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THE ALGEBRAIC K-THEORY OF GREEN FUNCTORS

DAVID CHAN AND NOAH WISDOM

ABSTRACT. In this paper we develop computational tools to study the higher algebraic K-theory of
Green functors. We construct a spectral sequence converging to the algebraic G-theory of any G-
Green functor, for G a cyclic p-group. From the spectral sequence we deduce a complete calculation
of the algebraic K-theory of the constant C>-Green functor associated to the field with two elements,
and a calculation of the p-completion of the algebraic K-theory of the constant G-Green functor
associated to the integers when G is a cyclic p-group. Additionally, we introduce the notion of a
Green meadow to abstract the Green functor structure underlying clarified Tambara fields, and
show, under mild conditions, that every finitely generated projective module over a G-Green meadow
is free when G is a cyclic p-group. This gives a computation of Ky for such Green functors.
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1. INTRODUCTION

In this paper we develop computational tools for the algebraic K-theory of certain generalizations
of rings, called Green functors, which play a prominent role in equivariant stable homotopy theory
and representation theory. The notion of a Green functor was introduced by Dress and axiomatizes
the fundamental operations of induction, restriction, conjugation, and tensor product [Dre73]. The
connection to stable homotopy theory comes from the fact that Green functors arise naturally as
the coefficients of multiplicative (Bredon) equivariant cohomology theories. Said another way, the
zeroth homotopy groups of an equivariant ring spectrum organize into a Green functor.

Just like ordinary rings, Green functors have a notion of module, and we can seek to understand
and compare different Green functors by looking at their categories of modules. For instance, a
natural question to ask is when two Green functors have equivalent categories of modules; that is,
when are they Morita equivalent? A highly successful framework for studying questions like this in
the context of ordinary rings is algebraic K-theory, and the work in this paper extends these ideas
to the study of Green functors.

Let G be a finite group, and let R be a Green functor for the group G. In some nice cases, we
can make sense of whether or not the integer |G| is a unit for R. In the case that |G| is invertible,
Maschke’s theorem implies that the category of R-modules is equivalent to a product of module
categories over certain group rings. This splitting is often called the Greenlees—May splitting,
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as the first result of this kind appears in [GM95]; see [BDM24] for the general case. It follows
that the algebraic K-theory of R is completely understood, as least insofar as we understand the
algebraic K-theory of group rings. There are several examples in the literature [TW95, Gre92] of
classifications of projective R-modules for certain G-Green functors R in which |G| is not invertible.
These computations lead naturally to computations of the zeroth algebraic K-groups of these Green
functors. When |G| is not invertible in R, the authors are not aware of any computations of the
higher algebraic K-groups for R. Our first main result gives a complete computation for Fo, the
constant Cy-Green functor at the field with two elements.

Theorem A. Let Fy denote the constant Co-Green functor on the field Fo. There is an isomorphism
in the stable homotopy category
K(Fy) = K(Fy) v K(Fy).

The algebraic K-groups of Fy were computed by Quillen in [Qui72], thus we have the following
computation of the K-groups:

7,92 n=>0
Kn(F2) 2 (Z/(20 —1)%2 n=2i-1
0 else.

The Green functor [F3 plays the role of mod 2 coefficients in genuine equivariant cohomology theories
and is perhaps the most commonly used coefficient ring in equivariant homotopy theory. For
applications and more discussion see [DHM24, May20, Haz21, BW18, HW20, Pet24].

Just as 3 is used for the study of mod 2 cohomology, the role of integral coefficients is often
played by a Green functor we denote by Z. Our next main result gives a comparison between the
algebraic K-theory of Z and the algebraic G-theory of a group ring.

Theorem B (Theorem 6.8). Let p > 0 be prime, n > 1, and let G = Cpyn be the cyclic group of
order p". There is a map of spectra

K(Z) = G(Z[Cpr])

which becomes an equivalence
59K (Z)}) = 759G(Z[Cpn]);)
upon p-completing and taking 2-connective covers.

For a Noetherian ring R, the G-theory spectrum G(R) is the algebraic K-theory of the abelian
category of finitely generated left R-modules. When R = Z[Cp»], a theorem of Webb gives a
decomposition of the groups G, (Z[G]) in terms of the K-theory of certain localizations of rings of
integers [Web88, (0.3)]. For instance, if we work over the group G = C,, there are isomorphisms

Gn(ZICy]) = Ki(Z) @ Ki(Z[Gp,p™])

where ¢, is a primitive p-th root of unity. When i is odd, these groups are entirely known (see
[Wei05, Theorem 1]), hence the p-completion of K;(Z) is completely computed for odd ¢ > 2.

We note that the category of Z-modules is equivalent to the category of cohomological Mackey
functors, which have been studied extensively in representation theory. In [Yos83], Yoshida proves
that the category of cohomological G-Mackey functors is equivalent to the category of modules over
the Hecke algebra

H(G) = Endyq (@ Z[G/H]) .
HCG
From this perspective, all of our results on the G-theory and K-theory of Green functors of the form
Z are also results on the relevant Hecke algebras. There are also connections between cohomological
Mackey functors and Artin motives; see [BG23] for details.
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Finally, we note that the results above can be viewed as the computations of the algebraic
K-theory of certain genuine equivariant G-ring spectra. Indeed, any Green functor R determines
an KEilenberg MacLane spectrum H R, and the algebraic K-theory of R and H R agree, essentially
by the results of [DS04]. The algebraic K-theory of equivariant ring spectra has seen significant
recent interest and our results give some of the first explicit computations [EH23, CHLL24, MM19].
To make this claim precise, in [EH23, §4.3], it is shown that there is a genuine G-spectrum Kg(E)
for any genuine G-ring spectrum E. In the case where F = HR for a Green functor R, there is an
equivalence of spectra K (R) ~ Kq(HR)®, where the latter is the (genuine) G-fixed points of the
G-spectrum Kg(HR). We note that K¢ is not the same as the equivariant K-theory construction
considered by Merling and Barwick [Merl7, Barl7].

Methods. The K-theory computations above are achieved by performing computations of G-theory
groups and then relating them to algebraic K-groups. Explicitly, a theorem of Dugger—Hazel-May
shows that that the category of Fo-modules has finite global projective dimension, meaning that
every Fp-module has a finite projective resolution [DHM24]. Applying Quillen’s resolution theorem
then shows K (F2) ~ G(F2). A theorem of Arnold [Arn81] (see also [BSW17]) shows that Z also has
finite global projective dimension.

Thus the K-theory computations above are the result of computations in algebraic G-theory
which apply more generally. Our main tool is a spectral sequence with input given by the G-theory
of certain twisted group rings.

Theorem C (Corollary 5.14). Let R be a module-Noetherian Cyn-Green functor. There is a strongly
convergent spectral sequence with signature

E;,t = GS(Rt) = GS(R)

where Ry is a ring, depending on t, defined explicitly from the data of R. The spectral sequence
collapses at the E,41 page.

The spectral sequence is derived from a filtration, analogous to the isotropy filtration of a G-space,
on the category of modules over the Green functor R. We note that the idea to use isotropy to filter
R-modules is far from new; see, for instance, [AMGR24, GM95, BDal7], among many others.

The usability of the spectral sequence arising from this filtration is a consequence of the identifi-
cation of Ei-page. Moreover, we are able to identify conditions, satisfied in many cases of interest,
under which the spectral sequence collapses at the F1-page. Under these conditions we prove that
in the filtration defining our spectral sequence, each map between filtered pieces is a summand
inclusion, so that all extension problems are trivial. This induces a splitting of G-theory spectra
which we call the Greenlees—May splitting.

Theorem D (Theorem 5.19). Let R be a Green functor. Under certain technical conditions we
have an equivalence

G(R) ~ D G(R,)
t=0
of G-theory spectra, where Ry is a certain ring determined by R.

Remark 1.1. The Burnside Green functor mentioned in the previous theorem is the unit for
the category of G-Mackey functors, a generalization of G-modules which are to Green functors as
abelian groups are to rings. In the case of the Burnside ring the Greenlees—-May splitting implied by
Theorem D is

G(Macke,,.) ~ ) G(Z[C,)).
=0

Passing to mp and setting n = 1 above, we recover a result of Greenlees [Gre92].
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Greenlees also proves a similar splitting for the K-theory of Cp-Mackey functors and it is natural
to wonder whether or not such a splitting might hold for the K-theory of Cy»-Mackey functors for
n > 1. We are unable to establish this result. We note, however, that the conditions on a Green
functor R from Theorem D are insufficient to produce a splitting of the form in Theorem D with
K-theory in place of G-theory. Indeed, such a splitting would be in conflict with the computation
of K(F3) above.

In the course of constructing the spectral sequence for G-theory we prove some results about
the category of modules over a certain Cpn-Green functor which should be of interest. Originally
motivated by field-like Tambara functors, our arguments more naturally applied to the following
class of Green functors.

Definition 1.2. If k is a Green functor such that each k(G/H) is a field, we call k a Green meadow.

We note that the class of Green meadows is distinct from the class of Mackey fields. Importantly,
the constant G-Green functor Fy is a Green meadow, but not a Mackey field unless 2 is coprime to
|G|

If k is a Green meadow, then the Green functor structure maps make k(G/H) into a vector space
over k(G/G). If the dimension of k(G/H) over k(G/G) is finite, we say that k is relatively finite
dimensional. This is a special case of a more general definition for Green functors, see Definition 3.30.

Theorem E (Theorem 4.7). Let k be a relatively finite dimensional Cyn-Green meadow. A k-module
1s projective if and only if it is free.

We are able to remove the relatively finite dimensional assumption in special cases, so it does not
seem that this is an essential assumption, although it simplifies arguments tremendously.

Remark 1.3. The class of Green meadows also includes the class of clarified Tambara fields
considered in [Wis25b]. In conjunction with [Wis25b, Theorem 1.2], [Wis25a, Corollary B, we note
that Theorem E applies to every relatively finite dimensional Tambara field, even those which are
not clarified (using [Wis25a, Proposition 5.7] and the fact that induction preserves free modules).
In fact, most of our results on modules over Green meadows also apply to modules over Tambara
fields straightforwardly via the results of [Wis25b, Wis25a,

The term “free” needs to be contextualized. The free modules over a Green functor are not
graded on the integers, but rather on finite G-sets. Importantly, if X and Y are two G-sets with
the same cardinality but non-isomorphic G-actions, then the free modules on X and Y may or may
not be isomorphic

A corollary of Theorem E is that free modules give a set of generators for the algebraic Ky-group
of a Green meadow k. In particular, there is a surjective ring homomorphism A(Cyn) — Ko(k),
where A(Cpn) is the Burnside ring of virtual finite Cpn-sets. In certain cases we compute the kernel
of this map, hence compute Ky(k).

Theorem F. Let L be a field with action by the group Cyn, and let k be the fized point Cpyn-
Green functor associated to L. The kernel of the surjection A(Cyn) — Ko(k) is given explicitly in
Corollary 3.20.

Organization: The paper is organized as follows. In Section 2 we review the requisite background
on Green functors. In Section 3 we review some material about modules over Green functors and
give a careful analysis of free modules over certain Cp»-Green functors. This section also contains
some technical discussion of Noetherian conditions on Green functors and faithfully flat base change.
In Section 4 we prove Theorems E and F. In Section 5 we construct the G-theory spectral sequence
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of Theorem C and prove Theorem D. Finally, the computations of Theorems A and B are given in
Section 6.
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2. REVIEW OF EQUIVARIANT ALGEBRA

This section contains background material on Mackey and Green functors.

2.1. Mackey functors. We being by recalling the definition of Mackey functors. For a more
thorough introduction to this topic the reader is recommended to [TW95]. Let G be a finite group.

Definition 2.1 (cf. [TW95, §2]). A G-Mackey functor M consists of the following data.

(1) for each subgroup H C G, an abelian group M(G/H),

(2) for each g € G, an isomorphism c¢,: M(G/H) — M(G/(gHg™!)) which is the identity if
g € H, and such that ¢y, =c40¢y

(3) for a subgroup inclusion K C H, a restriction morphism Res: M(G/H) — M(G/K), such
that Reszgz jcg = c,Rest,

(4) for a subgroup inclusion K C H, a transfer morphism Tri: M(G/K) — M(G/H), such
that Trzgz:icg = ¢, v,

(5) for any chain of subgroups L < H < K then Res¥ = Res o Res®t and Tr = TvlS o Tv¥,

(6) restrictions and transfers satisfy the double coset formula:

Hrm H L K
Resy Tr = Z Tryngrg-1cgReS 1 g
geL\H/K
A morphism of Mackey functors f: M — N consists of a collection of group homomorphisms
fa/p: M(G/H) — N(G/H) which commute with transfers, restrictions, and conjugations. We
write Mack® for the category of G-Mackey functors.

Remark 2.2. If g € Ng(H), the normalizer of H < G, then ¢,: M(G/H) — M(G/H) gives an
action of Ng(H) on M(G/H). By condition (2) in the definition this descends to action of the Weyl
group Wa(H) = Ng(H)/H on M(G/H) for all H < G. When the group G is abelian, as it usually
is in this paper, the Weyl group actions specify all the conjugation data in a G-Mackey functor.

Remark 2.3. A Mackey functor can also be defined as a product preserving functor T': B — Set
where B is the Burnside category. This observation is originally due to Lindner [Lin76]. The
Burnside category has objects given by all finite G-sets and products given by disjoint union. In
some places we will evaluate a Mackey functor at a finite G-set X which is not transitive. Implicitly,
one should pick an isomorphism X = I ;G/H; which induces an isomorphism

M(X)g@M(G/Hi)

for any Mackey functor M.
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Mackey functors were originally defined by Dress [Dre73] to axiomatize the type of structure
found in representation rings. One can think of the restriction morphisms as “forgetting” a K-action
to an H-action and the transfer morphisms as a form of induction.

We consider some examples.

Example 2.4. Given any G-action on an abelian group M, we may define the fixed-point Mackey
functor FP(M) by FP(M)(G/H) = M*". The restriction, transfer, and conjugation data is given
by the following;:

(1) if K < H the restriction map Rest: M — MX is given by the inclusion of fixed point
sets,
(2) if K < H the transfer map Trit: MK — M is defined on z € M¥ by

Tri(z) = Z v T,

yeH/K

(3) if g € G the conjugation isomorphism c,: MH — M 9H9™" is the isomorphism given by
T g
In particular, given any abelian group C', we may give it the trivial G-action and the resulting
Mackey functor C is called the constant Mackey functor associated to N. Since the group action is
trivial, we have C(G/H) = C, and the transfer map associated to K C H is just multiplication by
|H/K]|. The restriction and conjugation maps are all identities.

Example 2.5. The analogue of the integers in the category of Mackey functors is the Burnside
Mackey functor Ag. 1t is specified by sending G/H to the Grothendieck group completion of the
commutative monoid of isomorphism classes of finite H-sets (with respect to disjoint union). For
K C H C G, the restriction map is induced by restricting an H-set to a K-set, and the transfer is
induced by the induction from a K-set to an H-set, that is, X — H X x X. The conjugation maps
are defined by identifying H-sets and (gHg !)-sets for H < G and g € G.

Example 2.6. For any field F, the assignment sending G/H to the representation ring of H over F
forms a Mackey functor RUp. Restrictions and transfers are defined via restriction and induction of
representations. Additionally, the functor sending an H-set X to the F-vector space with basis X
and H-action obtained by permuting elements of the basis defines a morphism from the Burnside
Mackey functor to this F-representation ring Mackey functor.

When G = (), we pictorially represent a Cj,-Mackey functor M via a Lewis diagram:
M(Cp/Cyp)
(]
M(Cyp/e)

U

g

where o is the action by a chosen generator for Cp, t is the only non-identity transfer, and r is the
only non-identity restriction.
For instance, if M is an abelian group, the constant Mackey functor associated to M has the

Lewis diagram
M
D C JridM

M
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where we omit the arrow o since the action is trivial.

Example 2.7. The Burnside Mackey functor Ac, for the group G' = C), has the Lewis diagram
Z2
(]
Z
where r(x,y) = x + py and t(z) = (0, z).

We now recall a bit more about the structure of the category of Mackey functors.

Proposition 2.8 (cf. [TW95, Proposition 3.1]). The category of G-Mackey functors is an abelian
category with enough projectives.

Proof. The category of G-Mackey functors is equivalent to the category of left modules over a certain
ring, called the Mackey algebra, hence is abelian with enough projectives. (|

The category of Mackey functors has a symmetric monoidal product X, called the box product,
for which the unit is the Burnside Mackey functor. The box product is constructed using Day
convolution. There is a convenient reformulation of morphisms out of a box product, called a Dress
PaAITINgG.

Proposition 2.9 ([Shul0, Lemma 2.17]). The Mackey functor M & N is characterized by the
following universal property. A map M RN — L is precisely the data of a Dress pairing: for each
H C G, an abelian group homomorphism frg: M(G/H)® N(G/H) — L(G/H), satisfying

(1) ResB o fir = fx o (Resg ® Resg),

(2) for any g € G we have cgo fg = fymg—1 0 (cg @ cy),

(3) Trfy o fm o (id ® Resfy) = fx o (Trfy ®id), and

(4) Trly o fur o (Resly ®1d) = fx o (id ® Trky).
2.2. Green functors. In this section we recall the definition of Green functors, which are analogous
to rings.

Definition 2.10. A (commutative) Green functor is a commutative monoid in the symmetric
monoidal category (MackG, X, Ag).

Remark 2.11. Of course, one could consider Green functors which are not commutative, but we
will not make use of these in this paper.

A Green functor is a Mackey functor R together with a multiplication map p: RX R — R and a
unit map 7: Ag — R satisfying the usual associativity, commutativity, and unitality diagrams. By
Proposition 2.9, the map p is equivalent to a collection of group homomorphisms

pr: R(G/H) ® R(G/H) — R(G/H)

subjects to compatibility with restriction, conjugation, and transfer. We unpack the data of a Green
functor in the following lemma, which is just a specialization of Proposition 2.9.

Lemma 2.12. A Green functor consists of a Mackey functor R together with choices of commutative
ring structures on R(G/H) for all H < G subject to the following conditions:

(1) the restriction and conjugation maps are ring homomorphisms,
(2) the transfer map satisfies the Frobenius reciprocity relations:

Trfi(2) -y = Tefy (2 - Respy(y)) and @ Trfj(y) = Trig(Res (x) - y)

whenever these make sense.
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Note, in particular, that the rings R(G/H) have an action by the Weyl groups Wg(H) =
N¢g(H)/H through ring automorphisms.

Remark 2.13. If R is a Green functor then for any H < K we have a ring map Res’ : R(G/K) —
R(G/H) which turns R(G/H) into an R(G/K)-bimodule via restriction of scalars. The Frobenius
reciprocity formulas amount to the statement that the transfer map

Tr8: R(G/H) — R(G/K)
is a map of R(G/K)-bimodules.

A (left) module over a Green functor R is a Mackey functor M together with a unital and
associative map a: RX M — M. Again, we can unpack this definition using Proposition 2.9.

Lemma 2.14. A module over a Green functor R consists of a Mackey functor M together with
choices of module structure maps R(G/H) ® M(G/H) — M(G/H) for all H < G, subject to the
compatibility conditions:

(1) for any H < K we have Resk (rm) = Res® (r) - Res’ (m),

(2) for any H < G and g € G we have cy(rm) = cq(r)cq(m),

(3) Frobenius reciprocity relations, identical to those in Lemma 2.12, hold.

For a subgroup H < G, condition (2) of Lemma 2.14 tells us the action of the Weyl group W (H)
on M(G/H) is nicely compatible with the action of W (H) on R(G/H). It is worth emphasizing
that the action of Wg(H) on M(G/H) is not R(G/H)-linear. Instead, for any w € WgH we
have w(rm) = w(r)w(m), which is sometimes referred to as a semi-linear action. The category of
R-modules with Wg(H)-semilinear action admits a nice reformulation which we now recall.

Definition 2.15. For a group W acting on a ring R through a group homomorphism 6: W —
Aut(R), the twisted group ring of R by W, denoted Ry[W], is the ring with the same underlying
abelian group as the ordinary group ring R[W], but with multiplication given by

(riwy) - (rowsa) = r1(0(w1)(r2))wiwa.

When it is clear from context we will omit the 6 from the above formula and write wy - ro.

If 0 is the trivial action then the twisted group ring is just the ordinary group ring. For any 6
there is a ring map R — Ry[W] which turns Ry[WW] into an associative R-algebra.

Proposition 2.16 (cf. [Merl7, Observation 4.3]). For an R-module M the following are equivalent:

(1) M has semilinear W -action.
(2) M is a module over Ry|[W| with R-module structure coming from restriction of scalars.

Corollary 2.17. If R is a Green functor and M is a module over R, then for all H < G, M(G/H)
is a module over the twisted group ring R(G/H)g[Wa(H)].

As an application, we see that fixed point Mackey functors give another good class of examples
of modules.

Lemma 2.18. Let k be a Green functor. If M is a k(G/e)g|G]-module, then FP(M) is naturally a
k-module.

Proof. First we show FP(M) is naturally a module over R = FP(k(G/e)). The functor FP is right
adjoint to evaluation at G/e, M — M(G/e), which is strong symmetric monoidal with respect to
the box product. Note that the ring structure on the additive group underlying k(G/e) makes
it into a monoid for the tensor product of abelian groups with G-action, and a module over this
monoid is precisely a semilinear G-action on a k(G/e)-module.
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Thus FP is lax symmetric monoidal and sends k(G/e)g[G]-modules to R-modules, so that M is
an R-module. Now there is an adjunction unit k¥ — R, and we may view FP(M) as a k-module by
restricting the R-module structure along this map. ([l

We end this section we several examples of Green functors.

Example 2.19. The representation Mackey functor RUp of Example 2.6 is a Green functor. The
multiplicative structure is obtained via tensor product of representations.

Example 2.20. Let F' C L be a finite Galois extension with Galois group G. For any H < G we
write L for the fixed field. The assignment G/H + L is a Green functor with restriction given
by inclusion of fixed fields, transfer given by the Galois trace. We denote this Green functor by
FP(L). Note that this example can be extended to any ring R with an action by a finite group G
through ring automorphisms.

Example 2.21. For a finite group K we write H*(K) for group cohomology of K with integral
coefficients. We write H®*"(K) for

[e.e]
Heven(K) — @ ]‘{271(];(;2)7
n=1
the ring of even cohomology groups. Since even cohomology classes actually commute (not just up
to sign), this is a commutative ring and the assignment G/K +— H*"(K) is a Green functor. The
restriction and transfer maps are given by restriction and transfer in group cohomology.

Example 2.22. For a finite group G, let E be an E, ring in genuine G-spectra. For any H < G
we write E'! for the (genuine) fixed points of E. Then the assignment G/H s mo(EH) assembles
into a Green functor. For generally, the RO(G)-graded homotopy groups of E assembnle into an
RO(G)-graded Green functor.

2.3. Restriction and induction. Let G be a finite group and H < G a subgroup. Let Set® and
Set? denote the categories of finite G and H-sets, respectively. The forgetful functor resg: Set® —
Set” has a left adjoint ind%: Set? — Set® which is defined on objects by X — G x g X.

Definition 2.23. For a G-Mackey functor M, the restriction of M to H is the Tambara (resp.
Mackey) functor Res% (M) defined by
Res§ (M)(H/K) = M(G x i (H/K)) = M(G/K)
with functoriality on morphisms given by evaluating M on induced morphisms.
The restriction functors are strong monoidal.

Lemma 2.24 (cf. [Cha24, Lemma 6.6]). The restriction functor is strong monoidal with respect to
the box product of Mackey functors.

The restriction functor has both a left and right adjoint and they are, in fact, the same functor.

Definition 2.25. Let H < G be finite groups. For an H-Mackey functor M the induction of M to
G is the G-Mackey functor Ind$% (M) defined by

Ind% (M) (X) = M(res% (X)).

That is, Ind% (M) = M o res$ where res% is the induced functor on the Burnside categories.

Proposition 2.26 ([TW95, page 1871]). Induction of Mackey functors is both a left and right
adjoint to restriction.



10 D. CHAN AND N. WISDOM

Corollary 2.27. The induction functor is lax monoidal.
Proof. The right adjoint of a strong monoidal functor is lax monoidal. O

Corollary 2.28. If R is an H-Green functor then Indg(R) is a G-Green functor. Moreover, if M
is a module over R then Ind% (M) is a module over Ind$ (R).

Remark 2.29. By an unfortunate coincidence of terminology, the Green functor structure on
Ind%(R) is most often referred to as the coinduction of R. As we will only need the Green functor
structure on Inng in a few relatively unimportant situations, we will avoid discussion of coinduction
further (although see [Wis25a] for a discussion of the relationship between coinduction, modules,
and algebraic K-theory).

3. MORE ON MODULES OVER GREEN FUNCTORS

In this section we gather together some results concerning modules over Green functors.

3.1. Base change functors. Recall the characterization of modules over a Green functor given in
Lemma 2.14. Note that a morphism of R-modules is, by this description, a morphism M — N of
Mackey functors such that each M(G/H) — N(G/H) is a morphism of R(G/H )-modules.

Lemma 3.1. Induction and restriction define functors

(Res% R)-Mod = R-Mod
which are each other’s left and right adjoints.
Proof. The lemma, follows from the fact that Res$ and Ind%, as functors on all Mackey functors,
are left and right adjoint to one another and Resg is strong monoidal. In particular, the claim is
a consequence of the projection formula from the Grothendieck context in the sense of [FHMO3,

Definition 4.13(ii)]
U

We now describe the base change adjunction. To begin, we will need a relative tensor product for
modules over a Green functor.

Definition 3.2. Let R be a Green functor and let M and N be two R-modules. We define their
box product relative to R by
M®pr N :=Coeq( MRXRXN = MKXN)
where the two maps are those describing the R-module structure on M and N respectively.
When it is clear, we will omit the subscript R from the notation. The relative box product
over R admits a universal property, also described by a Dress pairing. Namely, aa R-module
map out of M Xpr N is precisely the data of, for each H C G, R(G/H)-module maps out of

M(G/H) @gr(a/m) N(G/H), which satisfy the three relations of Proposition 2.9.
Note that, just as for rings, if R — S is a map of Green functors, then S is naturally an R-module.

Proposition 3.3. Let f: R — S be a morphism of Green functors. The functor
S™®pr —: R-Mod — S-Mod
is left adjoint to restriction of scalars
f*: S-Mod — R-Mod.

We end this subsection with a brief discussion of Morita equivalences which will appear later in
the paper.
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Definition 3.4. Consider a G-Green functor R and a G’-Green functor S. We say that R and S
are Morita equivalent if the category of R-modules is equivalent to the category of S-modules.

We emphasize that G need not be equal to G’ here. For example, Corollary 5.31 gives some
examples where G is arbitrary and G’ is the trivial group.

Remark 3.5. A result of Theévenaz and Webb (see [TW95]) says that the category of Mackey
functors admits a natural description as the category of left modules for an associative ring called
the Mackey algebra. Viewing the Mackey algebra as a non-commutative e-Green functor, this may
be interpreted as a Morita equivalence statement. Similarly, if R is any G-Green functor, then there
is an associative, unital ring ur whose category of left modules is equivalent to R-modules.

If S is a G’-Green functor and pug is the associated Mackey algebra, then R is Morita equivalent
to S if and only if upg is Morita equivalent to pug by the usual meaning of Morita equivalence for
associative rings. In particular, any Morita equivalence between R and S is automatically additive.

3.2. Free modules. In this subsection we discuss free modules over Green functors and give some
of their basic properties. We carefully examine free modules over Green meadows in the next
subsection.

Lemma 3.6. Let L be a left adjoint to R, both functors between abelian categories. If L is exact,
then R preserves injective objects. Dually, if R is exact, then L preserves projective objects.

Proof. Assume [ is injective. Then Hom(—, R(I)) = Hom(L(—), I) is exact. Hence R(I) is injective.
The dual result is similar. O

Corollary 3.7. Let R be a Green functor. Induction
(Res% R)-Mod — R-Mod

and restriction
R-Mod — (Res% R)-Mod

preserve projective and injective objects.

Proof. Note that the target and domain categories are abelian, so by Lemmas 3.1 and 3.6 it suffices
to show both functors are exact. This follows from the fact that restriction and induction are each
other’s adjoints, hence each preserves kernels and cokernels. U

Definition 3.8. Let R be any Green functor. The free R-module in level G/H is the R-module F’
which represents the functor M — M(G/H) from R-modules to sets.

A routine application of the Yoneda lemma yields the following useful proposition.
Proposition 3.9. The free R-module in level G/H exists. It may equivalently described as either
(1) Ind%ResG R with R-module structure induced by the unit map
R — Ind§Res% R.
(2) RX Agr, where Ag/g = Ba(G/H,—) is the free Mackey functor in level G/H.
Definition 3.10. Let R be a Green functor. We say that a module is free if it is isomorphic to a

direct sum of free modules at level G/H; for some subgroups H; < G. We say a module is finite free
if this direct sum is finite. A module is finitely generated if it is a quotient of a finite free module.

Lemma 3.11. Let R be any Green functor. Every free R-module is projective. Moreover, the finitely
generated projective R-modules are precisely those which are retracts of direct sums of finitely many
free modules.
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Proof. Let F be the free R-module in level G/H. Then we have Modg(F, M) = M(G/H). Since
exactness is checked levelwise, F' is projective. The latter claim follows from the fact that if P is
finitely generated then the surjection F' — P from a finite free module F' splits. 0

We now derive several useful consequences of Proposition 3.9.

Proposition 3.12. Let R be a Green functor for which all restrictions in R are injective. If P is
any projective R-module, then all restrictions in P are injective.

Proof. Since every projective module is a summand, a fortiori a submodule, of a free module, it
suffices to establish the result for free R-modules. Now Resg and Indg preserve the property of all
restrictions being injective, so the result follows from Proposition 3.9. (|

Corollary 3.13. Let Fig/p be a free R-module at level G/H. For any subgroup K < G we have an
isomorphism of R(G/H )-modules

Fon(G/K)= @ R(G/(KNy ' Hy))
yeH\G/K
Proof. By the isomorphism Fg /gy = InngeS%(R) and the definition of induction and restriction

we have
Fo/n(G/K) = IndGResf (R)(G/K) 2 k(G x k Res%(G/H))
and the claim follows from the formula res? (G/H) = [[ K/(K Ny 'Hy)). O
yeH\G/K

3.3. Free modules over Green meadows. Recall from Definition 1.2 that a Green meadow is a
Green functor k such that each k(G/H) is a field. We introduce some notation to reduce clutter.

Notation 3.14. Let G = Cp» for some prime p and R a Cpn-Green functor. For 0 <14 < n we write
F; for the free R-module on one generator in level Cpn/Cpi. If R is not clear from context, we may
write F;(R) instead of Fj.

The next result is just Corollary 3.13 for the group G = Cjyn
Corollary 3.15. Let R be a Cyn-Green functor. For any 0 < s < n we have

. RGO )BT s >
FlGpr/Cpr) = {R(Cpn /O, >

Suppose that k = FP(L) where L is a field with action by Cp». We would like to understand
the dimension of F;(Cyn/Cps) as vector spaces over k(Cyn/c ) = L. Suppose that Cpr is the
stabilizer of the action of Cyn-action on L.

Then for any 0 < s < n we have

. L s<r
(1) K(Cpr [Cpe) = L = {LCPS/CW

For s > r the action of Cps /C)r on L is faithful, so by Artin’s lemma it is Galois. Thus the field
extensions LE»/Cor < LCp*/Cor < L are both Galois for any choice of s > r. For any s > r we then
have dim .Cpm LC/Cor = pn—s and so we obtain

s>

s<r

(2) () (R(Cpr [ Cpe)) = {p s2r

which is enough to compute the dimension of F;(Cpyn/C)s) for any s.
It is possible for F; to be isomorphic, as a k-module, to k™ for some values of ¢ and n. We now
identify precisely when this happens for k = FP(L).
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Lemma 3.16. Let k = FP(L) as above. Forr < s <1 the transfer maps
(o
T‘I'Cps_l . E(Cp7L/Cp5*1) — FZ(Cp"/Cp‘S)

P

are surjective.

Proof. The transfers in &k are induced by the quotient map of G-sets q: Cyn /Cps—1 — Cpn /Cps. The
transfer if F; is induced by evaluating k& on the map

Co [ Crpoet X Copn /Ci L2 Clyn [Cs X Con [ Ci.

Since s < ¢ this map is equivalent to the map

pn—’L pn—z

I
1 Co/Cpemr =5 T Con/Co
(=1 (=1

and applying k& we see that that the transfer if F; is the direct sum of many copies of the transfer in
k. The transfer in k is the Galois trace for the field extension k(Cpyn/Cps—1) C k(Cyn/Cps). Since
s > r, the Weyl group actions are faithful and this extension is Galois, hence the trace map is
surjective. ([l

Lemma 3.17. Let k = FP(L), where L is a field with Cyn-action and Cpr C Cyn is the stabilizer of
the action. Then fori > r we have an isomorphism of k(Cyn /Ci)g[Cpn / Cpi]-modules F;(Cpn /Cypi) =
k(Cpn /Cpi)P" .

Proof. Because i < r we have Cpn/C,; acts faithfully on the field k(Cyn/Ci). Tt follows that the
twisted group ring k(Cpyn /Cli)g[Cpn /C,i] is Morita equivalent to the fixed field k(Cpn / Cpi)CP"/ Cpi =
LE" (cf. Lemma 5.28). Thus modules over this ring are classified up to isomorphism by their

dimension over the L. The dimensions of the two modules co:qsidered in the statement are
computed using Corollary 3.13 and (2), and both are equal to p?("~9 O

Proposition 3.18. Suppose that k = FP(L) where L is a field of characteristic p with action by
Cprn and stabilizer Cpr. If © > 1 then there is an isomorphism of k-modules F; = kP

For the simpler case in which & is a Green meadow of characteristic not equal to p, one should be
able to establish similar results using a Morita equivalence argument and Corollary 5.31 below.

Proof. By Lemma 3.17, we have an isomorphism of k(Cyn/C,i)g[Cpn /Cpi]-modules Fi(Cyn /Ci) =
E(Cpn/ Cpi)pn_z. Since Fj is free on the Cyn/Cji-level we can extend this to a map of k-modules

¢: F; — k"', Using (2) and Corollary 3.13 we see that these k-modules have the same dimension
over k(Cpn/Cpn) at every level. We need to show that ¢ induces an isomorphism on level Cpn /Cps
for all 0 < s <n.

First, suppose that s > i. Since ¢ is an isomorphism at level Cpn/C,:, and all restrictions in free
modules are injective by Proposition 3.12, we see that ¢ is injective at level Cpn/Cps. Hence, by a
dimension count, ¢ is an isomorphism on levels Cpn /Cys for s > i.

Now suppose that r < s <1i. We will prove that ¢ induces an isomorphism at level Cpn/Cps via
downward induction, the base case s = i being covered by the definition of ¢. Suppose we have
proved the claim for some value of r < s < 7; we will show that the claim holds for s — 1. The map
© entails a diagram

Fi(Cp”/Cps) L k(Cp”/Cps)pn_i

(=23

1l afl

Fi(Cpn [Chot) —2"1 s k(Cpn [ Cpoa 7"
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where the vertical maps are transfers and restrictions. The top horizontal map is an isomorphism
by induction, the restriction is injective by Proposition 3.12, and the transfers are surjective by
Lemma 3.16.

Because s > r the extension k(Cyn/Cps) — k(Cpn/C\s-1) is Cp-Galois, and hence the kernel of T
is the image of R. Since the diagram commutes, with either choice of vertical morphisms, we see
that the kernel of T is contained in the image of ¢s_1. Thus we have a composite

Fi(cpn/cps—l) e k(cp”/cps—l)pn_i L k(Cpn/Cps )pn_i

which is surjective, and the image of ;1 contains the kernel of T'. It follows that ws_1 must be
surjective. Indeed, if 2 € k(Cpn/Cps) then there is a y € F;(Cpn/Chps) so that T'(z) = T(ps—1(y)).
Then = — @4—1(y) is in the kernel of T', hence is in the image of ¢s_1, so x is in the image of ps_1.
Thus @s_1 is an isomorphism since it is a surjective map between L™ -vector spaces of the same
dimension.

All that remains is to prove that ¢ induces an isomorphism at level Cpn /Cps for s < r. In this
case, a dimension count shows that the dimension of F;(Cpn/Cps) over L is equal to that of
F;(Cpn /Cyr). Since the restriction map is injective it is therefore an isomorphism. In particular, we
have commuting diagrams

Fi(Cpn [Cpr) — k(Cpn /Cpr )pnii

. o
E =
Fy(Cpn [Cpps) ——L5s k(Cp [Cps )"

and thus s is an isomorphism. g

It follows that every free module over k = FP(L) is isomorphic to one of the form

r—1
Ko 6P .
s=0
Our next task is to show that the numbers ng, ..., n, uniquely determine the free module up to

isomorphism.

Proposition 3.19. Let k be as in Proposition 3.18. If there is an isomorphism

r—1 r—1
Ko @ FM =2 ke P F.
s=0 s=0
for some non-negative integers ng, ...,n, and my,...,m, then n; =m; for all j.
Proof. For 0 <s<nand 0<i<7r—1let
Qg = dimk(CPn/Cpn) Fi(Cpn/Cps)
and let

Qgr = dimk(Cpn/Cpn) k(cpn/cpg)
The matrix (o ;) sends the vector (ng, ..., n,) to the vector (dy,...,d,) where d; is the dimension

of .
(W o P F") (Cpn /Cri)
s=0

over k(Cpn/Cpn). Considering this as a map a: Z"1 — Z"*! the proposition will be proved if we
show that this map is injective. In particular it suffices to show that the matrix (a;;) has rank
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r + 1. It will suffice to limit the range of s to 0 < s < r and show that the resulting matrix is rank
r + 1. Since this matrix is now square we can do this by observing that the determinant is non-zero.
For i < r, we can use Corollary 3.15 and Equation (1) to obtain

n—s

LP s>1
P s <

Fi(Cp"/CpS) = kan/Cpi (Cp”/Cps) = {
and so for 7 < r we have

Qs =

)

Pt pt TS s>
pnr 'pn—i s <i.

Since we only care about the determinant being non-zero we can scale the columns of (o ;) with
0 <i<r—1 by dividing by p"~" - p"~" and the resulting matrix, which we call 3, has

prfs s>
Bs,i = { i .
p s <1.
for 0 <i<r—1and0<s<r. The last column in «, ¢ = r, is given by
s = dimy(c,n 0y B(Cpn /Cps) = p" "

by (2). We also scale this column to the constant column with all 1’s. Finally, the resulting matrix
v is given by

pr pr—l pr—2 1
prfl prfl prf 1
pr72 prf prf 1
pr73 prf prf 1

1 1 1 o1

To see that v has non-zero determinant, observe that subtracting the i-th column from the
(i — 1)st column results in an upper triangular matrix with diagonals given by p" =1 — pr=i=2 £ (.
Since v was obtained from « by scaling columns by nonzero integers, we see that « has non-zero
determinant as well. O

Let R be an arbitrary Cpn-Green functor and let K&°¢(R) be the Grothendieck ring of isomorphism
classes of finitely generated free k-modules where addition is direct sum and multiplication is relative
tensor product. If X is a finite Cpn-set, we can write

X = H(Cp”/CpS)HaS

s=0

for some non-negative integers as. The assignment
n
X @PrFe
s=0

is a ring homomorphism from the the Burnside ring A(Cyn) to K¢(R). This map is surjective,
since K{*°(R) is generated by the images of Cpn/Cjs.

On the other hand, when k = FP(F) Proposition 3.19 and Proposition 3.18 combine to identify
the kernel of this map as precisely the subgroup of A(Cyn) generated by elements of the form
(3) [Cpr /Cps] = P+ [Cpn / Cipr]
for all s such that Stabc,, (F') C Cps.
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Corollary 3.20. Let L be a field with Cyn-action. There is an isomorphism of rings
Kg**(FP(F)) = A(Cpn) /1

where I is the ideal generated by all element of the form (3) where s is such that Stabc,,, (L) C Cps.
In particular, if the action of G on L is trivial then K&¢(FP(L)) = A(Cpn).

Remark 3.21. For any group G and any G-Green functor R there is a ring homomorphism
A(G) — Kf¢(R). In general, this map is neither injective nor surjective.

Problem 3.22. Corollary 3.20 gives an obstruction to Morita equivalence between fixed-point
Green functors, in the sense of Definition 3.4. On the other hand, we show in Corollary 5.31 that if
C, acts faithfully on a field F, then FP(FF) is Morita equivalent to the fixed-point subfield F¢». A
natural question is whether it is true more generally that when G acts on a field F, the G-Green
functor FP(F) is Morita equivalent to the Stabg(F)-Green functor FP(F®) associated to the trivial
Stabg(F)-action on the fixed-point subfield F& of F.

Example 3.23. Let G = (4, which acts on F4 via the the Frobenius. Since every element = € [Fy
satisfies z* = z, the stabilizer of the action is Co C C4. The Burnside ring of Cy is

A(C4) = Z[CC, y]/(l‘2 - 25["’ y2 - 4-ya Y — 2y)

where z corresponds to Cy/C3 and y corresponds to Cy/e. To give a presentation for K{*¢(FP, (Fy4))
we adjoin the relation x — 2. Notice that this immediately makes the first and third relation
superfluous, so we have

K (FP¢, (Fy)) = Zly]/(y* — 4y).

Remark 3.24. We will show below that all projective modules over FP(F') are free when F' is
a field with action by a group G. Thus the group K{¢(FP(F)) is equal to the Ky group of the
category of finitely generated projective FP(F)-modules.

Remark 3.25. The ideal I in Corollary 3.20 can be identified with the kernel of the map A(Cpn) —
A(Stabg,, (F)) induced by restriction of Cyn-sets. Thus we can embed Kfe(FP(F)) into the
Burnside ring of Stabc ,, (F), although this map is only surjective when the stabilizer is trivial.

We can upgrade Corollary 3.20 to a statement about all Green meadows with trivial Weyl group
actions.

Theorem 3.26. Let k be a Cyn-Green meadow, let L = k(Cyn/e), and suppose that L has trivial
action. Then base change along the canonical map k — FP(L) induces an isomorphism on K(f)ree.
Thus, there is an isomorphism of rings

K°(k) = K§“(FP(L)) = A(Cpn).
Proof. There is a commutative triangle
A(Cp”)

< TN

K (k) K (FP(L)

where the diagonal maps are the canonical surjections and the bottom map is induced by base
change. The right diagonal map is an isomorphism by Corollary 3.20. It follows that the left vertical
map must be injective and hence is also an isomorphism. It then follows immediately that the base
change map is also an isomorphism. O
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3.4. Noetherian conditions on Green functors. Classically, the category of finitely-generated
modules over a ring only forms an abelian category if the ring is Noetherian. We are interested
in this condition, towards the eventual goal of understanding G-theory for Green functors. In
particular, some of the machinery of algebraic K-theory which we need only works in the setting of
abelian categories, so we need to establish checkable conditions on a Green functor which imply
that the category of finitely-generated modules is abelian.

We being with a few lemmas.

Lemma 3.27. Let R be a Green functor. An R-module M 1is finitely generated if and only if there
exists elements x; € M(G/H;) fori = 1,...,n such that the smallest R-submodule of M which
contains all x; is M.

Proof. If such a collection of elements exist, then the maps Z;: Rg /i; — M which represent each z;
determine a surjection

é Reym, 25 M
=1

and hence M is finitely generated.

Conversely, the Yoneda lemma implies that each Rg/y, is generated as an R-module by a single
universal element at level G/H;. Picking a surjection from a finite free module onto M, the images
of these universal elements form a generating set. U

Lemma 3.28. If M is an R module such that for all H < G M(G/H) is a finitely generated
R(G/H)-module, then M is a finitely generated R-module.

Proof. If a module M is levelwise finitely generated then the union of the generating sets for the
M(G/H) is a finite generating set for M. O

The converse is false.
Example 3.29. Let G = C), and let and consider the Green meadow

F,(t), 85, ...)

] [

Fp(ti,ta,...)

The free module k¢, /. is generated by a single element at level Cp, /e but k¢, /o(Cp/Ce) = k(Cp/e) =
Fp(t1,ta,...) is not finitely generated over k(C,/C)p) = Fy(t],th,...). Indeed, the inclusion factors
through an infinite sequence of degree p field extensions obtained by adjoining the pth root ¢; of t¥.

In fact, even though k¢, /. is finitely generated it contains submodules which are not finitely
generated. For instance, the submodule

IFp(tl, to,...)
M = OTlid
Fy(t1,t2,...)

of k¢, /e is not finitely generated. Indeed, for any map k¢, /. — M, the map k¢, /.(Cp/Cp) —
M(Cp/Cp) must be zero, as the transfer in k¢, /. is surjective, but the transfer in M is zero. Thus,
given any morphism f from a free k-module to M, its image in M (C,/C)) is a finite k(C},/Cp)-
dimensional submodule of M (C),/C,), so that f cannot be surjective.

We highlight that k actually admits the structure of a (field-like) Tambara functor with norm
given by the Frobenius endomorphism. One could also make a similar example work for the Green
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functor ¢ with ¢(C,/C,) = Fy and ¢(C}/e) its algebraic closure, although ¢ does not admit the
structure of a Tambara functor.

The key point in this example was that R(C)/e) is not a finitely generated ring over R(C,/Cp).
In the setting where this holds we obtain a converse.

Definition 3.30. We say a Green functor R is relatively finite dimensional if for all H < G, R(G/H)
is a finitely generated module over R(G/G) (equivalently, the restriction R(G/G) — R(G/H) is
finite).

We will not hesitate to impose the relatively finite dimensional assumption whenever it simplifies
arguments. In fact, this does not lose too much generality, as Theorem 3.39 allows for faithfully
flat descent arguments in many cases (for example, Theorem 3.39 implies that whenever k is a
Cp-Green meadow which is not relatively finite dimensional, there is a faithfully flat map from &
to a relatively finite dimensional C)-Green meadow). For G # C,,, however, the situation is more
complicated, and we decline to give a complete picture.

We also note that many Green functors arising in nature are relatively finite dimensional. For
example, the Green functor underlying any Tambara functor which is levelwise finitely generated
over Z or over a fixed field is always relatively finite dimensional (one sees this straightforwardly
using [SSW25, Lemma 3.13]). Additionally, forthcoming work of Sun [Sun25, Theorem B] shows
that all free polynomial Tambara functors are relatively finite dimensional.

Proposition 3.31. If R is relatively finite dimensional, then an R-module M is finitely generated
if and only if M(G/H) is a finitely generated R(G/H)-module for all H < G.

Proof. Lemma 3.28 implies that the backwards direction is true for any Green functor. For the
forwards direction, suppose that M is finitely generated, so that it receives a surjection from a
finitely generated free R-module

@ Indfli ResgiR - M
i

It therefore suffices to observe that whenever H and K are any two subgroups of G, the R(G/H)-
module

(Ind$Res% R) (G/H) = R (ind§resiG/H)
is finitely generated. The double coset formula for G-sets implies that, as an R(G/H )-module, this
is isomorphic to a finite product of R(G/K;), where the K; run through subgroups G which are
subconjugate to H. These are all finitely generated R(G/H )-modules by the hypothesis that R is
relatively finite dimensional, hence their product is a finitely generated S(G/H )-module. O

Definition 3.32. A Green functor is module- Noetherian if every submodule of a finitely generated
module is finitely generated.

Remark 3.33. As emphasized by the name, we note that the definition of module-Noetherian given
here is not equivalent to a Green functor satisfying the ascending chain condition on ideals. Indeed,
Example 3.29 gives an example of a Green functor which satisfies the ascending chain condition on
ideals but is not module-Noetherian. To see why these two notions do not agree, it is helpful to
recall why these notions are the same for ordinary commutative rings. The essential point is that
the ascending chain condition for ideals on a commutative ring R is equivalent to the condition
that every submodule of a finite free module R™ is finitely generated. Since every finitely generated
module is a quotient of a finite free module it then suffices to observe that the property of being a
Noetherian module is preserved under taking quotients.

Let R be a Green functor. Every finitely generated R-module is a quotient of a finitely generated
free module, but the free modules on non-trivial G-sets have submodules whose structure which



THE ALGEBRAIC K-THEORY OF GREEN FUNCTORS 19

is not dictated by the ideals of R. In particular, it is possible for every ideal of R to be finitely
generated but have submodules of free R-modules be non-finitely generated, as demonstrated in
Example 3.29. The definition of module-Noetherian given above is equivalent to the condition that
every submodule of a finitely generated free module is finitely generated.

The reason we care about the module-Noetherian condition is that it implies that the category of
finitely generated modules is an abelian category. Indeed, in general the category of modules over
an arbitrary Green functor can fail to be Noetherian as it might not be closed under kernels. The
module-Noetherian condition is equivalent to the assumption that kernels of maps between finitely
generated modules are finitely generated.

From Example 3.29 we see that even levelwise Noetherian Green functors need not be module-
Noetherian in general. If we assume further that the Green functor is relatively finite dimensional
then Noetherian and levelwise Noetherian become equivalent.

Corollary 3.34. Let R be a Green functor which is relatively finite dimensional. The following are
equivalent:

(1) R(G/G) is Noetherian ring,

(2) R(G/H) is Noetherian ring for all H < G,

(3) R is a module-Noetherian Green functor.

Proof. (1) = (2) follows from the fact that if S is a Noetherian ring and f: S — T is a finite
ring map then 7" is Noetherian. (2) = (3) follows straightforwardly from Proposition 3.31.

For (3) = (1), first assume that R is a module-Noetherian Green functor and let I C R(G/G)
be any ideal; we must show that I is finitely generated. We claim there is a Green ideal J C R such
that J(G/G) =1 C R(G/G). Granting this, since J C R is a submodule of a finitely generated
R-module the assumption that R is Noetherian implies that J is finitely generated. But then by
Proposition 3.31 we see that J(G/G) = I is a finitely generated R(G/G)-module. Since I was
arbitrary R(G/G) must be a Noetherian ring.

Thus it remains to prove the claim. Let J(G/H) C R(G/H) be the R(G/H)-submodule generated
by Resg (I). Note that we can ignore the Weyl group actions since Resg (1) is fixed by all Weyl
group actions. Then certainly J is a levelwise submodule, closed under conjugations, restrictions,
and J(G/G) = I. All that remains is to check that J is actually closed under transfer. Suppose
that x € J(G/H) and H < K. We can write

n

x = Z ;- Resgi ()

i=1
for some r; € R(G/H) and z; € J(G/G) = I. Thus

Trig(z) = > Trig(ri - Resf, () = Y Trf(r) - Res(z;) € J(G/K)
=1 =1

where the second equality is Frobenius reciprocity. O
One might wonder about whether or not a Green functor R being module Noetherian with

R(G/G) is Noetherian implies that R is relatively finite dimensional. We are not aware of any
examples where this fails.

Problem 3.35. Which finite groups satisfy the property that module-Noetherian implies relatively
finite dimensional? The authors believe this to be true for G = Cjn.

Finally, we are interested in when restriction along a Green functor morphism preserves the
property of being finitely generated.
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Definition 3.36. We say that a Green functor map R — S is module-finite if the restriction functor
S—Mod —+ R—Mod

sends finitely generated S-modules to finitely generated R-modules.

If G is the trivial group, module-finite is equivalent to finite (that is—the target is a finitely
generated module over the domain). The following is an immediate consequence of Corollary 3.34.

Lemma 3.37. Let f: R — S be a levelwise finite morphism of relatively finite dimensional Green
functors. Then f is module-finite.

3.5. Faithfully flat field extensions. In this subsection we make a technical observation about
Green meadows which allows us to extend some of our results to more cases. We begin by generalizing,
in a straightforward way, the notion of a faithfully flat ring map to Green functors.

Definition 3.38. A map of Green functors R — S is flat if the base change functor SXp—: Modr —
Modg preserves monics. A morphism is faithfully flat if it is flat and S Xr M = 0 implies M =0
for any R-module M.

In ordinary commutative algebra, every map of fields is faithfully flat. In general this is not true
for arbitrary maps of Green meadows. The next theorem identifies some examples of faithfully flat
maps.

Theorem 3.39. Let k — ¢ be a morphism of Cy,-Green meadows, and assume the transfer in £ is
zero. Then k — { is faithfully flat.

Our assumptions imply that C), acts trivially on ¢(C}/e) and k(C)p/e) and that the transfer in
k is trivial as well. Indeed, if the action of C, on £(C)/e) were non trivial it would be faithful, in
which case Artin’s lemma implies that the transfer composed with the restriction surjects onto the
fixed field £(C)/e)“? # 0.

Proof. Let M denote the base-change of a k-module M to an ¢-module. Then we have

M(Cyp/e) = M(Cp/e) @p(c,se) {(Cp/e)

and
M(Cp/cp) = (( ( p/C ) Qk(Cp/Cp) (Cp/cp)) EB (M(Cp/e) Ok(Cp/e) K(Cp/e))cl) /FR

where FR is the k(C),/C))-subspace generated by the “Frobenius reciprocity” relations
(1) Tr(m) ® x @ —m ® Res(x) for all m € M(Cp/e) and = € ¢(C,/C,) and
(2) m ® Tr(z) @ —Res(m) @ x for all m € M(C,/C,) and = € £(Cp/e).
Our assumption that the transfer of ¢ vanishes allows us to replace relation (2) with relation

(2") 0@ Res(m) ® x for all m € M(C,/Cp) and z € ¢(Cp/e).

Since C), acts trivially on k(Cp/e) and ¢(Cp/e), we may commute the Cp-orbits with the ten-
sor — ®y(c,/e) L(Cp/e). Let Xy C M(Cp/e) denote the k(Cp/e)-vector subspace generated by
Res(M ( p/C )), noting that Xy is fixed by Cp, and choose Ya; C M(Cp/e)c, so that we have an
isomorphism of M(Cyp/e)c, = Xar @ Yar. Note that relation (2') will imply the terms in M (C,/C,)
which come from Xj; will vanish.

Let U C £(Cp/e) be the k(C,/e)-vector subspace generated by Res(¢(C),/Cp)), and choose V' so
that £(Cp/e) = U @V as k(Cp/e)-vector spaces. Using relations (1) and (2') we obtain

M(Cyp/Cy) = (M(Cp/Cy) @ricyicy) UCh/Co) D Vit @iy V)

as a k(C,/Cp)-vector space.
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If N C M is a sub-k-module of M, then we may choose Yy C Yj;. Thus N C M and basechange
along k — ¢ preserves subobjects — that is k — ¢ is flat. If M = 0, then M (C,/e) = 0 by flatness of
the field map k(Cp/e) — £(Cp/e) whence 0 = M(C,,/Cp) = M(Cp/Cyp) @k, jc,) £(Cp/Chp). Since
k(C,/Cp) — £(C,/Cp) is also flat, we deduce M (C,/C,) = 0, whence M = 0. O

We expect some version of Theorem 3.39 to be true for more complicated groups, although it is
not clear exactly what the hypotheses should be on the morphism k£ — ¢. Such sufficient criteria
could be the assumption that the isotropy group of the Weyl action on each level is preserved, or
that a transfer Tr¥ in k is nontrivial if and only if the transfer Trk in ¢ is nontrivial.

Corollary 3.40. Let k be any C,-Green meadow. Then k admits a faithfully flat map to a relatively
finite dimensional Cy,-Green meadow.

Proof. If the characteristic of k is not p, or C), acts nontrivially on k(C)/e), then k = FP(k(C)y/e))
is already relatively finite dimensional. Otherwise the transfer in FP(k(C)p/e)) is zero so that
Theorem 3.39 applies to the canonical map k — FP(k(Cy/e)). O

We have not considered whether or not Corollary 3.40 should hold for other kinds of Green
functors. It would be very interesting to know how necessary the Green meadow hypothesis is.

4. TOWARDS Ky OF Cpn-GREEN MEADOWS

In this section we classify projective modules over (relatively finite dimensional) Cpn-Green
meadows by showing they are all free. As a consequence we are able to compute Ky(k), the free
abelian group generated by the projective modules with direct sum as addition. In particular, it is
isomorphic to the group Kgree(k) considered earlier.

4.1. The level filtration. We begin by constructing a useful filtration of the category of C},n-Mackey
functors.

Construction 4.1. Given any Cjn-Mackey functor M, we may functorially construct a Cpn-1-
Mackey functor 7> (M), essentially by “throwing out” the C)/e level. Precisely, set
T5>1(M)(Cpn-1/Cps) 1= M(Cpn /Cppet1).

So 7>1(M) has the same top level as M, and the bottom level of 7>1(M) is the Cyn /Cp-level of M.

Next, set the restriction and transfer maps between immediately adjacent levels of 751 (M) to be
the restriction and transfer maps between the corresponding levels of M. Note that to check that
the double-coset formula holds, it suffices to check that it holds for immediately adjacent levels of
7>1(M). There, it holds because it is the same formula as for M.

Lemma 4.2. Let k be a Cpn-Green meadow. Then 7>1k is a Cpn-1-Green meadow.

Proposition 4.3. Let R be any Cyn-Green functor. The functor T>1 restricts to a functor R-Mod —
7>1(R)-Mod which preserves all limits and colimits.

Proof. The claim 7>; sends R modules to 7>1(R)-modules follows immediately from Lemma 2.14
(alternatively, one may show that 7> is lax symmetric monoidal). All limits and colimits of modules
over Green functors are computed levelwise, hence are preserved by 7>1. U

Next, we aim to study the effect of 7>1 on free modules.
Lemma 4.4. Let R be a Cyn-Green functor and 1 <i < n. Then we have an isomorphism
m>1F(R) = Fi_1(7>1R)

of T>1R-modules.
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Proof. To reduce clutter, we use Res{ in place of the restriction along the subgroup inclusion
Cpi C Cp;. We employ similar notation for Tr. To start, we show 7>1F; is generated by a single
element.

Let o € Fj(Cyn/C,;i) denote a generator: the element corresponding to the identity Idx, under
a Yoneda isomorphism. An arbitrary element y € F;(Cpn/e) is a sum of elements of the form
cg(a - Resp(z)) where a € R(Cyn/e) and g € Cyn, so that

Trg(y) = Trg((cga) - Resj(x)) = Trg(cga) - Resi (x)

by Frobenius reciprocity. Thus whenever j > 1, each F;(Cyn/C,;) is generated as an R(Cyn/C)-
module by the transfers of R(Cpn/C,¢)-multiples of Resj(z) for 1 < ¢ <.

It follows that 7>1F; is generated over 7>1 R by a single element in level Cpn-1/Cpi-1. Let T;4
denote the free 7>1 R-module in level Cpn1 / Cpi-1, so that we have a surjection T;—1 — 7>1F; by

the previous paragraph. Define a R-module fljl by Tzlf:l =T;—1 and
Ti-1(Cpn/e) :=T;-1(Cpn-1/€) ®R(cyn/c,) R(Cpn/e)

The generator for T;_; is classified by a map F; — ﬁ: which determines the second map in the
composition

Tic1 — m>1F; — T

by applying 7>1. This map sends the generator of 7;_; to itself, hence is the identity. Thus the first
map 1;—1 — 7>1F;, which is a surjection, is also an injection, hence an isomorphism. O

Definition 4.5. Let R be a Cpn-Green functor, and M an R-module. Denote by R-Mod=" the full
subcategory of R-modules whose objects are of the form

Coeq @Fai = @Faj

icl jed
where 1 < a;,a; < n.

Roughly, R-Mod=" is the subcategory of modules which have a presentation by generators and
relations, none of which are in level Cjn /e.

Proposition 4.6. The functor 7> induces an equivalence between the category of T>1(R)-modules
and R-Mod=!.

Proof. Let C be the full subcategory of R-modules with objects the free R-modules on levels Cyn /Cps
for 1 < s < n, and let D be the full subcategory of 7>;(R)-modules with objects all free 7>1R-
modules. By Lemma 4.4, 7>1 defines a functor C — D which is essentially surjective. This functor
is fully faithful because a free module in level X represents the functor sending a module to its
value in level X. Therefore 7> defines an equivalence of categories C = D.

Now we show 7> is fully faithful on all of R-Mod=!. By Proposition 4.3 T>1 preserves limits and
colimits. Now let

M = Coeq GBF% = @Fai

jeT i€l
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be an arbitrary element of R-Mod=! (thus a;, a; > 1). For any R-module N we have
homp(M, N) = homp (Coeq (BjesFa; = @icrFa,),N)
>~ Eq (hompg(®ierFa,, N) = homp(®jecsFa;, N))
= Bq (homr, p(®ierFa, 1, 7>1N) = homr, r(BjesFa;—1,7>1N))
= hom,, g (Coeq (BjerFu;—1 = ®icrFa;—1) ,7>1N)
= hom,, g(7>1M,7>1N)
where the third isomorphism holds due to the fact that both terms in the equalizer diagram are the

classifying sets of choices of elements in the groups N (Cpn/Chs) for s > 1, and the last isomorphism
follows from the preservation of coequalizers by 7>1. O

Viewing 7>1 as coinduction along the surjection Cyn — Cpn-1, Proposition 4.6 may be interpreted
roughly as a dual to [Wis25a, Theorem F] (using the fact that coinduction and induction agree on
Mackey functors).

Since 7> preserves (co)limits and 7>1(k)-Mod is an abelian category, we see that k-Mod=' is an
abelian subcategory of k-Mod. It is also a Serre subcategory by the Horseshoe lemma; the authors
intend to study the resulting localization sequence on algebraic K-theory in future work.

4.2. Projective modules over C,.-Tambara fields. We are finally able to show that every
finitely generated projective module over a Tambara field is free.

Theorem 4.7. Let k be a relatively finite dimensional Cyn-Green meadow. Every finitely generated
projective k-module is free.

The idea is to split off free module summands until nothing remains. Since injective subobjects
are summands for formal reasons, we begin by establishing injectivity of a free module.

Lemma 4.8. For any Green meadow k, the free module Fy is an injective k-module.
Proof. We have Fy = Ind{j(k(Cyn /e)), where
Indg : k(Cpn/e)-Mod — k-Mod
is the induction functor. Since k(Cpn/e) is a field, it is injective over itself. Induction preserves

injective objects by Corollary 3.7, so that Fy must be an injective k-module. O

Proof of Theorem 4.7. We induct on n, the exponent of the order of the group G = Cjyn.

Let P be a projective k-module. Pick a projective k-module @ such that P& Q = @7 F’. Since
the restrictions in the free modules are injective we see that all the restrictions in P are injective.
The double coset formula therefore completely determines all transfers on P. If z € P(Cpyn/e)
is an element with the property that the Cpn-orbits of x are linearly independent over k(Cpn/e),

then x generates a copy of (Indecp "k(Cpn/ e)) (Cpn/e) in the bottom level of P. The double coset

formula then implies that = specifies a submodule of P isomorphic to Indg”nk(Cpn/ e). Since

Indg”nk(Cpn/ e) is an injective k-module by Lemma 4.8, it splits off as a summand. Repeating

this for all © € P(Cpn/e) such that the Cpn-orbits of x are linearly independent over k(Cyn /e), we
n Ds

are entitled to write P = P’ & (Indecp k(Cpn/e)> as k-modules; s is finite because P is finitely

generated.
Repeating this argument for @), we may write

P o P oQ = ol F

where P’ and @' have the property that, for every element = in P/(Cyn/e) or Q'(Cyn/e), the
Cpn-orbits of x have a linear dependence. Before we may proceed, we must observe that s = sg. This
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follows from the fact that, for any finitely generated k-module M, the dimension of the subspace of
M (Cyn /e) spanned by the Cpn-orbits of those elements x for which the Cyn-orbits of = are linearly
independent is invariant under isomorphism. In our case, those dimensions are respectively sp™ and
sop™ and thus s = sg.
Next, we aim to show that P’ & Q' = @' {F;". Let M = P’ @ Q' to avoid notational clutter.

Consider the map

n n

¢: M — M@ F;° g@pji 4@1;?-
i=0 i=1

which we aim to show is an isomorphism. Note that the kernel in level Cpn /e consists of elements
of M which are restrictions of transfers of elements z € M (Cpn/e) such that the Cpn-orbits of
x are linearly independent over k(Cpn/e). By construction M contains no such elements, hence
¢ in level Cpn /e is injective. Since all restriction maps for M are injective, ¢ is injective in all
other levels, hence is an injective k-module map. Since k is relatively finite dimensional each level
k(Cpn/C,i) is a finite dimensional k(Cyn /Cyn) vector space. By dimensional counting we see that ¢
is an isomorphism.

Now observe that P’ belongs to the subcategory k—Mo because it is the coequalizer of the
diagram &' | " = &' | ;" where one of the arrows is zero and the other arrow is the composition
& F7 — Q' — @ F" of projection followed by inclusion. In particular, 7>1(P’) is a finitely
generated projective module in 7> (k)-Mod. By induction, 7>1(P’) is a direct sum of free modules,
hence so is P’ since the equivalence k-Mod=! =2 7>1(k)-Mod of Proposition 4.6 restricts to a bijection
between free modules. Implicitly we have used that if k is relatively finite dimensional then so is
T>1 k. ]

4=

We immediately obtain the following.
Corollary 4.9. Let k be a relatively finite dimensional Cyn-Green meadow. Then Ko(k) = K{¢(k).

Remark 4.10. We note that the conclusion of Theorem 4.7 and Corollary 4.9 actually hold as long
as k admits a faithfully flat map to a relatively finite dimensional Green meadow. In particular this
always happens when G = C), by Theorem 3.39.

If R is any Green functor, the symmetric monoidal structure on R-Mod induces a ring structure
on Ko(R). Using Corollary 4.9 and Theorem 3.26 we compute Ko(k) as a ring when k is a Cpn-Green
meadow.

Theorem 4.11. Let k be a Cyn-Green meadow such that Cyn acts trivially on k(Cpn/e). Then
Ko(k) is isomorphic to the Cpn-Burnside ring A(Cpn).

We conclude this section with an example of a projective, non-free module over the Burnside
Green functor. We emphasize the contrast with the classical situation: for the initial ring Z, every
projective module is free. Therefore the fact that Theorem 4.7 holds for Green meadows is a
particularly nice property enjoyed by these objects.

Example 4.12. Let G = Cs, and consider the twisted Burnside functor

ZQ

A= 0
| [ )

Z
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which we claim is projective in the category of Cs-Mackey functors. To see this, it suffices to
compute that AKX A is isomorphic to the Burnside Mackey functor A defined in Example 2.5, and
hence A is an element in the Picard group. It then follows formally that it must be projective.

To see that A is not free, a quick count of ranks implies that it suffices to observe that it is not
isomorphic to the A. To see this, suppose there is an isomorphism A — A could be represented by
a matrix

M = <‘CZ Z) € Maty(Z)

with det(M) = £1 for the map on the C5/Cs-level and +1 on the C5/e-level. Compatibility with
the restrictions implies that we must have

a+bc=2 b+5d=5
while compatibility with the transfers implies that b = 0 and d = +1. We compute
+1 =det(M) = ad — bc = +a = £(2 — 5¢)

which cannot be +1 since c is an integer.

5. THE G-THEORY OF GREEN FUNCTORS

In this section we describe some computational tools for studying the K-theory and G-theory of
Green functors. We will assume throughout that our Green functors are module-Noetherian, as we
will need that the category of finitely generated R-modules is an abelian category.

5.1. A spectral sequence for G-theory. For a Noetherian ring R, the G-theory of R is the
K-theory of the abelian category of finitely generated R-modules. This definition extends naturally
to module-Noetherian Green functors.

Definition 5.1. Let R be a module-Noetherian Green functor. Then the G-theory spectrum G(R)
is defined to be the K-theory spectrum of the abelian category R-Mod/ 9" of finitely-generated
R-modules.

Our goal is to study the homotopy groups of G-thoery spectra associated to various Cpn-Green
functors. To facilitate our analysis we make use of a filtration on the category of C,n-Mackey
functors. To begin, we say a Mackey functor M is brutally truncated if M(Cpn/e) = 0.

Definition 5.2. Let M be a Cy»-Mackey functor. We define its brutal truncation by TgrlutalM by
TgrlumlM(Cpn/e) =0

and
TR (Cpn /Ci) = M(Cyn /Ci).

A Mackey functor is brutally truncated if and only if it is a module over 7>1A¢,,, the brutal
truncation of the Burnside Green functor. The Mackey functor 7>1.Ac¢,, is the quotient of Ac , by
the smallest Green ideal containing Ac,,. (Cpn/e) hence is a Green functor. The brutal truncation
functor is base-change along the unique Green functor map Ac,, — 7>1Ac,n-

Define Cy to be the full subcategory of finitely generated R-modules whose underlying Mackey
functors are brutally truncated. As long as R-Mod!*®' is abelian, Cy is a Serre subcategory. Thus we
may form the localization R-Mod™#/Cy.

Proposition 5.3. For any module-Noetherian Cyn-Green functor R we have an equivalence of
categories

R-Mod"® /Cy 22 R(Cyn /e)g[Cypn]-Mod!#:
where on the right hand side R(Cyn/€)g[Cpn] is the twisted group ring in the sense of Definition 2.15.
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Proof. The exact functor
R-Mod"® — R(Cyn /e)g[Cpn]-Mod!
given by M — M (C)pn /e) vanishes on Cp, so it is uniquely factored by an additive functor

¢: R-Mod"® /Cy — R(Cyyn /€)g[Cpn]-Mod™ .
Now let M be an R(Cyn/e)g[Cpn]-module. Then FP(M) is a R-module by Lemma 2.18. Postcom-
posing the functor
FP: R(Cpn/e)g[Cpn]-Mod & — R-Mod"#
with the localization functor defines an additive functor
P2 k(Cpn /e)g[Cpn]—Mod! 9 — k—Mod” 9 /Cy

which we show is a categorical inverse to ¢.

We can pick a model for the localization where the objects of R—Modf'g'/ Cy are just the objects
of R-Mod*®, and the functor ¢ is given on objects by evaluation at Cpn /e. The adjunction unit
M — FP(M(Cyn/e)) has kernel and cokernel in Cp, hence it determines a natural isomorphism
Id 2 ) o ¢.

On the other hand, if we start with a R(Cpn/e)p[Cpn]-module M, then ¢ o )(M) is obtained by
taking the fixed-point Mackey functor to get a R-module, regarding it as an object of the localization,
and then evaluating at Cp,n/e. This returns M; in particular the fixed-point/evaluation adjunction
counit determines the requisite natural isomorphism Id = ¢ o 9. g

Since any equivalence of abelian categories is automatically an exact equivalence we obtain the
following corollary.

Corollary 5.4. For any module-Noetherian Green functor R there is an equivalence of spectra
K (R-Mod"® /Cy) ~ G(R(Cpn/e)g[Cpn]).

By Quillen’s localization theorem [Qui73, Theorem 5] the sequence of abelian categories Cy —
R-Mod®# — R(Cyn /€)a[Cpn]-Mod™# induces fiber sequences on K-theory spectra. Having identified
the K-theory of the cofiber, our next task is to identify the spectrum K(Cp). We do so by relating
Co to the category of modules over a particular Cpn—1-Mackey functor and then working inductively.

Definition 5.5. Let M be a Cp» Mackey or Green functor. We define its Mackey functor geometric
Cp-fized points @hcdpackeyM to be the Cjn-1-Mackey or Green functor obtained from 7> M by

quotienting the submodule (resp. ideal) given levelwise by the image of the transfer from M (Cpn/e).

Remark 5.6. We note that @fﬂ’;ckey is the C)-geometric fixed points functor considered in [HMQ22].
Thus this functor may equivalently be described as the left adjoint to inflation along the surjection
Cpn — Cpn-1. In fact, this inflation may be identified with the inclusion of brutally truncated
Cpn-Mackey functors into all Cn-Mackey functors. Since this inclusion functor is strong monoidal,

it follows formally that the left adjoint @ﬁpackey is also strong monoidal. In particular, it carries

R-modules to @ffackey(R)—modules for any Green functor R. It is known that geometric fixed points
preserve both projective and flat modules over the Burnside Green functor; we expect this to be

true for modules over any Green functor, although we do not require this result.

Proposition 5.7. For any module-Noetherian Green functor R there are equivalence
~Y C S
Co 2 ®\f oy (R)-Mod" .
Proof. 1t follows immediately from Lemma 2.14 that objects and morphisms in these categories are
specified by identical data. O
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Lemma 5.8. Let R be a relatively finite dimensional Cyn-Green functor. Then 7>1R and dr R
are relatively finite dimensional.

Proof. The claim about 7>1(R) is immediate, as the restriction maps 7>1(R)(G/K) — m>1(R)(G/H)
for H < K are the same as the corresponding maps in R. For ®“?»(R) and 1 < r < t there is a
commutative square of rings

R(Cp [Cpp) —— O (R)(Cport [Copt)
[ i
R(Cyn/Cyr) ——» B (R)(Cpret/Cyy1)
and we see the right vertical map is finite because the left vertical map is finite. ([l

Just as we previously iterated the the functor 7>1 we can iteratively apply the functor (I’l\c/[packey

m-times to obtain @f{aﬁkey: Cpn-Mack — Cpn-m-Mack. The following lemma is immediate from the
definitions.

Lemma 5.9. There is an isomorphism of rings with Cpn—m-action

Cpm

[a¥) . Cpm
q)MaCkey(R) (Cpn—m/e) = R(Cpn /Cpm)/lm(trcpm71 )

Notation 5.10. We will denote either of the (isomorphic) rings in Lemma 5.9 by ®%™ (R).
Example 5.11. For any R we have ®¢(R) = R(Cyn /e).

Proposition 5.12. Let R be a module-Noetherian Cyn-Green functor. Then we have a tower of
spectra

G(R) —————— G(2%" (R)y[Cyn /e])
where the cofiber of each vertical map is the corresponding horizontal map.

Proof. For any 0 < m < n — 1let C,, C R-Mod"# denote the Serre subcategory of finitely generated
R-modules M such that M (Cyn/Cp) = 0 for all t < m. This gives a filtration
(4) 0 Cp s Cpg - Co— k-Mod"#.

where each functor is the inclusion of a Serre subcategory.
Through the identification of Proposition 5.7 we see that C; is equivalent to the collection of

brutally truncated @ffackey(R)—modules, hence we can apply Proposition 5.7 again to obtain an
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equivalence of abelian categories

C
Cr = @\fr . (R)-Mod'®.

C m— . .

By induction, we have C,, ~ @Mpackely(R)—Modf'g' and thus taking K-theory of the chain (4), together
with Quillen’s localization theorem [Qui73, Theorem 5], yields the tower of spectra from the
statement. The identification of the cofibers is Proposition 5.3. ]

Remark 5.13. For an arbitrary finite group G and G-Green functor R it is still possible to filter
the category of finitely generated R-modules “by isotropy” as we have done here and thus produce
a filtration of G(R). It is less clear that pieces of the associated graded have a recognizable form,
although we certainly believe this approach to be feasible. We do not pursue this idea further in
this paper.

Corollary 5.14. For any module Noetherian Cpn-Green functor R there is a strongly convergent
spectral sequence with signature

E;,t = GS(q)Cpt (R)G[Cp"/cpt]) = Gs(R)
with differentials
dr: Egy — Bl 0
The spectral sequence collapses at the E, 11 page.

Proof. There is an exact couple
C n—=z Cpn—a
E;,y - 7Tw+yG((I> P (R)e[cpn/cp"*z]) Dals,y - 7r$+yG(q)M];ckey(R>)

obtained from the tower of cofibrations in Proposition 5.12 where d" has bidegree (—r,r — 1). Here
we interpret any group with < 0 or & > n to be zero. This spectral sequence abuts to G4, (R),
and since the values of x are bounded this spectral sequence collapses at page r = n 4+ 1 and
thus is strongly convergent. The grading in the statement results from the choices s = x 4+ y and
t=n—=x. ]

The spectral sequence is visualized in Fig. 1. As an immediate corollary we can compute the
G-theory of any Green functor with surjective transfers (such as Green meadows whose characteristic
is not p, or for which Cp» acts faithfully on the Cpn /e-level).

Proposition 5.15. If R is a module-Noetherian Cyn-Green functor in which all transfers are
surjective then G(R) ~ G(R(Cpn/e)g[Cpn]).

Proof. The surjectivity of the transfers implies that E;t = 0 for ¢ > 0 in the G-theory spectral

sequence. Thus the spectral sequence has a single non-trivial horizontal line so it collapses at E'
and there are no possible extensions. ]

Corollary 5.16. If L is a field with faithful Cyn-action then G(FP(L)) ~ K(L%").

Proof. The transfer map in FP(L) is the Galois transfer. Since the action of G on L is faithful it
is Galois, by Artin’s lemma, and thus the transfers are all surjective and the proposition gives us
G(FP(L)) ~ G(Lg[Cpn]). Since Lg[Cpn] is Morita equivalent to LE" by Lemma 5.28 below, we
have G(FP(L)) ~ G(L%") = K (L") where the second equivalence uses that LE»" is a field. O

We now turn our attention to the behavior of the G-theory tower in more complicated examples.
In special cases, the connecting maps turn out to be summand inclusions. The algebraic consequences
of this are captured in the following definition.
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3 | Go(RP®)  Gi(RP®) Ga(RP?)  Gs(RE)

=2 | Go(Rg?)  Gi(R§?)  Ga(R§?) Gs(Rg?)

1 | Go(Rg')  Gi(RFY)  Ga(Rg')  Gs(RF

0 | Go(Rg%) Gui(RG?)  Ga(RF)  Gs(RYY)

S

FIGURE 1. The E'-page of the G-theory spectral sequence for a Cp3-Green functor

R. For brevity, we have written RZ* for the ring &% (R)o[Cpps—1].

Definition 5.17 (Greenlees—May splitting). Let R be a G-Green functor and write the subgroups
of G sequentially as {H;} with the property H; C H; implies i < j.
If there is an equivalence

G(R) = P G(e" (R)o[WeH,))

of G-theory spectra, then we say R satisfies the G-theory Greenlees—May splitting.

Remark 5.18. Fix a field I, considered as a ring with trivial G-action, and let R be the Green
functor obtained from the Burnside by base changing along Z — F, levelwise. An R-module is
the same data as a Mackey functor in F-modules (not necessarily cohomological). Thus [TWO95,
Proposition 6.1] says that 7y of both sides of the Greenlees—May splitting are isomorphic. In other
words, R satisfies the Greenlees-May splitting for Gg. For G = C}», generalize this to a splitting of
the Burnside itself in Theorem 5.22 below.

Proposition 5.15 provides an example of the Greenlees—May splitting for G-theory. On the other
hand, Proposition 6.9 below provides an example of the failure of the Greenlees—May splitting for
G-theory (as the rank of Go(Z) is one less than what is predicted by the Greenlees—-May splitting).
The next theorem provides a sufficient condition on a Cjn-Green functor to guarantee a G-theory
Greenlees—May splitting.

Theorem 5.19. Let R be a module-Noetherian Cyn-Green functor, and suppose each quotient

Ci . . . Ci
q: T>i(R) = Ppf ey (R) admits a module-finite section s: ®yf, g (R) — 7>i(R). Then the tower
of Proposition 5.12 splits (in the sense that the connecting morphisms are summand inclusions), so
that R satisfies the Greenlees—May splitting for G-theory.

Proof. Our hypotheses imply that each quotient 7'21<I>CP1"1 (R) — ®Cr i1 (R) admits a section,
so by induction it suffices to assume i = 1 and construct an exact functor : R-Mod"# — Cy, such
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that o f =2 id. Consider the commutative diagram

R-Mod
\ T>1
g
f R-Mod=! ——— 751(R)-Mod
ol
C,
Co ; D\ f) ey (R)-Mod

where f and g are inclusions, v is the equivalence of Proposition 5.7, and ¢ is the equivalence from
Proposition 4.6. Let o be a categorical inverse to ¥. The commutativity of the diagram, together
with the fact that s* o ¢* = (¢ o s)* = 1, implies that
(vos*orsy)ofXaos og ot =id.
Since «, s*, and 7>1 are exact we have that m = o0 s™ o 7> is also exact.
The additional assumption that s* is module-finite implies that s* preserves finitely generated

modules implies that 7 restricts to a functor on finitely generated R-modules, hence produces a
splitting of the fiber sequences in the G-theory tower, proving the claim. O

Corollary 5.20. Suppose R is module-Noetherian and that oll transfers in R are zero. Then there
s an equivalence

k) = @D G(k(Cpn /Cpi )g[Cpm / Cpi).
=0

Proof. Tt suffices to verify the hypothesis of Theorem 5.19. In fact, our assumption implies that the
quotient 7>; R — ®“%' R is an isomorphism. Its inverse provides the required section. Note that we
have used that any isomorphism is module-finite. O

We now have enough to compute the G-theory of every relatively finite dimensional C),-Green
meadow.

Theorem 5.21. Let k be any relatively finite dimensional Cy,-Green meadow. If the transfer map is
identically zero then

G(k) ~ G(k(Cp/Cp)) & G(k(Cp/e)o[Cp))
and if the transfer is non-zero then
G(k) ~ G(k(Cp/e)glCpl) ~ K(K(Cp/e)).
In particular, every relatively finite dimensional C)-Green meadow satisfies the G-theory Greenlees—

May splitting.

Proof. If the transfer is zero then the result follows at once from Corollary 5.20. If the transfer is
not zero then because the image of the transfer map is an ideal of k(C,/C)), which is a field, the
transfer must be surjective. Thus the non-zero portion of G-theory spectral sequence consists of a
single horizontal line and collapses at the E'-page. [l

The next theorem gives an example where not all the transfers are zero, and generalizes a result
of Greenlees [Gre92], who proved the analogous result on Gy when n = 1.

Theorem 5.22. There is an equivalence of spectra

G( Mackfg @G
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Proof. The category of finitely generated Mackey functors is the same as the category of finitely
generated modules over the Burnside Green functor Ag, so the result follows from showing the the
Cpn-Burnside Green functor satisfies the hypotheses of Theorem 5.19.

Since @Mpackey is symmetric monoidal and the Burnside Green functor is the symmetric monoidal

unit, we deduce @f/fackey(Acpn) = Acp%l as Green functors. Since 7>1.A¢,, is also a Green functor,
the unit Ag ., — 7>1A¢,, provides the required section. Since each ring Ag(G/H) is a finitely
generated torsion-free Z-module, all Green functors in sight are relatively finite dimensional and our
section is module-finite. O

Remark 5.23. Let A and B be ring so that there exists a Cp-Green functor R with R(C)/e)s[Cp] =
B and @ (R) = A. Then the d' differential in the G-theory spectral sequence gives a group
homomorphism Gj41(B) — G;(A) for all i > 0. Alternatively, since G = C),, the G-theory tower is
just a cofiber sequence, and this is just the boundary map. So, either we have a nontrivial morphism
between G-theories, or the spectral sequence collapses.

Either outcome is interesting, although we can only determine which is true in special cases. For
example, Theorem 5.19 provides many examples in which all differentials are trivial. On the other
hand, we will see an example of a nontrivial differential in the proof of Proposition 6.9.

Example 5.24. Fix a ring A of characteristic p, and consider the category C of cohomological
Cpn-Mackey functor objects in the category of finitely generated R-modules. The category C is
equivalent to the category of finitely generated F-modules, and is, by a theorem of Yoshida, equivalent
to the category of finitely generated modules over a certain Hecke algebra H [Yos83]. Corollary 5.20
then applies to compute

G(H) = K(C) = G(FP(R)) = @ G(R[Cppn-i]).
=0

Example 5.25. Let R be the C),-Green functor given by the Lewis diagram
Fplt]/(t?)
Ll
Fp

triv

with restriction and transfer obtained from the Burnside Cj,-Green functor by base-changing along
Z — Fp,. Then the category of R-modules may be identified with the category of C),-Mackey functor
objects in F),-vector spaces. There is a map R — F,, and modules over F, may be identified with
the full subcategory of the category of R-modules spanned by those which are cohomological.

Now ®»R = [F,, so that R visibly satisfies the hypothesis of Theorem 5.19. In particular, we
have an equivalence

G(R) = G(Fp) ® G(Fp[Cy]) = G(Fp).

Thus there is no G-theory obstruction to a Morita equivalence between R and F,. Despite this, it
seems like R and F, are most likely not Morita equivalent.

5.2. Towards K-theory. In [Gre92], Greenlees proves that a version of the Greenlees-May splitting
holds for the Ky-groups of some Green functors. In this section, we make a few remarks on extending
this sort of computation to more Green functors and higher algebraic K-groups. Similar to G-theory,
we organize these results around the desired behavior.
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Definition 5.26 (Greenlees—May splitting). Let R be a G-Green functor. If there is an equivalence
K(R) = P K(" (R)y[WeH,))
P

of K-theory spectra, then we say R satisfies the K -theory Greenlees—May splitting.

Remark 5.27. In the next section we show that not every Cs-Green functor satisfies the K-theory
Greenlees—May splitting.

One might hope to form a K-theory spectral sequence via a filtration on the exact category
of finite free R-modules with ¢-th filtered piece the subcategory of free R-modules F; with ¢ > ¢
(recalling that the subcategory of free modules is sufficient to compute all higher K-groups except
Kj). The issue with this approach is that it is unclear what the corresponding Verdier quotient is.

In spite of this, we are still able to establish a few cases of Greenlees—May splitting for K-theory.
We begin with the following well-known result.

Lemma 5.28. Let G act faithfully on a field F. Then the inclusion F¢ — Fy[G] is a Morita
equivalence.

Proof. We are in the situation of [CR81, Example 28.3|. In particular, the map Fy[G] — EndpcF
describing the left Fy[G] module structure on F is an isomorphism. O

In particular, the inclusion of Lemma 5.28 induces an equivalence on G-theory and K-theory
spectra. Of course, since every module over a field is free then relevant G- and K-theory spectra
are identical.

Proposition 5.29. Let k be a Cp-Green meadow of characteristic p such that C), acts nontrivially
on k(Cp/e). Then k satisfies the Greenlees-May splitting for K -theory.

Proof. The transfer is surjective, so that the Cj,-geometric fixed points vanish, and the Greenlees—May
splitting amounts to showing
K (k) ~ K(k(Cp/e)o[Cp)).

We will show that the category of k-modules is equivalent to the category of k(Cp/e)g[Cpl-modules.

If M is an k-module, we see from Lemma 5.28 that M (Cp/e) is (Cp-equivariantly) a direct sum of
copies of k(Cp/e). Frobenius reciprocity implies that the restriction in M is injective, and the double
coset formula implies furthermore that M is a fixed-point Mackey functor. Thus the right adjoint
FP from k(Cp/e)p|Cpl-modules to k-modules is essentially surjective. With this, both the adjunction
unit and the adjunction counit for FP are clearly isomorphisms, so that FP is an equivalence of
categories. ]

The next result could also be obtained using a recent result of Bouc—Dell’Amborgio—Martos
[BDM24, Theorem A].

Proposition 5.30. Let k be a G-Green meadow of characteristic either zero or coprime to |G|.
Then k satisfies the Greenlees—May splitting for K-theory.

Proof. The assumptions imply that k is fixed-point Green functor £ = FP(F) for some G-action on
an honest field F. The unit Z — F determines a map FP(Z) — k, so that every k-module is also a
FP(Z)-module, i.e. is cohomological. This, plus the characteristic assumption, implies that every
k-module is the fixed-point module associated to a k(G/e)p[G]-module. In particular, the functor

FP : k(G/e)g|G]—Mod — k—Mod

is an additive equivalence of categories which preserves separately the properties of being free (hence
projective) and of being finitely generated.
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The characteristic assumption and the fact that k£ is cohomological imply that all transfers in
k are surjective. In particular, whenever H # e, the H-geometric fixed-points of k vanish. Thus
the only nonzero term in the Greenlees—May splitting is K (k(G/e)g[G]), so that the equivalence of
K-theory spectra induced by FP implies the claim. O

In the course of the proof, we observed the following;:

Corollary 5.31. Let k be a G-Green meadow of characteristic either zero or coprime to |G|. Then
k is Morita equivalent to the twisted group ring k(G/e)g|G].

The authors expect the following to be true: if an H-Green functor R satisfies the Greenlees—May
splitting, then so does (the Green functor structure on the Mackey functor) Inng. Using [Wis25a,
Corollary BJ, a proof of this result amounts to establishing Morita equivalences of appropriate
twisted group rings. If, alternatively, the expected twisted group ring Morita equivalences failed to
hold, then induction would supply more cases of the failure of the Greenlees—May splitting.

6. K-THEORY COMPUTATIONS

In this section we give some explicit computations of K-theory and G-theory as the payoff of the
machinery developed in previous sections.

6.1. The K-theory of [F. In this subsection we consider the K-theory of the constant C3-Green
functor F2. Our main result is a consequence of a much more general observation.

Theorem 6.1. Let R be a Cyn-Green functor satisfying the hypotheses of Theorem 5.19 and assume
that the category of finitely generated R-modules has finite global projective dimension. Then we
have an equivalence

K(R) = @ G2 Ry[Cyn /C,y])
=0
of spectra.

Proof. The finite global projective dimension hypothesis implies, by the resolution theorem, the
equivalence K(R) ~ G(R) [Qui73, §4, Corollary 2]. The result then follows from the G-theory
splitting Theorem 5.19. O

Theorem 6.2. There is a splitting of K-theory spectra
K(Fy) = K(F2) ® K (F2)
in the stable homotopy category.

Proof. The Green functor Fy satisfies the hypotheses of Theorem 5.19 since all transfers are zero.
Additionally, by [DHM24, Proposition 3.10], we see that Theorem 6.1 applies, so that we obtain

K(Fz) = K(F2) ® G(F2[C2]).
Now F3[C5] is a local Artin ring with residue field Fa, which implies G(F2[Cs]) = K (F2). O

Corollary 6.3. The K-groups of Fy are given as follows.

A(CQ) n=>0
Ka(2) 24 (2/(2 — 1) n=2i-1
0 else.

In particular, Fo does not satisfy the Greenlees—May splitting for K-theory.
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Proof. The computation follows from Quillen’s computation of K, (F,) for all n > 0 [Qui72, Theorem
8(iii)]. To see that the Greenlees—May splitting for K-theory fails, observe that

Ki(F2) =0

whereas the right-hand side of the equation predicted by the Greenlees—May splitting has m
isomorphic to

K1(F2) © K1 (F2[Cs]) = K1 (F2[Ch).
Since K (F3[Cs]) = Z/2Z the Greenlees—May splitting must fail. O

Interestingly, the Greenlees—May splitting does hold after passing to Ky. In particular, Theo-
rem 4.11 implies Ko(F2) is the free abelian group generated by Fy and Indngg. These respectively
correspond to the generators for Ko(Fg) = Z and Ko(F2[C2]) = Z.

Remark 6.4. It is reasonable to wonder whether a similar approach could be used to compute the
K-theory of IF;, when G = C), for odd primes, or F; when G = Cj. This approach does not work as,
in either case, the relevant category of modules does not have finite global projective dimension,
and Theorem 6.1 does not apply.

6.2. The K-theory of Z. We recall one of the main results of [BSW17]. In particular, the following
is obtained from [BSW17, Theorem 1.6] by observing that the category of cohomological G-Mackey
functors is identified with the category of modules over Z, giving Z the trivial G-action.

Theorem 6.5 ([BSW17, Theorem 1.7]). The G-Green functor Z has finite global projective dimension
if and only if, for every odd prime p, the p-Sylow subgroups of G are cyclic, and the 2-Sylow subgroups
of G are cyclic or dihedral.

When p is odd, C)» satisfies the hypothesis of this theorem, although when p = 2, the theorem
applies only to Co, and not to Can for n > 1. Indeed, when G = Cy, it is observed in [BSW17] that
Z does not have finite global projective dimension.

Corollary 6.6. Let G = Cpn. We have an equivalence
G(Z) ~ K(2)
of spectra. The spectral sequence of Corollary 5.1/ thus converges to the K-theory of Z.

The first statement of Corollary 6.6 is true for any G satisfying the hypotheses of [BSW17,
Theorem 1.6]. The second statement should be true, provided one constructs the necessary filtration
on G(R); see Remark 5.13.

Remark 6.7. The composite

Ab 2 7[G]-Mod 25 Z-Mod

is exact and preserves projectives. Moreover it is an exact section of the exact functor M — M(G/e).
In particular, we see that K (7Z) is a retract of K(Z), for any finite group G. Since the full computation
of K,,(Z) is an extremely difficult open problem, we should not expect to be able to compute all
K-groups of Z.

We can now state and prove Theorem B.
Theorem 6.8. Let G = Cyn for p a prime. There is a map
K(Z) — G(Z|Cpn])

which becomes an equivalence after applying p-completion and taking 2-connective covers. Precisely,
we have

T>2 (K(Z);\) =T>9 (G(Z[Cpn]);\) :
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Proof. By Corollary 6.6 we have an equivalence K(Z) = G(Z). We consider the finite filtration
of G(Z) supplied by Proposition 5.12. Every associated graded piece, except for G(Z[Cpn]), is
equivalent to G(IF,[C,:]) for some 7 > 0. Since F,[C);] is a local Artin ring with residue field F, we
obtain G(F,[C,:]) = K (F,). By Quillen’s computation of the K-theory of finite fields [Qui72], we
have an identification
K (Fp);\ = HZ,,.

Since p-completion preserves cofiber sequences, p-completion of the G-theory tower of Proposition 5.12
becomes a tower for the p-completion G(Z) as it has finitely many nonzero associated graded pieces.
In the associated spectral sequence, we thus observe that all classes in topological degree at least 2 are
permanent cycles. The part of the Es-page in topological degree at least 2 is precisely the horizontal
zero line G;(Z[Cyn]) for i > 2. Thus the induced maps K;(Z) — G;(Z[Cyn]) are isomorphisms for
all i > 2, as desired. O

Now we specialize to the case G = ()}, and give some low degree computations before p-completion.
The C)-geometric fixed-points of Z are F), and G(FF,) = K(F,) since F,, is a field. There is no section
to the quotient Z — IF,,, so Theorem 5.19 does not apply. However, since the G-theory filtration
only has two nontrivial associated graded pieces, the G-theory spectral sequence is the same data as
the long exact sequence associated to the cofiber sequence

K(Fp) — K(Z) — G(Z[Cy))
from which some information may be extracted.
The decomposition of G of integral group rings was given by Keating in [Kea76]. A decomposition

for the G-groups of integral group rings Z[r|, for 7 abelian, was given by Webb [Web86]. In particular,
we have
Gu(Z[Cpl) = Gn(Z) ® Gn(Zlp™",(])

where ¢ is a primitive p-th root of unity. Since Z[(] is the ring of algebraic integers in Q(() it
is a Dedekind domain. In particular, it is hereditary (every submodule of a projective module
is projective), and since localizations of hereditary rings are hereditary, we see that Z[p~!,(] is
also hereditary. Since hereditary implies that global projective dimension is at most 1, Z[p~!, (] is
regular. Since Z is also regular we obtain

Gn(Z[Cp]) = Kn(Z)® Kn(Z[P_l][C])-

The long exact sequence induced by the G-theory filtration and our various identifications then
becomes a long exact of K-groups, by the miraculous fact that everything in sight has finite global
projective dimension:

o= Ki(Fp) = Ki(Z) — Ki(Z) ® Ki(Z[p~ ', ¢]) — Ki1(Fp) — ...
By examining low degrees we may deduce the following.
Proposition 6.9. Let G = C,,. Then we have an isomorphism
Ko(Z) =7 ® Ko(Z[p™,¢))
of abelian groups.

We note that a very special case of [TW95, Theorem 16.5] gives a classification of projective
Z-modules. Although this does not immediately yield a computation of Ky(Z), it could provide an
alternate path to proving Proposition 6.9.

Proof. In low degrees we obtain the exact sequence
Ko(Fp) = Ko(Z) — Ko(Z) @ Ko(Z[p~",¢]) — 0.
The map Ko(F,) — Ko(Z) is really the map
Go(Fp) = Go(Z)
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and is determined by what it does to the class of the projective Fj-module F,. Consider the
Z-module M which is F), in the C),/Cp-level and 0 in the C)/e-level; this has a finite free resolution

0—7Z—md$*Z — mdS"Z - Z — M — 0.

The resolution theorem identifying G-theory with K-theory implies that our map is given by sending
[F,) to [Z] — [IndS?Z) + [IndS" Z) — [Z] = 0. So Ko(Z) — Ko(Z)® Ko(Z[p~!,¢]) is an isomorphism. [

Example 6.10. The group Ko(Z[p~!,(]) is the quotient of Ko(Z[(]) by the projective modules
which vanish after p is inverted. The group Ky(Z[(]) is isomorphic to the direct sum of Z and
the ideal class group of the cyclotomic extension Q[¢]. In particular, when p < 23 the group
Ko(Z[p~*,¢]) is isomorphic to Z, so that Ko(Z) = Z2.

Finally, we turn our attention to K (Z). From the proof of Proposition 6.9 (and some identifications
of well-known K-theory groups), we obtain the exact sequence

0 = K(Z) = Ko(Z) ® K2(Zlp™",¢]) = Z/(p — 1)
— K1(Z) > Z/)2® K1(Z[p~',¢]) = Z — 0.
From Theorem 6.8 and our discussion so far, the following is immediate.

Proposition 6.11. For i > 1, the rank of K;(Z) is equal to the rank of K;(Z|Cpl). The rank of
K1(Z) is one less than the rank of K1(Z[p~*,(]).
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