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ALGEBRAIC K-THEORY
AND CRYSTALLINE COHOMOLOGY

by SPENCER BLOGH (1)
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INTRODUCTION

Let X be a smooth, projective variety defined over a perfect field k of charac-
teristic p ^ p o . Let W(A) be the ring ofWitt vectors on k, k an algebraic closure of k,
X^ the pull-back of X to k. Among the interesting (< cohomological invariants " asso-
ciated to X on has:

a) The/-adic (etale) cohomology H^(X^, Z/FZ) for i^p.
b) The j&-adic (crystalline) cohomology H^(X/W(A)).
c ) The Chow ring GH*(X) of algebraic cycles modulo rational equivalence.

These objects are not unrelated. For example, one has:
H^(X,, Z/rZ)^{r-torsion points in Pic(X,^)}(-i)

H^.is(X/W(^))^(Covariant) Dieudonne module of the ^-divisible group
associated to Pic(X^)

GH^X) ̂ -points in Pic(X^)},

where Pic(X^) denotes the Picard scheme ofX pulled back to the algebraic closure k
of A. Various results make it unlikely that group schemes exist in general playing the
role of the Picard scheme for degree > i. Barring that, one could ask whether there
exist abelian group-valued functors defined on the category (sch/^) (or perhaps (Artinian,
pointed sch/A)) whose closed points (resp. /-torsion points, resp. Dieudonne module)
compute GH*(X) (resp. H;,(X, Z/FZ), H:^(X/W)).

My hope is that the algebraic K-functors described by Quillen [24] will do the
job. More precisely, let J^ denote the Zariski sheaf on X associated to the presheaf:

Uh.K,(r(u,^)).
One knows (theorem of Quillen [24], cf. also [14], [5]) that IP(X, ^)^CIP(X).
The purpose of this paper is to establish a similar relation between the c( Dieudonne
modules95 of the functor H^X, ̂ ) and the piece of H^'-^X/W) with "slopes" s
satisfying j—^<_s<j. For reasons related to the present, far from complete, under-
standing of the K groups, we are forced to assume for much of the discussion that
dim X<^=char.^ and j&=t=2. Also we will have nothing to say about relations between
K-theory and ^-adic cohomology.

Given a functor:
F : (R-algebras) -> (ab.grps.)

for a commutative ring R, one defines the curves of length n on F, G^F, by:
C^Ke^Rm/Cr14-1)) -^F(R)).
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ALGEBRAIC K-THEORY AND CRYSTALLINE COHOMOLOGY 189

When the functor F comes equipped with a suitable transfer map structure, G^F is
in a natural way a module over the ring Big W^(R) of all Witt vectors of length n over R.
Moreover, the pro-system {G^F}^ has endomorphisms/^, v^ for all m^i satisfying
various familiar identities [8]. If, in addition, R is a Z^-algebra for some p {i.e. all
numbers i with ( I , p) = i are invertible in R), then Big W(R) is isomorphic to a product
of copies of the j&-Witt vectors W(R). The corresponding decomposition on C nF
yields the typical curves of length n on F, TG^F, together with endomorphisms f=f
and v == Vp. If R is a perfect field and F is pro-represented by a ̂ -divisible group over R,
Carrier has shown that TGF^HmTG^F is the covariant Dieudonne module of F.

n

We want to study the typical curves of the functors F1 defined on the category
of ^-algebras by:

FJ(A)=H^(X,xSpec(A),^).

A crucial observation, due to Katz, is that the process of taking typical curves commutes
with passage to cohomology, i.e.:

TG.FJ-H^X.TG^),

where TC^ denotes the sheaf of typical curves on K .̂ (actually our TG^jT. will
denote the part generated by < c symbols ". It seems likely that this is the whole
thing—one doesn't know). The interest is that the sheaves TG^ form a complex
(rf-dim^X):

TG,jfi ̂  TC,^ -> .. . -^ TG,JT, -> TG,jT, ̂ ,.

To simplify notation, write:

C^=TG^J^+i, G^the pro-system of sheaves {TG^+i}^.

The principal results are:

Theorem (o. i). — Let X be as above. Assume characteristic k==p^o,2 and dim^ X<j&.
Then the complex C^ mentioned above has the following properties:

(i) G^=W^, the sheaf of Witt vectors of length n studied by Serre [25]. C^=(o) for
^>dim^X and q<o.

(ii) Each G^ is a module over W^, and the differentials S9 : G^C^4-1 are W^(A) -linear,
8° is a YV'^-derivation.

(iii) Each pro-system C^^G^}^ has endomorphisms F, V with FV=VF=j^. F and V
have the expected linearity properties with regard to the W-module structure. The diagrams:

GI _8^ c3-1-1 G5 -^ G34'1

PV [ v |F |pF
^ + t ^

G? -8-> G34'1 G3 —s-^ C^1

189



^o S P E N C E R B L O C H

are commutative. In particular, there are endomorphisms y and i^ of C" given, respectively,
by j^F and j^x-^v on G .̂

(iv) £^A G; is built up by a finite number of successive extensions of coherent sheaves. In particular,
^(^ c^) ^ a W(k)-module of finite length for all q, n, and H*(U, C^)=(o) for UC X
^fc^ ^TZflf *>0.

(v) For any n, there is a canonical quasi-isomorphism of complexes C^lpC^Q.^, where 0.^
denotes the deRham complex.

(vi) Let H^(X/W)=^mH^(X/VVJ be the crystalline cohomology ([2], [3]) of
X/W(^), and write H*(X, G')=Hmir(X, G^).

n

There exists a canonical isomorphism'.

H^(X/W)^H*(X,G-).

Under this isomorphism, the action of frobenius on H^(X/W) is carried over to the action of
the endomorphism ^ described in (iii) on H*(X, G').

Using (vi) above and a standard cc Mittag-Loeffler 5) argument, one gets a spectral
sequence:

E^H^G^H^X/W)

which I call the slope spectral sequence.

Theorem (0.2). — Let X be as in (0.1) , and let Slope'H^g denote the filtration on
^ris(X/^0 induced by the slope spectral sequence. Let f denote the frobenius endomorphism.
The filtration Slope' H^g is stable under f, and we have:

(i) The action off on Slope^H^J^-torsion is divisible by p^
(ii) Slope^H^®^ is the greatest f-stable subspace of H^g®Q on which the slopes

are ^q.

Theorem (0.3). — Let X be smooth and proper over a perfect field k of characteristic ^+0,2,
and let s, t^o be integers with t<p. Then the group H^X, 0) /j&-torsion is a finitely generated
W(^) -module. The endomorphisms F, V described in (0 .1 ) (iii) give this group the structure
of a Dieudonne module.

Remark (0.4). — One would like for IP(X, Cf) to be finitely generated over
^^[[Xl]- ^is is the case when t==o, but not in general for t>o.

Theorem (0.5). — Let X be as in (0.1). Then the slope spectral sequence degenerates
up to torsion at E^.

The following application of these results was suggested by work of J. Milne.

Theorem (0.6). — Let X be as in (o. i). Write:

HL(X, <l,(i)),-(lmiH^(X, (v))®%,
n
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ALGEBRAIC K-THEORY AND CRYSTALLINE COHOMOLOGY 191

P"where H^ denotes cohomology in the flat topology, and (JLpn==Ker(G^-> G^). Then:

H^(X,^(l))^H^(X/W)^^={aGH^®%[/a=^a}.

All the above results are contained in section III. Section II exposes the rather
elaborate algebraic structure on the TGJ^ (differentials, transfer maps, W-module
structure, filtrations, etc.). The key result here is the following (11.8.2.4) (this notation
means II, § 8 (2.4)):

Theorem (0.7). — Let R be a local ring which is smooth {essentiellement lisse in the sense
of EGA) over a perfect field k of characteristic j^4=o,2. Let n, q^i be integers, and suppose
q^p. Define TO^K^(R) by the exact sequence:

o ->T^K,(R) ^TG»K,(R) -> TC»_,K,(R) -^o.

Then there is an exact sequence:

o^Q^-^Dr^T^K^-^^-'/Er^o,

where tip, denotes the exterior algebra on the Kdhler differentials t^, and D ,̂ E^C Q.^ are defined
by the inverse Cartier sequence:

o -^ °̂  ̂ im -> ̂ m -> o.
Section I is devoted to necessary preliminaries concerning K-theory, Witt vectors,

Chern classes of group representations, and crystalline cohomology. In particular,
in (1.3.2.3) we correct a mistake in [6]. For expository accounts of a number of these
topics, the reader is refered to the exposes of Berthelot and Illusie [3 bis], [21 bis],

I am indebted to B. Mazur for many helpful discussions on these and related
subjects. Certainly the idea of applying typical curves to K-theory was his. I want
to thank M. Stein and K. Dennis for their assistance in calculating the symbols. The
key ideas involving crystalline cohomology arose either in a course taught by P. Berthelot
at Princeton in 1973-74 or in private conversations with him. It is a pleasure to
acknowledge his aid and inspiration. Finally, I want to thank the referee for an
extremely careful and thorough job. Author (and reader) are in his debt.
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I. — PRELIMINARIES

i. PRELIMINARIES ON WITT VECTORS

i. References for this section are [8], [12], [31]. Let R be a commutative ring
with i. The group W(R) of Witt vectors is defined by:

W(R)=(I+TR[[T]])X.

Given P(T) e i +TR[[T]], we write co(P) to denote the corresponding element ofW(R).
The group structure on W(R) will be written additively:

(o(P.QJ==co(P)+co(QJ.

Any Pei+TR[[T]] can be written uniquely as a product:
P(T)=n(i-<T1)-1, <y=R

n^l

and the elements (^i, a^ ...) are called the Witt coordinates of co(P).
W(R) has a canonical descending filtration:

FiltnW(R)={l+^n+lR[[T]])x.
We write:

W^^^R^Filt^R^i+TRJ^

Elements in W^(R) correspond via the Witt coordinate map to Tz-tuples (^i, . . . ,^J
of elements of R, and:

W(R)^HmW,(R),

i.e. W(R) is separated and complete in the topology induced by the Filt^

Proposition (i. i). — There exists a unique structure of commutative ring on W(R) such that:
6)((I-^TW)- l).o)((I-&Tn)- l)=co((I-fln/r&w/rTmn/r)- r)

where r==g.c.d.(m, n). ieW(R) is represented by the power series (i—T)~1 .

Proof. — If coeW(R) has Witt coordinates (^5 a^, ...) we have:

<.=S(.((i-^T")-1).
n= 1

Note the infinite sum makes sense because of the topology on W(R), and it is canonical.
Since:

co((I-aTW)- l).o)((I-^»Tn)- l)EFiltmax(wl 'n)W(R)

we can extend the product to all pairs co, ci)'eW(R) by bilinearity.
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ALGEBRAIC K-THEORY AND CRYSTALLINE GOHOMOLOGY 193

If R->R' is an injection (resp. surjection) of rings, the induced map W(R) -^-W(R')
is also injective (resp. surjective). This is useful, for example, in checking the above
product satisfies the distributive laws. Using surjectivity one reduces to verifying the
identity when R=polynomial ring/Z. Then, using injectivity one replaces R by the
algebraic closure of its quotient field. Now we can write i—0^=== II (i—oc^T),
and the problem reduces to showing:

(o((I-<^T)-l)(o)((I-6T)-l)+(o((I-.T)-l))
=6)((I-^T)- l)+co((I-^T)- l).

This last identity follows easily from the observation that:
^((i-^-^.^PCr^^P^T)). Q..E.D

Note the filtration Filt'W(R) is not a ring filtration, i.e. Filt^Filt^Filt^
in general.

2. Definition (2.1).

For any ^i, let V^ : W(R) ->W(R) be the map V^P)^?^)).

Notice the map ^ : R[[T]] -> R[[T]], TH^ makes R[[T]] a free module of
rank n over itself. Thus there is defined a norm map <p^ : R^T]^ -> RI^T]^.

Definition (2.2). — Let F^ : W(R)->W(R) be the map induced by cp^. We
have:

F,co(P(T))= S ^(P^T^)).
^=1

Proposition (2.3). — (i) V^((i -aT^-^^^i -aT^)-1).
(ii) F,o)((I-^TW)- l)=co((I-<^n/rTW/r)-r), r==g.c.d.(^, n).
(iii) F^oV^== multiplication by n.
(iv) // (m,^)-i, V,oF,=F,oV,.
(v) If neZ, is a unit in R, then n is a unit in W(R).
(vi) If R is a Z IpZi-algebra, then V^oF —= multiplication by p.
(vii) F,oF,=F,,, V,oV,=V,,.

Proof. — (i) and (ii) follow from the definitions, (iii) is a standard property of
the norm map. (iv) and (vi) follow from (i) and (ii), and (v) follows from the binomial
theorem, i.e. (i-T^e-^ZCi/N]). Q.E.D.

Proposition (2.4). — (i) F^ : W(R)-^W(R) is a ring homomorphism.
(ii) V^ satisfies the identity o).VJco')=VJF^(o) .o/).
(iii) VJFilt^R)) crFilt^+^^R).
(iv) F^Filt ̂ V^R)) <= Filt ̂ (R).

Proof. — These assertions follow easily from (2.3).

193
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^4 S P E N C E R B L O G H

3. Recall the Mobius function [L is denned by

, \__ | ° n contains a square factor
[ (—i^ n=p^ . . .^, p, distinct primes

Proposition (3 .1 ) .— Let R be a Z^=Z -, n prime toj& -a^ra and let I(p) denote

the set of integers^ i not divisible by p. Let n== Z; ^V^. T^ TC is well-defined,n £ i(p) n
and is a projection operator on W(R). 7r(W(R))= fl Ker Fv / v v / / nei(p) n

n>l

Proof. — One sees from (2.3) (v) and (2.4) (iii) that n is well-defined. Recall
if k, m are relatively prime integers, one has:

S(i(Ar)=o.
r\m

Given mel(p), m>i, we compute:

•""-.̂ w.
= S S î F , F V V ,F ,Frei(p) nei(p) K r^rrV,v^r^^,

(ffi, n) - r

= s s ^V/F
r6i(p) nei(p) n "/r nmtr

(m, n)=r

-i ? ^A
(i;,OT)~l

= 2; -V,F^S^r)==o.
K R r\m

(fc,w)=l

The assertions of the proposition follow easily from this. Q.E.D.

Definition (3.2). —When Ris aZ^-algebra, we define W(P)(R)=7^(W(R)) C W(R),
where TT is the projection operator defined above.

In fact W^R) is a ring, and TT : W(R) -^W^R) is a ring homomorphism.
To see this, it is convenient to introduce the notion of ghost coordinates on W(R).

Definition (3.3). — The ghost map W(R) ^ II R is defined to be the
composite: °°
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ALGEBRAIC K-THEORY AND CRYSTALLINE COHOMOLOGY i^

T-log

W(R)s(I+TR[[T]])>< -^ TRCITj^nR
CO

T' //P ///T'

P(T) ^——p——; ^T^ [o, ..., o, na^ o, ...]

gh is clearly a homomorphism of abelian groups.

Proposition (3.4). — (i) gh is a ring homomorphism {for the product ring structure on II R).
CO

(ii) If R has no ^-torsion, gh ^ infective. If R is a ^algebra, gh ^ an isomorphism.
(iii) A^W(? R is a Z^-algebra, and let p : IIR-> IIR he the projection operator9.

oo oo

p(fli,^ •••)=(^i,o, ...,o,^,o, ...,^., ...).

Then the ghost map induces a morphism of projection operators gh : (W(R), rr) -> (IIR, p).
In other words, ̂  diagram'. oc

W(R) -^ np
00

" p

W(R) -gh^ np
^OWWM^J.

Proo/'. — (i) is the sort of universal assertion which it suffices to check for
R= algebraically closed field. The polynomials i+aT" factor into linear factors so
it suffices to check:

gh((o((I-^T)- l).co((I-iT)- l))=ghco((I-^T)- l).gh(o((I-6T)- l).

Note gh^^i—ffT)"1))^^ a2, a3, .. .), so the assertion amounts to:
(a, a2, a3, . . . ) ( & , b2, b\ . . .)=(^, a2 b\ . . .)

which is clear, (ii) is also pretty clear.
For (iii), we define operators ̂  ̂  on II R, %eN, as follows:

00

^(^1, ^5 - • •)==(0, . . ., 0, ^i, 0, . . ., 0, 7^2, . . . )

na^ appears as in-th coordinate.

y^a^ . . . )=(^,^n, • . . ) •
Using (2.3) (i), (ii), one checks that the diagrams:

W(R) —> np W(R) —> np
oo oo

v" ^n . Fn ^n
\ \ \ \

W(R) —> nR W(R) —^ np
^ o o x / gh oo

195



196 S P E N C E R B L O C H

commute. Thus one has a commutative square for R a Z, ^-algebra:

W(R) —> IIR

1 ^(n).. .a.-Z; ——y^o-^n
"ei(^) n

W(R) —> IIR
Let ^ell R be the element with m-th coordinate i and zeros elsewhere. We have:

oo

g^ie}^^ n divides m
n m 1 o otherwise

from which it follows easily (using S(Ji(rf)=o, m>i) that:
d\m

S ^^^f^=J^ w=powerof^
nei(p) 72 n n v w / [o otherwise

Thus S ^^o^=p, proving (iii).
n £ I(p) 72

Proposition (3.5). — £^ R ^ ^ Z^-algebra. Then W^R) ^ a ^6n^ of W(R)
(^ inclusion W^^R) -^W(R) ^ 720^ ^z^), ^rf the projection n : W(R) -^W^^R) z'j a
(unital) ring homomorphism.

Proof. — By universality, we may assume R has no Z-torsion, so the ghost map
is injective. We have:

W^(R)
0

W(R) -̂ -̂ > W(R)
n n

gh gh gh

IIR '"' > nRo —> Ker(i-p)

If co, o/eW^R) but (OCO'^W^^R) we would have:

o+gh(I--^:)(co(o')=(I-p)gh(co).gh((o /).

One checks easily that Ker(i-p) is a non-unital subring of IIR, so:
00

(i-p)gh(o))gh(co')==o,

a contradiction. The assertion that n is a ring homomorphism is proved similarly.
Notice that 7r(i) is the unit element in W^R).
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ALGEBRAIC K-THEORY AND CRYSTALLINE COHOMOLOGY 197

Proposition (3.6). — Let R be a Z^-algebra. There is an isomorphism of rings:

n W^(R) ̂  W(R)
nei(p)

(•••^n. • • • )n£ l (p)^ S ^V^COJn e i(p) ̂
w^A inverse:

n T T o F ^ : W(R) -> n W^(R).
new nei(p)

Proo/. — Let's check, for example, that for coeW^R):

nTroF^VJco))^, . . . ,0 ,0 ,0 , . . . )
m \'l J

where co appears in the n-th place. This is true because 7roV^=o for mel(p) (use
universality and (3.4) (iii)) so 7rF^V^==o unless m=n. Q.E.D.

4. Recall the Artin-Hasse exponential

(4.1) E(T)=exp( 2 T^/^EZ^EET]].
n=0

The fact that E(T) has ^-adically integral coefficients follows from the power series
expansion:

E(T)= n (i-T")-^
nei(p)

(For more details, see [12], chapter III, § i.)

Proposition (4.2). — Let R be a Z^-algebra, and view:

W(P)(R)=7^(W(R))CW(R)^(I+TR[[T]])X.

The correspondence:

[a^a^a^ . . . ) -> fi E(<P")
n==0

maps IIR bijectively onto W^^R) ^A^ ^ a bijection of sets, but it is not a homomorphism of
groups).

The coordinates (^, ̂ , . . . ) associated to an element coeW^R) are called
the Witt coordinates of co. The map gh : W^R) ->IIR deduced from the ghost map

00

on W(R) is given in terms of Witt coordinates by:

gh(^,^, . . . )=(gho,ghi, . . . )
where:

gh^^+^r'+.-.+^x-
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Proof. — Let's compute ^(^((i—aT^)""1))^^^. If y^=f=power of p, then
Ct)=V^co' for some n prime to ^ so TTCO^TCV^CO'^O. If m=^, (o=V^(o((i—<zT)~1)
and: 7^(o=V;7^(co((I-flT)-l))=:V;E(<^T)=E^TPr).

The rest of the argument is straightforward and is left for the reader.

Remarks (4.3). — (i) When R is a Z^-algebra, V==Vy and F=Fp commute
with the projection operator TT and hence induce endomorphisms V and F ofW^R).

(ii) W^R) has a descending filtration filt'W^R) defined by:
fil^W^R) ̂ V^W^R)).

In terms of Witt coordinates:
filt-W^R)^^, a^ . . . ) | a,==a,==. .. =^_,==o}.

The relation with the filtration filt'W(R) on " big Witt3) is given by:
fil^W^R) = ̂ (filt^R))

for any m, pn-l<^m<pn. W^(R) will denote W(p)(R)/filtnW(p)(R).

2. PRELIMINARIES ON ALGEBRAIC K-THEORY

i. Throughout this section, R will be a commutative ring with i, and q>_o an
integer. Let K^(R) denote the q-th algebraic K-functor as defined by Quillen ([24], [14]).
Actually, the more "naive93 description:
(1.1) K,(R)=7r,(Ko(R)xB^)

will be adequate. Recall that GL(R)==lim GL^(R) is the infinite general linear
n

group, B(^L(R) is its classifying space as in [14], and B^(R) is a certain H-space (in fact
an infinite loop space) with the following property:

(1.2) There is given a map p : BQJ^ -> BQL(R) which induces an isomorphism
on homology:

H.(B^(R),P^)^H,(B^(R),^)
for any local system ^ on B^/R).

Property (1.2) determines BQL(R) (up to homotopy) and it implies (via an obstruc-
tion theory argument) the following universal mapping property:

(1.3) Given a map B^^-^H where H is an H-space, there exists a map/4",
unique up to homotopy, making the diagram:

B^L(R) ——^ H

commute.
\, /"

°GL(R)
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In the cases of interest to us H=K(A, n) will be the Eilenberg-Maclane space
associated to some abelian group A (or, more generally, a complex A' of abelian groups)
and an integer n^i. In this case, we get:
O^) ^(/+) : K,(R) ^A=7r,(K(A,7z)).

The notation Ko(R, G) for a ring R and a group G will mean the Grothendieck
group of representations of G on finitely generated projective R-modules, with relations
given by short exact sequences of such. We will need a somewhat stronger universal
mapping property for B^ than (1.3). The following result is due to Quillen, the
statement here being from [14].

Theorem (1.5). — Let R. be a ring, and consider the two functors from spaces to abelian
groups:

X^Ko(R,7Ti(X))
Xh->[X,B^R)].

There is a morphism of functors:

7p Ko(R,^(.))-^[.,B^]

which has the following universal property: given any morphism of functors:

^: Ko(R,^(.))-^[.,H]

where H is an H-space, there exists a unique 4^ making the diagram below commute:

Ko(R,7r ,( . ) )——^ [.,H]
/

/^

[ ' 5 BQL(R)]

Corollary (1.6). — There is a canonical ring homomorphism:
u '' End^^(Ko(R, .)) -> [BGL(R),B^(R)].

Proof of (1.6). — Given aeEnd^^(Ko(R, T^.))), we get:

Ko(R^i(-)) -^ Ko(R,^(.))

^ ^

[•^GI^R)] ——————> [^KGI^R)]

Taking • == B^R) , define:

^(a) = ̂ .(Identity) E [B^(R), B^(R)].
The fact that u is a ring homomorphism is straightforward using the uniqueness and
functoriality of ^. O.E.D.
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2. We will use repeatedly the fact that © K (R) has a natural, associative, graded-
q^O

commutative, ring structure induced by tensor product (R commutative with i). To my
knowledge, two constructions of the multiplication have appeared in print (Gersten [15]
and Loday [32]) but no one has published a verification that the two structures coincide !
Loday checks that his ring structure coincides up to sign with the pairing:

K,(R)xK,(R)->K,(R)

defined by Milnor [30]. As this is a point of considerable import for us, we will adopt
his definition, sketched below:

Step 1. — Tensor product defines a map:

Y : BGL(R)XBQL(^ -> BQL(R).

Indeed, a map X ->B(^(^ is given up to homotopy by a representation TCi(X) -> GL^(R).
Let:

p,,,: GL,(R)xGLJR)^GL,,(R)

denote the tensor product of the projection representations. Let:
Pn,(.) (resp. p^J : GL,(R)xGLJR)->GL,JR)

denote the tensor product of projection on the first factor (resp. second factor) with
the trivial representation on R9^ (resp. R^). Let ^n),{m) denote the tensor product
of the trivial representations on R^ and R®^ Let cp^, 9^, <P(^, 9(n),(m). denote
the composite maps:

KGWR) X KGWR) -^——^ ^GWR) ——> KGI^R) ——> ^(R)-fPn,m
| P», ("») |
\P(n),m
\P(w), (w)/

Since B^(R) is an H-space, we can subtract homotopy classes of maps and define:

^n, m = ?n, m— 9(n), m— ?n, (w) + ̂ (n), (w) : ^GLn(R) x ^GL^(R) "̂  ^GL(R) •

The diagram:
R \/ T^ vn> m "R +
-"GWR) x ^GLmW ———^ ^GLtR)

^ / ^ n + l , w + l

BGLn+i(R)XBGL^,+i(R)

commutes up to homotopy so we can stabilize to get:

^ : BGL(R)XBGL(R) "-" BGL(R)-

Step 2. Lemma (2.1). — (B^xE^R^ ^B^(R)XB^(R).

Proof. — B^L(R)XB^(R) is an H-space, and the map:

-DGL(R) x •DGL(R) -> •DGL(R) x ^GL(R)

is an isomorphism on homology.
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Step 3. — The map ^ above induces a map:
"D+ * •D+ _. T3+
•"GLtR) A -"CUR) -> -OGHR) •

Indeed, by (2.1) we can extend ^ to a map:

^ : KGMR) X BGL(R) -^ ^(R) •

The map ̂  is homotopically trivial on B^(R)X{pt.} and {pt.}xB^(R), so ^
is trivial on B^(R)X{pt.} and {pt.}xB^, whence [L factors:

(2-2) ^ : S^AB^R)-^^.

This gives the ring structure on the higher K's. To get Ko, we use the fact that Ko(R)
acts on BQL(R) by tensor product (theorem of Quillen). Thus if we identify:

BGL(R)={ i }XB^(R)C KO(R)XB^(R),

pi extends to:
(i : (Ko(R)xB^(R))x(Ko(R)xB^)) ^KO(R)XB^(R).

3. Recall that Ki(R) DR*, the group of units in R. The ring structure on K,
gives a map:

(3.1) R*®. . .®R*—K,(R) .z z
n times

When n=2, a map (the symbol map):
R^R'-^K^R)

r®r '^{ r , r ' }

has been defined byMilnor [30]. In fact, Milnor defines a map iq(R)®Ki(R) -.K^R).

Lemma (3.2). — The Milnor map Ki(R)®Ki(R) -^(R) coincides with the multi-
plication defined by Loday up to a factor of — i.

Proof. — Loday [32], p. 43, proposition (2.2.3).

We will frequently ignore the sign problem and use symbol notation for the
multiplication R*® . . . ®R* -> K^(R), 7-1® . .. ®^ h> { / i , . . ., rj.

The following result is due to M. Stein [26].

Theorem (3.3). — (i) Assume R is semi-local and is additively generated by units (e.g., R
local). Then Kg(R) is generated by symbols.

(ii) Assume R local and let ICRadR be an ideal. Then:
K,(R, I)^Ker(K,(R) -> K,(R/I))

is generated by symbols { i + z , u}, iel, ueR*.
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4. The K functors are, of course, covariant for homomorphisms of rings; f : R->S
induces f* : K,(R) -> K^(S). If S admits a finite resolution by finitely generated pro-
jective R-modules, there is a transfer map:

/,: K,(S)-^K,(R)

([24], p. in) which preserves degrees and satisfies a projection formula (at least for
the Gersten product structure, (Gersten [15], (4.19))).

Theorem (4.1). — Let f:R->S be a ring homomorphism and assume S admits a finite
resolution by finitely generated projective ^-modules. Let reK^(R), j-eK.(S). Then:

f^-f\r))=f^s).r.

Since we have distinguished between the Gersten and Loday product structures,
we are morally obliged to at least sketch a proof valid in the Loday context. Happily,
we will only need the theorem for S a projective R-module of finite type. With this
restriction, one can proceed as follows: there are two maps which must be shown to
be equal:

f *X l U. f
a! : -"GI^I^ BGMS) ——> ^JGL(S)XBGL(S) ——> ^GL(S) ——> ^GL{R)

^2 : ^GL{R)^ BGL(S) ——> BQL(R)XBOL(R) —————————————> BQL(R).

Let V^, R9" (resp. W^, S9"1) denote the standard and trivial representations of GL^(R)
(resp. GL^(S)). We have a morphism of functors:

/,: Ko(S,^(.))^Ko(R,^(.)) ,

and hence can define:

^-/.(([V^RS]-^-®^])®^^]-^-]))

^-([V]-^^])^/^^]-^-])

in Ko(R, ^I(BG^(R) X BGL^(S)) ) •
As in (1.5), ^ gives rise to a map:

Pi : ^GLn(R) x ^GL^(S) "̂  BQL(R) .

One checks easily that this construction stabilizes. Passing to the plus construction,
(B, gives rise to the map a,. Note however that x-^=x^y so 01=02. Q^.E.D.

3. CHERN CLASSES FOR GROUP REPRESENTATIONS

i. Let M^===MQ©MI© ... be a graded-commutative ring (for the application
we shall have to consider a situation where each of the M, is a complex of abelian groups,
but let's keep things simple to begin). A theory of chern classes for group representations
on projective R-modules will be a rule assigning to a representation p : G -> Aut^(P)
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of an abstract group G on a finitely generated projective R-module P chern classes
^(p)eir(G, M,) (galois cohomology with G acting trivially on M,), z>o. The total
chern class ^(p) will be the power series:

^p)=I+^l(p)^2(p)^+...

Note © H^G, M^) is a commutative ring under cup product, so it makes sense to multiply

^(p).^(p') . We assume the following axioms:

(1 .1) (Functoriality) Given G'-^ G-^ Aut(P) we have ^(po/)^/^?).

(1.2) (Triviality) ^(triv.)==i, where triv. : G -> Aut(R) is the trivial repre-
sentation.

(1.3) (Additivity) Given G-^Aut(P), G^Aut(P'), ^ (p®p ' )==^(p) .^(p').

(1.4) (Multiplicativity) Given p : G — A u t ( P ) , p ' : G-> Aut(P'), we have:
^(p®p' )=^(p)x^(p ' ) ,

where X denotes multiplication in the sense of the X-ring structure on Z x © H^G, M .̂)
([i7], § 3).

a. Suppose given a theory of chern classes as above. Let ?„ ^ : GL^(R) <->- GL^(R),
m^n denote the natural maps:

/ \ /* °\
^-(o l)-

It follows from the axioms that ^(py^ ^) is independent of m, so we can write:

^PJ-^Pn,^ where p, : GL,(R) -> GL(R).
Also p^(^(pJ)=Pn so we have a class:

^(^^nm.^pJeHmnH^GL^R), M,̂ .

In sum, there are universal chern classes, denoted ^(Id), in HmH^GL^R), M^)
such that for any ^ : G->GL(R) factoring through some GL^(R), we have:

^)=^(Id)).

Consider the product of Eilenberg-Maclane spaces:
X=nK(M, ,K) .

n .̂1

The ^(Id) induce a map BQ^^-^X which can be factored as in (§ 2, (1.3)) to give:

(2.1) C-^-xrk : B^(R)XKo(R) -^XxMo
T^): K,(R)-^M,.

^3
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One might reasonably expect that the map:
rc^C4-) : K,(R) -. M,

is a homomorphism of rings (this expectation led the author to grief in [6]). The truth
of the matter is as follows:

Theorem (2.3). — Let 9=7r,(G+) : K,(R) -> M, and let ^eK^(R). Then:

^^•^^(^i^^)'!^

Corollary (2.4). — Let N ̂  2 6^ ̂  integer and suppose I e MQ for i <_ n <_ N — i. Let:

?n=((^^9n: ̂ ^""^ ^N-

TA^TZ ^f =Q)^ z'j- ^ y^ homomorphism on the truncated rings ® : © K (R) —^ © M
^ n^N n^N n

The corollary follows easily from (2.3).

Proof of (2.3). — Let S= n H\GL(R), MJ, T= n H^GU^xGUR), M,).
Y , .p »^1 1>1identity:

S ={o}xS C Z x S

T={o}xTCZxT.
Recall ZxS and ZxT are X-rings [17].

The map G+ : B^(R)->X corresponds to an element ceS which we can think
of (roughly) as the total chern class of the identity map GL(R)==GL(R). Similarly
G^iA : BOHR)XB(^)—^X corresponds to an element beT. Our assumption that the
theory of chern classes satisfies the formula for tensor products implies that:

b=p\[c).p^c^

multiplication taking place in the ideal T of the X-ring ZxT.
Let S'=jn[^(X,MJ, T'^n^XxX^M,). Again ZxS', ZxT' are X-rings

and the identity map X==X gives a class G'eS'. Let p [ * , p ^ : S'-^T' be induced
from the two projections. The class:

^==^').^')eT'CZxT'

corresponds to a map ^' : XxX-^X, and the diagram:
T?+ Y^+ tx . T?+
^GMR)^-1^!^) ——> -bGL(R)

C+ x C+ C+

XxX —l—^ X

commutes (up to homotopy).
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Noticet he class b' dies on Xx{pt.} and {pt.}xX, so (A' factors through a map
y.' : X A X —- X. Thus we get a homomorphism:

(i: : ^(X)®^(X)=M^®M,^7r^,(X)=M^^.

Everything now follows from:

Lemma (2.5). — Zgf ^eM^, p^eM^. 7 :̂

^-'-t^-^--
Proo/'. — Think of »„, (B^, as maps:

a,, : S" -> K(M^, re) ̂  X
(^: S»'^K(M,,;»)^X.

We want to understand the composition:

S»+'»= S"A S"-^ K(M», n) A K(M^, w)-> X A X ̂  X.

Since the projection X -> K(M^^,m+n) induces an isomorphism on ^+^, it suffices
to understand:

(2.6) S»+TO -> K(M,., n) A K(M^, m) ̂  X A X ̂  X -> K{M^, m+n).

Define (A^,, by the diagram:

K(M», »)xK(M^, m) -^ K(M^,, m+n)

/^ (2.6)

K(M^W)A'K(M,,OT)

Note (A^^ determines the arrow in (2.6) because:
H*(K(M^, n) A K(M^ m)) C H*(K(M», »)xK(M^, m)).

On the other hand, (!„, „ is determined by a cohomology class:
^,,.6H"+OT(K(M„, n)xK(M,, ^), M^J.

Thinking of K(M^, w)xK(M^, w) C XxX, ^ „ is the piece of degree n+m in
7 / j » <-»

(/ lK(Mn,n)xK(M^,w)-

Let Y^Y^eH^XxX^M,) correspond to the maps:

XxX-^X^^^M^i)

XXX-^X'^^^M^Z)

and think of b'==(b^b^ . . . ) with ^eH^XxX, MJ. Then:
^^p/-( l ) ^-v^ v^''n -"-nUl 5 • • • ? Tn 3 Tl ? • • • ? In Y
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where the P^ are certain universal polynomials associated to the X-ring structure [3 ter\.
Since:

Y^ | K(M», n) X K(M^, m) = ° z + 7Z

/Q\ , .

Yj I^Mn.^x^Mn,,^)'^0 ^ + TH,

we get:

^n+m K^^xK^n^m^^n+m^ • • •. Y^ °. • • • ; 0. • • ^ Y^ 0, . . .)

restricted to K(M^, 72)xK(M^, 772). By the computation in ([17], ( i . i8) ) :

P to Y^ • 0 V^ } — ~(y^+m~I)! (1) (2)^n+mW • • • ? Yn 5 • • • ? ^ • • • ? Ym» • • •)— ^__.^j ̂ _i\;^ •^•

Standard homotopy theory implies that:
^)•Y^|K(M„,n)xK(M.,.)^Hn+w(K(M„ n) X K(M,, 7^), M^J

induces a map K(M^, 72) A K(M^, 772) -^ K(M^_^^, 72+772) which is ring multiplication
M^®M^ -> 'M.n+m on homotopy. Thus the diagram:

K(M,, 72) A K(M,, m)——^K{M^^n+m)

, , — ( m + n — l ) !mult. by
tx' \ (m-l) ' . (n-l)!

K(M,^, 72+772)

commutes. This completes the proof of (2.5). Q^.E.D.

3. For our purposes, the principal example of a theory of chern classes for group
representations is the Hodge theory ([i8], § 6). Given p : G —^ GL^(R) we get:
(3.1) c^)eH\G,^)

where Q^ls t^:le exterior algebra on the R-module of absolute Kahler differentials ̂ /z •
We get corresponding maps:

(3.2) ^log: K,(R)-^/z

with d\og{u)==— for z/eR*CKi(R). From (2.3) above we get:

(3.3) rflQg{^ . . ., U^}={-ir-1 (72-1) i^A . . . A^.
u! ^-n

A key tool in the K-theoretic computations in II will be the theory of crystalline
chern classes constructed by Berthelot and Illusie [4]. Some details of this construction
are given in § 4 below. At this point let me just outline how the crystalline classes differ
from the Hodge classes. We suppose given a Z/^Z-algebra A and a flat lifting of A
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to an algebra B over Z/^Z for some fixed N. Let Qg denote the de Rham complex
of B and let (for given r^o) Fil^Og denote the subcomplex with:

(Fil^/=^-^B

where [r—^]== min (^—ordyTz!) for r^f, and [r— f]== o for ^>_r. In particular,
Fil^^g contains the "segment":

...-^^B"1^^^^4'1^...

Given p : G-> GL^(A), the crystalline chern classes lie in the group hypercohomology
of G acting (trivially) on Fil^Og:

^eH^G.Fil^).

In order to get maps on K-theory we proceed as follows (the author learned the argument
below from Illusie, who attributes it to Quillen [21]): Let K(2r, Fil^tig) denote the
Dold-Puppe construction applied to the complex ^o(Fil[ ^g[2rj). (IfG* is a complex,
G'[%] denotes the complex G^J^G^^ ^<oCT denotes the complex:

-^...-^C-^Z0-^-^..

The Dold-Puppe construction is given in [13].) The chern classes give maps:

(3.4) B^^K(2r,Fil^)

K,(A) "̂  7r,(K(2r, Fil^QB))=H,(Fil^^[2r])
^-(Fil^^r])
^H-^Fil^)
= "B. closed/^ "B-1-

The map:
crys-rflog : A*CKi(A) -> ^B. closed/^ B

is given by:

dV
u\->-^

u

where 2'eB* is any lifting of u. Note that if V is another lifting, 2'==?''(i4-^8) so:

dV dT dV
-^=-^+dlog{i+pS)=-^- (mod^B).

The graded group:

Ze©^. closed/^ ̂ B-
r — 1

forms a ring under wedge product of forms, and we have:
fi^ jr^

(3.5) crys-^log{^, . . ., ^}==(-i)-1 (%-i) i-^A . . . A-^.
^1 ^n

^7
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4. PRELIMINARIES ON CRYSTALLINE COHOMOLOGY

1. Let X be a smooth, projective variety over a perfect field k of characteristic
p^o. Let n>_i be an integer, S^==Spec(W^)). In addition let W^(^x) be the
Zariski sheaf of rings obtained by taking the p-Vfitt vectors of length n on 0^. We
will see below that X^=(X, W^((?x)) ls a scheme of finite type over &„.

The purpose of this section is to recall (in the briefest possible way) the ideas
involved in the crystalline topos (X/SJ^g and the crystalline cohomology H^g(X/SJ.
In particular, I want to:

a) Construct a map ^ : H^(X/SJ -> H*(X, ^xn/Sn,v) which will be the key
link between crystalline cohomology and the typical curves on K-theory. (The nota-
tion ^xn/Sn,y means ^e de Rham complex of X^/S^ with a certain compatibility with
divided powers imposed. See below.)

b) Sketch the construction, due to Berthelot and Illusie, of crystalline chern classes.
Indicate, in particular, the slight modification of their argument necessary to get chern
classes for group representations on projective modules as discussed in § 3.3.

The reader who does not swing with the crystalline topos might do well to accept a)
and b) above as established and move on to the next section.

2. Recall a site is a category with a topology, and a topos is the category of sheaves
(of sets) on a site [19]. If we work in a fixed universe U (universe is a notion from set
theory the meaning of which the author has never quite mastered, perhaps because
he doesn't plan to ever leave the universe he is in now). The notion of (7-topos can
be given a " coordinate free " definition as follows {op. cit.y IV, i ) ; it is a category E
with the properties:

a) E is closed under finite projective limits.
b) Direct sums indexed by an element of U are representable, disjoint and universal

in E.
c ) Equivalence relations in E are effective and universal (op. cit.y I, (10.10)).
d ) E admits a family of generators indexed by an element of U {op. cit.y I, (7.1)).

Here are some examples of topoi:

(2.1) The category of sheaves on a topological space X. That one was just to
fix ideas. Of more interest to us will be the following two examples:

(2.2) Let E be a topos, and G a group in E, i.e. G is an object ofE equipped with
a map pi : Gx G->G satisfying the usual group law^. A left action of G on an object F
of E is a map T : GxF->F satisfying the usual laws... The category whose objects
are objects of E together with a left action of G is a topos, the classifying topos for G,
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and is denoted B^. For example, if E is the category of sets (== sheaves on the one
point space) and G is an abstract group, then Bg is the category of G-sets.

To carry things one step further, let G be an abstract group and let E be any old
topos. A key property of topoi is that they have, themselves, a topology (the canonical
topology) and every sheaf for this topology is representable {i.e. is of the form
X [-> Hom^X, F) for some FeObE). Thus one can take the constant presheaf on E
with value G, and sheafify it to get a group object GeObE. The corresponding
classifying topos Eg will be denoted B^/E.

(2.3) The crystalline topos (X/SJpris [s]- This will be the category of sheaves
on a site Gris(X/SJ. An object of Cris(X/SJ will be a triple (U, T, S) with U C X
a Zariski open set, given as a closed subscheme of an S^-scheme T:

U<—^Tv
The Ideal ^ C 6^ defining U is equipped with a structure S of divided powers. Roughly
speaking, this means we are given maps of sets S^ : J^->^ for all m^o such that
< c S^^^^fml ". In other words the S^i) satisfy all the identities one would expect

from z^/w!, even though — may not be defined. It follows, for example, that ^ is
a Nilideal:

iP^p^ ^{^=0 (^.^r^0))-

Morphisms between objects in Gris(X/SJ are commutative square^:

U ^ T} i
U' ^-> T'

where the morphism T->T' is assumed compatible with the divided powers on ^ and ^ ' .
The most important example of a sheaf on Cris(X/SJ {i.e. an object in (X/SJcris)

is the structure sheaf ^x/Sn defined by:

^(U,T,S)=r(T,^).

^x/Sn co11121!1^ an Ideal -^x/Sn defined by:

^x/JU, T, 8)=r(T, Ker(^ ̂  ̂ )).

For r^i, ^^C^/g^ is defined to be the Subideal generated locally by all products
of sections S^'i). S^) ... 8^(4) with ^ +... + ̂  r.

209
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3. A morphism of topoi /: E-^E' is a triple {f^f\ 9) where /, : E->E' and
/* : E'—^E are functors, and:

<p : Hom^/^X'), Y) .^Hom^X',/,(Y))

is an isomorphism of bifunctors (in X' and Y). In other words, the pair (/*,/*) are
adjoint functors. Finally, we require that the functor/* commute with finite projective
limits. Here are some examples we will need.

(3.1) Given a morphism of schemes:

X'——^X

there is a morphism of topoi ^ : (X'/SJ^g -> (X/SJ,^. The construction of g,^
is conveniently described in several steps.

Step 1. — A representable object in (X/SJcris ls by definition a sheaf of the form:
(U, T, S) ^ Hom^^((U, T, 8), (Uo, To, §0))

for some fixed (Uo, To, §0). As is customary, we identify such a sheaf with the corres-
ponding object (Uo, To, So)" The sections of the sheaf ^g(Uo, To, §0) on an object
(U', T', 8')eGris(X7SJ are by definition the morphisms h : T'-^TQ such that the
diagram:

Sn

commutes, and such that h is compatible with the divided power structures on
Ker((!^-^) and Ker(^-^^u')- I{ U' $ ̂ (Ug), the space of sections over
(U', T', S') is empty.

Step 2. — For F'6(X'/SJ^. any sheaf, g^{T) is denned on an object (U, T, S)
by:

^,(F')(U, T, S)=Hom^^((U, T, 8),^is.(F'))

=Hom^s^,(^(U,T.8),F').

Step S. — For Fe(X/SJ^iB ^Y sheaf, one can write
F=lim (representable sheaves)
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and then define

^cris^11^1™ (^ris^P^^table sheaves)).

(3.2) Let (X/SJ^, denote the topos of sheaves for the Zariski topology on X.
There is a morphism of topoi u^ : (X/SJ^ -> (X/SJ^ defined by:

^(F)(U)=limF(U,T,S).
(U,T,8)

In other words, a section of u^(F) over U is a compatible family of sections of F,
one for each divided power thickening U->T. The reader familiar with the dictionary
between crystalline sheaves and connections may want to think of u^ as the horizontal
sections functor.

(3.3) We will need a number of morphisms of topoi related to the classifying
topos Be of a group G in a topos E (2.2). The forgetful morphism:

TC : B(^->E

is given by TT,(F)=F (forget the G-structure), and TT*(F)=GXF (with G acting by
multiplication on the left). The invariants morphism:

^ : SG-^E

is defined by F^(F)=subsheaf of G-invariant sections of F, and r^(F)==F, viewed
as a G-object with trivial action.

Finally, the terminology « classifying topos" can be explained as follows: Let F
be a G-object in E, with G acting (say) on the right. F is said to be a (right) torseur
under G if there exists a covering UX, of the final object e in E such that the pullback
F^X, is isomorphic to G^X, with G acting by right multiplication (all i).

Proposition (3.4). — Let T : E'-^E be a morphism of topoi. There exists a i — i corres-
pondence between (isomorphism classes of) torseurs under T^G) in E' and (isomorphism classes
of) morphisms p : E'-^B^ such that the diagram:

T^
E

commutes (up to given isomorphism of functors).

Proof (See SGA 4, expose IV, exercise 5.9). — Note F^(G)=G acting trivially
on itself. Let E(^ denote the object in B^ given by G acting by left multiplication on
itself. r^(G) acts on EQ (by multiplication on the right), and I claim EQ is a FS(G)-tor-
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seur. In fact EQ->^ is a covering of the final object in BQ (because of the identity
section e, this map is covering in E), and we have:

rS(G)xE^E^xE^
(^ h) ̂  (A, hg)

where G acts on the second factor in 1^(0) xE^ and G acts diagonally on E^xE^.
Given T : E'—^E, it remains to show that the assignment /I-^/*EQ defines an

equivalence of category between the category of morphisms of topoi E'-^BQ over E,
and the category of (right r^G^torseurs on E'. Given a torseur T' on E', we define
a functor:

f^, : (left G-objects in E)-^E'
T*(G)

/T*'(H)=T XT-(H)
^quotient^^xTxT^H) —> T'XT^H))

ps
where pi(g, t\ h)=={t\ h) and p^g-> t\ ^)==(^<§r3 gh). Notice this completely deter-
mines y^^. Indeed, for F'eE', the sheaf j^*(F') on BQ is given by:

/^(F')(H)=Hom^(H,/^(F/))=Hom^(^(H),F').

The verification that (f^',fT*) give a morphism of topoi E'—^B^ with the desired
properties is left for the reader. Q.E.D.

4. Let E be a topos, AeE an abelian group (i.e. an abelian group object in E).
By taking the right derived functors of the global sections functor Hom^, A) one can
define cohomology groups H*(E, A). Here are two examples.

(4.1) Let X/S^ be as above, and let ^x/Sn ^e tne crystalline structure sheaf
discussed in (2.3). Define:

H^(X/W(A)) =UmH*((X/SJcris, ̂ x/J.
n

The main result of Berthelot's thesis [3] is that H^g(X/W(A)) is a Weil cohomology
{i.e. satisfies Poincare duality, Klinneth formula, and the various other axioms necessary
to prove rationality of the Zeta function). Concisely said, H^g(X/W) is the j^-adic
cohomology theory for a smooth proper variety X.

(4.2) (Crystalline chern classes). — Let S be a scheme with p ^ ^ s nilpotent.
The big crystalline site CRIS(S) is the category whose objects are triples (X, Y, 8) where
X and Y are S-schemes with X->Y defined by an Ideal ^ with divided powers 8. A
morphism (X', Y', 8') -> (X, Y, 8) is a commutative diagram compatible with the
divided powers:

X' <—»- Y .• ')•X c_^Y-
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A covering IJ(X^, Y,, S^) -> (X, Y, 8) is a collection of maps with each X, Zariski open
in X and X == (J X^. The associated topos S^jg has a sheaf of rings 0^ ^ defined

^ ^CBJ^^-W0^ and we have ^SCEIS-^SCBZS. an Ideal with divided

powers.
In similar fashion one defines SZAR) the big topos of Zariski sheaves, and there

is a morphism (horizontal sections (3.2)) z/g : S^pjg —> S^^. Let G be a group in Sg^,
given as acting on a locally free (Pg-Module of finite type S. (We have in mind G==GL(r)
acting on (5^.) Berthelot and Illusie [4] construct chern classes for this representation
with:

^(^GH^/SC^^B^J.

Here B^/S^ig is viewed as a ringed topos with sheaf of rings ^g^g with trivial
G-action==^G/ScEis- ^Bo/Scais c ^/Scpis corresponds to J^ C Q^.

(4.3) (Crystalline chern classes for group representations). — Let G=GL(r)
acting on (9^ in (4.2), and let X be an S-scheme, H an abstract group. Suppose given
a locally free 0^-^tod\ile y of rank r, together with a representation p : H -> Aut(^').
These data define a GL(r)-torseur on Bg/X^R and hence a morphism:

BH/XZAR -> BOL^/X^R.

Let ^BH/(X/S)CETS : ̂ H/(X/S)cRig -^ BH/XZAR be the horizontal sections morphism. Pulling
back the above torseur, we get a commutative diagram of topoi:

Bn/(X/S)cRig ——> ^GL(r)I^CRlS

"BH/(X/S)CRIS "BGL(r)/ScBis

BH/XZAR ———————> BQH^/SZAR

In particular, the chern classes discussed in (4.2) can be pulled back to give classes:

,.(p) eH^BH^X/S^is, ̂ (x/ste)

where again Bg/(X/S)cRjg is viewed as a ringed topos with sheaf of rings ^(X/S)CMS wlt!1

trivial H-action.

(4.4) Let me show how, given the chern classes ^(p) described in (4.3), one deduces
the existence of crystalline chern classes as discussed in § 3.3. The first point is that
cohomology is the same whether computed in the big or little crystalline topos, so we
can think of:

^(p)eH2^(BH/(X/S)^,^(x/s)cns)•
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Now take S^Spec^Z/j^Z) for some fixed N. Let X=Spec(Ao) where AQ is a
Z/^Z-algebra, and let Y=Spec(A) where A is a Z/j^Z-algebra with A/^A^Ao,
so X <->> Y is a closed immersion. We get morphisms of topoi:

BH/(X/SL, -^ BH/(Y/S),, w BH/Y^ -^ (sets)

where r denotes the composite:

BH/Y,, -^ Y^ -^ (sets).

In the notation of derived categories:

^(p) eH^RF o R^BH/Y/S*O R^cns-(^x/s)).

To analyse the right hand side, we recall two further results of Berthelot-Illusie ([4],
formulas (1.3) and (1.2 .1)) :

(i) For any r^o, we have:

Rw(^x/s)-K^/s

where: K^y/s == ^BH/Y/S +^BH/Y/S
and the superscript [r] denotes the r-th divided power (2.3) of the ideal.

(ii) There is a natural map compatible with products:

^Bn/Y/S^Blt/Y/s) -> ^(^(^BH/Y/s)

where Fil^^y/s) denotes the complex of Zariski sheaves:

FiWY/S/^-^Y/S

discussed in § 3.3, and Fil^tig^Y/g) denotes the same complex viewed as a complex in
Bjg/(Y/S)^r with trivial H-action. We have now:

© H^RF o R^/y/s* o R^(<}x/s))

^©H2r(R^oR^Y/s*(K^))

^®H2r(R^(Fil^(^^)))

^©H^H, Filial).

(The final isomorphism holds because Y==SpecA is affine, and tiy/s ls a complex
of quasi-coherent sheaves. H^H, Fil^(^)) denotes the 2r-th hypercohomology of
the group H acting trivially on the de Rham complex Q^.) The corresponding chern
classes ^(p^H^H, Fil[p^) are the ones discussed in § 3.3.

5. Let X, S^ be as in § 4. i. It remains to construct the map:
j:: H:^(X/SJ->H-(X,^^^)

discussed in that section.
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Lemma (5.1). — Let R be a Z^ ^-algebra and let W^(R) be the ring of p-Witt vectors
of length n over R. Let f^R and let ^GW^(R) he any lifting off (i.e. g maps to f under the
natural map W^(R)-^—^ R). Write Rp W^(R)^ for the localizations with respect to the
multiplicative systems defined by powers off and g. Then:

W«(R,)^W«(R),.

Proof, — If g ' is another lifting off, we have ^'=^^+cl) where co^o, so g ' is
invertible in W^(R)y. It follows that W^(R)^ is independent of the choice ofg lifting/.
Taking g=={f, o, . . ., o) (Witt coordinates) and using the formula (valid in W^(R^)):

g-\{a^ . . ., a,)={a,f-\ a,f-^ . . ., ^/-pn-1),

the lemma follows easily.

Lemma (5.2). — Let R be a k-algebra of finite type, where k is a perfect field of charac-
teristic p. Then W^(R) is a W^(A) -algebra of finite type.

Proof. — Let x^y ..., x-^ generate R as a A-algebra and also as an R^" -module
(R^^A^I^eR}). Let SCW^(R) be the W^)-subalgebra generated by elements
of the form:

(o, ...,o,^,o, ..^o)==V\Xi)

3
for all z, j. The formula:

(^,0, ...,o).V^)=V^'.j/)

implies S 3 (o, .. ., o, R, *, . . . ,*) . But:
(^,...,0=SV-1^)

so S=W»(R). ' Q..E.D.

Corollary (5.3). — Let X be a scheme of finite type over a perfect field k. Then the ringed
space (X, W^(^x)) ls a scheme of finite type over W^(^).

Lemma (5.4). — Let X, ^, S^, Xy^ be as in § 4 .1. Then Xy^ is projectile over S^.

Proof. — By assumption X is projective. Let JS^ on X be an ample line bundle.
The map/h^(/,o, . . . ,o ) defines a homomorphism ^x^^Xn? so °^ ^uts to an J^
on X^. To show JS^ is ample, it suffices by ([20], III, (2.6.1)) to verify that for any
coherent sheaf ^ on X^, we have H^X^, .^JS^^^o) for 772 >o. (To apply
this criterion, we need to know that X^-> S^ is universally closed, and X^ is separated.
Glosedness is clear. For separation, note that T{U,Vf^{(P^))=='W^r(V,ffl^)), so the
intersection of two affines is affine.) Since X-^X^ is defined by a nilpotent Ideal,
y has a finite filtration such that the successive quotients ^/<^_i are 0^-M.odules.
Thus Hl(X„,(^/^_,)®^^w)=Hl(X,,(^/^_,)®^^m)=(o), assuming TTZ>O.
It follows that H^X^, ^'®^0w)=(o) so o% is ample as claimed. d.E.D.
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Now choose an embedding X^Y=P|^ for some N, so we have X^X^c^Y.
Let Dx(Y) denote the divided power envelope of X in Y ([3], I.s). This is a Y-sdieme
obtained by putting divided powers on the Ideal of X in Y in a universal way. We
obtain a diagram:

Dx(Y)

The morphism ^ : X^-> Dx(Y) arises from the universal nature of the divided powers
on Dx(Y), together with the fact that the Ideal V(^J defining X^X^ has divided
powers Y. Namely:

fym~l

^(V^^^——V^).
m\

Following Berthelot, we define a complex:
^iW^Y^Y/Sn (^/s»=de Rham complex)

to be essentially as written, except that relations of the sort:
d^x^d^^x^-^dxdy

are imposed (^e^; xeKer^->(P^; ^M=r-th divided power of x, viewed as an
element in Ker(^(Y) -> ^x))- A basic result of Berthelot ([3], V, (2.3.2)) is:

H^(X/WJ^H^(X, ^(Y)®^"Y).
We now easily prove:

Proposition (5.5). — There is a canonical map:

^: H^(X/WJ->H-(X,^Sn,.),
w^r<? ^x^Sn,y ^7^0^J ^e de Rham complex with compatibilities like:

d^m\x)dy)=^m-l\x)dxdy

imposed, j^ : H^(X^) -> H^X, ̂ x) ^ ^ jteTz^r^ identification, and for m^n the
diagram below commutes:

H:,,,(X/WJ -^ H*(X,Q^,.)

H:ri,(X/WJ -^ H*(X,0^^)

,3-?6
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Proof. — We simply compose:

H:,s(X/WJ^H-(X, ^(Y)®^J A, H*(X, ̂ /snj.

To see that this map is canonical, suppose we have another embedding X^-^Y'.
Replacing Y' by Y' X Y we may assume given a diagram:

Sn

X^——-Y'

and hence:

Dx(Y)

The desired independence from the choice ofY follows from the commutative diagram:

, H*(^,)®Qy,)

^ f V

H:,,(X/WJ H'(X, ^Xn/S^y)

^
H-(^Y)®^Y)

Q..E.D.
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II. — LOCAL STRUCTURE OF TYPICAL CURVES

i. CURVES ON K,. GENERALITIES

i. Let R be a commutative ring with i, T a variable, and m, q integers ^o. We
write R^=R[T]/(T'»+1) and R<»=R[[T]]. Define the curves of length m on Kg:
(1.1) C^(R)=Ker(K,(RJ ̂  K,(R)) i^m^.

Define a decreasing filtration filt* G^K,(R) by the'exact sequences:
(1.2) o -> filt" G^K,(R) -> G,K,(R) -> C,.K,(R).

Thus filt°=G^K, and filt'»=(o).
We will be particularly interested in the subgroup:

SG»K,(R)CG»K,(R)

generated by symbols. More precisely, define:
(1.3) SC^K,(R)=G^K,(R)n{R,®.. .®R*,}CK,(RJ

where { } denotes the multiplication in K-theory. Alternately:
(1.4) SCJ^(R)={(i+TRJ*®...®R:JCK,(R,).

The reader can check that the two descriptions (1.3) and (1.4) coincide. (Use the
fact that K^RJ-^Kg(R) is split.) There is an induced filtration filt'SG^K^(R)
and exact sequences for n<_m\

o -> filt- SC,K,(R) -> SG,K,(R) -> SG,K, -> o.

Finally, define GK^(R) -== lim CJ^(R), SCK^(R) ==HmSG^Kg(R). An immediate
consequence of (1.2.3.3) is:

Proposition (1.5). — Let R be a local ring. Then SC^K^(R)=C^K^(R) for
y^2. Moreover fih^C^K^R) is generated by symbols'.

{i+T^^}, ^R^ beR^

I would conjecture that an analogous result should be true also for y>2. (*)

(*) Added in proof : Recent results of Keune suggest that the conjecture is false, even for q = 3.
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2. Let R be a commutative ring with i, and let R^ be as above. Given an integer
n^.i, define:

Pn : ^m-^^n+n-l (rCSp. (̂  : R^ -> RJ

PnlR-lR, ^(T)^.

Note that ^ makes R^+^_i a free R^-module of rank n, so we have maps (I, § 2, 4) :

K,(RJ^K,(R^_,).

The diagrams:

K,(RJ-^K,(R,^,_,)

\ /
K,(R)

K,(R»»+«-i) ̂  K,(RJ

K,(R) ——^ K,(R)

are commutative. Indeed, the upper one is clear and the lower follows easily from
the projection formula (I, § 2 (4.1)). We denote by V,,, ?„ the induced maps:

(2.1) ^ C»]W-^C!"."+»-1K.(R) (resp. ¥„: K,(R)^C^)
^ : C^^_,K,(R)^G^K,(R) (resp. F« : G,K,(R)^->)

In terms of symbols when ^=2, for example, we have:
VJP(T), Q(T)} ={P(T»), Q(T»)}, P, QeR:,

(2.2)
FJP(T), Q(T»)}={^n^P(^T1/"), Q(T)}.

The second formula follows from (1.2.4.1) and the fact that (pn,(P(T))= II P^T1^)
where P(T)eKi(RJ. The action of F^ on a general symbol {P(T), Q/Tf^is more
difficult to describe.

Proposition (2.3). — For integers m<_r<_oo, the diagrams:

G,.^_,K,(R) —> C^,,_,K,(R)

C,K,(R) C»K,(R)
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G^,^_iK^(R) —> G^^_iKg(R)

G,K,(R) C,K,(R)
commute.

Proof. — The lower square commutes by functoriality. For the upper square,
we can apply the lemma below to the cocartesian diagram of rings:

Rnr +n-l ^m+n-1 ̂  ̂ r+n-l^R^m

R. R.

Lemma (2.4). — Suppose given rings A, B, G, and ring homomorphisms 9 : A->B,
4' : A->C. Assume B (viewed as an A-module via 9) is finitely generated and projective. Then
the diagram:

K,(B) -^ K,(BO^G)

Vc*

^
K,(A) -^ K,(G)

is commutative.

Proof. — Note B®^C is a finitely generated projective G-module so (pc* ls defined.
With notation as in (I, § 2, i), it follows from the discussion there that a morphism of
functors:

Ko(B, . ) -^Ko(G, . )

gives rise to a map K^(B) -> K^(G) for all q. We thus reduce to verifying that the
diagram:

Ko(B, .) -^ Ko(B®^C, .)

^
Ko(A, .) -^ Ko(G, .)
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commutes. This in turn is a consequence of the canonical isomorphism of G-modules,
valid for any B-module M:

M®^C^M®B(B®^C). Q.E.D.

Corollary (2.5). — V^, F^ induce maps:

C^(R)^C^_,K,(R).
^n

Proposition (2.6). — The maps V^, F^ ĵ '̂  the following relations:
(i) F^oV^= multiplication by n.
fii) V oV —V • F oF — F\ 1 1 } yt n° " m — v nm9 - ' -n 0 1^—^nW

It seems quite likely that the following relations hold as well. We will verify
them explicitly later in the cases where we need them:

(iii) If [m,n)=i then V,oF,=F,oV,.
(iv) If characteristic R=^, then Vp o Fp = multiplication by p.

2. THE MODULE STRUCTURE ON C^K^(R)

i. Let R be commutative with i and let R^== R^]/^4'1). For m^o an integer,
define a category Fil^Nil(R) by taking as objects pairs (P, g) with P a finitely generated
projective R-module, and g : P->P an R-linear endomorphism satisfying gm+l=o.
Morphisms 9 : (P, g) -. (Q, h) are R-linear maps y : P—Q satisfying < p o ^ = = A o < p .
Fil^Nil(R) is an exact category in the sense of Quillen [24], as is:

Nil(R)=limFil^Nil(R).

Let ^(RJ denote the category of finitely generated projective R^modules. For
an R-algebra A, we have a (< bilinear functor 5 ? :
(1 .1 ) F : ^(RJ x Fil^ Nil(A) -> ̂ (A)

(M,(P^))^M®^(P,^)

where ®^(P, g) means ®^P with teR^ acting via g on P. For m>_ n there are
inclusions Fil^ Nil A ̂ > Fil^ Nil A and restrictions ^(RJ -^ ̂ (RJ giving commutative
diagrams:

^(RJxFil^NilA
r x 1 ̂ ^^^ ^S. F

(1.2) ^(RJxFil^NilA ^(A)

IX. N^ /F

^^(RJxFil^NilA

22^
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A (< bilinear functor " on exact categories leads to a pairing on the K-groups [15].
The full force of this pairing applied to ( i . i) should enable one to define a graded ring
structure on © G^K^(R), but we will consider only the pairings:

(1.3) K,(RJxKo(Fil^NilA) ̂  K,(A)

and in the limit:

<-' w^S)-^-
2. Classically, one constructs a homomorphism:

(2 .1) a : K^(A[T, T-1]) -> Ko(Nil A)/Ko(Filo Nil A)

as follows ([33], p. 656): an element ^eK.i can be interpreted as a class of automorphisms
over the ring from which we choose a representative:

^ : ©A[T,T-1] -^> ®A[T,T-1].

Multiplying if necessary by a power of T, we can assume the matrix of ^ does not
involve T~1. Then ^ lifts to an endomorphism ^ of (BA[T]. One checks that the

quotient (®A[T])/Image ^=P is a finitely generated projective A-module with a
nilpotent endomorphism g {g== multiplication by T), and that the class of (P, g) in
Ko(Nil A)/Ko(Filo Nil A) is independent of the various choices.

Now consider the case A==R^. We have an R-algebra homomorphism:
/: R,->R,[T,T-1], f(t)=tT-1

and hence a map on K-groups:
9.F: K,(RJ->Ko(NilRJ/K,(RJ.

It is clear that Ki(R) C Ki(RJ lies in the kernel of Sof*, so we get finally:

(2.2) Oof- : CA(R) =W,(R) -. Ko(Nil RJ/Ko(Rn).

Together with (1.4), this yields a pairing:
(2.3) CK,(R)xWJR)^G,K,(R)

and in the limit (using the fact that (1.4) is functorial in A):

(2.4) CK,(R)xW(R) ̂  CK,(R).

We will show that the action of W(R) on CKp(R) defined by -< > gives CKy(R)
the structure of a W(R)-module.

3. Lemma (3.1). — Let reR, and let co==(i—r^)eW(R). The map:
< , c o > : CK,(R)->GK,(R)

is induced by the map of ^.-algebras R^—^R^, t\->rt.
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Proof. — The element /•coeK^R^T, T-1]) is represented by:

R"^ T-l] ̂  w T-1]
so the class of a/'to in Ko(Nil RJ/Kg(R) is given by the pair:

(RJT]/(T-rt), mult. by T)=(P, g).

Thus the endomorphism < , a> is induced by the endomorphism on the level of categories:
^(RJ -> ̂ (RJ, M h> M®R,(P, ^) = M®aJRn, mult. by rt).

The assertion is now clear. 0 F D

Recall we have maps V,,, F» : CKy(R) -^ CKp(R) induced respectively by the
maps Vn'^m-^^nm+n-D <?nW=t't, and the transfer on K-theory associated to the <p
On W(R)=CKi(R), VJi-rt)=(i-rt»).

Z^OTOTa (3.a). — For aeCKy(R) we have:

<a,(i-rt»)>=V««F^a,(i-rt)».

Proof. — Let MeOb^(R^^^_,) for some m. The lemma follows from the
chain of isomorphisms:

(i)
^^.^(^n+n-im/^-O, T)

(2)

^n.(M)®RjR,^_,[T:l/(T--rt»), T)
(3) (4)

^(M)®^(RJT]/(T-rt), T)®^R^^_,.

The tensor products labeled (i), (2), and (3) are taken with the module structure on
the right obtained by letting t act on R?[TJ/(...) by multiplication by T. Tensor
product (4) is taken with respect to the standard R^-module structure on R^[T]/(T—rt).
The left and right hand sides of the above correspond respectively to the maps:

< ,( i-0>: CK^(R) -> CKp(R)
V«o< , (i-rt)>oF,. : CKp(R) ^CKp(R).

This completes the proof. 0 E D

Lemma (3.3). — For aeCKy(R), we have:

<V^a, (i-rt)>=V^<a, (i-r»<)>.

Pr<. — Let Me^(RJ. The map < , (i-rt)>oV^ is given on the level of
modules by:

MKM®^R^^_,®^^_JR^^_,[T]/(T-rt), T)

III
M®BjR^+«_JT]/(T-rt),T").
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The map V^o< , ( i—r^) ) is given by:
(1) (2)

M®K.(RJT]/(T-r^), T)®^R^_,

^M^R^R^^.^T]/^-^^, T)
(i)

where ® is with respect to the R^-module structure on R^[T]/(T—^t) given by
(2)

•t= multiplication by T, and ® is with respect to the natural R^-module structure
on RJT]/(T—r^). The lemma follows. Q,.E.D.

Lemma (3.4). — Let 9 : R—^R' be a ring homomorphism making R' a finitely generated
projective R-module. The transfer in Y^-theory induces maps 9, : CKp(R') ->GKy(R). We
have:

(i) ?*ovn=vno?*•

(ii) For O)GW(R'), aeCK^(R), 9,<co, 9+a>-<9^, a>.

(iii) For oeW(R), aeGK,(R'), 9,<^co, a> ==<o), y,a>.

Proq/'. — (i) follows from (§ i (2.4)). For (ii), we have first a commutative diagram
(notation as in (2 .2 ) ) :

W,(R') -^> K,(R,[T,T-1]) -^ Ko(NilR,)/Ko(R,)

<?* <p*

W«(R) Ki(RJT,T-1]) Ko(NilRJ/Ko(RJ

Using this, one reduces (ii) to the projection formula for tensor products of modules.
Namely, for Me^(RJ and (P, ^)eNil(R^), there exists a canonical isomorphism of
R^-modules:

M®^(P,^)^M®^R,^(P,^).

The proof of (iii) is similar, and is omitted. Q^.E.D.

Theorem (3.5). — The pairing:
W(R)xCKp(R)-^CK,(R)

(co, <x)H—<a, o>>

induces a W(R)-module structure on CKp(R). We have the <( projection formula^[:
V^.a=VJ<o.F^)
(o.V,a=V^a).a).

For p=o, the pairing coincides with the ring structure on W(R).
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Proof. — The pairing has been denned, and the first projection formula for
<d=(i-rt) follows from (3.2). If (•^(i-r^VJi-r^V,^,) for <og=(i-rt),
we get:

V« <o. a =V^o. ̂ V^(co,. F^a) =V,.VA. F,F«a)

^V«(V^(Oo.F«a)=V,(o).F^).

Notice in particular that (i -rt*"). aeKer(CKp(R) -^ C^_iKp(R)). Since any coeW(R)
can be written as an infinite product:

"= n (i-^r),
m, ̂  l

the first projection formula follows by linearity.
The second projection formula for ^=={i—rt) is the content of (3.3). Suppose

o,=(i-^). Let R'^R^j^-r), let ^eR' be the image of X, and let <p : R^R'
be the structure map. Writing <Oo==(i—^)eW(R'), we have (o==cp,(0o.

Now using (3.3) and (3.4) we get:

(o.V^a==9,cOo.V^a=9,(o)o.V^*a)=9,V^(F^o.9*a)

-YnP^Fn^oV^V^F^.a).

One checks from the formulas that <p*F^o)o=(p,(i-^)=F^co. The second projection
formula for a general G) follows by linearity and continuity.

It remains to show the pairing (co, a) -> -—<co, a> gives a module structure, z.<?.
that the map:

W(R)-^End(CK,(R))

is a ring homomorphism. For elements (OQ = (i — rt) -1 and coi = (i — ̂ ) -x, the product
in W(R) is Uo.^=={i—rst)~1 and multiplicativity follows from (3.1). Consider
next coo.V^coi.a and V^coo.coi.a:

^o-(V^coi.a)=(Oo.VJ(Oi.F,a)=VJF^6)o.(^.F^a))

^^((^^o-^.Fm^^VJF^coo.^.a^^o.V^^.a

V,cOo.(coi.a)=VJ(Oo.FJco,.a))^^^^VJ^^

=V^((cOo.F^(Oi).F^a)==(V^coo.(Oi).a.

The case V^coo.V^coi.a is similar, and is left for the reader. Q.E.D.

Remark (3.6). — We will be most interested in the subgroup SCK^(R) generated
by symbols. This subgroup is clearly stable under the operations V^ and under multi-
plication by elements (I—^)- leW(R). To verify for a particular R that SCKp(R)
is a W(R)-module, it suffices, by (§ 3 (5.1)), to show stability under F^. This will
be checked for R local in § 5 ( i . i ) .
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Proposition (3 .7) .—Let (oeW(R), aeCKp(R), and let n>_i be aninteger. Then
F,(o).a)=F,(co).FJa).

Proof. — By specialization and linearity we reduce to the case R==S[r], r an
independent variable, and (o^i—rF1)"1. Using the fact that the K-theory of a poly-
nomial ring injects in the K-theory of the Laurent ring, we reduce to the case reR.X.

Let R^R^J^X^-r), write xeR' for the image of X, and let i : R^R'
be the natural map. Fix q^i and let cp^ : R^_^->R^_i be the map t}-^^. The
squares in the diagram below are cocartesian:

R<'qn— 1
-n / ==s, -D '
^qn-l t\-^xt ^qn-l

7^ R^-l

so by ( § i (2.4)) we get a commutative diagram of K-groups:

R-q-l ^-i

K,(R,.-i) -^ K,(R;,_,) ̂  K,(R^_,) -^ K,(R,,_,)

Fn F» Fn Fn

K,(R,-,) —— K,(R;_,) ^ K,(R;_,) -^ K,(R,_,)

Using the projection formula (3.4) (ii), the top and bottom horizontal arrows are
multiplication by co=^( i—x t )~ 1 and F^co=^( i—x n t )~ l respectively. Q.E.D.

3. COMPUTATION OF SC^K,(R)

i. As before, we fix a ring R and an integer q^i. Define 0^=<I)^K^(R) by
the exact sequence:

o -> O,^ SC,K,(R) -> SC,_,K,(R) -> o.

The purpose of this section is to begin the computation of 0^ for R a smooth, local
^-algebra, k a perfect field of characteristic j^=j=o,2.

Proposition ( 1 . 1 ) . — Viewing T as an element of K.^RooET"1]), the product structure
on K^ gives a map:

•T: K^ET-^K^R.IT-1]).
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Assuming R is regular and local, there is an induced map:

227

SG«K,(R) —> SC,K,^(R).

Proof. — Let i : R-^R^ be the natural map. The localization sequence ([24],
(3.2)):

... -> K,(RJ -^ K,(R,[T-1]) -> K,_i(R) -> K,_,(RJ -> ...

breaks into split exact 3-term sequences:

( 1 . 1 . 1 ) o^K^RJ^K^R^T-1])^]^)^,
8

the splitting being given by s(x)=i*(x) .T. In fact, for any ring A, let H^= category
of A-modules which admit a finite resolution by finitely generated projecdves. For
S C A a multiplicative monoid of central non-zero divisors, let H^ g C H^ be the sub-
category of modules M such that M®^^-1]:^). The sequence of spaces:

BQH^g -> BQH^ -> BQH^

is a homotopy fibration [15 bis]. In our case, tensor product induces a diagram of
fibrations [15]:

Nil(Z) A BQ^(R) —> BQHqT]ABQ^(R) BQHzp,,T->]ABQ^(R)

SQHRoo.T BQH
^"00 SQPlUT-^

whence a diagram of homotopy groups:

,x.(T)

827



228 S P E N C E R B L O C H

Returning to (1 .1 .1) , we see in particular that SC^K^^C K^i(R^[T~1]).
To prove (1.1), it suffices to show T.SG^K^(R) C SG^K^(R). SG^Kg(R) is
generated by symbols {^, . . . ,A:J with x,eR^ and ^ei+TR^ (§ i, i). Using
the fact that R is local, one checks easily that at least one of the elements x^y (i—T)^
has the form i —Tu for ueR^. Using the Steinberg identity {T, I—T}=I , we have,
computing in K^+i(R<JT-1]):

{T,A:i, . . . ,^}={T, ( i—T) x^ x^ . . . ,^}={T, i—T^,^, . . . ,^}
={u-\i-Tu,x^ ...,^}eSC,K^(R). Q.E.D.

Remark (1.2). — It will be convenient to view {T, ̂ , . . ., x } as a element in
SG^K^4.i(R) for yz<oo. This is really an abuse of notation in that x\->i in R^ does
not for example imply {T,x}==i in C^K^R).

Proposition (1.3). — Assume R regular local, i/2eR, and n<oo. Then SC^K (R)
is generated by symbols:

{^ r^ . . ., ^_J and {x, T, r^ . . ., r^.g}

w^A A:ei+TR^, r,eRX.

Proof. — We have {T, T}=={T, —i}, so if suffices to prove the assertion for
q = 2. We proceed by induction on n, the case n = o being trivial. Using (1.2.3.3),
we see that O^K^R) is generated by symbols {i+rT^A:}, reR, xeR^. Similarly:

Tangent K,(RJ^Ker(K,(RJs]/(^)) ̂  K,(RJ)

is generated by symbols {i-}-be,a}, AeRy,, aeR^. Therefore we get a surjection:

(i. 3. i) Tangent K,(RJ ^^<D,K,(R).

The following is due to Van der Kallen [27].

Lemma (1 .4) . — Let A be a commutative ring with i /2 eA. Then Tangent Kg(A) ̂  Q^,
the module of absolute Kdhler differentials of A. The isomorphism is given explicitly for A generated
additively by units, by:

b—[->{i+bz, a} aeAX, beA.

For our application, notice:

^^(^®Z[T]/(Tn+l))e(R®^]/(T-l)).

It follows that Tangent Kg (RJ is generated by symbols:

{ i+^,r} , beR^ reRX

and: { i+^s , I—T}.
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The map R^[s]-^R^, ch^T" sends Tsh-^o, so the surjection (1.3.1) shows that
O^K^R) is generated by symbols:

{i+sT^r} and { i + ^ T ^ i — T } seR, reRX.

Computing in GooK^R) we have:
{I-JTn+l,T}={(I-T)(I-/^n+l),T}

-{i-T^+^-jT^.T}
=={(I--T)(I-/^n+l), i+s^-sT^1}-1

^{i+jT^i-T} (modT^1).

Thus O^Kg(R) is generated by symbols:
{i+sT^r} and {i-jT^T} seR, reRX .

Finally C^K^R) is built up by successive extensions of the O^K^R), so the proof
of (1.3) is complete. Q^.E.D.

In the course of the proof we have seen:

Corollary (1.5). — In G^K^(R) we have:
{i-^T^ST, ...}={i 4-^ i-T, ...}
{i-n^T, ...}==!, m^n+2.

Define a filtration filt'SC^K^(R) by taking filt^ to be generated by symbols:
{x, 7-1, . . ., ^__J and {y, T, r^ . . ., r^g},
xei+T^1^, j^ei+T^^,, r,eR\

Define 0^0^(R)=filt/n--l/filt/n. Notice that, by (1.3), filt'0 is dense in SC^K^(R)
in the sense that it maps surjectively to SC^K^(R) for any TZ<OO. There are natural
maps filt^-^filt^ and hence O^-^O^ It follows from the proof of (1.4) that
filt^SC.K^R^fil^SG.K^R) so O.K^R^^K^R).

2. Proposition (2 .1) . — We continue to assume R regular locale and i/2eR. Then there
is a well-defined homomorphism of abelian groups'.

P i : ^-^^^(R)
p l ( r ^ A . . . A ^ _ l ) = { I + ^ l ^ . . . ^ _ l T M , ^ , . . . ,^_i}, ^eR^

Proof. — Let M be the free R-module on generators ds, seRX, and define N by
the exact sequence:

o->N->M-^aR-.o.

Then Qq^~l^Aq^~lM|P where P is the submodule ofA^"1^! generated as an abelian
group by elements n A ds<^ A . . . A ds -^, n eN. Since pi clearly induces a map of abelian
groups:

A^M-^O,
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it suffices to show pi(rA ds^/\ . . . A ds^_^)=o when T= Sr^W^o in Q^. Since
_ i

j -2j3. . .^_i-r=o we have II{i+^.. . j^^'^T", j(*'}=i in <D;,Ka(R) by (1.6) and
(1.4). Multiplying by {^, . . . ,^_JeK,_a(R) gives:

P,(TA^A . .. A^_,)=n{i+^. . .^_,rC)^T», sW, s,, ..., s,_,}=i.

Q,.E.D.

Proposition (2.2). — Let R ^c r^y/ar ^caZ with 1 /2 eR. TACT ^cre (j a well-defined
homomorphism'.

p,: ^-W-^O^R)
Pa^A . . . A(^_2)={l+^. . .^_2T»+1, ̂ , . . ., ^_2, T}.

Proo/. — It follows from the description of filt' SG^ K* that multiplication by T
induces a map:

<D^,K,_,(R) -^> $;K,(R).

This can be composed with p[ : fy-2 -> $^^K^_^ to give pg : O^-2 -> ̂ Ky{R). We
must show pa^n^"3)^!). But using {j, —^}=i we see:

{i+^...^_2T"+1,^, . . . ,^_2,T}

={I+^...^_2T»+1,±V2...^_2,^, ... ,J,_2,T}

={I+^...^_2T"+1,±T"+1,^, ...,^-2,T}-1

=={ 1+^1. . . ̂ _aT"+1, ± i, s^, .. ., ̂ _2, T}-1.

By assumption 1/2 eR so the bottom symbol is trivial. Q.E.D.

Remarks (2.3). — (i) We can compose the p,' with O^-^-O^ to get maps:

pi : ̂ -1 -> 0«K,(R); p, : Q^-2/^-3 -> <I»»K,(R).

(ii) Looking at the generators for filt'""1, we see:

p'=p,©pa : f^-1®^-2/^-3 -^ ̂ K,(R)

is surjective.

4. COMPUTATION OF SC^K,(R) (Continued)

i. In this section R will be a regular local F-algebra, j&=t=2. Eventually we
will assume R smooth over a perfect field k and q an integer ̂ . We keep the nota-
tions of § 3.
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Proposition (1.1). — The maps pa, pg : ̂ -2|dQqy~3 -> <!>„, O,, are zero unless p\n+i.

Proof. — It suffices to show pa((ra+1) r^A... /\d.Sy_^ =o where r, j.eR^ Indeed,
if r^RX then r+ieE^ and we simply add d s ^ / \ . . . A^_a to the form. We have:

{i+rs^.-s^T'^s^, ...,^_2,T}"+1

={ i + "i... ̂ _aT"+1, ̂ , . .., ^_2, -r^ .. . ̂ .J-^filt'" SG K,(R).

Q.E.D.

Recall (1.3.3.3) that for any commutative ring A with ————eA there is a
map: (?-1)'

(I-2) {^q^dloS•• K,(A)^Oi/,

given on symbols by:

{-iY~1 ̂  , , da^ da,
^^-dlog{a,,...,a,}=-^....^.

Proposition (1.3). — If p^n and q^p, the maps pi, p^ are injective.

Proof. — The assumption implies ————eR, We have:
(?-i)!

Î')! dlog : Kw ^ (^0^F.M/(Tn+a))e(^-l®F^lF,^

(—l)3"1

and: f _ T r rflog(Pl(T))=(somethmg)@(^®(^Tn-lrfT)).

It follows that pi (and hence also p^) is injective if p^n. Q.E.D.

Proposition (1.4). — Let n=mpr, p^m, r^i. Then Ker pi^Ker pi^D,, wA^
D^cQ^-1 ^ ̂  subgroup generated by elements:

j . , da-, da,,_»
a p ~ l d a ^ — A . . . A—9—; aeR, a^ . . ., a^^e^, o<_^<_r—i

^1 ^g - 2

(Do=(o) and Di=^^-2).

Proo/. — It will suffice to show:

pi^/-1^)^ in O^K^R)

(the desired element is obtained from this one by multiplication by:

{^.. . ,^_,}EK^(R).)
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Suppose first aeR.X. Then:

pi(^-1^) ={ i 4-^T^ a}

^{i+flT^ ̂

^{i+^T^diT}-^-^ in O^K^R)
since r>^.

To finish the proof, it will suffice to show D^C OR is generated by elements a^'^da
for aeR^ For this, recall Serre [25] defines a map </ : W^R) -> £2^ which is
defined on a vector (^, .. ., ^_i) by:

d(a^ . . . ,^_^)=^_l+flpI^_2+.. .+<- l^o.

Clearly D^^W^R)) so it suffices to show:

Lemma (1.5). — W^R) is additively generated by vectors all of whose Witt components
are zero or invertible.

Proof of (1.5). — By induction on r, W^(R)==R local, so we may assume r>i.
Now use the exact sequence o — W^(R) -> W^R) -> W^li(R) -> o. d.E.D.

2.. The following theorem was proven in (I, §3, 3).

Theorem (2.1) — Let A be an fy-algebra, and let A^ be aflat Z/^4"1 Z'algebra {some
N^i) such that A^A^A. Wedge product of differentials makes:

®^L.closed/^^1

a graded ring and there is a natural ring homomorphism:

^{^CTys•dlo§ '• @K^ -eoni--/w-l

with property that crys-dlog{a)=da/|S'for aeAX and SeA^ any lifting.

Proposition (2.2). — Now assume in addition to the above hypotheses on R that R is smooth
over a perfect field k. Let n^mp^ r>_\, p^m, and assume q<_p. Then:

Ker pi = Ker p^ = D^.

In particular, p; : ̂ R-^D, 5- O^K^(R).

Proof. — Using (1.1), it suffices to show Kerpi^D^. Let R be a radically
complete and separated local ring, flat over Z such that R=R/^R. Let:

S^eQ^-1 (db,==db,^ . .. A^J

and assume pi(2^fl%i)=i. Choose liftings 2i, ^eR, and let A^R^]/^4-1).
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Applying (2.1) to the lifting A/j^A of R^ for large N:
(—i)^" 1

(^S) Y-^^crys-^logop^S^^^TzT^^TAS^^

dH^S^A^ (mod^i+^Qi-1).

Let ojienote the right side of (2.3) (viewed as an element in 0^ for the particular
liftings 2i,^). By assumption:

a =pdu^ (mod ̂ N)

for some co^T^+T^-1 </T+ terms of lower order in T, SN^jT1. ^^S"2

(we write 0^ for the radically separated differentials).
We may now differentiate and divide by n (^ is torsion free) to get:

^db^p^-pn^d^ (mod/-^-1).

In particular, for N§>o we have (replacing 7^ by m~~1^):

^ep'-1^-1

S^^ =J& l~ r^7]N ("^^^g"1)-

Everything now follows from:

Lemma (2.4). — Let y^T1- 7^ yeD^ if and only if there exists an 7]e^~2

^6-A ^^ ^e/"1^"1 aW y^1"'^ (mod^^~1).

p^ — For I=(z'i, ...,^2). ^i=(^i, •••^J a (y-2)-tuple of units
in R or R, I will write:

fl%i ^- ^.-^=^A•••A^"29 ^-^^...A^^.
I ll ^—2

Notice [d[a)^db^d{ab^...b^^— so D^^-^. (2.4) clearly holds in this
„ °i

case. Also if ^=ap~lda^—l we can take:
h

{db!^p^-^—
h

for a lifting.

Suppose now we have T] with ^e^"1^"'1, r>i. I claim T] can be written
(up to alteration by a closed form which doesn't affect dr\):

,=S<^lf^l-I+••.+/'r-lST._„A^-I; S,,eR>——.
1 \I 1 ^-1,1
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Assume inductively we can write:

^—y^Pr-2(^02I_L. 1 ^ - 2 V - ^Pr-2,1
^-^.I ~ f ^ ~ + " ' + p T ^-^f t—————1 PO,I I Pr-2,1

SO:

(2.5) o^^-r^=Sa?;^2-l^IA^I+...+S^_^^^I (mod^).
1 PO.I I ' Pr-2,1

(Note o^eR, Po,!^"2.)
Recall the Cartier operator C : ̂ ^osed-^ ^IT1 is defined, and has the following

properties:

G(Ao)-o, G^Lf?, C(^.CO)=/G((O).
\ ^i / h

The inverse Carder operator C~1 induces a ^-linear isomorphism:

G-1: ^-^^Uosed/Dr

We have C-l(D^)=D^l/Dl, so there is a map:

G—— ^-1^^R-1/D,.

Applying G^2 to (2.5) kills all but the first term, and we get:

S^iA—^EEO (mod^),
1 Po,i

i.e. Saoi—M is closed (mod^). This implies for some y^ j. So i (since:
1 ' Po,i ' '

G- 1 : ^^Uosed/Di)

that Sao^=Syg^ (modA D,).
1 Po,i I \i

Apply (G-1)^2 to get:

V pr-2rfPo,l V Dr-l^M , , , ^^^<i .—^^Yg,! ^— (mod^,D,).i poj i °o,i

Notice elements in Dy can be lifted to closed forms over R and changing T] by
a closed form doesn't change dr^. Thus we may assume:

^i -or-l^O,! , . ,
7)=2;Yo,i -^—+P^

1 \1
for some T^et^" . Now:

V pr-1^0,1
^-^To'i .—

^ , 8"
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satisfies d•r}fEpT Q^ . By induction, we can change T]' by a closed form to get:

^=^/p+...+pr-2^^-^l
1 "I,! I °r-l,l

whence:

(^) ^=s<,l^I+...+^-^-.I^I.
' °0,1 I ^-1,1

It follows easily from this that ^-'^eD, (mod^). Q..E.D.

Remark (2.7). — Notice that to represent T] as in (2.6)3 it was only necessary to
modify the original T] by a closed form whose reduction mod p lay in D^.

^.Proposition^.!.).—Let R be as above, and suppose n-\-l=mpT, p-\m, r>_i. Assume
also <7<j&. We have a map p defined by the composition:

^^W'W-3) ̂  ̂ n -> ̂

Let E^O^g^ be the subgroup generated by D,.^ together with elements of the form a^-1.
Then Ker p c:{o}®(E,/Di). b!

Proof. — We have:

(—i)3-1

(^_i)t dlogo^^^2)=rrn~l^-l^d^+Tnd^_^+^nd^_^dT

whence Ker pC{o}®(Q^^/^gR~3)=={o}©(El/Dl). Let A=R[T]/(Tn+l) be a lifting
of R^ as before and consider the composition:

^^-crys-^logop, : ̂ ^i/^r'+^QL N>o.

Let coeQ^ 2 be such that p2((o)=o, and let Se^jf2 be a lifting. We have:

(—i)3"1

—^-^crys-rflogp2(co)==TnrfSArfTe^^r2+J&N^-l.

Note in this case ^ has torsion, viz., p^dT^o but ^-^T^T+o. Suppose:

T71 ^S A ̂ =^(1^+7^? rfT+terms of lower order in T) (mod^).

(Here ^e^i , r^e^ .) Equating powers of T we get:
T" d^ A dT == p^ d^ A dT (mod ̂ N)

so 6?(S—^)ej/^| . As in the proof of (2.4) (cf. also (2 .7)) we can write:

S^Syf^+pL (modj&)
1 Pi

where (A = element in D^i (modj&). It follows that coeE^+D^i. Q,.E.D.
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Proposition (3.2).—Assume as above that 71+1=171?', r>_i, p^m, and q<_p. Then
Kerp2==Kerp2=E, /Di . ~~

Proof. — We have from (3.1):

KerpgCKerp^CE. /Di

so it suffices to show E./DiCKerpg. D^i leads to symbols:

a = { i 4-^T^ a, a^ . . ., ̂ ,3, T} ^r.

(Note if q<2, (o)=D^C O3-2.) We have :

a={I+^T ( n + l ) ^^ ...,T/

^{i+^T^1, -T^^, .. . ,T}=i.

Other elements in E^ lead to symbols:

{i+^T^, ̂ , ..., ̂ _,, T}={ i+^T- ..., T}^
^{i+^T-^, ...,^-2,-^}-^
={I+^rTn+l,^, ...,^_^_^}i/-^i ^ ^^

(Note 0^ is j^-torsion, so i /m makes sense.) O.E.D.

4. We can now prove:

Theorem (4.1). — Let R be a smooth local k-algebra, where k is a perfect field of charac-
teristic j^=t=o,2. Fix q^p. Then the two filtrations filfSC^K^(R) and filt" SC^K^(R)
coincide, so O^K^(R)==O^K^(R). Moreover:

(i) If n^o,-i {modp) p, : ̂ -^OJ^R)
(ii) 7/- n=mp\ r^i, j&-rw, pi : ̂ /D^ 0,K,(R)
(iii) 7^ n+l=mpr, r>_i, p^m:

p=pi®p,: ^-^(^-^E^^O,.

Proo/. — We have by (1.1), (1.3) that for n^o, —i {modp):

(4.2) Qr1 ̂  ^>nK,(R) -. 0,K,(R).pi
When n-==mp\ r>_\, p^m we get by (1.1), (1.3), (2 .2) :
(4.3) ^R-'/D, ^ 0,K,(R) ̂  0,K,(R).

When n+i^mp', r^i, ^'rm we get by (§4 (2.3) (ii), (3.1), (3.2)) :

(4.4) "r^W/E.) ^ O,K,(R)^(D^K,(R).
Pi®Pa

In particular, 0^0^ for all n. Writing filt, filt' for the respective nitrations
on SC^Kg(R) we see filt'^nfilt^filt^. Thus, for any m<n\

filt 'n-w ^nfiltn=filt / n-wnfiltn-w+ lnfiltn-w+2n...nfiltn=:filt 'n .
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Taking m=n, we get:
filt^filt^nfilt^filt^

Thus filf=filt'* so 0^<t^ and the theorem follows from (4.2)-(4.4). Q..E.D.

Corollary (4.5). — *T induces a map:
SG,K,_,(R)->SG,_,K,(R).

Proof. — We have:
SC,K^(R)=SG^^R)|mtn=SC^K^{R)|mtfn

SG^K^R^SC.K^/filt--1.

It follows easily from the definitions that the map *T : SG^K^_i(R) ->SC^K^(R)
carries filt'" to filt'71-1. Q,.E.D.

5. MODULE STRUCTURE ON SCK,

i. Let R be a local ring. Recall we have defined:
CK,(R)=HmG,K,(R) SCK,(R)^mSG,K,(R).

We have SCK^(R) C GK^(R). In this section we check that SGK^(R) is a sub-W(R)-
module of GK^(R). As noted in (§ 2 (3.6)), it suffices to show:

Proposition ( 1 . 1 ) . — SCK^(R) is stable under the operators F^.

Proof. — SGK^(R) is generated topologically by symbols:
{co, 7i, . . ., r^_i}, {co, y-i, . . ., ^_a , T}, r.eR", coeW(R).

By an easy application of the projection formula:
FJco, 7-1, . . ., ^_i}=={F^co, 7-1, . . ., ^_i}.

Again by the projection formula:

FJ^ T. r!. • • •. ^-2}==Fn{(x). rT}'{rl. • • •. ^-2}

(multiplication in K^(Roo))

so we reduce to the case ^==2. But SCK2(R)=CK2(R). Q.E.D.

Proposition (1.2) . — Let m, n be positive integers with (m^ n) == i. Then F^. V^ = V^. F^
on SGK^(R).

Proof. — For symbols {co, 7"i, . . ., r 1} this follows because F^V^==V^F^
on W(R).

For symbols {co, T, r^ ..., r^_^} we reduce (cf. the proof of (§ 2 (3.7))) to the case
o)==^coo where i : R->R' is a ring homomorphism, R' is a finitely generated free
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R-module, and ^==(i—rt)~1 for reR'^ The transfer map commutes with F^ and
Vn (§ 2 (3-4)). so we get:

F.VJco, T, . . . }-F,VJ^o, T, . . . }= F,V^{coo, T, . . . }
-^FnVJcoo, T, . . . }^VA{(OO, T, . . . }=V,FJco, T, . . . }.

(The interchange ofV^ and F^ at (*) is justified because {co^, T, . . . }={o)o, r, . . . }~1,
one of the first sort of symbols.) Q^.E.D.

Proposition (1.3). — Suppose R is a ZIpZ-algebra, p^=2. TA^ V o F = = multipli-
cation by p on SCK^(R).

Proof. — It suffices to consider symbols [i—rt^.t.r-^, . . . , ^ _ 2 } w i t h r, ^eR><.
If (p,m)==i, i/meW(R) by (1.1.2.3 (v)) so it suffices to note:

V,F,{ i -rt^ t, . . . r= V,F,{ i -rF, r, . . . }-i

={V^(i-^), r, . . . ̂ ^{i- r̂ , r, . . . }-^{co, t, . . . }̂ .

If m==pn we can use the projection formula:

V,F,{ i -rt^ t, . . . }=V,{ i -r^, ̂  . . . }={ i -r^, ̂  . .. }̂ . O.E.D.

The following result is straightforward, and is left to the reader.

Proposition (1.4). — Let r^, . . . , r^ieR", and let co, o/eW(R). TA^TZ:

co.{<o', 7-1, . . ., ^_i}={coco', 7-1, . . ., ^_i},

wA^r^ coci)'eW(R) denotes the product in the sense of Witt vectors.

6. THE DERIVATION

i. In this section R will be local and smooth over a perfect field k of characteristic
p^o, 2. Let ^ : SCK^(R) -> SCK^+i(R) be induced by the maps:

.T : SG,K,(R) ^SG,_iK^(R) (§ 4 (4.5)).

Proposition (1.1). — (i) Sq+lo8q=o.
(ii) We have V^oS^TzS^oV^; ^oS^S^oF^ ^rf V^F^S^S^V^.
(iii) Sq is a 'W{k)-homomorphism.

Proof. — (i) We have {T, T}={T, —i}. Since the SGK^(R) are Z^-modules,
they have no 2-torsion, so any symbol {T, —i, .. .} is trivial.
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(ii) It suffices to check on generators (we write n{ } instead of { }"):
^VJi-aT",^, ...,r,_i}={i-aT»»,ri, ...,r^,T»}

=V^{i-<zT»,ri,...,r,_i}.
K^VJi-aT", r^ ..., r,_2, T}=n{..., T» T}==o

=V^{i-flT'», ...,T}
nF^i-aT"1, r,, ..., r^^^FJi-flT- r^ ..., r,_i, T"}

={FJ(o(i-aT'»)),ri, ...,r,_i,T}
^S^FJi-aT-ri, ...,r,_J.

The other identities are more complicated. We may assume n prime. If {n, p) = i:
8»F..{i-ar»,T,r,, ...,r,_2}=8^F„8^- l{I-aT»r^, ...,r,_,}

=lS9S2-lFJ...}=0n
=«F^{i-aT'»,T, ...}.

If {m,p)=i we have:
OTyFJi-ffT^T,^, ...^.^^FJi-aT"',^-1,^, ...,r,_2}

=7^F„y{I-<^T"•,(^-l,rl, ...}
=^F^{i-flT'»,T, ...}

and we can cancel the m. Finally if n=p, m==rp, we have:
yFJi-aP", T, ri, . .., r ,_^={ i-aT', T, r^, . . . , r,_^, T}

=o
^FS^i-aT^T, ...}.

It remains to show V,,F„8^=S''V„F„. This is an easy consequence of the
above when (n,p)=i. When n=p, we have:

^V,Fp{i-aT»ri, ..., r,_^=p{ i-aT- r^ ...,r,_^,T}.

Assuming first {m, /»)=!, we get:
VpFpS^i-aT", ri, ..., ̂ ..̂ V î-aT'", r^, ..., r,_i, T}

=^V^{i-flT»',ri,...,r,_i,a-1}

=^{l-a^m,r„...,r,_,,a-l}

=p{l-aTm,r^ ...,r,_i,T}.
If m=pr we have:

VpF^i-flT^ri, ...^^J^VpF^i-aT^ri, . . . , r ,_^,T}
=Vy{i—aT', ri, . . . , ̂ _i, T}
=p{I-aT'>r,^, ...,r,_^,T}.

The verification that:
S^F^i-aT" ri, ..., r,_2, T}=V,,F^{..., T}=o

is similar, and is omitted, as is the straightforward verification of (iii). Q.E.D.
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We continue to assume R local and smooth over a perfect field k of characteristic
^+0,2. We have S^-1 : SG,K,_i(R) -^ SC^K,(R). Let 6eSG,K,_i(R) be a
symbol such that S^6==o. At this point it is convenient to start writing the group
law on G^K^(R) additively.

Lemma (1.2). — Let co, o'eWJR). Then:

co.8^1(^'e)+co's^-l(coe)=8^1(co(o'e).
Proof. — We may assume as usual:

co=(o(i-aP)-1, co'=o)(i-6T8)-1, a, be^.

Suppose first r=^=i. We have {6,T}=o, so by (§ 2 (3.1)), o={<x)o/6, a6T} and:
(oS^-^co^^coo/e^T}

o'S3-1^) ={o)o)'e,6T}={coo)'6,a-1}

o) S^-^co'O) +^Sq-l^Q)={^Q, T] = S^-^o/e).

Now let r, j1 be arbitrary. Write:

W)=V-a, W)=^t8-b
R^^^R^Z']^,^),

and let k : R <-^ R[^, z ' ] be the natural map. Write o)i, (Oi for <x)((i—^T)-1),
o)((i—^T)-1), viewed as elements of R[<], R[^'J, respectively. We know from the
above that:

0^8(0^6) +o)i8(^i^6) = 8((OiCOiA*6),

so (1 .2) will follow from:

Lemma (1.3):

A,(coi §(0)^6)) = (o 8(<o'6); k^[ 8((o^6)) =co' 8(0)6);
^8(cx)iO)^6)=S(coco'e).

Proq/'. — I'll use A, to denote any of the various transfer maps. The reader can
check (via the usual universal argument) ^(o^)==(o, ^(c^)==(o', ^(cx)iCOi)==<x)co'.
Thus:

A,8((Oi<OiA*6)=^{c^co^e, T}

={^<o^6),T}

={A,(c^)e,T}
(§2,(3.4(ii)))

={coo) /e,T}=8(<oo) /e).

It remains to show, for example:

^(o)i8(co^e))=(oS(co'6).
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Write R^RIYj^R^'] so k=k" o k ' . We have :

^(colS(^^e))=^^/(o)l.A"*(S(co^'*6)))
=^(^(co).S(co^*6))

(§2,(3.4(i i )))

=:co.A:{o)^6, T}=o){A;(o)^6), T}
(§2,(3.4(iii)))

=o){o/6,T}==co8((o'6). Q.E.D.

Corollary (1.4). — T^ map:

^ : WJR)=CA(R) -> G,_A(R)

^ ^ W^(R) -derivation, 8^((oo/)==(o S^(co')+6)' 8^(0)).

Proo/. — Take 6=ieW^(R) and apply (1.2).

a. Theorem (2.1) . — Z^ R be local, smooth over k perfect a/characteristic +o, 2. Let
e^_.K^.(R) denote the complex:

W,(R) -'"> SG,_A(R) -^ SG,_,K3(R) —> ...

Let ^wn(R) ^°^ ^ (absolute) deRham complex of W^(R). TA^TZ there is a morphism of
complexes:

?n^W.(R)^^%-.Ki+.(R)

with the property that ^ : W^(R) -> W^(R) is the identity and ^ : 0^^} -> ̂ n-i1^1^)
is induced by the derivation 8^ : W^(R) -> SG^^K^R). The 9^ <3r^ homomorphisms of
W^(R) -modules. These conditions characterize the y^.

Proo/. — Assume inductively (p^~1 : ̂ ^(R) -> SG^_g_^K^(R) is defined. The
idea is to define:

9^(co d<^^t\. . . A Ac.) === co S3(p^~l((J^)lfl?co2A . . . Arfco )

==o) Sqc^^q~l{d(^^^ . . . Aflfco^).

Claim. — (p^o) ^(Oi A ... A Ao.) + ^^((OirfGi) A ... A rfco ) •===• ̂ {d^^ co) A . . . A rfo>.).

Indeed, this follows from (1.2), taking 6=== (f)q~l{du^/\... Aflfo^).

Claim. — If c^==o^, we have (p^co rfcoiA. . . Afifo)g)==o. Indeed, if z,^> i this
will hold by induction. We thus can reduce to the case i=i, j'==2, and it suffices
to show cp^AoAfifo^^o, z.^. S^cp^fifc^^o. But

^co^^rfco) == S^^co ^co) = S^1 i1- d{^) \

=1-S2^2)=o.
2 /
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Claim. — If c^== 0^+0)^3 we have:

(p^COiA ... A d(^q) == (^(Aoi A ... A Ax\' A ... A AO^)

+ 9^(rfo)l A ... A AO "̂ A ... A rfo^).

Indeed if z>i this is true inductively. For i==i we have:
(p^COl + G)i') A ... A flfc^) == S^CO; + COi') ^-^(A^A ... A d^)

==9^0)^. . .AAo^^^^flfo^'A. . .AAo^).

These three claims suffice to prove the existence of a W^(R)-linear map:
^: n^-^SC^K^(R).

The fact that 9^o^=8 f fo9^- l is easily checked. d.E.D.
3. Let n^^=Hm£l^R). Note the above constructions give maps:

n

y': Q^^SGK^(R).

Proposition (3.1). — Z^ ,̂ : W(R)-^ W,(R) denote the p-frobenius (/>=char.R).
Z^ /p"' : Q^(R) ̂  Q^B) &^ the induced map. Finally, let F '̂ : SCK^R) -> SCK^(R) be
its frobenius. Then:

^o/^^F^W.
Proof. — We have y^01 =^/p = F-1*, y° = identity, so the assertion holds when q = o.

Also for ^eW(R), aeQ^,, peSCK^+^R) we have:
/^'((oa) =/,((»)/ '̂(a); ^'(cop) ==/p(co) F^1^),

the right-hand identity being (§ 2 (3.7)). It therefore suffices to verify the identity
on exact ^r-forms:

'pypW-^F^v.
But: ¥%(^)('/T)=v^(/^-l>(T))=S»y^-y^-l'(T)

^-^F^V-^T)
(by induction)

=^F^+1)8?93--1(T)==^F.^+1^(^T). Q..E.D.
(1.1) (ii)

Remark (3.2). — It follows from (1.1) that the map ^ : SGK.(R) -> SCK.(R)
given by ^^j^-^ on SGK^(R) is a map of complexes. If we let fy : QW(R) -> ̂ (B)
be the map induced by frobenius, we have by (3.1):

^p0(p==(po^,.

One final property of SCK^(R) will be important when we deal with divided
powers. For o)==Vp(^)eVpW(R) and yzeN define:

T^^^-V^O.
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The assignment u\->^w, raeN, <oeVpW(R) defines a divided powers structure on the
ideal VyW(R) (cf. 1.4.5). y*"' is well defined because Vp is injective on W(R), and
/»"-l/»! is an integer (see proof of (3.3) below).

Proposition (3.3). — Given rieSCK^R) with S<T)=O, and <oeVpW(R), we have
S^Y^Y)) = y'""'1'" S2^). In particular S^yt"^) = y1"-1^ S^co).

Pr<. — Y(°)<O=I, yWoi^io, v^^V^M2)^^2, where co =¥(«). Since

/>>2, the derivation property of S9 implies the assertion in these cases. Assuming
n,p>2 we have:

pn-S

(̂..T^0-

Indeed, writing ?^=2;fl,/»i with o<^a,<p, we find ordyB! =(K—S;a,)/(/»—i). For
»r^2, ^^13, we find n—ordyn[>_2. Now we compute:

8<(^(»)^^) = pn^- §<(V^ («") ^) = ̂ 1 ^(V,(y"F,7)))

-^V.^-F^)^^,^^-^^,))

(S^.^ndtS^^^,^^""1) ̂ (^-(^.W-1) S2^^,)

=Y("-l)(o8<(<o7)). Q.E.D.

Coronary (3.4). — The map ^ : 0 ,̂ ̂  ̂ ^_.K^.(R) /arfow ^roa^ a ^/>
yn : °Wn(R),Y ^- ̂ '^-.K.i+^R), w^ere ^wn(R),y denotes the complex of differentials compatible
with the divided power structure on W^(R) (I, § 4 (5.5)).

7. TYPICAL CURVES, FILTRATIONS, AND EXACT SEQUENCES

i. Throughout this section R will be a smooth local ^-algebra, k a perfect field
of characteristic ^+0,2. Recall W'^R^V^R) is a direct factor with projection
operator:

"^y^-^-^'w-
The corresponding idempotent <?==I^(^(=W(R) is given by:

-S^V.F.t^^V.C)

<'=o)(E(T)-1), E(T)==Artin-Hasse exponential (I, § i (4.1)).

243



244 S P E N C E R B L O G H

For any W(R)-module M, we get a W^R) -module e.M. In particular, we define
the typical curves on K^R) by:
(1 .1 ) TCK,(R)=,.SCK,(R).

Viewing F^, V^ as endomorphisms of SCK^(R), the same prescription TT^S^V^
defines a projection operator on SGK^(R) and we have: I(p) n

TGK,(R)=7r(SCK,(R)).

Indeed for aeSGK^(R):

e^= S ^V,(l)a=S^VAa=7ra.
nei(p) n ^ n

The maps:
^: SGK,(R)^SCK^(R);
{ } : W(R) ®RX ® . . . ®RX -> SGK,(R),

q—i
{ }(to®ri . . .®r,_i)={a,r i , . . . , r ,_i}

both commute with the operation o f 7 t ( ( § 6 ( i . i ) ) and the projection formula), so we get:
S»: TCK,(R) -> TGK^i(R)
{ }: W(^ ' )(R)®RX®...®RX-^TCK,(R).

In particular, it follows from (§ 3 (i .3)) and (I, § i (4.2)) that TCK^(R) is topologically
generated by symbols:

{E(aTP""),ri,...,r,_i}, a, r^ ..., r^eR-

(1 .2) {E(aP"»),ri,...,r,_2,T}.

Define a descending filtration filt' TCK^(R) by taking filt" TCKg(R) to be generated
topologically by symbols as in (1.2) for m^n. Thus filt°=TCK^(R). Define:
(1.3) TG^K,(R)=TCK,(R)/filt"TCK,(R)

T^K3(R)=filt"/filt"+1.

Proposition (1.4). — Assume q<_p. Then filt" W'^R) .TGK,,(R) c filt" TCK,(R),
so TG^K,,(R) is a W^(R) -module for all n. Moreover, S^filt" TCK,(R)) <= filt" TCK, + i(R)
so there is an induced 'W(k)-linear map 8" : TG^K^R) ^TG,.K^(R).

Proof. — The last assertion is clear from the definition and (§6 ( i . i) (iii)). For
the first we have by (§ 5 (1.4)) and (§ 6 (1.2)):

co.{o/,?i, ...,r,,_i}={(OM',ri, ...,^_i}
<o, co'eWf'(R) r^ . . . ,r,_leR><

u».{u', ri, . . . , ^_a, T}=={(O(O', ri, . . . , Ty_z, T}
—w'{w,r^, ...,r,,_2,T}.
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Taking coefil^W^R) we are reduced to showing that fil^TCK^R) is a W^R)-
submodule of TGK (R). This is a consequence of:

Lemma (1.5):
fil^ TCK^(R) =TCK^(R) n filt^-2 SGK^(R).

Proof. — The symbols:
{E(^), r^ . . ., r,_i}, {E^), ̂ , . . ., r^, T}

r.eR^ aeR, w^n

are trivial mod T^"-1 (§3 (1.5)). These symbols generate filFTCK^R) topologically
so, by definition of filrSGK^R) (§ i (1.5)), we have:

fil^TCK^R) cTCK^nmt^^CK^R).

On the other hand, by (§ 4 (4.1)) we have filt^""2 CK^(R) generated topologically
by symbols:

{i+aT^r^ ...,r,_J, {i+aT^r^ ...,r,_^T}, m^-i

so 7r(filtp"-2CK/R))cmtnTGK^(R). Thus if aeTGK^nmt^-2 CK^(R) we
have:

a^T^efil^TGK^R). Q.E.D.

^^rA (1.6). — (i) It follows from the above that TCK,(R) ̂  Inn TC,K,(R).
(ii) For aeRX wehave -{E(^T), T}=n{i-aT,T}=-n{i -aT, ̂ }=={E{aT),a}.
(iii) TCK/R) has endomorphisms F=Fp and V=Vp. We have:

V^CK^R) C fil^ TGK^(R)

but the inclusion is not in general an equality, essentially because:
V{E(^T), T}=^{ECT, T}=t={ECT, T}.

2. Theorem (2.1). — Recall (§ 4 (i .4) ^W (3. i)) we have defined'. 'D^=D^Q.^)==sub-
/ da-i da

group of 0.^ generated by differentials ap ~ da i\ — A ... A —'; a, a^e R^ f <_ n — i;
a! ^

E — E (fî ) =sub group of Q.^ generated by differentials a^ —l A ... A —q plus D^ , i. By conven-
or a^

tion, Do=o, Eo=^. Note also D^ = Image [d : O^1-^^) and Ei=Ker(Q^ -^ ̂ +1).
(^ (2.4) below.)

Assume R smooth and local over k, a perfect field of characteristic +o, 2. Let q^p. For
all n, there are exact sequences of k-vector spaces and p~n-k-linear morphisms:

o-^Or'/D^TO^K^^Q^-^E^o.
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The left hand arrow sends the class of a-l^.. .A—^ to {E(aT^'"), r^, ..., r 1} while the
r! ^-1

right hand maps {E^T^), r^, ..., r,_a, T}to a-^A.. .A-^. In particular:
r! ^-2

TOoK^R^n^-TG^R)
o -> ̂ /D, ̂  TO^R) ̂  R/R"1' ̂  o.

Proof. — One checks by looking at generators as above that:
filt" TCK,(R) == 7T(filt'"'-2 SCK,(R))
filt»+1 TCK,(R) = ̂ (filt^ SGK,(R)).

Writing filt^filf SGK,(R), we have by (§4 (4.1)):

o —-Q^/D,. —^filt^-^filt"" —^^-1(S^-2|E^ —^o

l\\ ?11
(2.2) ^>pnK,(R) . ^-iK,(R)

\ 1
TO^^R)——> Coker(*)——>o

Claim 1. —The map (*) above is injective. Indeed, by (§ 4 (4.1)) $p»K (R)]is
generated by symbols { i+aT"", r^, ..., ^_i}. Note E(aTP'') = i+aP'" (mod T''"+1)
so a relation:

:S{E(a.'P"'), ri'>, ..., ̂ L^em^TCK^^GK^nfilt^1-2

implies a relation:

^{i+fliT''", ...}efiltp", (t.e. trivial modT^1 (§ i ( i))) ,
i

proving the claim.

Claim 2. — The right-hand vertical arrow in (2.2) identifies Coker(*) jwith
^IT2/1^- Indeed, the factor Oq^~lC<S>pn^^ (§ 4 (4.1) (iii)) is generated by symbols
{i+aT^""1, ri, .. ., ^_i}==Vpn_i{i+^T, 7-1, ..., ^_i}. We have seen (1.1.3.6) that
TT.V^=O for (m,p)=i, so the above symbols die in T<D^K^(R), hence also in Coker(*).

We have now ^"^n -^ Coker(*).

^A . . . A-7^2 -^{E(^T^), ri, . .., r,_^ T} (mod image(*)).
r! ^-2

Suppose there is a relation:

S{E(^TP"), r?>, ..., r^, T}= S{E(c,T^), ̂ , ..., ̂ }
(mod filt"+1TGK,(R)).
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Working in CK^(R) we certainly have the same congruence mod filt^""1 CK(R)
{i.e. modTP"). Thus in Op^K^R) we have:

/ ^ dr^_\
0=P2S^^A...A^-

V r! /3-2/

with pa as in (§3 (2.3)) (i). From (§4 (4.1)) (iii) we get:

dr^ dr^^^...A^eE,, Q-^-
1 ' 1 " q - 2

Corollary (2.3). — Let R ^ ^ ^o^. Then TG^K^(R)=(o) /or ^dim^R+2.
(It is not necessary to assume q^p.)

Proof. — In fact SGK^(R)=o for ^din^R+2. Indeed, by (§ 3 (1.3)) and
the definition of <!>„ in § 3 (1)5 it suffices to show O^K (R)=(o) for all n. Using
(§ 3 (3-4)) (n) ^d the assertion Kerp^DEy/Di proved in (§ 4 (3.2)) we get
{n+ i ^mp^ p ^ m ) :

p' : a^-1®^-2^) ^>(D,K,(R).

If y>dim^R+2, the left-hand side is zero. If y == dim^ R 4-2, the map:
C-1: ^-2-^^-2/Dl

is an isomorphism, so E^==t2^'~2 for all r and again the left side is zero. Q^.E.D.

Remark (2.4). — There is an exact sequence:

o ̂  n^-2 ̂  or2/^ -^ o^-2^ ̂  o

where G"'71 is the yz-th iterate of the inverse Carder operator (§ 5 (2)). Also:
D^I/D^DI= Image {d) for any ^o.

(/

Thus T$^K^(R) is built up from finitely many successive extensions of R-modules of
finite type.

3. Suppose now that dim^R<^. The complex TG^K^(R) is defined (§ 4 (4.5))
(more generally for dim R^p we can define TG^K^(R) by truncating at TC^Kp(R)):

o^TGJC^^TG^R)^...

with TG^K^(R) placed in degree q-i. To simplify notation, let C^==TC^K^i(R)
so C^ is a complex:

o-^G^...->G^mR->o.

For y^:o, define trunc (G^/j&C^) to be the complex:
o^G^G^... ̂ CrW-^C^VG^o.
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Proposition (3.1). — (i) Let R be as above, and assume dim R<p. The complex C[
is isomorphic to the deRham complex 0^.

(ii) Let R be smooth and local over a perfect field k, char.+2. Let i<p. The natural
maps G^->G^n^ induce a quasi-isomorphism trunc^C^G^) -> ^<^R, where t^^O^
denotes the complex: ~~ ~

o->R-^^-^...->t^-^o...

(quasi-isomorphism = isomorphism on homology). In particular, taking q = dim R +1, we
obtain a quasi-isomorphism C''JpG^—>0.^.

Proof. — We have a square:

or1 -"-> ^R
p % p ^
q-1 -^ q

with vertical arrows p (isomorphisms by (2 .1)) given by:

/ dr^ dr\ ,
p ^ — A . . . A — -{i+^T, r^ . . . ,^}, f==q-^q,

\ ^i ^ /

The square commutes up to sign because:

S^i+aT, r^, ..., r^}={ i+aT, r^ . . ., r,,^ T}

=(-1)^ i+aT, a, r,, . . ., r^}^-l)^d(adrl^.. . A^-1).
V r! ^-l/

It remains to show the map on cohomology:

^ : H^trunc/(G:/^G:)) ^H'(^/QB)

is an isomorphism for all q. One knows that IP(Qg) is generated by classes:

A...A^.
ri r,

Since the cycles Z^trunc^ C'nlpC^) contain the images of symbols {E(^T), r-^, . . ., r }
(use (1.6) (ii)) and since the natural map G^/VG^->^ is surjective, it follows that
^q above is surjective for all q.

The maps G^O.^ are surjective, so given oceZ^trunc^ C'JpC^) with ^(a)=o,
we can modify a by a boundary 8(B and assume ah>o in ^. Thus a is represented
by a class in filt1 TC^K^i(R), and we can assume:

a=S{E(<T^), ...,^}+2:{E(6,T^),^\ ...,^).,,T}. , . . . - ? • • • ? ' q 5 I ^\^\^^ y , ^i 3 . . ., .
I .9
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with nij and n^i. Obviously, we can drop the sum on the right without changing
the class of a in H?(trunc^ C^G^), so we can assume aeVC%. When q==^ this shows
the class of a is zero, so ^j/ is injective. For q<{ we know:

8(a)=S{E(<T^), r?), . . ., rf, T}eVC^1

(note ^C^CVG^1).
Let 77Z=min(^), and suppose n^==. . . ==:ny==m. Note m^i. S(a) maps to

an element in V G wK ^.^(R). The composition:

G^K^(R) -^ ̂ j2^^) -^ ^ArfT

kills V^CynK^^R), so we get:

^) drf
S^A^-A...A-^-=0.
t 'I ^

(Note q<Kp at this point, so the numerical factor ( — I ) f f + l ( ? + i )! entering in the
definition of the d log (I, § 3 (3.3)) is a unit.) Thus:

dr^ drf dt^ dt^2^^A•••A7l-=I :^-^A•••A7j^+exact

for some c's and ^s. It follows from (2.1) that:
oc= S{E(^T^), ^'), . . ., ̂ } (mod filtw+l)

=o (modfiltw+ l,J&).

An easy induction on m shows aej^C%. Q.E.D.

4. Let ^ be a category, I a filtering index set. A pro-object in ^ indexed by I

is a collection {G^}^j together with maps C, -^ G^ for j^, satisfying fijofjk^fijc'
The set of morphisms between two pro-objects in the pro-category Pro ̂  is given by:

Hom({GJ,^,{D,},^)=nmlnnHom(G,, D,).
^r~T^

In our examples, I=N==the natural numbers, V is an abelian category, and all maps
m

{C^}->{D^} have the property that there exists an meZ and maps y^ : C^->D^_^
for all n defining 9. A pro-object {CyJ is <c essentially o " if for all n there exists an
N(7z)^7z such that fn^^o- Such an object is isomorphic to the zero pro-system {o}
in Pro 9. If 9 is realized by maps 9^ : G^ -> D^_^, we can define pro-objects Ker 9,
Coker 9 by:

(Ker 9^= Ker 9^, (Goker 9)^= Goker 9^.

Ker 9 and Coker 9 are independent up to canonical isomorphism in Pro 9 of the
choice of m,

249
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Example (4.1). — Define TGK^(R) to be the pro-object {TGJ^(R)}. We
have endomorphisms p, V=Vp a^d F=Fp of TCK^(R), where p and V arise from
maps TGJ^(R) -^TG,K,(R), but F is best realized as a map:

TG,K,(R)->TG,_,K,(R).

As endomorphisms of pro-objects we have ^==FoV==VoF. The rationale for working
with pro-objects rather than with TGK^(R) at this point will become clear when we
work with sheaves.

Proposition (4.2). — Let R be as before, and assume q<_p. The pro-objects Ker(^),
Ker(V), Ker(F) are essentially o.

Proof, — It suffices to show Ker(^) is essentially o. Recall TC^K (R) has a
n—l

filtration with associated graded == ® TO^K^(R). We have:
m==0

/>.mf»TG^K,(R) s filr+^G^K^R),

so there are induced maps:

" />" : TO,K,(R)-^T$,^,K,(R).

If we show "/»" mjective, it will follow that:

Ker^cfilF-^C^K^R)

so the transition maps Ker (/»)„— Ker(J>)^_^ are zero.

Lemma (4.3). — " p " : TO^K,(R) -^T<D^+,K,(R) is injective.

Proof. — We have:

"P"Wa^^,r„...,r^}={E(^T^l),r„...,r,_,}

"/> "{E^TP"), r,, . .., r,_,, T}={E(^TP'"+l), ri, ..., r,_,, T}.

From this one gets a map of exact sequences:

o -^ ^-i/D, ———> TO,K,(R) ——^ ^-^/E, ———. o

"p"

o —> ^-1/D^ —> TO,^K,(R) —^ ^-^E,^ o

so it suffices to show a and p are injective. Both a and (3 are induced by the inverse
Gartier operator, and injectivity follows from diagrams like:
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0 ——> I

)
0 ——> I

0 ——> I

)

D y O9""1 - n

^m ' -
r

c-1

D.+i/Di —^ ^

^ —————^ ^
n

i

c-1

^-^Di —> ^

y - 2 ^ ^<z

^/D, ———^ o

a

Z-

-2

'/D^i -^ o

^E. ———. o

p

E.+I/D, Q.-2/D, -̂  O^/E^i Q..E.D.
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5. Let {G^}-^{D^}-^{E^} be morphisms of pro-objects (in an abelian category),
and assume/is realized by maps / : G^-^'Dn+m ^d g is realized by maps:

^ : D^—E^,, w,reZ.

I will say the sequence is exact if the pro-object { H,J defined by H^ == Ker ̂ /Image^_^
is essentially zero.

Proposition (5.1). — Define a map:

e^ R^R^-^TGJ^R)
^(r)={E(T),r}

and let e : {R^R^^o ->• TCK2(R) be the corresponding map of pro-systems. Then there
is an exact sequence of pro-systems:

o _^{RX/RXP"^ _^ TGK,(R) 1̂ 1 TGK,(R).

If, moreover, R ^ strictly henselian, then i — F zj surjective.

Proof. — I claim first that ^(r)==o implies 7'=^" in R^ Indeed, when n==i
we get by (2.1) that <fr/r==o in Q^, whence r==^. In general we may assume induc-
tively that r^^", so:

o={E(T),r}={E(T^),^}.

Recall we have ^ID^^T^K^(R) and {E^"), M} is the class of dufu. Applying
the Gartier operator n times we get duju=o in fl^ so ^=^, 7•==^p"+^.

The map F can be realized as a map F : TG^Kg(R) -> TC^K^(R) (any q).
Indeed, by (§ i (2.2)) :

Fm.W r r TZ ({E^"-1),^,...,^,^} if m^iF{E(aTP ),ri, ...,r,_2,T}=
[—{E(apT),?• l , . . . ,^_2,—a} if m=o

F{E(flTP'»), ri, ..., r,_i}={E(<W"), ri, ..., r,_,}.
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Abusing notation, I will write:

i-F: TG,K,(R)^TG,_A(R)

for the obvious thing. Symbols {E(T), r} certainly lie in the kernel of i—F.

Lemma (5.2). — The kernel of i-F : TG^K^R) -.TC^K^R) is generated by
symbols {E^^r}, m<n—i, together with certain elements in fil^^TG^K^R).

Proof. — Notice first that the lemma suffices to show the sequence:

{R^R^"}—> TGKg(R) ̂  TGKa(R)
is exact.

Suppose we have:

a={nEKTn,T}+ S {E^T^-)^}
m<n t,w,<n / i^

such that F(oc)==a. We proceed as follows.

Step 7. — We may assume all the a^e^u^}. Indeed, we can insure this by
multiplying by suitable (trivial) symbols {E^^), T}.

Step 2. — We may assume OQ=Q. Indeed, if ^eR>< we have (2.1):

{E(<r),T}=-{E(<r),-^}.
Thus: Fa={ n E^T^.T}^- S {E(6?T^), c,}.

w<n—l t,w^<n

Step 3. — If 72=1 there is nothing to prove. Assume %>i, so it makes sense
to speak of the images a==Foc in TOgK^R) ̂ 0.^ We have:

a= S ^^'=Fa=^+ 2 bft.
't,mi==0 C^ t,w,=0 C-

The exact sequence:

o—>RX |RXP—> ^lrc^^/Dl

gives for some JoeR^

y , dc, dso2J h, — == —
t,m,=0 ^ JQ

and a={E(T),Jo}modfilt lTC^K2(R).

Step 4. — Suppose inductively that for some r, i<_r<n—i:

a={E(T),^_i}+a,

a,={^E(^Tn, T}+^S^E(^T^), c,Y
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Computing mod fill/ we get:

OEEEa^Fa^E^^T}.

Hence by (§ 7 (2 .1) ) a^u^ for some z/eR^ Thus:

{E(^T^), T}^{E(z/T), T}=^{E^T), -^}

so we may assume ^=o.

6fej& 5. — Computing in TO^K^R) we get:

O E ^ S {E^T^),.J=Fa={E(^^,T^,T}+ S {E(^T^),.J.
», w, == r ^ ̂ . = r

Again by (§ 7 (2.1)) we have ^+i==^i and:

.S ^^=-^^^;^+ S ^^modD,.
i,»n,=r ^ i',w,=r ^.

From the exact sequence:

0 ——> R X / R X P _ _ _ ̂ /D^^^/D^,

we conclude:
,̂ ^ ^^2j 6 . — = —r- mod D-,

^^•-r ^ Sy

for some j^eR^. Thus:

a,={E(T^), ^}={E(T), ^r} mod filt^1

and a=={E(T) , ^_l^r}+ ^+1- This process continues until r=n—2 so we get for
some j:

a = { E ( T ) , ^ } modfilt^TG^K^R),

proving (5.2).
To complete the proof of (5.1), we must show i — F : TC^K^R) is surjective

when R is strictly Henselian. For symbols {E^T^), r} to lie in the image, it suffices
that the equation X ^ — X — a ^ o have a solution in R. Such a solution exists since
the equation is separable. Finally:

{E(aT^),T}=(F-i){ 5 E^T^T}.
f =m+l

This completes the proof of (5.1). Q.E.D.
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III. — GLOBAL RESULTS

i. Sheaves of typical curves

Let X be a smooth, projective variety over a perfect field k of characteristic ^4=0,2.
We will assume throughout that dim X<j&. I claim first that the constructions of
the previous sections can be globalized to yield sheaves ^^JT x^^^n^ for the
Zariski topology on X with stalks:

r ĵT^,^TG,K,(^J.

Indeed, we may define %-^x to be the Zariski sheaf associated to the presheaf
U^G,K,(r(U, fix))- ^n^.xC^^x will be the subsheaf of sections which
are represented at each stalk by symbols. By functoriality of the sheaf construction,
^X^.x and ^^x wil1 be sheaves of big-W(^x) -modules. In characteristic
^4=0, we can take typical components and define ^^n^qx'

We will be particularly interested in the projective system of sheaves of typical
curves on X:

^^g, X = { ̂ n ̂  X }n^ 1

and in the projective system of complexes (II, 6.2.1), (II. 7.1.4):

{^n<X^W

This complex (of pro-sheaves) will be called the complex of typical curves on X. To
simplify notation, we will write:

r^q—l y<y '^y
^n ^^^n^X
r^q—l yc/y^yU == KI w Jt x

{G-,^}={r^x.§}.
Notice G^==W^ x is the sheaf of Witt vectors studied by Serre [25]. We will frequently
write W^x in place of G^.

Proposition (i. i). — Let X be as above. For any n, q the Zariski cohomology groups
H*(X, G )̂ are W(A) -modules of finite length. There is a Hodge type spectral sequence:

E^H^X.C^IP-^X.C:)

where H* denotes the hypercohomology of the complex. In particular H*(X, G )̂ has finite length,
and H^=(o) for /'>2dim^X.
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Proof. — The computations in II, § 7 (cf. 11.7.2.4) show that C% is built up by
a finite number of extensions from coherent sheaves on X. Since X is proper, the
cohomology groups of coherent sheaves are finite ^-vector spaces, so the finiteness assertion
follows. Also we have C%===(o) for q>dim X by (11.7.2.3). The other assertions
are standard business, using these facts.

Recall ([20], III .0.13) a projective system {A^yjj, of abelian groups is said
to satisfy the Mittag-Loeffler condition if for all TZ, there exists an N==N(/z) such that
for m ̂ N, Image(A^-^AJ=Image(AN->AJ.

Proposition (1.2). — (i) If the A^ are modules of finite length over a ring R and if the
transition maps are ^-module maps, then {AyJ satisfies Mittag-Loeffler.

(ii) If {A^} satisfies Mittag-Loeffler and if {AyJ—^{ByJ is a map of projective systems
induced by surjective maps A^->^B^, then {B^} satisfies Mittag-Loeffler.

(iii) Let {AyJ, { B^}, { G^} be projective systems of abelian groups., A == lim A^, B == lim B ,̂
G==HmG^. Given exact sequences o->A^-^B^-^G^ compatible with the transition maps, we
get exact sequences o->A->B->G.

(iv) Suppose with notation as in (iii) we are given exact sequences A^—'-B^->C^->o, and
assume {A^} satisfies Mittag-Loeffler. Then the sequence A->B->G->o is exact.

Proof. — This is all standard. See, for example \pp. cit.~\.

Corollary (1.3). — Let {^}, {(^}? {^n} be projective systems of abelian sheaves
on X and suppose given exact sequences o—^J^—^^—^^-^o compatible with transition maps.
Assume that cohomology groups H*(X, j^), H*(X, ̂ ), H*(X, ̂ ) are modules of finite length
over a ring R, and that the R-module structure is preserved by the transition maps. Define
H*(X, j^HmH^X, <), H*(X, ̂ )=HmH*(X, ̂ ), H*(X, ̂ HmH^X, ̂ ). Then

n
one gets a long-exact sequence of cohomology \

... -^IP-^X, ̂ -^IP-^X, ̂ -^IP-^X, ̂ -^H^X, ̂ ->...

Define:
H^(X,0)=lmiH^(X,qO

n

H^X, G^limH^X, C;).
n

From (1.1) and (1.2) one gets:

Proposition (1.4). — By passing to the limit, there exists a spectral sequence (slope spectral
sequence):

E^H^X, C8) => HF+^X, €•).

Lemma (1.5). — Let {^}, {^i}? {%} be projective systems of sheaves of abelian groups
on X, and suppose given exact sequences:

o^^->^-><^->o
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compatible with the transition maps. Assume the projective system {^} is essentially zero. Then
Urn IT(X, 3S^ ̂  Hm H*(X,<^).

Proof. — We have long exact sequences of cohomology:

. . . —> IP-^X, %) ̂  IP(X, <) -^> W(X, ̂ ) -^ IP(X, ̂ ).

The systems {Ker ^n>\ anc^ {Ker P^>i are essentially zero, and hence satisfy Mittag-
Loeffler. Writing:

HP-^X, ^) -^ IP(X, j^) -^-> H^X, ̂ ) -̂ > H^X, ̂ ) -̂ >

for the inverse limit of these sequences, we infer from (1.2) that Image a==Ker (B and
Image (B=Ker ^. Since H(X, J^)==o, this implies H?(X, ^^H^X, <g?). Q.E.D.

Proposition (1.6) . — There are long exact sequences'.
... -^IP-^X, G^-.IP-^X, G3/^) -^H^X, GO-^H^X, 0)-^...

... -.IP-^X, C^^H^^X, C^/VC^-^H^X, OO-^H^X, C^)-^...

... -^IP-^X, G^^H^^X, G'/VC^-^H^X, Cn^H^X, C")->...

Proo/. — Fix q and define J^r(j^),., ^oker(p)y by the exact sequence:

0—JT^),-. G^ G^ ̂ oker(p),-^ o.

I will first show by induction on r that the cohomology of the sheaves ^er[p)y and
^oker{p)y has finite length over W(^). C^^, so the assertion is clear for r=i. For
r> i we have:

o —> TO,_,K^, —> G? —> G?_, —> o

0 p p

o -^ TO^K^, -^ C? —> C?., —> o

The natural map ^er[p\ -> ^er{p)y_-^ is zero (cf. the proof of (II. 7 .4 .2)) so the snake
lemma gives:

^(^TO^K^

0 -> ^er{p),_^ ->TO,_iK,+i -^ ̂ ^r(^), -^ ^oker{p),_^ -> o.

The assertion follows from the fact that the cohomology of TO,. _ ^ Kg ̂  i is of finite length.
(It also follows from this argument that ^.C^C^Li.) The first exact sequence in (i .6)
is obtained from:

o -> ^er(p), -> G^ ̂  G? -> ^oker[p\ -> o

by splitting into 3-term sequences and applying (1.5). The other exact sequences
are derived similarly. Q^.E.D.
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Corollary (1.7). — IP(X, G') is a finitely generated W{k)-module for all n.

proof. -By (II.7.3.i):
IP(X, G^G^H^X, Qx).

Hence IP(X, G')/j&.IP(X, G') is a finite A-vector space. The action of p on
H^X, G^^hmH^X, G^) is topologically nilpotent and this group is complete and
separated, hence finitely generated. O.E.D.

2. Comparison and finiteness theorems

Theorem (2.1) . — Let X be smooth and protective over a perfect field k of characteristic
^+0,2. Assume dimX<^. Let H^(X/W)=HmH^(X/WJ denote the crystalline
cohomology. Then there is a canonical isomorphism:

H^(X/W)^H*(X,C-).

Proof. — Recall we have defined the complex Q^ (1.4.5.5) and we have a map:
a : H^(X/WJ->ir(X,^).

It follows from (11.6.3.4) that there is a map of complexes 9^:^ - .̂ We
compose to get % : H^(X/WJ -> IP(X, C^) and in the limit:

^:HUX/W)-^H^(X,G-).

We get a diagram with exact rows:

IP-^X, ̂ ) -^ H^(X/W) -^ H^(X/W) -> H^(X, ̂ ) - H^/(X/W)

p? P^ p?+i

IP-^X, ^x) -> H^(X, G-) -^> H^(X, G-) -> H^(X, ̂  -^ H^^X, G-)

(Existence and exactness for the top row follows from the base change theorem ([3],
v • 3 • 5 •8) P^s universal coefficients ([3], VII. i. i. 11). Gommutativity of the diagram
follows from compatibility of the construction of a (I, § 3, 5) with reduction modulo p.)
Notice that everything in the above diagram is zero for q>2 dim X, so ^ is an iso-
morphism. Proceeding by downward induction on q assume ^q+l is an isomorphism.
From the diagram:

o —> HUP^ns —^ HP(X, ̂ ) —> H ,̂1

p?+i

o -> H^G^H^G-) -^ IP(X, tT) H^^C')
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it follows that p3 induces an isomorphism mod p. Since everything is finitely generated
over W(^), p3 is surjective.

The Kernel pH^g of multiplication by p maps surjectively to the corresponding
Kernel pH^C"). We now have acyclic complexes:

0 "-> p^lns -> ̂ ris ————> H^is ————> • . .

| IP^ IP^ kll
Y y Y y

o ->- pH^G') -> ?(0') -> H^G1) -> . . .

with all vertical arrows surjective. Thus the complex of kernels is acyclic, so multi-
plication by p on Ker (B3 is surjective and (^ is necessarily an isomorphism. Q.E.D.

Theorem (2.2). — The groups:

H^X.G^) /^-torsion

are finitely generated W(^) -modules. These modules, equipped with operators F, V induced from
the corresponding operators on Cq, are thus the Dieudonne modules of certain formal groups asso-
ciated to X.

Proof. — Let a : W(^) ->W(^) denote the Frobenius automorphism, and let
A==W(^)[[V]] denote the " Hilbert ring" of power series in V with commutation
relation V. a{x)=x.V, xeW(,k).

Lemma (2.3). — (i) A is noetherian (on the left and the right).
(ii) Any finitely generated A-module M is \-adically complete and separated^ i.e.:

M^UmM^M.

Proof. — (i) Let 3CA be (say) a left ideal, and let /e3, /=t=o. An argument
of Manin [23] shows that /can be written f==u./Q where fo^W[V] is a monic
polynomial and u is a unit. It follows that A/A^is finitely generated as a W(vfe)-module,
whence 3 fAf is finitely generated, as is 3 as an A-module.

(ii) The assertion is clear if M is free. More generally write M as a quotient
of a finitely generated free A-module:

o^R-^F-^M^o .

Let y"M denote the Kernel of multiplication by V" on M. We get for each n ̂ i a
long exact sequence:

o -> ynM -> R/V^ -> F/V^F -> M/V^M -> o.

The sequence ynM is an ascending sequence of submodules of M and is therefore sta-
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tionary by (i). Thus the prosystem {ynM} with transition maps given by multiplication
by V is essentially zero. Applying (1.2) we get a diagram with exact rows:

o-^R——————^F——————>M——————>o

o -> Hm R/V^R -> lim F/V^ -> lim M/^M -> o

In particular M maps onto Hm M/V^. Since R satisfies the same hypotheses as M,
R-^HmR/V^ and (easy diagram chase) M^limM^M. Q.E.D^

Lemma (2.4). — Let H be a finitely generated A-module. Assume that H/VH has finite
length as a Vf{k)-module, and let TCH be the submodule generated by all p-torsion and all
\-torsion elements. Then H/T is a finitely generated W(A) -module.

Proof. — Replacing H by H/T, we may assume H has nojMorsion and no V-torsion.
Let B^AIV-^W^V)) be the ring of " Hilbert Laurent series35, and let
HB==B(S^H. We have H<->HR. I claim first that H^ is a torsion B-module (compare
[23], proof of proposition (2.1) (2)). It suffices to show every xeH is killed by
some aeA.

Suppose the map ^ : A->H, i^a)=ax, is injective for some xeH. Since H/VH
has finite length we have J^HCVH for some r^o. Thus j^V-1 : H^H^ stabilizes
HCHg. Let Hf=={beK\bxeH}. H' is an A-module and ^ : H'-^H, i^b)==bx.
Note if z'^eVH, we have bx=Vh, V-^GH, so beVH'. Thus H'/VH'^H/VH.
In particular H'/VH' is of finite length, so H' is finitely generated as an A-module.

Let [hi] be a finite set of generators of H' and choose n^>o such that V^'eVA
for all i. Since j^V-^eH' we have:

^V-^S^A', ^A

whence prneVA. This is a contradiction, so Hg is torsion as claimed.
To finish the proof of (2.4), we apply ([23], corollary 2, p. 27 and lemma (2.1) ,

p. 28) to get:
HB== ©Modules of the form B/BJ

finite ' -1

for suitable q\

^=^4- S ̂ V^ ^W(A).

Notice B/By is a finitely generated module over the quotient field K of W(^). In fact,
V-i^^-^iV"-^. ..+^.^-1 so B/Byis generated by i, V, ....V"-^ Thus
HC finitely generated K-module. Since J^HCVH we have ^J&nH=(o). Now
choose a finite set {/zj of elements in H which form a basis for H®K and let H()C H
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be the finitely generated free W (A)-module generated by the ^. Either ^HcHg
for some N, in which case H is finitely generated over W(A) as desired, or there exist
elements ^eH, i<^<oo such that y^eHg—j&Ho. In the latter case, using the
compacity ofH^, there exists a sequence of integers ^->oo such that p1'x^. -> A:eHo—j&Ho.
Thus ^ed^H, contradicting the fact that this intersection is zero. Q.E.D.

Given an integer q^o, let ^<gCT denote the pro-system of complexes of sheaves
on X (X as in § i):

GO->GI->...-.C?-^O.

The complex ^C* has an endomorphism V^ which is pq~rV on (7 ( I I . G . i . i ) and
there is an exact sequence of complexes with compatible endomorphisms:

o —> G[-q] —^ t^C9 —> ̂ -iC- —> o^C- ^-iG-

(2.5) ^^ ^-i)

C[-q] ^ ^-iC'

Lemma (2.6). — rA^ cohomology H*(X, ^<gC*) z'j <z finitely generated ^.-module with
VeA acting by V^. Mor^^r H*(X, ̂ G'y/V.H^X, ̂ C") ^ <z Vf{k)-module of
finite length.

Proof. — The Kernel of V^ is essentially zero, so by (1.5) we get a long exact
sequence:

. . . IP(X, ^G-) ̂  H^X, ^G-) -> H^X, ^,G-/V^^,G-)
-^H^^X.^G-)^...

Everything will follow if we show the cohomology of ^G'/V^^gC*:
W/^VW -> G^^VG1 -^ ... -> G^/VG3

has finite length.
When q==o we get W/VW=^x and tne assertion is true. In general, there

is a sequence of complexes (vertical arrows exact up to essentially zero pro-objects):
o oi i

GO|pf-l\rCO —> ... —> G^-^VG2-1 —> o

G°/^VG°

I
G°//>G°

• G^^VC"-1 —> C^VC"

I i
Ct-^pC'1-1 —> C^VCt
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Using (II. 7.3.1), we get a long exact cohomology sequence:

... -^IP^X, t^) -^(X, ̂ _iC-/V^_^_iG-)
-^(X, ̂ G-/V^Cr) -^IP(X, ̂ ^)-^ ...

The finiteness assertion for the cohomology of ^G'/V^^CT follows by induction.
Q.E.D.

We can now complete the proof of (2.2). The sequence (2.5) gives a cohomology
sequence:

H^-^X, ̂ _iC') -> H"(X, G^) -> H-^X, ^G*).

This is an exact sequence of A-modules if we let V act on the left-hand group by p^iq -1) ?
on the middle by V itself, and on the right by V^. Truncate this sequence to get:

o -> M ̂  H^X, G3) -> N -> o.

We know by (2.4) and (2.6) M/(^-torsion) is finitely generated over W(^) (note
V-torsion C ̂ -torsion because each of these modules has an endomorphism F with
FV=some power of p. Also note that M itself is not in general a finitely generated
A-module because the action of V is via J^V^_^, not V^_i)). Further N is finitely
generated over A and N/^-torsionC I-P^X, t^ G")/j^-torsion is finitely generated
over W(^).

Since A is noetherian, we get tors(N)= fN for f^o. The exact sequence
Tor^H^X, C^), K/W) -^Tor^N, K/W) -^ M®K/W shows:

Goker(tors H^X, G5) -> tors N) C (M/tors M)®(W(A)//W(^)).

In particular, this cokernel is finitely generated over W(^). It follows easily that
IF(X, G9')/j^-torsion is finitely generated over W(A), completing the proof of (2.2) .

Q.E.D.

3. Slope spectral sequence.

Definition (3.1). — Assume dim X<j^. The spectral sequence:
E^-H^X.C^H^X/W)

will be called the slope spectral sequence.

Proposition (3.2). — The slope spectral sequence degenerates up to torsion at E^. (Note
(3.2) implies (2.2).)

Proof. — Let V be the endomorphism of G* given by j^x-^v on C^. The
corresponding endomorphisms V^ on E^/j^-torsion will have slopes a. (Recall
the slopes of ^SJt are the j^-adic ordinals of the eigenvalues, the point being that in fact
the eigenvalues are not quite well defined because ^S1t is not W(A)-linear, whereas
their ordinals are defined ([12], [3 bis], [23 bis])), satisfying:

dim X—j'<CT^dim X—s-\-i.
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Indeed, on E^/^-torsion we have ^<=^imx-s y ^ y is topologically nilpotent
(II, §7 (1 .6 ) (iii)) so (7>dim X—.y. On the other hand E^ l admits an endomorphism F
such that VF==FV=j&, so cr^dim X—j-+i . Since E^/^-torsion is a subquotient
of E^'/^-torsion we get the same inequalities for the slopes of Y^.

To show the differentials dy are torsion, note we have commutative squares:
drE^-torsion E^+^-^+^-toision

^t ^ r - " 1 "

E^-torsion -^> E^'^-^^/^-torsion

Since ̂ t and y^+^-^+i have no slopes in common, the d, must be trivial. Q..E.D.

Let Slope* H^is(X/W) be the filtration defined by the slope spectral sequence (3.1).

Proposition (3.3). — The filtration Slope* H^is(X/W) is stable under the frobenius /.
Moreover^ the action of f on\

(Slope^ H:^(X/W))/^-torsion

is divisible by p^

Proof. — Slope^ H^g is identified with the image of the map:

p^ : H*(X, Slope^ G*) -> H*(X, G")

where: (Slope^ G'y=l^
o r<{

r>£.

Slope/ G* has an endomorphism ^"^ such that the square:

H*(X, Slope/ G') H;ris(X/W)

plyV}

p(fl

H*(X, Slope/ G*) H:rf,(X/W)pW

commutes. By (3.2), p^ is injective mod ^-torsion, so/is divisible by// on the image.
Q,.E.D.

Corollary (3.4). — Let K be the quotient field ofW(k). The filtration:

Slope-H:^(X/W)®K
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is given by\
Slope^ H^5®K= largest subspace of H^g®K stable under frobenius on

which the slopes s satisfy ^<_s<co.

Proof. — Using (3.3), it suffices to show that on:
(H^/Slope^ H^Kc.H^X, ^_iG-)®K

the slopes all satisfy o<^s<f. This follows from the existence of a topologically nilpotent
operator ̂  on H^X, ^_iCT) (^ defined by taking ^"^""^.V on G9) such that
fo ̂  == multiplication by p1\ Q.E.D.

Example (3.5). — It follows from the above that the Witt vector cohomology
H"(X,Vf)®K is the part of H^®K of slope<i (compare [i]).

4. Relation with flat cohomology.

Let X be smooth and proper over a perfect field k of characteristic =(=0,2. Let
P^H^(X, pLyv) denote the cohomology in the flat topology of the sheaf p^v = Ker(G^ -> G^).

Let
HS(X, Z,(i))=UmHS(X, ^), HS(X, <^(i))=Hg(X, Z,(I))Q.

v

Finally, let H^ig(X/W) denote the crystalline cohomology and let f be the frobenius
endomorphism of H^g.

Theorem (4.1). — (i) Assume k==k. There exist short exact sequences/or all n^o:

o -^ HS(X, Q^(i)) -^ H-^X, G^Q 1^ H-^X, C^ -> o

w^r<? F : (y^^^Ta -> r^jTg ^ the frobenius.
(ii) Assume k==k and dim X<j0. W? ̂ :

HS(X,^(i))^H^(X/W)^^={aeH^®^|/a=j&a}.

(iii) Without assumption on k, if the pro-system {H^(X, ^)}v>i satisfies the Mittag-
Loeffler condition for all values of *, then there is a long-exact sequence:

. . . -. Hg(X, Z,(i)) -> IP-^X, G1)1-^ H-^X, G1)
^H^X^i))-^...

Proo/̂ . — The pro-system {G^}==G1 consists of sheaves which are extensions of
coherent sheaves on X, so H^n^X, G^^H^^X, G1). Let TT : Xa-^X^ be the
morphism of topoi. We have ([20 bis] (11.7)) :

(GJG^ n=i
R^^v^

' [0 7 Z = ) = I

so: H^X.^H^X.GJG^.
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If these cohomology groups satisfy Mittag-Loeffler, we can use (11.7.5.1) to get exact
sequences:

... ̂ HmH^X, G,/GQ -> IP-^X, G1)^ H"-^, G1) -> ...,
V

proving (iii).
More generally, let R^=Ker( i—F :G^t->G^J. We have:

{G^/G^}^{RJ

with cokernel essentially zero (II, § 7 (5.2)). By an argument similar to (i .5), we get:
HmI%(X, GJG^HmI%(X, RJ.

v v

Truncate the long exact sequences:

. . . ^> I%(X, R,) -"L JE%(X, Gi) ̂ l H;,(X, Ci_,) ̂  . . .

to get: o ̂  Image (3: -> H^(X, Ci_i) -> Ker a^ o
o -> Image ^ -> H^(X, R,) -> Ker p^ -^ o.

Note {H*(X, C^;)} satisfies Mittag-Loeffler (the modules have finite length), as do the
quotient pro-objects {Image (3^ and {Image 8",\. Passing to the limit, we conclude
that the complex:

.. . ̂  Hm I%(X, R,) ̂  H^(X, C1) ̂  I%(X. G1) ̂
v

is exact except possibly on the right, where we only know Image (^CKer ^n+l. The
modules H^(X, G1)^ are finitely generated over K= quotient field of W(A), and
(B^i—F^i-frobenius linear map. Assuming k=k, one knows from the theory of
frobenius linear maps that such endomorphisms are always surjective, so:

Ker a^CH^X, 0%= Image ^0%.

Finally, if dimX<^, it follows from (3.4) and (3.2) that:
H^X/W^^ir-^X, G1)^1). Q.E.D.
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IV. — OPEN PROBLEMS

The paper raises a number of questions. For the convenience of the reader,
I will describe three problems of immediate import and three others of a somewhat
more vague and open-ended character.

Problem -2. — Let R be a commutative ring and let G^(R)==C^K^i(R). One
would like to give C*(R)== CD C^R) the structure of graded ring (commutative in

i^O
the graded sense), compatible with the module structure C^(R)xC^(R) -> C^(R)
defined in II, § 2. Using [15], one can define pairings G^R)xC^(R) -> C^R) but
associativity and commutativity are unclear. This product structure should give the
complex of typical curves the structure of a differential graded algebra. It should
be compatible with the product structure in crystalline cohomology and should induce
a product structure on the slope spectral sequence (III, § i (1.4)).

Problem 2. — Eliminate the hypothesis dim X<char.^. This is really a problem
about the topology of BGL4' which can be thought of as follows: Let M^= (BM^ be

i>_0
a graded ring and suppose we have a theory of Ghern classes C(p) for representations p
of abstract groups G on finitely generated projective R-modules (R some fixed ring).
We suppose G^p^H^G, M^) and that the G(p) satisfy the usual identities for a theory
of Chern classes. Fix an integer q and view C3 as a map C9 : BGL^R) —^ K(M^, q).
Let BGL^R)^—i) denote the space obtained from BGL^R) by killing TT^, . . . , ^-i.
One needs to "divide" G1 by constructing a map c^ : BCL^R)^—!) -> K(Mg, q)
in such a way that the diagram:

BGL^RKy-i) -^> K(M^y)

multiplication by (- l}^(q-1)!

BGL+(R) ——^——> K(M,, q)

commutes up to homotopy. Since 7^(BGL+(R)(y—I))=7^(BGL+(R))==Kg(R) this
cc (—i)^ 5

construction will yield ————^:K^(R)->M^. This is related to a theorem of

Adams for BU. Adams showed that the q-th Ghern character in HP^BU, QJ pulled
back to an integral cohomology class in H^BU^^—i)).
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Problem 2. — Eliminate the hypothesis p+2 which occurs throughout the
computations.

The following problems are somewhat broader and less precise.

Problem 4. — Understand the kernel of i — F : TGK^(R) — TCK^(R). There is
a map of pro-systems:

. :{K,_i(R)/rK,_,(R)}^,->Ker(i-F)

analogous to the map defined in (II, § 8 (5. i ) ) . Is e an isomorphism? This question
is closely related to recent work of Milne and Parshin on duality and classfield theory
for surfaces. An affirmative answer should enable one to compute galois groups of
fields of the form K==R((^)) , where k==f^{{s)). Parshin has shown that for L/K galois
of degree prime to p, there is an isomorphism K^K^NK^L^GaUL/K), where
K^ denotes the topological Kg-group and N : K^L) -> K^K) is the norm. An
affirmative answer in problem 4 for n=^ should enable one to remove the hypothesis
[L : K] prime to p. (It will be necessary to modify the definition of TC^K^K) to
take into account the topology on K.)

Problem 5. — Suppose we are given a lifting of our variety X/A to a variety X/W(A).
Find corresponding natural liftings of the formal groups associated to the Dieudonne
modules IT(X, C3). The Tate modules of these lifting groups should be related to
thej^-adic etale cohomology of the geometric generic fibre of X, H^^XK, Zy) (cf. [i]).

Problem 6. — Understand geometrically the variation of slopes in the H^X^, CP)
for an interesting family of varieties {XJ. I have in mind here some analogue of what
Artin has done for K-3 surfaces using HP(X, G°) [i bis].

Recently, Deligne and Illusie, basing their approach on some older work of
Lubkin, have constructed a complex which coincides with the complex of typical curves
in degree <p, and which computes the crystalline cohomology in all degrees. In par-
ticular, one has a slope spectral sequence without restriction on dimension. The
discussion of problem 2 above is thus out of date, though it remains of importance to
link the Deligne-Illusie-Lubkin approach to the typical curves in dimensions^.
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