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closely related to the notion of projective amplitude.
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of associative ring spectra. Similarly, Ravenel’s spectra T (n)
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which proves that these admit canonical associative algebra 
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1. Introduction

Within homotopy theory, it is commonly understood (if not always made explicit) 
that the homology groups of a space X are closely coupled with how X can be built as a 
CW-complex. If X is equivalent to a CW-complex, then C∗(X) is quasi-isomorphic to a 
chain complex with one free generator for each cell in the CW-structure. For 1-connected 
spaces X we can do better, because a converse holds: if C̃∗(X) is quasi-isomorphic to a 
complex that is levelwise free, then there exists a CW-complex equivalent to X with one 
cell for each generator.

The engine that makes this technique possible is that we can understand the rela-
tion between connectivity and cell attachment. For maps of simply-connected spaces, 
homology detects connectivity. Further, suppose we have built the n-skeleton for a CW-
approximation of X: an n-connected map X(n) → X. The set of possible ways to “extend 
this map to an (n + 1)-cell” is governed by the relative homotopy group πn+1(X, X(n)); 
similarly, given a map of chain complexes C → D, the set of possible ways to “extend 
this map to an (n + 1)-cell” is governed by the relative homology group Hn+1(D, C). 
The map



J. Beardsley, T. Lawson / Advances in Mathematics 457 (2024) 109944 3
πn+1(X,X(n)) → Hn+1(C∗X,C∗X
(n))

is an isomorphism by the relative Hurewicz theorem, making it possible to lift the at-
taching map for each (n + 1)-dimensional generator uniquely from the chain level to the 
space level.

With 1-connected rational or p-complete spaces, the same argument works but our 
job is easier: there exists a rational or p-complete CW-structure on X with one cell for 
each element in a basis of H∗(X; Q) or H∗(X; Fp) respectively. This argument also works 
for connective spectra, and this is a core component of understanding objects in stable
homotopy theory via their homology. This perspective also makes it clear that, because 
the Blakers–Massey excision theorem can be used to give an isomorphism

πn(X,X(n)) → πn+1(ΣX,ΣX(n)),

it is possible to lift (up to homotopy equivalence) any CW-structure from ΣX to X.
This paper studies these types of cell attachments in other categories. Our main appli-

cation is to demonstrate that certain spectra in chromatic homotopy theory have natural 
multiplicative structures: specifically, that they arise as “skeleta” in cellular constructions 
of known ring spectra. The desire to having an analogous theory of homology for commu-
tative ring spectra, detecting cell attachment, was one motivation for the development of 
topological André–Quillen homology by Kriz, Basterra, and Mandell [16,5,8]. However, 
our first goal will be to understand exactly what it means to say “K is an n-skeleton of 
X” in a rather broad generality.

To say that K is an n-skeleton of X in the terms above relies on the existence of 
a particular type of construction of X that produces K at some stage. We hope to 
demonstrate that many of the useful homotopy-theoretic properties of a skeleton K can 
be derived from the definition of connectivity of a map.

Definition. An object K is k-skeletal if it has the left lifting property with respect to 
k-connected maps: for any k-connected map X → Y , every map K → Y lifts to a map 
K → X.

A map f : K → X makes K into a k-skeleton of X if K is k-skeletal and f is k-
connected.

For example, a space is k-skeletal if and only if (in the homotopy category) it is a 
retract of a k-dimensional CW-complex (cf. Example 3.22). However, this definition is 
cell-free, interacts well with adjunctions, and has well-behaved generalizations even if we 
adopt a flexible notion of what “connectivity” means. When we can construct objects 
inductively with cells, the stages will naturally be skeleta. More, because the definition 
of skeletal objects is in terms of lifting properties, we can often detect k-skeletal objects 
by testing analogues of cohomology.

This will allow us to give criteria under which the construction of a skeleton can be 
lifted from one category to another. Our engine for lifting CW-structures in terms of 
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relative homotopy and homology is a special property of an adjunction between two 
categories. The general notion that we introduce is that of a subductive adjunction: one 
where a k-connected map X → Y induces a k-Cartesian square

X Y

RL(X) RL(Y ).

Subductive adjunctions capture the situation where attaching maps for cells can be lifted 
along the functor L. If, instead, k-connected maps are taken to (k+1)-Cartesian squares, 
we have a strongly subductive adjunction, where attaching maps lift uniquely.1

1.1. Main applications

The proofs of the nilpotence and periodicity theorems by Devinatz–Hopkins–Smith 
make heavy use of ring spectra X(n), built as Thom spectra on the spaces ΩSU(n). 
These assemble into a directed system

S = X(1) → X(2) → X(3) → · · · → MU

of ring spectra (specifically, E2 ring spectra) and on integral homology this realizes a 
filtration of H∗ MU by polynomial subalgebras,

Z → Z[x1] → Z[x1, x2] → · · · → H∗ MU

where |xi| = 2i. When working p-locally, however, MU(p) has a split summand BP that 
is more tractable for computational applications, and the filtration of MU by X(n) can 
be replaced by a filtration

S(p) = T (0) → T (1) → T (2) → · · · → BP .

On homology this realizes a filtration of H∗ BP,

Z(p) → Z(p)[t1] → Z(p)[t1, t2] → · · · → H∗ BP,

where |ti| = 2pi − 2. However, the spectrum T (n) is usually constructed as a split 
summand of X(pn)(p) and this splitting does not grant it structured multiplication.

1 The term “subductive” is loosely borrowed from geology; we think of the adjunction as an interaction 
between two tectonic plates, with the left adjoint L : C → D gradually pushing objects from C under the 
surface. Even though this process can (and typically does) lose information from the category C, it is still 
gradual enough that (with enough effort) we can gradually dig up information about objects and maps to 
reassemble them.
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We will show that this sequence can be realized in a canonical way as a sequence of 
associative ring spectra. We know that BP exists and has an associative structure, and 
we can construct a cellular approximation by attaching cells inductively—but within 
the category of associative ring spectra, rather than just within the category of spectra. 
We will show that the T (n) arise quite naturally as skeleta of BP as an associative 
algebra, and that the necessary cells are detected by topological Hochschild homology 
with coefficients. (Cellular constructions, in various categories, of objects related to BP
are by no means new: see, for example, work of Priddy [23], Hu–Kriz–May [15], or Baker 
[4].) By similar methods, it is also possible to show that the 2-primary spectra Y (n) of 
Mahowald–Ravenel–Shick [22] arise as skeleta of the Eilenberg–Mac Lane spectrum for 
F2, although this can be shown more directly using their construction as Thom spectra.

1.2. Outline

In Section 2 we will introduce the notion of a connectivity structure on C, generaliz-
ing the standard notion of “k-connectedness” for spaces and spectra, and prove several 
properties. In the case where C is stable, the most common way to get a connectivity 
structure is to have a t-structure on C. Several of our categories of interest, such as cat-
egories of algebras, are not stable, but they still inherit connectivity structures from a 
forgetful functor to an underlying stable category.

Section 3 introduces skeleta and skeletal objects in C, defined in terms of lifting against 
sufficiently connected maps, and proves basic properties. We will also discuss the notion 
of cells in C and give a version of CW-approximation when there is a sufficient supply 
of cells. We will introduce minimal skeleta, which (when they exist) are unique up to 
homotopy equivalence.

Section 4 discusses the detection of skeletal objects. The chief application is to show 
that tools like stabilization can be used to detect skeletality so long as k-connected maps 
admit a Postnikov-like decomposition.

Section 5, by contrast, discusses lifting skeleta across an adjunction with left ad-
joint L. We introduce subductive adjunctions and how they allow analogues of lifting 
CW-structures: inductively, we can lift attaching maps of cells along L from the target 
category to the source category. This allows us to obtain results lifting the construction 
of skeleta, and minimal skeleta, along L.

Section 6 discusses excision theorems, and how their presence often makes stabilization 
into a subductive adjunction. This makes it possible to employ homology theories for 
ring spectra, such as those introduced by Basterra and Mandell [9].

Finally, Section 7 discusses our applications. For the derived category of a ring, we 
find that skeletality is closely related to the notion of projective amplitude, and for spaces 
we find that k-skeletality is equivalent to a constraint on the projective amplitude for 
chains on the universal cover.
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We then work with algebra spectra, showing that cellular constructions of associative 
algebras are governed by topological Hochschild homology. For these, we need to make 
heavy use Ching–Harper’s results on excision for categories of algebras over an operad.

1.3. Notation and conventions

Throughout this paper, we make the assumption that C is an ∞-category in the sense 
of [17] that admits pullbacks. We write hC for the associated homotopy category.

1.4. Acknowledgments

The authors would like to thank Jeremy Hahn for being a close part of questions and 
discussions that instigated this project, and Clark Barwick, Tim Campion, Ian Coley, and 
Denis Nardin for help with material related to this paper. We also thank an anonymous 
referee for a number of helpful clarifications.

This work is an outgrowth of conversations that took place while the authors were 
attending the workshop “Derived algebraic geometry and chromatic homotopy theory” 
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stitute (EPSRC grant numbers EP/K032208/1 and EP/R014604/1). The first author’s 
travel to the workshop was funded by NSF grant DMS-1833295. The first author was also 
partially supported by NSF grant DMS-1745583 and Simons Foundation Collaboration 
Grant #853272 while working on this paper. The second author was partially supported 
by NSF grant DMS-1610408.

2. Connectivity structures

2.1. Definitions

Definition 2.1. Suppose that C is an ∞-category with homotopy pullbacks. A connectivity 
structure T on C consists of, for each k ∈ Z, a collection of k-connected maps in the 
homotopy category hC, subject to the following axioms.

1. A map that is k-connected is also (k − 1)-connected.
2. Equivalences are k-connected for all k.
3. The homotopy pullback of a k-connected map is k-connected.
4. Suppose we have composable maps f : X → Y and g : Y → Z.

(a) If f and g are k-connected, so is gf .
(b) If f is (k − 1)-connected and gf is k-connected, then g is k-connected.
(c) If gf is k-connected and g is (k + 1)-connected, then f is k-connected.

When specifying the connectivity structure is necessary, we refer to a map as k-connected 
in T .
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A functor F : C → D preserves connectivity if, whenever f is k-connected, the image 
F (f) is k-connected.

Remark 2.2. For convenience, we will refer to f as ∞-connected if it is k-connected for 
all k. Similarly, we will refer to all maps as (−∞)-connected. We define a connectivity 
structure to be left complete if an ∞-connected map is an equivalence.2

The definition of a connectivity structure is invariant under translation.

Definition 2.3. For d ∈ Z, the connectivity structure (T + d) obtained by shifting T by d
is defined as follows. A map f is k-connected in T if and only if f is (k + d)-connected 
in (T + d).

A functor F : C → D adds (at least) d to connectivity if, whenever f is k-connected, 
the image F (f) is (k + d)-connected.3

Definition 2.4. If {Ti} is a collection of connectivity structures, the intersection connec-
tivity structure ∩Ti is defined as follows. A map f is k-connected in ∩Ti if and only if, 
for all i, f is k-connected in Ti.

Definition 2.5. Suppose that R : D → C is a functor that preserves homotopy pullbacks 
and that C has a connectivity structure T . Then there is a connectivity structure R−1(T )
on D, defined as follows. A map f : X → Y in D is k-connected in R−1(T ) if and only 
if the image Rf is k-connected in T . We refer to this as the connectivity structure lifted
from C, and say that the functor R reflects connectivity.

This is possible whenever R is a right adjoint, such as a forgetful functor. The lifted 
structure is always the maximal structure such that R preserves connectivity.

Definition 2.6. If C has homotopy pushouts, a connectivity structure on C is compatible 
with cobase change if the homotopy pushout of any k-connected map is k-connected.

Suppose that C has K-indexed homotopy colimits. A connectivity structure on C
is compatible with K-indexed (homotopy) colimits if, whenever a natural transforma-
tion F → G of K-indexed diagrams is k-connected objectwise, the map hocolimK F →
hocolimK G is k-connected.

2.2. Examples

Example 2.7. Every C has available the minimal connectivity structure Tmin, where only 
equivalences are k-connected for k �= −∞. It also has the maximal connectivity structure 
Tmax, where all maps are ∞-connected.

2 This is by analogy with t-structures: see §2.4.
3 In other words, it is a connectivity-preserving functor (C, TC + d) → (D, TD).
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Every functor out of the minimal connectivity structure preserves connectivity; every 
functor into the maximal connectivity structure preserves connectivity.

Example 2.8. A map f : X → Y in the category S of spaces is k-connected if (for all 
choices of basepoint) πj(f) is an isomorphism for all j < k, and πk(f) is a surjection.

Example 2.9. A morphism f : X → Y of objects in the category Sp of spectra is called 
k-connected if πj(f) is an isomorphism for all j < k, and πj(f) is a surjection.

More generally, if C is stable and has a t-structure, we can give C a connectivity 
structure by declaring that a map f : X → Y is k-connected if its cofiber cofib(f) is 
k-connected: τ≤k cofib(f) is trivial (cf. Sections 2.4 and 2.5).

Remark 2.10. By [18, 1.2.1.6], if C is stable and the connectivity structure on C is deter-
mined by a t-structure, then the connectivity structure is compatible with cobase change 
and all homotopy colimits that exist in C.

Example 2.11. If Ci have connectivity structures, then the product 
∏

i Ci has a product 
connectivity structure: a map (Xi) → (Yi) is k-connected when each map Xi → Yi is. 
This is the intersection of the connectivity structures lifted from each Ci.

Example 2.12. If O is an (ordinary) operad, the category of O-algebras in C (if it has 
pullbacks) has a connectivity structure lifted from C: the forgetful functor preserves all 
homotopy limits that exist in C.

Example 2.13. If C has a connectivity structure, then the slice and coslice categories C/Y
and CX/ have a connectivity structure lifted from C.

Example 2.14. Suppose X is an ∞-topos in the sense of [17]. Then X admits a connec-
tivity structure where a morphism is k-connected precisely when it is (k+ 1)-connective 
in the sense of [17, 6.5.1.10]. Specifically, a morphism f : X → Y in C is k-connected if it 
is an effective epimorphism as in [17, 6.2.3.5] and if πi(f) � ∗ (for the toposic homotopy 
groups of [17, 6.5.1]) for all 0 ≤ i ≤ k. The first three axioms of Definition 2.1, as well 
as part (a) of the fourth axiom, are satisfied as a result of [17, Proposition 6.5.1.16].

For parts (b) and (c) of the fourth axiom, recall that by [17, 6.1.0.6] any ∞-topos 
X is a left exact localization of a presheaf ∞-topos P(C) = Fun(C, S). If we say that 
X � LP(C) for a localization functor L then a morphism f ∈ X is k-connected if and 
only if it is k-connected in P(C). One direction of this assertion follows from [17, 6.5.1.15], 
i.e. if f � L(f0) is k-connected then so is f0. For the other direction, notice that the 
left exact left adjoint L preserves colimits and truncations (cf. [17, 5.5.6.28]) so preserves 
k-connectedness (since k-connectedness in an ∞-topos can be determined by truncations 
[17, 6.5.1.12]). In the presheaf topos P(C), k-truncation, and therefore k-connectedness, 
is determined “pointwise” in S, the statements follow from their usual proofs in S.
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Note that by [2, 3.6.6] the definition of a k-connected morphism in an ∞-topos X de-
scribed above agrees with the definition of a k-connected morphism given in Example 2.8
when X � S.

Remark 2.15. There is a discrepancy between the definition of k-connected in an ∞-
topos given in [17] and in our notion of a connectivity structure in that, in an ∞-topos, 
the concept of being k-connected only makes sense for k ≥ −2. However we can extend 
the notion of k-connectedness in an ∞-topos described in Example 2.14 by saying that 
all morphisms are k-connected for any k ≤ −2.

2.3. Basic properties of connectivity

Proposition 2.16. Suppose that we have a retract diagram A → X → A. Then the map 
A → X is k-connected if and only if the map X → A is (k + 1)-connected.

Proof. This follows immediately from the second axiom and items (b) and (c) of the 
fourth axiom of Definition 2.1.

Proposition 2.17. Suppose that we have a commutative diagram

X Y Z

X ′ Y ′ Z ′

where the middle vertical map is (k + 1)-connected and the outer vertical maps are k-
connected. Then the induced map of homotopy pullbacks X ×Y Z → X ′ ×Y ′ Z ′ is k-
connected.

Proof. Consider the composite map

X ×Y Z → X ′ ×Y ′ Z → X ′ ×Y ′ Z ′.

We will show that both maps are k-connected, which implies the desired result.
The map X ′×Y ′ Z → X ′×Y ′ Z ′ is the pullback of the k-connected map Z → Z ′ along 

the map X ′ → Y ′, and so it is k-connected.
The map X ′ ×Y ′ Y → X ′ is the pullback of a (k + 1)-connected map Y → Y ′ along 

X ′ → Y ′, and so it is (k + 1)-connected. The composite X → X ′ ×Y ′ Y → X ′ is k-
connected. Therefore, the map X → X ′×Y ′ Y is k-connected. Taking pullback along the 
map Z → Y , we find that the map X ×Y Z → X ′ ×Y ′ Z is k-connected.

By considering the special case where X = Y = Z = X ′ = Z ′, we arrive at the 
following.
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Corollary 2.18. If f : X → Y is (k+1)-connected, then the induced map Δ: X → X×Y X

is k-connected.

Remark 2.19. If C is an ∞-topos then [17, 6.5.1.18] gives a partial converse to the above 
corollary. Specifically, if the map Δ is k-connected and also an effective epimorphism 
then f is (k + 1)-connected.

As another special case, we can take Y = Y ′ and Z = Z ′.

Corollary 2.20. Let f : Z → Y be a morphism in a category C with a connectivity 
structure. Then the pullback functor f∗ : C/Y → C/Z preserves connectivity (for the 
connectivity structures lifted from C).

The following is a dual argument to Proposition 2.17.

Proposition 2.21. Suppose that the connectivity structure on C is compatible with cobase 
change, and that we have a commutative diagram

A B C

A′ B′ C ′

where the middle vertical map is (k − 1)-connected and the outer vertical maps are k-
connected. Then the induced map of homotopy pushouts A �B C → A′ �B′ C ′ is k-
connected.

Proof. Consider the composite map

A�B C → A�B C ′ → A′ �B′ C ′.

We will show that both maps are k-connected, which implies the desired result.
The map A �BC → A �BC ′ is the homotopy pushout of the k-connected map C → C ′

along the map B → A, and so it is k-connected.
The map A → A �B B′ is the homotopy pushout of a (k− 1)-connected map B → B′

along B → A, and so it is (k − 1)-connected. The composite A → A �B B′ → A′ is k-
connected. Therefore, the map A �BB′ → A′ is k-connected. Taking homotopy pushouts 
along the map B′ → C ′, we find that the map A �B C ′ → A′ �B′ C ′ is k-connected.

Corollary 2.22. Suppose that C has homotopy pushouts and that the connectivity struc-
ture on C is compatible with cobase change. Given any map A → B, the functor 
B
∐

A(−) : CA/ → CB/ preserves connectivity.
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Corollary 2.23. Suppose that C has homotopy pushouts and that the connectivity structure 
on C is compatible with cobase change. If X → Y is a (k − 1)-connected map of objects 
over Z, then the induced map Z �X Z → Z �Y Z is k-connected.

2.4. Stable connectivity structures

Suppose C is pointed. Proposition 2.17 shows that whenever f : X → Y is k-connected, 
Ωf : ΩX → ΩY is (k − 1)-connected: the loop operator Ω adds at least (−1) to connec-
tivity. In the case of a stable category, Ω is an autoequivalence, and it is common for 
connectivity structures to satisfy a converse.

Definition 2.24. Suppose that C is stable. A stable connectivity structure on C is a con-
nectivity structure such that f : X → Y is k-connected if and only if Ωf : ΩX → ΩY is 
(k − 1)-connected.

In the category of spectra, we can detect connectivity by examining connectivity of 
the cofiber. This property is always possible with stable connectivity structures.

Definition 2.25. Let C be a pointed category with a connectivity structure. Then we say 
that X ∈ C is k-connected if the map from the zero object ∗ → X is k-connected.

Remark 2.26. Note that the zero object of a pointed category will be ∞-connected.

Lemma 2.27. If C is pointed, then the fiber of any k-connected morphism is (k − 1)-
connected.

Proof. Let f : C → D be a k-connected morphism in C and consider the pullback square:

fib(f)

p

C

f

∗ D

By pullback stability the morphism p is k-connected, so the zero morphism ∗ → fib(f)
is (k − 1)-connected by Proposition 2.16.

The above definition allows us to give another characterization of the k-connected 
morphisms in a stable connectivity structure, since stable categories always have zero 
objects.

Proposition 2.28. If C has a stable connectivity structure, then a map f : X → Y is 
k-connected if and only if the cofiber cofib(f) is k-connected.
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Proof. Because C is stable, we have the following two homotopy pullback squares:

X

f

∗ Ω cofib(f) X

f

Y cofib(f) ∗ Y

The left-hand pullback, along with pullback stability of connectivity, shows that if 
cofib(f) is k-connected, then the map f is k-connected.

For the converse, consider the right-hand pullback. It shows that if f is k-connected, 
then Ω cofib(f) is (k− 1)-connected by Lemma 2.27. By stability, the map ∗ → cofib(f)
is k-connected.

Remark 2.29. Stability of C and Proposition 2.28 of course immediately also imply that 
a map f : X → Y is k-connected if and only if fib(f) is (k − 1)-connected, giving a 
converse to Lemma 2.27.

Remark 2.30. Given a stable connectivity structure on C we can define the subcategory of 
connective objects, C≥0, as the full subcategory of all objects which are (−1)-connected. 
It is not hard to check that C≥0 satisfies the following conditions:

1. C≥0 contains a zero object;
2. C≥0 is closed under extensions; and
3. C≥0 is closed under cofibers.

Conversely, given a stable ∞-category C, a full subcategory D ⊆ C determines a stable 
connectivity structure on C so long as it satisfies these three conditions. The third con-
dition can be replaced by closure under the suspension operator Σ, because a cofiber 
sequence X → Y → cofib(f) is equivalent data to an extension Y → cofib(f) → ΣX.

More specifically, we can say that a morphism f : X → Y is k-connected, for each 
k ∈ Z, exactly when cofib(f) ∈ Σk+1D. Checking that this determines a connectivity 
structure on C is straightforward for the first three axioms. All three parts of the fourth 
axiom can be checked by recalling that if C is stable then hC is triangulated and applying 
the octahedral axiom.

To see that this connectivity structure is stable, notice that the suspension functor Σ
is an equivalence, so preserves cofibers. Thus f : X → Y is k-connected, i.e. cofib(f) ∈
Σk+1D, if and only if cofib(Σ−1f) � Σ−1 cofib(f) ∈ ΣkD, i.e. the desuspended morphism 
Σ−1f : Σ−1X → Σ−1Y is (k − 1)-connected. It also follows immediately that an object 
X ∈ C is k-connected in the sense of Definition 2.25 if and only if X ∈ Σk+1D.

Example 2.31. Let E ∈ Sp be a spectrum. Then there is a connectivity structure on 
Sp determined by declaring the subcategory of connective objects to be precisely those 
spectra X such that the E-homology groups Ei(X) = πi(E⊗X) are trivial for all i < 0.
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2.5. Stabilization

Recall that a functor is reduced if it preserves terminal objects and excisive if takes 
pushout squares to pullback squares. If C is an ∞-category with finite limits then there 
is a category Sp(C) of spectrum objects of C [18, 1.4.2.8]. Explicitly, Sp(C) is the full 
subcategory Exc∗(Sfin

∗ , C) ⊆ Fun(Sfin
∗ , C) of reduced, excisive functors from finite pointed 

spaces to C.

Remark 2.32. For any ∞-category C with finite limits there are functors evd : Sp(C) → C
for all d ≥ 0 given by evaluation on the d-spheres Sd ∈ Sfin

∗ as in [18, 1.4.2.20]. For d > 0
functors can be equivalently defined by composing ev0 with Σd. We will often write Ω∞

instead of ev0.

Definition 2.33. Let C be an ∞-category with finite limits and a connectivity structure, 
and let Sp(C) be its associated category of spectra. Say that an object X of Sp(C) is 
connective if for each d ≥ 0, evd(X) is (d − 1)-connected in C∗. Let Sp(C)≥0 denote the 
full subcategory of Sp(C) spanned by the connective objects.

Proposition 2.34. If C has finite limits and a connectivity structure then Sp(C)≥0 ⊆ Sp(C)
determines a stable connectivity structure on Sp(C) as in Remark 2.30.

Proof. We only need to check the three conditions of Remark 2.30.
First, the zero object of Sp(C) is the functor given by K �→ ∗ for every K ∈ Sfin

∗ . It 
follows from Remark 2.26 that its image is contained in Sp(C)≥0.

Now let X → Y → Z be a fiber sequence in Sp(C) with X, Z ∈ Sp(C)≥0, and fix 
d ≥ 0. Then we have a pullback square

X(Sd) Y (Sd)

∗ Z(Sd),

in which the bottom horizontal morphism is (d − 1)-connected. By pullback stability we 
have the top horizontal morphism is also (d − 1)-connected. Because X(Sd) is (d − 1)-
connected, the zero map ∗ → X(Sd) is (d −1)-connected, so the composite ∗ → X(Sd) →
Y (Sd) is (d − 1)-connected, and therefore Y (Sd) is (d − 1)-connected.

Finally, we show that Sp(C)≥0 is closed under the shift operator Σ. Recall that for 
a reduced excisive functor X ∈ Sp(C) we have ΣX(K) � X(K ∧ S1) (this follows for 
instance from [18, 1.4.2.13 (2)]). If X(Sd) is (d −1)-connected for all d, then (ΣX)(Sd) �
X(Sd+1) is d-connected (and therefore (d − 1)-connected) for all d.

Recall the following definition from [18, 6.1.1.6]:
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Definition 2.35. An ∞-category C is differentiable if it satisfies the following conditions:

1. C admits finite limits;
2. C admits sequential colimits; and
3. sequential colimits commute with finite limits.

Lemma 2.36. Suppose that C is differentiable and has finite colimits. Then the functor 
Ω∞ : Sp(C) → C has a left adjoint Σ∞.

Proof. This is [18, 6.2.3.16], but we give an explicit description of the functor Σ∞ for 
future use. The functor described in [18] is a composite. An object C ∈ C∗ determines a 
functor fC ∈ Fun(Sfin, C∗) by declaring fC(∗) � C and extending by homotopy colimits. 
This may be extended to a functor f+

C ∈ Fun(Sfin
∗ , C) by setting

f+
C (K) � fC(K) �C ∗

where the morphism C � fC(∗) → fC(K) is determined by the base point of K. This 
gives a functor C∗ → Fun∗(Sfin

∗ , C), left adjoint to evaluation on S0. There is an inclusion 
Exc∗(Sfin

∗ , C) ↪→ Fun∗(Sfin
∗ , C) whose left adjoint is given by the excisive approximation 

F �→ P1F (cf. the proof of [18, 6.2.1.12]). Thus the functor Σ∞ takes C to the functor 
P1f

+
C .

Remark 2.37. When C is also pointed, [18, 6.1.1.28] gives an equivalence P1F �
colimn Ωn ◦ F ◦ Σn, where Ωn is formed in C and Σn is formed in Sfin

∗ . Thus Σ∞ is 
the composite functor

C �→ colim
n

(
Ωn ◦ f+

C ◦ Σn
)
.

The fact that C is pointed also implies an equivalence f+
C (Sd) � ΣdC giving the familiar 

formula

(Σ∞C)(Sd) � colim
n

ΩnΣn+dC.

In particular, Ω∞Σ∞C � colimn ΩnΣnC.

Proposition 2.38. Suppose that C is pointed, differentiable, and has finite colimits, and 
that the connectivity structure on C is compatible with cobase change and sequential 
colimits. Then the stabilization functor Σ∞ : C → Sp(C) preserves connectivity.

Proof. By Proposition 2.28 it suffices to show that if g : C → D is k-connected in C
then cofib(Σ∞g) is k-connected in Sp(C). By stability, we may equivalently show that 
fib(Σ∞g) � Ω cofib(Σ∞g) is (k−1)-connected. To say that fib(Σ∞g) is (k−1)-connected 
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is equivalent to saying that Ωk fib(Σ∞g) ∈ Sp(C)≥0, i.e. evdΩk fib(Σ∞g) is (d − 1)-
connected in C for all d ≥ 0. But from [18, 1.4.2.20] we have that

evdΩk fib(Σ∞g) � Ω∞ΣdΩk fib(Σ∞g) � evd−k fib(Σ∞g)

because Σ and Ω are homotopy inverses in Sp(C). Now notice that by the description of 
the functor Σ∞ given in Lemma 2.36 and Remark 2.37, we can write evd−kΣ∞g as the 
colimit of the morphisms

Ωnf+
C (Sd−k+n) � ΩnΣd−k+nC → ΩnΣd−k+nD � Ωnf+

D(Sd−k+n)

where Ω is being applied in C rather than Sp(C). We have the following string of equiv-
alences:

fib
(
colim

n

(
ΩnΣd−k+nC → ΩnΣd−k+nD

))
� colim

n

(
fib

(
ΩnΣd−k+nC → ΩnΣd−k+nD

))
� colim

n

(
Ωn fib

(
Σd−k+nC → Σd−k+nD

))
in which the first equivalence uses the fact that finite limits commute with sequential col-
imits in a differentiable category. By Corollary 2.23 we have that Σd−k+nC → Σd−k+nD

is (d + n)-connected, so by Lemma 2.27 we have that fib
(
Σd−k+nC → Σd−k+nD

)
is 

(d + n − 1)-connected. The result follows from Proposition 2.17 and the fact that the 
connectivity structure of C is compatible with sequential colimits.

In the unpointed case, Corollary 2.22 allows us to compose with a disjoint basepoint 
functor X �→ X � ∗.

Corollary 2.39. Suppose that C is differentiable, admits pushouts, and has an initial ob-
ject. Suppose that the connectivity structure on C is compatible with cobase change and 
sequential colimits. Then the stabilization functor Σ∞

+ : C → Sp(C) preserves connectiv-
ity.

Finally, in the relative case, we have the following assembly of the above results.

Theorem 2.40. Suppose that C is differentiable, admits pushouts, and has an initial ob-
ject. Suppose that the connectivity structure on C is compatible with cobase change and 
sequential colimits. Then, for any object Z ∈ C, the stabilization functor

Σ∞
Z,+ : C/Z → Sp(C/Z)

and its pointed variant Σ∞
Z preserve connectivity.
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2.6. Cartesian squares

Definition 2.41. A commutative square

X Y

Z W

in C is k-Cartesian if the induced map X → Y ×W Z to the homotopy pullback is 
k-connected (cf. [14, 1.3]).4

As expected, there is a “stacking lemma” for k-Cartesian squares.

Proposition 2.42. Given a commutative diagram

X Y Z

X ′ Y ′ Z ′

with both squares k-Cartesian, the outside rectangular diagram is also k-Cartesian.

Proof. The map X → Z ×Z′ X ′ is the composite

X → Y ×Y ′ X ′ → (Z ×Z′ Y ′) ×Y ′ X ′ � Z ×Z′ X ′.

The first map is k-connected, and the second is the pullback of a k-connected map.

Remark 2.43. We say that pullbacks reflect connectivity in C if the connectivity of any 
pullback of f is the same as the connectivity of f . For example, this is true of stable 
connectivity structures by Proposition 2.28.

When pullbacks reflect connectivity, the proof of Proposition 2.42 can be upgraded to 
show that Cartesianness determines a connectivity structure on the arrow category of C.

3. Skeleta

3.1. Skeletal objects

Definition 3.1. An object B is k-skeletal if, for any k-connected map X → Y , every map 
B → Y in hC lifts to a map B → X.

4 More generally, just as in the classical case we have notions of k-Cartesian cubes, and k-coCartesian 
cubes, in terms of connectivity of maps to total homotopy pullbacks and from total homotopy pushouts.
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A map B → Y is relatively k-skeletal if it is k-skeletal when viewed as a map in the 
undercategory CA/.

Remark 3.2. If C has an initial object ∅, then an object B is k-skeletal if and only if the 
map ∅ → B is relatively k-skeletal.

Remark 3.3. Relative k-skeletality can be phrased as a lifting property: given a commu-
tative diagram in C

A
α

β

X

γ

B
δ

Y

where γ is k-connected, we ask for the existence of a lift B → X together with coherences. 
This asks that the map to the homotopy pullback

Map(B,X) → Map(B, Y ) ×Map(A,Y ) Map(A,X)

is surjective on π0.
More explicitly, we can consider δ to be a point of the mapping space CA/(β, γα). Note 

that, given some φ ∈ CA/(β, α), we can compose with γ to get a point γφ ∈ CA/(β, γα), 
i.e. there is a map of spaces γ∗ : C/A(β, α) → CA/(β, γα). By [17, 5.5.5.12] the fiber over 
δ of this map is precisely the space of maps from α to β in (CA/)/δ. Therefore relative 
k-skeletality can be rephrased as asking for Lift(β, α), the mapping space in (CA/)/δ, to 
be non-empty. Or, equivalently, for the morphism γ∗ to be surjective on π0. This should 
be compared to the discussion regarding unique lifts in [17, 5.2.8.3].

Example 3.4. Recall that a map X → Y in S is called k-connected if it is an isomorphism 
on πi for all i < k and a surjection on πk. The cases of i = 0 and i = k in particular 
imply that Sk is k-skeletal in S, in the sense of Definition 3.1.

Proposition 3.5. If A is k-skeletal and X → Y is (k + d)-connected for d ≥ 0, then the 
map of function spaces Map(A, X) → Map(A, Y ) is d-connected.

Proof. Recall the following inductive characterization of connectedness in S: a map 
U → V is 0-connected if it is surjective on π0, and it is d-connected for d > 0 if it is 
0-connected and the map U → holim(U → V ← U) to the homotopy fiber product is 
(d − 1)-connected (cf. for instance [17, 6.5.1.18]).

We now prove the proposition by induction on d. Asking that the map Map(A, X) →
Map(A, Y ) be 0-connected is the same as asking that every map A → Y in hC lifts to 
X, which is implied by the definition of k-skeletality.
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Therefore, to complete the induction we need to show that if X → Y is (k + d)-
connected, the diagonal map

Map(A,X) → holim(Map(A,X) → Map(A, Y ) ← Map(A,X))

is (d − 1)-connected. However, the functor Map(A, −) preserves homotopy limits; there-
fore, this is equivalent to asking that the map

Map(A,X) → Map(A,holim(X → Y ← X)),

induced by the diagonal Δ: X → holim(X → Y ← X), is (d − 1)-connected. However, 
by Corollary 2.18 the map Δ is k + (d − 1)-connected, and so the inductive hypothesis 
completes the proof.

Corollary 3.6. If A is k-skeletal and f : X → Y is (k + 1)-connected, then every map 
A → Y in hC lifts uniquely to a map A → X in hC.

Proof. The map of spaces Map(A, X) → Map(A, Y ) is an isomorphism on π0, which 
equivalently says that HomhC(A, X) → HomhC(A, Y ) is an isomorphism.

Definition 3.7. Let φ : X → Y and f : A → Y be maps in C. Then we define Lift(f, φ)
to be the following homotopy pullback:

Lift(f, φ) Map(A,X)

φ∗

∗
f

Map(A, Y ).

Remark 3.8. By [17, 5.5.5.12] the space Lift(f, φ) is precisely the space of morphisms 
from f to φ in C/Y .

Proposition 3.9. Let L : C → D be a functor with a right adjoint R. If R preserves 
k-connected morphisms then L preserves k-skeletal objects.

Proof. Let A be k-skeletal in C and suppose we have a diagram

X

f

L(A)
φ

Y

in D. Then by adjunction we have a diagram
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R(X)

R(f)

A
adj(φ)

R(Y )

in C and by the hypothesis, R(f) is k-connected. Therefore there is a lift

R(X)

R(f)

A
adj(φ)

˜adj(φ)

R(Y )

by the k-skeletality of A. Applying L to above diagram and using the counit natural 
transformation of the adjunction, we obtain the following commutative diagram in hD:

LR(X)

LR(f)

εX
X

f

L(A)
L(adj(φ))

L( ˜adj(φ))

LR(Y )
εY

Y

However, the lower composite is φ.

Corollary 3.10. The left adjoint L preserves relatively k-skeletal morphisms.

Proof. The adjunction between L and R induces an adjunction between the slice cat-
egories CA/ and DL(A)/ by [17, 5.2.5.1], and we can apply the proposition to the slice 
categories.

3.2. Colimits of skeletal objects

A standard result about left-lifting properties implies the following.

Proposition 3.11. Relatively k-skeletal maps are closed under equivalences, coproducts, 
composition, pushout, and retracts.

Proposition 3.12. A coproduct of objects is k-skeletal if all the summands are k-skeletal.

Proof. Let {Aj}j∈J be a collection of k-skeletal objects, and suppose φ : X → Y is a k-
connective morphism. Let ij : Aj →

∐
Aj be the standard inclusions and let f :

∐
Aj →

Y be any map so that 
∐

f ◦ ij � f in C/Y . By Remark 3.8 we have that
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Lift(f, φ) � Lift (�jf ◦ ij , φ) �
∏
j

Lift(f ◦ ij , φ).

Because all Aj are k-skeletal, the right-hand side is nonempty; therefore, the left-hand 
side is nonempty.

Remark 3.13. This result can be upgraded to an if-and-only-if statement if enough maps 
exist: if there exist maps Aj → Y for every object Y . For example, this is true if C is 
pointed.

Proposition 3.14. Suppose that we have a homotopy pushout diagram

A
p

q

B

iB

C
iC

P.

If B and C are k-skeletal and A is (k − 1)-skeletal, then the homotopy pushout P is 
k-skeletal.

Proof. Let f : X → Y be a k-connected map, φ : P → Y any map, and consider the 
following diagram:

B
iB

X

f

A

p

q

P
φ

Y

C

iC

Because B and C are k-skeletal, there are lifts φ̃iB : B → X and φ̃iC : C → X. We 
can obtain lifts of φiBp and φiCq to X by simply composing p and q with φ̃iB and φ̃iC
respectively. Using the fact that f is not just (k − 1)-connected, but k-connected, and 
Proposition 3.6, both of these lifts must agree in hC because they all lift φiBp � φiCq. 
Call that unique lift ψ : A → X. Since ψ � φ̃iBp � φ̃iCq, the universal property of P
induces a lift φ̃ : P → X.

3.3. Skeleta and minimal skeleta

Definition 3.15. A map f : A → X is a k-skeleton if A is k-skeletal and f is k-connected. 
If f is (k + 1)-connected, we refer to this as a minimal k-skeleton.
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Similarly, a factorization A → B → X is a relative k-skeleton if it is a k-skeleton in 
the undercategory CA/.

Remark 3.16. Notice that saying a factorization A → B → X of a map A → X is a 
relative k-skeleton is equivalent to saying that A → B is relatively k-skeletal and that 
B → X is k-connected. We will show in Section 3.5 that in good cases, every map of 
C admits such a factorization. In other words, the classes of relatively k-skeletal maps 
and k-connected maps are the left and right classes of a weak factorization system, 
respectively.

Example 3.17. Every k-skeletal object is a minimal k-skeleton of itself.

Example 3.18. Suppose that A is a CW-complex with k-skeleton A(k). Then these spaces 
are built, inductively, by a sequence of (homotopy) pushout diagrams:

∐
Sk−1 A(k−1)

∐
Dk A(k)

By Proposition 3.12, the space 
∐

Sk−1 is (k−1)-skeletal and the space 
∐

Dk is 0-skeletal. 
Inductively assuming that A(k−1) is (k − 1)-skeletal, then by Proposition 3.14 we find 
that A(k) is k-skeletal.

The maps A(k) → A are then k-skeleta. More generally, if X is a space and A → X is 
a weak equivalence from a CW-complex, then the maps A(k) → X are k-skeleta.

The following proposition shows that a minimal skeleton is a retract of any other 
skeleton.

Proposition 3.19. Suppose that A → X is a minimal k-skeleton and B → X is another 
k-skeleton. Then there exists a map r : B → A of objects over X, unique in the homotopy 
category, and it admits a section.

Proof. Because the map A → X is (k+1)-connected by assumption, Corollary 3.6 implies 
that in the homotopy category hC there is a unique lift r : B → A over X. To show the 
existence of a section, the definitions imply that there is a lift i : A → B over X. The 
maps ri and idA are then two lifts A → A along a (k + 1)-connected map A → X, and 
another application of Corollary 3.6 implies that ri = idA in hC.

If we have two minimal k-skeleta of X, we can then arrive at the following conclusion.

Proposition 3.20. Suppose that A1 → X and A2 → X are minimal k-skeleta of X. Then 
in the homotopy category hC there exists a unique isomorphism A1 � A2 over X.
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Corollary 3.21. Any (k + 1)-connected map between k-skeletal objects is an equivalence.

Example 3.22. Retracts of k-dimensional CW-complexes are k-skeletal. For the converse, 
suppose X is a k-skeletal space, and construct a CW-approximation A → X. Then 
A(k) → X is a k-skeleton and X → X is a minimal k-skeleton, so X is a retract of a 
k-dimensional CW-complex A(k).

In particular, a connected 1-skeletal space X is a retract of a wedge of circles. This 
means X is a K(G, 1) for G a retract of a free group; such a group G is free, and choosing 
generators gives an equivalence from a wedge of circles to X.

3.4. Cells

Definition 3.23. A k-cell is a (k−1)-connected map A → B such that A is (k−1)-skeletal 
and the map is relatively k-skeletal.

We say that a set Sk of k-cells is a set of generating k-cells for the connectivity 
structure if it satisfies the following property: a map is k-connected if and only if it is 
(k− 1)-connected and satisfies the right lifting property with respect to the maps in Sk.

A set of generating cells is a choice of sets Sk of generating k-cells for all k; if one 
exists, we say that the connectivity structure is determined by cells.

Definition 3.24. A cell A → B is j-bounded if B is j-skeletal.

Example 3.25. For k ≥ 0 the inclusion Sk−1 → Dk is a (0-bounded) k-cell in S, and the 
connectivity structure on spaces is determined by these cells.

Example 3.26. Similarly, for k ∈ Z the maps Σk−1S → ∗ and ∗ → ΣkS are both k-cells 
((−∞)-bounded and k-bounded respectively) for the standard connectivity structure 
on the category Sp of spectra. The connectivity structure on spectra is determined by 
the first type of cells: a map f : X → Y has the right lifting property with respect to 
Σk−1S → ∗ if and only if πk cofib(f) is trivial.

By contrast, the connectivity structure is not determined by the latter cells. A (k−1)-
connected map f : X → Y has the right lifting property with respect to ∗ → ΣkS if and 
only if πk(X) surjects onto πk(Y ), which does not ensure that the map πk−1(X) →
πk−1(Y ) is an isomorphism.

Example 3.27. Consider the category Sp≥0 of connective spectra. The connectivity struc-
ture on Sp restricts to one on Sp≥0.5 The maps Σk−1S → ∗ for k ≥ 1 are also k-cells in 
Sp≥0, but they do not determine the connectivity structure: they do not detect surjec-
tivity on π0. To repair this, we must also include the 0-cell ∗ → S.

5 The inclusion Sp≥0 → Sp does not preserve homotopy pullbacks, and so the connectivity structure on 
Sp≥0 is not lifted from Sp. Instead, it is lifted from S along the functor Ω∞.
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Alternatively, the maps Σ∞
+ Sk−1 → Σ∞

+ Dk and ∗ → Σ∞
+ D0 are also generating cells 

for Sp≥0.

Proposition 3.28. Suppose that D has a connectivity structure lifted from C along a func-
tor R : D → C with left adjoint L.

If L preserves connectivity, then L takes k-cells to k-cells. If, additionally, there are 
sets Sk of generating k-cells that determine the connectivity structure on C, then the sets 
L(Sk) are generating k-cells that determine the connectivity structure on D.

Proof. Suppose A → B is a k-cell in C. Then L(A) is (k− 1)-skeletal by Proposition 3.9
and L(A) → L(B) is relatively k-skeletal by Corollary 3.10. Therefore, if L preserves 
connectivity then L(A) → L(B) is a k-cell.

Suppose now that the connectivity structure on C is determined by cells. A map f in 
D is n-connected if and only if Rf is n-connected, and this is true if and only if Rf has 
the right lifting property with respect to the generating cells A → B in Sk for k ≤ n; by 
adjunction, this is true if and only if f has the right lifting property with respect to the 
cells LA → LB.

Example 3.29. If S is an associative ring spectrum, the category LModS of left S-modules 
has a connectivity structure lifted from the forgetful functor R : LModS → Sp. There is 
a left adjoint L(X) = S⊗X, and it preserves connectivity if and only if S is connective. 
In this case, the maps Σk−1S → ∗ are k-cells that determine the connectivity structure 
on LModS . Similarly, Σk−1S → ∗ for k ≥ 1 and ∗ → S are cells that determine the 
connectivity structure on (LModS)≥0.

Example 3.30. Consider the category CAlg(Sp) of commutative algebras in Sp, with the 
connectivity structure lifted from Sp. The left adjoint to the forgetful functor is the free 
algebra functor P :

P (X) �
∐
k≥0

X⊗k
hΣk

.

The functor P does not preserve connectivity in general, because the symmetric power 
functors don’t: the map S−1 → ∗ is (−1)-connected, but the map (S−1⊗S−1)hΣ2 → ∗ is 
only (−2)-connected. However, if we restrict attention to the category Sp≥0 of connective 
spectra, the free functor P does preserve connectivity. Therefore, the maps P (Σk−1S) →
S and S → P (S) are generating cells for the connectivity structure on CAlg(Sp≥0) lifted 
from Sp≥0.

(A similar result applies to an arbitrary operad acting on the category (LModS)≥0 of 
connective modules over a connective commutative ring spectrum.)

Example 3.31. Similarly, if R is a connective E2-ring spectrum then there is a connec-
tivity structure on Alg(LModR)≥0 lifted along the forgetful functor Alg(LModR)≥0 →
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(LModR)≥0. This connectivity structure is determined by the cells TR(Σk−1R) → R

for k ≥ 1 and R → TR(R), where TR : LModR → Alg(LModR) is the free R-algebra 
functor.

(A similar result applies to Ek-algebras in the category of left modules over a connec-
tive Ek+1-ring spectrum.)

3.5. Cellular skeleta

Definition 3.32. We say that a set Sk of k-cells is sufficient for k-skeleta if the following 
properties hold.

1. The set Sk is a set of generating k-cells for C.
2. C has homotopy colimits.
3. Given any cells Ai → Bi in Sk, any cobase change of the map 

∐
Ai →

∐
Bi is 

(k − 1)-connected.

Remark 3.33. In particular, the third item is automatic if the connectivity structure is 
compatible with cobase change.

Proposition 3.34. Suppose that, for all k > N , we have a set of k-cells Sk that is sufficient 
for k-skeleta. Then an N -connected map f : A → X admits relative n-skeleta for any n.

Proof. The factorization A → A 
f−→ X is a relative n-skeleton for any n ≤ N : the map 

A → A is relatively n-skeletal because it is initial in the undercategory C/A, and the map 
f is N -connected by assumption.

We then apply a standard cellular approximation method. Suppose inductively that 
we have found a relative (n − 1)-skeleton A → X(n−1) → X. Let Sn = {Aj → Bj}j∈J

be a set of generating n-cells for the connectivity structure, and consider the collection 
T of all (up to equivalence) commutative diagrams

Aj X(n−1)

Bj X.

Factor the map X(n−1) → X through the homotopy pushout

∐
t∈T Ajt X(n−1)

∐
t∈T Bjt X(n).
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By assumption, this cobase change X(n−1) → X(n) is (n − 1)-connected. Therefore, 
the factorization X(n−1) → X(n) → X shows that the map X(n) → X is at least 
(n − 1)-connected using Definition 2.1. Moreover, since 

∐
Aj →

∐
Bj is relatively n-

skeletal, so is the map X(n−1) → X(n) and hence the composite A → X(n−1) → X(n) by 
Proposition 3.11.

To prove that X(n) → X is n-connected, it then suffices to show that any diagram

Aj X(n)

Bj X,

has a lift when the left-hand vertical arrow is a cell in the generating set Sn. However, 
in that case Aj is (n − 1)-skeletal, and so the topmost map factors through a map 
Aj → X(n−1); the resulting commutative diagram is then equivalent to a map in T , and 
so there is a lift Bj → X(n) by construction of the homotopy pushout.

Remark 3.35. We refer to this type of construction of a factorization A → B → X, via 
iterated pushout, as a cellular construction of a map using the cells in Sk—regardless of 
whether or not B is a relative skeleton of X.

Remark 3.36. Suppose that the connectivity structure of C is determined by sets of k-
cells Sk and all of the Sk are sufficient for k-skeleta. Then the above proposition implies 
that for every k there is a weak factorization system on hC whose left class is the class 
of relative k-skeleta and whose right class is the class of k-connected morphisms.

Corollary 3.37. If ∅ is an initial object and ∅ → X is N -connected, then X admits 
n-skeleta for any n.

Example 3.38. All objects in the category S of spaces have skeleta, and the proof above 
is a standard construction of a CW-approximation to any space using the cellular ap-
proximation theorem.

Example 3.39. Suppose S is a connective ring spectrum. The forgetful functor LModS →
Sp detects homotopy colimits and connectivity, and so LModS satisfies the assumptions 
of the proposition. Therefore, an object in LModS has an n-skeleton so long as it is 
N -connected for some N > −∞.
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4. Detecting skeleta

4.1. Nilpotence

Definition 4.1. Suppose E is a collection of maps in C. The class of E-nilpotent maps is 
the smallest collection of maps in hC which contains E and is closed under base change, 
transfinite composition, products, filtered homotopy limits, and retracts.

Example 4.2. Let E be the collection of maps ∗ → K(A, n) in S for n ≥ 2. Recall that 
if a space X is nilpotent in the classical sense (i.e. X has nilpotent fundamental group, 
which acts nilpotently on the higher homotopy groups) then it can be written as a limit 
of a tower X � lim(· · · → Yn → Yn−1 → · · ·Y2 → Y1 → Y0 � ∗) in which Yn → Yn−1 is 
the fiber of a map Yn−1 → K(A, m) for some A and some m ≥ 2 (cf. [21, 3.2.2]). Then 
it follows from Definition 4.1 that the terminal morphism X → ∗ is E-nilpotent.

Proposition 4.3. An object A, or a map A → B, has the left lifting property with respect 
to E-nilpotent maps if and only if it has the left lifting property with respect to maps in 
E.

Proof. This is the assertion that “right lifting properties” are closed under the operations 
that define E-nilpotent maps.

Corollary 4.4. Suppose R : D → C is a functor with a left adjoint L and E is a collection 
of maps in D. An object A of C has the lifting property with respect to R(E)-nilpotent 
maps if and only if LA has the lifting property with respect to maps in E.

Example 4.5. Suppose that S is a connective ring spectrum, and let E be the class of 
maps ∗ → ΣnHN for N a π0(S)-module and n ≥ k + 1. Then any k-connected map 
X → Y in LModS is E-nilpotent: one can apply the Postnikov tower to its cofiber. 
Therefore, if a left S-module M has a k-skeletal image

Hπ0(S) ⊗S M

in the category LModHπ0(S), then M is k-skeletal. The converse holds by Proposition 3.9.

4.2. Tangent categories

We begin with a reminder about tangent ∞-categories.
Suppose that C is a presentable ∞-category. Let TC → Fun(Δ1, C) be a tangent bundle

to C in the sense of [18, 7.3.1.9, 7.3.1.10], i.e. the category of excisive functors Exc(Sfin
∗ , C). 

There are functors

evd : TC → C
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for d ≥ 0 given by evaluation at Sd,

U : TC → C

given by evaluation at ∗, and a map

TC → Fun(Δ1, C)

that takes X to X(S0) → X(∗). By restricting to functors which take ∗ to a fixed object 
Z ∈ C we obtain pointed excisive functors Exc∗(Sfin

∗ , C/Z). In other words, the fiber 
over an object Z ∈ C, along the map U : TC → C, is equivalent to the category Sp(C/Z)
discussed in Section 2.5.

The results of [18, 7.3.1] imply that for any morphism f : W → Z in C there is an 
pair of functors f∗ : Sp(C/Z) → Sp(C/W ) and f! : Sp(C/W ) → Sp(C/Z) that form an 
adjunction f! � f∗. The functor f∗ is described as follows: given an excisive functor 
Y : Sfin

∗ → C with Y (∗) = Z,

(f∗Y )(K) = Y (K) ×Z W.

Its left adjoint f! is described as follows: given an excisive functor X : Sfin
∗ → C with 

X(∗) = W , the image f!X is the excisive approximation to the functor sending K to the 
pushout X(K) �W Z.

Up to equivalence of categories, the objects of TC are pairs (Z, M) of an object Z of C
and an object M of the stable category Sp(C/Z). A morphism from (W, M) to (Z, N) in 
TC is equivalent to a pair of morphisms (f, φ) where f : W → Z is a morphism in C and 
φ : M → f∗(N) is a morphism in Sp(C/W ) (or, equivalently, a morphism φ : f!(M) → N

in Sp(C/Z)). Under this identification, the functor TC → Fun(Δ1, C) sends the object 
(Z, M) to the object Ω∞M → Z in C/Z ⊆ Fun(Δ1, C).

Proposition 4.6. Suppose C has a connectivity structure. Then there is a fiberwise con-
nectivity structure on TC, defined as follows. A map X → Y in TC is k-connected if the 
map UX → UY is an equivalence and each map evnX → evnY is (k− n)-connected for 
n ≥ 0.

Proof. It is clear that k-connected maps are (k−1)-connected and that equivalences are 
∞-connected. Moreover, connectivity is preserved by pullback because pullbacks in the 
category TC are pullbacks of functors to C.

Suppose that we have composable maps f : X → Y and g : Y → Z in TC, and two 
out of three of f , g, and gf are k-connected for some k. Then the maps UX → UY →
UZ are all equivalences. Therefore, this diagram is equivalent to a diagram in the full 
subcategory Sp(C/UX). The restriction of connectivity to this subcategory is the stable 
connectivity structure of Definition 2.24, where the 2-out-of-3 axioms for connectivity are
satisfied.
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Remark 4.7. Note that the functors ev0 and U both preserve connectivity; the former 
by definition and the latter because equivalences are k-connected for all k.

Remark 4.8. When restricted to the fiber over Z ∈ C the connectivity structure of Propo-
sition 4.6 recovers the stable connectivity structure on Sp(C/Z) induced by stabilizing 
the connectivity structure on C/Z (which is in turn induced by the connectivity structure 
on C). It is not hard to check that, for a morphism f : Z → W in C, the pullback functor 
f∗ preserves connectivity. The pushforward f! preserves connectivity if the connectivity 
structure is compatible with cobase change and C is differentiable.

Remark 4.9. The base-change functors f∗ induced by maps f : W → Z give the following 
interpretation of the fiberwise connectivity structure. The map TC → C is a Cartesian 
fibration, whose fiber over Z is the stable category Sp(C/Z). Each fiber has the asso-
ciated stable connectivity structure from Definition 2.5, and a map f in C induces a 
connectivity-preserving functor f∗. This fibration determines, by straightening, a con-
travariant functor from C to a category of stable categories and connectivity-preserving 
functors. If the connectivity structure is compatible with cobase change and C is differ-
entiable, a dual statement holds: the coCartesian fibration TC → C classifies a covariant 
functor from C to stable categories and connectivity-preserving functors.

Remark 4.10. If C is an ∞-topos it can be shown that TC is also an ∞-topos. In this 
case TC has the connectivity structure described in Example 2.14. Note that this con-
nectivity structure is very different from the connectivity structure on TC described in 
Proposition 4.6. More specifically, a morphism f : X → Y in TC is k-connected in the 
toposic connectivity structure on TC exactly when UX → UY is k-connected in the 
toposic connectivity structure on C.

Proposition 4.11. An object A ∈ TC is k-skeletal if and only if it is k-skeletal in the 
subcategory Sp(C/UA).

Proof. One direction is clear: objects which are skeletal in TC are still skeletal in the full 
subcategory.

For the converse, suppose that A is k-skeletal in Sp(C/UA), and that we have a k-
connected map g : X → Y in TC . Let f be a map f : A → Y which we would like to lift, 
with associated base-change functor f∗ : Sp(C/UY ) → Sp(C/UA).

The k-connected map g determines an equivalence UY � UX and a k-connected map 
X → g∗Y ∈ Sp(C/UX). The map UA → UY automatically lifts to a map h : A → UX, 
and a lift of f is equivalent to asking for a lift of the map A → f∗Y = h∗g∗Y along 
h∗X → h∗g∗Y in Sp(C/UA). However, h∗X → h∗g∗Y is still k-connected, and so this lift 
exists.

The forgetful functor U : TC → C has a left adjoint: the absolute cotangent functor 
L : C → TC , sending A ∈ C to L(A) ∈ Sp(C/A) ⊂ TC [18, 7.3.2.14].
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Definition 4.12. A map f : X → Y in C is nilpotent if it is Ω∞(E)-nilpotent, where E is 
the class of morphisms f in TC whose underlying morphism Uf is an equivalence.

Remark 4.13. We may think of such a morphism X → Y as being a map of abelian 
group objects in some slice category C/Z .

The following lemma gives a good supply of nilpotent morphisms in a presentable 
∞-category:

Lemma 4.14. If C is presentable and a map f : A → B is a square-zero morphism in the 
sense of [18, 7.4.1.6] then it is nilpotent.

Proof. Note that by [18, 7.4.1.7], any square-zero extension f : A → B by an object 
M ∈ Sp(C/B) is a pullback of a map B → B ⊕ ΣM . This latter map is Ω∞(0B → ΣM)
where 0B → ΣM is the image of the zero morphism in Sp(C/B) under its inclusion (as 
the fiber over B) into TC. Therefore A → B is the pullback of a nilpotent morphism.

Proposition 4.15. Suppose that all k-connected maps in C are nilpotent. Then an object 
A of C is k-skeletal if and only if the absolute cotangent complex L(A) is k-skeletal in 
Sp(C/A).

Proof. The object A is k-skeletal in C if and only if L(A) is k-skeletal in TC by Proposi-
tion 4.4. We can then deduce the result from Proposition 4.11.

Remark 4.16. Recall that TC → Fun(Δ1, C) is the stable envelope, in the sense of [18, 
7.3.1.1], of the presentable fibration Fun(Δ1, C) → C given by evaluating a morphism at 
its target. One can generalize Definition 4.12 and say that for any presentable fibration 
p : C → D with stable envelope q : C′ → C, an object of C is nilpotent if it is in the 
essential image of q. In the case that we take p to be the presentable fibration S → Δ0, 
the classically nilpotent spaces are nilpotent objects of S (cf. Example 4.2).

5. Lifting constructions of skeleta

5.1. Subductivity

Definition 5.1. Suppose that we have an adjunction

C
L
�
R
D.

We say that the adjunction is k-subductive on C if, whenever a map X → Y in C is 
k-connected, the square
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X Y

RL(X) RL(Y )

is always k-Cartesian, and strongly k-subductive if the square is always (k+1)-Cartesian.
The subduction zone is the set of k such that the adjunction is k-subductive. If it is 

subductive for all k, we simply refer to it as subductive. (Similar definitions apply for 
terms such as the strong subduction zone.)

Example 5.2. Consider the Σ − Ω adjunction on pointed spaces. The condition of k-
subductivity asks whether, for a k-connected map X → Y , the diagram

X Y

ΩΣX ΩΣY

is k-Cartesian. If the spaces are allowed to be disconnected, this is generically false. If we 
restrict attention to pointed connected spaces, this adjunction is subductive: subductivity 
is equivalent to asking for surjectivity of the map

πk+1(Y,X) → πk+2(ΣY,ΣX),

which is a consequence of the Blakers–Massey excision theorem for any k ≥ 1. If we 
further restrict to pointed 1-connected paces, this adjunction is strongly subductive.

Example 5.3. Suppose that f : R → S is a map of connective ring spectra, determining 
an adjunction between LModR and LModS . Then this adjunction is subductive if and 
only if, for any k-connected map M → N , the square

M N

S ⊗R M S ⊗R N

is k-Cartesian. Taking fibers, we find that subductivity is equivalent to showing that for 
any (k− 1)-connected object F , the map F → S⊗R F is k-connected. On πk, this is the 
map

πk(F ) → π0(S) ⊗π0(R) πk(F ).
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Therefore, this adjunction is subductive if and only if the map R → S is 0-connected. 
Similarly, the adjunction is strongly subductive if and only if the map R → S is 1-
connected.

Proposition 5.4. Suppose that we have a strongly k-subductive adjunction

C
L
�
R
D

such that R preserves (k + 1)-connectivity, and that f : X → Y is k-connected in C. If 
Lf : LX → LY is (k + 1)-connected, then f is (k + 1)-connected.

Proof. The map f factors as a composite

X → RL(X) ×RL(Y ) Y → Y.

The first map is (k+1)-connected by strong k-subductivity, and the second is a pullback 
of the (k + 1)-connected map RL(X) → RL(Y ).

Applying the previous proposition inductively gives the following result.

Corollary 5.5. Suppose that we have an adjunction

C
L
�
R
D

such that {k, k + 1, . . . , N} are in the strong subduction zone, that f : X → Y in C is 
k-connected, and that L and R preserve connectivity. Then f is N -connected if and only 
if Lf is N -connected.

Proposition 5.6. Let k and j be integers with j ≥ 0. Suppose that we have a (strongly) 
k-subductive adjunction

C
L
�
R
D

and a (strongly) (k + j)-subductive adjunction

D
M
�
S
E ,

that L increases connectivity by at least j, and that R decreases connectivity by no more 
than j. Then the composite adjunction is also (strongly) k-subductive.
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Proof. Suppose that f : X → Y is k-connected. Let ε be 0 in the case of subductivity, 
and 1 in the case of strong subductivity; we wish to show X → Y ×RSML(Y ) RSML(X)
is (k + ε)-connected.

From [25, Proposition 2.1.9], we know that the unit of the composite adjunction is 
given the composite transformation idC → RL → RSML. Therefore we have a composite 
of cospans:

X X

Y X RL(X)

Y RL(Y ) RSML(X)

RSML(Y )

idX idX

which induces a factorization of the universal map X → Y ×RSML(Y ) RSML(X). Thus 
we need to prove that the composite map

X → Y ×RL(Y ) RL(X) → Y ×RL(Y )

(
RL(Y ) ×

RSML(X)
RSML(X)

)
� Y ×RSML(Y ) RSML(X)

is (k + ε)-connected. The first map is (k + ε)-connected because the first adjunction 
is (strongly) k-subductive, and so it suffices to prove that the second map is (k + ε)-
connected.

Because L increases connectivity by at least j, the map Lf : LX → LY is (k + j)-
connected, and therefore the map

LX → LY ×SML(X) SML(Y )

is (k + j + ε)-connected because the second adjunction is (strongly) (k + j)-subductive. 
Applying R, the map

RL(X) → RL(Y ) ×RSML(X) RSML(X)

is (k+ ε)-connected. Taking the fiber product with Y over RL(Y ), we find that the map

Y ×RL(Y ) RL(X) → Y ×RSML(X) RSML(X)

is (k + ε)-connected, as desired.

If the Σ − Ω adjunction is (strongly) subductive, we get the following result.
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Corollary 5.7. Suppose C is pointed and has pushouts, that connectivity is compatible with 
cobase change, and that {k, k + 1, . . . , k + n − 1} are in the (strong) subduction zone of 
the Σ − Ω adjunction. Then the Σn − Ωn adjunction is (strongly) k-subductive.

Proof. The functors Ω and Σ both shift connectivity by 1 in opposing directions, the 
latter by Corollary 2.23. Therefore, iterated application of Proposition 5.6 implies that 
the composite Σn − Ωn adjunction is subductive.

Proposition 5.8. Suppose that C is differentiable, pointed, and admits pushouts. Suppose 
that the connectivity structure on C is compatible with cobase change and sequential 
colimits.

If the Σ −Ω adjunction is (strongly) subductive, then the Σ∞−Ω∞ adjunction between 
C and Sp(C) is (strongly) subductive.

Proof. The proof of Proposition 2.38 shows that Ω∞Σ∞X � colimm ΩmΣmX. Therefore 
we need to prove that, for any k-connected map X → Y , the square

X Y

colimm ΩmΣmX colimm ΩmΣmY

is (k + ε)-Cartesian. For any individual m, this diagram is (k + ε)-Cartesian by Corol-
lary 5.7. The fiber product, and the connectivity of the map from X to it, are preserved 
by sequential colimits because C is differentiable.

5.2. Excavation

Definition 5.9. Let L : C → D be a colimit-preserving functor. Suppose that we have a 
set S of maps in C, a map X → Y in C, and a commutative diagram

∐
t∈T LAjt LX

∐
t∈T LBjt LY

where the left-hand map is a coproduct of maps in LS. We say that this can be excavated 
from D if the square diagram from each term in the coproduct is equivalent to the image 
of a diagram in L. In particular, the diagram lifts to a commutative diagram
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∐
t∈T Ajt X

∐
t∈T Bjt Y

in C, and the constructed factorization LX → Z → LY through the pushout lifts to a 
constructed factorization X → W → Y .

More generally, if we have sets of cells Sk and a map X → Y with a factorization

LX = Z(n−1) → Z(n) → Z(n+1) → · · · → Z(N) → LY,

where each map Z(k−1) → Z(k) is cellularly constructed from maps in LSk, then we say 
that this can be excavated if each stage can be excavated: there exists a lift to a sequence

X = W (n−1) → W (n) → W (n+1) → · · · → W (N) → Y,

in C, where each map W (k−1) → W (k) is cellularly constructed from the maps in Sk, 
lifting the construction of Z(k).

5.3. Excavating cells

The following lemma assures us that, when we have a subductive adjunction, “cells 
can be excavated so long as their ranges can.”

Lemma 5.10. Suppose that

C
L
�
R
D

is a k-subductive adjunction and that f : X → Y is a k-connected map in C. Then, for 
any (k + 1)-cell A → B in C, a commutative diagram

LA LX

LB LY

can be excavated from D if and only if the map LB → LY lifts to C.

Proof. Showing that this diagram is the image of one in L is the same as asking that we 
can complete the commutative diagram
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A RL(X)

X

B RL(Y )

Y

By adjunction, lifting LB → LY to a map B → Y is the same as constructing the 
bottom commutative triangle.

Suppose that a lift B → Y is chosen. Then we have a map A → B ×RL(Y ) RL(X) →
Y ×RL(Y ) RL(X), and what remains is to lift it along the map X → Y ×RL(Y ) RL(X). 
However, this map is k-connected by assumption and A is k-skeletal, so such a lift
exists.

Remark 5.11. The lifting requirement holds automatically in several important cases, 
such as if the object B is a zero object of C. Our principal case will use boundedness: 
lifting holds if the cell is j-bounded and the unit Y → RL(Y ) is j-connected.

Corollary 5.12. Fix a k-subductive adjunction C �L
R D. Let Sk+1 be a set of j-bounded 

(k + 1)-cells in C.
Suppose that Y → RL(Y ) is j-connected, that we have a k-connected map f : X →

Y in C and a choice of factorization LX → Z → LY where LX → Z is cellularly 
constructed from the maps in LSk+1. Then LX → Z → LY can be excavated from D.

5.4. Excavating skeleta

Our goal in this section is to expand the previous section inductively, and show that 
by using subductive adjunctions C � D, we can lift cellular constructions from D. In 
particular, this will allow us to construct minimal skeleta.

Theorem 5.13. Suppose that we have an adjunction

C
L
�
R
D

such that {n, n + 1, . . . , N − 1} are in the subduction zone. Fix sets Sk of j-bounded 
k-cells in C for n < k ≤ N .

Suppose Y → RL(Y ) is j-connected, that we have an n-connected map f : X → Y in 
C, and a cellular construction LX = Z(n) → Z(n+1) → · · · → Z(N) → LY using the cells 
in LSk. Then the cellular construction of Z(N) can be excavated from D to a sequence 
X = W (n) → W (n+1) → · · · → W (N) → Y .
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If L reflects N -connectivity, then the map W (N) → Y is an N -skeleton if the original 
map Z(N) → Y was. If L also reflects (N + 1)-connectivity, this skeleton is minimal if 
the original map was.

Proof. Starting with W (n) = X, inductively apply Corollary 5.12 to excavate the cel-
lular constructions of (LW )(k−1) � Z(k−1) → Z(k) → LY to cellular constructions of 
W (k−1) → W (k) → Y .

Because the Sk are k-cells, each map W (k−1) → W (k) is relatively k-cellular.
If L reflects connectivity appropriately, and the map (LW )(N) � Z(N) → LY is N -

connected, then the map W (N) → Y is N -connected and hence an N -skeleton. If the 
original was a minimal N -skeleton, then this connectivity estimate improves, making 
W (N) into a minimal N -skeleton of Y .

Example 5.14. The Σ − Ω adjunction between 0-connected pointed spaces and 1-
connected pointed spaces has subduction zone [1, ∞) as in Example 5.2. The connectivity 
structure in both cases is determined by 0-bounded cells Sk → Dk+1, which are preserved 
by suspension.

For a path-connected space Y , the map Y → ΩΣY is 0-connected. Given a 1-connected 
map X → Y between 0-connected spaces, we can therefore excavate any relative CW-
factorization ΣX → Z(2) → · · · → Z(N+1) → ΣY to a relative CW-factorization X →
W (1) → · · · → W (N) → Y .

On 1-connected spaces, Σ reflects connectivity. Therefore, if Y is 1-connected, any 
cellular construction of an (N + 1)-skeleton for ΣY can be excavated to a cellular con-
struction of an N -skeleton for Y .

6. Excision

In this section we will show that many of these important properties hold for categories 
of algebras and modules over an operad in spectra. The fundamental tools to prove this 
are excision theorems, and excision theorems are hard work. For our applications, we 
will be appealing to the work of Ching–Harper on excision for algebras in a category of 
module spectra [11]. However, our use of their main result is simple enough that we can 
axiomatize it in this section.

6.1. Excisive connectivity structures

Definition 6.1. Fix C with homotopy pushouts and an initial object, with a connectivity 
structure that is compatible with cobase change. We say that the connectivity structure 
on C satisfies algebraic excision if the following conditions hold.

1. All maps X → Y in C are (−1)-connected.
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2. Let W be a nonempty finite set with power set P(W ), viewed as a poset, and 
X : P(W ) → C a “W -cube” in C. Suppose that:
(a) for each nonempty subset V ⊂ W , the V -cube X|P(V ) is kV -coCartesian, and
(b) kU ≤ kV for all U ⊂ V ⊂ W .
Then X is k-Cartesian, where k is the minimum of −|W | +

∑
V ∈λ(kV + 1) over all 

partitions λ of W by nonempty finite sets.

Remark 6.2. The category S of spaces does not satisfy this type of excision: excision 
estimates for spaces differ by a shift.6

Example 6.3. Suppose O is a connective operad in the category of modules over a connec-
tive commutative symmetric ring spectrum S, with category AlgO of connective algebras. 
Then [11, Theorem 1.7] is precisely that AlgO satisfies algebraic excision. This includes 
models for the category of En S-algebras, where S is a commutative ring spectrum.7

Remark 6.4. The property of having algebraic excision is inherited by slice and coslice 
categories, because the colimits and limits of deleted cubical diagrams are calculated in 
the underlying ∞-category.

6.2. Excision and augmentations

Proposition 6.5. Suppose that C satisfies algebraic excision and has a final object, and 
that the map ∅ → ∗ from the initial object to the final object is j-connected. Then there 
is an adjunction

C � C∗

that is subductive if j ≥ 0, and strongly subductive if j > 0.

Proof. The left adjoint is the functor (−)+ = (−) � ∗. By pushing out along the map 
∅ → ∗, we find that X → X+ is always j-connected. As a result, consider the coCartesian 
square

6 In principle, pointed connected spaces are equivalent to topological groups via the loop space/classifying 
space relationship, and topological groups do satisfy algebraic excision; this can help make sense of the shift 
in connectivity.
7 The paper [11] is written in terms of operads O in symmetric spectra, using the Quillen adjunction 

between positive stable model structures on ModS and AlgO. However, passage to the associated ∞-category 
preserves structures of rings, modules, and algebras, and the definitions of Cartesian and coCartesian cubes 
are defined using homotopy limits and colimits, which are equally well computed in AlgO or the associated 
∞-category. Moreover, in the case where O is the suspension spectrum of an ordinary operad O, algebras 
can be rectified: the ∞-category associated to AlgO is a model for the category of algebras for the associated 
∞-operad.
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X Y

X+ Y+,

viewed as a 2-cube. If the map X → Y is k-connected, then algebraic excision shows 
that the square is n-Cartesian, where n = min{−2 + (k + 1) + (j + 1), −2 +∞} = k + j, 
as desired.

Corollary 6.6. Suppose that C satisfies algebraic excision and that ∅ → Z is j-connected. 
Then the adjunction C/Z � (C/Z)∗, between objects over Z and objects augmented over 
Z, is subductive if j ≥ 0 and strongly subductive if j > 0. The unit X → X�Z is always 
j-connected.

6.3. Excision and suspension

Proposition 6.7. Suppose that C satisfies algebraic excision and that X → Z is a k-
connected map in C, where k ≥ 0. Then the map X → ΩZΣZX is 2k-connected.

Proof. Consider a homotopy pushout diagram

X Z

Z ΣZX,

viewed as a 2-cube. The two arrows X → Z are k-connected by assumption, and the full 
cube is a pushout cube and hence is ∞-coCartesian. Algebraic excision then shows that 
it is n-Cartesian where n = min{−2 + (k + 1) + (k + 1), −2 + ∞} = 2k. By definition, 
this means that the map X → ΩZΣZX is 2k-connected.

Remark 6.8. In particular, this implies that the map ΩZΣZX → Z is still k-connected.

Proposition 6.9. Suppose that C satisfies algebraic excision. Let X → Y → Z be maps, 
where X → Y is k-connected and the maps X → Z and Y → Z are 
-connected, for 
k + 1 ≥ 
 ≥ 0. Then the diagram

X Y

ΩZΣZX ΩZΣZY

is (k + 
)-Cartesian.
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Proof. Consider the cubical diagram:

X Z

Z ΣZX

Y Z

Z ΣZY

The natural map from X to the total homotopy pullback of the cube with the initial ver-
tex deleted is equivalent to the map from X to the homotopy pullback in the proposition 
statement, and hence it suffices for us to show that this cube is (k + 
)-Cartesian.

The maps X → Z are 
-connected, and the map X → Y is k-connected. The top and 
bottom faces are homotopy pushout diagrams, and hence ∞-coCartesian; in particular, 
the whole cube is ∞-coCartesian by [11, 3.8(b)]. Because the map X → Y is k-connected 
and the map Z → Z is ∞-connected, the left-hand and back faces are both (k + 1)-
coCartesian, again by [11, 3.8(b)].

The inclusion of each initial face into a larger face improves connectivity, and so the 
excision estimate applies. The whole cube is n-Cartesian, where

n = min{−3+(k+1)+(
+1)+(
+1),−3+(k+1)+∞,−3+(
+1)+(k+2),−3+∞} = k+
,

as desired.

Corollary 6.10. If C satisfies algebraic excision, the ΣZ − ΩZ adjunction is subductive 
when restricted to objects X such that X → Z is 0-connected, and strongly subductive 
when restricted to objects such that X → Z is 1-connected.

Proposition 6.11. Suppose that C satisfies algebraic excision, and that X → Y is a map 
of objects over Z such that X → Z and Y → Z are 1-connected. Then, for k ≥ 0, the 
map X → Y is k-connected if and only if the map ΩZΣZX → ΩZΣZY is k-connected.

Proof. Because the maps X → Z and Y → Z are 1-connected, the map X → Y is 
0-connected. Therefore, we can apply Proposition 5.4.

7. Applications

7.1. Skeleta in derived categories

In this section we will examine what skeletality means for an object in the classical de-
rived category of a ring R, with the connectivity structure determined by the t-structure 
as in Example 2.9.
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Definition 7.1. Let R be an ordinary ring. We say that a complex of R-modules has 
projective amplitude in [a, b] if it is equivalent to a complex of projectives concentrated 
in degrees a through b.

Proposition 7.2. A complex of R-modules has projective amplitude in [a, b] if and only if 
it is (a − 1)-connected and b-skeletal.

Proof. Suppose A is a complex with the given projective amplitude; since the prop-
erties we need to show are invariant under equivalence, we may assume that A is a 
complex of projectives concentrated in degrees a through b. Then its homology is clearly 
concentrated in degrees a through b, so it is (a − 1)-connected. Moreover, if X → Y

is a b-connected map of complexes, its cofiber Y/X is (b + 1)-connected, and hence 
[A, Y/X] = 0 via a hypercohomology spectral sequence with E1-term

HomR(As, Ht(Y/X)) ⇒ Ht−s Hom(A, Y/X).

This implies the desired lifting property by the long exact sequence for [A, −].
To prove the converse, we proceed by induction on b − a. By first applying a shift 

Σ−a, we may assume without loss of generality that a = 0.
For the base case, suppose that A is (−1)-connected and 0-skeletal; we wish to show 

that A is equivalent to a projective complex concentrated in degree 0. Without loss of 
generality we may assume A is a complex of projectives in nonnegative degrees. Any 
surjective map of (discrete) R-modules M → N can be viewed as a 0-connected map of 
complexes concentrated in degree 0. The map [A, M ] → [A, N ] is therefore surjective; 
however, this is isomorphic to the map

HomR(H0A,M) → HomR(H0A,N).

Since M → N was an arbitrary surjection, H0(A) is a projective module P . Both A and 
P are 0-skeletal, and the maps A → P and P → P are both 1-connected. This makes 
both A and P minimal 0-skeleta of P , and hence equivalent by Proposition 3.20.

Now suppose by induction that we have shown the result for b −1. Given a complex A
which is (−1)-connected and b-skeletal, let P → H0(A) be a surjection from a projective 
module, with a lift to a map P → A. Then the cofiber A/P is 0-connected, and it is b-
skeletal by Proposition 3.14. By induction it then has projective amplitude in [1, b]. The 
complex A is equivalent the cofiber of the map Σ−1A/P → P , and thus has projective 
amplitude in [0, b].

Proposition 7.3. Suppose that R is a principal ideal domain. Then a complex M of R-
modules is k-skeletal if and only if Hk(M) is free and H∗M = 0 for ∗ > k.

Proof. Since principal ideal domains have projective dimension 1, any complex of R-
modules splits: there is an equivalence
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⊕
d

ΣdHd(M) � M.

Therefore, M is k-skeletal if and only if each ΣdHd(M) is k-skeletal by Proposition 3.12, 
which is true if and only if Hd(M) is (k − d)-skeletal.

By the previous proposition, this is equivalent to Hd(M) having projective amplitude 
in [0, k − d]. Since R has projective dimension 1, every discrete module has projective 
amplitude in [0, 1], and so this is automatically satisfied for d ≤ k − 1. When d = k, we 
must have that Hk(M) has projective amplitude in [0, 0], which is equivalent to asking 
that Hk(M) is projective, and hence free. When d > k, we must have that Hk(M) is 
trivial.

Corollary 7.4. Suppose that R is a field. Then a complex M of R-modules is k-skeletal if 
and only if H∗(M) = 0 for ∗ > k.

We now consider the construction of minimal skeleta.

Proposition 7.5. Suppose that A → M is a map of chain complexes over R that is a 
(k − 1)-skeleton, with cofiber M/A. Then there exists a minimal k-skeleton B → M if 
and only if Hk(M/A) is a projective R-module and Hk+1(M/A) = 0.

Proof. Suppose that B → M is a minimal k-skeleton. Then there exists a unique lift 
A → B over M by Corollary 3.6. The object B/A is (k− 1)-connected and k-skeletal by 
Proposition 3.14, and hence equivalent to a shift ΣkP of a projective R-module.

Because of the identification

(M/A)/(B/A) � M/B,

the map B → M is (k + 1)-connected if and only if the map B/A → M/A is (k + 1)-
connected. However, for the map ΣkP → M/A to be (k + 1)-connected we must have 
that Hk(M/A) = P and Hk+1(M/A) = 0.

Conversely, suppose that Hk(M/A) is a projective module P and that Hk+1(M/A) =
0. Then, since M/A is (k−1)-connected, there is a (k+2)-connected map M/A → ΣkP , 
which has a section because ΣkP is k-skeletal; the section is (k+1)-connected. Let C be 
the cofiber of the map ΣkP → M/A; it is (k + 1)-connected. Let B be the fiber of the 
map M → C; the map B → M is (k + 1)-connected. The octahedral axiom implies that 
there is a cofiber sequence

Σk−1P → A → B

and hence B is k-skeletal. Therefore, B is a minimal k-skeleton of M .

Corollary 7.6. Suppose R is a principal ideal domain. Then a chain complex of R-modules 
M admits a minimal k-skeleton if and only if Hk(M) is free and Hk+1(M) = 0.
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Proof. Let A be any (k−1)-skeleton of M . Then Hk+1(M/A) = Hk+1(M), and so these 
groups are either both zero or both nonzero. There is also an exact sequence

0 → Hk(M) → Hk(M/A) → Hk−1(A).

The group Hk−1(A) is free by Proposition 7.3, and since R is a principal ideal domain 
the image of the map Hk(M/A) → Hk−1(A) is also free. Therefore, the group Hk(M/A)
splits as a direct sum of Hk(M) and a free module, and so Hk(M) is projective if and 
only if Hk(M/A) is.

Because there is an equivalence between complexes of R-modules and modules over 
the Eilenberg–Mac Lane spectrum HR [26, 5.1.6], taking homology groups to homotopy 
groups, we arrive at the following.

Proposition 7.7. Suppose R is a principal ideal domain. An HR-module M is k-skeletal 
if and only if πk(M) is projective and π∗(M) = 0 for ∗ > k. An HR-module M admits 
a minimal k-skeleton if and only if πk(M) is free and πk+1(M) = 0.

In particular, suppose R is a field. An HR-module M is k-skeletal if and only if 
π∗(M) = 0 for ∗ > k. An HR-module M admits a minimal k-skeleton if and only if 
πk+1(M) = 0.

Corollary 7.8. If R is a principal ideal domain, then any N -skeleton of an (n − 1)-
connected HR-module M admits a cellular construction using the cells ({Σk−1HR →
∗})n≤k≤N .

7.2. Skeleta for spaces

For k ≥ 2, any k-connected map of spaces X → Y is nilpotent: the relative Postnikov 
tower expresses each path component as a limit of pullbacks

Pn(Y,X) K(π1Y, 1)

Pn−1(Y,X) K(π1Y, 1) �K(πn(Y,X), n + 1).

As a result, X is k-skeletal for k ≥ 2 if and only if its image in the stable category 
Sp(S/X) is k-skeletal.

Following Waldhausen, this stable category is equivalent to the category of functors 
X → Sp, and the image of X is the constant functor with value S. In the case where 
X is connected, this is equivalent to the category of modules over the spherical group 
algebra S[ΩX], and the image of X is the trivial module S.

The Postnikov truncation map S[ΩX] → HZ[π1X] is 1-connected. As in Example 4.5
we find that X is k-skeletal if and only if the left HZ[π1X]-module
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S ⊗S[ΩX] HZ[π1X] � HZ⊗ X̃

has projective amplitude in [0, k], where X̃ is the universal cover. This is equivalent to 
asking that the complex C∗(X̃) of Z[π1X] has projective amplitude in [0, k]. This is 
related, but somewhat orthogonal, to Wall’s finiteness obstruction.

7.3. Algebras in module categories

Throughout this section we assume that S is a commutative ring spectrum and 
AlgEn

(S) is the ∞-category of En-algebras in left S-modules. Recall that there is a con-
nectivity structure on AlgEn

(S)≥0, lifted from LModS , that is described in Examples 3.30
and 3.31. In particular, this connectivity structure is determined by the (0-bounded) cells 
TS
En

(Σk−1S) → S for k ≥ 1 and S → TS
En

(S), where TS
En

: LModS → AlgEn
(LModS)

is the free En S-algebra functor. Moreover, Proposition 3.28 and the fact that the con-
nectivity structure on AlgEn

(S) is compatible with cobase change imply that these cells 
are sufficient for k-skeleta for all k ≥ 0, in the sense of Section 3.5.

As discussed in Example 6.3, the category AlgEn
(S) satisfies algebraic excision by [11, 

Theorem 1.7], and hence all the results of Section 6 apply.

Proposition 7.9. Any connective En S-algebra A has a (convergent) Postnikov tower

· · · → P2A → P1A → P0A

in En-algebras, where each stage is given by a pullback diagram

Pm+1A PmA

PmA PmA⊕ Σm+2Hπm+1A

in which the right-hand map is Ω∞ of a map in Sp(AlgEn
(R)/PmA). In particular, the 

maps Pm+1A → PmA are nilpotent for m > 0.

Proof. It follows from [18, 7.1.3.19] that every connective En S-algebra has a Postnikov 
tower. Moreover, by Lemma 4.14 and [18, 7.4.1.28] we have that each of the morphisms 
Pm+1A → PmA is nilpotent. It remains to show that each level of this tower can be 
obtained by the given pullback. By [18, 7.4.1.7] we have that Pn+1A → PmA is some
pullback of a nilpotent morphism. To check that it is a pullback specifically of a morphism 
PmA → PmA ⊕Σm+2Hπm+1A it suffices to identify the fiber of Pm+1A → PmA, which 
is Σm+1Hπm+1A by [18, 7.1.3.14] parts (3) and (5).

Proposition 7.10. Suppose f : A → B is a morphism of En S-algebras spectra such that 
π0(f) is surjective and has nilpotent kernel. Then f is nilpotent.



44 J. Beardsley, T. Lawson / Advances in Mathematics 457 (2024) 109944
Proof. Recall that a surjective map of discrete rings R → R′ with nilpotent kernel 
J can always be written as a limit of square-zero extensions: the tower of quotients 
· · · → R/J3 → R/J2 → R/J ∼= R′. By [18, 7.4.1.21], if P0A → P0B is a square-zero 
extension of discrete rings then it is square-zero as a map of En S-algebras and so, by 
Lemma 4.14, is nilpotent. Therefore the map π0(f) : P0A → P0B is nilpotent.

Now, using the Postnikov towers of A and B, factor the map A → B as a transfinite 
composite

A → · · · → P2A×P2B B → P1A×P1B B → P0A×P0B B → B.

Notice that holimm(PmA ×PmB B) � A ×B B, so A is the homotopy limit of the above 
tower. Therefore, it suffices to show that all of the maps in the composition are nilpotent.

The last map is the base-change of the map P0A → P0B along the map B → P0B, 
and so it is nilpotent by the discrete case proven above.

Each of the remaining maps factors as

Pm+1A×Pm+1B B → Pm+1A×PmB B → PmA×PmB B.

The second map is the base-change of the composite Pm+1A → PmA → PmB along the 
map B → PmB, and so it is nilpotent. The first map is the base-change of the map

Pm+1B → Pm+1B ×PmB Pm+1B

along Pm+1A ×PmBB → Pm+1B×PmBPm+1B, and so it suffices to show that Pm+1B →
Pm+1A ×PmB Pm+1B is nilpotent.

However, Pm+1B is a square-zero extension of PmB via a map that becomes trivial 
when restricted to Pm+1B. Therefore, the pullback is the trivial square-zero extension

Pm+1B ⊕ Σm+1Hπm+1B → Pm+1B,

and the map Pm+1B → Pm+1B ⊕ Σm+1Hπm+1B is the image of the map 0 →
Σm+1HπmB in the stable category Sp((AlgEn

)/Pm+1B).

Corollary 7.11. A k-connected map of En R-algebras f : A → B is nilpotent whenever 
k > 0.

Recall that the stable category Sp(AlgEn(S)/A) is identified with the category of (S-
linear) En A-modules [18, 7.3.4.18].

Definition 7.12. For a commutative ring spectrum S and an En S-algebra A, we define 
LS(A) to be the relative Loday construction, or relative factorization homology object:

LS(A) = S ⊗∫
Sn−1 S

∫
A.
Sn−1
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The category of S-linear En A-modules is equivalent to the category of modules over 
LS(A) [18, 7.3.5.3].

By combining Corollary 7.11 with Proposition 4.15 we immediately obtain the follow-
ing result:

Proposition 7.13. A connective En S-algebra A is k-skeletal for k > 0 if and only if its 
absolute cotangent complex LEn(A) is k-skeletal in the stable category LModLS(A).

We recall the following formula for this absolute cotangent complex.

Theorem 7.14 ([13, 2.26], [18, 7.3.5.1]). There is a cofiber sequence

LS(A) → A → ΣnLEn(A),

of LS(A)-modules.

Corollary 7.15. For k ≥ 1 − n, the absolute cotangent complex LEn(A) is k-skeletal if A
is a (k + n)-skeletal LS(A)-module.

Proof. The object Σ−nLS(A) is always a (−n)-skeletal module and by assumption Σ−nA

is a k-skeletal module, and so this follows by Proposition 3.14.

Remark 7.16. For k ≥ 2 − n, the converse is also true.

If A is connective, the Loday construction LS(A) is connective. Under these circum-
stances, Example 4.5 now gives us the following result.

Theorem 7.17. A connective En S-algebra A is k-skeletal for k ≥ 1 if the Hπ0
(
LS(A)

)
-

module

Hπ0
(
LS(A)

)
⊗

LS(A)
A

is (n + k)-skeletal.

When n = 1, LS(A) = A ⊗SA
op as an algebra, and π0

(
LS(A)

)
= π0(A) ⊗π0(S)π0(A)op. 

The above theorem specializes to a statement about relative topological Hochschild ho-
mology.

Proposition 7.18. Suppose A is a connective E1 S-algebra and that π0(A) is a localized 
quotient of π0S (in particular, a commutative ring). Then A is k-skeletal for k ≥ 1 if 
the topological Hochschild homology object

THHS(A;Hπ0A) � Hπ0(A) ⊗A⊗SAop A
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is a (k + 1)-skeletal Hπ0(A)-module.

This allows the detection of skeleta. We next turn our attention to the construction 
of skeleta and minimal skeleta.

Lemma 7.19. Let S be a commutative ring spectrum and A an En S-algebra for n ≥ 1 with 
π0(A) commutative. If the unit map S → A is 0-connected then there is an isomorphism 
π0(A) � π0(LS(A)).

Proof. When n > 1, the result follows immediately from the long exact sequence in 
homotopy groups applied to the cofiber sequence of Theorem 7.14 and does not require 
the 0-connectivity assumption on the unit nor the commutativity condition on π0(A). 
When n = 1 however we use both conditions along with the isomorphism π0

(
LS(A)

)
=

π0(A) ⊗π0(S) π0(A)op to deduce the result.

Lemma 7.20. If A is an En S-algebra for a commutative ring spectrum S and the unit 
S → A is 0-connected then the unit A → Ω∞Σ∞

+ A � A ⊕ LA is 0-connected.

Proof. First note that, because S → A is 0-connected, Corollary 6.6 implies that A →
A+ � A ⊕ A is also 0-connected. Note that, by virtue of A+ being an object of pointed
En S algebras over A, that there is a retract A → A+ → A and therefore A+ → A is 
1-connected by Proposition 2.16. By Proposition 6.7 we then have that A+ → ΩAΣAA+
is 2-connected.

Now let W be a set with m-elements and consider the cocartesian m-cube F : P(W ) →
AlgEn

(S)/A with A+ as the initial vertex, Σm−1A+ as the final vertex, and A for every 
other vertex. Given a subset V ⊆ W with |V | = k, the homotopy colimit over the diagram 
P(V ) −V is Σk−1

A A+. By iterating Proposition 2.21 we see that Σk−1
A A+ → Σk−1

A A � A is 
k-connected, so the subcube of F associated to V is k-cocartesian (except when V = W

in which case it is ∞-coCartesian). In other words, in the notation of Definition 6.1, 
kV = |V | whenever |V | < |W | and kV = ∞ when V = W . Thus the entire cube F must 
be K-cartesian where K is the minimum {−|W | +ΣV ∈λ (|V | + 1) = |λ| : |λ| > 1} ∪{∞}. 
Therefore K = 2. Thus A+ → Ωm

AΣm
AA+ is at least 2-connected for all m ≥ 0.

Note that because the connectivity structure on AlgEn
(S)/A is lifted along a forgetful 

functor AlgEn
(S)/A → LModS which preserves sifted colimits, it is compatible with, in 

particular, sequential colimits. Thus A+ → colimm Ωm
AΣm

AA+ � A ⊕ LA is 2-connected, 
and so A → A ⊕ LA is 0-connected.

The following is well known to experts, but the authors could not readily find a 
reference using the ∞-categorical language of this paper.

Lemma 7.21. Let f : B → A be a morphism of En S-algebra spectra for S a commutative 
ring spectrum. Then the value of the functor (Σ∞

+ )A : AlgEn

/A → Sp(AlgEn

/A ) applied to f

is equivalent to LS(A) ⊗LS(B) L
En

B .
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Proof. We check that LS(A) ⊗LS(−) L
En

(−) is left adjoint to Ω∞
A . Let f∗ � f∗ be the 

push-pull adjunction between AlgEn

/A and AlgEn

/B and F ∗ � F∗ its associated stabilization 

(cf. [19, Proposition 5.4.1]). We check that F∗L
En

B � LS(A) ⊗LS(B) L
En

B and Σ∞
A,+B

corepresent the same functor in Sp(AlgEn

A ). For any M ∈ Sp(AlgEn

/A ) we have the follow-
ing string of (natural in M) equivalences of mapping spaces:

AlgEn

/A (f∗B,Ω∞
A M) � AlgEn

/B (B, f∗Ω∞
A M)

� AlgEn

/B (B,Ω∞
B F ∗M)

� Sp(Alg/B)(LEn

B , F ∗M)

� Sp(Alg/B)(F∗L
En

B ,M).

The first equivalence is by definition, because f∗ simply postcomposes with f and f∗

is the pullback functor. The second equivalence follows from [18, 6.2.2.14 (3)] combined 
with [18, 7.3.1.5]. The third equivalence is the usual adjunction between a category 
and its stabilization (as well recalling the equivalence Σ∞

B,+B � LEn

B )). And the final 
equivalence is simply given by the extension/restriction of scalars adjunction between 
F∗ and F ∗. Finally, we apply the fact that AlgEn

/A (f∗B, Ω∞
A M) is naturally equivalent to 

Sp(AlgEn

/A )(Σ∞
A,+B, M).

Remark 7.22. In Lemma 7.21 we take for granted that the equivalences ModEn

A �
LModLS(A) and ModEn

B � LModLS(B) are compatible with the relevant base change 
functors. However this follows from the description of those equivalences given, for in-
stance, in [13, Proposition 2.23].

Theorem 7.23. Suppose that S is a connective commutative ring spectrum such that π0(S)
is a principal ideal domain, and that A is a connective En S-algebra such that S → A is 
1-connected. Then given a cellular construction of a (minimal) (N + n)-skeleton

Z → Hπ0(A) ⊗
LS(A)

A

as Hπ0(A)-modules, there is a corresponding cellular construction of a (minimal) N -
skeleton B → A of En-algebras. In the case that Z → Hπ0(A) ⊗LS(A) A is minimal, 
there is an equivalence

Z � Hπ0(A) ⊗
LS(B)

B

of Hπ0(A)-modules over Hπ0(A) ⊗LS(A) A.

Proof. There is a composite adjunction

AlgEn � Sp
(
AlgEn

)
� LModLS(A) � LModHπ0(A)
/A /A
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between En-algebras over A and Hπ0(A)-modules. The leftmost adjunction is the Ω∞
A �

Σ∞
A adjunction and the rightmost is the base-change adjunction between left LS(A)-

modules and left Hπ0(LS(A)) � Hπ0(A)-modules (using Lemma 7.19). We will use this 
composite adjunction to pass a skeleton of Hπ0(A) ⊗LS(A) A back to a skeleton of A.

By using Theorem 7.14 to write LEn

A as Σ−n cofib(LS(A) → A) we see that the image 
of A under the composite left adjoint above is

Hπ0(A) ⊗
LS(A)

LEn

A � Σ−n cofib
(
Hπ0(A) → Hπ0(A) ⊗

LS(A)
A

)
.

Given a (minimal) (N + n)-skeleton Z → Hπ0(A) ⊗LS(A) A, Corollary 3.6 implies that 
the map Hπ0(A) → Hπ0(A) ⊗LS(A) A lifts to Z because Hπ0(A) is 0-skeletal. By Propo-
sition 2.21, the induced map

cofib(Hπ0(A) → Z) → cofib
(
Hπ0(A) → Hπ0(A) ⊗

LS(A)
A

)

is (N + n)-connected (or (N + n + 1) in the case of a minimal skeleton). By Proposi-
tion 3.14, cofib(Hπ0(A) → Z) is (N + n)-skeletal. Therefore, by stability, the resulting 
n-times desuspended map Σ−n cofib(Hπ0A → Z) → Hπ0(A) ⊗LS(A) L

En

A is a (minimal) 
N -skeleton.

By Corollary 7.8, there exists a cellular construction of this (minimal) N -skeleton as 
an Hπ0(A)-module using the cells (Σk−1Hπ0(A) → ∗)1≤k≤N . These cells are the images 
of the 0-bounded cells S⊗En(Sk−1) → S⊗En(∗) in the category of En S-algebras.

We now excavate this cellular skeleton by first using the adjunction between left 
Hπ0(A)-modules and left LS(A)-modules. Because π0(A) ∼= π0(LS(A)) we have that 
the adjunction is subductive by Example 5.3. Because the map LS(A) → Hπ0(A) is a 
1-connected map of connective ring spectra, the left adjoint LModLS(A) → LModHπ0(A)
reflects connectivity in the standard t-structure inherited from Sp. Finally, because 
0-truncation preserves tensor products for connective spectra, we have that LEn

A →
Hπ0(A) ⊗LS(A) L

En

A is 0-connected. So Theorem 5.13 allows us to excavate the (mini-
mal) cellular skeleta of Hπ0(A) ⊗LS(A) L

En

A to (minimal) cellular skeleta for LEn

A .
We now excavate this skeleton from LModLS(A) � Sp(AlgEn

/A ) to AlgEn

/A . We will again 
use Theorem 5.13, but first need to establish that the hypotheses thereof hold in this 
case. Because the unit map S → A is 1-connected, and the connectivity structure on 
AlgEn

/A is lifted from that of AlgEn , we may assume that we have restricted our adjunction 

to 1-connected objects of AlgEn

/A . It follows from Corollary 6.10 that the Σ � Ω-adjunction 
thereon is strongly subductive and thus by Proposition 5.8, so is Σ∞ � Ω∞. Now using 
Corollary 5.5 (along with Remark 4.7 and Theorem 2.40), we have that stabilization 
reflects connectivity. As a result, Theorem 5.13 allows us to excavate (minimal) cellular 
skeleta from Sp(AlgEn

/A ) to AlgEn

/A .
Putting the pieces together, we have that any cellular construction of a (minimal) 

(N + n)-skeleton Z → Hπ0(A) ⊗LS(A) A can be excavated to a cellular construction of 
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a (minimal) N -skeleton B → A. Now notice that the composite left adjoint AlgEn

/A →
LModHπ0(A) preserves connectivity and skeletal objects (the latter by Proposition 3.9). 
Therefore it also preserves minimal skeleta. Thus, if Z is minimal, our description of Z
will follow from a computation of the image of B → A under the composite adjunction 
given at the beginning of the proof. From Lemma 7.21 we deduce that

B �→ Hπ0(A) ⊗
LS(B)

LEn

B � Σ−n cofib
(
Hπ0(A) → Hπ0(A) ⊗

LS(B)
B

)

Therefore homotopy uniqueness of minimal skeleta (followed by n-fold suspension) 
gives an equivalence

cofib (Hπ0(A) → Z) � cofib
(
Hπ0(A) → Hπ0(A) ⊗

LS(B)
B

)
.

First notice that by functoriality of the fiber sequence given in Theorem 7.14 (cf. for 
instance [18, 7.3.5.5]) we have a commutative diagram

LS(B) LS(A)

B A

of LS(B)-modules. From this we obtain another commutative diagram

Hπ0(A)




Hπ0(A)




Hπ0(A)⊗LS(B) LS(B) Hπ0(A)⊗LS(B) LS(A) Hπ0(A)⊗LS(A) LS(A)

Hπ0(A)⊗LS(B) B Hπ0(A)⊗LS(B) A Hπ0(A)⊗LS(A) A

in which the top (and middle) horizontal map is equivalent to the identity. Moreover, 
the left and right vertical composites are the ones obtained by tensoring Hπ0(A) over 
LS(B) and LS(A) respectively with the maps LS(B) → B and LS(A) → A arising 
in Theorem 7.14. It follows from the proof of Lemma 7.21 that the bottom hori-
zontal map is the map whose cofiber gives the (n-fold suspension of) the N -skeleton 
Σ−n cofib

(
Hπ0 → Hπ0(A)⊗LS(B) B

)
→ Σ−n cofib

(
Hπ0(A) → Hπ0(A)⊗LS(A) A

)
de-

scribed above.
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Thus we have a commutative diagram

Hπ0(A)




Hπ0(A)⊗LS(B) B cofib
(
Hπ0(A) → Hπ0(A)⊗LS(B) B

)

Hπ0(A) Hπ0(A)⊗LS(A) A cofib
(
Hπ0(A) → Hπ0(A)⊗LS(A) A

)
whose right vertical map is the n-fold suspension of our skeleton. Notice also that by 
continuing the exact sequences to the right, obtaining horizontal maps to ΣHπ0(A), 
we may write the map Hπ0(A) ⊗LS(B) B → Hπ0(A) ⊗LS(A) A as a fiber, and thus, 
by Proposition 2.17, is (N + n)-connected. Therefore, we may lift the skeleton Z →
Hπ0(A) ⊗LS(A) A along it to obtain a commutative diagram

Z

Hπ0(A) Hπ0(A)⊗LS(A) A Hπ0(A)⊗LS(B) B

in which the left hand triangle is the one obtained by lifting Hπ0(A) along the (N +n)-
connected map Z → Hπ0(A) ⊗LS(A) A, and the right hand triangle is the one obtained 
by lifting the (N + n)-skeleton Z along the (N + n)-connected map Hπ0(A) ⊗LS(B) B.

Fitting the above triangle into the diagram preceding it, and taking the relevant 
cofiber, we now have a commuting diagram in which all rows are exact:

Hπ0(A)




Z cofib (Hπ0(A) → Z)

Hπ0(A)




Hπ0(A)⊗LS(B) B cofib
(
Hπ0(A) → Hπ0(A)⊗LS(B) B

)

Hπ0(A) Hπ0(A)⊗LS(A) A cofib
(
Hπ0(A) → Hπ0(A)⊗LS(A) A

)
By Propositions 3.19 and 3.20, the upper right vertical map in the above diagram 
must be the unique-up-to-homotopy equivalence between cofib (Hπ0(A) → Z) and 
cofib

(
Hπ0(A) → Hπ0(A)⊗LS(B) B

)
. It follows that the middle vertical map, Z →

Hπ0(A) ⊗LS(B) B is also an equivalence.

Remark 7.24. Note that, in the case that we are considering an E1 S-algebra A, there is 
an equivalence THHS(A, π0(A)) � Hπ0(A) ⊗LS(A) A. So Theorem 7.23 allows us to lift 
minimal skeleta of the often simpler topological Hochschild homology of A to minimal 
skeleta of A itself, which we will use in the next sections.
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7.4. Remark on Thom spectra

Recall the universal property of a Thom spectrum as a ring [1]: given a map of 
grouplike En-spaces f : G → GL1(S), maps Mf → R of associative rings are equivalent 
to nullhomotopies of the composite

BnG → BnGL1(S) → BnGL1(R).

We will show that if BnG is (k+n −1)-skeletal, then Mf is k-skeletal as an En-algebra.
Suppose that R → S is a k-connected map of ring spectra for k > 0. The map 

BnGL1(R) → BnGL1(S) is (k+n)-connected by directly considering homotopy groups. 
If BnG is (k + n − 1)-skeletal, then the map BnG → ∗ is a relatively (k + n)-skeletal 
map, and so any nullhomotopy of the map BnG → BnGL1(S) lifts to a nullhomotopy 
of the map BnG → BnGL1(R). By the universal property, this asserts that any map 
Mf → S lifts to a map Mf → R, as desired.

7.5. T (n) as associative skeleta

In this section we fix a prime p ∈ Z. In [24], Ravenel introduces a sequence of homotopy 
commutative ring spectra called T (n) and morphisms of homotopy commutative ring 
spectra T (n) → T (n + 1) such that T (0) � S(p) and hocolim(T (n)) � BP, the Brown-
Peterson spectrum. Ravenel computes that BP∗(T (n)) ∼= BP∗[t1, . . . , tn] ⊂ BP∗ BP and 
the natural map T (n) → BP is a homology isomorphism in degrees less than |tn+1| =
2(pn+1 − 1); hence it is (2pn+1 − 3)-connected. In what follows, we show that this is in 
fact the inclusion of a minimal skeleton of BP in the category of E1-ring spectra.

We begin with some calculations.

Proposition 7.25. We have

π∗ THH(BP;Z(p)) ∼= Λ[σt1, σt2, . . .].

If T → BP is any map of connective p-local ring spectra inducing the inclusion 
Z(p)[t1 . . . , tn] = H∗T (n) → H∗ BP on homology, then the map

π∗ THH(T ;Z(p)) → π∗ THH(BP;Z(p))

is isomorphic to the inclusion of the subalgebra

Λ[σt1, . . . , σtn],

which is precisely those elements in degrees less than 2pn+1 − 1.
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Proof. From [3, Lemma 2.2] we have an equivalence

THH(BP;Z(p)) � HZ(p) ∧
BP∧BPop

BP � HZ(p) ∧
HZ(p)∧BPop

HZ(p).

It follows, from either [12, IV, 4.1] or [3, Corollary 2.3] that we have a Künneth spectral 
sequence of signature

TorH∗(BPop;Z(p))
∗∗ (Z(p),Z(p)) ⇒ THH∗(BP;Z(p)).

The E2-term reduces to

TorZ(p)[t1,t2,... ]
∗∗ (Z(p),Z(p))

which is an exterior algebra Λ[σt1, σt2, . . . ] with σti in total degree 2pi− 1 and filtration 
1. The elements σti are permanent cycles for degree reasons, and the spectral sequence 
has multiplicative structure because BP admits an E4-ring structure [10]. The product 
structure then implies that all elements in the spectral sequence are permanent cycles, 
and there is no room for any hidden multiplicative extensions.

Given such a map T → BP, the same spectral sequence for π∗ THH(T ; Z(p)) maps 
injectively to the spectral sequence for THH∗(BP; Z(p)), and hence has no differentials 
or hidden extensions either. The resulting map is the inclusion

Λ[σt1, . . . , σtn] ⊂ Λ[σt1, σt2, . . .].

The highest degree of a nontrivial element on the left is

|σt1σt2 . . . σtn| =
n∑

i=1
(2pi − 1) = 2ppn−1

p−1 − n < |σtn+1|

and therefore the subalgebra consists precisely of those elements in degrees less than 
2pn+1 − 1 = |σtn+1|.

Theorem 7.26. There exists an associative algebra structure on T (n) making it into a 
minimal (2pn+1 − 4)-skeleton of BP as a p-local associative algebra.

Proof. By Proposition 7.7, the Z(p)-module THH(BP; Z(p)) has a minimal 2pn+1 − 3
skeleton.

Therefore, by Theorem 7.23, this minimal (2pn+1 − 3)-skeleton can be excavated: 
there is a minimal (2pn+1 − 4)-skeleton T → BP as an associative algebra, whose THH
coincides through degree (2pn+1 − 3). By Proposition 7.25, this forces

π∗ THH(T ;Z(p)) ∼= Λ[σt1, . . . , σtn].



J. Beardsley, T. Lawson / Advances in Mathematics 457 (2024) 109944 53
The map T → BP is then (2pn+1−3)-connected. This means t1, . . . , tn ∈ H∗ BP are in 
the image, so H∗T → Z(p)[t1, . . . , tn] is surjective and an isomorphism through degrees 
(2pn+1−4). Moreover, because we know the homology of the tangent T lifts the tangent 
complex, the THH spectral sequence

TorH∗T (Z(p),Z(p)) ⇒ Λ

for the homology of the tangent complex must be isomorphic to the corresponding spec-
tral sequence for the subalgebra Z(p)[t1, . . . , tn]; this can only be true if Z(p)[t1, . . . , tn] →
H∗T is an isomorphism.

Consider the commutative diagram of inclusions and retractions of p-local ring spectra 
[24, p. 217]:

X(pn)(p) T (n)

T BP MU(p) BP

The dotted lift exists because the map X(pn) → MU is a (2pn − 1)-connected map of 
associative algebras, and hence we get a composite map T → T (n) of p-local spectra. 
On homology this becomes the commutative diagram

Z(p)[x1, . . . , x2pn−2] Z(p)[t1, . . . , tn]

Z(p)[t1, . . . , tn] Z(p)[t1, t2, . . . ] Z(p)[x1, x2, . . . ] Z(p)[t1, t2, . . . ]

This makes the map T → T (n) into a homology isomorphism, and thus an equivalence, 
of spectra over BP.

Remark 7.27. Theorem 7.26 bears some similarity to [6, Corollary 13] and [7, Theorem 2]
in which it is shown that the spectra X(n) and their p-localizations X(n)(p), of which the 
spectra T (n) are wedge summands, can be constructed from X(n − 1) and X(n − 1)(p)
via attachments of E1-X(n −1)-algebra cells. Those results however use the construction 
of X(n) as a Thom spectrum in a crucial way, and T (n) is not a Thom spectrum. Those 
results also do not immediately imply that X(n) is a skeleton of MU as E1-ring spectra 
(in contrast to the results for T (n) given above).

7.6. Y (n) as associative skeleta

Similarly, we recall that at p = 2 there is a spectrum Y (n) with a map Y (n) → HF2
whose homology maps isomorphically to a subalgebra of the dual Steenrod algebra:
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H∗(Y (n);F2) ∼= F2[ξ1, . . . , ξn].

By contrast with the previous case, there is a known associative multiplication on Y (n)
[20]. Specifically, the space ΩS3 is equivalent to a CW-complex with one cell in each 
even degree, via the James construction; the spectrum Y (n) is the Thom spectrum of 
the composite map of loop spaces

Ω(ΩS3)(2
n+1−2) → Ω2S3 → BO.

We will now show that the spectrum Y (n) is a skeleton of HF2 as an associative ring 
spectrum.

Proposition 7.28. We have

π∗ THH(HF2) ∼= F2[u].

If T → HF2 is any map of connective ring spectra inducing the inclusion F2[ξ1 . . . , ξn] =
H∗Y (n) → H∗HF2 on homology, then the map

π∗ THH(T ;F2) → π∗ THH(HF2)

is isomorphic to the inclusion of those elements in degrees less than or equal to 2n+1−2.

Proof. This follows because the map on E2-pages of Künneth spectral sequences is the 
inclusion of all classes in total degree less than or equal to 2n+1 − 2, and the Künneth 
spectral sequence for THH(HF2) degenerates.

Corollary 7.29. The spectrum Y (n) is (2n+1 − 3)-skeletal as an associative algebra.

Proof. The top degree where the topological Hochschild homology of Y (n) is nontrivial 
is

|σξ1 . . . σξn| =
n∑

i=1
2i = 2n+1 − 2.

By Proposition 7.18 and 7.7, the spectrum Y (n) is (2n+1 − 3)-skeletal as a ring
spectrum.

The map Y (n) → HF2 is (2n+1 − 2)-connected. Therefore, we arrive at the following 
conclusion.

Theorem 7.30. The spectrum Y (n) is a minimal (2n+1 − 3)-skeleton of HF2 as an asso-
ciative algebra.
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Remark 7.31. We can give an alterative proof: instead of using topological Hochschild 
homology as with T (n), we can use the description of Y (n) as a Thom spectrum.

7.7. Involutions

Proposition 7.32. Suppose that R is an E2-algebra and that T is a minimal k-skeleton of 
R. Then there is an involution λ : T → T op over R.

Proof. Any E2-algebra is equivalent to its own opposite algebra. The composite

T op → Rop ∼−→ R

then makes T op into a minimal k-skeleton of R. However, uniqueness of minimal skeleta 
from Proposition 3.20 implies that there is a canonical equivalence T → T op of algebras 
mapping to R.

Remark 7.33. The self-equivalence R → Rop becomes, after forgetting the E2-structure, 
the identity self-map of R. By contrast, the involution on T may not be homotopic to 
the identity map, and hence this does not prove homotopy commutativity of T .

Corollary 7.34. The spectrum T (n) is equivalent to T (n)op as an associative algebra with 
a map to BP.

In other words, we have an involution λ : T (n) → T (n)op of the algebra T (n).

Corollary 7.35. The spectrum Y (n) is equivalent to Y (n)op as an associative algebra with 
a map to HF2.

Remark 7.36. The analogous result should be true at odd primes, with a more involved 
calculation in topological Hochschild homology.
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