ).

4.2. As this will be needed later, we now recall the explicit description of the Boardman–
Vogt construction for trees.

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



DENDROIDAL SETS AND SIMPLICIAL OPERADS 727

Let T be a tree, seen as an operad. It admits the following description. Its objects are
the edges of T . For an (n+ 1)-tuple of edges (e1, . . . , en, e), n � 0, the set of operations
T (e1, . . . , en; e) is the set of subtrees V of T such that e1, . . . , en are exactly the input edges of
V , while e is the root of V (whence there is at most one such operation). The simplicial set of
operations from (e1, . . . , en) to e in W (T ) is

W (T )(e1, . . . , en; e) =
∐

V ∈T (e1,...,en;e)

Δ[1]i(V ) (4.1)

where, for a subtree V ⊂ T , i(V ) denotes the set of inner edges of V (in particular, this
simplicial set is either empty, or isomorphic to the power Δ[1]i(V )). The composition in W (T )
is defined by grafting trees, where the newly arising internal edges are assigned length 1; we
refer the reader to [18, Remark 7.3] for a precise description of the composition law.

We will now study the functoriality of this construction (we will consider successively the
case of a bijection, of an inner face, of an outer face, and of a degeneracy).

Let ϕ : S −→ T be a morphism of trees (remark that, once a planar structure is chosen for T ,
there is a unique planar structure on S such that ϕ preserves the planar structures). Consider
an (n+ 1)-tuple of edges (d1, . . . , dn, d) of S, and write (e1, . . . , en, e) for its image by ϕ. We
want to understand the morphism of simplicial sets

W (ϕ) : W (S)(d1, . . . , dn; d) −→W (T )(e1, . . . , en; e). (4.2)

If S(d1, . . . , dn; d) = ∅, there is nothing to say. From now on, we will denote by U an element
of S(d1, . . . , dn; d) (which we presume to exist), and write V for the element of T (e1, . . . , en; e).

If ϕ is a bijection, then it maps U isomorphically onto V , and the map (4.2) is the
isomorphism associated to the induced bijection i(U) � i(V ).

If ϕ is an inner face, say ϕ = ∂t : T/t −→ T , for t an inner edge of T , then there are two cases.
Either t /∈ V , and then U = V , so that the map (4.2) is the identity, or t ∈ V , and then U is
obtained from V by contracting the edge t. In the latter case, the map (4.2) is obtained as the
product of the identity of Δ[1]i(U) with the inclusion {0} −→ Δ[1], composed with the canonical
isomorphism Δ[1]i(U) × Δ[1] � Δ[1]i(V ) provided by the identification i(U) = i(V ) − {t}.

If ϕ is an outer face obtained by removing a vertex v in T (necessarily with the property that
all the edges incident to v are outer), then v is not in V , and we must have U = V (because
we already assume that the leaves e1, . . . , en and root e of V belong to S as d1, . . . , dn and d,
respectively), so that the map (4.2) is the identity.

If ϕ is a degeneracy, say ϕ = σs, for a unary vertex s in S, then there are again two cases.
Either s is not in U , and then ϕ maps U isomorphically onto V , so that the map (4.2) is the
isomorphism associated to the induced bijection i(U) � i(V ), or s occurs in U . In the latter
case, V is obtained from U by identifying the two edges, say a1 and a2, on either side of s. Let
us call a the image of a1 and a2 in V . The map (4.2) is the morphism

Δ[1]i(U) � Δ[1]i(U)−{a1,a2} × Δ[1]2 −→ Δ[1]i(V )−{a} × Δ[1] � Δ[1]i(V )

obtained as the product of the isomorphism induced by the bijection

i(U) − {a1, a2} � i(V ) − {a}
with the map Δ[1]2 −→ Δ[1], given by the maximum operation on vertices.

4.3. We denote by

W! : dSet −→ sOper (4.3)
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728 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

the colimit preserving functor whose composition with the Yoneda embedding Ω −→ dSet
coincides with the Boardman–Vogt construction on trees; that is, for any tree T , one has

W!(Ω[T ]) = W (T ).

This functor can also be described as the left adjoint to the homotopy coherent nerve functor

hcN d = W ∗ : sOper −→ dSet (4.4)

defined by

hcN d(P)T = HomsOper(W (T ),P)

for any simplicial operad P and any tree T .
The naturality of the map ε : W (T ) −→ T = π0(W (T )) now extends to a natural morphism

of simplicial operads

W!(X) −→ τd(X). (4.5)

Proposition 4.4. For any dendroidal set X, the natural map π0W!(X) −→ τd(X) is an
isomorphism of operads.

Proof. As both functors π0W! and τd commute with small colimits, it is sufficient to check
this when X is of the form Ω[T ] for a tree T , in which case this follows from property (b) of 4.1.

Proposition 4.5. The functor W! : dSet −→ sOper sends normal monomorphisms to cofi-
brations and inner anodyne extensions to trivial cofibrations.

Proof. In order to prove that the functor W! sends normal monomorphisms to cofibrations,
it is sufficient to check that it sends the generating normal monomorphisms to cofibrations. In
other words, it is sufficient to check that, for any tree T , the map

i : W!(∂Ω[T ]) −→W!(Ω[T ])

is a cofibration. If T = η, then the map W!(∂Ω[η]) = ∅ −→W!(Ω[η]) = η is known to be a
cofibration. Therefore, we may assume that T has at least one vertex. In this case, the map i
is bijective on objects. For an (n+ 1)-tuple of edges (e1, . . . , en, e) in T , n � 0, one checks, by
inspection of the definition, that, unless {e1, . . . en} is exactly the set of input edges of T and
e = r is the root of T , the map

W!(∂Ω[T ])(e1, . . . , en; e) −→W!(Ω[T ])(e1, . . . , en; e)

is the identity. In the case when this is not the identity, this map can be identified with the
inclusion

∂Δ[1]d −→ Δ[1]d,

where d is the number of inner edges of T , and where, for an integer m � 0, one defines ∂Δ[1]m

by induction as follows: ∂Δ[1]0 = ∅, ∂Δ[1] = {0} 
 {1}, and, for m > 1,

∂Δ[1]m = ∂Δ[1]m−1 × Δ[1] ∪ Δ[1]m−1 × ∂Δ[1] ⊂ Δ[1]m−1 × Δ[1] � Δ[1]m.

We deduce that, in the case where T has at least one vertex, the morphism i has the left-
lifting property with respect to the class of local trivial fibrations. Therefore, by virtue of
Proposition 1.18, the morphism i must be a cofibration for any tree T .
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 729

Similarly, in order to prove that the functor W! sends inner anodyne extensions to trivial
cofibrations, it is sufficient to prove that, for any tree T with a given inner edge t, the map

j : W!(Λt[T ]) −→W!(Ω[T ])

is a trivial cofibration. As before, one sees that this map is always bijective on objects. For any
(n+ 1)-tuple of edges (e1, . . . , en, e) in T , n � 0, unless {e1, . . . en} is exactly the set of input
edges of T and e = r is the root of T , the map

W!(Λt[T ])(e1, . . . , en; e) −→W!(Ω[T ])(e1, . . . , en; e)

is the identity. Otherwise, it can be identified canonically with the trivial cofibration of
simplicial sets:

Δ[1]i(T )−{t} × {1} ∪ ∂Δ[1]i(T )−{t} × Δ[1] −→ Δ[1]i(T )
.

This implies that the morphism j has the left-lifting property with respect to the class of local
fibrations. Proposition 1.20 thus implies that j must be a trivial cofibration.

Corollary 4.6. For any fibrant simplicial operad P, its homotopy coherent nerve hcN d(P)
is an ∞-operad.

Remark 4.7. The preceding corollary is [18, Theorem 7.1] in the case where the underlying
model category is the one of simplicial sets. Note that the proof of Proposition 4.5 is just a
slightly more precise version of the proof of [18]. By this, we mean that the analogue of
Proposition 4.5 is true (with essentially the same proof) if we replace the category of simplicial
operads by the category of operads in an adequate symmetric monoidal model category.

Proposition 4.8. For any fibrant simplicial operad P, there is a canonical isomorphism
τd(hcN d(P)) � π0(P).

Proof. It follows from property (b) of 4.1 that, for any operad P in the category of sets,
there is a natural isomorphism

Nd(P ) � hcN d(P ).

Indeed, for any tree T , one has

HomOperad (T, P ) = HomOperad (π0(W (T )), P ) � HomsOper(W (T ), P ).

If P is a simplicial operad, then the map P −→ π0(P) induces a morphism

hcN d(P) −→ hcN d(π0(P)) � Nd(π0(P)),

from which we obtain, by adjunction, a canonical morphism

τd(hcN d(P)) −→ π0(P).

Note that the functors τd, hcN d and π0 do not affect objects. Therefore, this morphism is
bijective on objects. Let (x1, . . . , xn, x) an (n+ 1)-tuple of objects of P, with n � 0. We have
to prove that, if P is fibrant, the induced map

τd(hcN d(P))(x1, . . . , xn;x) −→ π0(P(x1, . . . , xn;x))

is bijective. Now, we remark that W (T ) = T whenever T is a tree with no inner edges (for
example, T = η or T = Cn). This implies that the set of 0-simplices of hcN d(P)(x1, . . . , xn;x)
can be identified with the set of 0-simplices of the simplicial set P(x1, . . . , xn;x). As hcN d(P)
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730 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

is an ∞-operad, by virtue of [18, Proposition 6.3, Lemma 6.4 and Proposition 6.10], we know
that the set of operations τd(hcN d(P))(x1, . . . , xn;x) is the quotient of the set of 0-simplices
of the simplicial set hcN d(P)(x1, . . . , xn;x) by the equivalence relation ∼ defined as follows.
Write C+

n for the tree obtained from the corolla Cn by grafting a new edge under the root.
We have two outer faces u, v : Cn −→ C+

n : the face u misses the new root (whence is an outer
face), while the face v misses the old one (and is thus an inner face). There is also the outer
face d : C1 −→ C+

n which corresponds to the map from the old root to the new one in C+
n . For

two elements

p, q ∈ hcN d(P)(x1, . . . , xn;x) ⊂ hcN d(P)Cn
� HomsOper(Cn,P)

we say that p ∼ q if there exists a morphism h : Ω[C+
n ] −→ hcN d(P) such that hu = p and

hv = q, and such that hd is degenerate (that is, factors through η). To finish the proof, it is
thus sufficient to prove that, if two 0-simplices p and q of the Kan complex P(x1, . . . , xn;x) are
in the same connected component, then p ∼ q. For this, we have to understand the elements h
of the set

hcN d(P)C+
n

= HomsOper(W (C+
n ),P)

such that hd is degenerate. Let a1, . . . , an be the input edges of C+
n , and r be the root edge,

while r′ is the remaining edge of C+
n . Let f : {a1, . . . , an, r

′, r} −→ Ob P be the map defined
by f(ai) = xi and f(r) = f(r′) = x. We then have an identification

W (C+
n )(a1, . . . , an; r) = Δ[1],

which induces a map

HomsOper{a1,...,an,r′,r}(W (C+
n ), f∗P) −→ HomsSet(Δ[1],P(x1, . . . , xn;x)).

Let HomsOper{a1,...,an,r′,r}(W (C+
n ), f∗P)deg be the set of maps ϕ : W (C+

n ) −→ f∗P in
sOper{a1,...,an,r′,r}, which send the unique map r′ −→ r in W (C+

n ) to the identity of x. Then
the restricted map

HomsOper{a1,...,an,r′,r}(W (C+
n ), f∗P)deg −→ HomsSet(Δ[1],P(x1, . . . , xn;x))

is easily seen to be bijective. If p and q are in the same connected component of the Kan
complex P(x1, . . . , xn;x), then we can choose a path

H : Δ[1] −→ P(x1, . . . , xn;x)

such that H(0) = q and H(1) = p. This morphism extends uniquely to a morphism of simplicial
operads h : W (C+

n ) −→ P which sends ai to xi and which sends the map r′ −→ r to the identity
of x, such that the map

W (C+
n )(a1, . . . , an; r) −→ P(x1, . . . , xn;x)

is H. Thus, we must have the relations hu = p and hv = q (see 4.2). In other words: p ∼ q.

Proposition 4.9. The functor W! : dSet −→ sOper is a left-Quillen functor.

Proof. As we already know that W! preserves cofibrations (Proposition 4.5), it is sufficient
to check that its right adjoint hcN d sends fibrations between fibrant objects of Theorem 5.7 to
fibrations; see [15, Proposition 7.15]. Let f : P −→ Q be a fibration between fibrant simplicial
operads. It follows from Proposition 4.5 that hcN d(f) is an inner Kan fibration between
∞-operads. Therefore, the map hcN d(f) is a fibration if and only if its image by the functor τd
is an isofibration (2.4). But, by definition of fibrations of simplicial operads, we already know
that π0(f) is an isofibration of operads. Proposition 4.8 ends the proof.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 731

5. Segal operads: the normal model category structure

This section is a reminder of the homotopy theory of Segal operads and of complete dendroidal
Segal spaces, as developed in our second paper [10].

5.1. The category of simplicial dendroidal sets (that is, of simplicial objects in dSet) is
denoted by sdSet. We will view the category dSet of dendroidal sets and the category sSet of
simplicial sets as full subcategories of sdSet in the obvious way (through the constant presheaf
functors). In particular, if we have a simplicial set K and a dendroidal set A, the cartesian
product K ×A will mean the cartesian product of K and A, seen as simplicial dendroidal sets;
in other words, for an integer n � 0 and a tree T , we have

(K ×A)n,T = Kn ×AT . (5.1)

A map between simplicial dendroidal sets X −→ Y is a normal monomorphism if, for any
integer n � 0, the morphism of dendroidal sets Xn −→ Yn is a normal monomorphism.

If X is a simplicial dendroidal set, we denote by

dSet −→ sSetop,

A �−→ XA
(5.2)

the colimit preserving functor such that, for any tree T , one has the identification

XΩ[T ] = XT . (5.3)

The Boardman–Vogt tensor product of dendroidal sets (2.7) induces a closed symmetric
monoidal structure on the category of simplicial dendroidal sets, for which the tensor product
of two objects X and Y is defined by the formula

(X ⊗ Y )n = Xn ⊗ Yn for any n � 0. (5.4)

5.2. The category of preoperads is the full subcategory of sdSet whose objects are the
simplicial dendroidal sets X such that the simplicial set Xη is a discrete simplicial set (which
we will view as a set). In this case, we will call Xη the set of objects of X. We write PreOper
for the category of preoperads. The inclusion functor of the category of preoperads into the
category of simplicial dendroidal sets is denoted by

γ∗ : PreOper −→ sdSet. (5.5)

It admits a left adjoint
γ! : sdSet −→ PreOper (5.6)

as well as a right adjoint
γ∗ : sdSet −→ PreOper (5.7)

(see [10, 7.2]). We will need the explicit description of the left adjoint γ!, so we recall it here.
Let X be a simplicial dendroidal set. Given a tree T , the simplicial set γ!(X)T is simply XT in
the case where there does not exist any map from T to η; in the case where T is linear, that
is, admits such a map ε : T −→ η (which is necessarily unique, since η is a terminal object in
Ω/η = Δ), there is the following pushout square:

Xη
ε∗

��

��

XT

��
π0(Xη) �� γ!(X)T

(5.8)

in the category of simplicial sets.
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732 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

A morphism between preoperads is a normal monomorphism if it is a normal monomorphism
in sdSet.

The tensor product of simplicial dendroidal sets (5.4) preserves preoperads, so the category
PreOper is a closed symmetric monoidal category. Moreover, the inclusion functor of dSet into
sdSet factors through the category of preoperads, and defines a colimit preserving symmetric
monoidal functor

dSet −→ PreOper, X �−→ X. (5.9)

5.3. Let T be a tree. Let us denote by I(T ) the set of subobjects of Ω[T ] of shape Ω[S],
where S is a subtree with at most one vertex (that is, S must be either a corolla, or a copy of
η). The set I(T ) is naturally endowed with the structure of partially ordered set induced by
the relation of inclusion of subobjects. Another way of describing the set I(T ) is

I(T ) = {edges of T} 
 {vertices of T}. (5.10)

As subtrees, an edge of T corresponds to a map η −→ T , while a vertex v corresponds to a
map Cn −→ T which sends the unique vertex of Cn to v. The partial order on I(T ) can be
described by the property that e < v if and only if v is a vertex of T and e is either an input
edge of v, or the output edge of v.

The Segal core of T is the colimit

Sc[T ] = lim−→
Ω[S]∈I(T )

Ω[S] (5.11)

in the category of dendroidal sets. The natural map

Sc[T ] −→ Ω[T ] (5.12)

is a (normal) monomorphism: in the case where T has at most vertex, we just get Sc[T ] = Ω[T ],
while, if T has at least one inner edge, Sc[T ] is the union in Ω[T ] of all the corollas Ω[Cnv

] ⊂
Ω[T ], where v runs over the set of vertices of T , while Cnv

−→ T denotes the corolla at v.
Note that, although the Segal core is not a functor, for any morphism of trees S −→ T which

is a composition of outer faces, there is a canonical commutative square

Sc[S] ��

��

Ω[S]

��
Sc[T ] �� Ω[T ]

(5.13)

which has the nice property of being cartesian.

Proposition 5.4 [10, Proposition 2.4]. For any tree T, the map (5.12) is an inner anodyne
extension.

Definition 5.5. A Segal operad is a preoperad X such that, for any tree T with at least
one inner edge, the morphism of simplicial sets

XΩ[T ] −→ XSc[T ]

induced by the inclusion (5.12) is a simplicial weak equivalence.
A Segal operad X is Reedy fibrant if, for any tree T , the morphism of simplicial sets

XΩ[T ] −→ X∂Ω[T ]

is a Kan fibration.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 733

Proposition 5.6. Let X be a preoperad such that, for any tree T, the map XΩ[T ] −→
X∂Ω[T ] is a Kan fibration. The following conditions are equivalent:

(i) the preoperad X is a Segal operad;
(ii) the preoperad X is a Reedy fibrant Segal operad;
(iii) for any tree T with at least one inner edge, the map XΩ[T ] −→ XSc[T ] is a trivial fibration;
(iv) for any tree T with a given inner edge e, the map XΩ[T ] −→ XΛe[T ] is a trivial fibration

of simplicial sets.

Proof. The equivalence between conditions (i) and (ii) holds by definition, and is stated
here only for the record. The boundary inclusions ∂Ω[T ] −→ Ω[T ] generate the whole class of
normal monomorphisms of dendroidal sets. Therefore, under our assumption on X, for any
normal monomorphism A −→ B in the category of dendroidal sets, the induced morphism of
simplicial sets XB −→ XA is a Kan fibration. This immediately implies that conditions (ii)
and (iii) are equivalent. The equivalence between conditions (iii) and (iv) follows from [10,
Corollary 5.6].

We now can summarize [10, Theorems 8.13 and 8.17, Remark 8.18] as follows.

Theorem 5.7. The category of preoperads is endowed with a left proper cofibrantly
generated symmetric monoidal model category structure for which the cofibrations are
the normal monomorphisms and the fibrant objects are the Reedy fibrant Segal operads.
Furthermore, the inclusion functor dSet −→ PreOper preserves and detects weak equivalences
and is a left-Quillen equivalence.

Remark 5.8. An explicit set of generators for the class of normal monomorphisms of
preoperads consists of the inclusion ∅ −→ η together with all the maps of shape

γ!(∂Δ[n] × Ω[T ] ∪ Δ[n] × ∂Ω[T ]) −→ γ!(Δ[n] × Ω[T ])

for any integer n � 0 and any tree T with at least one vertex; see [10, Proposition 7.5].

Theorem 5.9. The category sdSet of simplicial dendroidal sets admits a model category
structure, called the dendroidal Rezk model structure, which is completely characterized by
the following properties.

(i) The class of cofibrations is the class of (termwise) normal monomorphisms.
(ii) If X −→ Y is a morphism of simplicial dendroidal sets such that, for any integer n � 0,

the morphism of dendroidal sets Xn −→ Yn is a weak equivalence of the model structure of
Theorem 2.4, then it is a weak equivalence.

(iii) If X −→ Y is a morphism of simplicial dendroidal sets such that, for any tree T, the
morphism of simplicial sets XT −→ YT is a weak equivalence of the usual Quillen model
structure, then it is a weak equivalence.

(iv) The inclusion functor PreOper −→ sdSet preserves and detects weak equivalences and is a
left-Quillen equivalence.

(v) Any preoperad X is canonically isomorphic in Ho(sdSet) to the simplicial dendroidal set

T �−→ Map(Ω[T ],X)

(where Map(−,X) denotes the mapping space functor obtained by choosing a simplicial frame
of a fibrant resolution of X in the sense of [13, 5.2.7], for instance).
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734 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Proof. Properties (i)–(iii) (as well as the fact that these determine the model structure)
are summarized in [10, Theorem 6.6], while the first part of property (iv) holds by definition
[10, Definition 8.1], and the second part by [10, Theorem 8.15]. As for property (v), we remark
that, using the Quillen equivalence dSet ⊂ PreOper (5.7), it is sufficient to prove it in the case
of a dendroidal set; but then, this is a translation of [10, Propositions 3.3, 6.13 and 8.8, and
Remark 8.18].

The following two sufficient conditions for a morphism of preoperads to be a weak equivalence
will be used several times.

Corollary 5.10. Let X −→ Y be a morphism of preoperads, and assume that one of the
two conditions below is satisfied.

(a) For any integer n � 0, the morphism of dendroidal sets Xn −→ Yn is a weak equivalence
of dendroidal sets.

(b) For any tree T, the morphism of simplicial sets XT −→ YT is a weak equivalence of the
usual Quillen model category structure.

Then the morphism X −→ Y is a weak equivalence of preoperads.

Proof. This follows from assertions (ii)–(iv) of the preceding theorem.

Proposition 5.11. The class of weak equivalences is closed under filtered colimits in the
category of preoperads.

Proof. There are many ways to prove this. For instance, one can use the fact that a
morphism of preoperads is a weak equivalence if and only if it is a weak equivalence of simplicial
dendroidal sets for the dendroidal Rezk model category structure; see Theorem 5.9 (iv). But
the latter is a left-Bousfield localization of the generalized Reedy model structure on sdSet whose
class of weak equivalences is the class of (dendroidally) termwise simplicial weak equivalences;
see [10, Definition 6.2]. As the class of simplicial weak equivalences is closed under filtered
colimits, this implies that the class of weak equivalences of the dendroidal Rezk model structure
is closed under filtered colimits as well: for any filtered diagram D of simplicial dendroidal sets,
the map from the homotopy colimit of D to the colimit of D is a termwise simplicial weak
equivalence.

6. Weak equivalences between Segal operads

6.1. The adjunction between the category of dendroidal sets and the category of operads
(2.3) extends naturally to an adjunction between the category of simplicial dendroidal sets and
the category of simplicial objects in the category of operads (which must be distinguished from
the category of simplicial operads):

τd : sdSet � Operad Δop

: Nd. (6.1)

The category of simplicial operads is the full subcategory of Operad Δop

which consists of
presheaves P : Δop −→ Operad such that the simplicial set Ob P is discrete, which means
precisely that Nd(P) is a preoperad. Moreover, if X is a preoperad, the simplicial object τd(X)
is clearly a simplicial operad. Therefore, the adjunction (6.1) restricts to an adjunction

τd : PreOper � sOper : Nd (6.2)
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 735

in which the right adjoint Nd still has the property of being fully faithful. However, the
adjunction (6.2) is not a Quillen pair because the functor τd does not send normal preoperads
to cofibrant simplicial operads (in fact, if P is a Σ-cofibrant, then X = Nd(P) is a normal
preoperad, but τd(X) = P might not be cofibrant). Our purpose, in this section, is to correct
this defect of the model category structure of Theorem 5.7 by shrinking the class of cofibrations
as much as we can. But before doing this, we have to study the notion of Segal operad a little
more closely.

Remark 6.2. The functor Nd : sOper −→ PreOper is fully faithful and its essential image
consists of the preoperads X satisfying the dendroidal (strict) Segal conditions; this means
that, for any tree T (with at least one inner edge), the map

XΩ[T ] −→ XSc[T ]

is an isomorphism (this is an easy translation of [10, Corollary 2.7]). In particular, for any
simplicial operad P, the preoperad Nd(P) is in fact a Segal operad.

6.3. Let X be a preoperad. Given an (n+ 1)-tuple of objects (x1, . . . , xn, x) of X (that
is, an element of Xn+1

η ), n � 0, we define the simplicial set X(x1, . . . , xn;x) by the following
pullback square in the category of simplicial sets.

X(x1, . . . , xn;x) ��

��

XCn

��
Δ[0]

(x1,...,xn,x)
�� Xn+1

η

(6.3)

We remark that, as Xη is discrete, the map∐
(x1,...,xn,x)∈Xn+1

η

X(x1, . . . , xn;x) −→ XCn
(6.4)

is an isomorphism of simplicial sets.
We define a functor

π0 : PreOper −→ dSet (6.5)

by the formula: π0(X)T = π0(XT ) for any preoperad X and any tree T .

Lemma 6.4. For any preoperad X and any tree T, the natural map

π0(XSc[T ]) −→ HomdSet(Sc[T ], π0(X))

is bijective.

Proof. This is an easy consequence of the isomorphism (6.4) and of the fact that the functor
π0 : sSet −→ Set commutes with small sums as well as with finite products.

Proposition 6.5. If X is a Segal operad, then π0(X) is isomorphic to the dendroidal nerve
of an operad.

Proof. We know that a dendroidal set Y is isomorphic to the dendroidal nerve of an operad
if and only if it satisfies the strict dendroidal Segal condition; see [10, Corollary 2.7]. If X is a

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



736 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Segal operad, then, for any tree T with at least one inner edge, the map

π0(XT ) = π0(XΩ[T ]) −→ π0(XSc[T ])

is bijective. Lemma 6.4 thus implies that the dendroidal set π0(X) satisfies the strict dendroidal
Segal condition.

Corollary 6.6. For any Segal operad X, one has canonical isomorphisms of dendroidal
sets: π0(X) � Ndπ0τd(X) � Ndτdπ0(X).

Proof. By comparing the corresponding universal properties, we see that we obviously have
a natural isomorphism of operads τd(π0(X)) � π0(τd(X)), which implies this corollary because
of Proposition 6.5 (and using the fully faithfulness of the dendroidal nerve functor).

Definition 6.7. Let f : X −→ Y be a morphism between preoperads.
The map f is said to be fully faithful if, for any (n+ 1)-tuple (x1, . . . , xn, x) of objects of

X, n � 0, the induced morphism of simplicial sets

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

is a weak equivalence.
The map f is said to be essentially surjective if the morphism of operads π0(τd(f)) is

essentially surjective.

Remark 6.8. Using (the proof of) Proposition 6.5, it is easy to explicitly describe the
operad π0(τd(X)) associated to a given Segal operad X: its objects are those of X (that is, the
elements of the set Xη), while the sets of operations are given by the formula

π0(τd(X))(x1, . . . , xn;x) � π0(X(x1, . . . , xn;x)).

In particular, if a morphism between Segal operadsX −→ Y is fully faithful, then the morphism
of operads π0(τd(X)) −→ π0(τd(Y )) is fully faithful as well. Therefore, if a morphism between
Segal operads X −→ Y is fully faithful and essentially surjective, then the morphism of operads
π0(τd(X)) −→ π0(τd(Y )) is a weak equivalence of the model category of Theorem 1.2.

Proposition 6.9. Let f : X −→ Y be a morphism of preoperads. The following conditions
are equivalent.

(i) The morphism Xη −→ Yη is bijective, and for any n � 0, the morphism of simplicial
sets XCn

−→ YCn
is a weak equivalence.

(ii) The morphism f is fully faithful, and the morphism Xη −→ Yη is bijective.
(iii) For any tree T, the morphism of simplicial sets XSc[T ] −→ Y Sc[T ] is a weak equivalence.

Proof. This follows right away from the isomorphism (6.4): everything comes down to the
fact that the class of weak equivalences of simplicial sets is closed under small sums, under
finite products and under retracts.

Corollary 6.10. A morphismX −→ Y between Segal operads is fully faithful and induces
a bijection on objects Xη � Yη if and only if, for any tree T, the morphism of simplicial sets
XT −→ YT is a weak equivalence.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 737

Corollary 6.11. Let X −→ Y be a morphism of preoperads. Assume that, for any tree
T , the morphism of simplicial sets XT −→ YT is a weak equivalence. Then X is a Segal operad
if and only if Y is a Segal operad.

Lemma 6.12. For any Segal operad X, there exists a functorial morphism of preoperads
X −→ R(X) such that:

(a) the preoperad R(X) is a Reedy fibrant Segal operad;
(b) for any tree T, the morphism of simplicial sets XT −→ R(X)T is a weak equivalence.

Proof. We factor the morphism from X to the terminal preoperad by applying the small
object argument to the set I of maps

γ!(Λk[n] × Ω[T ] ∪ Δ[n] × ∂Ω[T ]) −→ γ!(Δ[n] × Ω[T ])

for n � 1, 0 � k � n, and any tree T . This gives a morphism of shape X −→ R(X) such that
the map from R(X) to the terminal preoperad has the right-lifting property with respect to
I. Note that all the elements A −→ B of I are normal monomorphisms (this follows from [10,
Lemma 7.4]), and have the property that the morphisms AS −→ BS are weak equivalences
for any tree S (this latter property comes from the explicit description of the functor γ! (5.8),
and from the cube lemma [13, Lemma 5.2.6]). In particular, for any tree T , the morphism
R(X)Ω[T ] −→ R(X)∂Ω[T ] is a Kan fibration. The fact that R(X) is a Reedy fibrant Segal
operad now comes from Proposition 5.6 and from Corollary 6.11.

Proposition 6.13. A morphism between Segal operads is a weak equivalence of the model
category of Theorem 5.7 if and only if it is fully faithful and essentially surjective.

Proof. Let f : X −→ Y be a morphism between Segal operads. Using Corollaries 5.10
and 6.10, as well as Remark 6.8 and Lemma 6.12, we can embed f into a commutative square

X ��

f

��

R(X)

R(f)

��
Y �� R(Y )

whose horizontal maps are weak equivalences, are fully faithful and bijective on objects and
induce equivalences of operads

τdπ0(X) � τdπ0(R(X)) and τdπ0(Y ) � τdπ0(R(Y )).

This implies that f is a weak equivalence (is fully faithful and essentially surjective) if and
only if R(f) has the same property. In other words, it is sufficient to prove that a morphism
between Reedy fibrant Segal operads is a weak equivalence if and only if it is fully faithful and
essentially surjective. But this is already known: see [10, Theorem 8.11].

Theorem 6.14. The functor τdπ0 = π0τd : PreOper −→ Operad is a left-Quillen functor which
preserves weak equivalences.

Proof. It is clear that this functor sends normal monomorphisms to morphisms of operads
which are injective on objects. Therefore, it is sufficient to prove that this functor preserves
weak equivalences. Note that, by Remark 6.8, if f : X −→ Y is a morphism of Segal operads

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



738 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

which is fully faithful and essentially surjective, then its image by τdπ0 = π0τd is fully faithful
and essentially surjective. In other words, by virtue of the preceding proposition, we already
know that this functor preserves weak equivalences between Segal operads. To finish the proof,
it is sufficient to construct, for any preoperad X, a functorial weak equivalence into a Reedy
fibrant Segal operad X −→ L(X) whose image by τdπ0 = π0τd is an isomorphism. For this, we
will consider two classes of morphisms. The first class consists of morphisms

γ!(Λk[n] × Ω[T ] ∪ Δ[n] × ∂Ω[T ]) −→ γ!(Δ[n] × Ω[T ]) (α)

for any tree T and any integers n > 0, 0 � k � n, while the second is the class of maps

γ!(∂Δ[n] × Ω[T ] ∪ Δ[n] × Λe[T ]) −→ γ!(Δ[n] × Ω[T ]) (β)

for any tree T with inner edge e, and any integer n � 0. A preoperad X is a Reedy fibrant
Segal operad if and only if the morphism from X to the terminal object has the right-lifting
property with respect to maps of shape (α) and (β): this is a translation of Proposition 5.6
by a standard adjunction argument. We define L(X) by applying the small object argument
to the class of maps of shapes (α) and (β). The explicit description of the functor γ! (5.8),
[10, Lemma 7.4], and the cube lemma [13, Lemma 5.2.6], show that any map of shape (α)
is a normal monomorphism A −→ B such that, for any tree S, the map AS −→ BS is a
trivial cofibration of simplicial sets. The same arguments show that any map of shape (β)
is a normal monomorphism A −→ B such that, for any integer n � 0, the map An −→ Bn

is a trivial cofibration of dendroidal sets (even an inner anodyne extension). In particular,
by Corollary 5.10, any map of shape (α) or (β) is a trivial cofibration of preoperads. This
implies that the map X −→ L(X) is indeed a fibrant resolution of X. On the other hand, if a
morphism of preoperad A −→ B has the property that, for any tree S, the map AS −→ BS is
a weak equivalence of simplicial sets, then the morphism of operads τdπ0(A) −→ τdπ0(B) is an
isomorphism, while, if it has the property that, for any integer n � 0, the map An −→ Bn is
a weak equivalence of dendroidal sets, then the map π0τd(A) −→ π0τd(B) is an isomorphism
(see Proposition 2.5). In particular, the functor τdπ0 = π0τd sends any map (α) or (β) to
an isomorphism. As this functor preserves colimits, this implies that it sends any transfinite
composition of pushouts of maps of shape (α) or (β), such as X −→ L(X), to an isomorphism.

Remark 6.15. We have the following (essentially) commutative diagram of categories:

dSet
inclusion ��

τd ����
��

��
��

�
PreOper

τdπ0=π0τd�����������

Operad .

(6.6)

The embedding dSet ⊂ PreOper is a left-Quillen equivalence which preserves weak equivalences
(5.7). Therefore, Proposition 2.5 and Theorem 6.14 give rise to the following (essentially)
commutative diagram of homotopy categories.

Ho(dSet) � ��

τd ������������
Ho(PreOper)

τdπ0=π0τd		�����������

Ho(Operad )

(6.7)

This has the following technical but useful consequence.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 739

Corollary 6.16. Let Jd be the dendroidal nerve of the contractible groupoid with set of
objects {0, 1}. If X is a Reedy fibrant Segal operad, then any isomorphism in the underlying
category of τdπ0(X) comes from a morphism of preoperads Jd −→ X.

Proof. This immediately follows from the fact that Jd is cofibrant and from the commutative
diagram (6.7), because the analogous property for ∞-operads is known to hold; see [11,
Proposition 6.20].

7. Segal operads: the tame model category structure

7.1. For a simplicial set K and a tree T , we denote by T [K] the free simplicial operad
generated by the tree T and decorated by K. To be more precise, we define this first in the
case where T has at most one vertex. For T = η, we just get T [K] = η, while, for T = Cn a
corolla, T [K] = Cn[K] (see 1.15). For a general tree T , this defines a functor

F (K,T ) : I(T ) −→ sOper, (S ⊂ T ) �−→ F (K,T )(S) = S[K],

where I(T ) is the partially ordered set of subtrees of T with at most one vertex; see 5.3. The
simplicial operad T [K] is simply the following colimit:

T [K] = lim−→
I(T )

F (K,T ). (7.1)

The latter can be described very concretely: its objects are those of T (that is, the edges of T ),
while the spaces of operations T [K](e1, . . . , en; e) can be described by the formula

T [K](e1, . . . , en; e) =
∐

S∈T (e1,...,en;e)

KV (S), (7.2)

where T (e1, . . . , en; e) denotes the set of subtrees of T whose input edges are exactly e1, . . . , en

and whose output edge is e, and where V (S) denotes the set of vertices of S. The composition
is defined by grafting trees and by the fact that, if a tree S is obtained by grafting the trees
S1, . . . , Sk, then there is a canonical bijection V (S) � V (S1) 
 · · · 
 V (Sk), which induces an
isomorphism

KV (S1) × · · · ×KV (Sk) � KV (S).

We obtain a functor
sSet × Ω −→ sOper,

(K,T ) �−→ T [K].
(7.3)

We also define a functor
sSet × Ω −→ PreOper,

(K,T ) �−→ Ω[K,T ]
(7.4)

as follows. For a simplicial set K and a tree T , the simplicial dendroidal set Ω[K,T ] fits into
the following pushout:

∐
e∈E(T )

K × η ��

��

K × Ω[T ]

��∐
e∈E(T )

Δ[0] × η �� Ω[K,T ].

(7.5)

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



740 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

For a 0-connected simplicial set K, we have a canonical isomorphism:

Ω[K,T ] � γ!(K × Ω[T ]). (7.6)

Therefore, if K is 0-connected, a map from Ω[K,T ] to a preoperad X is simply a morphism of
simplicial sets K −→ XT . In the general case, the maps out of Ω[K,T ] are still understandable:
for a preoperad X, the datum of a map Ω[K,T ] −→ X is equivalent to a pair (v, f), where v
is a function from the set of edges E(T ) to Xη, while f is a morphism of simplicial sets from
K to XT , such that the following square commutes:

K
f ��

��

XT

��
Δ[0] v �� XE(T )

η .

Finally, these constructions may be compared as follows:

Proposition 7.2. For any simplicial setK and any tree T, there is a canonical isomorphism
of operads

τd(Ω[K,T ]) � T [K].

If moreover T has at most one vertex, then the unit map

Ω[K,T ] −→ Nd(T [K])

is an isomorphism.

Proof. Let us prove first that, for any tree T with at most one vertex, we have a canonical
isomorphism Ω[K,T ] � Nd(T [K]). If T = η, there is nothing to check, while, if T = Cn is a
corolla (n � 0), we proceed as follows. Given a tree S, we see (by considering first the case
where K is a set with a single element, and then by using the pushout square (7.5)) that

Ω[K,Cn]S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K if S is obtained by grafting linear trees
with Cn and n �= 1,

ObCn 
 (K× if S is a linear tree,
{surjections S −→ Cn})

∅ otherwise.

It is easy to see that the set Nd(Cn[K])S admits the same description, which means that we
have natural isomorphisms Ω[K,Cn] � Nd(Cn[K]). The inclusions Sc[T ] −→ Ω[T ] being sent
by τd to isomorphisms, we see that we have a natural isomorphism

lim−→
S∈I(T )

τd(Ω[K,S]) � τd(Ω[K,T ]),

which ends the proof, by construction of T [K] (7.1).

7.3. For a simplicial set K and a tree T , we define the Segal core of Ω[K,T ] as the following
colimit:

Sc[K,T ] = lim−→
S∈I(T )

Ω[K,S]. (7.7)
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 741

We immediately see that we have the following canonical pushout of simplicial dendroidal sets:

∐
e∈E(T )

K × η ��

��

K × Sc[T ]

��∐
e∈E(T )

Δ[0] × η �� Sc[K,T ].

(7.8)

With this description, it follows that the canonical map

Sc[K,T ] −→ Ω[K,T ] (7.9)

is a monomorphism between normal preoperads. For any monomorphism of simplicial sets
K −→ L, one obtains a commutative square:

Sc[K,T ] ��

��

Ω[K,T ]

��
Sc[L, T ] �� Ω[L, T ]

(7.10)

which is easily seen to be cartesian. This induces a map

Sc[L, T ] ∪ Ω[K,T ] −→ Ω[L, T ], (7.11)

which is also a monomorphism between normal preoperads.

Proposition 7.4. The maps (7.9) and (7.11) are trivial cofibrations.

Proof. It is clearly sufficient to treat the case of the map (7.9). By applying the cube lemma
[13, Lemma 5.2.6] to the obvious morphism of squares from (7.5) to (7.8), this proposition
becomes a direct consequence of Proposition 5.4 and Corollary 5.10.

Remark 7.5. The functor τd sends the map (7.9) to an isomorphism of simplicial operads
τdSc[K,T ] � τdΩ[K,T ] = T [K]: this follows from Proposition 7.2 and from formula (7.1).
Therefore, the map (7.11) is also sent by τd to an isomorphism.

Proposition 7.6. For any tree T and any integer n � 0, there is a canonical isomorphism

γ!(Δ[n] × Sc[T ] ∪ ∂Δ[n] × Ω[T ]) � Sc[Δ[n], T ] ∪ Ω[∂Δ[n], T ].

Proof. This is clear whenever n � 2 by Formula 7.6. If n = 0, then Ω[∂Δ[n], T ] is contained
in Sc[Δ[n], T ], and we are reduced to prove that we have an isomorphism of shape γ!((Δ[n] ×
Sc[T ]) � Sc[Δ[n], T ), which is true again by 7.6. It remains to understand the case where n = 1.
We have a canonical commutative square

γ!(Δ[n] × Sc[T ] ∪ ∂Δ[n] × Ω[T ]) ��

��

Sc[Δ[n], T ] ∪ Ω[∂Δ[n], T ]

��
γ!(Δ[n] × Ω[T ]) �� Ω[Δ[n], T ].
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The left-vertical map is a monomorphism (this follows from [10, Lemma 7.4], for instance).
On the other hand, the lower horizontal map is known to be an isomorphism (7.6 again).
Therefore, the upper horizontal map is a monomorphism, and it remains to check that it is an
epimorphism for n = 1. In other words, we have to check that we have a surjection of shape
Ω[T ] 
 Ω[T ] −→ Ω[∂Δ[1], T ], which is obvious.

7.7. We now define four new classes of morphisms of preoperads. The class C contains
the following.

(TC1) The map ∅ −→ η.
(TC2) The inclusions Ω[∂Δ[n], T ] −→ Ω[Δ[n], T ] for any integer n � 0 and any tree T with a
unique vertex.
(TC3) The maps of shape Sc[Δ[n], T ] ∪ Ω[∂Δ[n], T ] −→ Ω[Δ[n], T ] for any integer n � 0 and
any tree T .

The class C̄ is the saturation of C. The class A contains the following.

(TA1) The maps of shape η −→ H which are weak equivalences, and such that H is countable,
with set of objects Hη = {0, 1}, while the map {0} 
 {1} −→ H is in C̄ (a preoperad X is
countable if each of the sets Xn,T is countable).
(TA2) The inclusions Ω[Λk[n], T ] −→ Ω[Δ[n], T ] for n � 1, 0 � k � n, and any tree T with a
unique vertex.
(TA3) The maps of shape Sc[Δ[n], T ] ∪ Ω[∂Δ[n], T ] −→ Ω[Δ[n], T ] for any integer n � 0 and
any tree T .

The class Ā is the saturation of the class A.
Note that condition (TA3) is identical to condition (TC3).

Definition 7.8. A morphism of preoperads is a tame cofibration if it belongs to the
class C̄.

A morphism of preoperads is an isofibration if it has the right-lifting property with respect
to Ā.

A preoperad X is a fibrant Segal operad if the morphism from X to the terminal object is
an isofibration.

Proposition 7.9. Let f : X −→ Y be a morphism of preoperads.

(a) The morphism f has the right-lifting property with respect to the inclusion ∅ −→ η if
and only if it is surjective on objects.

(b) Given a morphism of simplicial sets u : K −→ L, the map f has the right-lifting property
with respect to the induced maps Ω[K,T ] −→ Ω[L, T ], for any tree T with a unique vertex, if
and only if, for any (n+ 1)-tuple (x1, . . . , xn, x) of objects of X, n � 0, the morphism

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x))

has the right-lifting property with respect to the map u.
(c) The morphism f has the right-lifting property with respect to the inclusions

Sc[Δ[n], T ] ∪ Ω[∂Δ[n], T ] −→ Ω[Δ[n], T ], for any integer n � 0 and any tree T, if and only
if, the morphism XΩ[T ] −→ Y Ω[T ] ×Y Sc[T ] XSc[T ] is a trivial fibration for any tree T with at
least one inner edge.

Proof. Assertion (a) is obvious, while (b) follows from the construction of Ω[K,T ] (see the
end of 7.1). Assertion (c) follows from Formula 7.6 and Proposition 7.6 (note that Sc[T ] = Ω[T ]
whenever T has at most one vertex).
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 743

Corollary 7.10. A morphism of preoperads f : X −→ Y has the right-lifting property
with respect to tame cofibrations if and only if the following three conditions are verified.

(i) It is surjective on objects.
(ii) For any n � 0 and any (n+ 1)-tuple (x1, . . . , xn, x) of objects of X, n � 0 of X, the

morphism X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x)) is a trivial fibration.
(iii) The map XΩ[T ] −→ Y Ω[T ] ×Y Sc[T ] XSc[T ] is a trivial fibration for any tree T with at

least one inner edge.

In particular, by Proposition 6.13, if X and Y are Segal operads, such a morphism is a weak
equivalence.

Proof. By virtue of the preceding proposition, conditions (i), (ii) and (iii) correspond to the
right-lifting property with respect to maps of shape (TC1), (TC2) and (TC3), respectively.

Corollary 7.11. A preoperad X is a fibrant Segal operad if and only if it satisfies the
following two conditions.

(i) For any (n+ 1)-tuple (x1, . . . , xn, x) of objects of X, n � 0, the simplicial set X(x1, . . . ,
xn;x) is a Kan complex.

(ii) For any tree T with at least one inner edge, the morphism XΩ[T ] −→ XSc[T ] is a trivial
fibration.

In particular, any fibrant Segal operad is a Segal operad.

Proof. Here again, conditions (i) and (ii) express the property of the map from X to the
terminal object of having the right-lifting property with respect to maps of shapes (TA2) and
(TA3), respectively. Note that, in that case, the right-lifting property with respect to maps of
shape (TA1) is automatic: indeed, H must have the property that HT = ∅ for any non-linear
tree T , which implies that it is isomorphic to η ×H; in other words, all the maps of shape
(TA1) must have a retraction.

Corollary 7.12. A simplicial operad P is fibrant if and only if its dendroidal nerve Nd(P)
is a fibrant Segal operad.

7.13. Let X be a preoperad, and f : S −→ Xη a map from a set S to the set of objects of
X. We define the preoperad f∗(X) as the one whose dendrices are the simplicial sets obtained
by the pullbacks

f∗(X)T
��

��

XT

��

SE(T )
f �� XE(T )

η

(7.12)

in which E(T ) denotes the set of edges of T , while the right vertical arrow is the obvious
evaluation map. We have a canonical morphism of preoperads

X −→ f∗(X). (7.13)

Any morphism of preoperads u : X −→ Y factors into a morphism X −→ u∗η(Y ) which is
bijective on objects followed by the canonical map u∗η(Y ) −→ Y .
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744 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Lemma 7.14. Let X be a preoperad. For any surjective map f : S −→ Xη, the induced
morphism f∗(X) −→ X is a universal weak equivalence (that is, it is a weak equivalence which
remains so after any base change).

Proof. For any integer n � 0, it is easy to see that the morphism of dendroidal sets
f∗(X)n −→ Xn has the right-lifting property with respect to the boundary inclusions
∂Ω[T ] −→ Ω[T ] (observe that, except in the case where T = η, these inclusions are bijective
on objects, so that the lifts are in fact unique). In other words, this map is a termwise trivial
fibration of dendroidal sets. This property is preserved under pullback, and hence Corollary 5.10
ends the proof.

Proposition 7.15. Any morphism with the right-lifting property with respect to tame
cofibrations is a weak equivalence.

Proof. Let f : X −→ Y be a morphism with the right-lifting property with respect to tame
cofibrations. In particular, f is surjective on objects, so that, by virtue of Lemma 7.14, the
map f∗η (Y ) −→ Y is a weak equivalence. On the other hand, we see from Corollary 7.10 that
the map X −→ f∗η (Y ) still has the right-lifting property with respect to tame cofibrations: the
only apparently non-trivial property to check is condition (iii), which follows from the fact that
the maps

f∗η (Y )Ω[T ] ×f∗
η (Y )Sc[T ] XSc[T ] −→ Y Ω[T ] ×Y Sc[T ] XSc[T ]

are bijective. In other words, we may assume that f is bijective on objects. We see that, for any
tree T with at least one vertex, the morphism of simplicial sets XT −→ YT is a trivial fibration
(if T is a corolla, this follows from condition (ii) of Corollary 7.10; this property extends to any
tree T with at least one inner edge, by condition (iii) of the same corollary, and from the fact
that the class of trivial fibrations of simplicial sets is closed under small sums). Corollary 5.10
thus implies that f is a weak equivalence.

Proposition 7.16. Let Y be a Segal operad. If a morphism f : X −→ Y has the right-
lifting property with respect to maps of type (TA2) and (TA3), it must satisfy the following
three conditions.

(i) The preoperad X is a Segal operad.
(ii) For any (n+ 1)-tuple (x1, . . . , xn, x) of objects of X, n � 0, the morphism

X(x1, . . . , xn;x) −→ Y (f(x1), . . . , f(xn); f(x)) is a Kan fibration.
(iii) For any tree T, the map XΩ[T ] −→ Y Ω[T ] ×Y Sc[T ] XSc[T ] is a trivial fibration.

Proof. We already know from Proposition 7.9 that conditions (ii) and (iii) are equivalent
to the right-lifting property with respect to maps of shape (TA2) and (TA3), respectively. Let
us prove that X must be a Segal operad. Let T be a tree with at least one inner edge. We then
have the following commutative square:

XT
��

��

YT

��
XSc[T ] �� Y Sc[T ].

The bottom map is a Kan fibration: as the class of Kan fibrations is closed under small sums
and small products, this follows from condition (ii) and isomorphisms of shape (6.4). Moreover,
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 745

as Y is a Segal operad, the right-vertical map is a weak equivalence. As the model category of
simplicial sets is right proper, this implies that the projection Y Ω[T ] ×XSc[T ] Y Sc[T ] −→ XSc[T ]

is a weak equivalence. Therefore, condition (iii) implies that the left-vertical map is a weak
equivalence, or, in other words, that X is a Segal operad.

Proposition 7.17. Let Y be a fibrant Segal operad. If a morphism f : X −→ Y is an
isofibration, then the induced morphism of operads τdπ0(X) −→ τdπ0(Y ) is an isofibration.

Proof. Let y0 � y1 be an isomorphism in the category underlying the operad τdπ0(Y ), and
let x0 be an object of X such that f(x0) = y0. By virtue of Lemma 6.12, we can choose a
Reedy fibrant resolution u : Y −→ Y ′ such that u is a weak equivalence which is bijective on
objects, and Y ′ is a Reedy fibrant Segal operad. Let K be a Segal operad with a set of objects
Kη = {0, 1} such that the inclusion η � {0} −→ K is a normal monomorphism and a weak
equivalence (for instance, K might be chosen to be the nerve of the contractible groupoid with
set of objects {0, 1}). As K is cofibrant and Y ′ Reedy fibrant, the isomorphism y0 � y1 may be
lifted to a map K −→ Y ′ sending e to ye for e = 0, 1 (Corollary 6.16). We can apply the small
object argument to the class of maps of shapes (TA2) and (TA3) to factor the map K −→ Y
into a weak equivalence K −→ K ′ followed by a morphism K ′ −→ Y ′ which is bijective on
objects and has the right-lifting property with respect to maps of shapes (TA2) and (TA3).
Proposition 7.16 implies that K ′ is a fibrant Segal operad and that, for any tree T , the map
K ′

T −→ Y ′
T is a Kan fibration. It is then time to form the following pullback square:

H ′ ��

��

K ′

��
Y �� Y ′.

As the right-hand morphism is a termwise Kan fibration, while the lower horizontal map is a
termwise simplicial weak equivalence (6.10), the upper horizontal map is a termwise simplicial
weak equivalence, whence a weak equivalence (5.10). Let us fix a countable tame cofibration
η 
 η −→ H which is a bijection on objects, and such that there exists a weak equivalence
H −→ η: one obtains this by applying the small object argument to the class of maps of shapes
(TC2) and (TC3) to factor the codiagonal η 
 η −→ η; the fact that H may be assumed to be
countable comes from the fact that any map of shape (TC2) or (TC3) has a finite codomain,
while the fact that H −→ η is a weak equivalence comes from Proposition 7.15. Remark that
H ′ is a fibrant Segal operad by Proposition 7.16. This implies that the map H ′ � η ×H ′ −→ η
is fully faithful and surjective on objects. In particular, this map has the right-lifting property
with respect to tame cofibrations (7.10). Therefore, we can choose a map H −→ H ′ which is
bijective on objects. Composing with H ′ −→ Y , we thus obtain a map y : H −→ Y that lifts
the isomorphism y0 � y1. Finally, we see that we have constructed a commutative square:

η
x0 ��

0

��

X

f

��
H

y �� Y

and we would like to admit a lift from H to X. But, as H is countable, the left-vertical arrow
is a map of type (TA1), so that such a lift h : H −→ X exists by assumption on f . The map
h induces an isomorphism x0 � x1 in τdπ0(X) which lifts the isomorphism y0 � y1.
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746 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Corollary 7.18. A morphism between fibrant Segal operads is both an isofibration
and a weak equivalence if and only if it has the right-lifting property with respect to tame
cofibrations.

Proof. Any morphism between Segal operads with the right-lifting property with respect
to tame cofibrations is certainly an isofibration as well as a weak equivalence; see Corollary
7.10. Let f : X −→ Y be an isofibration between fibrant Segal operads which is also a weak
equivalence. As f is fully faithful, we immediately see that f satisfies conditions (ii) and (iii) of
Corollary 7.10. To prove that f has the right-lifting property with respect to tame cofibrations,
it is thus sufficient to check that it is surjective on objects. But, by virtue of the preceding
proposition, the induced morphism of operads τdπ0(f) is then an isofibration, and as it is
clearly a weak equivalence, it must be surjective on objects. As the functor τdπ0 does not affect
the objects, this means that f is surjective on objects as well.

Theorem 7.19. The category of preoperads is endowed with a left proper cofibrantly
generated model category structure whose cofibrations are the tame cofibrations, while the
fibrant objects are the fibrant Segal operads and the fibrations between Segal operads are
the isofibrations. Moreover, the identity functor is a left-Quillen equivalence from this model
category to the model category of Theorem 5.7.

Proof. As any tame cofibration is a normal monomorphism, the class of tame cofibrations
which are also weak equivalences is closed under pushout, retracts and transfinite composition.
Therefore, the category of preoperads admits a cofibrantly generated model category structure
whose weak equivalences are the same as those of the model category structure of Theorem 5.7,
and whose cofibrations are precisely the tame cofibrations: this immediately follows from
Proposition 7.15 and from Jeff Smith’s theorem [1, Theorem 1.7 and Proposition 1.18].
Moreover, it is clear that the class Ā is contained in the class of trivial cofibrations (the only
non-obvious case is about maps of type (TA3), which is solved by Proposition 7.4). Therefore,
any fibrant object is a fibrant Segal operad, and any fibration is an isofibration. We will now
prove that any isofibration between fibrant Segal operads is a fibration for this model category
structure. Consider a commutative square

A
a ��

i

��

X

f

��
B

b �� Y

where i is a tame cofibration and a weak equivalence, while f is an isofibration between fibrant
Segal operads. We want to produce a lift from B to X. We can factor the map b into a
morphism k : B −→ B′ in Ā and an isofibration b′ : B′ −→ Y . It is then sufficient to prove
that the commutative square

A
a ��

i′

��

X

f

��
B′ b′ �� Y

admits a lift, where i′ = ki. For this, it is sufficient to prove that the map i′ is in the class
Ā. We can choose a factorization of i′ as a map j : A −→ C in Ā followed by an isofibration
q : C −→ B′. But then, the map q is an isofibration between fibrant Segal operads and a
weak equivalence. Therefore, by virtue of Corollary 7.18, the morphism q has the right-lifting
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 747

property with respect to any tame cofibration. This implies that the tame cofibration i′ is
a retract of j, whence is in Ā. The property of left properness follows from the analogous
property for the model category structure of Theorem 5.7 and from the fact that any tame
cofibration is in particular a normal monomorphism. The last assertion of the theorem is
obvious.

8. Strictifications

In this section, we will prove that the homotopy theories of ∞-operads, of Segal operads and
of simplicial operads are all canonically Quillen equivalent. We will start by comparing Segal
operads and simplicial operads.

Proposition 8.1. The functor τd : PreOper −→ sOper sends tame cofibrations to
cofibrations.

Proof. It is sufficient to check that the functor τd sends maps of type (TC1), (TC2), or
(TC3) (cf. 7.7) to cofibrations. The case of (TC1) is clear, while maps of type (TC2) are sent
to maps of type (C2) (this follows from Proposition 7.2). As for the maps of type (TC3), we
know from Remark 7.5 that they become isomorphisms in the category of simplicial operads.

Lemma 8.2. Consider a pushout square of preoperads

A ��

i

��

U

f

��
B �� V

in which i is a map of type (TC1), (TC2) or (TC3) (see 7.7). If the simplicial operad τd(U) is
Σ-cofibrant, then so is τd(V ), and the comparison morphism

V 
U Ndτd(U) −→ Ndτd(V )

is a weak equivalence.

Proof. We have a cocartesian square

τd(A) ��

τd(i)

��

τd(U)

τd(f)

��
τd(B) �� τd(V )

in which the morphism τd(i) is a cofibration (by the preceding proposition), so that the
morphism τd(f) is a cofibration. As τd(U) is Σ-cofibrant, this implies that τd(f) is a Σ-
cofibration and that the simplicial operad τd(V ) is Σ-cofibrant. Let us write V̄ = V 
U

Ndτd(U). It remains to prove that V̄ −→ Ndτd(V ) is a weak equivalence.
The case where i is of type (TC1) is clear: the functors τd andNd do not affect the objects and

preserve sums, so that we must have V̄ = η 
Nd(U) � Nd(η 
 U) = Nd(V ). The case where
i is of type (TC3) is easy to understand too: in this case, we have a commutative square of
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748 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

shape

U ��

f

��

Ndτd(U)

Ndτd(f)

��
V �� Ndτd(V )

in which the left-vertical map is a trivial cofibration (because it belongs to Ā), while the right-
vertical map is an isomorphism (by Remark 7.5, the map τd(f) is a pushout of an isomorphism).
Therefore, the map V̄ −→ Ndτd(V ) has a section which is a trivial cofibration, whence it is a
weak equivalence.

It remains to consider the case where i is a map of type (TC2). More precisely, we have to
understand pushout squares of shape

Ω[∂Δ[m], Cn] ��

i

��

U

f

��
Ω[Δ[m], Cn] �� V

for m,n � 0. By virtue of Corollary 5.10, it is sufficient to prove that, for any integer q � 0,
the morphism of dendroidal sets

V̄q −→ Ndτd(V )q = Ndτd(Vq)

is a weak equivalence of the model category structure of Theorem 2.4. Let us denote by Iq the
set of all surjective maps Δ[q] −→ Δ[m]. We then have pushout squares of the following type
in the category of operads:

∐
f∈Iq

∂Cn ��

��

Cn[∂Δ[m]]q

��

�� τd(Uq)

��∐
f∈Iq

Cn �� Cn[Δ[m]]q �� τd(Vq).

Let us form the following two cocartesian squares in the category of dendroidal sets, making
the composed rectangle cocartesian as well.

∐
f∈Iq

∂Ω[Cn] ��

��

Ω[∂Δ[m], Cn]q

��

�� Uq �� Ndτd(Uq)

��∐
f∈Iq

Ω[Cn] �� S �� W

Note that, by virtue of the last assertion of Proposition 7.2, we have Ω[K,Cn] = Nd(Cn[K])
for any simplicial set K. We know that the comparison map

S −→ Ndτd(S) � Nd(Cn[Δ[m]]q) = Ω[Δ[m], Cn]q

is an inner anodyne extension: this follows by applying Corollary 3.8 to the left-hand square.
By applying Corollary 3.8 to the composed square (which makes sense because we assumed
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 749

τd(Uq) to be Σ-cofibrant), we obtain that the map

W −→ Ndτd(W ) � Ndτd(V )q

is an inner anodyne extension as well. We next observe that we have the pushout

S ��

��

W

��
Ω[Δ[m], Cn]q �� V̄q

from which we deduce that the map W −→ V̄q is an inner anodyne extension. Finally, the
commutative triangle

W



���������

��
V̄q

�� Ndτd(Vq)

shows that the map V̄q −→ Ndτd(Vq) is a weak equivalence.

Proposition 8.3. Let X be a preoperad. If X is tamely cofibrant (that is, if the map
∅ −→ X is a tame cofibration), then the unit map X −→ Ndτd(X) is a weak equivalence.

Proof. By the small object argument, we may assume that X is a retract of an object Y ,
such that Y =

⋃
Yi, where

∅ = Y0 ⊂ Y1 ⊂ · · · ⊂ Yi ⊂ · · · ⊂ Y, i ∈ I,

is a sequence of maps indexed by a well ordered set I with initial element 0, such that each of
the inclusions Y ′

i = lim−→j<i
Yj −→ Yi, i ∈ I, fits into a pushout of shape

Ai
��

ui

��

Y ′
i

��
Bi

�� Yi

where the map ui is a morphism of type (TC1), (TC2) or (TC3) (7.7), or an isomorphism.
Note that the functors τd and Nd both preserve small filtered colimits. As the class of weak
equivalences is closed under retracts and under filtered colimits (5.11), it is sufficient to prove
that the unit map Yi −→ Ndτd(Yi) is a weak equivalence for each i ∈ I. We do this by transfinite
induction. For i = 0, we have Y0 = ∅ and the map Y0 −→ Ndτd(Y0) is an isomorphism. It
remains to study the case where i > 0. Proposition 8.1 implies that, for any tamely cofibrant
preoperad W , the simplicial operad τd(W ) is cofibrant, whence Σ-cofibrant. We deduce from
Lemma 8.2 that the comparison map Yi 
Y ′

i
Ndτd(Y ′

i ) −→ Ndτd(Yi) is a weak equivalence.
Moreover, the map Y ′

i −→ Ndτd(Y ′
i ) is a weak equivalence, because it is a filtered colimit of

the weak equivalences Yj −→ Ndτd(Yj), j < i. As the model category of preoperads is left
proper, and as the map Y ′

i −→ Yi is a cofibration, the map Yi −→ Yi 
Y ′
i
Ndτd(Y ′

i ) is a weak
equivalence. It follows that the composed map Yi −→ Ndτd(Yi) is a weak equivalence as well,
thus completing the induction step and the proof.

 17538424, 2013, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jtopol/jtt006 by U
niversity O

f R
ochester, W

iley O
nline L

ibrary on [16/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



750 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Theorem 8.4. The functor τd : PreOper −→ sOper is a left-Quillen equivalence (where PreOper
is endowed with the tame model category structure (7.19)). Moreover, its right adjoint Nd :
sOper −→ PreOper preserves and detects weak equivalences.

Proof. By virtue of Proposition 8.1, the functor τd preserves cofibrations. Moreover, the
functor Nd preserves and detects weak equivalences: indeed the nerve of a simplicial operad is
a Segal operad, and a morphism of simplicial operads is fully faithful and essentially surjective
if and only if its nerve is fully faithful and essentially surjective. One deduces from this property
of the nerve and from Proposition 8.3 that the functor τd sends trivial cofibrations between
cofibrant objects to trivial cofibrations. In particular, it sends the class Ā into the class of
trivial cofibrations. This implies right away that the functor Nd sends fibrations between fibrant
objects to isofibrations between fibrant Segal operads, whence to fibrations (Theorem 7.19).
Therefore, the adjunction (τd, Nd) is a Quillen pair; see [15, Proposition 7.15]. Proposition 8.3
and the fact that the nerve functor Nd preserves and detects weak equivalences imply that this
is in fact a Quillen equivalence.

Remark 8.5. The category PreCat of (Segal) precategories studied by Bergner in [3] is
simply PreOper/η. Therefore, the two model structures on PreOper induce two (Quillen equivalent)
model category structures on PreCat. Similarly, the category sCat of simplicial categories can be
described as sCat = sOper/η. As both functors τd and Nd preserve the object η (which is fibrant
on both sides of the adjunction), the preceding theorem immediately implies:

Corollary 8.6 [3, Theorem 8.6]. The nerve adjunction

τ : PreCat � sCat : N

is a Quillen equivalence (where PreCat is endowed with the model category structure induced
by Theorem 7.19).

A reformulation of the proof of Proposition 8.3 gives the following result.

Theorem 8.7. Consider a pushout of simplicial operads

P
p ��

i

��

P′

i′

��
Q

q �� Q ′

in which the map i is a cofibration, while P and P′ are Σ-cofibrant. Then this square is homotopy
cocartesian. (In particular, if the map p is in addition a weak equivalence, then q is a weak
equivalence as well.)

Proof. Let H be the class of morphisms between Σ-cofibrant simplicial operads i : P −→ Q
such that, for any map p : P −→ P′, with P′ Σ-cofibrant, the pushout square

P
p ��

i

��

P′

i′

��
Q

q �� Q ′
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 751

is homotopy cocartesian, while i′ is a Σ-cofibration. Let us first check that the class H has the
following properties.

(a) For any Σ-cofibrant simplicial operad P, the map ∅ −→ P is in H.
(b) For any map i : P −→ Q in H and any morphism p : P −→ P′ with P′ Σ-cofibrant, the

morphism P′ −→ Q 
P P′ is in H.
(c) For any well-ordered set I with smallest element 0, and any functor P : I −→ sOper such

that, for any i ∈ I, the map lim−→j<i
Pj −→ Pi is in H, the map P0 −→ lim−→i∈I

Pi is in H.
(d) The class H is closed under retracts.

Property (a) reflects the fact that Σ-cofibrant simplicial operads are closed under small sums
as well as the stability of weak equivalences by small sums. Property (b) comes from the fact
that, for any two commutative squares of the following form in a model category

X ��

��

X ′ ��

��

X ′′

��
Y �� Y ′ �� Y ′′,

if the left-hand square and the composed square are homotopy cocartesian, then so is the
right-hand square. Property (c) comes from the fact that homotopy cocartesian squares are
closed under homotopy colimits, because, as weak equivalences of simplicial operads are closed
under filtering colimits (1.24), any filtered colimit of simplicial operads is weakly equivalent to
the corresponding homotopy colimit. Finally, property (d) expresses the stability of the classes
of Σ-cofibrations and of homotopy cocartesian squares under retracts. The conclusion of this
digression is that it is sufficient to prove the theorem in the case where the map i is of shape
(C1) or (C2) (cf. 1.15): indeed, it follows from the small object argument that any cofibration
between Σ-cofibrant simplicial operads is a retract of a transfinite composition of pushouts of
such morphisms. As the nerve functor Nd is a right-Quillen equivalence which preserves weak
equivalences (8.4), it is sufficient to prove that the commutative square

Nd(P)
Nd(p) ��

Nd(i)

��

Nd(P′)

Nd(i′)
��

Nd(Q)
Nd(q) �� Nd(Q ′)

is homotopy cocartesian in the model category of preoperads for which the cofibrations are the
tame cofibrations. The last assertion of Proposition 7.2 implies that Nd(i) is a map of shape
(TC1) or (TC2) (7.7), whence, in particular, a tame cofibration. As the model category of
preoperads is left proper (7.19), we see that Lemma 8.2 concludes the proof.

Corollary 8.8. For any Σ-cofibrant simplicial operad P, the model category sOper/P is
proper.

Proof. The property of right properness is already known (this comes from the right
properness of the model category of simplicial operads; see Theorem 1.14). As for left
properness, this immediately follows from the preceding theorem and from the fact that any
simplicial operad above a Σ-cofibrant simplicial operad is Σ-cofibrant.

Corollary 8.9. The model category of non-symmetric simplicial operads is proper.

Proof. This is the preceding corollary for P = Ass.
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752 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Corollary 8.10. The model category of simplicial categories is proper.

Proof. Apply Corollary 8.8 to P = η.

Corollary 8.11. Let E∞ be any Σ-cofibrant (for example, Sigma-cofibrant) simplicial
operad which is weakly equivalent to the terminal operad. Then the model category sOper/E∞
is proper, while the forgetful functor sOper/E∞ −→ sOper is a left-Quillen equivalence.

Proof. For any simplicial operad P, the projection E∞ × P −→ P is a weak equivalence,
which proves that the forgetful functor from sOper/E∞ −→ sOper is a left-Quillen equivalence.
We conclude again with Corollary 8.8.

Remark 8.12. We do not know if the model category of simplicial operads is left proper
or not, though.

8.13. The inclusion functor dSet ⊂ PreOper induces an equivalence of homotopy categories
(5.7)

Ho(dSet) � Ho(PreOper). (8.1)

On the other hand, we have the total right-derived functor of the homotopy coherent nerve
functor (4.9)

RhcN d : Ho(sOper) −→ Ho(dSet) (8.2)

as well as the functor induced by the nerve functor (8.4)

Nd : Ho(sOper) −→ Ho(PreOper) (8.3)

(we do not need to derive the functor Nd because it preserves weak equivalences on the nose).

Theorem 8.14. The composition of the nerve functor (8.3) with the equivalence (8.1) is
canonically isomorphic to the derived homotopy coherent nerve (8.2). In particular, the total
right-derived functor of the homotopy coherent nerve functor is an equivalence of categories.

Proof. For any fibrant simplicial operad P and any tree T , as Nd is a right-Quillen functor,
we have

Map(Ω[T ], Nd(P)) = Map(T,P)

(because τd(Ω[T ]) = T ) and, similarly, as hcN d is a right-Quillen functor, we have

Map(Ω[T ], hcN d(P)) = Map(W!(T ),P).

The natural weak equivalence W!(T ) −→ T between cofibrant objects thus gives a functorial
homotopy equivalence between Kan complexes

Map(Ω[T ], Nd(P)) −→ Map(Ω[T ], hcN d(P)).

Properties (iii) and (v) of Theorem 5.9 give that Nd(P) and hcN d(P) are naturally isomorphic
in Ho(sdSet). Property (iv) of Theorem 5.9 implies then that they are canonically isomorphic
in Ho(PreOper). The last assertion follows from Theorem 8.4.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 753

Proposition 4.9 and the preceding theorem, put together, give:

Theorem 8.15. The adjunction W! : dSet � sOper : hcN d is a Quillen equivalence.

Both the homotopy coherent nerve functor hcN d and its left adjoint W! preserve the object
η, which is fibrant (on both sides of the adjunction). Therefore, under the identifications sSet =
dSet/η and sCat = sOper/η, we also get the following comparison result, originally due to Joyal
and Lurie:

Corollary 8.16 [16, Theorem 2.2.5.1]. The homotopy coherent nerve adjunction

W! : sSet � sCat : hcN

is a Quillen equivalence (where the category sSet is endowed with the Joyal model structure).

9. Classical operads and reduced ∞-operads

9.1. We write dSet∗ for the full subcategory of the category dSet of dendroidal sets whose
objects are the presheaves X on Ω such that Xη is the set with one element. The objects of
dSet∗ are called reduced dendroidal sets.

The obvious forgetful functor

dSet∗ −→ η/dSet (9.1)

has a right adjoint

r : η/dSet −→ dSet∗ (9.2)

defined as follows: if X is a dendroidal set with a given objects x ∈ Xη then r(X) is the
dendroidal subcomplex of X whose dendrices are obtained by the following pullbacks, for any
tree T ,

r(X)T
��

��

XT

��
∗ (x,...,x) �� XE(T )

η

(9.3)

where ∗ denotes the set with one element, while E(T ) is the set of all edges of the tree T , and
the right-vertical map is the obvious evaluation map.

Remark that, as the functor (9.1) is fully faithful and commutes with colimits as well as with
limits. The category dSet∗ is also an accessible subcategory of η/dSet.

Proposition 9.2. If X is an ∞-operad with a distinguished object x, the reduced
dendroidal set r(X) is an ∞-operad.

Proof. This immediately follows from the fact that, for any tree T with a given edge e, the
inclusion Λe[T ] −→ Ω[T ] is bijective on objects.

Proposition 9.3. There is functorial inner anodyne extension X −→ R(X) which is
bijective on objects and such that R(X) is an ∞-operad.
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754 DENIS-CHARLES CISINSKI AND IEKE MOERDIJK

Proof. This resolution functor is obtained by applying the small object argument to the
set of inner horn inclusions. The fact that this does not affect objects again comes from the
fact that inner horn inclusions are all bijective on objects.

Proposition 9.4. The category dSet∗ of reduced dendroidal sets is endowed with a model
category structure whose weak equivalences (cofibrations) are the morphisms which are weak
equivalences (normal monomorphisms) in the category dSet. The fibrant objects of this model
category are precisely the reduced dendroidal sets which are also ∞-operads.

Proof. We will prove the existence of this model category structure using again Jeff Smith’s
theorem [1]. Note that, as the classes of weak equivalences and of cofibrations are detected by
the forgetful functor (9.1), it is clear that the class of trivial cofibrations is saturated. The class
of normal monomorphisms in dSet∗ is generated by the class of maps ρ(∂Ω[T ]) −→ ρ(Ω[T ]) for
any tree T with at least one vertex, where ρ denotes the left adjoint of the inclusion dSet∗ ⊂ dSet:
for a dendroidal set X, we have a pushout of the following shape:

∐
Xη

η ��

��

X

��
η �� ρ(X).

We see from this description that a morphism of dSet∗ has the right-lifting property with respect
to normal monomorphisms in dSet∗ if and only if it has this property in the whole category dSet.
In particular, such a morphism is a weak equivalence. This achieves the proof of the existence
of the model structure.

Let us prove that the fibrant objects are the reduced ∞-operads. It is clear that any reduced
∞-operad is fibrant. For the converse, if X is a fibrant object, we have, by Proposition 9.3 an
inner anodyne extension X −→ R(X) in dSet∗ with R(X) an ∞-operad. This implies that X is
a retract of R(X) in dSet∗, whence is an ∞-operad.

Proposition 9.5. The forgetful functor dSet∗ −→ η/dSet induces a fully faithful functor
Ho(dSet∗) −→ Ho(η/dSet).

Proof. The inclusion of dSet∗ into η/dSet is a fully faithful left-Quillen functor which preserves
weak equivalences, cofibrations, as well as fibrant objects. This immediately implies that the
induced functor Ho(dSet∗) −→ Ho(η/dSet) is fully faithful.

Remark 9.6. The forgetful functor Ho(dSet∗) −→ Ho(dSet) is easily seen to be full and
conservative; in particular, two reduced dendroidal sets are isomorphic in Ho(dSet∗) if and only
if they are isomorphic in Ho(dSet). However, this functor is not faithful. For instance, one can
consider two groups G and H, seen as categories with one object. Maps from i!N(G) to i!N(H)
in Ho(dSet∗) are just homomorphisms of groups G −→ H, but the set of maps from i!N(G)
to i!N(H) in Ho(dSet) is the set of homotopy classes of maps between the classifying spaces
BG −→ BH: we know from Hurewicz that this is the quotient of the set of homomorphisms
G −→ H by the action of the group of inner automorphisms of H.
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DENDROIDAL SETS AND SIMPLICIAL OPERADS 755

9.7. We write sOper∗ for the category of simplicial operads with a single object. The objects
of sOper∗ will be called the classical operads. This category is endowed with a model category
structure provided by Theorem 1.7.

As both functors W! and hcN d do not affect the sets of objects, they restrict to an adjunction

W! : dSet∗ � sOper∗ : hcN d. (9.4)

Proposition 9.8. The adjunction (9.4) is a Quillen equivalence.

Proof. This immediately follows from Theorem 8.16.

Remark 9.9. By slicing over η, the adjunction (9.4) restricts to a Quillen equivalence
between the model category of simplicial monoids and the model category of reduced simplicial
sets (whose fibrant objects are the ∞-categories with a single object).

Remark 9.10. Similar results hold for the homotopy theory of dendroidal sets with a fixed
set of objects C, which is Quillen equivalent to the category of simplicial operads with the same
fixed set of objects. There are also variations with Segal operads, and so on. We leave these as
exercises for the interested readers.
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